[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0101850B1 - Sicherheits-Notlaufeinrichtung für den Leerlaufbetrieb von Kraftfahrzeugen - Google Patents

Sicherheits-Notlaufeinrichtung für den Leerlaufbetrieb von Kraftfahrzeugen Download PDF

Info

Publication number
EP0101850B1
EP0101850B1 EP83106751A EP83106751A EP0101850B1 EP 0101850 B1 EP0101850 B1 EP 0101850B1 EP 83106751 A EP83106751 A EP 83106751A EP 83106751 A EP83106751 A EP 83106751A EP 0101850 B1 EP0101850 B1 EP 0101850B1
Authority
EP
European Patent Office
Prior art keywords
signal
output stage
microcomputer
emergency
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83106751A
Other languages
English (en)
French (fr)
Other versions
EP0101850A2 (de
EP0101850A3 (en
Inventor
Günter Braun
Wolfgang Dipl.-Ing. Kosak
Alfred Dipl.-Ing. Kratt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25803247&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0101850(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0101850A2 publication Critical patent/EP0101850A2/de
Publication of EP0101850A3 publication Critical patent/EP0101850A3/de
Application granted granted Critical
Publication of EP0101850B1 publication Critical patent/EP0101850B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/266Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the computer being backed-up or assisted by another circuit, e.g. analogue
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/003Electric control of rotation speed controlling air supply for idle speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/003Electric control of rotation speed controlling air supply for idle speed control
    • F02D31/005Electric control of rotation speed controlling air supply for idle speed control by controlling a throttle by-pass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D2011/101Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles
    • F02D2011/102Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles at least one throttle being moved only by an electric actuator

Definitions

  • the invention relates to a safety emergency operation according to the type of the main claim.
  • a SAE Technical Paper No. 810157 describes a microcomputer-controlled internal combustion engine control.
  • the microcomputer or microprocessor used in this way generates control pulses built into its control program, which are processed by the microprocessor and therefore occur regularly if they function properly.
  • a malfunction of the program or the device can then be detected by a memory circuit or another device, since in this case, for example when the computer is at a standstill, no more control pulses are emitted.
  • a monostable multivibrator is provided, the output signal of which can be fed to the injection system and the ignition device.
  • the regular control impulses are suppressed below a prescribed speed of the internal combustion engine, particularly when the internal combustion engine is started up.
  • a reset circuit for a microcomputer is also known from DE-A-30 35 896, in which the control pulses indirectly open or close. Discharge a capacitor so that the absence of the control pulses can be detected by monitoring the capacitor voltage. If there are changes in the sequence of the control pulses above a predetermined level, the monitoring circuit generates a reset signal which resets the microcomputer. The reset phase is then followed by a release phase in which the system can restart.
  • a device for the electronic control of an electromagnetic actuator in which the actuator is controlled by an amplifier with a pulse-shaped signal.
  • the control signal and output signal of the output stage are fed to a logic which, in the event of a fault, cancels the control of the actuating device.
  • an electronic control device with a microcomputer is known from GB-A-2 007 397.
  • a test signal is issued to monitor the processor. If the processor is defective, this test signal is missing. In this case, the control signals are no longer generated by the microprocessor, but by an emergency running device.
  • the safety emergency running device has the advantage over the fact that the digital control of the final stage driving the actuator, a perfect detection of errors by feedback of output stage output signals to the controlling computer is possible, which then itself generates a switch-off signal and feeds a separate switch-off stage for the output stage so that the output stage as a whole is de-energized.
  • the output stage is therefore always switched off when component defects occur, for example due to alloyed output stage transistors, wire breaks on the two-winding turntable, errors in the transmission of the motor temperature through the NTC line and the like.
  • the existing correction spring in this case sets an uncritical bypass cross-section for the idle charge control, which prevents unwanted accelerating.
  • the power stage is switched off in a pulsed manner using a separate failsafe circuit with a minimum duty cycle, which also results in an emergency function for a computer failure.
  • the invention takes into account linearity errors in the actuator cross-section caused by correction spring or battery voltage changes in that the safety circuit corrections by querying a memory at micro-rake enabled.
  • the microcomputer is designed so that an interruption or non-connection of the NTC resistor supplying an indication of the motor temperature to the computer recognizes and the output stage is switched off in the event of a fault, likewise an interruption of the ignition signals is recognized and the output stage is switched on in the event of a fault.
  • FIG. 1 shows the block diagram of the safety circuit with an external failsafe circuit
  • FIG. 2 shows a first detailed exemplary embodiment of the output stage area with an assigned shutdown stage
  • FIG. 3 shows in detail a converter for converting voltage signals into a time duration signal that can be evaluated by the computer
  • FIG. 4 2 shows a further detailed exemplary embodiment with additional additions
  • FIG. 6 signal curves at different circuit points of the exemplary embodiment of FIG. 5.
  • 10 denotes a microcomputer or microprocessor, which is used to control certain system functions, for example an idle charge control in a motor vehicle.
  • the microcomputers 10 are peripherally assigned to the modules provided for system security and the required reaction in the event of a fault;
  • the microcomputer 10 is supplied with signals to be processed at its input 10a via a data line 11 from a block shown only schematically at 12, those of operating parameters of the to be controlled or controlled. System depend.
  • These operating parameters can, for example, provide information about the actual value of the current speed of the motor vehicle, the setpoint at this time, climatic conditions such as pressure and outside temperature, the position of the throttle valve and the like in the selected application of an idle charge control. be. From this information, which will be followed by a few more, which will be discussed in the following, the microcomputer 10 creates at its signal output 10b a control signal sequence which is used to control actuators via an output stage 13, in the present case a so-called two-winding rotary actuator 14 , which is connected in parallel to the throttle valve in the idle charge control as an air bypass and has a slide 14a, the position of which determines a desired passage cross-section based on the type of supply of clocked signals to the two partial windings 15a, 15b of the two-winding rotary actuator 14 via the output stage 13 results.
  • a bias spring 16 also acts, which in the event of a fault mitigates and switches off the possible emergence of dangerous driving situations due to faulty non-activation of the two-winding turntable, in particular, for example, in maneuvering and pushing operation that in this case a bypass cross-section required for driving safety is set mechanically with minimal passage.
  • the two-winding turntable is controlled by a single digital control pulse train, usually a rectangular pulse train via the output stage 13 by the microcomputer 10, it is the duty cycle n of the drive pulse train that determines the position of the slide 14a of the two-winding rotary control, the division of the individual pulses in push-pull is made by the power amplifier 13.
  • the steep element receives a non-linear profile and a battery voltage dependency due to the spring characteristic which is dependent on the weight, so that the partial winding 15a, 15b can be partially compensated for the constant spring action.
  • the computer 10 is therefore supplied with a battery voltage signal U BATT at a connection point 17 and converted into a time duration signal t s via an interposed analog-digital converter 18 and supplied to the input 10c of the computer.
  • a temperature signal of the engine v MO which is decisive for the idle charge control, arrives via the analog-digital converter block 19 ! from the connection 20 to the computer input 10d, in turn converted by the converter circuit 19 into a corresponding, temperature-related time duration signal tv.
  • a preferred embodiment of a converter for blocks 18 and 19 is discussed in more detail below with reference to the illustration in FIG. 3.
  • the temperature and battery voltage signals can also be read into the computer using external (or internal) A / D converters.
  • Microcomputer 10 designed in the manner of a PID controller uses the input parameters to determine the required basic duty cycle ⁇ and corrected for the influence of the battery voltage and the stored spring force (non-linear characteristic curve) by querying an external data memory, which is identified by 21 in the block diagram in FIG. 1 and a PROM, EPROM, etc. can be; the flow of data from the data memory 21 after appropriate addressing by the computer 10 is illustrated by the multi f ach effetive arrows.
  • the circuit is completed by, so to speak, a computer-internal first control and safety function, which is based on the corresponding inputs 10e and 10f of the computer being fed via feedback lines 22, 23 to the actuating signals of the two respective end stages which are responsible for one of the partial windings of the two-winding rotary actuator, so that the computer, in the event of a deviation of the returned duty cycle n 'of the windings of the two-winding rotary actuator from the duty cycle n of the control signal sequence predetermined by itself, can supply a shutdown signal via an intermediate OR gate 25 to a blocking block 26 which switches off the output stage; since the computer also outputs so-called failsafe pulses or control pulses at its output 27, the occurrence of which ensures that the computer works properly, in addition to the security concept according to the invention, an external security or so-called fail-safe circuit 28 can also be provided the same OR gate 25 also supply a shutdown signal to the shutdown block 26 in the event of a fault.
  • This switch-off signal also serves as a
  • the output stage 13 comprises two output stage semiconductor switches, namely the switching transistors T1 and T2, the collector of T1 over the connection point M1 is connected to the first partial winding 15a and the collector of the switching transistor T2 is connected via connection point M2 to the second partial winding 15b of the two-winding turntable 14.
  • the two collectors are then each connected to the positive battery voltage via diodes D1 and D2 which are polarized in the reverse direction and to which connection point (M +) the two merged connections of the partial windings 15a, 15b are also connected.
  • the two switching transistors T1 and T2 of the output stage 13 are driven by an upstream driver transistor TO, to which the drive pulse sequence with the pulse duty factor r 1 is supplied from the output 10b of the microcomputer 10 at the connection point 29.
  • the control signal sequence passes from the driver transistor TO to the first switching transistor T1, which then controls the collector of the second switching transistor T2 connected to it via the voltage divider resistors R1, R2.
  • the two output stage transistors T1 and T2 work alternately in push-pull on the partial windings, the relative position of the slide 14a on the two-winding rotary actuator resulting from the respective, relative time periods of the pulses (current time areas) supplied to the corresponding partial windings.
  • the current switching states on the two-winding turntable 14 are monitored by detecting the control signals at the switching points M1 and M2 to the partial windings 15a, 15b and are passed via resistors R7, R8 with correspondingly assigned calming or pulse-shaping stages from diodes D5, D4, capacitors C1 connected in parallel and C2 and resistors R9, R10 as actuator signals U1 and U2 indicating the current duty cycle n 'to the inputs 10e, 10f of the microcomputer 10.
  • the switch-off stage 26 which comprises a series transistor T5 with its emitter against ground, the collector of which is connected to the two combined emitters of the switching transistors T1 and T2 of the output stage 13.
  • Oring with the reset signal of the safety circuit 28 present at the other input connection 31 is effected in that the reset signal is supplied via a diode D1 at the connection point of two resistors R14, R13 in the control circuit between the pre-stage transistor T4 and the base of the series transistor T5.
  • the control signal curve with the pulse duty factor '1 is shown at a), the times t 1 and t 2 each being able to change relatively corresponding to r 1 , and at b) and c) the signal curves at the switching points M1 and M2 shown corresponding to the collectors of T1 and T2;
  • the waveform at d) represents the shutdown signal issued by the microcomputer 10 itself;
  • the waveforms corresponding to e) and f) are the tuned actuator signals Ü1 and Ü2 with the current duty cycle n ';
  • the signal curve at g) indicates the reset signal which comes from the failsafe circuit and at h) the failsafe or control pulses issued by the microcomputer 10 are shown which are fed to the failsafe circuit 28.
  • the computer 10 checks whether the read signals U1, U2 during times t 1 and t 2 correspond to the required signal curve with the duty cycle n.
  • the switch-off signal corresponding to d) goes high at time t o and thus de-energizes the switching transistors T1 and T2, so that their collectors corresponding to b) and c) assume high signals.
  • This high-level signal passes from the switching point M + to the collectors via the partial windings 15a, 15b. This shutdown of the computer can only be canceled by switching off the engine and restarting.
  • the failsafe circuit 28 serves to compensate for internal and external faults, also on the computer itself or, if appropriate, a voltage drop.
  • the failsafe pulses supplied to the failsafe circuit 28 by the computer corresponding to h) in FIG. 4 are omitted, so that the failsafe circuit 28 with its reset signal corresponding to g) going low via the OR link 25 to the series transistor T5 switches off the power amplifier and at the same time provides a hardware reset for the computer.
  • the failsafe circuit is designed so that in the event of a fault it then works itself as a free-running oscillator; it comprises at least one capacitor continuously charged by the control pulses of the microcomputer 10, so that an input signal tapped via this capacitor arrives at an input of a threshold value comparator circuit and, in the absence of the control pulses, the comparator output is switched according to the low potential of the reset signal with a subsequent release signal of shorter duration by feedback of the output to the input.
  • the failsafe circuit therefore works in the manner of a monoflop, with the release time being designated t 3 and the reset time t 4 in curve profile g) of FIG. 4.
  • Another fault can be the additional dependencies of the bypass cross-section set by the two-winding rotary actuator on the battery voltage, the spring characteristic and the motor temperature. It is initially assumed that the time signals received by the microcomputer 10 in accordance with the conversion at its inputs 10c, 10d are within the usual limit values. In this case, the computer carries out corresponding corrections or additions to the duty cycle setting by querying the memory 21.
  • FIG. 3 An embodiment of a converter, to which an input voltage Us to be converted into a period of time, which can be the battery voltage or a voltage proportional to the engine temperature, is supplied below with reference to the illustration in FIG. 3.
  • the connection point with the voltage to be converted is designated 32; this voltage reaches a capacitor C3 via the transistor T6, which is turned on at the input 33 in the absence of an interrogation signal by the microcomputer. This capacitor is constantly charged to the voltage Us to be converted. If the query pulse appears at connection 33 from the computer, transistor T6 is blocked and capacitor C3 discharges via a circuit, which is initially shown as adjustable resistor R18, until the reference voltage present at resistors R19, R20 at a downstream comparator K1 falls below is.
  • the comparator K1 changes its output signal U a, for example from high to low, and feeds this signal to the computer.
  • the computer is designed so that it counts the time from the setting of the interrogation pulse to the appearance of the comparator signal, so that there is a proportionality between the determined time t s and the voltage Us. If a linear relationship between these two quantities is desired — if the computer cannot or should not compensate for a nonlinear relationship by correspondingly querying the memory 21, the capacitor C3 can also be discharged via a constant current source.
  • the computer normally increases the bypass cross-section accordingly due to its warm-up program, so that an increase in speed can also occur.
  • the resistance range of the NTC resistor used here for example, for temperature measurement, only extends within predefined limits (in the preferred exemplary embodiment between approximately 26 kilohms, which corresponds to a maximum voltage applied to the converter 19 and a maximum duration t that can be determined by the computer), approximately -30 ° C, up to less than 400 ohms, which then corresponds to the minimum voltage and the minimum duration pulse, at about + 80 ° C).
  • an interruption of the ignition signal is important as a fault, since in this case the actual speed value n, st supplied to the microcomputer 10 is significantly smaller than a desired speed value n should . Accordingly, the computer is simulated in this case n is , and the computer sets the bypass completely in order to avoid the engine going out, so that there may be a dangerous speed increase.
  • FIG. 5 of a completed safety emergency running device with a large number of optional configurations shows the individual assemblies in dashed lines, components identical to the preceding exemplary embodiments and carrying out the same functions being identified by the same reference numerals; comparable components are marked with the same reference symbol and additionally with a comma at the top.
  • the circuit shown in FIG. 5 comprises the block 35, which is responsible for the control and regulation of the system functions and contains microprocessors, microcomputers, logic control or sequence circuits, with a microcomputer 10 ', memory 21' and a stabilizer circuit 36, the output stage 13 ', the block 26 'for the output stage shutdown, a failsafe or safety circuit 28', a circuit 37 for processing the output stage monitoring signals Ü1 and Ü2 and an emergency operation circuit 38.
  • the emergency running circuit 38 is only provided as an option; if it is present, then in the practical exemplary embodiment the output stage shutdown 26 ′ and possibly also the conditioning of the output stage monitoring signals by the circuit 37 can be dispensed with.
  • the failsafe circuit 28 ' which can also be referred to as a so-called watch-dog circuit, as control pulses now the control signal pulses THV issued by the microcomputer 10', which the Duty cycle n contained according to the bypass cross-section required by the computer for the respective operating state, are supplied.
  • the THV pulses reach the output stage 13 'via a comparator K1 which is additionally provided, the reference input generated at 39 being fed to the other input of K1.
  • the basic function is as follows, the special structure of the failsafe circuit 28 'and the emergency running generator being discussed further below. Since the switching transistors T1 and T2 can only work alternately, however, for safety reasons, as can easily be seen, only the "opening" of the two-winding turntable by means of the transistor T2, which was last actuated as agreed, is basically only necessary for the microcomputer 10 ' the collector signal of the transistor T2, pulse-shaped by the one pulse shaping stage 37a from the series resistor R8, followed by the parallel connection of the diode D4, the resistor R10 and the capacitor C2 as a final stage monitoring signal U2.
  • the computer queries the pulse ratio via Ü2 for correctness very shortly before and very shortly after each new duty cycle output. If the computer detects a deviation in the duty cycle, it itself sets the output EA (output stage shutdown) to low and the output stage switching transistors T1 and T2 are de-energized via the additional comparator K2 and the transistors T4 and T5 already mentioned above. As a result, the two-winding turntable, which is connected to the switching points M1, M2 and M +, is de-energized and the spring pulls it back to the specified safety cross-section, which, for example, corresponds to a speed of around 1400 n- 1 when the engine is warm.
  • EA output stage shutdown
  • the structure and function of the failsafe circuit are as follows.
  • the THV drive pulses from the computer reach a transistor T6 via a diode D6, which charges a storage capacitor C3.
  • the storage capacitor C3 is connected to an inverting input of a threshold stage, which is represented in a known manner by a comparator K4 with appropriate wiring.
  • a resistor R16 and a series connection of a resistor R17 and a diode D7 are arranged in a negative feedback branch to the inverting input.
  • the failsafe circuit 28' which takes over and as a square wave oscillator with a duty cycle of low, for example 135 ms and high, about 18 ms in reset Signal works.
  • the reset signal then goes, as already explained further above, to the reset and restarting to the microcomputer 10 'and reaches the output stage switch-off 26' via the diode D3, which due to the high phases and the resulting influence on the emergency running cross-section on the two-winding Rotary adjuster idle speed changes between 200 to 300 n- 1 up or down can result.
  • the alternative embodiment with the emergency running generator 38 comprises a free-running oscillator 01, formed by a comparator K3, which is also coupled via a resistor R18 and is negatively coupled via a resistor R19, a capacitor C4 being connected in parallel with the resistor R20 to ground from the inverting input is.
  • the emergency operation signal 'NOT as indicated by the dashed connecting line L1, reaches the inverting input of the comparator K1 connected upstream of the driver transistor TO, but can also control the output stage at another point, for example directly at the base of the driver transistor T0.
  • the limp-home generator 28 can be started by the reset signal of the failsafe circuit 28 'via a diode D8, but it can also oscillate continuously with a predetermined pulse duty factor such that in normal operation this is within the pulse duty factor sequence of the drive pulse sequence THV typically output by the microcomputer 10' and therefore in this case does not come into effect.
  • an advantageous embodiment of the invention can include both measures, because in the event of an error in the power stage shutdown 26 ', the emergency operation signal then brings the position of the slide of the two-winding rotary actuator into an uncritical range.
  • the pulse shaper stages 37a, 37b are connected in parallel in front of the respective connection resistors R8 and R7, that is to say in each case starting from the circuit points M1 and M2, interference protection zener diodes D9, D10; Furthermore, with regard to the security concept, it can be useful to carry out the generation of the output stage monitoring signals U1, U2 with high impedance by inserting comparators into the two connecting lines back to the computer, as indicated at 40, which makes it possible to switch off the Decisive current at least in the UP winding of the two-winding turntable.
  • a simple transistor stage (emitter circuit) is also useful here if the semiconductors are integrated on an IC or hybrid.
  • a further embodiment includes the insertion of an additional emitter resistor Rx from the emitter of the output stage cut-off series resistor T5 to ground and, in parallel with the base-emitter resistor, the arrangement of a zener diode D11 in this transistor, optionally in series with a further diode D12. This results in an effective current limitation which, based on the duty cycle output by the computer, also absorbs an actuator short circuit.
  • the switching transistors T1 and T2 can optionally have an additional emitter resistor R21, R22 and a limiting diode path parallel to the resistor connected from the base to ground, either from the series connection of a zener diode D12, D13 with a further diode D14, D15 or be equipped only from the Zener diode D12, D13.
  • the duty cycle control signal THV output by the microcomputer 10 passes via the comparator K1 and the driver transistor TO to the first switching transistor T1 of the output stage. Since the signal designations of the pulse sequences are indicated on the individual curve profiles of FIG. 6, the further functional sequence can be followed by observing the signal pulse sequences.
  • THV Iow
  • the first switching transistor T1 is conductive, it then leads the one connected to it the UP winding of the two-winding turntable nominal current and the second switching transistor T2 is blocked by the divided saturation voltage of the transistor T1.
  • the CLOSE winding of the two-winding turntable is de-energized.
  • the CLOSE winding carries nominal current.
  • the opening cross-section on the two-winding turntable is directly proportional to the ratio of the currents in the switch-on times.
  • the characteristic curve shift in the UP direction caused by the base current of the transistor T2, which is also dependent on the duty cycle, can be taken into account when constructing the two-winding rotary actuator.
  • the output signal at the collector of transistor T2 is inverted to the THV control signal; This signal is limited by the simply constructed pulse shaper stage 37a and fed back to the microcomputer 10 'as a Ü2 output stage monitoring signal.
  • the output stage shutdown signal EA which is output by the microcomputer 10 ', is clamped to low by the direct link via the diode D3 to the output of the failsafe circuit 28', whereby the comparator K2 and the driver transistor T4 block the series transistor T5 to the output stage switching transistors and the two-winding turntable windings are accordingly de-energized.
  • the signal shaping stage 37a and possibly 37b draw a current from the CLOSE winding or the OPEN winding which is additionally reduced by comparators 40 which are optionally connected downstream.
  • the built-in spring adjusts an emergency running cross-section for the two-turn turntable.
  • the microcomputer 10 After the reset phase has elapsed at time t 1 and after the completion of initialization routines up to time t 2, the microcomputer 10 'begins with the output of an emergency duty cycle according to its design, until it receives the data on the speed it has received , Temperature and other parameters.
  • the computer After each THV pulse output, for example at time t, the computer checks after a specified period of time t 8 ⁇ t 7 ⁇ 100 us that the Ü2 or. Ü2 and Ü1 signal level with the THV signal level. In the event of a deviation, for example a disturbance at time t B - the transistor T2 no longer blocks, the Ü2 signal is not switched up during the period t 10 ... "The computer via its I / O line (signal goes low) and the comparator K2 ultimately turns off the transistor T5 and de-energizes the actuator.
  • a power amplifier monitoring routine in the microcomputer 10 'then checks after a predetermined time, for example every 2 seconds, by switching on the EA line and corresponding interrogation of the Ü2 return line after a predetermined time, for example after 100 ps (this corresponds to approximately five times the duration of the transistor switching times including filtering) whether the malfunction is still relevant. Any resulting influencing of the actuator current by this brief query does not essentially lead to a change in the emergency running cross section set by the spring on the two-winding rotary actuator.
  • the failsafe circuit 28 takess over as a rectangular oscillator. She works' to be able to send possible reset and re anwer f s, where the reset phases also result in only a slight influence on the Notlaufquerterrorismes the controller with its reset signal to the microcomputer 10th
  • the Ü2 signal (and also the Ü1 signal) must return to a high level; if this is not the case, for example in the event of an external short to ground, then the output stage remains switched off due to the computer programming being made.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Safety Devices In Control Systems (AREA)

Description

    Stand der Technik
  • Die Erfindung bezieht sich auf eine Sicherheits-Notiäufe!nt:chtung nach der Gattung des Hauptanspruchs.
  • Es ist bekannt zur Steuerung von elektrischen oder elektromechanischen Geräten oder zur Steuerung von Systemfunktionen Mikroprozessoren oder Mikrocomputer zu verwenden, die aus einem oder mehreren Betriebsparametern des Systems Steuersignale zum Betätigen von Stellgliedern ableiten Derartige Einrichtungen werden in Kraftfahrzeugen beispielsweise zum Betreiben von Einspritzanlagen, Zündaniagen, Getriebesteuerungen oder einer Leerlauffüllungsregelung, jeweils getrennt oder auch kombiniert in einer Zentrallogik, verwendet. Es ist auch bekannt, in diesem Zusammenhang Überwachungseinrichtungen vorzusehen, die die einwandfreie Funktion des Gerätes überwachen und bei Auftreten einer Fehlfunktion ein Alarmsignal abgeben und/oder eine Notsteuerung veranlassen.
  • In dem SAE-Technical Paper Nr. 810157 ist eine mikrocomputergesteuerte Brennkraftmaschinenregelung beschrieben. Der dabei verwendete Mikrocomputer oder Mikroprozessor erzeugt in seinem Steuerprogramm eingebaute Kontrollimpulse, die vom Mikroprozessor abgearbeitet werden und daher bei einwandfreier Funktion regelmäßig auftreten. Eine Fehlfunktion des Programms oder der Einrichtung kann dann von einer Speicherschaltung oder einer sonstigen Einrichtung erfaßt werden, da in diesem Fall, etwa bei Stillstand des Rechners, keine Kontrollimpulse mehr abgegeben werden. Bei der Überwachungsschaltung nach dem SAE-Paper ist eine monostabile Kippstufe vorgesehen, deren Ausgangssignal der Einspritzanlage und der Zündeinrichtung zuführbar ist. Unterhalb einer vorgeschriebenen Drehzahl der Brennkraftmaschine werden die regelmäßigen Kontrollimpulse unterdrückt, insbesondere bei der Inbetriebnahme der Brennkraftmaschine.
  • Ein Resetschaltung für einen Mikrocomputer ist ferner bekannt aus der DE-A-30 35 896, bei der die Kontrollimpulse mittelbar das Auf-bzw. Entladen eines Kondensators bewirken, so daß das Ausbleiben der Kontrollimpulse durch Überwachen der Kondensatorspannung erkannt werden kann. Ergeben sich Veränderungen in der Abfolge der Kontrollimpulse oberhalb eines vorgegebenen Maßes, dann erzeugt die Überwachungsschaltung ein Resetsignal, welches den Mikrocomputer zurückstellt. An die Rückstellphase schließt sich dann eine Freigabephase an, in der das System wieder anlaufen kann.
  • Aus der FR-A-2 458 106 ist eine Einrichtung zur elektronischen Steuerung eines elektromagnetischen Stelleinrichtung bekannt, bei der die Stelleinrichtung über einen Verstärker mit einem impulsförmigen Signal angesteuert wird. Ansteuersignal und Ausgangssignal der Endstufe werden einer Logik zugeführt, die im Fehlerfall die Ansteuerung der Stelleinrichtung aufhebt.
  • Ferner ist aus der GB-A-2 007 397 eine elektronische Steuereinrichtung mit einem Mikrocomputer bekannt. Zur Überwachung des Prozessors wird ein Prüfsignal ausgegeben. Bei Defekt des Prozessors fehlt dieses Prüfsignal. In diesem Fall werden die Ansteuersignale nicht mehr vom Mikroprozessor erzeugt, sondern von einer Notlaufeinrichtung.
  • Einrichtungen, in denen Rückstellelemente, wie z.B. Federn verwendet werden, sind grundsätzlich bekannt. So wird in dem Buch "Die Meisterprüfung im Kfz-Handwerk" (7. Aufl., Teil 2; Würzburg (1980) ein Luftschieber mit einer Rückstellfeder beschrieben, der in der einen Richtung durch zugeführte Wärme, in der anderen Richtung durch eine Rückstellfeder bewegbar ist.
  • Probleme können sich bei den bekannten Einrichtungen zur Überwachung von Systemfunktion dann ergeben, wenn eine Funktion überwacht werden muß, die bei undefiniertem Fehlverhalten sicherheitskritisch sein kann, beispielsweise also etwa bei einer Leerlauffüllungsregelung die Möglichkeit, daß ein für eine solche Regelung verwendeter Zweiwicklungs-Drehsteller eine Position einnimmt, die einem ungewollten Gasgeben entspricht.
  • Es besteht daher Bedarf nach einer Überwachungsschaltung in Verbindung mit einer Leerlauffüllungsregelung, die in der Lage ist, ein definiertes, sicherheitsunkritisches Ausfallverhalten einer solchen Leerlauffüllungsregelung sicherzustellen.
  • Vorteile der Erfindung
  • Die erfindungs gemäße Sicherheits-Notlaufeinrichtung mit dem kennzeichnenden Merkmalen des unabhängigen Anspruchs 1 hat dem gegenüber den Vorteil, daß durch die digitale Ansteuerung des das Stellglied ansteuernden Endstufe ein einwandfreies Erkennen von Fehlern durch Rückführung von Endstufen-Ausgangssignalen zum ansteuernden Rechner möglich ist, der dann selbst ein Abschaltsignal erzeugt und einer gesonderten Abschaltstufe für die Endstufe so zuführt, daß die Endstufe insgesamt stomlos wird. Die Endstufenabschaltung erfolgt daher stets dann, wenn Bauelement-Defekte auftreten, beispielsweise durch legierte Endstufentransistoren, Drahtbruch am Zweiwicklungs-Drehsteller, Fehler in der Übermittlung der Motortemperatur durch die NTC-Leitung u. dgl. Die vorhandene Korrekturfeder stellt in diesem Fall einen unkritischen Bypaßquerschnitt für die Leerlauffüllungsregelung ein, die ein ungewolltes Gasgeben verhindert.
  • Bei internen oder externen Störungen, die auch von längerer Dauer sein können, wird die Endstufe über eine gesonderte Failsafe-Schaltung mit minimalem Tastverhältnis gepulst abgeschaltet, wodurch sich auch eine Notfunktion für einen Rechnerausfall ergibt.
  • Die Erfindung trägt durch Korrekturfeder oder Batterie spannungsänderungen verursachten Linearitätsfehlern im Stellerquerschnitt dadurch Rechnung, daß die Sicherheitschaltung Korrekturen durch Abfrage eines Speichers bei Mikrorechnern ermöglicht. In gleicher Weise ist der Mikrorechner so ausgelegt, daß ein Unterbrechung oder ein Nichtanschluß des eine Angabe über die Motortemperatur dem Rechner zuführenden NTC-Widerstands erkennt und im Störfall die Endstufe abgeschaltet wird, desgleichen wird eine Unterbrechung der Zündsignale erkannt und im Störungsfall die Endstufe angeschaltet.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Notlaufeinrichtung möglich.
  • Zeichnung
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen Fig. 1 das Blockschaltbild der Sicherheitsschaltung mit externer Failsafe-Schaltung, Fig. 2 ein erstes detailliertes Ausfühführungsbeispiel des Endstufenbereichs mit zugeordneter Abschaltstufe, Fig. 3 in detaillierter Darstellung einen Wandler zur Umsetzung von Spannungssignalen in ein vom Rechner auswertbares Zeitdauersignal, Fig. 4 Signalverläufe an verschiedenen Schaltungspunkten der Schaltung der Fig. 2, Fig. 5 ein weiteres detailliertes Ausführungsbeispiel mit zusätzlichen Ergänzungen und Fig. 6 Signalverläufe an verschiedenen Schaltungspunkten des Ausführungsbeispiels der Fig. 5.
  • Beschreibung der Ausführungsbeispiele
  • In dem Blockschaltbild der Fig. 1 ist mit 10 ein Mikrocomputer oder Mikroprozessor bezeichnet, der zur Steuerung bestimmter Systemfunktionen, beispielsweise einer Leerlauffüllungsregelung bei einem Kraftfahrzeug, dient. Dem Mikrocomputer 10 sind peripher die für Sicherheit des Systems und die erforderliche Reaktion im Fehlerfall vorgesehenen Baugruppen zugeordnet; beim speziellen Anwendungsfall vorliegender Erfindung, der sich auf eine Leerlauffüllungsregelung bezieht und auf welchen Anwendungsfall die nachfolgende Beschreibung dann auch speziell gerichtet ist, werden dem Mikrocomputer 10 an seinem Eingang 10a über eine Datenleitung 11 von einem lediglich schematisch bei 12 dargestellten Block zu verarbeitende Signale zugeführt, die von Betriebsparametern des zu steuernden bzw. zu kontrollierenden. Systems abhängen. Diese Betriebsparameter können beim gewählten Anwendungsfall einer Leerlauffüllungsregelung beispielsweise Angaben über den Istwert der momentanen Drehzahl des Kraftfahrzeugs, über den Sollwert zu diesem Zeitpunkt, über klimatische Bedingungen wie Druck und Außentemperatur, die Position der Drosselklappe u.dgl. sein. Aus diesen Angaben, zu denen noch einige weitere kommen, auf die im folgenden gleich eingegangen wird, erstellt der Mikrocomputer 10 an seinem Signalausgang 10b eine Steuersignalfolge, die über eine Endstufe 13 der Ansteuerung von Stellgliedern dient, im vorliegenden Fall eines sogenannten Zweiwicklungs-Drehstellers 14, der bei der Leerlauffüllungsregelung als Luft-Bypaß parallel zur Drosselklappe geschaltet ist und einen Schieber 14a aufweist, dessen einen gewünschten Durchlaßquerschnitt bestimmende Position sich aus der Art der Zuführung getakteter Signale zu den beiden Teilwicklungen 15a, 15b des Zweiwicklungs-Drehstellers 14 über die Endstufe 13 ergibt. Am Stellglied, im Anwendungsbeispiel also am Schieber 14a des Zweiwicklungs-Drehstellers 14, greift noch eine Vorspannungsfeder 16 an, die im Fehlerfall die durch fehlerbedingte Nichtansteuerung des Zweiwicklungs-Drehstellers mögliche Entstehung gefährlicher Fahrsituationen, insbesondere beispielsweise im Rangier- und Schubbetrieb, dadurch mildert und ausschaltet, daß in diesem Fall ein für die Fahrsicherheit erforderlicher Bypaßquerschnitt mit minimalem Durchlaß mechanisch eingestellt wird.
  • Da der Zweiwicklungs-Drehsteller von einer einzigen digitalen Steuerimpulsfolge, üblicherweise Rechteckimpulsfolge über die Endstufe 13 vom Mikrocomputer 10 angesteuert wird, ist es Tastverhältnis n der Ansteuerimpulsfolge, welches die Position des Schiebers 14a des Zweiwicklungs-Drehstellers bestimmt, wobei die Aufteilung der einzelnen Impulse im Gegentakt von der Endstufe 13 vorgenommen wird.
  • Da die Vorspannungsfeder 16 zur Rückführung des Zweiwicklungs-Drehstellers 14 in die Sicherheitsposition ständig einwirkt, erhält das Steilglied aufgrund der we gabhängigen Federkennlinie einen nichtlinearen Verlauf sowie eine Batteriespannungsabhängigkeit, dadurch entsprechende Auslegung der Teilwicklung 15a, 15b eine Teilkompensation der ständigen Federeinwirkung erreicht werden kann.
  • Es ergibt sich daher bei konstantem Ansteuertastverhältnis n als Maß für den Bypaßquerschnitt ds die Funktion
  • Figure imgb0001
  • Es gehört zur Sicherheitskonzeption vorliegender-Erfindung, diese zusätzlichen Abhängigkeiten zu kompensieren und Fehleinstellungen schon hierdurch zu vermeiden.
  • Dem Rechner 10 wird daher an einem Anschlußpunkt 17 ein Batteriespannungssignal UBATT zugeführt und über einen zwischengeschalteten Analog-Digital-Wandler 18 in ein Zeitdauersignal ts umgesetzt und dem Eingang 10c des Rechners zugeführt. In gleicher Weise gelangt über den Analgo-Digital-Wandlerblock 19 noch ein für die Leerlauffüllungsregelung maßgebendes Temperatursignal des Motors vMO! vom Anschluß 20 zum Rechnereingang 10d, von der Wandlerschaltung 19 wiederum umgesetzt in ein entsprechendes, temperaturbezogenes Zeitdauersignal tv. Auf eine bevorzugte Ausführungsform eines Wandlers für die Blöcke 18 und 19 wird weiter unten noch in Bezug auf die Darstellung der Fig. 3 genauer eingegangen.
  • Die Temperatur- und Batterie spannungssignale können aber auch mittels externer (oder interner) A/D-Wandler in den Rechner eingelesen werden.
  • Im Normalbetrieb ermittelt der vorzugsweise nach Art eines PID-Reglers ausgelegte Mikrocomputer 10 aus den Eingangsparametern das erforderliche Grundtastverhältnis η und korrigiertes um den Batteriespannungseinfluß und dem abgespeicherten Federkrafteinfluß (nichtlineare Kennlinie) durch Abfrage eines externen Datenspeichers, der im Blockschaltbild der Fig. 1 mit 21 bezeichnet ist und ein PROM, EPROM, u.dgl. sein kann; der Datenfluß vom Datenspeicher 21 nach entsprechender Adressierung durch den Rechner 10 ist durch die Mehrfachleitungen andeutenden Pfeile dargestellt.
  • Die Schaltung vervollständigt sich durch eine sozusagen rechnerinterne erste Kontroll- und Sicherheitsfunktion, die darauf beruht, daß entsprechenden Eingängen 10e und 10f des Rechners über Rückführleitungen 22, 23 die Stellsignale der beiden jeweils für eine der Teilwicklungen des Zweiwicklungs-Drehstellers zuständigen Endteilstufen zugeführt werden, so daß der Rechner bei Abweichung des rückgeführten Tastverhältnisses n' der Wicklungen des Zweiwicklungs-Drehstellers von dem von ihm selbst vorgegebenen Tastverhältnis n der Ansteuersignalfolge von seinem Ausgang 24 ein Abschaltsignal über ein zwischengeschaltetes ODER-Glied 25 einem die Endstufe abschaltenden Sperrblock 26 zuführen kann; da der Rechner ferner an seinem Ausgang 27 noch sogenannte Failsafe-Impulse oder Kontrollimpulse ausgibt, deren Auftreten ein ordnungs-gemäßes Arbeiten des Rechners gewährleistet, kann in Ergänzung der erfindungsgemäßen Sicherheitskonzeption eine noch vorgesehene, externe Sicherheits- oder sogenannte Fail- safe-Schaltung 28 über das gleiche ODER-Glied 25 ebenfalls dem Abschaltblock 26 im Fehlerfall ein Abschaltsignal zuführen. Diese Abschaltsignal dient gleichzeitig als Reset-Signal für den Mikrocomputer 10 und wird daher gessem Eingang 10g zugeführt.
  • In der detaillierteren Darstellung der Fig. 2, die die Endstufe 13, den Abschaltblock 26 und das ODER-Glied 25 umfaßt, erkennt man, daß die Endstufe 13 zwei Endstufenhalbleiterschalter, nämlich die Schalttransistoren T1 und T2 umfaßt, wobei der Kollektor-von T1 über den Anschlußpunkt M1 mit der ersten Teilwicklung 15a und der Kollektor des Schalttransistors T2 über den Anschlußpunkt M2 mit der zweiten Teilwicklung 15b des Zweiwicklungs-Drehstellers 14 verbunden ist. Die beiden Kollektoren liegen dann jeweils noch über in Sperrichtung gepolte Dioden D1 und D2 an positiver Batteriespannung, mit welchem Anschlußpunkt (M+) auch die beiden zusammengeführten Anschlüsse der Teilwicklungen 15a, 15b verbunden sind. Die beiden Schalttransistoren T1 und T2 der Endstufe 13 werden von einem vorgeschaltete Treibertransistor TO angesteuert, dem die Ansteuerimpulsfolge mit dem Tastverhältnis r1 vom Ausgang 10b des Mikrocomputers 10 am Anschlußpunkt 29 zugeführt ist. Die Ansteuersignalfolge gelangt vom Treibertransistor TO auf den erste Schalttransistor T1, der mit seinem Kollektor über die Spannungsteilerwiderstände R1, R2 dann den ihm nachgeschalteten zweiten Schalttransistor T2 ansteuert. Entsprechend dem Tastverhältnis der Ansteuerimpulsfolge arbeiten die beiden Endstufentransistoren T1 und T2 alternierend im Gegentakt auf die Teilwicklungen, wobei sich die relative Position des Schiebers 14a am Zweiwicklungs-Drehsteller aus den jeweiligen, relativen Zeitdauern der den entsprechenden Teilwicklungen zugeführten Impulse (Stromzeitflächen) ergibt.
  • Die aktuellen Schaltzustände am Zweiwicklungs-Drehsteller 14 werden durch Erfassen der Ansteuersignale an den Schaltungspunkten M1 und M2 zu den Teilwicklungen 15a, 15b überwacht und gelangen über Widerstände R7, R8 mit entsprechend zugeordneten Beruhigungs-bzw impulsformerstufen aus jeweils parallelgeschalteten Dioden D5, D4, Kondensatoren C1 und C2 sowie Widerständen R9, R10 als das aktuelle Tastverhältnis n' angebende Stellersignale Ü1 und Ü2 zu den Eingängen 10e, 10f des Mikrocomputers 10.
  • Abgeschaltet wird über die Abschaltstufe 26, die einen Längstransistor T5 mit seinem Emitter gegen Masse umfaßt, dessen Kollektor mit den beiden zusammengefaßten Emittern der Schalttransistoren T1 und T2 der Endstufe 13 verbunden ist. Die Ansteuerung des Längstransistors T5, der je nachdem, ober leitend geschaltet ist oder sperrt, auch die Endstufe 13 stromlos schalten kann, erfolgt über einen vorgeschalteten weiteren Transistor T4, dessem Eingangsanschluß 30 das Abschaltsignal vom Ausgang 24 des Mikrocomputers 10 zugeführt ist. Die Oderung mit dem am anderen Eingangsanschluß 31 anliegenden Reset-Signal der Sicherheitsschaltung 28 erfolgt dadurch, daß das Reset-Signal über eine Diode D1 an dem Verbindungspunkt zweier Widerstände R14, R13 im Ansteuerkreis zwischen dem Vorstufentransistor T4 und der Basis des Längstransistors T5 zugeführt ist, so daß ein auf Null-oder Massepotential gehendes Reset-Signal den Längstransistor T5 sperrt und dadurch die Endstufe 13 stomlos schaltet. In gleicher Weise ergibt sich eine Abschaltfunktion für die Endstufe 13 bei hochgehendem oder hochliegendem Abschaltsignal am Eingang 30, wodurch der Vorstufentransistor T4 sperrt und daher das an seinem Kollektor anliegende positive Potential wegnimmt, was den Längstransistor T5 in der Sperrzustand bringt. Im folgenden werden zur Vereinfachung für die Potentialverteilungen durchlaufend die sich als praktikabel erwiesenen und in der Elektronik eingeführten Begriffe high für vereinbarungsgemäß hochliegendes Potential und low für niederliegendes oder Massepotential verwendet.
  • Anhand der in Fig. 4 dargestellten Signalverläufe an verschiedenen Punkten der Schaltung läßt sich die Funktion in beiden Fällen der Abschaltung (über den Mikrocomputer 10 oder die Failsafe-Schaltung 28) erläutern.
  • In Fig. 4 ist bei a) der Ansteuersignalverlauf mit dem Tastverhältnis '1 dargestellt, wobei sich die Zeiten t, und t2 jeweils relativ entsprechend rl verändern können, bei b) und c) sind die Signalverläufe an den Schaltungspunkten M1 und M2 entsprechend den Kollektoren von T1 und T2 gezeigt; der Signalverlauf bei d) stellt das vom Mikrocomputer 10 selbst herausgegebene Abschaltsignal dar; die Signalverläufe entsprechend e) und f) sind die rückgetunrien Stellersignale Ü1 und Ü2 mit dem aktuellen Tastverhältnis n'; der Signalverlauf bei g) gibt das Reset-Signal an, welches von der Failsafe-Schaltung stammt und bei h) sind die vom Mikrocomputer 10 herausgegebenen Failsafe- oder Kontrollimpulse gezeigt, die der Failsafe-Schaltung 28 zugeführt sind.
  • Man erkennt, daß bis zur dargestellten Unterbrechung die Signalverläufe einen vom Mikrocomputer 10 selbst erfaßten Notfall charakterisieren, während nach der Unterbrechung die Failsafe-Schaltung in Funktion tritt.
  • Der Rechner 10 überprüft, ob die eingelesenen Signal Ü1, Ü2 während der Zeiten t1 und t2 dem geforderten Signalverlauf mit dem Tastverhältnis n entsprechen.
  • Sobald ein nichtzulässiger Zustand auftritt, beispielsweise Transistor T1 dauernd leitend, Kurzschluß zwischen Kollektor und Emitter an einem der Transistoren, Drahtbruch an M1 oder M2, wodurch Ü1 oder Ü2 entweder dauernd low oder dauernd high sein können, wird dies vom Rechner erkannt (siehe den bei A im Kurvenverlauf f) der Fig. 4 dargestellten Fehler des Stellersignals Ü2, welches vor Ablauf von t1 auf high gegangen ist). Der Rechner schaltet dann entweder direkt oder nach einer zeitlichen Mittelung, je nach seiner Programmierung, beispielsweise über drei bis fünf Periodendauern gemittelt, die Endstufe 13 über die Abschaltstufe 26 ab. Dementsprechend geht das Abschaltsignal entsprechend d) zum Zeitpunkt to auf high und macht so die Schalttransistoren T1 und T2 stromlos, so daß deren Kollektoren entsprechend b) und c) high-Signale annehmen. Dieses hochliegende Signal gelangt über die Teilwicklungen 15a, 15b vom Schaltungspunkt M+ auf die Kollektoren. Diese Abschaltung von Rechner kann nur durch Abstellen des Motors und Neustart wieder aufgehoben werden.
  • Andererseits dient die Failsafe-Schaltung 28 der Kompensation interner und externer Störungen, auch am Rechner selbst oder gegebenenfalls einem Spannungseinbruch. Im Störungsfall unterbleiben die der Failsafe-Schaltung 28vom Rechner zugeführten Failsafe-Impulse entsprechend h) in Fig. 4, so daß die Failsafe-Schaltung 28 mit ihrem auf low gehenden Reset-Signal entsprechend g) über die ODER-Verknüpfung 25 auf den Längstransistor T5 die Endstufe abschaltet und gleichzeitig für einen Hardware-Reset für den Rechner sorgt.
  • Dabei ist die Failsafe-Schaltung so ausgelegt, daß sie im Störungsfall dann selbst als freischwingender Oszillator arbeitet; sie umfaßt mindestens einen von den Kontrollimpulsen des Mikrocomputers 10 durchlaufend aufgeladenen Kondensator, so daß ein über diesen Kondensator abgegriffenes Eingangssignal zu einem Eingang einer Schwellwert-Komparatorschaltung gelangt und bei Ausbleiben der Kontrollimpulse eine Umschaltung des Komparatorausgangs bewirkt entsprechend low-Potential des Reset-Signals mit einem nachfolgenden Freigabesignal kürzerer Dauer durch Rückkopplung des Ausgangs auf den Eingang. Im allgemeinen Fall arbeitet die Failsafe-Schaltung daher nach Arteines Monoflops, wobei im Kurvenverlauf g) der Fig. 4 die Freigabezeit mit t3 und die Rücksetzzeit mit t4 bezeichnet ist.
  • Da während dieser Freigabezeit t3, je nach Zustand des an der Endstufe anliegenden Tastverhältnis-Ansteuersignals jeweils eine der Wicklungen 15a, 15b des Zweiwicklungs-Drehstellers Strom führt, ergibt sich hierdurch eine Beeinflussung des durch die Feder 16 eingestellten Bypaßquerschnittes. Daher sollte das Tastverhältnis des Reset-Signals im realen Fehlerfall vorzugsweise unter 5% liegen.
  • Ein weiterer Störfall können die zusätzlichen Abhängigkeiten des vom Zweiwicklungs-Drehstetler eingestellten Bypaßquerschnitts von der Batteriespannung, der Federkennlinie und der Motortemperatur sein. Es sei zunächst angenommen, daß die entsprechend der Umwandlung dem Mikrorechner 10 zugegangenen Zeitsignale an seinen Eingängen 10c, 10d innerhalb üblicher Grenzwerte liegen. In diesem Fall führt der Rechner entsprechende Korrekturen oder Ergänzungen der Tastverhältniseinstellung durch Abfrage des Speichers 21 durch.
  • Im folgenden wird zunächst anhand der Darstellung der Fig. 3 eine Ausführungsform eines Wandlers erläutert, dem eine in eine Zeitdauer umzusetzende Eingangsspannung Us, die die Batteriespannung oder eine motortemperaturproportionale Spannung sein kann, zugeführt ist. In Fig. 3 ist der Anschlußpunkt mit der umzuwandelnden Spannung mit 32 bezeichnet; diese Spannung gelangt über den Transistor T6, der bei fehlendem Abfragesignal durch den Mikrocomputer am Eingang 33 leitend geschaltet ist, auf einen Kondensator C3. Dieser Kondensator ist ständig auf die umzuwandelnde Spannung Us aufgeladen. Erscheint der Abfrageimpuls am Anschluß 33 vom Rechner, dann wird der Transistor T6 gesperrt und der Kondensator C3 entlädt sich über eine Schaltung, die zunächst als einstellbarer Widerstand R18 dargestellt ist, bis die durch die Widerstände R19, R20 an einem nachgeschalteten Komparator K1 anstehende Referenzspannung unterschritten ist. Der Komparator K1 ändert zu diesem Moment sein Ausgangssignal Ua beispielsweise von high auf low und führt dieses Signal dem Rechner zu. Der Rechner ist so ausgebildet, daß er die Dauer vom Setzen des Abfrageimpulses bis zum Erscheinen des Komparatorsignals auszähl, so daß sich eine Proportionalität zwischen der ermittelten Zeit ts zur Spannung Us ergibt. Ist ein linearer Zusammenhang zwischen diesen beiden Größen erwünscht-falls der Rechner einen nichtlinearen Zusammenhang nicht durch entsprechende Abfrage des Speichers 21 ausgleichen kann oder soll, dann kann die Entladung des Kondensators C3 auch über eine Konstantstromquelle erfolgen.
  • Dabei ist als eine weiterer wichtiger Störungsfall eine Unterbrechung der dem Wandler 19 in Fig. 1 das Temperatursignal, etwa von einem NTC-Widerstand in Motornähe, zuführenden Leitung anzusehen. Im Normalfall erhöht in diesem Fall der Rechner aufgrund seines Warmlaufprogramms den Bypaßquerschnitt entsprechend stark, so daß es ebenfalls zu einer Drehzahlerhöhung kommen kann. Andererseits erstreckt sich im Normalbetrieb der Widerstandsbereich des hier beispielsweise für die Temperaturmessung verwendeten NTC-Widerstands lediglich innerhalb vorgegebener Grenzen (bei dem bevorzugten Ausführungsbeispiel zwischen etwa 26 Kiloohm, was einer am Wandler 19 anliegenden Maximalspannung und maximal vom Rechner feststellbaren Zeitdauer t, entspricht, bei etwa -30° C, bis zu weniger als 400 Ohm, was dann der Minimalspannung und dem minimalen Zeitdauerimpuls entspricht, bei etwa +80°C). Da sich bei einer Unterbrechung der Leitung oder einem Nichtanschluß ein NTC-Widerstandswert von inendlich einstellt, ist in den Mikrorechner 10 die Anweisung eingegeben, diesen irregulären Fall zu erkennen, so daß der Rechner sofort oder nach Mittelung über zwei bis fünf Abfrageperioden für die Motortemperatur einen unkritischen Wert setzt, der beispielsweise der Raumtemperatur von +20°C oder einem abgeregelten Wert von +80°C entspricht. Sobald dann wieder reguläre, d.h. innerhalb des zu erwartenden Bereichs eines Zeitdauersignals t, liegende Abfrageimpulse erscheinen, gibt der Rechner diese Sicherheitsfunktion auf.
  • Ferner ist als Störfall eine Unterbrechung des Zündsignals von Bedeutung, da in diesem Fall der dem Mikrorechner 10 zugeführte Drehzahlistwert n,st wesentlich kleiner als ein Drehzahlsollwert nsoll ist. Dementsprechend wird dem Rechner in diesem Fall nist«nsoll simuliert und der Rechner stellt, um ein Ausgehen des Motors zu vermeiden, den Bypaß völlig auf, so daß es gegebenenfalls zu einer gefährlichen Drehzahlüberhöhung kommen kann.
  • Diesen Störfall deckt der Rechner durch eine zusätzliche Software-Routine dadurch ab, daß im Bereich nist≥nsoll―1000 n-1 das Ausbleiben von Zündimpulsen erkannt und je nach Anforderung nach Fehlen zon zwei bis etwa fünf Zündimpulsen mit einer Abschaltung der Endstufe reagiert wird. Diese Abschaltung kann dann aber nach Eintreffen neuer Zündimpulse, wenn die von der Klemme 1 der Brennkraftmaschine herrührende Leitung etwa einen Wackelkontakt hat, mit entsprechender Drehzahllage wieder aufgehoben werden.
  • Das in Fig. 5 dargestellte Ausführungsbeispiel einer verfollständigten Sicherheits-Notlaufeinrichtung mit einer Vielzahl fakultativer Ausgestaltungen zeigt die einzelnen Baugruppen gestrichelt umrandet, wobei mit den vorhergehende Ausführungsbeispielen identische und die gleichen Funktionen ausführenden Bauelemente mit den gleichen Bezugszeichen bezeichnet sind; vergleichbare Bauelemente sind mit dem gleichen Bezugätzeichen und zusaszlich mit einem Beistrich oben gekennzeichnet.
  • Die in Fig. 5 gezeigte Schaltung umfaßt den für die Steuerung und Regelung der Systemfunktionen verantwortlichen, Mikroprozessoren, Mikrorechner, logische Steuer-oder Ablaufschaltungen enthaltenden Block 35 mit Mikrocomputer 10', Speicher 21' und einer Stabilisatorschaltung 36, die Endstufe 13', den Block 26' für die Endstufen- abschaltung, eine Failsafe- oder Sicherheitsschaltung 28', eine Schaltung 37 zur Aufbereitung der Endstufen-Überwachungssignale Ü1 und Ü2 sowie eine Notlaufschaltung 38.
  • Die Notlaufschaltung 38 ist lediglich fakultativ vorgesehen; ist sie vorhanden, dann kann und wird beim praktischen Ausführungsbeispiel auf die Endstufenabschaltung 26' und gegebenenfalls auch auf die Aufbereitung der Endstufen-überwachungssignale durch die Schaltung 37 verzichtet.
  • Unterschiedlich zu dem in den Fig. 1 und 2 dargestellten Ausführungsbeispiel ist zunächst, daß der Failsafe-Schaltung 28', die auch als sogenannte Watch-dog-Schaltung bezeichnet werden kann, als Kontrollimpulse jetzt die vom Mikrocomputer 10' herausgegebenen Ansteuersignalimpulse THV, die das Tastverhältnis n entsprechend dem vom Rechner für den jeweiligen Betriebszustand erforderlichen Bypaßquerschnitt enthalten, zugeführt sind.
  • Parallel hierzu gelangen die THV-Impulse über einen ergänzend noch vorgesehenen Komparator K1 zur Endstufe 13', wobei dem anderen Eingang von K1 ein bei 39 erzeugtes Referenzsignal zugeführt ist.
  • Die Grundfunktion ist dabei wie folgt, wobei auf den speziellen Aufbau der Failsafe-Schaltung 28' und des Notlaufgenerators weiter unten noch eingegangen wird. Da die Schalttransistoren T1 und T2 nur alternierend arbeiten können, aus Sicherheitsgründen jedoch, wie ohne weiteres einzusehen ist, nur das "Aufmachen" des Zweiwicklungs-Drehsteller durch vereinbarungsgemäß den jeweils zuletzt angesteuerten Transistor T2 kritisch ist, braucht der Mikrocomputer 10' im Grunde auch nur das Kollektorsignal des Transistors T2, impulsgeformt durch die eine Impulsformerstufe 37a aus dem Reihenwiderstand R8, gefolgt von der Parallelschaltung der Diode D4, des Widerstands R10 und des Kondensators C2 als Endstufen-Überwachungssignal Ü2 zugeführt zu erhalten.
  • Der Rechner fragt dann zeitlich jeweils sehr kurz vor und sehr kurz nach jeder neuen Tastverhältnisausgabe das Tastverhältnis über Ü2 auf Richtigkeit ab. Stellt der Rechner eine Abweichung der Tastverhältnisse fest, so setzt er selbst den Ausgang EA (Endstufenabschaltung) auf low und über den weiteren zusätzlichen Komparator K2 und die weiter vorn schon erwähnten Transistoren T4 und T5 werden die Endstufen-Schalttransistoren T1 und T2 stomlos gemacht. Hierdurch wird auch der Zweiwicklungs-Drehsteller, der an die Schaltungspunkt M1, M2 und M+ angeschlossen ist, stomlos und die Feder zieht ihn auf den vorgegebenen Sicherheitsquerschnitt zurück, der bei warmem Motor beispielsweise einer Drehzahl von umgefähr 1400 n-1 entspricht.
  • Wichtig ist hier die Einbeziehung der Failsafe-Schaltung in das Sicherheitskonzept dahingehend, daß die Failsafe-Schaltung 28' inrerseits die Ausgabe der Ansteuersignalimpulsfolge THV vom Rechner überwacht und über das von ihr herausgegebene Reset-Signal und die Diode ü3 ebenfalls die Endstufe über K2, T4 und T5 abschaltet, wenn die Failsafe-lmpulse=Tastver- hältnisimpulse des Rechners ausbleiben, beispielsweise bei Rechnerstörung, beim Start u.dgl.
  • Der Aufbau und die Funktion der Failsafe-Schaltung sind wie folgt. Die THV-Ansteuerimpulse vom Rechner gelangen über eine Diode D6 zu einem Transistor T6, der einen Speicherkondensator C3 auflädt. Der Speicherkondensator C3 liegt an einem invertierenden Eingang einer Schwellwertstufe, die in bekannter Weise von einem Komparator K4 mit entsprechender Beschaltung dargestellt ist. In einem Gegenkopplungszweig zum invertierenden Eingang ist ein Widerstand R16 und parallel zu diesem die Reihenschaltung eines Widerstandes R17 und einer Diode D7 angeordnet. Damit wird je nach dem logischen low-oder high-Pegel am Ausgang des Komparators K4 der Speicherkondensator C3 entweder entladen oder geladen, wobei die Schaltzeiten und damit das Tastverhältnis, welches in dem vor der Failsafe-Schaltung 28' ausgegebenen Reset-Signal enthalten ist, in weiten Bereichen frei eingestellt werden kann. Es ist daher bei diesem Ausführungsbeispiel bei Ausbleiben der THV-Ansteuerimpulse vom Mikrocomputer 10', was einer Rechnerdauerstörung entsprechen kann, die Failsafe-Schaltung 28', die übernimmt und als Rechteckoszillator mit einem Tastverhältnis von low beispielsweise 135 ms und high etwa 18 ms im Reset-Signal arbeitet. Das Reset-Signal geht dann, wie weiter vorn schon erläutert, zur Rückstellung und zum Neuanlauf zum Mikrocomputer 10' und gelangt über die Diode D3 zur Endstufenabschaltung 26', wodurch sich aufgrund der high-Phasen und der hierdurch bewirken Beeinflussung des Notlaufquerschnitts am Zweiwicklungs-Drehsteller Leerlauf-Drehzahländerungen zwischen 200 bis 300 n-1 nach oben oder unten ergeben können.
  • Die alternative Ausgestaltung mit dem Notlaufgenerator 38 umfaßt einen freischwingenden Oszillator 01, gebildet von einem Komparator K3, der über einen Widerstand R18 mitgekoppelt und über einen Widerstand R19 gegengekoppelt ist, wobei vom invertierenden Eingang noch ein Kondensator C4 parallel zu einem weiteren Widerstand R20 gegen Masse geschaltet ist. Das Notlaufsignal 'NOT gelangt, wie die gestrichelte Verbindungsleitung L1 angibt, hier auf den invertierenden Eingang des dem Treibertransistor TO vorgeschalteten Komparators K1, kann aber auch an anderer Stelle die Endstufe ansteuern, beispielsweise unmittelbar an der Basis des Treibertransistor T0. Der Notlaufgenerator 28 kann vom Reset-Signal der Failsafe-Schaltung 28' über eine Diode D8 angeworfen werden, er kann aber auch ständig schwingen mit einem solchen vorgegebenen Tastverhältnis, daß dieses im Normalbetrieb innerhalb des typischerweise vom Mikrocomputer 10' ausgegebenen Tastverhältnisses der Ansteuerimpulsfolge THV liegt und in diesem Fall daher nicht zur Auswirkung kommt. Wird der Endstufe 13' das Notlauf-Tastverhältnis vom Generator 38 zugeführt, dann bedarf es weder der Abschaltung über die Endstufenabschaltung 26' noch der Rückführung der Endstufen-Überwachungssignale Ü1, Ü2 zum Mikrocomputer 10'; eine vorteilhafte Ausgestaltung der Erfindung kann aber beide Maßnahmen enthalten, denn bei einem Fehler in der Endstufen-Abschaltung 26' bringt dann das Notlaufsignal die Position des Schiebers des Zweiwicklungs-Drehstellers in einen unkritischen Bereich.
  • In einer weiteren Ausgestaltung vorliegender Erfindung sind den Impulsformerstufen 37a, 37b vor den jeweiligen Verbindungswiderständen R8 und R7, also jeweils ausgehend von den Schaltungspunkten M1 und M2 Störschutz-Zenerdioden D9, D10 parallelgeschaltet; ferner kann es mit Bezug auf das Sicherheitskonzept sinnvoll sein, die Erzeugung der Endstufen-Überwachungssignale Ü1,ü2 dadurch hochohmig auszuführen, daß in die beiden Verbindungsleitungen zurück zum Rechner, wie bei 40 angedeutet, Komparatoren eingefügt werden, wodurch es gelingt, im abgeschalteten Fall den Strom mindestens in der AUF-Wicklung des Zweiwicklungs-Drehstellers entscheidende zu reduzieren. Hier ist auch eine einfache Transistorstufe (Emitterschaltung) sinnvoll, wenn man die Halbleiter auf einem IC oder Hybrid integriert.
  • Eine weitere Ausgestaltung umfaßt das Einfügen eines zusätzlichen Emitterwiderstands Rx vom Emitter des Endstufen-Abschaltlängswiderstandes T5 gegen Masse und parallel zum Basis-Emitterwiderstand bei diesem Transistor die Anordnung einer Zenerdiode D11, gegebenenfalls in Reihe mit einer weiteren Diode D12. Hierdurch ergibt sich eine wirksame Strombegrenzung, die unter Zugrundelegung des vom Rechner ausgegebenen Tastverhältnisses auch einen Steller-Kurzschluß auffängt.
  • In ähnlicher Weise können die Schalttransistoren T1 und T2 zu Zwecken einer Strombegrenzung wahlweise mit einem zusätzlichen Emitterwiderstand R21, R22 und einer begrenzenden Diodenstrecke parallel zum von der Basis zu Masse geschalteten Widerstand entweder aus der Reihenschaltung einer Zenerdiode D12, D13 mit einer weiteren Diode D14, D15 oder nur aus der Zenerdiode D12, D13 ausgestattet sein.
  • Anhand der in Fig. 6 dargestellten Signalverläufe wird im folgenden die Grundfunktion der Schaltung der Fig. 5 erläutert.
  • Das vom Mikrocomputer 10' ausgegebene Tastverhältnis-Ansteuersignal THV gelangt über den Komparator K1 und den Treibertransistor TO auf den ersten Schalttransistor T1 der Endstufe. Da an den einzelnen Kurvenverläufen der Fig. 6 die Signalbezeichnungen der Impulsfolgen angegeben ist, kann der weiter Funktionsablauf durch Beobachten der Signalimpulsfolgen verfolgt werden. Bei THV=Iow ist der erste Schalttransistor T1 leitend, es führt dann die mit ihm verbundene AUF-Wicklung des Zweiwicklungs-Drehstellers Nennstrom und der zweite Schalttransistor T2 wird durch die heruntergeteilte Sättigungsspannung des Transistors T1 gesperrt. Die ZU-Wicklung, des Zweiwicklungs-Drehstellers ist stromlos.
  • Bei THV=high ist der erste Schalttransistor T1 gesperrt, die AUF-Wicklung, die am Schaltungspunkt M1 angeschlossen ist, führt lediglich den Basisstrom für den zweiten Schalttransistor T2, der bei einem dargestellten Ausführungsbeispiel etwa 1/22 des Wicklungsstroms betragen kann. Die ZU-Wicklung führt Nennstrom.
  • Der Öffnungsquerschnitt am Zweiwicklungs-Drehsteller ist direkt proportional zum Verhältnis der Ströme in den Einschaltzeiten. Die vom Basisstrom des Transistors T2 verursachte Kennlinienverschiebung in AUF-Richtung, die darüber hinaus noch tastverhältnisabhängig ist, läßt sich beim Aufbau des Zweiwicklungs-Drehstellers berücksichtigen. Das Ausgangssignal am Kollektor des Transistors T2 verläuft invertiert zum THV-Ansteuersignal; durch die einfach aufgebaute Impulsformerstufe 37a wird dieses Signal begrenzt und als Ü2-Endstufen-Überwachungssignal zum Mikrocomputer 10' rückgeführt. Während einer aktiven Rest-Phase (das Reset-Signal ist low) wird das Endstufen-Abschaltsignal EA, weiches vom Mikrocomputer 10' ausgegeben ist, durch die direkte Verknüpfung über die Diode D3 mit dem Ausgang der Failsafe-Schaltung 28' auf low geklammert, wodurch über den Komparator K2 und den Treibertransistor T4 der Reihentransistor T5 zu den Endstufen-Schalttransistoren gesperrt wird und die Zweiwicklungs-Drehstellerwicklungen entsprechend stromlos sind. Lediglich die Signalformerstufe 37a und gegebenenfalls 37b ziehen einen, durch wahlweise nachgeschaltete Komparatoren 40 noch zusätzlich verringerten Strom aus der ZU-Wicklung bzw. der AUF-Wicklung. Die eingebaute Feder stellt zm Zweiwicklungs-Drehsteller einen Notlaufquerschnitt ein.
  • Nach Ablauf der Reset-Phase zum Zeitpunkt t1 und nach Beendigung von Initialisierungsroutinen bis zum Zeitpunktt2 beginn der Mikrocomputer 10' zunächst mit der Ausgabe eines Notlauf-Tastverhältnisses entsprechend seiner Auslegung, und zwar so lange, bis er selbst die ihm zugegangenen Daten über Drehzahl, Temperatur und sonstige Parameter ausgewertet hat. Dieses Notlauf-Tastverhältnis vom Rechner selbst kann eine Dauer von ein bis zwei Perioden haben und erstreckt sich bei den Signalverläufen der Fig. 6 bis zum Zeitpunkt ts, ab welchem dann die Regelung einsetzt, ab welchem Zeitpunkt die Impulsdauer TNOT übergeht in die errechnete Funktionsdauer T=f(v, n, ...).
  • Nack jeder THV-Impulsausgabe, beispielsweise zum Zeitpunkt t, prüft der Rechner nach Ablauf eines vorgegebenen Zeitraums t8―t7∞100 us die Übereinstimmung der Ü2-bzw. Ü2- und Ü1-Signalpegel mit dem THV-Signalpegel. Im Falle einer Abweichung, z.B. Störung zum Zeitpunkt tB-der Transistor T2 sperrt nicht mehr, das Ü2-Signal wird während des Zeitraums t10 ... t" nicht highschaltet der Rechner über seine EA-Leitung (Signal geht auf low) und den Komparator K2 letztlich den Transistor T5 ab und macht den Steller stromlos.
  • Eine Endstufen-Überwachungsroutine im Mikrocomputer 10' prüft dann jeweils nach vorgegebenem Zeitablauf, beispielsweise alle 2 Sekunden, durch Einschalten der EA-Leitung und entsprechendem Abfragen der Ü2-Rückleitung nach vorgegebener Zeit, etwa nach 100 ps (dies entspricht etwa der fünffachen Dauer der Transistorschaltzeiten inklusive Filterung), ob der Störungsfall noch relevant ist. Eine hierbei sich ergebende Beeinflussung des Stellerstroms durch diese kurze Abfrage führt im wesentlichen nicht zu einer Änderung des durch die Feder eingestellten Notlaufquerschnitts am Zweiwicklungs-Drehsteller.
  • Ergeben sich andererseits Rechnerdauerstörungen, dann übernimmt, wie schon erwähnt, die Failsafe-Schaltung 28' als Rechteckoszillator. Sie arbeitet mit ihrem Reset-Signal auf den Mikrocomputer 10', um diesen gegebenenfalls Rücksetzen und wieder neu anwerfen zu können, wobei die Reset-Phasen ebenfalls nur zu einer geringfügigen Beeinflussung des Notlaufquerschnittes am Steller führen.
  • Nach Abschalten der Endstufe über das EA-Signal vom Rechner-zum Zeitpunkt t11―muß das Ü2-Signal (und im übrigen auch das Ü1-Signal) wieder high-Pegel annehmen; ist dies nicht der Fall, beispielsweise bei externem Kurzschluß an Masse, dann bleibt die Endstufe aufgrund der getroffenen Rechnerprogrammierung dauernd abgeschaltet.
  • Weiter vorn anhand des Ausführungsbeispiels der Fig. 2 ist schon die Überwachung der Endstufen-Ausgangssignale beider Schalttransistoren dargestellt worden, wodurch insgesamt Wicklungskurzschlüsse oder Dauerkurzschlüsse abgedeckt sind und im Fehlerfall (Ü1-oder Ü2-Signal falsch) wird dann analog, wie soeben beschrieben, verfahren.
  • Demnach ergeben sich bei der vorliegenden Erfindung die folgenden Sicherheitsfunktionen: Aktiv durch Schaltungsmittel, wobei zunächst die Leistungen der Failsafe-Schaltung (Watch-dog) betrachtet werden:
    • 1. Betriebs-Reset
    • 2. Programmüberwachung
    • 3. Überwachung des Tastverhältnis-Ansteuersignals für die Endstufe
    • 4. Erkennung interner und externer Störungen
    • 5. Erkennung von Dauerstörungen
    • 6. Erkennung von Batteriespannungseinbrüchen
    • 7. Steuerung eines gegebenenfalls vorhandenen Notlaufgenerators
    • 8. Abschaltung der Endstufe
    • 9. Abschaltung des Rechnerports
  • Bei vorhendenem Notlaufgenerator:
    • 1. wird im Reset-Fall aktiv geschaltet
    • 2. Ausgabe eines Notlauf-Tastverhältnis-Ansteuersignals
  • Die vorliegende Erfindung umfaßt schließlich ferner noch durch entsprechende Ausbildung und Eingabe von Informationen an den Mikrorechner (10, 10') die folgenden Sicherheitsmerkmale:
    • 1. Notlauf-Tastverhältnis-Ansteuerimpulsfolge, ausgegeben vom Rechner selbst bis zur ersten Drehzahlerkennung
    • 2. Ausgabe eines Wertes tmln (v) bei Ausfall des Temperaturgebers
    • 3. Erkennung einer NTC-Unterbrechung
    • 4. Selbsttestprogramm zur Abschaltung der Endstufe bei Programmfehlern oder Störungen (Reset)
    • 5. Testroutine zur Überprüfung der Endstufe, Überwachung und Abschaltung
    • 6. Abschaltung der Endstufe im Störfall.

Claims (15)

1. Sicherheits-Notlaufeinrichtung für den Leerlauf-Betrieb von Kraftfahrzeugen mit einer Leerlauffüllungsregelung, bestehend aus einem Luft-Bypasß parallel zur Drosselklappe, dessen Durchlaßquerschnitt durch ein Stellglied (14a) einer von einer Endstufenschaltung (13) angesteuerten Stelleinrichtung (14) steuerbar ist, wobei sich die erforderliche Stellglied position aus dem Tastverhältnis eines von einem Mikrocomputer (10, 10') erzeugten digitalen Ansteuersignales (THV) ergibt, weiterhin mit einer Sicherheitsschaltung (28), die einen Defekt des Mikrocomputers erkennt und ein vom Mikrocomputer unabhängiges Signal zur Ansteuerung der Stelleinrichtung erzeugt, dadurch gekennzeichnet, daß die Stelleinrichtung ein Zweiwicklungs-Drehsteller (14) ist, dessen Position sich aus der Art der Zuführung getakteter Signale zu den beiden Teilwicklungen des Zweiwicklungs-Drehstellers über die Endstufe ergibt, daß ferner das vom Mikrocomputer erzeugte und getaktete Signal an mindestens einen Ausgang (M1, M2) der Endstufe überwacht wird, und bei Abweichungen von seinem Ansteuersignal die Endstufe (13) vom Mikrocomputer (10) abgeschaltet wird, derart, daß sich durch ein mechanisches Vorspannelement (Feder 16) am Stellglied eine Stellglied-Notlaufposition ergibt.
2. Notlaufeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Reset-Ausgangsignale der Failsafe-Schaltung (28) und das Abschaltsignal (EA) vom Rechner (10, 10') über ein ODER-Glied (25) der Abschaltstufe (26, 26') für die Endstufe (13, 13') zugeführt sind.
3. Notlaufeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Mikrocomputer (10, 10') Eingänge für Betriebsparametern (Drehzahl n, Motortemperature v, Umgebungstemperatur, Druck, angesaugte Luftmenge Q) entsprechende Signale sowie einen Datenspeicher (21) aufweist, zum Ausgleich von Nichtlinearitäten der dem Rechner zur Bestimmung der Stellgliedposition zugeführten Daten.
4. Notlaufeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Endstufe zwei hintereinander geschaltete, jeweils eine Stellglied-Teilwicklung (15a, 15b) beaufschlagende Schalttransistoren (T1, T2) aufweist, die über einen vorgeschalteten Treibertransistor (T0) und gegebenenfalls einen weiteren, vorgeschalteten Komparator (K1) vom Tastverhältnis-Ari=tauersigna) (THV) des Mikrocomputers (10, 10') angesteuert sind, derart, daß die Schalttransistoren (T1, T2) der Endstufe (13, 13') jeweils alternierend ihren zugeordneten Teilwicklungen den Nennstrom zuführen.
5. Notlaufeinrichtung nach Anspruch 4, dadurch gekennzeichnet, daß eine Endstufen-Abschaltstufe (26, 26') vorgesehen ist, mit mindestens einem Längstransistor (T5) in Reihe zu den zusammengefaßten Schaltstrecken (Emittern) der Schalttransistoren (T1, T2), wobei dem Längstransistor das Abshaltsignal (EA) vom Mikrocomputer (10, 10') über einen weiteren Vorstufentransistor (T4) und das Reset-Signal der Failsafe-Schaltung (28, 28') seinem Basisspannungsteiler (R14, R13, R15) über eine Diode (D3) direkt zugeführt ist.
6. Notlaufeinrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß von mindestens einer der mit den zugeordneten Kollektoren des jeweiligen Schalttransistors (T1, T2) der Endstufe (13, 13') verbundenen Teilwickungen (15a, 15b) über Impulsformerstufen (37a, 37b) dem Ansteuertastverhältnis entsprechende Rückführsignale (Ü1, Ü2) abgeleitet und entsprechenden Prüfanschlüssen des Mikrocomputers (10, 10') zugeführt sind, der bei Abweichungen von dem errechneten Tastverhältnis (m) das Abschaltsignal (EA) ausgibt und der Abschaltstufe (26, 26') der Endstufe (13, 13') zuführt.
7. Notlaufeinrichtung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß mindestens für die Zuführung von Batteriespannungs- und Motortemperatursignalen zum Mikrocomputer (10, 10') Wandler (18, 19) vorgesehen sind, die entsprechende Spannungssignale in vom Mikrocomputer (10, 10') auswertbare, logikkompatible Zeitdauersignale umwandeln.
8. Notlaufeinrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Wandler (18,19) einen Komparator (K10) umfassen, dessen einem Eingang ein Referenzsignal und dessen anderem Eingang das Ausgangssignal eines vor der umzuwandelnden Spannung (Us) über einen Schalter (Längstransistor T6) aufgeladenen Energiespeichers (Kondensator C3) zugeführt ist, daß der Mikrocomputer (10, 10') zur Abfrage selbst ein Abfragesignal zu einem vorgegebenen Zeitpunkt erstellt und mit diesem den Längstransistor (T6) sperrt und daß die Zeitdauer der Entladung des Speicherkondensators (C3) bis zum Unterschreiten der Schwellenspannung, zu welchem Zeitpunkt der Komparator (k10) ein Umschaltsignal zum Mikrocomputer (10, 10') abgibt, als Maß für die umgewandelte Spannung ausgewertet wird.
9. Notlaufeinrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Rechner kurzzeitig vor und kurzzeitig nach jeder neuen Tastverhältnisausgabe das Tastverhältnis der rückgeführten Endstufen-Überwachungssignale (Ü2, Ü1) abfragt und bei festgestellten Abweichungen im Fehlerfall über niedergehendes Endstufen-Abschaltsignal (EA) den Zweiwicklungs-Drehsteller stromlos schaltet.
10. Notlaufeinrichtung nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß von den Abfrage-Schaltungspunkten (M1, M2) für das mindestens eine Endstufen-Überwachungssignal (Ü1, Ü2) Störschutz-Zenerdioden (D9, D10) gegen Masse geschaltet sind.
11. Notlaufeinrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß zur hochohmigen und daher stromreduzierenden Erzeugung der Endstufen-Überwachungssignale (Ü1, Ü2) zwischen die Impulsformerstufen (37a, 37b) und den entsprechenden Eingängen am Mikrocomputer (10, 10') Komparatoren (40) oder Transistoren geschaltet sind.
12. Notlaufeinrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß zur Strombegrenzung, im Falle etwa eines Steller-Kurzschlusses ein zusätzlicher Strombegrenzungswiderstand (Rx) in Reihe zum Abschalt-Transistor (T5) der Endstufen-Abschaltung (26, 26') geschaltet ist, vorzugsweise in Verbindung mit der Parallelschaltung einer Zenerdiode (D11) in Reihe mit einer weiteren Diode (D12) parallel zum Basisableitwiderstand geschaltet ist.
13. Notlaufeinrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß in den Emitterleitungen der Schalttransistor (T1, T2) der Endstude (13, 13') Strombegrenzungswiderstände (R21, R22) geschaltet sind, vorzugsweise zusammen mit parallel zum Basisableitwiderstand jedes Schalttransistors geschalteten Diodenreihenschaltung (D12, D14; D13, D15).
14. Notlaufeinrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß bei Rechnerdauerstörungen die Failsafe-Schaltung (28, 28') als Rechteckoszillator arbeitet mit einem stark eingeschränkten Tastverhältnis derart, daß eine Beeinflussung des federvorgespannten Notlaufquerschnitts des Stellglieds (Zweiwicklungs-Drehstellers) geringfügig bleibt.
15. Sicherheits-Nottaufeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Endstufe zwei hintereinander geschaltete, jeweils eine Stellglied-Teilwicklung (15, 15a) beaufschlagende Schalttransistoren (T1, T2) aufweist, die über einen vorgeschalteten Treibertransistor (TO) und gegebenenfalls einen weiteren vorgeschalteten Komparator (K1) vom Tastverhältnis-Ansteuersignal (THV) des Mikrocomputers (10, 10') angesteuert sind, derart, daß die Schalttransistoren (T1, T2) der Endstufe (13, 13') jeweils alternierend ihren zugeordneten Teilwicklungen dem Endstrom zuführen, und daß ferner das vom Mikrocomputer erzeugte und getaktete Signal an mindestens einem Ausgang (M1, M2) der Endstufe überwacht wird.
EP83106751A 1982-07-23 1983-07-09 Sicherheits-Notlaufeinrichtung für den Leerlaufbetrieb von Kraftfahrzeugen Expired EP0101850B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3227546 1982-07-23
DE3227546 1982-07-23
DE3322240 1983-06-21
DE3322240A DE3322240A1 (de) 1982-07-23 1983-06-21 Sicherheits-notlaufeinrichtung fuer den leerlaufbetrieb von kraftfahrzeugen

Publications (3)

Publication Number Publication Date
EP0101850A2 EP0101850A2 (de) 1984-03-07
EP0101850A3 EP0101850A3 (en) 1984-08-01
EP0101850B1 true EP0101850B1 (de) 1988-01-20

Family

ID=25803247

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83106751A Expired EP0101850B1 (de) 1982-07-23 1983-07-09 Sicherheits-Notlaufeinrichtung für den Leerlaufbetrieb von Kraftfahrzeugen

Country Status (4)

Country Link
US (1) US4580220A (de)
EP (1) EP0101850B1 (de)
JP (1) JPS5934449A (de)
DE (2) DE3322240A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146781B4 (de) * 2001-09-22 2015-02-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung der Ansteuerung eines Stellelements

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3342848A1 (de) * 1983-11-26 1985-06-05 Robert Bosch Gmbh, 7000 Stuttgart Sicherheitseinrichtung fuer eine elektronisch gesteuerte oder geregelte brennkraftmaschine mit mikrocomputer
GB8406331D0 (en) * 1984-03-10 1984-04-11 Lucas Ind Plc Control system
JPS60215174A (ja) * 1984-04-06 1985-10-28 Fujitsu Ten Ltd アイドル回転数制御バルブの制御装置
US4739469A (en) * 1984-04-19 1988-04-19 Nissan Motor Company, Limited Fail-safe circuit for a control system
JPH0811942B2 (ja) * 1984-07-11 1996-02-07 株式会社日立製作所 エンジン制御装置
DE3501588A1 (de) * 1985-01-18 1986-07-24 Voest-Alpine Friedmann GmbH, Linz Anordnung zum steuern und regeln des verstellweges der regelstange einer einspritzbrennkraftmaschine
US4685052A (en) * 1985-02-19 1987-08-04 American Standard Inc. Pulse train presence detector
JPS61207855A (ja) * 1985-03-11 1986-09-16 Honda Motor Co Ltd 内燃エンジンの燃料供給制御装置
JP2679970B2 (ja) * 1985-10-21 1997-11-19 株式会社日立製作所 アイドル回転速度制御装置
JPS62106524A (ja) * 1985-11-01 1987-05-18 Clarion Co Ltd 車載用の機器のマイクロコンピユ−タリセツト回路
US4771755A (en) * 1986-01-22 1988-09-20 Honda Giken Kogyo K.K. Abnormality detecting method for air-fuel ratio control system for internal combustion engines
JPH0663471B2 (ja) * 1986-02-13 1994-08-22 本田技研工業株式会社 内燃機関の補助空気量制御装置
JPH073403B2 (ja) * 1986-03-27 1995-01-18 本田技研工業株式会社 酸素濃度センサの異常検出方法
JPS62261640A (ja) * 1986-05-07 1987-11-13 Mitsubishi Electric Corp 内燃機関用燃料噴射制御装置の故障時制御装置
DE3720255A1 (de) * 1987-06-19 1988-12-29 Bosch Gmbh Robert System zur einstellung des drosselklappenwinkels
US5182755A (en) * 1987-06-19 1993-01-26 Diesel Kiki Co., Ltd. Malfunction checking system for controller
US4768013A (en) * 1987-07-01 1988-08-30 Nissan Motor Company, Limited Method and apparatus for diagnosing failure in idle switch for internal combustion engines
JPS6461830A (en) * 1987-08-31 1989-03-08 Aisin Seiki Protecting device for automobile microcomputer
DE3733623A1 (de) * 1987-10-05 1989-04-13 Bosch Gmbh Robert Einrichtung zur einstellung einer betriebskenngroesse einer brennkraftmaschine
JPH03506084A (ja) * 1988-07-28 1991-12-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング マイクロコンピユーターをスタンバイモードに所定状態時に切替える装置
WO1990001631A1 (en) * 1988-07-29 1990-02-22 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fail-safe device for a temperature sensor
US5019717A (en) * 1988-11-14 1991-05-28 Elegant Design Solutions Inc. Computer-controlled uninterruptable power supply
US5184025A (en) * 1988-11-14 1993-02-02 Elegant Design Solutions, Inc. Computer-controlled uninterruptible power supply
DE3909396A1 (de) * 1989-03-22 1990-10-04 Bayerische Motoren Werke Ag Vorrichtung zur bemessung der leerlaufluft von brennkraftmaschinen
DE3926377C2 (de) * 1989-08-04 2003-03-06 Bosch Gmbh Robert Elektronisches Steuergerät für eine Brennkraftmaschine
JPH03233160A (ja) * 1990-02-08 1991-10-17 Mitsubishi Electric Corp エンジンの制御装置
JP2504289B2 (ja) * 1990-05-21 1996-06-05 宇部興産株式会社 押出プレス用後面設備サブストレッチャのテ―ルストック
DE4130712A1 (de) * 1991-09-14 1993-03-18 Kloeckner Humboldt Deutz Ag Steuerung elektromagnetischer ventile
JP3564148B2 (ja) * 1992-05-08 2004-09-08 株式会社ボッシュオートモーティブシステム 内燃機関の燃料噴射制御システム
WO1995027933A1 (en) * 1994-04-06 1995-10-19 Philips Electronics N.V. Reset and watchdog system for a microprocessor, and appliance comprising such a microprocessor and such a system
DE19516208C1 (de) * 1995-05-03 1996-07-25 Siemens Ag Verfahren zur Überwachung einer Leistungsendstufe und Schaltungsanordnung zur Durchführung dieses Verfahrens
DE19541734C2 (de) * 1995-11-09 1997-08-14 Bosch Gmbh Robert Schaltungsanordnung zur Durchführung eines Reset
DE19722288A1 (de) * 1997-05-28 1998-12-03 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung eines Stellelements mit integralem Verhalten
US6359794B1 (en) 1999-12-01 2002-03-19 Acme Electric Corporation Battery backup power supply
US9826594B2 (en) * 2014-03-31 2017-11-21 Honda Motor Co., Ltd. Vehicle LED lighting device system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458110A (en) * 1977-10-19 1979-05-10 Hitachi Ltd Automobile controller
US4328547A (en) * 1978-02-27 1982-05-04 The Bendix Corporation Failure system for internal combustion engine
JPS54148175A (en) * 1978-05-13 1979-11-20 Aoyama Seisakusho Production of upset type bolt
DE2964900D1 (en) * 1978-08-24 1983-03-31 Lucas Ind Plc Control circuits for solenoids
DE2847021A1 (de) * 1978-10-28 1980-05-14 Bosch Gmbh Robert Vorrichtung zur regelung von betriebskenngroessen einer brennkraftmaschine auf optimale werte
FR2458106A1 (fr) * 1979-05-31 1980-12-26 Thomson Csf Circuit electronique de commande pour electrovanne
JPS566134A (en) * 1979-06-28 1981-01-22 Nissan Motor Co Ltd Diagnostic unit of controller for car
DE2945543A1 (de) * 1979-11-10 1981-05-21 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zum steuern von betriebsparameterabhaengigen und sich wiederholenden vorgaengen fuer brennkraftmaschinen
JPS56118526A (en) * 1980-02-22 1981-09-17 Hitachi Ltd Electronically controlled fuel supply apparatus
DD159511A3 (de) * 1980-03-06 1983-03-16 Rolf Sobadky Sicherheitsvorrichtungen fuer impulsgesteuerte elektronische brennstoffeinspritzvorrichtungen,insbesondere an brennkraftmaschinen
JPS56135250A (en) * 1980-03-24 1981-10-22 Nissan Motor Co Ltd Output device of microcomputer
JPS56135201A (en) * 1980-03-24 1981-10-22 Nissan Motor Co Ltd Pulse generator for engine control
DE3035896C2 (de) * 1980-09-24 1984-02-09 Robert Bosch Gmbh, 7000 Stuttgart Schaltungsanordnung zur Erzeugung von Impulen bei Störung der Stromversorgung
DE3039435C2 (de) * 1980-10-18 1984-03-22 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur Regelung der Leerlauf-Drehzahl von Brennkraftmaschinen
JPS5786554A (en) * 1980-11-18 1982-05-29 Hitachi Ltd Backup device for idle rpm control system
JPS588249A (ja) * 1981-07-08 1983-01-18 Mazda Motor Corp エンジンのアイドル回転制御装置
JPS5827831A (ja) * 1981-08-11 1983-02-18 Toyota Motor Corp 内燃機関用空気流量制御装置
DE3238189A1 (de) * 1982-10-15 1984-04-19 Robert Bosch Gmbh, 7000 Stuttgart Leerlauf-regelsystem fuer eine brennkraftmaschine
JPS6040837U (ja) * 1983-08-30 1985-03-22 富士重工業株式会社 エンジンのピツチングストツパ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Die Meisterprüfung im Kfz-Handwerk", Dipl. Ing. J. LEYHAUSEN, 7. Auflage, Teil 2 "Otto und Dieselmotoren, Fahrzeugbremser, Kfz Elektrik", 1980, Vogel-Verlag, Seiten 1063-1067 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146781B4 (de) * 2001-09-22 2015-02-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung der Ansteuerung eines Stellelements

Also Published As

Publication number Publication date
JPS5934449A (ja) 1984-02-24
US4580220A (en) 1986-04-01
EP0101850A2 (de) 1984-03-07
DE3375420D1 (en) 1988-02-25
DE3322240C2 (de) 1991-12-19
JPH0541823B2 (de) 1993-06-24
EP0101850A3 (en) 1984-08-01
DE3322240A1 (de) 1984-01-26

Similar Documents

Publication Publication Date Title
EP0101850B1 (de) Sicherheits-Notlaufeinrichtung für den Leerlaufbetrieb von Kraftfahrzeugen
EP0826102B1 (de) Verfahren und vorrichtung zur steuerung einer antriebseinheit eines fahrzeugs
DE102013201702B4 (de) Verfahren und Anordnung zur Steuerung einer Brennkraftmaschine
EP0716781B1 (de) Vorrichtung zum betreiben eines verbrauchers in einem fahrzeug
DE10117450B4 (de) Verfahren und Vorrichtung zur Steuerung der Drosselklappe für einen Verbrennungsmotor zum Antrieb eines Fahrzeugs unter Nutzung redundanter Drosselsignale
EP1019621A1 (de) Anordnung zum regeln des ladedrucks einer brennkraftmaschine
DE3322242A1 (de) Einrichtung zur funktionsueberwachung elektronischer geraete, insbesondere mikroprozessoren
EP0326694B1 (de) Sicherheitssystem für Brennkraftmaschinen
DE10345424A1 (de) Motorluftansaugsteuervorrichtung und Motorluftansaugsteuerverfahren
DE1283002B (de) Steuereinrichtung fuer die Selektion des mittleren Signals aus einer Anzahl von redundanten, unabgeglichenen analogen Eingangssignalen
WO2016166146A1 (de) Gegen überspannung geschütztes elektronisches steuergerät
DE4134495A1 (de) Steuereinrichtung fuer elektrische motoren in fahrzeugen
WO2002099444A1 (de) Verfahren zur überwachung einer spannungsversorgung eines steuergeräts in einem kraftfahrzeug
EP0596297B1 (de) Verfahren und Vorrichtung zur Überprüfung einer Überwachungseinheit von Motorsteuersystem
EP2494534B1 (de) Sicherheits-kommunikationssystem zur signalisierung von systemzuständen
DE4017045A1 (de) System zur steuerung eines kraftfahrzeugs
DE102004020538B4 (de) Elektronische Steuereinrichtung und Verfahren zur Steuerung des Betriebs von Kraftfahrzeugkomponenten
DE102006001805A1 (de) Sicherheitsvorrichtung zum mehrkanaligen Steuern einer sicherheitstechnischen Einrichtung
EP0483449B1 (de) Als Bauteil ausgebildete Schaltungsanordnung mit mindestens einem Halbleiterschalter zum Schalten einer Last
DE3322073C2 (de)
EP0326693A1 (de) Sicherheitssystem für Brennkraftmaschinen
DE10040246A1 (de) Verfahren und Vorrichtung zur Ansteuerung wenigstens eines Verbrauchers
DE10306553B4 (de) Steuervorrichtung für Kraftfahrzeuge und Verfahren zum Betreiben einer Steuervorrichtung
DE102008008666B4 (de) Schaltungsanordnung
DE19530317C1 (de) Verfahren zur Lasteinstellung einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830709

AK Designated contracting states

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3375420

Country of ref document: DE

Date of ref document: 19880225

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19881019

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19910202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940629

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940729

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940928

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950709

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO