[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a336469 -id:a336469
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) is the number of iterations needed to reach a power of 2 starting at n and using the map k -> k-(k/p), where p is the largest prime factor of k.
+10
65
0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 2, 1, 2, 2, 2, 0, 1, 2, 3, 1, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 0, 3, 1, 3, 2, 3, 3, 3, 1, 2, 3, 4, 2, 3, 3, 4, 1, 4, 2, 2, 2, 3, 3, 3, 2, 4, 3, 4, 2, 3, 3, 4, 0, 3, 3, 4, 1, 4, 3, 4, 2, 3, 3, 3, 3, 4, 3, 4, 1, 4, 2, 3, 3, 2, 4, 4, 2, 3, 3, 4, 3, 4, 4, 4, 1, 2, 4, 4, 2
OFFSET
1,7
COMMENTS
From Antti Karttunen, Apr 07 2020: (Start)
Also the least number of iterations of nondeterministic map k -> k-(k/p) needed to reach a power of 2, when any prime factor p of k can be used. The minimal length path to the nearest power of 2 (= 2^A064415(n)) is realized whenever one uses any of the A005087(k) distinct odd prime factors of the current k, at any step of the process. For example, this could be done by iterating with the map k -> k-(k/A078701(k)), i.e., by using the least odd prime factor of k (instead of the largest prime).
Proof: Viewing the prime factorization of changing k as a multiset ("bag") of primes, we see that liquefying any odd prime p with step p -> (p-1) brings at least one more 2 to the bag, while applying p -> (p-1) to any 2 just removes it from the bag, but gives nothing back. Thus the largest (and thus also the nearest) power of 2 is reached by eliminating - step by step - all odd primes from the bag, but none of 2's, and it doesn't matter in which order this is done.
The above implies also that the sequence is totally additive, which also follows because both A064097 and A064415 are. That A064097(n) = A329697(n) + A054725(n) for all n > 1 can be also seen by comparing the initial conditions and the recursion formulas of these three sequences.
For any n, A333787(n) is either the nearest power of 2 reached (= 2^A064415(n)), or occurs on some of the paths from n to there.
(End)
A003401 gives the numbers k where a(k) = A005087(k). See also A336477. - Antti Karttunen, Mar 16 2021
LINKS
Michael De Vlieger, Annotated fan style binary tree labeling the index n, with a color code where black represents a(n) = 0, red a(n) = 1, and magenta the largest value in a(n) for n = 1..16383.
FORMULA
From Antti Karttunen, Apr 07-19 2020: (Start)
a(1) = a(2) = 0; and for n > 2, a(p) = 1 + a(p-1) if p is an odd prime and a(n*m) = a(n) + a(m) if m,n > 1. [This is otherwise equal to the definition of A064097, except here we have a different initial condition, with a(2) = 0].
a(2n) = a(A000265(n)) = a(n).
a(p) = 1+a(p-1), for all odd primes p.
If A209229(n) == 1 [when n is a power of 2], a(n) = 0,
otherwise a(n) = 1 + a(n-A052126(n)) = 1 + a(A171462(n)).
Equivalently, for non-powers of 2, a(n) = 1 + a(n-(n/A078701(n))),
or equivalently, for non-powers of 2, a(n) = 1 + Min a(n - n/p), for p prime and dividing n.
a(n) = A064097(n) - A064415(n), or equally, a(n) = A064097(n) - A054725(n), for n > 1.
a(A019434(n)) = 1, a(A334092(n)) = 2, a(A334093(n)) = 3, etc. for all applicable n.
For all n >= 0, a(A334099(n)) = a(A000244(n)) = a(A000351(n)) = a(A001026(n)) = a(257^n) = a(65537^n) = n.
a(A122111(n)) = A334107(n), a(A225546(n)) = A334109(n).
(End)
From Antti Karttunen, Mar 16 2021: (Start)
a(n) = a(A336466(n)) + A087436(n) = A336396(n) + A087436(n).
a(A053575(n)) = A336469(n) = a(n) - A005087(n).
a(A147545(n)) = A000120(A147545(n)) - 1.
(End)
EXAMPLE
The trajectory of 15 is {12, 8}, taking 2 iterations to reach 8 = 2^3. So a(15) is 2.
From Antti Karttunen, Apr 07 2020: (Start)
Considering all possible paths from 15 to 1 nondeterministic map k -> k-(k/p), where p can be any prime factor of k, we obtain the following graph:
15
/ \
/ \
10 12
/ \ / \
/ \ / \
5 8 6
\__ | __/|
\_|_/ |
4 3
\ /
\ /
2
|
1.
It can be seen that there's also alternative route to 8 via 10 (with 10 = 15-(15/3), where 3 is not the largest prime factor of 15), but it's not any shorter than the route via 12.
(End)
MATHEMATICA
a[n_] := Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, n, # != 2^IntegerExponent[#, 2] &] -1; Array[a, 100]
PROG
(PARI) A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1])))); \\ Antti Karttunen, Apr 07 2020
(PARI)
up_to = 2^24;
A329697list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2, up_to, v[n] = if(!bitand(n, n-1), 0, 1+vecmin(apply(p -> v[n-n/p], factor(n)[, 1]~)))); (v); };
v329697 = A329697list(up_to);
A329697(n) = v329697[n]; \\ Antti Karttunen, Apr 07 2020
(PARI) A329697(n) = if(n<=2, 0, if(isprime(n), A329697(n-1)+1, my(f=factor(n)); (apply(A329697, f[, 1])~ * f[, 2]))); \\ Antti Karttunen, Apr 19 2020
CROSSREFS
Cf. A000079, A334101, A334102, A334103, A334104, A334105, A334106 for positions of 0 .. 6 in this sequence, and also array A334100.
Cf. A334099 (a right inverse, positions of the first occurrence of each n).
Cf. A334091 (first differences), A335429 (partial sums).
Cf. also A331410 (analogous sequence when using the map k -> k + k/p), A334861, A335877 (their sums and differences), see also A335878 and A335884, A335885.
KEYWORD
easy,nonn
AUTHOR
Ali Sada and Robert G. Wilson v, Feb 28 2020
STATUS
approved
Numbers of edges of regular polygons constructible with ruler (or, more precisely, an unmarked straightedge) and compass.
(Formerly M0505)
+10
42
1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, 272, 320, 340, 384, 408, 480, 510, 512, 514, 544, 640, 680, 768, 771, 816, 960, 1020, 1024, 1028, 1088, 1280, 1285
OFFSET
1,2
COMMENTS
The terms 1 and 2 correspond to degenerate polygons.
These are also the numbers for which phi(n) is a power of 2: A209229(A000010(a(n))) = 1. - Olivier Gérard Feb 15 1999
From Stanislav Sykora, May 02 2016: (Start)
The sequence can be also defined as follows: (i) 1 is a member. (ii) Double of any member is also a member. (iii) If a member is not divisible by a Fermat prime F_k then its product with F_k is also a member. In particular, the powers of 2 (A000079) are a subset and so are the Fermat primes (A019434), which are the only odd prime members.
The definition is too restrictive (though correct): The Georg Mohr - Lorenzo Mascheroni theorem shows that constructibility using a straightedge and a compass is equivalent to using compass only. Moreover, Jean Victor Poncelet has shown that it is also equivalent to using straightedge and a fixed ('rusty') compass. With the work of Jakob Steiner, this became part of the Poncelet-Steiner theorem establishing the equivalence to using straightedge and a fixed circle (with a known center). A further extension by Francesco Severi replaced the availability of a circle with that of a fixed arc, no matter how small (but still with a known center).
Constructibility implies that when m is a member of this sequence, the edge length 2*sin(Pi/m) of an m-gon with circumradius 1 can be written as a finite expression involving only integer numbers, the four basic arithmetic operations, and the square root. (End)
If x,y are terms, and gcd(x,y) is a power of 2 then x*y is also a term. - David James Sycamore, Aug 24 2024
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 183.
Allan Clark, Elements of Abstract Algebra, Chapter 4, Galois Theory, Dover Publications, NY 1984, page 124.
Duane W. DeTemple, "Carlyle circles and the Lemoine simplicity of polygon constructions." The American Mathematical Monthly 98.2 (1991): 97-108. - N. J. A. Sloane, Aug 05 2021
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
B. L. van der Waerden, Modern Algebra. Unger, NY, 2nd ed., Vols. 1-2, 1953, Vol. 1, p. 187.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10136 (terms below 10^100; terms 1..2000 from T. D. Noe)
Laura Anderson, Jasbir S. Chahal and Jaap Top, The last chapter of the Disquisitiones of Gauss, arXiv:2110.01355 [math.HO], 2021.
Wayne Bishop, How to construct a regular polygon, Amer. Math. Monthly 85(3) (1978), 186-188.
Alessandro Chiodo, A note on the construction of the Śrī Yantra, Sorbonne Université (Paris, France, 2020).
T. Chomette, Construction des polygones réguliers (in French).
Duane W. DeTemple, Carlyle circles and the Lemoine simplicity of polygon constructions, Amer. Math. Monthly 98(2) (1991), 97-108.
David Eisenbud and Brady Haran, Heptadecagon and Fermat Primes (the math bit), Numberphile video (2015).
Mauro Fiorentini, Construibili (numeri).
C. F. Gauss, Disquisitiones Arithmeticae, 1801. English translation: Yale University Press, New Haven, CT, 1966, p. 463. Original (in Latin).
Richard K. Guy, The Second Strong Law of Small Numbers, Math. Mag. 63(1) (1990), 3-20. [Annotated scanned copy] [DOI]
Richard K. Guy and N. J. A. Sloane, Correspondence, 1988.
Johann Gustav Hermes, Über die Teilung des Kreises in 65537 gleiche Teile (About the division of the circle into 65537 equal pieces), Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, Vol. 3 (1894), 170-186.
Eric Weisstein's World of Mathematics, Constructible Number.
Eric Weisstein's World of Mathematics, Constructible Polygon.
Eric Weisstein's World of Mathematics, Regular Polygon.
Eric Weisstein's World of Mathematics, Trigonometry.
Eric Weisstein's World of Mathematics, Trigonometry Angles.
Wikipedia, Pierre Wantzel.
FORMULA
Terms from 3 onward are computable as numbers such that cototient-of-totient equals the totient-of-totient: Flatten[Position[Table[co[eu[n]]-eu[eu[n]], {n, 1, 10000}], 0]] eu[m]=EulerPhi[m], co[m]=m-eu[m]. - Labos Elemer, Oct 19 2001, clarified by Antti Karttunen, Nov 27 2017
Any product of 2^k and distinct Fermat primes (primes of the form 2^(2^m)+1). - Sergio Pimentel, Apr 30 2004, edited by Franklin T. Adams-Watters, Jun 16 2006
If the well-known conjecture that there are only five prime Fermat numbers F_k=2^{2^k}+1, k=0,1,2,3,4 is true, then we have exactly: Sum_{n>=1} 1/a(n)= 2*Product_{k=0..4} (1+1/F_k) = 4869735552/1431655765 = 3.40147098978.... - Vladimir Shevelev and T. D. Noe, Dec 01 2010
log a(n) >> sqrt(n); if there are finitely many Fermat primes, then log a(n) ~ k log n for some k. - Charles R Greathouse IV, Oct 23 2015
EXAMPLE
34 is a term of this sequence because a circle can be divided into exactly 34 parts. 7 is not.
MATHEMATICA
Select[ Range[ 1300 ], IntegerQ[ Log[ 2, EulerPhi[ # ] ] ]& ] (* Olivier Gérard Feb 15 1999 *)
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) Take[ Union[ Flatten[ NestList[2# &, Times @@@ Table[ UnrankSubset[n, Join[{1}, Table[2^2^i + 1, {i, 0, 4}]]], {n, 63}], 11]]], 60] (* Robert G. Wilson v, Jun 11 2005 *)
nn=10; logs=Log[2, {2, 3, 5, 17, 257, 65537}]; lim2=Floor[nn/logs[[1]]]; Sort[Reap[Do[z={i, j, k, l, m, n}.logs; If[z<=nn, Sow[2^z]], {i, 0, lim2}, {j, 0, 1}, {k, 0, 1}, {l, 0, 1}, {m, 0, 1}, {n, 0, 1}]][[2, 1]]]
A092506 = {2, 3, 5, 17, 257, 65537}; s = Sort[Times @@@ Subsets@ A092506]; mx = 1300; Union@ Flatten@ Table[(2^n)*s[[i]], {i, 64}, {n, 0, Log2[mx/s[[i]]]}] (* Robert G. Wilson v, Jul 28 2014 *)
PROG
(Haskell)
a003401 n = a003401_list !! (n-1)
a003401_list = map (+ 1) $ elemIndices 1 $ map a209229 a000010_list
-- Reinhard Zumkeller, Jul 31 2012
(PARI) for(n=1, 10^4, my(t=eulerphi(n)); if(t/2^valuation(t, 2)==1, print1(n, ", "))); \\ Joerg Arndt, Jul 29 2014
(PARI) is(n)=n>>=valuation(n, 2); if(n<7, return(n>0)); my(k=logint(logint(n, 2), 2)); if(k>32, my(p=2^2^k+1); if(n%p, return(0)); n/=p; unknown=1; if(n%p==0, return(0)); p=0; if(is(n)==0, 0, "unknown [has large Fermat number in factorization]"), 4294967295%n==0) \\ Charles R Greathouse IV, Jan 09 2022
(PARI) is(n)=n>>=valuation(n, 2); 4294967295%n==0 \\ valid for n <= 2^2^33, conjecturally valid for all n; Charles R Greathouse IV, Jan 09 2022
(Python)
from sympy import totient
A003401_list = [n for n in range(1, 10**4) if format(totient(n), 'b').count('1') == 1]
# Chai Wah Wu, Jan 12 2015
CROSSREFS
Subsequence of A295298. - Antti Karttunen, Nov 27 2017
A004729 and A051916 are subsequences. - Reinhard Zumkeller, Mar 20 2010
Cf. A000079, A004169, A000215, A099884, A019434 (Fermat primes).
Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A272535 (16), A228787 (17), A272536 (20).
Positions of zeros in A293516 (apart from two initial -1's), and in A336469, positions of ones in A295660 and in A336477 (characteristic function).
Cf. also A046528.
KEYWORD
nonn,nice,changed
EXTENSIONS
Definition clarified by Bill Gosper. - N. J. A. Sloane, Jun 14 2020
STATUS
approved
Odd part of phi(n): a(n) = A000265(A000010(n)).
+10
27
1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 5, 1, 3, 3, 1, 1, 1, 3, 9, 1, 3, 5, 11, 1, 5, 3, 9, 3, 7, 1, 15, 1, 5, 1, 3, 3, 9, 9, 3, 1, 5, 3, 21, 5, 3, 11, 23, 1, 21, 5, 1, 3, 13, 9, 5, 3, 9, 7, 29, 1, 15, 15, 9, 1, 3, 5, 33, 1, 11, 3, 35, 3, 9, 9, 5, 9, 15, 3, 39, 1, 27, 5, 41, 3, 1, 21, 7, 5, 11, 3, 9, 11, 15, 23
OFFSET
1,7
COMMENTS
This is not necessarily the squarefree kernel. E.g., for n=19, phi(19)=18 is divisible by 9, an odd square. Values at which this kernel is 1 correspond to A003401 (polygons constructible with ruler and compass).
Multiplicative with a(2^e) = 1, a(p^e) = p^(e-1)*A000265(p-1). - Christian G. Bower, May 16 2005
LINKS
FORMULA
From Bob Selcoe, Aug 22 2017: (Start)
Let n" be the odd part of n, S be the odd squarefree kernel of n and p_i {i = 1..z} be all the prime factors of S. Then the sequence can be constructed by the following:
a(1) = 1;
a(n) = (n-1)" when n is prime; and
a(n) = Product_{i = 1..z} a(p_i)*n"/S when n is composite (see Examples).
(End)
From Antti Karttunen, Dec 27 2020: (Start)
a(n) = A336466(n) for squarefree n (see A005117).
A336466(a(n)) = A336468(n), A329697(a(n)) = A336469(n) = A329697(n) - A005087(n).
(End)
EXAMPLE
n = 70 = 2*5*7, phi(70) = 24 = 8*3, so the odd kernel of phi(70) is a(70)=3. [corrected by Bob Selcoe, Aug 22 2017]
From Bob Selcoe, Aug 22 2017: (Start)
a(89) = 88/8 = 11.
For n = 8820, 8820 = 2^2*3^2*5*7^2; S = 3*5*7 = 105, n" = 3^2*5*7^2 = 2205. a(3)*a(5)*a(7) = 1*1*3 = 3; a(8820) = 3*2205/105 = 63.
(End)
MAPLE
a:= n-> (t-> t/2^padic[ordp](t, 2))(numtheory[phi](n)):
seq(a(n), n=1..80); # Alois P. Heinz, Apr 14 2020
MATHEMATICA
Array[NestWhile[Ceiling[#/2] &, EulerPhi@ #, EvenQ] &, 94] (* Michael De Vlieger, Aug 22 2017 *) (* or *)
t=Array[EulerPhi, 94]; t/2^IntegerExponent[t, 2] (* Giovanni Resta, Aug 23 2017 *)
PROG
(PARI) a(n)=n=eulerphi(n); n>>valuation(n, 2) \\ Charles R Greathouse IV, Mar 05 2013
(Haskell)
a053575 = a000265 . a000010 -- Reinhard Zumkeller, Oct 09 2013
KEYWORD
nonn,mult
AUTHOR
Labos Elemer, Jan 18 2000
STATUS
approved
a(n) = 1 if a regular n-gon is constructible with ruler (or, more precisely, an unmarked straightedge) and compass, 0 otherwise.
+10
9
1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0
OFFSET
1
COMMENTS
For all n >= 1, a(n) = 1 => A295297(n) = 0.
FORMULA
a(n) = 1 if A005087(n) is equal to A329697(n) [i.e., if A336469(n)=0], and 0 otherwise.
a(n) = A209229(A000010(n)). - Velin Yanev and Antti Karttunen, Mar 02 2021
Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = A209229(p-1) if e = 1, and 0 if e > 1. - Antti Karttunen, Jan 06 2023
PROG
(PARI)
A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1]))));
A336477(n) = (omega(n>>valuation(n, 2))==A329697(n));
(PARI)
A209229(n) = (n && !bitand(n, n-1));
A336477(n) = { my(f=factor(n)); prod(k=1, #f~, (2==f[k, 1] || A209229(f[k, 1]-1)*(1==f[k, 2]))); }; \\ Antti Karttunen, Jan 06 2023
CROSSREFS
Characteristic function of A003401.
Cf. also A336471, A336923 (analogous sequence for Mersenne primes).
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Jul 25 2020
EXTENSIONS
Keyword:mult added by Antti Karttunen, Jan 06 2023
STATUS
approved
Lexicographically earliest infinite sequence such that a(i) = a(j) => A329697(i) = A329697(j) and A336158(i) = A336158(j), for all i, j >= 1.
+10
8
1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 3, 2, 3, 3, 5, 1, 2, 4, 6, 2, 7, 3, 6, 2, 4, 3, 8, 3, 6, 5, 6, 1, 7, 2, 7, 4, 6, 6, 7, 2, 3, 7, 9, 3, 10, 6, 9, 2, 11, 4, 5, 3, 6, 8, 7, 3, 12, 6, 9, 5, 6, 6, 13, 1, 7, 7, 9, 2, 12, 7, 9, 4, 6, 6, 10, 6, 12, 7, 9, 2, 14, 3, 6, 7, 5, 9, 12, 3, 6, 10, 12, 6, 12, 9, 12, 2, 3, 11, 13, 4, 6, 5, 6, 3, 15
OFFSET
1,3
COMMENTS
Restricted growth sequence transform of the ordered pair [A329697(n), A336158(n)].
For all i, j:
A336470(i) = A336470(j) => a(i) = a(j)
a(i) = a(j) => A336396(i) = A336396(j),
a(i) = a(j) => A336469(i) = A336469(j) => A336477(i) = A336477(j).
This sequence has an ability to see where the terms of A003401 are, as they are the indices of zeros in A336469. Specifically, they are numbers k that satisfy the condition A329697(k) = A001221(A336158(k)), i.e., numbers for which A329697(k) is equal to the number of distinct prime divisors of the odd part of k. See also comments in array A334100.
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A000265(n) = (n>>valuation(n, 2));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1]))));
Aux336471(n) = [A329697(n), A336158(n)];
v336471 = rgs_transform(vector(up_to, n, Aux336471(n)));
A336471(n) = v336471[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 22 2020
STATUS
approved
a(n) = A329697(n) - A087436(n).
+10
7
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 2, 0, 1, 1, 2, 0, 0, 1, 0, 1, 2, 0, 2, 0, 1, 0, 1, 0, 2, 2, 1, 0, 1, 1, 3, 1, 0, 2, 3, 0, 2, 0, 0, 1, 2, 0, 1, 1, 2, 2, 3, 0, 2, 2, 1, 0, 1, 1, 3, 0, 2, 1, 3, 0, 2, 2, 0, 2, 2, 1, 3, 0, 0, 1, 2, 1, 0, 3, 2, 1, 2, 0, 2, 2, 2, 3, 2, 0, 1, 2, 1, 0, 2, 0, 2, 1, 1
OFFSET
1,19
COMMENTS
Totally additive because both A087436 and A329697 are.
LINKS
FORMULA
a(n) = A329697(n) - A087436(n).
a(n) = A329697(A336466(n)).
a(n) = A336469(n) - A046660(A000265(n)).
For all n >= 1, a(n) <= A336118(n).
PROG
(PARI)
A087436(n) = (bigomega(n>>valuation(n, 2)));
A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1]))));
A336396(n) = (A329697(n) - A087436(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 24 2020
STATUS
approved
a(n) = A331410(n) - A005087(n).
+10
7
0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 0, 1, 1, 0, 3, 1, 2, 0, 3, 1, 0, 0, 1, 2, 1, 1, 3, 2, 1, 1, 2, 0, 2, 1, 2, 1, 1, 0, 1, 3, 2, 1, 3, 2, 2, 0, 2, 3, 3, 1, 1, 0, 1, 0, 2, 1, 3, 2, 1, 1, 2, 1, 4, 3, 3, 2, 1, 1, 2, 1, 3, 2, 2, 0, 3, 2, 3, 1, 4, 2, 1, 1, 0, 1, 3, 0, 2, 1, 2, 3, 4, 2, 2, 1, 1
OFFSET
1,17
LINKS
FORMULA
a(n) = A331410(n) - A005087(n).
a(n) = A336921(n) + A046660(A000265(n)).
PROG
(PARI)
A005087(n) = omega(n>>valuation(n, 2));
A331410(n) = if(!bitand(n, n-1), 0, 1+A331410(n+(n/vecmax(factor(n)[, 1]))));
A336922(n) = (A331410(n) - A005087(n));
CROSSREFS
Cf. A000265, A005087, A054784 (positions of zeros), A331410, A336467, A336921, A336923.
Cf. also A336469.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 09 2020
STATUS
approved
a(n) = A329697(sigma(n)), where A329697 is totally additive with a(2) = 0 and a(p) = 1 + a(p-1) for odd primes.
+10
5
0, 1, 0, 2, 1, 1, 0, 2, 2, 2, 1, 2, 2, 1, 1, 3, 2, 3, 1, 3, 0, 2, 1, 2, 3, 3, 1, 2, 2, 2, 0, 4, 1, 3, 1, 4, 3, 2, 2, 3, 3, 1, 2, 3, 3, 2, 1, 3, 4, 4, 2, 4, 3, 2, 2, 2, 1, 3, 2, 3, 3, 1, 2, 5, 3, 2, 1, 4, 1, 2, 2, 4, 3, 4, 3, 3, 1, 3, 1, 4, 4, 4, 3, 2, 3, 3, 2, 3, 3, 4, 2, 3, 0, 2, 2, 4, 4, 5, 3, 5, 2, 3, 2, 4, 1
OFFSET
1,4
FORMULA
Additive with a(p^e) = A329697(sigma(p^e)) = A329697(1+ p + p^2 + ... + p^e).
a(n) = A329697(A000203(n)).
PROG
(PARI)
A329697(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A329697(f[k, 1]-1)))); };
A336928(n) = A329697(sigma(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 11 2020
STATUS
approved
a(n) = A336466(phi(n)), where A336466 is fully multiplicative with a(p) = A000265(p-1) for prime p, with A000265(k) giving the odd part of k.
+10
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 3, 7, 1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 5, 1, 1, 5, 1, 11, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,23
FORMULA
a(n) = A336466(A000010(n)).
Multiplicative with a(p^e) = A336466(p-1) * A336466(p)^(e-1).
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A336468(n) = { my(f=factor(eulerphi(n))); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); };
\\ Alternatively, as follows, requiring also code from A336466:
A336468(n) = { my(f=factor(n)); prod(k=1, #f~, A336466(f[k, 1]-1) * A336466(f[k, 1])^(f[k, 2]-1)); };
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Jul 22 2020
STATUS
approved

Search completed in 0.010 seconds