[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a329697 -id:a329697
     Sort: relevance | references | number | modified | created      Format: long | short | data
Square array where the row n lists all numbers k for which A329697(k) = n, read by falling antidiagonals.
+20
17
1, 2, 3, 4, 5, 7, 8, 6, 9, 19, 16, 10, 11, 21, 43, 32, 12, 13, 23, 47, 127, 64, 17, 14, 27, 49, 129, 283, 128, 20, 15, 29, 57, 133, 301, 659, 256, 24, 18, 31, 59, 139, 329, 817, 1319, 512, 34, 22, 33, 63, 141, 343, 827, 1699, 3957, 1024, 40, 25, 35, 67, 147, 347, 839, 1787, 4079, 9227, 2048, 48, 26, 37, 69, 161, 361, 849, 1849, 4613, 9233, 21599
OFFSET
1,2
COMMENTS
Array is read by descending antidiagonals with (n,k) = (0,1), (0,2), (1,1), (0,3), (1,2), (2,1), ... where A(n,k) is the k-th solution x to A329697(x) = n. The row indexing (n) starts from 0, and column indexing (k) from 1.
Any odd prime that appears on row n is 1+{some term on row n-1}.
The e-th powers of the terms on row n form a subset of terms on row (e*n). More generally, a product of terms that occur on rows i_1, i_2, ..., i_k can be found at row (i_1 + i_2 + ... + i_k), because A329697 is completely additive.
The binary weight (A000120) of any term on row n is at most 2^n.
EXAMPLE
The top left corner of the array:
n\k | 1 2 3 4 5 6 7 8 9 10
------+----------------------------------------------------------------
0 | 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ...
1 | 3, 5, 6, 10, 12, 17, 20, 24, 34, 40, ...
2 | 7, 9, 11, 13, 14, 15, 18, 22, 25, 26, ...
3 | 19, 21, 23, 27, 29, 31, 33, 35, 37, 38, ...
4 | 43, 47, 49, 57, 59, 63, 67, 69, 71, 77, ...
5 | 127, 129, 133, 139, 141, 147, 161, 163, 171, 173, ...
6 | 283, 301, 329, 343, 347, 361, 379, 381, 383, 387, ...
7 | 659, 817, 827, 839, 849, 863, 883, 889, 893, 903, ...
8 | 1319, 1699, 1787, 1849, 1977, 1979, 1981, 2021, 2039, 2083, ...
9 | 3957, 4079, 4613, 4903, 5097, 5179, 5361, 5377, 5399, 5419, ...
etc.
Note that the row 9 is the first one which begins with composite, as 3957 = 3*1319. The next such rows are row 15 and row 22. See A334099.
MATHEMATICA
Block[{nn = 16, s}, s = Values@ PositionIndex@ Array[-1 + Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # != 2^IntegerExponent[#, 2] &] &, 2^nn]; Table[s[[#, k]] &[m - k + 1], {m, nn - Ceiling[nn/4]}, {k, m, 1, -1}]] // Flatten (* Michael De Vlieger, Apr 30 2020 *)
PROG
(PARI)
up_to = 105; \\ up_to = 1081; \\ = binomial(46+1, 2)
A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1]))));
memoA334100sq = Map();
A334100sq(n, k) = { my(v=0); if(!mapisdefined(memoA334100sq, [n, k-1], &v), if(1==k, v=0, v = A334100sq(n, k-1))); for(i=1+v, oo, if(A329697(i)==(n-1), mapput(memoA334100sq, [n, k], i); return(i))); };
A334100list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A334100sq(col, (a-(col-1))))); (v); };
v334100 = A334100list(up_to);
A334100(n) = v334100[n];
CROSSREFS
Cf. A329697.
Cf. A334099 (the leftmost column).
Cf. A000079, A334101, A334102, A334103, A334104, A334105, A334106 for the rows 0-6.
Cf. A019434, A334092, A334093, A334094, A334095, A334096 for the primes on the rows 1-6.
Cf. also irregular triangle A334111.
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Apr 14 2020
STATUS
approved
Primes p of the form of the form q*2^h + 1, where q is one of the Fermat primes; Primes p for which A329697(p) == 2.
+20
14
7, 11, 13, 41, 97, 137, 193, 641, 769, 12289, 40961, 163841, 557057, 786433, 167772161, 2281701377, 3221225473, 206158430209, 2748779069441, 6597069766657, 38280596832649217, 180143985094819841, 221360928884514619393, 188894659314785808547841, 193428131138340667952988161
OFFSET
1,1
COMMENTS
Primes p such that p-1 is not a power of two, but for which A171462(p-1) = (p-1-A052126(p-1)) is [a power of 2].
Primes of the form ((2^(2^k))+1)*2^h + 1, where ((2^(2^k))+1) is one of the Fermat primes, A019434, 3, 5, 17, 257, ..., .
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..53
PROG
(PARI) isA334092(n) = (isprime(n)&&2==A329697(n));
(PARI)
A052126(n) = if(1==n, n, n/vecmax(factor(n)[, 1]));
A209229(n) = (n && !bitand(n, n-1));
isA334092(n) = (isprime(n)&&(!A209229(n-1))&&A209229(n-1-A052126(n-1)));
(PARI) list(lim)=if(exponent(lim\=1)>=2^33, error("Verify composite character of more Fermat primes before checking this high")); my(v=List(), t); for(e=0, 4, t=2^2^e+1; while((t<<=1)<lim, if(isprime(t+1), listput(v, t+1)))); Set(v) \\ Charles R Greathouse IV, Apr 14 2020
CROSSREFS
Primes in A334102.
Intersection of A081091 and A147545.
Subsequences: A039687, A050526, A300407.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 14 2020
EXTENSIONS
More terms from Giovanni Resta, Apr 14 2020
STATUS
approved
Numbers n for which A329697(n) == 2.
+20
14
7, 9, 11, 13, 14, 15, 18, 22, 25, 26, 28, 30, 36, 41, 44, 50, 51, 52, 56, 60, 72, 82, 85, 88, 97, 100, 102, 104, 112, 120, 137, 144, 164, 170, 176, 193, 194, 200, 204, 208, 224, 240, 274, 288, 289, 328, 340, 352, 386, 388, 400, 408, 416, 448, 480, 548, 576, 578, 641, 656, 680, 704, 769, 771, 772, 776, 800, 816, 832, 896, 960, 1096
OFFSET
1,1
COMMENTS
Numbers n for which A171462(n) = n-A052126(n) is in A334101.
Numbers k such that A000265(k) is either in A333788 or in A334092.
Each term is either of the form A334092(n)*2^k, for some n >= 1, and k >= 0, or a product of two terms of A334101, whether distinct or not.
Binary weight (A000120) of these terms is always either 2, 3 or 4. It is 2 for those terms that are of the form 9*2^k, 4 for the terms of the form p*q*2^k, where p and q are two distinct Fermat primes (A019434), and 3 for the both terms of the form A334092(n)*2^k, and for the terms of the form (p^2)*(2^k), where p is a Fermat prime > 3.
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
isA019434(n) = ((n>2)&&isprime(n)&&!bitand(n-2, n-1)); \\ Charfun for A019434, Fermat primes.
isA334102(n) = { n = A000265(n); if(isprime(n), isA019434(A000265(n-1)), if(bigomega(n)!=2, 0, factorback(apply(isA019434, factor(n)[, 1])))); };
(PARI)
A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1]))));
isA334102(n) = (2==A329697(n));
CROSSREFS
Row 2 of A334100.
Cf. A333788 (a subsequence), A334092 (primes present), A334093 (primes that are 1 + some term in this sequence).
Squares of A334101 form a subsequence of this sequence. Squares of these numbers can be found (as a subset) in A334104, and the cubes in A334106.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 14 2020
STATUS
approved
Numbers of the form q*(2^k), where q is one of the Fermat primes and k >= 0; Numbers n for which A329697(n) == 1.
+20
13
3, 5, 6, 10, 12, 17, 20, 24, 34, 40, 48, 68, 80, 96, 136, 160, 192, 257, 272, 320, 384, 514, 544, 640, 768, 1028, 1088, 1280, 1536, 2056, 2176, 2560, 3072, 4112, 4352, 5120, 6144, 8224, 8704, 10240, 12288, 16448, 17408, 20480, 24576, 32896, 34816, 40960, 49152, 65537, 65792, 69632, 81920, 98304, 131074, 131584, 139264
OFFSET
1,1
COMMENTS
Numbers k that themselves are not powers of two, but for which A171462(k) = k-A052126(k) is [a power of 2].
Numbers k such that A000265(k) is in A019434.
Squares of these numbers can be found (as a subset) in A334102, and the cubes (as a subset) in A334103.
FORMULA
For all n, A000120(a(n)) = 2.
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
isA019434(n) = ((n>2)&&isprime(n)&&!bitand(n-2, n-1));
isA334101(n) = isA019434(A000265(n));
(PARI)
A052126(n) = if(1==n, n, n/vecmax(factor(n)[, 1]));
A209229(n) = (n && !bitand(n, n-1));
isA334101(n) = ((!A209229(n))&&A209229(n-A052126(n)));
CROSSREFS
Row 1 of A334100.
Cf. A019434 (primes present), A007283, A020714, A110287 (other subsequences).
Subsequence of A018900.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 14 2020
STATUS
approved
a(n) = A329697(A163511(n)).
+20
12
0, 0, 0, 1, 0, 2, 1, 1, 0, 3, 2, 2, 1, 2, 1, 2, 0, 4, 3, 3, 2, 3, 2, 4, 1, 3, 2, 3, 1, 3, 2, 2, 0, 5, 4, 4, 3, 4, 3, 6, 2, 4, 3, 5, 2, 5, 4, 4, 1, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 3, 2, 3, 2, 2, 0, 6, 5, 5, 4, 5, 4, 8, 3, 5, 4, 7, 3, 7, 6, 6, 2, 5, 4, 6, 3, 6, 5, 6, 2, 6, 5, 5, 4, 5, 4, 4, 1, 5, 4, 5, 3, 5, 4, 6, 2, 5
OFFSET
0,6
COMMENTS
As the underlying sequence A163511 can be represented as a binary tree, so can be this:
0
|
...................0...................
0 1
0......../ \........2 1......../ \........1
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
0 3 2 2 1 2 1 2
0 4 3 3 2 3 2 4 1 3 2 3 1 3 2 2
etc.
The nodes at the left edge are all zeros, and their right-hand children give positive integers, A000027.
Each left-hand leaning branch stays constant, because A329697(2n) = A329697(n).
The right-hand leaning branches are not necessarily monotonic. For example, a((2^6)-1) = 2 > 1 = a((2^7)-1), because A000040(7) = 17 is a Fermat prime (but A000040(6) = 13 is not), and therefore the latter is only one step away from a power of 2.
FORMULA
a(n) = A329697(A163511(n)).
a(n) = A334109(A334860(n)).
a(n) = a(2n) = a(A000265(n)).
For all n >= 0, a(2^n) = 0, a(2^n + 1) = n.
PROG
(PARI)
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
A054429(n) = ((3<<#binary(n\2))-n-1); \\ From A054429
A163511(n) = if(!n, 1, A005940(1+A054429(n)));
A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1]))));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 09 2020
STATUS
approved
Lexicographically earliest infinite sequence such that a(i) = a(j) => A329697(i) = A329697(j) and A331410(i) = A331410(j) for all i, j >= 1.
+20
11
1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 5, 2, 5, 4, 6, 1, 7, 5, 8, 3, 9, 5, 9, 2, 10, 5, 8, 4, 11, 6, 12, 1, 8, 7, 8, 5, 11, 8, 8, 3, 6, 9, 13, 5, 11, 9, 14, 2, 14, 10, 10, 5, 11, 8, 11, 4, 15, 11, 15, 6, 9, 12, 13, 1, 11, 8, 15, 7, 13, 8, 13, 5, 16, 11, 16, 8, 13, 8, 13, 3, 15, 6, 8, 9, 17, 13, 18, 5, 16, 11, 13, 9, 14, 14, 18, 2, 6, 14, 15, 10, 16, 10, 8, 5, 15
OFFSET
1,3
COMMENTS
Restricted growth sequence transform of the ordered pair [A329697(n), A331410(n)].
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j),
a(i) = a(j) => A334861(i) = A334861(j),
a(i) = a(j) => A335875(i) = A335875(j),
a(i) = a(j) => A335877(i) = A335877(j),
a(i) = a(j) => A335881(i) = A335881(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A329697(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A329697(f[k, 1]-1)))); };
A331410(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A331410(f[k, 1]+1)))); };
Aux335880(n) = [A329697(n), A331410(n)];
v335880 = rgs_transform(vector(up_to, n, Aux335880(n)));
A335880(n) = v335880[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 29 2020
STATUS
approved
a(n) = A329697(1+sigma(n)), where A329697 is totally additive with a(2) = 0 and a(p) = 1 + a(p-1) for odd primes.
+20
11
0, 0, 1, 0, 2, 2, 2, 0, 2, 3, 2, 3, 2, 2, 2, 0, 3, 1, 3, 4, 3, 3, 2, 3, 0, 4, 2, 4, 3, 3, 3, 0, 4, 3, 4, 3, 3, 3, 4, 4, 4, 2, 3, 2, 4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 4, 3, 4, 4, 2, 4, 0, 2, 4, 4, 5, 2, 4, 3, 4, 3, 4, 3, 5, 2, 4, 4, 3, 3, 5, 2, 4, 4, 5, 4, 4, 4, 5, 3, 4, 5, 4, 4, 5, 4, 4, 4, 4, 3, 5, 4, 5, 2
OFFSET
1,5
FORMULA
a(n) = A329697(1+A000203(n)) = A329697(A088580(n)) = A329697(A332459(n)).
PROG
(PARI)
A329697(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A329697(f[k, 1]-1)))); };
A336694(n) = A329697(1+sigma(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 31 2020
STATUS
approved
Numbers n for which A329697(n) == 3.
+20
10
19, 21, 23, 27, 29, 31, 33, 35, 37, 38, 39, 42, 45, 46, 53, 54, 55, 58, 61, 62, 65, 66, 70, 73, 74, 75, 76, 78, 83, 84, 89, 90, 92, 101, 103, 106, 108, 110, 113, 116, 119, 122, 123, 124, 125, 130, 132, 140, 146, 148, 150, 152, 153, 156, 166, 168, 178, 180, 184, 187, 202, 205, 206, 212, 216, 220, 221, 226, 232, 238, 241, 244
OFFSET
1,1
COMMENTS
Numbers n for which A171462(n) = n-A052126(n) is in A334102.
Among the first 2821 terms (terms < 2^31), there are terms with binary weights 2, 3, 4, 5, 6 and 8. For example, 33 is the first term with binary weight 2, and 255 is the first term with binary weight 8.
PROG
(PARI)
A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1]))));
isA334103(n) = (3==A329697(n));
CROSSREFS
Row 3 of A334100.
Cf. A334093 (primes present), A334094.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 14 2020
STATUS
approved
Numbers m for which A329697(m) = 4.
+20
10
43, 47, 49, 57, 59, 63, 67, 69, 71, 77, 79, 81, 86, 87, 91, 93, 94, 95, 98, 99, 105, 107, 109, 111, 114, 115, 117, 118, 121, 126, 131, 134, 135, 138, 142, 143, 145, 149, 151, 154, 155, 157, 158, 159, 162, 165, 167, 169, 172, 174, 175, 179, 181, 182, 183, 185, 186, 188, 190, 195, 196, 198, 210, 214, 218, 219, 222, 225
OFFSET
1,1
COMMENTS
Squares of A334102 form a subsequence.
Among the first 12193 terms (terms < 2^31), there are terms with binary weights 2 - 16, except no terms with weight 13, 14 or 15. For example, 1025 is the first term with binary weight 2, and 65535 is the first term with binary weight 16.
EXAMPLE
63 = 7*9 is a term as both 7 and 9 are terms of A334102.
65535 = 3*5*17*257 is a term as it is a product of four Fermat primes, thus in four steps all odd primes can be eliminated with p -> (p-1) map.
MATHEMATICA
Position[Array[Length@NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # != 2^IntegerExponent[#, 2] &] - 1 &, 225], 4][[All, 1]] (* Michael De Vlieger, Apr 30 2020 *)
PROG
(PARI)
A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1]))));
isA334104(n) = (4==A329697(n));
CROSSREFS
Row 4 of A334100.
Cf. A334094 (primes present).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 14 2020
STATUS
approved
a(n) = A329697(phi(n)), where A329697 is totally additive with a(2) = 0 and a(p) = 1 + a(p-1) for odd primes.
+20
10
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 1, 2, 0, 2, 0, 1, 0, 1, 1, 2, 2, 1, 0, 1, 1, 3, 1, 1, 2, 3, 0, 3, 1, 0, 1, 2, 2, 1, 1, 2, 2, 3, 0, 2, 2, 2, 0, 1, 1, 3, 0, 2, 1, 3, 1, 2, 2, 1, 2, 2, 1, 3, 0, 3, 1, 2, 1, 0, 3, 2, 1, 2, 1, 2, 2, 2, 3, 2, 0, 1, 3, 2, 1, 2, 0, 2, 1, 1
OFFSET
1,19
LINKS
FORMULA
Additive with a(2^e) = 0, and for odd primes p, a(p^e) = A329697((p - 1)*p^(e-1)) = e*A329697(p) - 1.
a(n) = A329697(n) - A005087(n) = A336396(n) + A046660(A000265(n)).
MATHEMATICA
Array[Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, EulerPhi[#], # != 2^IntegerExponent[#, 2] &] - 1 &, 105] (* Michael De Vlieger, Jul 24 2020 *)
PROG
(PARI)
A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1]))));
A336469(n) = A329697(eulerphi(n));
\\ Or alternatively as:
A336469(n) = { my(f = factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, -1 + (f[k, 2]*A329697(f[k, 1])))); };
CROSSREFS
Cf. A003401 (positions of zeros).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 22 2020
STATUS
approved

Search completed in 0.026 seconds