Displaying 1-10 of 64 results found.
Square array where the row n lists all numbers k for which A329697(k) = n, read by falling antidiagonals.
+20
17
1, 2, 3, 4, 5, 7, 8, 6, 9, 19, 16, 10, 11, 21, 43, 32, 12, 13, 23, 47, 127, 64, 17, 14, 27, 49, 129, 283, 128, 20, 15, 29, 57, 133, 301, 659, 256, 24, 18, 31, 59, 139, 329, 817, 1319, 512, 34, 22, 33, 63, 141, 343, 827, 1699, 3957, 1024, 40, 25, 35, 67, 147, 347, 839, 1787, 4079, 9227, 2048, 48, 26, 37, 69, 161, 361, 849, 1849, 4613, 9233, 21599
COMMENTS
Array is read by descending antidiagonals with (n,k) = (0,1), (0,2), (1,1), (0,3), (1,2), (2,1), ... where A(n,k) is the k-th solution x to A329697(x) = n. The row indexing (n) starts from 0, and column indexing (k) from 1.
Any odd prime that appears on row n is 1+{some term on row n-1}.
The e-th powers of the terms on row n form a subset of terms on row (e*n). More generally, a product of terms that occur on rows i_1, i_2, ..., i_k can be found at row (i_1 + i_2 + ... + i_k), because A329697 is completely additive.
The binary weight ( A000120) of any term on row n is at most 2^n.
EXAMPLE
The top left corner of the array:
n\k | 1 2 3 4 5 6 7 8 9 10
------+----------------------------------------------------------------
0 | 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ...
1 | 3, 5, 6, 10, 12, 17, 20, 24, 34, 40, ...
2 | 7, 9, 11, 13, 14, 15, 18, 22, 25, 26, ...
3 | 19, 21, 23, 27, 29, 31, 33, 35, 37, 38, ...
4 | 43, 47, 49, 57, 59, 63, 67, 69, 71, 77, ...
5 | 127, 129, 133, 139, 141, 147, 161, 163, 171, 173, ...
6 | 283, 301, 329, 343, 347, 361, 379, 381, 383, 387, ...
7 | 659, 817, 827, 839, 849, 863, 883, 889, 893, 903, ...
8 | 1319, 1699, 1787, 1849, 1977, 1979, 1981, 2021, 2039, 2083, ...
9 | 3957, 4079, 4613, 4903, 5097, 5179, 5361, 5377, 5399, 5419, ...
etc.
Note that the row 9 is the first one which begins with composite, as 3957 = 3*1319. The next such rows are row 15 and row 22. See A334099.
MATHEMATICA
Block[{nn = 16, s}, s = Values@ PositionIndex@ Array[-1 + Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # != 2^IntegerExponent[#, 2] &] &, 2^nn]; Table[s[[#, k]] &[m - k + 1], {m, nn - Ceiling[nn/4]}, {k, m, 1, -1}]] // Flatten (* Michael De Vlieger, Apr 30 2020 *)
PROG
(PARI)
up_to = 105; \\ up_to = 1081; \\ = binomial(46+1, 2)
A329697(n) = if(!bitand(n, n-1), 0, 1+ A329697(n-(n/vecmax(factor(n)[, 1]))));
memoA334100sq = Map();
A334100sq(n, k) = { my(v=0); if(!mapisdefined(memoA334100sq, [n, k-1], &v), if(1==k, v=0, v = A334100sq(n, k-1))); for(i=1+v, oo, if( A329697(i)==(n-1), mapput(memoA334100sq, [n, k], i); return(i))); };
A334100list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A334100sq(col, (a-(col-1))))); (v); };
v334100 = A334100list(up_to);
CROSSREFS
Cf. also irregular triangle A334111.
Primes p of the form of the form q*2^h + 1, where q is one of the Fermat primes; Primes p for which A329697(p) == 2.
+20
14
7, 11, 13, 41, 97, 137, 193, 641, 769, 12289, 40961, 163841, 557057, 786433, 167772161, 2281701377, 3221225473, 206158430209, 2748779069441, 6597069766657, 38280596832649217, 180143985094819841, 221360928884514619393, 188894659314785808547841, 193428131138340667952988161
COMMENTS
Primes p such that p-1 is not a power of two, but for which A171462(p-1) = (p-1- A052126(p-1)) is [a power of 2].
Primes of the form ((2^(2^k))+1)*2^h + 1, where ((2^(2^k))+1) is one of the Fermat primes, A019434, 3, 5, 17, 257, ..., .
PROG
(PARI) isA334092(n) = (isprime(n)&&2== A329697(n));
(PARI)
A052126(n) = if(1==n, n, n/vecmax(factor(n)[, 1]));
A209229(n) = (n && !bitand(n, n-1));
(PARI) list(lim)=if(exponent(lim\=1)>=2^33, error("Verify composite character of more Fermat primes before checking this high")); my(v=List(), t); for(e=0, 4, t=2^2^e+1; while((t<<=1)<lim, if(isprime(t+1), listput(v, t+1)))); Set(v) \\ Charles R Greathouse IV, Apr 14 2020
Numbers n for which A329697(n) == 2.
+20
14
7, 9, 11, 13, 14, 15, 18, 22, 25, 26, 28, 30, 36, 41, 44, 50, 51, 52, 56, 60, 72, 82, 85, 88, 97, 100, 102, 104, 112, 120, 137, 144, 164, 170, 176, 193, 194, 200, 204, 208, 224, 240, 274, 288, 289, 328, 340, 352, 386, 388, 400, 408, 416, 448, 480, 548, 576, 578, 641, 656, 680, 704, 769, 771, 772, 776, 800, 816, 832, 896, 960, 1096
COMMENTS
Each term is either of the form A334092(n)*2^k, for some n >= 1, and k >= 0, or a product of two terms of A334101, whether distinct or not.
Binary weight ( A000120) of these terms is always either 2, 3 or 4. It is 2 for those terms that are of the form 9*2^k, 4 for the terms of the form p*q*2^k, where p and q are two distinct Fermat primes ( A019434), and 3 for the both terms of the form A334092(n)*2^k, and for the terms of the form (p^2)*(2^k), where p is a Fermat prime > 3.
PROG
(PARI)
isA019434(n) = ((n>2)&&isprime(n)&&!bitand(n-2, n-1)); \\ Charfun for A019434, Fermat primes.
isA334102(n) = { n = A000265(n); if(isprime(n), isA019434( A000265(n-1)), if(bigomega(n)!=2, 0, factorback(apply(isA019434, factor(n)[, 1])))); };
(PARI)
A329697(n) = if(!bitand(n, n-1), 0, 1+ A329697(n-(n/vecmax(factor(n)[, 1]))));
CROSSREFS
Cf. A333788 (a subsequence), A334092 (primes present), A334093 (primes that are 1 + some term in this sequence).
Squares of A334101 form a subsequence of this sequence. Squares of these numbers can be found (as a subset) in A334104, and the cubes in A334106.
Numbers of the form q*(2^k), where q is one of the Fermat primes and k >= 0; Numbers n for which A329697(n) == 1.
+20
13
3, 5, 6, 10, 12, 17, 20, 24, 34, 40, 48, 68, 80, 96, 136, 160, 192, 257, 272, 320, 384, 514, 544, 640, 768, 1028, 1088, 1280, 1536, 2056, 2176, 2560, 3072, 4112, 4352, 5120, 6144, 8224, 8704, 10240, 12288, 16448, 17408, 20480, 24576, 32896, 34816, 40960, 49152, 65537, 65792, 69632, 81920, 98304, 131074, 131584, 139264
COMMENTS
Numbers k that themselves are not powers of two, but for which A171462(k) = k- A052126(k) is [a power of 2].
Squares of these numbers can be found (as a subset) in A334102, and the cubes (as a subset) in A334103.
PROG
(PARI)
isA019434(n) = ((n>2)&&isprime(n)&&!bitand(n-2, n-1));
isA334101(n) = isA019434( A000265(n));
(PARI)
A052126(n) = if(1==n, n, n/vecmax(factor(n)[, 1]));
A209229(n) = (n && !bitand(n, n-1));
0, 0, 0, 1, 0, 2, 1, 1, 0, 3, 2, 2, 1, 2, 1, 2, 0, 4, 3, 3, 2, 3, 2, 4, 1, 3, 2, 3, 1, 3, 2, 2, 0, 5, 4, 4, 3, 4, 3, 6, 2, 4, 3, 5, 2, 5, 4, 4, 1, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 3, 2, 3, 2, 2, 0, 6, 5, 5, 4, 5, 4, 8, 3, 5, 4, 7, 3, 7, 6, 6, 2, 5, 4, 6, 3, 6, 5, 6, 2, 6, 5, 5, 4, 5, 4, 4, 1, 5, 4, 5, 3, 5, 4, 6, 2, 5
COMMENTS
As the underlying sequence A163511 can be represented as a binary tree, so can be this:
0
|
...................0...................
0 1
0......../ \........2 1......../ \........1
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
0 3 2 2 1 2 1 2
0 4 3 3 2 3 2 4 1 3 2 3 1 3 2 2
etc.
The nodes at the left edge are all zeros, and their right-hand children give positive integers, A000027.
Each left-hand leaning branch stays constant, because A329697(2n) = A329697(n).
The right-hand leaning branches are not necessarily monotonic. For example, a((2^6)-1) = 2 > 1 = a((2^7)-1), because A000040(7) = 17 is a Fermat prime (but A000040(6) = 13 is not), and therefore the latter is only one step away from a power of 2.
FORMULA
For all n >= 0, a(2^n) = 0, a(2^n + 1) = n.
PROG
(PARI)
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
A329697(n) = if(!bitand(n, n-1), 0, 1+ A329697(n-(n/vecmax(factor(n)[, 1]))));
Lexicographically earliest infinite sequence such that a(i) = a(j) => A329697(i) = A329697(j) and A331410(i) = A331410(j) for all i, j >= 1.
+20
11
1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 5, 2, 5, 4, 6, 1, 7, 5, 8, 3, 9, 5, 9, 2, 10, 5, 8, 4, 11, 6, 12, 1, 8, 7, 8, 5, 11, 8, 8, 3, 6, 9, 13, 5, 11, 9, 14, 2, 14, 10, 10, 5, 11, 8, 11, 4, 15, 11, 15, 6, 9, 12, 13, 1, 11, 8, 15, 7, 13, 8, 13, 5, 16, 11, 16, 8, 13, 8, 13, 3, 15, 6, 8, 9, 17, 13, 18, 5, 16, 11, 13, 9, 14, 14, 18, 2, 6, 14, 15, 10, 16, 10, 8, 5, 15
COMMENTS
Restricted growth sequence transform of the ordered pair [ A329697(n), A331410(n)].
For all i, j:
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A329697(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+ A329697(f[k, 1]-1)))); };
A331410(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+ A331410(f[k, 1]+1)))); };
v335880 = rgs_transform(vector(up_to, n, Aux335880(n)));
a(n) = A329697(1+sigma(n)), where A329697 is totally additive with a(2) = 0 and a(p) = 1 + a(p-1) for odd primes.
+20
11
0, 0, 1, 0, 2, 2, 2, 0, 2, 3, 2, 3, 2, 2, 2, 0, 3, 1, 3, 4, 3, 3, 2, 3, 0, 4, 2, 4, 3, 3, 3, 0, 4, 3, 4, 3, 3, 3, 4, 4, 4, 2, 3, 2, 4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 4, 3, 4, 4, 2, 4, 0, 2, 4, 4, 5, 2, 4, 3, 4, 3, 4, 3, 5, 2, 4, 4, 3, 3, 5, 2, 4, 4, 5, 4, 4, 4, 5, 3, 4, 5, 4, 4, 5, 4, 4, 4, 4, 3, 5, 4, 5, 2
PROG
(PARI)
A329697(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+ A329697(f[k, 1]-1)))); };
Numbers n for which A329697(n) == 3.
+20
10
19, 21, 23, 27, 29, 31, 33, 35, 37, 38, 39, 42, 45, 46, 53, 54, 55, 58, 61, 62, 65, 66, 70, 73, 74, 75, 76, 78, 83, 84, 89, 90, 92, 101, 103, 106, 108, 110, 113, 116, 119, 122, 123, 124, 125, 130, 132, 140, 146, 148, 150, 152, 153, 156, 166, 168, 178, 180, 184, 187, 202, 205, 206, 212, 216, 220, 221, 226, 232, 238, 241, 244
COMMENTS
Among the first 2821 terms (terms < 2^31), there are terms with binary weights 2, 3, 4, 5, 6 and 8. For example, 33 is the first term with binary weight 2, and 255 is the first term with binary weight 8.
PROG
(PARI)
A329697(n) = if(!bitand(n, n-1), 0, 1+ A329697(n-(n/vecmax(factor(n)[, 1]))));
Numbers m for which A329697(m) = 4.
+20
10
43, 47, 49, 57, 59, 63, 67, 69, 71, 77, 79, 81, 86, 87, 91, 93, 94, 95, 98, 99, 105, 107, 109, 111, 114, 115, 117, 118, 121, 126, 131, 134, 135, 138, 142, 143, 145, 149, 151, 154, 155, 157, 158, 159, 162, 165, 167, 169, 172, 174, 175, 179, 181, 182, 183, 185, 186, 188, 190, 195, 196, 198, 210, 214, 218, 219, 222, 225
COMMENTS
Squares of A334102 form a subsequence.
Among the first 12193 terms (terms < 2^31), there are terms with binary weights 2 - 16, except no terms with weight 13, 14 or 15. For example, 1025 is the first term with binary weight 2, and 65535 is the first term with binary weight 16.
EXAMPLE
63 = 7*9 is a term as both 7 and 9 are terms of A334102.
65535 = 3*5*17*257 is a term as it is a product of four Fermat primes, thus in four steps all odd primes can be eliminated with p -> (p-1) map.
MATHEMATICA
Position[Array[Length@NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # != 2^IntegerExponent[#, 2] &] - 1 &, 225], 4][[All, 1]] (* Michael De Vlieger, Apr 30 2020 *)
PROG
(PARI)
A329697(n) = if(!bitand(n, n-1), 0, 1+ A329697(n-(n/vecmax(factor(n)[, 1]))));
a(n) = A329697(phi(n)), where A329697 is totally additive with a(2) = 0 and a(p) = 1 + a(p-1) for odd primes.
+20
10
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 1, 2, 0, 2, 0, 1, 0, 1, 1, 2, 2, 1, 0, 1, 1, 3, 1, 1, 2, 3, 0, 3, 1, 0, 1, 2, 2, 1, 1, 2, 2, 3, 0, 2, 2, 2, 0, 1, 1, 3, 0, 2, 1, 3, 1, 2, 2, 1, 2, 2, 1, 3, 0, 3, 1, 2, 1, 0, 3, 2, 1, 2, 1, 2, 2, 2, 3, 2, 0, 1, 3, 2, 1, 2, 0, 2, 1, 1
FORMULA
Additive with a(2^e) = 0, and for odd primes p, a(p^e) = A329697((p - 1)*p^(e-1)) = e* A329697(p) - 1.
MATHEMATICA
Array[Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, EulerPhi[#], # != 2^IntegerExponent[#, 2] &] - 1 &, 105] (* Michael De Vlieger, Jul 24 2020 *)
PROG
(PARI)
A329697(n) = if(!bitand(n, n-1), 0, 1+ A329697(n-(n/vecmax(factor(n)[, 1]))));
\\ Or alternatively as:
A336469(n) = { my(f = factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, -1 + (f[k, 2]* A329697(f[k, 1])))); };
Search completed in 0.026 seconds
|