[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a336469 -id:a336469
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) is the number of iterations needed to reach a power of 2 starting at n and using the map k -> k-(k/p), where p is the largest prime factor of k.
+10
65
0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 2, 1, 2, 2, 2, 0, 1, 2, 3, 1, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 0, 3, 1, 3, 2, 3, 3, 3, 1, 2, 3, 4, 2, 3, 3, 4, 1, 4, 2, 2, 2, 3, 3, 3, 2, 4, 3, 4, 2, 3, 3, 4, 0, 3, 3, 4, 1, 4, 3, 4, 2, 3, 3, 3, 3, 4, 3, 4, 1, 4, 2, 3, 3, 2, 4, 4, 2, 3, 3, 4, 3, 4, 4, 4, 1, 2, 4, 4, 2
FORMULA
a(A053575(n)) = A336469(n) = a(n) - A005087(n).
Numbers of edges of regular polygons constructible with ruler (or, more precisely, an unmarked straightedge) and compass.
(Formerly M0505)
+10
42
1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, 272, 320, 340, 384, 408, 480, 510, 512, 514, 544, 640, 680, 768, 771, 816, 960, 1020, 1024, 1028, 1088, 1280, 1285
CROSSREFS
Positions of zeros in A293516 (apart from two initial -1's), and in A336469, positions of ones in A295660 and in A336477 (characteristic function).
Odd part of phi(n): a(n) = A000265(A000010(n)).
+10
27
1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 5, 1, 3, 3, 1, 1, 1, 3, 9, 1, 3, 5, 11, 1, 5, 3, 9, 3, 7, 1, 15, 1, 5, 1, 3, 3, 9, 9, 3, 1, 5, 3, 21, 5, 3, 11, 23, 1, 21, 5, 1, 3, 13, 9, 5, 3, 9, 7, 29, 1, 15, 15, 9, 1, 3, 5, 33, 1, 11, 3, 35, 3, 9, 9, 5, 9, 15, 3, 39, 1, 27, 5, 41, 3, 1, 21, 7, 5, 11, 3, 9, 11, 15, 23
FORMULA
A336466(a(n)) = A336468(n), A329697(a(n)) = A336469(n) = A329697(n) - A005087(n).
a(n) = 1 if a regular n-gon is constructible with ruler (or, more precisely, an unmarked straightedge) and compass, 0 otherwise.
+10
9
1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0
FORMULA
a(n) = 1 if A005087(n) is equal to A329697(n) [i.e., if A336469(n)=0], and 0 otherwise.
CROSSREFS
Lexicographically earliest infinite sequence such that a(i) = a(j) => A329697(i) = A329697(j) and A336158(i) = A336158(j), for all i, j >= 1.
+10
8
1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 3, 2, 3, 3, 5, 1, 2, 4, 6, 2, 7, 3, 6, 2, 4, 3, 8, 3, 6, 5, 6, 1, 7, 2, 7, 4, 6, 6, 7, 2, 3, 7, 9, 3, 10, 6, 9, 2, 11, 4, 5, 3, 6, 8, 7, 3, 12, 6, 9, 5, 6, 6, 13, 1, 7, 7, 9, 2, 12, 7, 9, 4, 6, 6, 10, 6, 12, 7, 9, 2, 14, 3, 6, 7, 5, 9, 12, 3, 6, 10, 12, 6, 12, 9, 12, 2, 3, 11, 13, 4, 6, 5, 6, 3, 15
COMMENTS
a(i) = a(j) => A336469(i) = A336469(j) => A336477(i) = A336477(j).
This sequence has an ability to see where the terms of A003401 are, as they are the indices of zeros in A336469. Specifically, they are numbers k that satisfy the condition A329697(k) = A001221(A336158(k)), i.e., numbers for which A329697(k) is equal to the number of distinct prime divisors of the odd part of k. See also comments in array A334100.
a(n) = A329697(n) - A087436(n).
+10
7
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 2, 0, 1, 1, 2, 0, 0, 1, 0, 1, 2, 0, 2, 0, 1, 0, 1, 0, 2, 2, 1, 0, 1, 1, 3, 1, 0, 2, 3, 0, 2, 0, 0, 1, 2, 0, 1, 1, 2, 2, 3, 0, 2, 2, 1, 0, 1, 1, 3, 0, 2, 1, 3, 0, 2, 2, 0, 2, 2, 1, 3, 0, 0, 1, 2, 1, 0, 3, 2, 1, 2, 0, 2, 2, 2, 3, 2, 0, 1, 2, 1, 0, 2, 0, 2, 1, 1
FORMULA
a(n) = A336469(n) - A046660(A000265(n)).
a(n) = A331410(n) - A005087(n).
+10
7
0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 0, 1, 1, 0, 3, 1, 2, 0, 3, 1, 0, 0, 1, 2, 1, 1, 3, 2, 1, 1, 2, 0, 2, 1, 2, 1, 1, 0, 1, 3, 2, 1, 3, 2, 2, 0, 2, 3, 3, 1, 1, 0, 1, 0, 2, 1, 3, 2, 1, 1, 2, 1, 4, 3, 3, 2, 1, 1, 2, 1, 3, 2, 2, 0, 3, 2, 3, 1, 4, 2, 1, 1, 0, 1, 3, 0, 2, 1, 2, 3, 4, 2, 2, 1, 1
CROSSREFS
Cf. also A336469.
a(n) = A329697(sigma(n)), where A329697 is totally additive with a(2) = 0 and a(p) = 1 + a(p-1) for odd primes.
+10
5
0, 1, 0, 2, 1, 1, 0, 2, 2, 2, 1, 2, 2, 1, 1, 3, 2, 3, 1, 3, 0, 2, 1, 2, 3, 3, 1, 2, 2, 2, 0, 4, 1, 3, 1, 4, 3, 2, 2, 3, 3, 1, 2, 3, 3, 2, 1, 3, 4, 4, 2, 4, 3, 2, 2, 2, 1, 3, 2, 3, 3, 1, 2, 5, 3, 2, 1, 4, 1, 2, 2, 4, 3, 4, 3, 3, 1, 3, 1, 4, 4, 4, 3, 2, 3, 3, 2, 3, 3, 4, 2, 3, 0, 2, 2, 4, 4, 5, 3, 5, 2, 3, 2, 4, 1
CROSSREFS
a(n) = A336466(phi(n)), where A336466 is fully multiplicative with a(p) = A000265(p-1) for prime p, with A000265(k) giving the odd part of k.
+10
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 3, 7, 1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 5, 1, 1, 5, 1, 11, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1
CROSSREFS

Search completed in 0.010 seconds