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| THE SECOND $STRONG LAW OF SMALL NUMBERS ;%OI
| Richard K. Guy S I %l

[ 062

You have probably already met The Strong Law of Small Numbers, either@;
formally [15, 21, 22]: ' “ H—

There aren enough small ’ %S
numbers to meet the many [ S 7
demands made of them

[l

or in some frustrated and semi—conscious formulation that occurred to you in the’ 67

rough—-and—tumble of everyday mathematical enquiry. It is the constant enemy or?{?‘

mathematical discovery: at once the Scylla, shattering sensible statement with /(62?
spurious exceptions, and the Charybdis of capricious coincidences, causing careless C??
conjectures: the dilemma to search for proof or for counter—example. It fooled / L,L \5"
Fermat (Example 1 of [21]) and we 1 meet Euler’s .-memorable example at the end of

© e artice f! ?j
/

Ii’s time to introduce The Second Strong Law of Small Numbers: Z37

When two numbers l?ok e'qual, /Lfo P
it aint necessarily so! @
o |

How can this possibly be?” [ hear you ask. By way of answer [ invite you éoY? w

examine }

Example 36. Evaluate the polynomial (n* —6n3 4+ 24n% —18n + 24)/24 for n=1, 2,0(1
Examples 1 to 35 are in [21]; there follow forty—four more. In each, you are

invited to guess what pattern of numbers is emerging, and to decide whether tﬁeég 9

pattern will persist. Many of the examples are {raudulent, but some genuine 2 LL é

theorems are mingled in, to keep you on your toes, and there may even be an

k_ unsolved problem or two.



Examples 37 to 40 involve Pascal s triangle.

Example 37.
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Pascal s triangle (mod 2) has been a perennial topic, But

@ /ave you tried reading the rows as binary numbers? 1, 3, b, 15, 17, b1, 85, 255,
. oR7, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, ... Remember that there are
zeros outside the triangle as well, so you can also include their doubles, 2, 6, 10, 30,

’3\/\’0\ 34, 102, ..., their quadruples, 4, 12, 20, 60, 68, ..., and so on, as well, if you like.

Do you recognize these numbers?
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You have probably already met The Strong Law of Small Numbers, either formally
[15, 21, 22]

There aren’t enough small
numbers to meet the many
demands made of them

or in some frustrated and semiconscious formulation that occurred to you in the
rough-and-tumble of everyday mathematical enquiry. It is the constant enemy of
mathematical discovery: at once the Scylla, shattering sensible statement with spuri-
ous exceptions, and the Charybdis of capricious coincidences, causing careless conjec-
tures: the dilemma to search for proof or for counterexample. It fooled Fermat
(Example 1 of [2]]) and we'll meet Euler’s memorable example at the end of the
article.
It's time to introduce The Second Strong Law of Small Numbers:

When two numbers look equal,
it ain’t necessarily so!

“How can this possibly be?” I hear you ask. By way of answer I invite you to examine

Example 36 Evaluate the polynomial (n'— 6n° +24n> — 18n + 24) /24 for n=
1,2,3,....

Examples 1 to 35 are in [21]; there follow forty-four more. In each, you are invited
to guess what pattern of numbers is emerging, and to decide whether the pattern will
persist. Many of the examples are fraudulent, but some genuine theorems are mingled
in, to keep you on your toes, and there may even be an unsolved problem or two.

Examples 37 to 40 involve Pascal’s triangle.

Example 37
Pascal’s triangle (modulo 2) has been a perennial topic. But have you tried reading
the rows as binary numbers? 1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1985, 3855, 4369,
13107, 21845, 65535, 65537,... . Remember that there are zeros outside the triangle
as well, so you can also include their doubles, 2, 6, 10, 30, 34, 102, ..., their
quadruples, 4, 12, 20, 60, 68,..., and so on, as well, if you like. Do you recognize
these numbers?
3
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Example 38 Here we've drawn Pascal’s triangle with each row starting off two
places to the right of the previous start, i.e. with (’r‘) in row n and column 2n + 7.

0123456789 1011 1213 14 15 16 17 18 19 20 21 22 23 24

0 1

1 11

2 1 2 1

3 133

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 152015 6 1

7 1 7 21 35 35 21 7

8 1 8§ 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84
10 1 10 45 120 210
11 1 11 55

We’ve printed an entry in bold if it’s divisible by its row number, and we’ve printed a
column head in bold just if all the entries in the column are bold. What are these bold
column heads?

Example 39 We've drawn Pascal’s triangle again, but in contrast to the previous
example, we’ve put an entry in bold just if it's not squarefree, i.e., just if it contains a
square factor greater than 1.
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|
o 12
3 b3 3 |
4 1 4 6 4 1
5 I 5 10 10 5 1
6 I 6 15 20 15 6 1
7 1 7 2 35 35 21 7 1
I 8 28 56 17 56 28 § 1
9 1 9 36 84 126 126 84 36 9 1
10 1 10 45 120 210 252 210 120 45 10 1
1 1 11 55 165 330 462 462 330 165 55 11 1
12 1 12 66 220 495 792 924 792 495 220 66 12 1

What are the row numbers (printed in bold) of the rows which contain at least one
bold entry: 4,6,8,9,10,12,...7

Example 40 We finally draw Pascal’s trnangle with (:) in the nth row and (n + r)th
column:

61 2 34 56 7 8§ 9 10 11 12 13 14 15 16

0 1

1 11

2 I 2 1

3 I 3 3 1

4 1 4 6 4 1

3 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 3 21 7 1

8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36
10 1 10 45 120 210 252 210
11 1 11 55 165 330 462
12 1 12 66 220 495

The column totals are 1,1,2,3,5,8,13,21,34,55,89,144,... . These numbers also
seem to appear in the next three examples, as well as in Examples 70 and 80.

Example 41 The ceiling of, least integer not less than, e"~ Y72 for

n= 0 1 2 3 4 5 6 7 8 9

is 1 1 2 3 b} 8 13 21 34 55.... <(§I

Example 42 If o(n) is the sum of the divisors of n, then o(n)/n measures the
abundancy of n. Every number n with abundancy > j must have at least k factors,
where, for

ji= 2 3 4 5 6 7 8 9.
3 4 6 9 14 22 3

5.,
The differences of this last sequence are 1,1,2,3,5,8,13,.... g 3‘ Q/ ’

bond
Il
)
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Example 43 You may have suspected that some of the sequences in the last three
examples are manifestations of the ubiquitous Fibonacci numbers (u,=0, u; = 1,
u, o= U, +u,) According to the Lucas-Lehmer theory [33] the rank of apparition
(the least n for which p divides u,) of a prime p in the Fibonacci sequence is a
divisor of p — (p[5), where (p[) is the Legendre symbol, 0 for p =5, and +1or — 1
according as p= +1 or +2, mod5, otherwise. For example, the rank of apparition

for the first few primes is

p= 2 3 5 7 11 13 17 19 23 29 31 37 4l...

345810 7 9 18 24 14 30 19 20.... /é@?/!

When a prime does first appear, does it always occur to the first power?

Example 44 Define a sequence by ¢, =1, c; =2 and ¢, the least integer such that

€,+1 — C,_ differs from all earlier positive differences ¢; —¢;, 1 <i<j<n, eg
{c, 65} ={1,2} difference 1 cy—c =2 ;=3
{c1, c 5} ={1,2,3} differences 1,2 Cy—Cp=3 €3 =5
(¢, 6 =1{1,235) differences 1,2,3,4 C5—C3=95 cs=38

{cl,...,cs}={l,2,3,5,8} differences 1,2,...,7 cg— €y =8 cg =13

Example 45 In the following arrangements of pennies, each row forms a contiguous
block, and each penny above the bottom row touches two pennies in the row below it.
Count such arrangements by the total number of pennies:

0 00 a0 & 0000 ¢ 00

o0 Qo o@oo a0 e o 8D &

Example 46 Alternatively, you could count the arrangements in the previous exam-
ple by the number of pennies in the bottom row.

o oozc% oooc%ooc%c%bc@)

ccco &oo oo oo o adbd
B oo o B o B

S

1%

(SOl
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Example 47 The number of rooted trees with n vertices, just one of which is
labelled.

1 2 5
L
L
L L
A 0 0 O P O B VA VAL VALV AN
Example 48 The number of disconnected graphs with n + 1 vertices. /7 ( 7
S R T A YA
[ ) L [ ] [ o—20 [ ® / [ ] ®
1 5
. o0 o
o ee e . RV >4

Example 49 The number of connected graphs on n + 2 vertices with just one cycle.
1 2 5
13

For many other examples involving graphs, see [22], which does not, however,
include Examples 47-49.

Example 50 The coeflicients in the power series solution

22 xd oyt 5x7 13x°

y=l+or+art 3t 3t e

R

of the differential equation D?%y = ¢*y.
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Example 51 The sequence a,=a, ,+na,_, (n>1)witha_ |, =a,=1/2
1 1
) +1X 5 = 1
1
ay=1+2x5=2

a;=2+3X%X1=5
a,=5+4x2=13.

Example 52 The sequence b, =(n—1)2" ">+ 1, n> 1.

by=0x27'4+1=1
by=1x24+1=2
by=2x2'+1=5
by=3X2%+1=13.

Example 53 How many distinct sums, f(n), may there be of n different ordinal
numbers? Obviously, f(1)=1. However, f(2)=2, because ordinal addition is not
commutative. For example, 1 + w = w # » + 1. You might guess that f(3) could be as
large as 3! =6, but in fact you can’t have more than 5 distinct sums of 3 different
ordinals. The answers

forn= 1 2 3 4 5 6 7 8...
are fln)= 1 2 5 13 33 81 193 449

perhaps the same sequence as Example 52. Or perhaps not.

Example 54 The values of the polynomial 9n2 — 231n + 1523 for n = 0,1,2,... are
1523, 1301, 1097, 911, 743, 593, 461, 347, 251, 173, 113, 71, 47, 41, 53, 83, 131,
197,... . Try also the polynomial 47n® — 1701n + 10181.

Example 55 What are the next three terms in the sequence

(1),2,3,5,7,11,13,17,19, 23, 29, 31, 37, 41, 43, 47,53,...7

Example 56 The integer part of the nth power of 3/2

e e e 2371

3/2)" 1 1.5 2.25 3.375 5.0625 7.59375 11.390625
0 1 2 3 5 7 11

]
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Example 57 The number of trees with n edges, and height at most 2.

Example 58 The number of partitions of n

n= 0 1 2 3 4 5 6 1 8 9.
pmy= 1 1 2 3 5 7 11 15 22 30...

Example 59 If we form successive differences of the partition function:

11235711 15 22 30 42 56 77 101 135 176 231 297 385 490 627

011224 4 7 8 1214 21 24 34 41 55 66 88 105 137
10102 0 3 1 4 3 7 3 10 7 14 11 22 17T 32 ...
11-12-23 23 -2 54 7 -3 7 -3 11 -5 15 ..

we see that the third-order differences alternate in sign.

Example 60 If you expand the product (1 —x)(1~— 21 =x%) (1 —x*) -+, you
get, successively

1—x
1—x—x2+x3
l—x—x24+xi+x°—x
1—x—22+92x5—x8 — 2%+ 10

6

and a coefficient 2 has appeared. Indeed, at stage 10, a coefficient 3 appears.
However, further calculation appears to cancel these out, leaving

l—x—x24 x5+ —x2—x+ -

Are there any coefficients other than 0, + 1 in the final result?
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Example 61 For each integer exponent, n, is there an integer m > 1 such that the
sum of the decimal digits of m” is equal to m?

2! 92 =81, 83 =512, 7! = 2401, 28° = 17210368, 18° = 34012224, 187 = 61222032,
46%, 54°, 8210 98! 108'2, 20'%, 911, 107'%, 133'¢, 80", 1729, 80*?, 90%°, 90!, ... .

Example 62 A Niven number has been defined as one which is divisible by the sum
of its decimal digits, such as 21 and 133. Is n! always a Niven number?

4] =24, 51 =120, 6! = 720, 7! = 5040, 8! = 40320, 9! = 362880, 10! = 3628800, ... .

Example 63 Can you choose a sequence of real numbers from the interval (0, 1) so
that the first two lie in different halves, the first three in different thirds, the first four
in different quarters, and so on? For example,

0.71, 0.09, 0.42, 0.85, 0.27, 0.54, 0.925, 0.17, 0.62, 0.355, 0.78, 0.03, 0.48, .. . .

If you run into difficulty, you are allowed to adjust earlier members of the sequence, if
you like.

Example 64 Surely every odd number (greater than 1, if you don’t want to count 1
as a prime) is expressible as a prime plus twice a square?

342-023+2-1254+2-127+2-12,3+2-22 11+2-1%
7+2-22,17+2-02,11+2-22,3+2-32,5+2-32,23+2-12,....

Indeed, some numbers, such as 61, have several such representations.

Example 65 Is n! always expressible as the difference of two powers of 2?

Ol=11=2"—2° 21=22-91 31 =23 -9} 4] =25-23 51=27-23 .

Example 66 It's well known that 4! =52 —1, 5! =112 — 1 and 7! = 712 — 1, but not
so well known that if you take the next square bigger than n! the difference is always
a square:

6! =272 — 32 81 =9201% - 92 9| = 6032 — 272,
10! = 19052 — 152, 11! = 63182 — 182, ... .

Example 67 The values of sinz(kw/l.‘Z), for k=0,1,...6 are
k= 0 1 2 3 4 5 6
sinf(km/12)= 0 (2-V3)/4 1/4 1/2 3/4 (2+/3)/4 1

It’s also well known that

/2 an g _(@n-1)(@n-3)---3-17
/(, AT T o n(@n—2) - 4-2 27

S3Y

/
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If you calculate the integral by the trapezoidal rule, using 6 equal subintervals, you
will get the answer

{22 4 (2+V3) + (2-V3) +3" 42"+ 1} n/12- 4",
which is exact for n=1,2,3,4,5, 6 and 7.

Example 68 The continued fraction for 7%/ is

Example 69 Define a sequence by P(1)=P(2)=1, and for n>2, P(n)=
P(P(n— 1))+ P(n — P(n—1)). The first 32 terms are 1, 1, 2,2,3,4,4,4,5,6,7,7, 8,
8,8,8,9, 10, 11, 12, 12, 13, 14, 14, 15, 15, 15, 16, 16, 16, 16, 16. Note that P(2) =1,
P(4)=2, P(8) =4, P(16) =8, and P(32) = 16.

Example 70 A similar sequence starts with Q(1) = Q(2) = Q(3) = 1, and the same
recurrence for n > 3, Q(n) = Q(Q(n — 1)) + Q(n — Q(n — 1)). The first 34 terms are
1,1,1,2,2,3,3,3,4,5,5,5,5,6,7,7,8,8,8,8,8,9, 10, 11, 11, 12, 12, 12, 13, 13,
13, 13, 13, 13. Notice that Q(2)=1, Q3)=1, Q(B)=2, QB) =3, Q(13)=35,
Q(21) =8 and Q(34) =13.

Examples 40-52 and 70 perhaps contain manifestations of the Fibonacci numbers.
Almost as ubiquitous are the Catalan numbers, (2n)!/nl(n + 1)!,
1,1,2,5, 14, 42, 132, 429, 1430, 4862, ... .

How many of Examples 71 to 79 are genuine?

Example 71 The number of mountain ranges you can draw with n upstrokes and n
downstrokes:

U350
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Example 72 The number of ways of making n folds in a strip of n+ 1 postage
stamps, where we don't distinguish between front and back, top and bottom, or left

Iy

01 012 021 0123 0132 0231 0321 1032

Uh0060

01243 01432 02431 03214 03421 04123 04321 10243 10342 10432 14032
01234 01342 02341

==

_— 2

=

14
Example 73  The number of different groups, up to isomorphism, of order 2" is,
for n= 0 1 2 3 4...
no. of groups = 1 1 2 5 14....

Example 74 The number of ways 2n people at a round table can shake hands in
pairs without their hands crossing.

O O 00 JO0eS
O022OVOSDOO0LD

Example 75 The number of triangulations of the sphere with n + 4 points.

N A AA
AAAAL

We leave the reader to verify that there are just 14 distinct triangulations of the
sphere with 8 points.
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Example 76  The number of rooted plane trees with n edges. “Plane” means that we
distinguish between left and right.

Example 77 The number of ways of distributing n different objects in indistinguish-
able boxes, with at most three objects in a box.

TR R 1T M1
L

14
Example 78 The probability, for n=0,1,2,..., that a function f(k), with domain
k=0,1,..., n and range [0,1], is convex, is

1 1 2 5 14
(00 (1)®7(20°7 (30”7 (4)*

WA B1Le] N

(81N

N
Ool%

Example 79 The incomplete Bessel function of order one has power series expansion

x? 14x8

2x%  5x°
Il(2x)/x=l+§+7+ﬁ+ gl + -

Example 80 Examples 37 to 40 involved Pascal’s triangle, whose entries are the
binomial coefficients. We can use a similar array to expand (1 +x +x%)", giving
trinomial coefficients. Each entry is the sum of the three nearest in the previous row.

1
1 1 1
1 2 3 2 1
6 7

—

10 16

£y

9 16 10 4
1 .

1 5 15 30 45 5 1
1 6 21 50 90 126 141 126 90 50 21 6 1
I 7 98 77 161 266 357 393 357 266 161 77 28 7 1

1 8 36

112 266 504 784 1016 1107 1016 784 504 266 112 36 8 1
1 9 45 156 414 1

882 1554 2304 2907 3139 2907 2304 1554 882 4

[£30
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The central trinomial coeficient, a,,

1,1,3,7,19,51,141,393,1107,3139, ... (Z% Z’é

almost trebles in size at each step: if we calculate 3a, — a,., we get

2,0,2,2,6,12,30,72,182, ...

which are pronic numbers, m(m + 1), form=1,0,1,1,2,3,5,813,....

36.

37.

38.

39.

40.

4].

42.

43.

44.

Answers

This is the polynomial (”g‘) +("I‘) +(";‘) +(";‘) +(";‘) of Example 5 of
[21], and represents the number of pieces you can cut a circular cake into by
slicing between every pair of points chosen from n around the circumference. It
is also the number of regions that 4-dimensional space is chopped into by n'— 1
hyperplanes in general position. The sequence is #427 in [45]: 1, 2, 4, 8, 16, 31,
57, 99, 163, 256, 386, 562, 794, 1093, 1471, ... .

This very beautiful setting for Example 1 of [21] was observed 20 years ago by
William Watkins, now co-editor of Coll. Math. J. Gauss has told us that the
number of sides in a regular polygon which can be constructed with straightedge
and compass is of shape 2™I1F,, where the F, are distinct Fermat primes 22" + 1.
Only five such, 0 < n < 4, are known and some people believe that no others will
ever be found. So the pattern breaks down at row 32. Fermat thought that 232 + 1
was prime, but Euler discovered the factorization 641 X 6700417.

This is the Mann-Shanks primality test [36]. Surprising, if not practical. Can you
prove it?

This is an observation of Gerry Myerson: that the bold numbers are the composite
numbers. However, this breaks down in row 13, because (’53)=3211 -13 and

('b*‘) =223 11 - 13 are not squarefree.

This well-known relation between Pascal’s triangle and Fibonacci numbers is
easily seen to persist, since each entry is the sum of the entries in the previous two
columns of the previous row, so each total is the sum of the two previous totals.
This is adapted from an inequality of Larry Hoehn, of Clarksville TN.
The coincidence is quite surprising, since Ve =~ 1.64872 and the golden ratio
(1 +y5)/2 = 1.61803 are not remarkably close. For n=10,11,12,... the terms
91,149,245, ... begin to diverge from the Fibonacci sequence 89,144,233, ... .

In {32], Richard Laatsch shows that the sequence continues 55, 89, 142,230, . ..

with differences ? ((-7
20 30 53 88 143 236 387 641 1061 1763 2737 4903 8202 13750 23095 . . s

which stay close to the Fibonacci numbers
2134 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 ...

for awhile, but eventually tend to infinity more rapidly.

See sequence #912 in [45]. This is still a notorious open question: there are
extensive tables [30, 34, 49, 50]. During revision of this article, Dick Lehmer
kindly ran a program on a 75 Vax, and found no counterexample with p less than
a million.

The sequence continues 17,26,34,45,54,67,... and is denser than the Fibonacci
sequence. It is #254 in [45], but the reference there is misleading. The sequence
doesn’t solve Amer. Math. Monthly problem E1910 [1966, 775; partial solution

|
|
|

]
2ol

|
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45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

1968, 80-81] because the differences are not unique: e.g., 17 —8 =26 — 17 =
54 — 45. Nor is it the auxiliary sequence {7,} = {4, 5, 9, 10, 11, 16, 18, 22, 23, 24,
25, 27, 28, 29,...}, used to construct the Sierpinski sequence, #425 in [45].
There’s another open question here: find the smallest possible asymptotic growth
for a sequence of integers such that every positive integer occurs uniquely as a
difference.

This also fails to continue with the Fibonacci sequence. The numbers of arrange-
ments with 7,8,9,... pennies are 12,18,26, ... . These arrangements were studied
by Auluck [2]; see sequence #253 in [45], and compare Example 34 in [21].
These are indeed the odd-ranking Fibonacci numbers, u,,_,, sequence #569 in
[45], which have the property

Upyy = U, g+ 22Uy, s+ 3uy, o+ - +{(n—1u +1

which can be seen to be the number of ways that a row of n pennies may be
surmounted by an arrangement with n — k in its bottom row, in any one of k
possible positions, where k=1,2,...,n — 1 or it’s not surmounted at all (k =n).
These are not the alternate Fibonacci numbers, e.g., the numbers of such trees
with 5,6,7,... vertices are 35,95,262,... See sequence #570 in[45] or p. 134
in [43].

Nor are these. The next few members of the sequence are 44, 191, 1229, 13588,
288597, ... . See sequence #574 in [45], or [24].

Neither is this the sequence of alternate Fibonacci numbers, but continues 33
(one short!), 89 (correct!), 240 (7 too many), 657, 1806, 5026, ... . See sequence
#568 in [45] or page 150 in [43].

Nor is this, which continues 36,109,359, 1266,4731, 18657, 77464, ...; see se-
quence #3572 in [45] and Tauber’s paper [48].

Nor again, since a;=13+5X5=38, ag=116, a,=382,...; see sequence
#573 in [45].

Neither are these, by=4-2°+1=233, bg=5-2'4+ 1 =81, b, =6-2%+1 =193,
bg=7-2%+1=449, alternate Fibonacci numbers, but they do feature (for a
while) in the next Example:

which I got from John Conway. If g(k) =k-2%1 + 1, then

fln)= oi"f‘i‘nf(" —k)g(k),

and, for n <8, f(n) is indeed equal to g(n — 1). Thereafter the situation gets
more complicated, but a simple rule eventually emerges: for n =9,10,11,12,13,
f(n)=33%33-81,81%81-193,193% and, for n > 14, f(n)=81f(n —5), except
that £(19) = 1933,

Several readers of [21] said that I should have included Euler’s famous formula,
n* + n + 41, which gives primes for 0 < n < 39, not noticing that Example 21 was
just that, except for the disguise of omitting the tell-tale 41 (n = 0). For some
astonishing examples of The Strong Law in this connection, see the papers of
Stark [46, 47]. The present polynomial is a slight adaptation of one due to Sidney
Kravitz, and is found by replacing n in Euler’s formula by 38 — 3n. Surprisingly,
this still gives primes for 0 < n < 39, although thirteen of them are not among the
original forty; n =40 and 41 give 6683 = 41 X 163 and 7181 = 43 X 167.

The polynomial 47n® — 1701n + 10181 was discovered recently by Gilbert
Fung. If you work modulo p for primes 2 < p <43, you'll find that it’s never
divisible by such primes. It takes prime values for 0 < n <42, beating Euler’s
record by two. Notice that the discriminant of Euler’s polynomial is — 163, and
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that of Kravitz is — 3%x 163, while Fung’s polynomial has to have a positive
discriminant, 979373.

55. Such questions are hardly fair, since arguments can be advanced for continuing
sequences in any way you wish. Some answers are more plausible than others,
however, and the one that Persi Diaconis hoped you would miss is 59,60,61, ...,
the orders of the simple groups!

56. Another futile attempt to fool you into thinking of the primes. The next member
is 17, then 25,38,...; see sequence #245 in [45].

57. This is not the same sequence as the previous example, but see the next!

58. To see the correspondence between this and the previous example, note that the
number of vertices at height one is the number of parts, and the valences of these
vertices are the sizes of the parts. Sequence #244 in [45]; see also page 122 in [43]
and page 836 in [1].

59. This example was sent by Gerry Myerson. 1t can be proved that the differences of

! any order are positive from some point on, but that point recedes rather rapidly as

'I you take higher order differences. The next few third differences are — 4,17,
-92.924, —4,32,1,38,5,... and are positive from now on. The fourth differences
alternate in sign until the 67th, after which they are positive.

60. This is Euler’s famous pentagonal numbers theorem:

ﬁ(l‘x")z {Z (_1)kxk(3k—1)/2.

n=1 k= —o0

See theorem 353 in [26], for example.

61. Norman Megill of Waltham, MA, finds such m for each n < 104. For n =105,
however, no such m exists.

62. This question was asked by Sam Yates. Carl Pomerance suggested that counterex-
amples might be expected by the time n has reached 500, and indeed Yates
found that 432! is not a Niven number, since the sum of its digits is 32 % 433, and
433 is prime.

‘ 63. The given sequence can be continued, 0.97,0.22,0.66,0.32, but Berlekamp and

Graham [3] have shown that no such sequence exists with more than 17 members!

64. This special case of the Hardy-Littlewood problem was mentioned by Ron
Ruemmler of Edison, NJ, who believes that the first exception is 5777, and asks if
it is also the last! It is known from the work of Hooley [27], Miech [37], and
Polyakov [42] that the density of exceptions is zero.

65. Ignace Kolodner got this from Harold N. Shapiro in an NYU Problem Seminar in
1949. 1t’s left to the reader to prove that n! is never again the difference of two
powers of two.

66. This was observed by larry Hoehn of Clarksville, TN. It fails for 12!, but
131 = 780122 — 2882, 141 = 295260% — 420%, 15! = 11435362 — 4647, 16! =
45741442 — 18562. It's doubtful if this often ocecurs from here on (note that you
must take the next square bigger than n!), but it may be hard to prove anything.

67. This is also correct for n =8, 9, 10, and 11, but for n = 12 we get (135207977)/224
instead of (135207877)/224, out by 3 parts in four million! The trapezoidal rule
gives the right answer if you use k subintervals, provided 2n is less than 4k: see
[28], for example. David Bloom suggested that “four million” should read “sixteen
million”": 1 intended the relative error, = 2.958 /4000000: the actual error is
= 2.996 /16000000: more examples of the Strong Law!

68. If this pattern, noticed by James Conlan [8], were to continue, we would have
G+ V37 )e” = 272 Close, but no cigar!
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69.

70.

71.

72.

73.

74.
75.

76.
77.

78.
79.

The sequence that hit the national presses on both sides of the Atlantic, e.g. [6],
publicizing the Conway-Mallows encounter. I have an earlier manuscript of
Conway in which he has written (in another notation) “p2¥)y =21 (easy),
P@2n) < 2P(n) (hard), P(n)/n— L (harder).” It was the proof of a precise form
of this last statement that almost won Mallows even more money than Conway
intended. Papers mentioning this sequence include [16, 35].
Yes, the Fibonacci pattern continues [40]. David Newman showed this to David
Bloom as a conjecture in 1986.

Nine of the final ten examples are intended to look like the Catalan numbers;
sequence #577 in [45]. At first it is a matter of some surprise that

c = L(an
n oan+lin
is always an integer. In connection with some recent correspondence [41], John

Conway makes the more general observation that

(m,n)(m+n—1)!
m!n!

is an integer, where (m, n) is the g.c.d. of m and n, because

m(m+n—1)! m+n—1 n(m+n—1)! m+n—1
mimynz= ) _ and TR
mlin! m—1 min! n—1

are both integers. This also answers a question in B33 of [20], where Neil Sloane
gave the example n =4m + 3.

Catalan numbers occur in many widely different looking contexts: see [18],
with nearly 500 references, and [31], with a list of 31 structures, both obtainable
from H. W. Gould, Department of Mathematics, West Virginia University,
Morgantown, WV, 26506. An article with a good bibliography is [5]. Several
“ proofs without words,” showing the equivalence of several of the structures, will
appear in [9].

This is a genuine example of the Catalan numbers. The mountain ranges are the
same as paths from (0,0) to (n,7n) which do not cross y = x, or incoming tied
ballots in which one candidate is never behind, or sequences of zeros and ones, or
of +1s, subject to appropriate sum conditions, e.g., random one-dimensional
walks in which you never go to the left of the origin; see [13].

This sequence, #576 in [45], is not, and continues 39 (not 38, as stated in [14]),
120, 358, 1176, 3527, 11622, 36627, 121622, 389560, ..., see [29].

The numbers of groups of orders 95 and 2% are 51 and 267 [23]. This sequence, é -7

#581 in [45), continues 2328 [51], 56092 [52].
This is genuine Catalan again: see [39].
But this one, sequence #3580 in [45], has been calculated for only four more terms

[4, 12, 19]. Of the / 07

1,1,2,5,14,50,233,1249, 7595 triangulations,

only 0,0,1,1,2,5,12,34, 130 contain no vertex of valence 3.

is a genuine manifestation of the Catalan numbers [7, 25], but

is not: sequence #579 in [45] continues 46, 166, 652, 2780, 12644, 61136, 312676,
1680592, ... [38].

The probability for general n is indeed ¢, /(n)? [10].

In [10] we asked what was the exponential generating function for the Catalan

7
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80.

numbers. Louis W. Shapiro observes that

2n

nf;ocn (;n)! =1,(2x)/x

where I, is the modified Bessel function of order one: see formula 9.6.10. on page
375 of [1]. In the paper [44] he obtains results for lattice paths which stay below
given points, arranged with increasing abscissas and ordinates, somewhat analo-
gous to the convex functions of [10].

Before we say goodbye to the Catalan numbers, here’s an observation which
may not be widely known. It originated in a discussion with John Conway only
six months ago. What is well known is that the Catalan numbers are associated
with parenthesization. By that most people mean the numbers of possible orders
of n nonassociative operations, usually indicated by n — 1 pairs of parentheses:

n=0 a n=1ab n=2 (ab)c or a(bc)

n=23 ((ab)c)d (a(bc))d a((bc)d) a(b(cd)) (ab)(cd)

n=4 (((ab)e)d)e ((a(be)d)e (a((be)d))e (a(blcd))e ((ab)(cd))e
((ab)c)(de) (a(be))de) (ab)(cd)e) (ab)(c(de) a(((be)d)e)
a((b(cd))e) a((be)de)) a(b((cd)e)) a(b(c(de))

and so on. But they are also the numbers of ways of arranging n pairs of
parentheses as a pattern, just for their own sake:

n=0 n=1 () n=2 («»n or ()
n=23 (((@)) N () () (OO
n=4 ((((H) MmO () WM wnen (€ CM (NN
N AN (I (MENO) (D (I )] ()

An examination of the symmetries in the two cases makes it unlikely that you'll
find a direct combinatorial comparison. One-one correspondences between the
former manifestation and other Catalan manifestations are well known. The latter
are easily seen to be in correspondence with the pairs of people shaking hands in
Example 73, and with the mountains in Example 70.

Jack Good [17] has given an asymptotic formula for the central trinomial

coefficient:
RERE 3 1
AR SR S +O(n-? }
@™ ofmn { 160 " 51gnz T O )

which shows that the left side of the “identity”

é- 30 _an+l=un—l(un—l+1) ‘,)

n

grows like ¢ X 3" X n~ %%, whereas the right side grows like 72" /5, where T is the
golden ratio, 7%=(3+ V5)/2. Further calculation shows that a,,= 8953,
3ag— a,,= 464, while ug(ug+1)=21X 99 = 462. The asymptotic formula is
good to the nearest integer for quite large values of n.

This example was sent by Donald Knuth. Euler [11] was one of the earlier
discoverers of The Strong Law of Small Numbers, and called this

exemplum memorabile inductionis fallacis.

On the same page he gives the Fibonacci formula that’s often attributed to Binet.
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Coda I showed this example to George Andrews during the recent Bateman
Retirement Conference at Allerton Park, Illinois. Half-an-hour later he came back with
what Euler really should have said. He defines the trinomial coefficients centrally by

(1 +x+22) = Y (?)2x"+j

j=-—n

and proves that, if F, is the nth Fibonacci number, then

n

F(F,+1)= Zxﬁw (( 1o>\n+ 1)2_ (10>\n+ 2)2)'

For — 1 < n <7, the only nonzero term on the right is A =0, which accounts for
Euler’s observation, since

ok {75, =0),~2(1);

Andrews will publish the g-analog of this theorem shortly.
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