[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a003401 -id:a003401
     Sort: relevance | references | number | modified | created      Format: long | short | data
Algebraic degree of cos(Pi/n) for constructible n-gons (A003401).
+20
3
1, 1, 1, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512
OFFSET
1,4
COMMENTS
a(n) is always a power of 2.
It would appear that a(n) <= a(n+1) and that for a(n)=2^k, the count for k beginning with 0 is 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, ...; or that the count for k is k+2 for k > 0. - Robert G. Wilson v, Jul 31 2014
Apparently v_2(a(n)) = A052146(n-1) for n >= 2 where v_2 is the 2-adic valuation. - Joerg Arndt, Jul 29 2014 [incorrect for n >= 561, Joerg Arndt, Mar 03 2019]
LINKS
Eric Weisstein's World of Mathematics, Trigonometry Angles
MATHEMATICA
f[n_] := Exponent[MinimalPolynomial[Cos[Pi/n]][x], x]; Table[ f@ n, {n, Select[ Range@ 1300, IntegerQ[ Log[2, EulerPhi[#]]] &]}] (* Robert G. Wilson v, Jul 28 2014 *)
A092506 = {2, 3, 5, 17, 257, 65537}; s = Sort[Times @@@ Subsets@ A092506]; mx = 2500; t = Union@ Flatten@ Table[(2^n)*s[[i]], {i, 64}, {n, 0, Log2[mx/s[[i]]]}]; f[n_] := EulerPhi[ 2n]/2; f[1] = 1; f@# & /@ t (* Robert G. Wilson v, Jul 28 2014 *)
CROSSREFS
KEYWORD
nonn,easy,nice,changed
AUTHOR
Eric W. Weisstein, Oct 28 2005
STATUS
approved
a(n) = phi(A003401(n)).
+20
2
1, 1, 2, 2, 4, 2, 4, 4, 4, 8, 8, 16, 8, 8, 8, 16, 16, 16, 16, 32, 16, 32, 32, 32, 64, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 128, 128, 256, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 512, 256, 256, 256, 512, 512, 512, 512, 1024, 512, 512, 512, 512
OFFSET
1,3
COMMENTS
All terms are powers of 2. - Jianing Song, Sep 28 2018
LINKS
FORMULA
a(n) = 2^A319821(n). - Amiram Eldar, Sep 25 2024
MATHEMATICA
Do[If[IntegerQ[Log[2, EulerPhi[n]]], Print[n]; ta[[u]]=n; u=u+1], {n, 1, 10000}] EulerPhi[ta]
PROG
(PARI) for(n=1, 1000, my(i=eulerphi(n)); if(omega(2*i)==1, print1(i, “, “))) \\ Jianing Song, Sep 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 02 2004
STATUS
approved
Algebraic degree of cos(2*Pi/n) for constructible n-gons (A003401).
+20
1
1, 1, 1, 1, 2, 1, 2, 2, 2, 4, 4, 8, 4, 4, 4, 8, 8, 8, 8, 16, 8, 16, 16, 16, 32, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 64, 64, 128, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 256, 128, 128, 128, 256, 256, 256, 256, 512, 256, 256, 256, 256, 256, 256, 512
OFFSET
1,5
LINKS
Eric Weisstein's World of Mathematics, Trigonometry Angles
CROSSREFS
KEYWORD
nonn,easy,nice,changed
AUTHOR
Eric W. Weisstein, Oct 28 2005
STATUS
approved
a(n) is the number of iterations needed to reach a power of 2 starting at n and using the map k -> k-(k/p), where p is the largest prime factor of k.
+10
65
0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 2, 1, 2, 2, 2, 0, 1, 2, 3, 1, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 0, 3, 1, 3, 2, 3, 3, 3, 1, 2, 3, 4, 2, 3, 3, 4, 1, 4, 2, 2, 2, 3, 3, 3, 2, 4, 3, 4, 2, 3, 3, 4, 0, 3, 3, 4, 1, 4, 3, 4, 2, 3, 3, 3, 3, 4, 3, 4, 1, 4, 2, 3, 3, 2, 4, 4, 2, 3, 3, 4, 3, 4, 4, 4, 1, 2, 4, 4, 2
OFFSET
1,7
COMMENTS
From Antti Karttunen, Apr 07 2020: (Start)
Also the least number of iterations of nondeterministic map k -> k-(k/p) needed to reach a power of 2, when any prime factor p of k can be used. The minimal length path to the nearest power of 2 (= 2^A064415(n)) is realized whenever one uses any of the A005087(k) distinct odd prime factors of the current k, at any step of the process. For example, this could be done by iterating with the map k -> k-(k/A078701(k)), i.e., by using the least odd prime factor of k (instead of the largest prime).
Proof: Viewing the prime factorization of changing k as a multiset ("bag") of primes, we see that liquefying any odd prime p with step p -> (p-1) brings at least one more 2 to the bag, while applying p -> (p-1) to any 2 just removes it from the bag, but gives nothing back. Thus the largest (and thus also the nearest) power of 2 is reached by eliminating - step by step - all odd primes from the bag, but none of 2's, and it doesn't matter in which order this is done.
The above implies also that the sequence is totally additive, which also follows because both A064097 and A064415 are. That A064097(n) = A329697(n) + A054725(n) for all n > 1 can be also seen by comparing the initial conditions and the recursion formulas of these three sequences.
For any n, A333787(n) is either the nearest power of 2 reached (= 2^A064415(n)), or occurs on some of the paths from n to there.
(End)
A003401 gives the numbers k where a(k) = A005087(k). See also A336477. - Antti Karttunen, Mar 16 2021
LINKS
Michael De Vlieger, Annotated fan style binary tree labeling the index n, with a color code where black represents a(n) = 0, red a(n) = 1, and magenta the largest value in a(n) for n = 1..16383.
FORMULA
From Antti Karttunen, Apr 07-19 2020: (Start)
a(1) = a(2) = 0; and for n > 2, a(p) = 1 + a(p-1) if p is an odd prime and a(n*m) = a(n) + a(m) if m,n > 1. [This is otherwise equal to the definition of A064097, except here we have a different initial condition, with a(2) = 0].
a(2n) = a(A000265(n)) = a(n).
a(p) = 1+a(p-1), for all odd primes p.
If A209229(n) == 1 [when n is a power of 2], a(n) = 0,
otherwise a(n) = 1 + a(n-A052126(n)) = 1 + a(A171462(n)).
Equivalently, for non-powers of 2, a(n) = 1 + a(n-(n/A078701(n))),
or equivalently, for non-powers of 2, a(n) = 1 + Min a(n - n/p), for p prime and dividing n.
a(n) = A064097(n) - A064415(n), or equally, a(n) = A064097(n) - A054725(n), for n > 1.
a(A019434(n)) = 1, a(A334092(n)) = 2, a(A334093(n)) = 3, etc. for all applicable n.
For all n >= 0, a(A334099(n)) = a(A000244(n)) = a(A000351(n)) = a(A001026(n)) = a(257^n) = a(65537^n) = n.
a(A122111(n)) = A334107(n), a(A225546(n)) = A334109(n).
(End)
From Antti Karttunen, Mar 16 2021: (Start)
a(n) = a(A336466(n)) + A087436(n) = A336396(n) + A087436(n).
a(A053575(n)) = A336469(n) = a(n) - A005087(n).
a(A147545(n)) = A000120(A147545(n)) - 1.
(End)
EXAMPLE
The trajectory of 15 is {12, 8}, taking 2 iterations to reach 8 = 2^3. So a(15) is 2.
From Antti Karttunen, Apr 07 2020: (Start)
Considering all possible paths from 15 to 1 nondeterministic map k -> k-(k/p), where p can be any prime factor of k, we obtain the following graph:
15
/ \
/ \
10 12
/ \ / \
/ \ / \
5 8 6
\__ | __/|
\_|_/ |
4 3
\ /
\ /
2
|
1.
It can be seen that there's also alternative route to 8 via 10 (with 10 = 15-(15/3), where 3 is not the largest prime factor of 15), but it's not any shorter than the route via 12.
(End)
MATHEMATICA
a[n_] := Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, n, # != 2^IntegerExponent[#, 2] &] -1; Array[a, 100]
PROG
(PARI) A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1])))); \\ Antti Karttunen, Apr 07 2020
(PARI)
up_to = 2^24;
A329697list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2, up_to, v[n] = if(!bitand(n, n-1), 0, 1+vecmin(apply(p -> v[n-n/p], factor(n)[, 1]~)))); (v); };
v329697 = A329697list(up_to);
A329697(n) = v329697[n]; \\ Antti Karttunen, Apr 07 2020
(PARI) A329697(n) = if(n<=2, 0, if(isprime(n), A329697(n-1)+1, my(f=factor(n)); (apply(A329697, f[, 1])~ * f[, 2]))); \\ Antti Karttunen, Apr 19 2020
CROSSREFS
Cf. A000079, A334101, A334102, A334103, A334104, A334105, A334106 for positions of 0 .. 6 in this sequence, and also array A334100.
Cf. A334099 (a right inverse, positions of the first occurrence of each n).
Cf. A334091 (first differences), A335429 (partial sums).
Cf. also A331410 (analogous sequence when using the map k -> k + k/p), A334861, A335877 (their sums and differences), see also A335878 and A335884, A335885.
KEYWORD
easy,nonn
AUTHOR
Ali Sada and Robert G. Wilson v, Feb 28 2020
STATUS
approved
Prime numbers of the form 2^n + 1.
+10
47
2, 3, 5, 17, 257, 65537
OFFSET
1,1
COMMENTS
2 together with the Fermat primes A019434.
Obviously if 2^n + 1 is a prime then either n = 0 or n is a power of 2. - N. J. A. Sloane, Apr 07 2004
Numbers m > 1 such that 2^(m-2) divides (m-1)! and m divides (m-1)! + 1. - Thomas Ordowski, Nov 25 2014
From Jaroslav Krizek, Mar 06 2016: (Start)
Also primes p such that sigma(p-1) = 2p - 3.
Also primes of the form 2^n + 3*(-1)^n - 2 for n >= 0 because for odd n, 2^n - 5 is divisible by 3.
Also primes of the form 2^n + 6*(-1)^n - 5 for n >= 0 because for odd n, 2^n - 11 is divisible by 3.
Also primes of the form 2^n + 15*(-1)^n - 14 for n >= 0 because for odd n, 2^n - 29 is divisible by 3. (End)
Exactly the set of primes p such that any number congruent to a primitive root (mod p) must have at least one prime divisor that is also congruent to a primitive root (mod p). See the links for a proof. - Rafay A. Ashary, Oct 13 2016
Conjecture: these are the only solutions to the equation A000010(x)+A000010(x-1)=floor((3x-2)/2). - Benoit Cloitre, Mar 02 2018
For n > 1, if 2^n + 1 divides 3^(2^(n-1)) + 1, then 2^n + 1 is a prime. - Jinyuan Wang, Oct 13 2018
The prime numbers occurring in A003401. Also, the prime numbers dividing at least one term of A003401. - Jeppe Stig Nielsen, Jul 24 2019
LINKS
Rafay A. Ashary, A Property of A092506
Eric Weisstein's World of Mathematics, Fermat Prime
Eric Weisstein's World of Mathematics, Fermat Number
MATHEMATICA
Select[2^Range[0, 100]+1, PrimeQ] (* Harvey P. Dale, Aug 02 2015 *)
PROG
(PARI) print1(2); for(n=0, 9, if(ispseudoprime(t=2^2^n+1), print1(", "t))) \\ Charles R Greathouse IV, Aug 29 2016
(Magma) [2^n + 1 : n in [0..25] | IsPrime(2^n+1)]; // Vincenzo Librandi, Oct 14 2018
(GAP) Filtered(List([1..20], n->2^n+1), IsPrime); # Muniru A Asiru, Oct 25 2018
CROSSREFS
A019434 is the main entry for these numbers.
KEYWORD
nonn,hard,changed
AUTHOR
Jorge Coveiro, Apr 05 2004
STATUS
approved
XOR difference triangle of the powers of 2, read by rows; Square array A(row,col): A(0,col) = 2^col, A(row,col) = A048724(A(row-1, col)) for row > 0, read by descending antidiagonals.
+10
36
1, 2, 3, 4, 6, 5, 8, 12, 10, 15, 16, 24, 20, 30, 17, 32, 48, 40, 60, 34, 51, 64, 96, 80, 120, 68, 102, 85, 128, 192, 160, 240, 136, 204, 170, 255, 256, 384, 320, 480, 272, 408, 340, 510, 257, 512, 768, 640, 960, 544, 816, 680, 1020, 514, 771, 1024, 1536, 1280, 1920
OFFSET
0,2
COMMENTS
Define an "XOR difference triangle" for a sequence A by the following process. Start with A in the leftmost column. Generate the next column by performing the XOR operation between adjacent terms of the prior column. Repeat this process to generate the XOR difference triangle for A. Further, we define the "XOR BINOMIAL transform" of A as the main diagonal in the XOR difference triangle for A. The XOR BINOMIAL transform is its self-inverse. Let a sequence B be the XOR BINOMIAL transform of A, then we may express B by: B(n) = SumXOR_{k=0..n} A047999(n,k)*A(k), which is equivalent to: B(n) = (C(n,0)mod 2)*A(0) XOR (C(n,1)mod 2)*A(1) XOR (C(n,2)mod 2)*A(2) XOR ... XOR (X(n,n)mod 2)*A(n), where the coefficients are C(n,k)(mod 2) = A047999(n,k).
This sequence is a rearrangement of the numbers which are 2^k times distinct Fermat numbers (numbers of the form 2^(2^m) + 1). This matches the sizes of polygons constructible with compass and straightedge (A003401) up to 2^32+1, which is the first nonprime Fermat number. - Franklin T. Adams-Watters, Jun 16 2006
FORMULA
T(n, k) = 2^(n-k)*A001317(k). T(n, n) = A001317(n) = SumXOR_{k=0..n} A047999(n, k)*2^k, where SumXOR is the analog of summation under the binary XOR operation.
From Antti Karttunen, Sep 19 2016: (Start)
When viewed as a square array A(row,col), with row >= 0, col >= 0, the following recurrences and formulas are valid:
A(0,col) = A000079(col), for row > 0, A(row,col) = A048724(A(row-1, col)).
A(row,0) = A001317(row), for col > 0, A(row,col) = 2*A(row,col-1).
A(row,col) = A248663(A066117(row+1,col+1)) = A048675(A255483(row,col+1)).
(End)
With the definitions from Antti Karttunen above, A(row+1, col) = A048720(3, A(row, col)). - Peter Munn, Jan 13 2020
A(n,k) = A193231(A(k,n)) = A091202(A036561(n,k)). - Antti Karttunen, Jan 18 2020
EXAMPLE
The main diagonal equals A001317 (Pascal's triangle mod 2 in decimal):
{1,3,5,15,17,51,85,255,257,771,1285,3855,...}, and defines the XOR BINOMIAL transform of the powers of 2.
Rows begin:
1;
2, 3;
4, 6, 5;
8, 12, 10, 15;
16, 24, 20, 30, 17;
32, 48, 40, 60, 34, 51;
64, 96, 80, 120, 68, 102, 85;
128, 192, 160, 240, 136, 204, 170, 255;
256, 384, 320, 480, 272, 408, 340, 510, 257;
512, 768, 640, 960, 544, 816, 680, 1020, 514, 771;
1024, 1536, 1280, 1920, 1088, 1632, 1360, 2040, 1028, 1542, 1285;
2048, 3072, 2560, 3840, 2176, 3264, 2720, 4080, 2056, 3084, 2570, 3855;
...
From Antti Karttunen, Sep 19 2016: (Start)
Viewed as a square array, the top left corner looks like this:
1, 2, 4, 8, 16, 32, 64, 128
3, 6, 12, 24, 48, 96, 192, 384
5, 10, 20, 40, 80, 160, 320, 640
15, 30, 60, 120, 240, 480, 960, 1920
17, 34, 68, 136, 272, 544, 1088, 2176
51, 102, 204, 408, 816, 1632, 3264, 6528
85, 170, 340, 680, 1360, 2720, 5440, 10880
255, 510, 1020, 2040, 4080, 8160, 16320, 32640
257, 514, 1028, 2056, 4112, 8224, 16448, 32896
771, 1542, 3084, 6168, 12336, 24672, 49344, 98688
1285, 2570, 5140, 10280, 20560, 41120, 82240, 164480
3855, 7710, 15420, 30840, 61680, 123360, 246720, 493440
4369, 8738, 17476, 34952, 69904, 139808, 279616, 559232
...
(End)
The square array shown above can be viewed as a subtable of a multiplication table with particular relevance to the carryless multiplication defined by A048720, as the first column gives the A048720 powers of 3 (and the first row gives powers of 2, which are the same as in standard arithmetic). - Peter Munn, Jan 13 2020
MATHEMATICA
a[n_]:= Sum[Mod[Binomial[n, i], 2]*2^i, {i, 0, n}]; T[n_, k_]:=2^(n - k)a[k]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* Indranil Ghosh, Apr 11 2017 *)
PROG
(PARI) {T(n, k)=local(B); B=0; for(i=0, k, B=bitxor(B, binomial(k, i)%2*2^(n-i))); B}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(Scheme)
(define (A099884 n) (A099884bi (A002262 n) (A025581 n)))
;; Then use either this recurrence:
(define (A099884bi row col) (if (zero? row) (A000079 col) (A048724 (A099884bi (- row 1) col))))
;; or this one:
(define (A099884bi row col) (if (zero? col) (A001317 row) (* 2 (A099884bi row (- col 1)))))
;; Antti Karttunen, Sep 19 2016
(Python)
from sympy import binomial
def a(n):
return sum((binomial(n, i)%2)*2**i for i in range(n + 1))
def T(n, k): return 2**(n - k)*a(k)
for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
CROSSREFS
Essentially GF(2)[X] analog of table A036561. - Antti Karttunen, Jan 18 2020
Cf. A047999, A158875 (row sums).
Cf. A000079 (first column of triangular table, the topmost row of square array).
Cf. A001317 (the rightmost diagonal of triangular table, the leftmost column of square array).
Cf. A099885, A117998 (central diagonals).
Cf. A276618 (transpose), A091202, A193231.
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 28 2004
EXTENSIONS
Square array interpretation added as a second, alternative description by Antti Karttunen, Sep 19 2016
STATUS
approved
Odd part of phi(n): a(n) = A000265(A000010(n)).
+10
27
1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 5, 1, 3, 3, 1, 1, 1, 3, 9, 1, 3, 5, 11, 1, 5, 3, 9, 3, 7, 1, 15, 1, 5, 1, 3, 3, 9, 9, 3, 1, 5, 3, 21, 5, 3, 11, 23, 1, 21, 5, 1, 3, 13, 9, 5, 3, 9, 7, 29, 1, 15, 15, 9, 1, 3, 5, 33, 1, 11, 3, 35, 3, 9, 9, 5, 9, 15, 3, 39, 1, 27, 5, 41, 3, 1, 21, 7, 5, 11, 3, 9, 11, 15, 23
OFFSET
1,7
COMMENTS
This is not necessarily the squarefree kernel. E.g., for n=19, phi(19)=18 is divisible by 9, an odd square. Values at which this kernel is 1 correspond to A003401 (polygons constructible with ruler and compass).
Multiplicative with a(2^e) = 1, a(p^e) = p^(e-1)*A000265(p-1). - Christian G. Bower, May 16 2005
LINKS
FORMULA
From Bob Selcoe, Aug 22 2017: (Start)
Let n" be the odd part of n, S be the odd squarefree kernel of n and p_i {i = 1..z} be all the prime factors of S. Then the sequence can be constructed by the following:
a(1) = 1;
a(n) = (n-1)" when n is prime; and
a(n) = Product_{i = 1..z} a(p_i)*n"/S when n is composite (see Examples).
(End)
From Antti Karttunen, Dec 27 2020: (Start)
a(n) = A336466(n) for squarefree n (see A005117).
A336466(a(n)) = A336468(n), A329697(a(n)) = A336469(n) = A329697(n) - A005087(n).
(End)
EXAMPLE
n = 70 = 2*5*7, phi(70) = 24 = 8*3, so the odd kernel of phi(70) is a(70)=3. [corrected by Bob Selcoe, Aug 22 2017]
From Bob Selcoe, Aug 22 2017: (Start)
a(89) = 88/8 = 11.
For n = 8820, 8820 = 2^2*3^2*5*7^2; S = 3*5*7 = 105, n" = 3^2*5*7^2 = 2205. a(3)*a(5)*a(7) = 1*1*3 = 3; a(8820) = 3*2205/105 = 63.
(End)
MAPLE
a:= n-> (t-> t/2^padic[ordp](t, 2))(numtheory[phi](n)):
seq(a(n), n=1..80); # Alois P. Heinz, Apr 14 2020
MATHEMATICA
Array[NestWhile[Ceiling[#/2] &, EulerPhi@ #, EvenQ] &, 94] (* Michael De Vlieger, Aug 22 2017 *) (* or *)
t=Array[EulerPhi, 94]; t/2^IntegerExponent[t, 2] (* Giovanni Resta, Aug 23 2017 *)
PROG
(PARI) a(n)=n=eulerphi(n); n>>valuation(n, 2) \\ Charles R Greathouse IV, Mar 05 2013
(Haskell)
a053575 = a000265 . a000010 -- Reinhard Zumkeller, Oct 09 2013
KEYWORD
nonn,mult
AUTHOR
Labos Elemer, Jan 18 2000
STATUS
approved
Smallest number whose Euler totient is divisible by 2^n.
+10
23
1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, 84215045, 252645135, 286331153, 858993459, 1431655765, 4294967295, 8589934592, 17179869184, 34359738368, 68719476736, 137438953472, 274877906944, 549755813888, 1099511627776
OFFSET
0,2
COMMENTS
n = 32 is the first place where this differs from A001317, since 2^32 + 1 is not prime. - Mitch Harris, May 02 2007
a(8589934592) is the first unknown term; it is 2^8589934593 if F(33) = 2^(2^33)+1 is composite or F(33) otherwise. - Charles R Greathouse IV, Jul 15 2013
a(n) is the only odd element of the set phi-1(2^n), the totient inverses of 2^n. All other elements are 2*a(n), and the even elements of phi-1(2^(n-1)) * 2. - Torlach Rush, Sep 05 2017
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..3320
EXAMPLE
1,2,4,8,...,131072 divide phi of 2,3,5,15,...,196611 = 3*65537 respectively.
MATHEMATICA
With[{s = Array[EulerPhi, 10^6]}, Table[FirstPosition[s, _?(Divisible[#, 2^n] &)][[1]], {n, 0, 19}]] (* Michael De Vlieger, Sep 05 2017 *)
PROG
(PARI) a(n)={
if(n >= 8589934592 && valuation(n>>5, 2)>27,
warning("Result is conjectural on the nonexistence of Fermat primes >= F(33).")
);
if(n>31,
return(2<<n)
);
n=binary(n);
prod(i=1, #n, (2^2^(i-1)+1)^n[#n+1-i])
}; \\ Charles R Greathouse IV, Jul 15 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 18 2000
EXTENSIONS
More odd terms from Jud McCranie, Jan 25 2000
STATUS
approved
Decimal expansion of 2*sin(Pi/5).
+10
21
1, 1, 7, 5, 5, 7, 0, 5, 0, 4, 5, 8, 4, 9, 4, 6, 2, 5, 8, 3, 3, 7, 4, 1, 1, 9, 0, 9, 2, 7, 8, 1, 4, 5, 5, 3, 7, 1, 9, 5, 3, 0, 4, 8, 7, 5, 2, 8, 6, 2, 9, 1, 9, 8, 2, 1, 4, 4, 5, 4, 4, 9, 6, 1, 5, 1, 4, 5, 5, 6, 9, 4, 8, 3, 2, 4, 7, 0, 3, 9, 1, 5, 0, 1, 7, 0, 0
OFFSET
1,3
COMMENTS
The golden ratio phi is the real part of 2*exp(i*Pi/5), while this constant c is the corresponding imaginary part. It is handy, for example, in simplifying metric expressions for Platonic solids (particularly for regular icosahedron and dodecahedron).
Note that c^2+A001622^2 = 4; c*A001622 = A188593 = 2*A019881; c = 2*A019845.
Edge length of a regular pentagon with unit circumradius. - Stanislav Sykora, May 07 2014
This is a constructible number (see A003401 for more details). Moreover, since phi is also constructible, (2^k)*exp(i*Pi/5), for any integer k, is a constructible complex number. - Stanislav Sykora, May 02 2016
rms(c, phi) := sqrt((c^2+phi^2)/2) = sqrt(2) = A002193.
LINKS
Eric Weisstein's World of Mathematics, Pentagon.
Wikipedia, Platonic solid.
FORMULA
Equals sqrt(3-phi).
Equals sqrt((5-sqrt(5))/2). - Jean-François Alcover, May 21 2013
Equals Product_{k>=0} ((10*k + 4)*(10*k + 6))/((10*k + 3)*(10*k + 7)). - Antonio Graciá Llorente, Mar 25 2024
Equals Product_{k>=1} (1 - (-1)^k/A063226(k)). - Amiram Eldar, Nov 23 2024
Equals 2*A019845 = 1/A300074. - Hugo Pfoertner, Nov 23 2024
EXAMPLE
1.1755705045849462583374119...
MAPLE
evalf(2*sin(Pi/5), 100); # Muniru A Asiru, Nov 02 2018
MATHEMATICA
RealDigits[2*Sin[Pi/5], 10, 120][[1]] (* Harvey P. Dale, Sep 29 2012 *)
PROG
(PARI) 2*sin(Pi/5) \\ Stanislav Sykora, May 02 2016
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); 2*Sin(Pi(R)/5); // G. C. Greubel, Nov 02 2018
KEYWORD
nonn,cons,easy,changed
AUTHOR
Stanislav Sykora, Apr 06 2012
STATUS
approved
Divisors of 2^32 - 1 (for a(1) to a(31), the 31 regular polygons with an odd number of sides constructible with ruler and compass).
+10
15
1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, 84215045, 252645135, 286331153, 858993459, 1431655765, 4294967295
OFFSET
0,2
COMMENTS
The 32 divisors of the product of the 5 known Fermat primes.
The only known odd numbers whose totient is a power of 2. - Labos Elemer, Dec 06 2000
Equals first 32 members of A001317. Also, equals first 32 members of A053576. - Omar E. Pol, Dec 10 2008
Omitting the first term a(0)=1 gives A045544 (the number of sides of constructible odd-sided regular polygons.)
REFERENCES
J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996; see p. 140.
MATHEMATICA
Divisors[2^32-1]
PROG
(PARI) divisors(1<<32-1)
CROSSREFS
KEYWORD
nonn,fini,full,easy,changed
EXTENSIONS
Edited by Daniel Forgues, Jun 17 2011
STATUS
approved

Search completed in 0.026 seconds