統計モデルでの時系列データの分析手法であるSARIMAを使って、PV数の予測分析を行います。 はじめに データの準備 データの確認 PV数 PV / エントリ数 相関関係 コレログラム 成分分解 定常性の確認 時系列データの前処理 差分 季節調整 差分+季節調整 時系列データの予測 SARIMA 学習データとテストデータ モデルの推定 ACFとPACFよりパラメータ候補を選定 予測 RMSEで評価 プロット 残差の確認 Grid Search まとめ 参考 読んだ本 参考になったサイト はじめに 通常、分析で用いるデータは同一の確率分布から得られ、互いに独立である*1ことが前提となっていますが、時系列データは、時間的に互いが関連するデータです。 時系列データはビジネスにおいてもよく見られるデータであり、様々な分析手法があります。そこで、時系列分析手法の一つであるSARIMAを用いて、本サイ
前回の記事では計量時系列分析とは何ぞや?みたいなところをやりましたので、今回はいろはのイともいえるARIMAまわりから始めていこうと思います。 ということで改めて、使用テキストはいつものこちらです。 経済・ファイナンスデータの計量時系列分析 (統計ライブラリー) 作者: 沖本竜義出版社/メーカー: 朝倉書店発売日: 2010/02/01メディア: 単行本購入: 4人 クリック: 101回この商品を含むブログ (6件) を見る 以下タイトルにのっとってRで各モデルの挙動を見ながらやっていきます。 必要なRパッケージ {forecast}をインストールして展開して下さい。Rそのものの初心者向け説明はここでは全面的に割愛するので、適宜何かしらの初心者向け説明をご参照あれ。 今回のモデルで目指すもの 前回の記事では、要は「自己相関が大事よー」という話を何度もしました。ということは、時系列モデリング
わが国経済社会は未曾有の激動に直面し、 地球規模の競争環境への適応とIT (情報技術)活用の ビジネス革新がその渦の中心にあります。 ビュー・コミュニケーションズはこれらによる課題に対し、 IT面でのボランティア支援を行うべく活動を続けています。
OR学会50年の歴史の中で,OR事典の編纂・改訂は通算3度目となる.いろいろな理由からOR事典編集委員会は,「OR事典」をWebに公開するという手段をとることになった.前回はCDによる出版であった. 資料編だけは「OR事典」から切り離して,OR学会の通常のホームページの中に移すことになった.これは逆瀬川浩孝委員長のアイディアである。内容の性格上,資料追加も間違いの訂正も広報委員会の責任で簡単に出来るようになる. 前回までの学会の歴史資料はそのまま残してある.今回はデータ追加作業を基本に多少の資料追加を行った.前事務局長の藤木秀夫さんには,その後の学会活動全般にわたる記録をまとめて原稿を作成してもらった.学術会議関係も藤木さんが前回の形式に習って資料原稿を作成し,FMES会長の高橋幸雄さんに目を通していただいた. 各支部から増補追加の原稿が送られてきた.Webのサンプルを見てくださいと言って
ARIMA models for time series forecasting Notes on nonseasonal ARIMA models (pdf file) Slides on seasonal and nonseasonal ARIMA models (pdf file) Introduction to ARIMA: nonseasonal models Identifying the order of differencing in an ARIMA model Identifying the numbers of AR or MA terms in an ARIMA model Estimation of ARIMA models Seasonal differencing in ARIMA models Seasonal random walk: ARIMA(0,0,
★新サイト完成しました! 3秒後に自動的に移動します 変わらない方は こちらからどうぞ http://logics-of-blue.com/%E6%99%82%E7%B3%BB%E5%88%97%E5%88%86%E6%9E%90_%E5%AE%9F%E8%B7%B5%E7%B7%A8/ Rを用いた時系列解析 の実践例を載せます。 使用データ シミュレーションデータと、Rにもともと入っているサンプルデータを用います。 シミュレーションデータはこちら set.seed(1) d<-arima.sim(n=200,model=list(order=c(2,0,2),ar=c(0.2,0.7),ma=c(0.7,0.3)),sd=sqrt(1)) ARIMA(2,0,2)モデルが推定できれば正解です。こちらはARMA過程であって、和分過程ではありません。「定常過程」とも言 われる安定した挙動を示
回帰分析と同様に時系列データ解析の主要な目的は、収集したデータを用いてモデルを作成し、将来の予測やシステムの制御などを行うことである。 時系列データのモデルは で表現でき、かつ|a|=1(単位根)である場合、ランダムウォークと呼ばれる。ランダムウォークで表現される時系列データは非定常である。時系列データを分析する際には、まずデータの変動がランダムウォークで表現できるか、そうでないかを調べることが重要である。 時系列がランダムウォークで表現できるか否かを検定することを単位根検定と呼ぶ。単位根検定は「単|a|=1が存在する」という帰無仮説検定で、1970年代後半にDickey-Fullerによって初めて考案され、その後Phillips-Perron検定、McKinnons's検定などが提案されている。 Rには、Phillips-Perron検定に関する関数PP.testがある。データlhの
定常時系列分析を行なうにあたり、 ARMA (AutoRegressive Moving Average: 自己回帰移動平均)モデルを想定します。 実際は、ARIMAモデルに内包されるかたちで 分析を行ないます(関数も存在します)が、 ARモデル、MAモデル、ARMAモデル、ARIMAモデル、GARCHモデル という流れの一環として、トピックとしてあげてみました。 ARMAモデルは、ARモデルとMAモデルを合わせたモデルです。 ARモデル = p次の自己回帰モデル MAモデル = q次の移動平均モデル ARMAモデル = ( p, q )次の自己回帰移動平均モデル Case 1. 例として、Rが保有するデータセット treering を使用して、 ARMAモデルを想定した定常時系列分析を行なってみます。 treering は、木の年輪を時系列で保有しているデータセットです。
定常時系列分析を行なうにあたり、 ARIMA (AutoRegressive Integrated Moving Average: 自己回帰和分移動平均)モデルを想定します。 ARIMAモデルはデータそのものは非定常ですが、 階差をとることでARMAモデルに従うモデルです。 階差(difference) ARIMA( p, d, q )モデル Case 1. 例として、Rが保有するデータセット WWWusage を使用して、 ARIMAモデルを想定した定常時系列分析を行なってみます。 WWWusage は、インターネット使用者数を時系列で保有しているデータセットです。 tsdisplay()関数を使用して、自己相関係数や偏自己相関係数の 状態を確認します。 tsdisplay()関数は、パッケージ forecast にあるので、 まずは、forecast を読み込みます。
2. 自己紹介 • Twitter ID: @horihorio • お仕事: データマイニング・コンサルタント (重要なこと:会社は非金融業) ただ何故か、金融機関の与信リスク管理・ 分析を、4年少々やってたりする • R使用歴: 半年もない、とか。前回発表(Tokyo.R#18: 「Rで学 ぶ 現代ポートフォリオ理論入門」 )以降、程度 2012/03/10 RでGARCHモデル 2 3. ◇ 全体構成 ◇ 1. Executive Summary 2. 理論編 1. ARIMAモデル 2. GARCHモデル 3. 実践編 1. TOPIXとは? 2. モデル作成 3. モデル検証 2012/03/10 RでGARCHモデル 3 4. 1. Executive Summary (1/5) 時系列モデルの目的:過去の値から将来を当てたい • ARIMAモデルの場合 AR I MA 誤差項
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く