数学の確率論の分野において、確率変数の収束(かくりつへんすうのしゅうそく、英: convergence of random variables)に関しては、いくつかの異なる概念がある。確率変数列のある極限への収束は、確率論や、その応用としての統計学や確率過程の研究における重要な概念の一つである。より一般的な数学において同様の概念は確率収束 (stochastic convergence) として知られ、その概念は、本質的にランダムあるいは予測不可能な事象の列は、その列から十分離れているアイテムを研究する場合において、しばしば、本質的に不変な挙動へと落ち着くことが予想されることがある、という考えを定式化するものである。異なる収束の概念とは、そのような挙動の特徴づけに関連するものである:すぐに分かる二つの挙動とは、その列が最終的に定数となるか、あるいはその列に含まれる値は変動を続けるがある不変