WO2018079140A1 - 炊飯器 - Google Patents
炊飯器 Download PDFInfo
- Publication number
- WO2018079140A1 WO2018079140A1 PCT/JP2017/034038 JP2017034038W WO2018079140A1 WO 2018079140 A1 WO2018079140 A1 WO 2018079140A1 JP 2017034038 W JP2017034038 W JP 2017034038W WO 2018079140 A1 WO2018079140 A1 WO 2018079140A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- rice
- amount
- heater
- heating coil
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J27/00—Cooking-vessels
Definitions
- This disclosure relates to a rice cooker that uses a heating unit disposed on the side of a pan.
- the main heating unit of a general household rice cooker has a bottom heating unit arranged on the bottom of the pan and a side heating unit arranged on the side of the pan.
- a control part controls the heating output of the several heating part from which an installation position differs based on the temperature detected by the bottom face temperature detection part provided in the bottom face center part of the pan. That is, the control unit controls not only the bottom surface heating unit but also the heating output of the side surface heating unit using the temperature at the center of the bottom surface of the pan as a parameter. Therefore, the heating output of the side heating section of the pan is not appropriately controlled to correspond to the originally required temperature, and the taste of the cooked product may be deteriorated.
- the rice cooker of Patent Document 1 includes a bottom surface heating unit disposed on the bottom surface of the pan, a side surface heating unit disposed on the side surface of the pan, and a bottom surface temperature detection unit that detects the temperature of the bottom surface of the pan. And a side surface temperature detector for detecting the temperature of the side surface of the pan.
- the bottom surface heating unit is controlled based on the detection value of the bottom surface temperature detection unit. Further, the side surface heating unit is controlled based on the detection value of the side surface temperature detection unit.
- the temperature of the bottom of the pan and the temperature of the side are detected individually. And according to the detected temperature of the bottom face and the temperature of the side face, the respective heating outputs of the bottom face heating part and the side face heating part are appropriately controlled so that the temperature of the whole pan becomes uniform.
- the temperature of the side surface may be lower than the temperature of the bottom surface at least at the time of cooking and at the time of heat retention.
- the control part of a rice cooker should just increase the heating output of a side surface heating part so that the difference of the temperature of a side surface and the temperature of a bottom face may become small. By reducing the temperature difference across the pan, cooked rice with less cooking unevenness can be realized. In addition, heat retention with little temperature unevenness is realized.
- the temperature of the side surface may be higher than the temperature of the bottom surface in at least one of the time of rice cooking and the time of heat retention.
- the control part of a rice cooker should just make the heating output of a side surface heating part small so that the difference of the temperature of a side surface and the temperature of a bottom face may become small.
- the control unit of the rice cooker is configured to control the heating unit in a preset rice cooking course.
- the rice cooking course includes a water absorption step and a temperature raising step for boiling a cooked product (for example, water).
- the conventional rice cooker estimates the amount of rice cooking based on the time required for boiling when the food is heated with a constant heating power in the temperature raising step. Therefore, in the temperature raising step, it is necessary to make the heating power constant regardless of the amount of cooked rice. That is, in the conventional rice cooker, the time until boiling varies greatly depending on the amount of rice cooked. As a result, there arises a problem that the taste of rice is different between when the amount of cooked rice is large and when it is small.
- the present disclosure includes a pan, a temperature detection unit, a first heater, a second heater, and a control unit.
- the pan has a bottom and sides and accommodates food.
- the temperature detector detects the temperature of the bottom.
- the first heater heats the bottom.
- the second heater heats the side portion.
- the controller is configured to control the first heater and the second heater in a preset rice cooking course.
- the rice cooking course includes a water absorption step for maintaining a low temperature zone lower than the boiling temperature of the cooked product, and a temperature raising step for raising the temperature from the low temperature zone to the boiling temperature.
- the control unit is configured to wait until the temperature detection unit detects a second reference temperature higher than the first reference temperature after detecting the first reference temperature.
- the first heater is configured not to heat the pan
- the second heater is configured to heat the pan.
- the said control part WHEREIN: Based on the time after the said temperature detection part detects the said 2nd reference temperature after the said 1st reference temperature is detected in the said water absorption process, the capacity
- the rice cooker of the present disclosure can detect the temperature of the food with high accuracy in the water absorption process. Therefore, when estimating the amount of rice cooking based on the temperature change detected with the temperature detection part, it can estimate with high precision. And the thermal power of the temperature rising process which conventionally made the thermal power constant for estimation of the amount of cooked rice can be changed according to the amount of cooked rice. Thereby, the difference in the time taken to boil by the amount of cooked rice can be reduced. Therefore, the difference in taste depending on the amount of cooked rice can be reduced. As a result, the rice cooker according to the present disclosure can cook more delicious rice.
- FIG. 1 is a side sectional view of a rice cooker in Embodiment 1 of the present disclosure.
- FIG. 2 is a main-part side cross-sectional view showing the arrangement position of the second heater in the rice cooker according to the first embodiment of the present disclosure.
- FIG. 3 is a characteristic diagram showing the operation of the bottom surface heating coil and the detected temperature of the bottom surface temperature sensor when the amount of rice cooking is estimated in the rice cooker of the comparative example.
- FIG. 4 is a characteristic diagram showing the relationship between the measurement time and the detected temperature for each rice cooker in the comparative rice cooker.
- FIG. 1 is a side sectional view of a rice cooker in Embodiment 1 of the present disclosure.
- FIG. 2 is a main-part side cross-sectional view showing the arrangement position of the second heater in the rice cooker according to the first embodiment of the present disclosure.
- FIG. 3 is a characteristic diagram showing the operation of the bottom surface heating coil and the detected temperature of the bottom surface temperature sensor when the amount of rice cooking is estimated in the rice cooker of the
- FIG. 5 is a characteristic diagram illustrating the operation of the bottom surface heating coil and the side surface heating coil and the detection temperature of the bottom surface temperature sensor when estimating the amount of rice cooking in the rice cooker according to Embodiment 1 of the present disclosure.
- FIG. 6 is a characteristic diagram illustrating the relationship between the measurement time and the detected temperature for each amount of cooked rice in Embodiment 1 of the present disclosure.
- FIG. 7 is a graph comparing the relationship between the amount of cooked rice and the measurement time in the first embodiment of the present disclosure with a comparative example and another comparative example.
- FIG. 8 is a schematic diagram illustrating a rice cooking course of the rice cooker according to the first embodiment of the present disclosure.
- the amount of rice cooking was estimated by the temperature rising process among the rice cooking courses.
- the inventors of this indication examined the rice cooker which estimates the amount of rice cooking in the water absorption process before a temperature rising process among rice cooking courses. In this case, when the bottom surface heating unit in the vicinity of the bottom surface temperature detecting unit is heated, the detected temperature of the bottom surface of the pan immediately rises to a predetermined temperature. Therefore, the difference in measurement time according to the amount of cooked rice is a small difference, and it is difficult to estimate the amount of cooked rice.
- the temperature detected by the bottom surface temperature detection unit in the vicinity of the bottom surface heating unit immediately rises before the temperature of the entire cooked product. That is, the time required for heating from the temperature at which estimation of the amount of cooked rice is started to the temperature at which estimation of the amount of cooked rice is completed is very short. Therefore, the difference of the heating time by the amount of rice cooking is small, and estimation of the amount of rice cooking is difficult.
- the inventors of the present disclosure further increase the temperature of the cooked food by heating with the side surface heating unit located at a position away from the bottom surface temperature detection unit, and then detect with the bottom surface temperature detection unit. Found that the temperature rises. This finding led to the present disclosure.
- the rice cooker according to the first aspect of the present disclosure includes a pan, a temperature detection unit, a first heater, a second heater, and a control unit.
- the pan has a bottom and sides and accommodates food.
- the temperature detector detects the temperature of the bottom.
- the first heater heats the bottom.
- the second heater heats the side portion.
- the controller is configured to control the first heater and the second heater in a preset rice cooking course.
- the rice cooking course includes a water absorption step for maintaining a low temperature zone lower than the boiling temperature of the cooked product, and a temperature raising step for raising the temperature from the low temperature zone to the boiling temperature.
- the control unit is configured to wait until the temperature detection unit detects a second reference temperature higher than the first reference temperature after detecting the first reference temperature.
- the first heater is not heated by the heater, but the second heater is heated by the second heater.
- the said control part WHEREIN: Based on the time after the said temperature detection part detects the said 2nd reference temperature after the said 1st reference temperature is detected in the said water absorption process, the capacity
- the temperature detection unit can detect the temperature change of the food with high accuracy in the water absorption process. Therefore, when estimating the amount of rice cooking based on the temperature change detected with the temperature detection part, it can estimate with high precision. And the thermal power of the temperature rising process which conventionally made the thermal power constant for estimation of the amount of cooked rice can be changed according to the amount of cooked rice. Specifically, when the amount of cooked rice is small (when the amount of rice is small), it can be set to low heat. When the amount of cooked rice is large (when the amount of rice is large), it can be set to high heat. Therefore, the difference of the time taken to boil by the amount of cooked rice can be reduced. As a result, the difference in taste depending on the amount of cooked rice can be reduced, and rice with better taste can be cooked.
- the second aspect of the present disclosure particularly relates to the rice cooker in the first aspect.
- the cooked food contains rice.
- the second heater passes through the center in the height direction of the second heater, and a line parallel to the horizontal direction is located above the height of the rice when the maximum amount of the rice is put in the pan. To be arranged.
- the heating power in the temperature raising process in which the heating power is constant for estimating the amount of rice cooking, can be changed according to the amount of rice cooking. Specifically, when the amount of rice is small, it can be set to low heat. Also, when the amount of rice is large, it can be set to high heat. Therefore, the difference of the time taken to boil by the amount of cooked rice can be reduced. As a result, the difference in taste depending on the amount of cooked rice can be reduced, and rice with better taste can be cooked.
- FIG. 1 shows a side cross-sectional view of a rice cooker in the first embodiment.
- the rice cooker 100 mainly includes a rice cooker body 1, a protective frame 9, a lid 3, a heating unit 5, a control unit 6, a bottom surface temperature sensor 8, and a side surface temperature sensor 13.
- a pot 2 is accommodated in the rice cooker body 1.
- the shape of the rice cooker body 1 is a substantially cylindrical shape having an open top surface and a bottom surface.
- the protective frame 9 is disposed inside the rice cooker body 1.
- the protective frame 9 stores the pot 2.
- An opening 9 a is provided in the central portion of the bottom of the protective frame 9.
- An opening 9b is provided on the side of the protective frame 9. The position of the opening 9b in the height direction is below the center in the side portion of the protective frame 9.
- the pan 2 is detachably stored in the protective frame 9.
- the pan 2 includes a bottom 2a and a side 2b.
- the shape of the bottom 2a is a disk shape.
- the shape of the side part 2b is cylindrical.
- the side portion 2b is arranged in the vertical direction on the outer periphery of the bottom portion 2a.
- rice 20 and water 21 are accommodated as cooked items.
- a plurality of water level lines are drawn on the inner surface of the side portion 2b. Each water level line indicates the amount of water 21 corresponding to each of the plurality of cooked rice amounts.
- the lid 3 is arranged on the upper part of the rice cooker body 1.
- the lid 3 is attached to the rice cooker body 1 so as to be openable and closable so as to cover the opening of the rice cooker body 1 when closed.
- one end of the lid 3 rotates with respect to the rice cooker main body 1 via a hinge shaft 3a disposed behind the protective frame 9 (on the right side of the protective frame 9 on the paper surface of FIG. 1). It is supported freely.
- the lid 3 is urged by a rotating spring 3b disposed on the outer periphery of the hinge shaft 3a. Opening of the other end of the lid 3 is suppressed by a hook button 1a disposed in front of the protective frame 9 (the left side of the protective frame 9 on the paper surface of FIG. 1).
- the hook button 1a is pivotally supported with respect to the rice cooker body 1 so as to be rotatable.
- a spring 1b is provided between the hook button 1a and the protective frame 9.
- the hook button 1a is biased forward (left side in FIG. 1) by a spring 1b.
- the hook button 1a is engaged with the lid 3, the lid 3 is held by the hook button 1a without being opened and is in a closed state.
- the hook button 1a is pushed in the right direction from the left in FIG. 1, the hook button 1a and the lid 3 are disengaged, and the lid 3 is opened.
- An operation input display unit 12 is disposed on the surface of the lid 3.
- the operation input display unit 12 displays various settings such as selection of a plurality of rice cooking menus and timer settings according to the type of rice, and accepts input by the user.
- the operation input display part 12 contains the rice cooking start button which starts rice cooking.
- an inner lid 4 capable of closing the opening of the pan 2 is attached to the inside of the lid 3 (the side covering the opening of the pan 2).
- the shape of the inner lid 4 is a substantially disk shape.
- the inner lid 4 is detachably attached to the lid 3.
- the inner lid 4 is provided with a steam port 4b for discharging steam generated in the pan 2 during cooking and warming.
- a steam cylinder 10 communicating with the outside of the rice cooker 100 is disposed on the lid 3.
- the shape of the steam cylinder 10 is a cylinder shape.
- a steam port packing 7 is provided between the steam cylinder 10 and the inner lid 4.
- the steam port packing 7 suppresses steam from flowing into the lid 3.
- an inner lid packing 4 a that comes into contact with the upper surface of the flange portion 2 c of the pan 2 is provided on the outer peripheral portion of the inner lid 4.
- the inner lid packing 4a prevents the steam generated in the pan 2 from flowing out of the outside of the steam port 4b during rice cooking and heat retention.
- the lid 3 is provided with a lid temperature sensor 11 which is a means for detecting the temperature of the inner lid.
- the lid temperature sensor 11 detects the temperature of the inner lid 4.
- the lid temperature sensor 11 is provided so as to contact the inner lid 4 when the inner lid 4 is attached to the lid 3.
- the heating unit 5 includes a bottom surface heating coil 5a, a side surface heating coil 5b, and an inner lid heating coil 5c.
- the bottom surface heating coil 5a corresponds to the first heater of the present disclosure.
- the bottom surface heating coil 5a is disposed outside the protective frame 9 at a position closer to the bottom 2a of the pan 2 than the side surface heating coil 5b.
- the bottom surface heating coil 5a mainly heats the bottom 2a of the pan 2.
- the bottom surface heating coil 5a is composed of an inner bottom heating coil 5a-1 and an outer bottom heating coil 5a-2.
- the shape of the bottom heating coil 5a-1 is a ring shape with an open center.
- the bottom heating coil 5a-1 is disposed so as to face the periphery of the center of the bottom 2a with the protective frame 9 interposed therebetween.
- the out-bottom heating coil 5a-2 is disposed so as to face the corner portion of the bottom portion 2a with the protective frame 9 interposed therebetween.
- the side surface heating coil 5b corresponds to the second heater of the present disclosure.
- the side surface heating coil 5 b is disposed outside the protective frame 9.
- the side surface heating coil 5b is controlled independently of the bottom surface heating coil 5a.
- the side surface heating coil 5 b is disposed at a position facing the side portion 2 b of the pan 2 through the protective frame 9.
- the side heating coil 5b mainly heats the side part 2b of the pan 2.
- the conventional side surface heating part is provided in order to prevent the side part of a pan from cooling and generating dew, and there are many things which have the electric power of about 100 w.
- the side surface heating coil 5b according to the present embodiment is provided for the purpose of heating the water on the upper side of the food stored in the pan 2, and has a configuration capable of producing a high thermal power with about 600w of electric power. .
- FIG. 2 shows the positional relationship between the height of the rice 20 in the pan when cooking the maximum amount and the side heating coil 5b as the second heater in the present embodiment.
- the maximum amount of rice cooking refers to the time when the largest amount of rice is cooked among the amounts of rice cooked that can be cooked by the rice cooker 100 of the first embodiment.
- the height of the rice 20 is determined when the rice 20 alone is accommodated in the pan 2 (that is, when the water 21 is not accommodated in the pan 2) or immediately after the rice 20 and the water 21 are placed in the pan 2. It means 20 heights.
- the height of the rice 20 at the time of cooking the maximum amount is defined as a height T.
- Height T is the position of line 30 in FIG.
- the side surface heating coil 5b is disposed so that a line parallel to the horizontal direction (hereinafter referred to as a center line 31) is positioned above the line 30 through the approximate center in the height direction of the side surface heating coil 5b.
- the inner lid heating coil 5 c is arranged in the lid 3 at a position facing the inner lid 4.
- the inner lid heating coil 5 c heats the inner lid 4.
- the bottom surface temperature sensor 8 is disposed in an opening 9 a provided in the central portion of the bottom of the protective frame 9.
- the bottom surface temperature sensor 8 corresponds to the temperature detection unit of the present disclosure.
- the bottom surface temperature sensor 8 is disposed so as to come into contact with the bottom 2 a of the pan 2 when the pan 2 is stored in the protective frame 9.
- the bottom surface temperature sensor 8 detects the temperature of the bottom 2 a of the pan 2. That is, the bottom surface temperature sensor 8 is in contact with a substantially central portion of the bottom 2a of the pan 2 and detects the temperature of the bottom 2a by heat conduction.
- the side surface temperature sensor 13 is disposed in the opening 9b on the side of the protective frame 9. More specifically, the side surface temperature sensor 13 is disposed between the bottom surface heating coil 5a and the side surface heating coil 5b in the height direction of FIG.
- the side surface temperature sensor 13 is temperature detection means for detecting the temperature of the side part 2b of the pan 2.
- the side surface temperature sensor 13 is disposed so as to come into contact with the side part 2 b of the pan 2 when the pan 2 is stored in the protective frame 9. That is, the side surface temperature sensor 13 contacts the side part 2b of the pan 2, and detects the temperature of the side part 2b by heat conduction.
- the control unit 6 is mounted inside the rice cooker body 1.
- the control unit 6 has a storage unit.
- the storage unit stores a plurality of rice cooking programs for cooking rice 20.
- Each of the plurality of rice cooking programs corresponds to each of a plurality of rice cooking menus corresponding to the type of rice.
- the control unit 6 includes a bottom surface heating coil 5 a that is a first heater, At least one of the side heating coil 5b and the inner lid heating coil 5c, which are the heaters, is controlled, and the rice cooking course associated with each rice cooking menu is executed.
- the rice cooking course will be described later.
- control unit 6 receives a user instruction input to the operation input display unit 12. And the control part 6 is based on the rice cooking program corresponding to the instruction
- the detected temperature is obtained from at least one of the bottom surface temperature sensor 8, the side surface temperature sensor 13, and the lid temperature sensor 11.
- the bottom surface heating coil 5a and the side surface heating coil 5b are controlled by the control unit 6 independently.
- the rice cooking course is mainly composed of four steps of a water absorption step, a temperature rising step, a boiling maintenance step, and a spotting step.
- the water absorption step is a step of immersing the rice 20 in the water 21 in the pot 2 and causing the rice 20 to absorb water in advance.
- the temperature of the cooked product (rice 20 and water 21) is maintained in a temperature range lower than the boiling temperature of the cooked product (hereinafter referred to as a low temperature range).
- the low temperature zone is, for example, about 60 ° C.
- the temperature raising step is a step of raising the temperature of the water 21 in the pan 2 from the low temperature zone to the boiling temperature.
- a boiling maintenance process is a process of maintaining the boiling state of the water 21 in the pan 2, gelatinizing the starch of the rice 20, and raising the degree of gelatinization from about 50% to about 80%.
- the unevenness process is a process of evaporating excess water using preheating and raising the degree of gelatinization of the rice 20 to nearly 100%.
- each step of the rice cooking course is sequentially performed by operating the rice cooking start button of the operation input display unit 12.
- the rice cooking course includes a water absorption process, a temperature rising process, a boiling maintenance process, and an unevenness process in time order.
- control unit 6 controls the heating unit 5 so that the temperature of the pot 2 becomes a temperature suitable for the water absorption of the rice 20 (for example, 60 ° C.), and the rice 20 and the water 21 in the pot 2. And heat.
- the control unit 6 intermittently drives the bottom surface heating coil 5a and the side surface heating coil 5b alternately. Further, in the present embodiment, the control unit 6 controls the driving time for each time of the bottom surface heating coil 5a to be shorter than the driving time for each time of the side surface heating coil 5b. And as shown in FIG.
- the control part 6 will start rice cooking amount estimation mode, and will start the measurement of elapsed time.
- the temperature A is a temperature set in advance as a temperature at which estimation of the amount of rice cooking is started.
- the temperature A corresponds to the first reference temperature of the present disclosure.
- the control unit 6 When the rice cooking amount estimation mode is started, the control unit 6 operates only the side surface heating coil 5b that is the second heater. That is, the control unit 6 causes the bottom surface heating coil 5a that is the first heater to stop the heating operation. Side heating coil 5b heats pan 2 from side 2b. In the present embodiment, as shown in FIG. 2, the side surface heating coil 5b passes through the center in the height direction of the side surface heating coil 5b and is parallel to the horizontal direction even when the amount of rice cooking is maximum. Since the rice 20 is positioned below the rice 20, it is difficult to heat the rice directly, and the water 21 located on the rice 20 is heated before the rice 20.
- the temperature B is a temperature set in advance as a temperature at which the estimation of the amount of cooked rice ends.
- the temperature B corresponds to the second reference temperature of the present disclosure.
- the temperature A and the temperature B are both temperatures below the low temperature zone maintained in the water absorption process.
- the low temperature zone is about 60 ° C. as described above.
- control unit 6 stops heating only by the side surface heating coil 5b and restarts heating by the bottom surface heating coil 5a, the side surface heating coil 5b, and the inner lid heating coil 5c in a timely manner.
- the time taken for the temperature detected by the bottom surface temperature sensor 8 to rise from the temperature A that is the first reference temperature to the temperature B that is the second reference temperature depends on the food.
- the load becomes longer in proportion to the amount of cooked rice.
- FIG. 6 is a characteristic diagram showing the relationship between the measurement time and the detected temperature for each amount of cooked rice (0.5 go, 3 go, 5.5 go) in the present embodiment.
- one go shall be about 180.39 ml.
- the measurement time is the time required from when the bottom surface temperature sensor 8 detects the temperature A until the temperature B is detected. As shown in FIG.
- the rice cooking amount estimation mode is executed during the water absorption process.
- the bottom surface heating coil 5a that is the first heater is stopped.
- the temperature detected with the bottom face temperature sensor 8 rises after the food is heated by using the combination of the side heater coil 5b and the bottom face temperature sensor 8 as the second heater. . Thereby, the measurement time proportional to the amount of rice cooking can be obtained.
- the control unit 6 drives the bottom surface heating coil 5a, the side surface heating coil 5b, and the inner lid heating coil 5c in a timely manner to heat the pan 2.
- the process proceeds to the temperature raising step (see FIG. 8).
- the bottom surface temperature sensor 8, the side surface temperature sensor 13, and the lid temperature sensor 11 detect the temperature in a timely manner.
- the control part 6 determines the thermal power for boiling a food based on the rice cooking amount estimated at the water absorption process.
- the heating time when boiling the cooked food greatly affects the texture of the rice.
- the heating time is short with respect to the appropriate time, that is, when the fire is strong, it becomes hard rice.
- the heating time is longer than the appropriate time, that is, when the fire is weak, the rice becomes soft.
- the cooked product is boiled with a constant heating power regardless of the amount of cooked rice.
- the amount of cooked rice is an intermediate amount, even if the amount of cooked rice is large, when the amount of cooked rice is large, the fired power is relatively weak with respect to the cooked food, and the cooked rice has a soft texture.
- the heating power is relatively strong with respect to the cooked food, and the cooked rice has a hard texture.
- the amount of rice cooking is estimated at a water absorption process. That is, in the temperature raising step, it is not necessary to estimate the amount of cooked rice at the time until boiling. Therefore, in the temperature raising step, the heating time can be adjusted according to the amount of rice cooked until the time of boiling. That is, the difference by the amount of cooked rice of time until it boils reduces.
- the bottom heating coil 5a, the side heating coil 5b, and the inner lid heating coil are used until the water in the pot 2 runs out and the temperature of the pot 2 reaches a predetermined value exceeding 100 ° C. 5c is energized in a timely manner, and rice and water are heated. Further, in the boiling maintenance step, the bottom surface temperature sensor 8, the side surface temperature sensor 13, and the lid temperature sensor 11 detect the timely temperature.
- the bottom heating coil 5a, the side heating coil 5b, and the inner lid heating coil 5c are maintained so that the temperature of the cooked rice (hereinafter referred to as rice) is kept at a predetermined temperature (eg, 98 ° C.).
- a predetermined temperature eg, 98 ° C.
- One is energized and the rice is steamed.
- at least one of the bottom surface temperature sensor 8, the side surface temperature sensor 13, and the lid temperature sensor 11 detects the temperature at a predetermined timing.
- the rice cooker 100 automatically shifts to the heat insulation process when the above rice cooking course is completed.
- the bottom surface heating coil 5a, the side surface heating coil 5b, and the inner lid heating coil 5c are controlled so that the rice is kept at a predetermined temperature (for example, 71 ° C.), and the pan 2 is warmed to keep the rice warm.
- the bottom surface temperature sensor 8, the side surface temperature sensor 13, and the lid temperature sensor 11 detect the timely temperature.
- the amount of cooked rice is estimated in the water absorption process.
- the side heating coil 5b and the bottom face temperature sensor 8 are used in the process of estimating the amount of rice cooking.
- a comparative example estimates the amount of rice cooking in a water absorption process similarly to this Embodiment.
- the bottom heating coil (5b) and the bottom surface temperature sensor (8) are used in the process of estimating the amount of rice cooking.
- movement which estimates the amount of rice cooking differs between the rice cooker of a comparative example and the rice cooker 100 in this Embodiment, the structure itself of a rice cooker is made the same.
- the component of the structure similar to this Embodiment is attached
- FIG. 3 is a characteristic diagram showing the operation of the bottom surface heating coil (5a) and the detected temperature of the bottom surface temperature sensor (8) when the amount of rice cooking is estimated in the rice cooker of the comparative example.
- FIG. 4 is a characteristic diagram showing the relationship between the measurement time and the detected temperature for each rice cooker amount (0.5 go, 3 go, 5.5 go) in the comparative rice cooker.
- the temperature A shown in FIGS. 3 and 4 is the same as the temperature A shown in FIGS.
- the temperature B shown in FIGS. 3 and 4 is the same as the temperature B shown in FIGS. 5 and 6.
- the cooked product is heated only by the bottom surface heating coil (5a) in the water absorption process.
- a control part (6) will enter into rice cooking amount estimation mode, and will start the measurement of elapsed time.
- the control unit (6) ends the measurement of the elapsed time.
- the bottom surface heating coil (5a) and the bottom surface temperature sensor (8) are disposed in the vicinity, the detected temperature immediately rises regardless of the amount of rice cooking.
- the bottom surface temperature sensor (8) immediately detects the temperature B, and the measurement time is short. Therefore, as shown in FIG. 4, a remarkable difference is not produced in measurement time between 0.5 go which is the minimum combined number of rice cooking amounts, and the maximum combined number 5.5 go. Therefore, it is difficult to estimate the amount of cooked rice in the comparative example.
- FIG. 7 is a graph for comparing the relationship between the amount of cooked rice and the measurement time in the present embodiment with the comparative example and other comparative examples.
- the comparative example in FIG. 7 is the same as the comparative example in FIGS. 3 and 4. While the comparative example estimates the amount of rice cooked in the water absorption process, the other comparative example of FIG. 7 shows an example in which the amount of rice cooked is estimated in the temperature raising step, as in the conventional rice cooker amount estimation. Although the operation
- components having the same configuration as that of the present embodiment will be described with parentheses attached to the same reference numerals.
- the measurement time C in the other comparative example of FIG. 7 is the time taken from the detection of the temperature at which the bottom surface temperature sensor (8) starts estimating the amount of cooked rice to boiling in the temperature raising step.
- the temperature difference between the temperature at which estimation of the amount of cooked rice starts and the boiling temperature is the same as the temperature difference between temperature A and temperature B.
- the bottom heating coil (5a) is used for heating.
- the detection of boiling is performed by a lid temperature sensor (11) provided on the lid. That is, when the cooked food is heated to boiling, the steam heats the inner lid, and the temperature of the lid temperature sensor (11) that comes into contact with the inner lid rises. Therefore, in another comparative example, since the boiling is detected after the whole cooked product is boiled, the measurement time proportional to the amount of cooked rice is measured.
- the measurement time D in the comparative example of FIG. 7 is similar to the measurement time of FIGS. 3 and 4, after the bottom surface temperature sensor (8) detects the temperature A in the water absorption process, the bottom surface temperature sensor (8) This is the time taken until B is detected.
- the bottom heating coil (5a) is used for heating. Therefore, the temperature of the bottom (2a) of the pan (2) rises before the cooked food. Therefore, when the temperature is detected by the bottom surface temperature sensor (8), the detected temperature immediately rises regardless of the amount of rice cooking because of the constitutional reason that the positions of the bottom surface heating coil (5a) and the bottom surface temperature sensor (8) are close. To do. That is, there is almost no difference in measurement time depending on the amount of cooked rice, and it is difficult to estimate the amount of cooked rice.
- the measurement time E is a measurement time when estimating the amount of rice cooking in the water absorption process.
- the measurement time E when estimating the amount of rice cooking, it heats with the side surface heating coil 5b. Then, the bottom temperature sensor 8 detects the temperature of the bottom 2a of the pan 2. That is, as a result of heating the food between the side surface heating coil 5b and the bottom surface temperature sensor 8, the bottom 2a is heated, and the temperature detected by the bottom surface temperature sensor 8 rises.
- the measurement time E becomes substantially the same as the measurement time C in the conventional heating process. Therefore, in this Embodiment, the measurement time proportional to the amount of rice cooking is obtained.
- the rice cooking amount can be estimated with the same accuracy as the estimation of the rice cooking amount in the conventional heating step in the water absorption step preceding the heating step.
- the rice cooker 100 of the present embodiment is heated by the side surface heating coil 5b in the water absorption process. And the rice cooker 100 of this Embodiment detects the temperature of a foodstuff with the bottom face temperature sensor 8.
- the rice cooker 100 of this Embodiment measures the time when the temperature which the bottom face temperature sensor 8 detects rises, and estimates the amount of rice cooking based on measurement time. Thereby, in this Embodiment, the amount of rice cooking can be estimated accurately.
- the heating power in the temperature raising step, the heating power can be controlled so that the time required for boiling is constant regardless of the amount of cooked rice.
- the control unit 6 drives the bottom surface heating coil 5a, the side surface heating coil 5b, and the inner lid heating coil 5c in a timely manner according to the heating state of the food. Thereby, the variation in the texture by the amount of rice cooking can be reduced, and the rice cooker 100 which can cook delicious rice can be realized.
- the rice cooker 100 of the present embodiment includes the pan 2, the temperature detector (bottom temperature sensor 8), the first heater (bottom heating coil 5a), and the second heater (side surface).
- a heating coil 5b) and a control unit 6 are provided.
- the pan 2 has a bottom 2a and a side 2b. Pan 2 contains the food.
- the bottom surface temperature sensor 8 detects the temperature of the bottom 2a.
- the bottom heating coil 5a heats the bottom 2a.
- the side surface heating coil 5b heats the side portion 2b.
- the control unit 6 controls the bottom surface heating coil 5a and the side surface heating coil 5b based on a preset rice cooking course.
- the rice cooking course includes a water absorption process for maintaining a low temperature zone lower than the boiling temperature of the cooked product, and a temperature raising process for raising the temperature from the low temperature zone to the boiling temperature.
- the control unit 6 controls the bottom surface heating coil 5a from detecting the first reference temperature until detecting the second reference temperature higher than the first reference temperature.
- the pan 2 is heated by the side heating coil 5b without heating the pan 2.
- the temperature of the food can be detected with high accuracy in the water absorption process. Therefore, when estimating the amount of rice cooking based on the detected temperature change, it can estimate with high precision.
- the heating power has been made constant in the heating process.
- a heating power can be changed according to the amount of rice cooking in a temperature rising process. Specifically, when the amount of cooked rice is small, the heat is low, and when the amount of cooked rice is high, the time taken to boil can be prevented from greatly changing depending on the amount of cooked rice. Thereby, the rice cooker 100 of this Embodiment can reduce the difference in the taste by the amount of rice cooking, and can cook rice with better taste.
- control part 6 estimates the capacity
- the amount of rice cooking can be estimated with high accuracy in the water absorption process.
- the control unit 6 can control the heating power according to the amount of rice cooking in the temperature raising step. Therefore, the rice cooker 100 can cook rice with better taste.
- the cooked food includes rice.
- the maximum amount of rice that can be stored in the pan is predefined.
- the side heating coil 5b which is the second heater passes through the center in the height direction of the side heating coil 5b, and the line parallel to the horizontal direction is higher than the rice height when the maximum amount of rice is put in the pan 2. It is arranged to be located on the top.
- the height of the rice at this time be the height of the rice when only the rice is put in the pan 2 before putting water, or the height of the rice immediately after putting the water in the pan 2.
- the rice cooker 100 can heat water earlier than rice in the water absorption process. Therefore, this Embodiment can estimate the amount of rice cooking more accurately in a water absorption process.
- the heating power has been made constant for estimation of the amount of rice cooking.
- a heating power can be changed according to the amount of rice cooking in a temperature rising process. Specifically, when the amount of cooked rice is small, the heat is low, and when the amount of cooked rice is high, the time taken to boil can be constant regardless of the amount of cooked rice. Thereby, the difference in the taste by the amount of cooked rice can be reduced. As a result, the rice cooker 100 can cook more delicious rice.
- a heating coil is exemplified as the first heater and the second heater.
- at least one of the first heater and the second heater is a heater other than the heating coil. There may be.
- at least one of the first heater and the second heater may be a heater using electromagnetic heating or induction heating.
- the heater for example, the position away from the bottom face
- An inner lid heating coil 5c may be used.
- the bottom heating coil 5a may not be energized during the rice cooking amount estimation mode.
- the bottom surface heating coil 5a, the side surface heating coil 5b, and the inner lid heating coil 5c are driven in a timely manner in the temperature raising step, the boiling maintenance step, the unevenness step, and the heat retention step.
- the timely driving means that not only all of the bottom surface heating coil 5a, the side surface heating coil 5b, and the inner lid heating coil 5c are driven, but also at least one of the bottom surface heating coil 5a, the side surface heating coil 5b, and the inner lid heating coil 5c. One is driven.
- the bottom surface temperature sensor 8, the side surface temperature sensor 13, and the lid temperature sensor 11 detect the timely temperature in the temperature raising step, the boiling maintenance step, the unevenness step, and the heat retention step.
- “Detecting the timely temperature” means that not only the bottom surface temperature sensor 8, the side surface temperature sensor 13, and the lid temperature sensor 11 detect the temperature but also the bottom surface temperature sensor 8, the side surface temperature sensor 13, and the lid temperature sensor 11. At least one of the above includes sensing the temperature.
- the bottom heating coil 5a and the side heating coil 5b are intermittently driven alternately until reaching the temperature A at which estimation of the amount of rice cooking is started in the water absorption process, but this heating control is an example. Any one of them may be intermittently driven. Further, either one may be always driven to a predetermined temperature.
- the rice cooker according to the present disclosure can estimate the amount of the cooked product at an early stage before boiling with respect to the heating of the cooked product. Regardless of the control that is constant regardless, it can be applied to the use of a cooking device that can cook with good taste.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Cookers (AREA)
Abstract
炊飯器は、鍋と、鍋の底部の温度を検知する温度検知部と、底部を加熱する第1のヒータと、鍋の側部を加熱する第2のヒータと、制御部と、を備える。制御部は、吸水工程において、温度検知部が、第1の基準温度を検知してから、第1の基準温度よりも高い第2の基準温度を検知するまでの間、第1のヒータに鍋を加熱させず、第2のヒータに鍋を加熱させるように構成される。また制御部は、吸水工程において、温度検知部が、第1の基準温度を検知してから第2の基準温度を検知するまでの時間に基づいて、調理物の容量を推定するように構成される。これにより吸水工程における炊飯量の推定の精度が向上する。
Description
本開示は、鍋の側面に配置された加熱部を利用する炊飯器に関する。
一般的な家庭用の炊飯器の主な加熱部は、鍋の底面に配置された底面加熱部と、鍋の側面に配置された側面加熱部とを有する。制御部は、鍋の底面中央部に設けられた底面温度検知部で検知された温度に基づいて、設置位置が異なる複数の加熱部の加熱出力を制御する。つまり、制御部は、鍋の底面中央部の温度をパラメータとして、底面加熱部だけでなく、側面加熱部の加熱出力も制御する。そのため、鍋の側面加熱部の加熱出力は、本来必要な温度に対応するように適切に制御されず、調理物の食味が劣化することがある。
これに対し、例えば特許文献1の炊飯器は、鍋の底面に配置された底面加熱部と、鍋の側面に配置された側面加熱部と、鍋の底面の温度を検知する底面温度検知部と、鍋の側面の温度を検知する側面温度検知部を備える。底面温度検知部の検出値に基づいて底面加熱部は制御される。また、側面温度検知部の検出値に基づいて側面加熱部は制御される。
特許文献1の構成によると、鍋の底面の温度と側面の温度とが個別に検出される。そして検出された底面の温度及び側面の温度に応じて、鍋全体の温度が均一になるように、底面加熱部と側面加熱部のそれぞれの加熱出力が適切に制御される。
特許文献1の構成において、例えば炊飯量が多い場合に、炊飯時及び保温時の少なくとも一方において、底面の温度に比べて側面の温度が低くなることがある。このような場合、炊飯器の制御部は、側面の温度と底面の温度との差が小さくなるように、側面加熱部の加熱出力を増大させればよい。鍋全体の温度差を低減することにより、炊きムラの少ない炊飯が実現できる。また、温度ムラの少ない保温が実現される。
また、逆に、例えば炊飯量が少ない場合、炊飯時及び保温時の少なくとも一方において、底面の温度に比べて、側面の温度が高くなることがある。このような場合は、炊飯器の制御部は、側面の温度と底面の温度との差が小さくなるように、側面加熱部の加熱出力を小さくさせればよい。鍋全体の温度差を低減することにより、米飯の焦げつきの発生が抑制される。また、米飯の乾燥が抑制される。
従来の炊飯器において、炊飯器の制御部は、予め設定された炊飯コースにおいて、加熱部を制御するように構成される。炊飯コースは、吸水工程と、調理物(たとえば水を含む)を沸騰させる昇温工程とを含む。従来の炊飯器は、昇温工程において、調理物を一定火力で加熱した場合の、沸騰までに要する時間に基づいて炊飯量を推定する。したがって、昇温工程では、炊飯量に関わらず火力を一定にする必要がある。つまり、従来の炊飯器では、炊飯量によって、沸騰までの時間が大きく変化する。その結果、炊飯量の多いときと少ないときとでは、ごはんの食味が異なるという課題が生ずる。
これに対し、本開示は、鍋と、温度検知部と、第1のヒータと、第2のヒータと、制御部と、を備える。前記鍋は、底部と側部とを有し、調理物を収容する。前記温度検知部は、前記底部の温度を検知する。前記第1のヒータは、前記底部を加熱する。前記第2のヒータは、前記側部を加熱する。前記制御部は、予め設定された炊飯コースにおいて、前記第1のヒータ及び前記第2のヒータを制御するように構成される。前記炊飯コースは、前記調理物の沸騰温度より低い低温度帯を維持する吸水工程と、前記低温度帯から前記沸騰温度まで昇温させる昇温工程と、を含む。前記制御部は、前記吸水工程において、前記温度検知部が、第1の基準温度を検知してから、前記第1の基準温度よりも高い第2の基準温度を検知するまでの間、前記第1のヒータに前記鍋を加熱させず、前記第2のヒータに前記鍋を加熱させるように構成される。また、前記制御部は、前記吸水工程において、前記温度検知部が、前記第1の基準温度を検知してから前記第2の基準温度を検知するまでの時間に基づいて、前記調理物の容量を推定するように構成される。
これにより本開示の炊飯器は、吸水工程において、調理物の温度を高精度に検知できる。したがって、温度検知部で検知した温度変化に基づいて炊飯量を推定する場合に、高精度に推定できる。そして、従来、炊飯量の推定のために火力を一定にしていた昇温工程の火力を、炊飯量に応じて変えることができる。これにより、炊飯量による沸騰までにかかる時間の差を低減できる。したがって、炊飯量による食味の差を低減できる。その結果、本開示の炊飯器は、より食味のよいごはんを炊飯できる。
(本開示に至るまでの知見)
上述のとおり、従来は、炊飯コースのうち、昇温工程で炊飯量が推定されていた。これに対し、本開示の発明者らは、炊飯コースのうち、昇温工程の前の吸水工程で炊飯量を推定する炊飯器について検討した。この場合、底面温度検知部の近傍の底面加熱部で加熱すると、検知される鍋の底面の温度は、すぐに所定の温度まで上昇する。したがって、炊飯量に応じた計測時間の差は僅差となり、炊飯量の推定が難しい。
上述のとおり、従来は、炊飯コースのうち、昇温工程で炊飯量が推定されていた。これに対し、本開示の発明者らは、炊飯コースのうち、昇温工程の前の吸水工程で炊飯量を推定する炊飯器について検討した。この場合、底面温度検知部の近傍の底面加熱部で加熱すると、検知される鍋の底面の温度は、すぐに所定の温度まで上昇する。したがって、炊飯量に応じた計測時間の差は僅差となり、炊飯量の推定が難しい。
すなわち、底面加熱部により加熱する場合、底面加熱部の近傍にある底面温度検知部で検知する温度は、調理物全体の温度よりも先にすぐに温度が上昇してしまう。つまり、炊飯量の推定を開始する温度から、炊飯量の推定を終了する温度まで加熱するのにかかる時間は、非常に短い。したがって、炊飯量による加熱時間の差が小さく、炊飯量の推定が難しい。
これに対し本開示の発明者らは、さらに、底面温度検知部から離れた位置にある側面加熱部で加熱することによって、まず調理物の温度が上昇して、その後、底面温度検知部で検出する温度が上昇することを見出した。そしてこの知見によって本開示に想到した。
(本開示の内容)
本開示の第1の態様における炊飯器は、鍋と、温度検知部と、第1のヒータと、第2のヒータと、制御部と、を備える。前記鍋は、底部と側部とを有し、調理物を収容する。前記温度検知部は、前記底部の温度を検知する。前記第1のヒータは、前記底部を加熱する。前記第2のヒータは、前記側部を加熱する。前記制御部は、予め設定された炊飯コースにおいて、前記第1のヒータ及び前記第2のヒータを制御するように構成される。前記炊飯コースは、前記調理物の沸騰温度より低い低温度帯を維持する吸水工程と、前記低温度帯から前記沸騰温度まで昇温させる昇温工程と、を含む。前記制御部は、前記吸水工程において、前記温度検知部が、第1の基準温度を検知してから、前記第1の基準温度よりも高い第2の基準温度を検知するまでの間、前記第1のヒータに前記鍋を加熱させず、前記第2のヒータに前記鍋を加熱させる。また、前記制御部は、前記吸水工程において、前記温度検知部が、前記第1の基準温度を検知してから前記第2の基準温度を検知するまでの時間に基づいて、前記調理物の容量を推定するように構成される。
本開示の第1の態様における炊飯器は、鍋と、温度検知部と、第1のヒータと、第2のヒータと、制御部と、を備える。前記鍋は、底部と側部とを有し、調理物を収容する。前記温度検知部は、前記底部の温度を検知する。前記第1のヒータは、前記底部を加熱する。前記第2のヒータは、前記側部を加熱する。前記制御部は、予め設定された炊飯コースにおいて、前記第1のヒータ及び前記第2のヒータを制御するように構成される。前記炊飯コースは、前記調理物の沸騰温度より低い低温度帯を維持する吸水工程と、前記低温度帯から前記沸騰温度まで昇温させる昇温工程と、を含む。前記制御部は、前記吸水工程において、前記温度検知部が、第1の基準温度を検知してから、前記第1の基準温度よりも高い第2の基準温度を検知するまでの間、前記第1のヒータに前記鍋を加熱させず、前記第2のヒータに前記鍋を加熱させる。また、前記制御部は、前記吸水工程において、前記温度検知部が、前記第1の基準温度を検知してから前記第2の基準温度を検知するまでの時間に基づいて、前記調理物の容量を推定するように構成される。
この構成により、温度検知部は、吸水工程において、調理物の温度変化を高精度に検知できる。したがって、温度検知部で検知した温度変化に基づいて炊飯量を推定する場合に、高精度に推定できる。そして、従来、炊飯量の推定のために火力を一定にしていた昇温工程の火力を、炊飯量に応じて変えることができる。具体的には、炊飯量の少ないとき(小飯量のとき)は、弱火にできる。また炊飯量の多いとき(大飯量のとき)は、強火にできる。したがって、炊飯量による沸騰までにかかる時間の差を低減できる。その結果、炊飯量による食味の差を低減することができ、より食味のよいごはんを炊飯できる。
本開示の第2の態様は、特に第1の態様における炊飯器に関する。第2の態様において、前記調理物は米を含む。前記第2のヒータは、前記第2のヒータの高さ方向の中心を通り、水平方向に平行な線が、前記鍋に最大量の前記米を入れたときの前記米の高さより上に位置するように配置される。
これにより炊飯器は、吸水工程において、炊飯量をより高精度に推定できる。したがって、従来、炊飯量の推定のために火力を一定にしていた昇温工程の火力を、炊飯量に応じて変えることができる。具体的には、小飯量のときは弱火にできる。また大飯量のときは強火にできる。したがって、炊飯量による沸騰までにかかる時間の差を低減できる。その結果、炊飯量による食味の差を低減することができ、より食味のよいごはんを炊飯できる。
以下、本開示の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本開示が限定されるものではない。
(実施の形態1)
1.構成
図1は、実施の形態1における炊飯器の側断面図を示す。炊飯器100は、主に炊飯器本体1と、保護枠9と、蓋3と、加熱部5と、制御部6と、底面温度センサ8と、側面温度センサ13と、を備える。炊飯器本体1には、鍋2が収容される。
1.構成
図1は、実施の形態1における炊飯器の側断面図を示す。炊飯器100は、主に炊飯器本体1と、保護枠9と、蓋3と、加熱部5と、制御部6と、底面温度センサ8と、側面温度センサ13と、を備える。炊飯器本体1には、鍋2が収容される。
炊飯器本体1の形状は、上面が開口し、底面を有する略円筒状である。保護枠9は、この炊飯器本体1の内部に配置される。保護枠9は、鍋2を収納する。保護枠9の底部の中央部分には、開口9aが設けられている。また保護枠9の側部には、開口9bが設けられている。開口9bの高さ方向の位置は、保護枠9の側部において、中央より下方である。
鍋2は、保護枠9に着脱可能に収納される。鍋2は、底部2aと側部2bとを備える。底部2aの形状は円板状である。側部2bの形状は筒状である。側部2bは、底部2aの外周に鉛直方向に配置される。鍋2には、調理物として米20と水21とが収容される。側部2bの内面には、複数の水位線が描かれている。各水位線は、複数の炊飯量のそれぞれに応じた水21の量を示す。
蓋3は、炊飯器本体1の上部に配置される。蓋3は、閉まっているときに炊飯器本体1の開口を覆うように、炊飯器本体1に対して開閉自在に取り付けられる。具体的には、蓋3の一端は、保護枠9の後方(保護枠9の、図1の紙面上における右側)に配置されたヒンジ軸3aを介して、炊飯器本体1に対して回動自在に支持されている。また蓋3は、ヒンジ軸3aの外周に配置された回動バネ3bにより、付勢されている。蓋3の他端は、保護枠9の前方(保護枠9の、図1の紙面上における左側)に配置されたフックボタン1aにより、開放が抑制される。フックボタン1aは、炊飯器本体1に対し、回動自在に軸支されている。フックボタン1aと保護枠9との間にはバネ1bが設けられている。フックボタン1aは、バネ1bにより前方(図1の左側)に付勢されている。フックボタン1aが蓋3に係合しているときには、蓋3は開放することなくフックボタン1aに保持され、閉塞状態となっている。フックボタン1aが図1の左から右方向に押されると、フックボタン1aと蓋3との係合が外れ、蓋3は開く。なお、蓋3の表面には、操作入力表示部12が配置されている。操作入力表示部12は、米の種類に応じた複数の炊飯メニューの選択及びタイマーの設定など、種々の設定が表示され、使用者による入力を受け付ける。また操作入力表示部12は、炊飯を開始する炊飯開始ボタンを含む。
また蓋3の内側(鍋2の開口を覆う側)には、鍋2の開口を塞ぐことが可能な内蓋4が取り付けられている。内蓋4の形状は、略円盤状である。内蓋4は、蓋3に対して着脱自在に取り付けられている。内蓋4には、炊飯時及び保温時に鍋2内に発生する蒸気を排出する蒸気口4bが設けられている。
また蓋3には、炊飯器100の外部と連通する蒸気筒10が配置されている。蒸気筒10の形状は、筒形状である。
また蒸気筒10と内蓋4との間には、蒸気口パッキン7が設けられている。蒸気口パッキン7は、蒸気が蓋3の内部に流入するのを抑制する。
また、内蓋4の外周部には、鍋2のフランジ部2cの上面と当接する内蓋パッキン4aが設けられている。内蓋パッキン4aは、炊飯時及び保温時に、鍋2内に発生する蒸気が蒸気口4b以外から外部に流出するのを抑制する。
また蓋3には、内蓋の温度検知手段である蓋温度センサ11が取り付けられている。蓋温度センサ11は、内蓋4の温度を検知する。蓋温度センサ11は、内蓋4が蓋3に取り付けられたときに、内蓋4に当接するように設けられている。
加熱部5は、底面加熱コイル5aと、側面加熱コイル5bと、内蓋加熱コイル5cと、を含む。
底面加熱コイル5aは、本開示の第1のヒータに相当する。底面加熱コイル5aは、保護枠9の外側において、側面加熱コイル5bよりも鍋2の底部2aに近い位置に配置される。底面加熱コイル5aは、鍋2の底部2aを主に加熱する。さらに本実施の形態では、底面加熱コイル5aは、底内加熱コイル5a-1と底外加熱コイル5a-2とで構成されている。底内加熱コイル5a-1の形状は、中央部が開口されたリング状の形状である。底内加熱コイル5a-1は、保護枠9を介して底部2aの中央部周囲に対向するように配置されている。底外加熱コイル5a-2は、保護枠9を介して底部2aのコーナ部に対向するように配置されている。
側面加熱コイル5bは、本開示の第2のヒータに相当する。側面加熱コイル5bは、保護枠9の外側に配置される。側面加熱コイル5bは、底面加熱コイル5aとは独立して制御される。側面加熱コイル5bは、保護枠9を介して鍋2の側部2bと対向する位置に配置される。側面加熱コイル5bは、鍋2の側部2bを主に加熱する。なお、従来の側面加熱部は、鍋の側部が冷えて結露が発生するのを防ぐために設けられ、100w程度の電力を有するものが多い。これに対し、本実施の形態の側面加熱コイル5bは、鍋2に収容された調理物のうち、上側の水を加熱する目的のため設けられ、600w程度の電力で高火力が出せる構成とする。
なお、図2は、本実施の形態における、最大量炊飯時の鍋内における米20の高さと、第2のヒータである側面加熱コイル5bの位置関係を示す。最大量炊飯時とは、本実施の形態1の炊飯器100で炊飯可能と規定されている炊飯量のうち、最も多い炊飯量を炊飯するときをいう。また米20の高さは、米20のみを鍋2へ収容したとき(つまり鍋2に水21を収容していないとき)、又は米20と水21とを鍋2に入れた直後の、米20の高さをいう。図2において、最大量炊飯時における米20の高さを、高さTとする。高さTは、図2の線30の位置である。側面加熱コイル5bは、側面加熱コイル5bの高さ方向の略中心を通り、水平方向に平行な線(以下、中心線31という)が、線30より上側に位置するように、配置される。
図1の説明に戻り、内蓋加熱コイル5cは、蓋3において、内蓋4と対向する位置に配置される。内蓋加熱コイル5cは、内蓋4を加熱する。
底面温度センサ8は、保護枠9の底部の中央部分に設けられた開口9aに配置されている。底面温度センサ8は、本開示の温度検知部に相当する。底面温度センサ8は、鍋2が保護枠9に収納されたとき、鍋2の底部2aに当接するように配置されている。底面温度センサ8は、鍋2の底部2aの温度を検知する。つまり底面温度センサ8は、鍋2の底部2aの略中心部に当接して、熱伝導によって底部2aの温度を検知する。
側面温度センサ13は、保護枠9の側部の開口9bに配置される。より具体的には、側面温度センサ13は、図1の高さ方向において、底面加熱コイル5aと側面加熱コイル5bとの間に配置される。側面温度センサ13は、鍋2の側部2bの温度を検知するための温度検知手段である。側面温度センサ13は、保護枠9に鍋2が収納されたときに、鍋2の側部2bに当接するように配置されている。つまり側面温度センサ13は、鍋2の側部2bに当接して、熱伝導によって側部2bの温度を検知する。
制御部6は、炊飯器本体1の内部に搭載されている。制御部6は記憶部を有する。記憶部は、米20を炊飯するための複数の炊飯プログラムを記憶する。複数の炊飯プログラムのそれぞれは、各々が米の種類などに対応した複数の炊飯メニューのそれぞれに対応している。制御部6は、底面温度センサ8、側面温度センサ13、及び蓋温度センサ11のうちの少なくとも一つから得られた検知温度に基づいて、第1のヒータである底面加熱コイル5aと、第2のヒータである側面加熱コイル5bと、内蓋加熱コイル5cとのうちの少なくとも一つの駆動を制御し、それぞれの炊飯メニューに対応付けられた炊飯コースを実行する。炊飯コースについては後述する。
より具体的には、制御部6は、操作入力表示部12に入力された使用者の指示を受け取る。そして制御部6は、その指示に対応する炊飯プログラムと、検知温度と、に基づいて、第1のヒータである底面加熱コイル5aと第2のヒータである側面加熱コイル5bとのうちの少なくとも一方の駆動を制御し、炊飯コースを実行する。検知温度は、底面温度センサ8、側面温度センサ13、及び蓋温度センサ11のうちの少なくとも一つから得られる。なお、底面加熱コイル5aと側面加熱コイル5bとは独立して制御部6により制御される。
ここで、炊飯コースは、図8に示すように、吸水工程と、昇温工程と、沸騰維持工程と、むらし工程の、主として4つの工程で構成される。吸水工程は、鍋2内で米20を水21に浸して、予め米20に吸水させる工程である。吸水工程では、調理物(米20と水21)の温度は、調理物の沸騰温度よりも低い温度帯(以下、低温度帯という)に維持される。低温度帯は、たとえば60℃程度である。昇温工程は、鍋2内の水21の温度を、低温度帯から沸騰温度まで上昇させる工程である。沸騰維持工程は、鍋2内の水21の沸騰状態を維持して、米20の澱粉を糊化させ、糊化度を50%から80%程度まで引き上げる工程である。むらし工程は、予熱を利用して余分な水分を蒸発させ、米20の糊化度を100%近くまで引き上げる工程である。
2.動作及び作用
以上のように構成された炊飯器100について、以下図3~図8を用いてその動作及び作用を説明する。
以上のように構成された炊飯器100について、以下図3~図8を用いてその動作及び作用を説明する。
使用者は、図1に示すように、米20と、米20の量に対応した水21とを鍋2に入れて、鍋2を炊飯器本体1にセットする。使用者が、蓋3を閉めた後に、操作入力表示部12の炊飯開始ボタンを操作することで、炊飯コースの各工程が順に実施される。
炊飯コースは、図8に示すように、時間順に吸水工程、昇温工程、沸騰維持工程、及びむらし工程を含む。
まず、吸水工程において、制御部6は、鍋2の温度が米20の吸水に適した温度(例えば60℃)になるように、加熱部5を制御し、鍋2内の米20と水21とを加熱する。
ここで、本実施の形態における吸水工程では、図5の底面加熱コイル5a及び側面加熱コイル5bの動作と底面温度センサ8の検知温度を示す特性図に示すように、制御部6は、底面加熱コイル5aと側面加熱コイル5bとを適時駆動させて鍋2を加熱する。具体的には、例えば制御部6は、底面加熱コイル5aと側面加熱コイル5bとを、それぞれ交互に間欠駆動させる。さらに本実施の形態では、制御部6は、底面加熱コイル5aの一回ごとの駆動時間を、側面加熱コイル5bの一回ごとの駆動時間よりも短くなるように制御する。そして図5に示すように、底面温度センサ8が温度Aを検知すると、制御部6は、炊飯量推定モードを開始させ、経過時間の計測を開始させる。なお、温度Aは、炊飯量の推定を開始する温度として予め設定された温度である。温度Aは、本開示の第1の基準温度に相当する。
炊飯量推定モードを開始すると、制御部6は、第2のヒータである側面加熱コイル5bのみを動作させる。つまり制御部6は、第1のヒータである底面加熱コイル5aに、加熱動作を停止させる。側面加熱コイル5bは、鍋2を側部2bから加熱する。なお本実施の形態では、図2に示すように、側面加熱コイル5bは、炊飯量が最大の場合でも、側面加熱コイル5bの高さ方向の中心を通り、水平方向に平行な中心線31よりも下方に米20が位置するように配置されていることから、米を直接加熱しにくく、米20の上に位置する水21を、米20よりも先に加熱する。
そして鍋2の側部2bからの加熱により水21が対流し、水21から熱が伝わって米20が加熱され、さらに鍋2の底部2aにも熱が伝わって、底部2aの温度が上昇する。そして底部2aの温度を検知する底面温度センサ8が温度Bを検知すると、制御部6は、炊飯量推定モードにおける経過時間の計測を終了させる。温度Bは、炊飯量の推定を終了する温度として予め設定された温度である。温度Bは、本開示の第2の基準温度に相当する。なお、温度A及び温度Bは、いずれも吸水工程において維持される低温度帯以下の温度である。なお、低温度帯は、前述のとおり、60℃程度である。
炊飯量の推定を終了すると、制御部6は、側面加熱コイル5bのみによる加熱を停止させて、底面加熱コイル5aと側面加熱コイル5bと内蓋加熱コイル5cとによる加熱を適時再開する。
本実施の形態では、底面温度センサ8で検知される温度が、第1の基準温度である温度Aから第2の基準温度である温度Bまで温度が上昇するのにかかる時間は、調理物による負荷、すなわち炊飯量に比例して長くなる。ここで図6は、本実施の形態における、計測時間と検知温度との関係を、炊飯量(0.5合、3合、5.5合)ごとに示す特性図である。なお、1合は、約180.39ミリリットルとする。計測時間は、底面温度センサ8が温度Aを検知してから温度Bを検知するまでに要する時間である。図6に示すように、本実施の形態では、炊飯量が最小合数である0.5合のときの計測時間と、中間の合数である3合のときの計測時間と、最大合数である5.5合のときの計測時間との間には、それぞれ大きな差が生ずる。したがって、炊飯量の推定が容易にできる。つまり、計測時間の違いによって、調理物である炊飯量の容量を高精度に推定できる。
以上より本実施の形態では、吸水工程中に炊飯量推定モードを実行する。炊飯量推定モード中は、第1のヒータである底面加熱コイル5aを停止させる。そして炊飯量推定モード中は、第2のヒータである側面加熱コイル5bと底面温度センサ8の組合せを利用することで、調理物が加熱されてから、底面温度センサ8で検知する温度が上昇する。これにより、炊飯量に比例した計測時間を得ることができる。
動作の説明に戻り、底面温度センサ8が温度Bを検知すると、制御部6は、底面加熱コイル5aと、側面加熱コイル5bと、内蓋加熱コイル5cとを適時駆動させて、鍋2を加熱する昇温工程へ移行する(図8参照)。また昇温工程では、底面温度センサ8と、側面温度センサ13と、蓋温度センサ11とが適時温度を検知する。
そして昇温工程では、制御部6は、吸水工程で推定された炊飯量に基づいて、調理物を沸騰させるための火力を決定する。ここで、調理物を沸騰させるときの加熱時間は、ごはんの食感に大きく影響する。適正時間に対して加熱時間が短い、つまり火が強い場合は、硬いご飯となる。一方で、適正時間に対して加熱時間が長い、つまり火が弱い場合は、やわらかいご飯となる。従来は、昇温工程における沸騰までの時間で炊飯量の推定を行うために、炊飯量によらず一定の火力で調理物を沸騰させていた。したがって、例えば、炊飯量が中間量の場合は適正の火力でも、炊飯量が多い場合は調理物に対して火力が相対的に弱く、炊き上がった米がやわらかい食感を有する。また炊飯量が少ない場合は、調理物に対して火力が相対的に強く、炊き上がった米が硬い食感を有する。これに対し、本実施の形態では、吸水工程で炊飯量を推定する。つまり、昇温工程において、沸騰するまでの時間に炊飯量を推定する必要が無い。したがって、昇温工程において、沸騰するまでの時間は、炊飯量に応じて火力を調整できる。つまり、沸騰するまでの時間の炊飯量による差が低減する。
そして昇温工程の次の沸騰維持工程では、鍋2の水が無くなり、鍋2の温度が100℃を超えた所定値になるまで、底面加熱コイル5a、側面加熱コイル5b、及び内蓋加熱コイル5cは適時通電され、米と水とが加熱される。また沸騰維持工程では、底面温度センサ8と、側面温度センサ13と、蓋温度センサ11とが適時温度を検知する。
次にむらし工程では、炊き上がった米(以下、ごはんという)の温度を所定温度(例えば98℃)に保つように、底面加熱コイル5a、側面加熱コイル5b、及び内蓋加熱コイル5cの少なくとも一つが通電され、ごはんが蒸らされる。またむらし工程では、底面温度センサ8と、側面温度センサ13と、蓋温度センサ11の少なくとも一つが、所定のタイミングで温度を検知する。
以上のように、炊飯コースが終了すると、鍋2内のごはんの澱粉の「糊化」が適度に進行して、米20は食べられる状態となる。
炊飯器100は、上記の炊飯コースが終了すると、自動的に保温工程に移行する。保温工程では、ごはんが所定温度(例えば71℃)を保つように、底面加熱コイル5a、側面加熱コイル5b、及び内蓋加熱コイル5cが制御され、鍋2が温められて、ごはんが保温される。また保温工程では、底面温度センサ8と、側面温度センサ13と、蓋温度センサ11とが適時温度を検知する。
以下、本実施の形態の炊飯量の推定と、比較例における炊飯量の推定との、動作を比較する。
本実施の形態では、上述のとおり、吸水工程において、炊飯量を推定する。また本実施の形態では、炊飯量を推定する工程では、側面加熱コイル5bと底面温度センサ8とを用いる。比較例は、本実施の形態と同様に、吸水工程において炊飯量を推定する。ただし比較例では、炊飯量を推定する工程で、底面加熱コイル(5b)と、底面温度センサ(8)とを用いる。なお、比較例の炊飯器と本実施の形態における炊飯器100とは、炊飯量を推定する動作が異なるが、炊飯器の構成自体は同様とする。比較例の炊飯器において、本実施の形態と同様の構成の構成要素を、同じ符号に括弧を付して説明する。
図3は、比較例の炊飯器において、炊飯量を推定する場合の、底面加熱コイル(5a)の動作と底面温度センサ(8)の検知温度を示す特性図である。図4は、比較例の炊飯器における、計測時間と検知温度との関係を炊飯量(0.5合、3合、5.5合)ごとに示す特性図である。なお、図3及び図4に示す温度Aは、図5及び図6に示す温度Aと同じである。図3及び図4に示す温度Bは、図5及び図6に示す温度Bと同じである。
比較例の炊飯器では、吸水工程において、調理物を底面加熱コイル(5a)のみで加熱する。また比較例では、底面温度センサ(8)が温度Aを検知すると、制御部(6)は炊飯量推定モードに入り、経過時間の計測を開始させる。そして底面温度センサ(8)が温度Bを検知すると、制御部(6)は経過時間の計測を終了させる。しかし底面加熱コイル(5a)と底面温度センサ(8)とは近傍に配置されていることから、炊飯量に関係なく、検知される温度はすぐに上昇する。そして底面温度センサ(8)は、温度Bをすぐに検知してしまい、計測時間は短い。そのため、図4に示すように、炊飯量の最小合数である0.5合から最大合数5.5合までの間では、計測時間に顕著な差を生じない。したがって比較例では、炊飯量の推定が難しい。
これに対し、本実施の形態では、上述のとおり、図6に示すように、炊飯量に応じて計測時間が大きく変わる。したがって本実施の形態では、炊飯量の推定が容易となる。
図7は、本実施の形態における、炊飯量と計測時間との関係を、比較例及び他の比較例と比較するグラフである。図7の比較例は、図3及び図4の比較例と同じである。比較例が、吸水工程で炊飯量を推定するのに対し、図7の他の比較例は、従来の炊飯量の推定と同様に、昇温工程において炊飯量を推定する例を示す。他の比較例と本実施の形態の炊飯量を推定する動作は互いに異なるが、炊飯器の構成自体は同様とする。他の比較例において、本実施の形態と同様の構成の構成要素を、同じ符号に括弧を付して説明する。
図7の他の比較例における計測時間Cは、昇温工程において、底面温度センサ(8)が炊飯量の推定を開始する温度を検知してから沸騰するまでにかかる時間である。炊飯量の推定を開始する温度と沸騰温度との温度差は、温度Aと温度Bとの温度差と同じとする。他の比較例では、炊飯量を推定するとき、底面加熱コイル(5a)で加熱する。また沸騰の検知は、蓋に設けられた蓋温度センサ(11)で行う。すなわち調理物が加熱されて沸騰に至ると、蒸気が内蓋を加熱して、内蓋に当接する蓋温度センサ(11)の温度が上昇する。したがって、他の比較例では、調理物全体が沸騰してから沸騰が検知されるため、炊飯量に比例した計測時間が計測される。
図7の比較例における計測時間Dは、図3及び図4の計測時間と同様に、吸水工程において、底面温度センサ(8)が温度Aを検知してから、底面温度センサ(8)が温度Bを検知するまでにかかる時間である。この比較例では、上述のとおり、炊飯量を推定するとき、底面加熱コイル(5a)で加熱する。そのため、鍋(2)の底部(2a)の温度は、調理物よりも先に上昇する。したがって、底面温度センサ(8)で温度を検知すると、底面加熱コイル(5a)及び底面温度センサ(8)の位置が近いという構成上の理由から、炊飯量に関係なく、検出温度はすぐに上昇する。すなわち、炊飯量による計測時間の差は殆どなく、炊飯量を推定することが難しい。
図7の計測時間Eは、本実施の形態における計測時間である。すなわち、計測時間Eは、吸水工程において、炊飯量を推定するときの計測時間である。また上述のとおり、本実施の形態では、炊飯量を推定するとき、側面加熱コイル5bで加熱する。そして底面温度センサ8で鍋2の底部2aの温度を検知する。つまり側面加熱コイル5bと底面温度センサ8の間にある調理物が加熱された結果として、底部2aが加熱され、底面温度センサ8の検知温度が上昇する。これにより計測時間Eは、従来の昇温工程における計測時間Cとほぼ同じ計測時間となる。したがって、本実施の形態では、炊飯量に比例した計測時間が得られる。以上のように本実施の形態では、昇温工程の前段の吸水工程において、従来の昇温工程における炊飯量の推定と同等の精度で、炊飯量を推定できる。
まとめると、本実施の形態の炊飯器100は、吸水工程において、側面加熱コイル5bにより加熱する。そして本実施の形態の炊飯器100は、調理物の温度を、底面温度センサ8で検知する。また本実施の形態の炊飯器100は、底面温度センサ8の検知する温度が上昇する時間を計測し、計測時間に基づいて炊飯量を推定する。これにより、本実施の形態では、精度よく炊飯量の推定を行うことができる。また、本実施の形態では、昇温工程において、沸騰に要する時間を、炊飯量に関わらず一定となるように、火力を制御できる。つまり昇温工程では、制御部6は、底面加熱コイル5a、側面加熱コイル5b、及び内蓋加熱コイル5cを、調理物の加熱状態に応じて適時駆動させる。これにより、炊飯量による食感のバラつきを低減することができて、おいしいご飯を炊飯できる炊飯器100を実現できる。
3.効果等
以上のように、本実施の形態の炊飯器100は、鍋2と、温度検知部(底面温度センサ8)と、第1のヒータ(底面加熱コイル5a)と、第2のヒータ(側面加熱コイル5b)と、制御部6と、を備える。鍋2は、底部2aと側部2bとを有する。鍋2は調理物を収容する。底面温度センサ8は、底部2aの温度を検知する。底面加熱コイル5aは、底部2aを加熱する。側面加熱コイル5bは、側部2bを加熱する。制御部6は、予め設定された炊飯コースに基づいて底面加熱コイル5a及び側面加熱コイル5bを制御する。炊飯コースは、調理物の沸騰温度より低い低温度帯を維持する吸水工程と、低温度帯から沸騰温度まで昇温させる昇温工程と、を含む。制御部6は、吸水工程において、底面温度センサ8が第1の基準温度を検知してから、第1の基準温度よりも高い第2の基準温度を検知するまでの間、底面加熱コイル5aに鍋2を加熱させず、側面加熱コイル5bに鍋2を加熱させる。
以上のように、本実施の形態の炊飯器100は、鍋2と、温度検知部(底面温度センサ8)と、第1のヒータ(底面加熱コイル5a)と、第2のヒータ(側面加熱コイル5b)と、制御部6と、を備える。鍋2は、底部2aと側部2bとを有する。鍋2は調理物を収容する。底面温度センサ8は、底部2aの温度を検知する。底面加熱コイル5aは、底部2aを加熱する。側面加熱コイル5bは、側部2bを加熱する。制御部6は、予め設定された炊飯コースに基づいて底面加熱コイル5a及び側面加熱コイル5bを制御する。炊飯コースは、調理物の沸騰温度より低い低温度帯を維持する吸水工程と、低温度帯から沸騰温度まで昇温させる昇温工程と、を含む。制御部6は、吸水工程において、底面温度センサ8が第1の基準温度を検知してから、第1の基準温度よりも高い第2の基準温度を検知するまでの間、底面加熱コイル5aに鍋2を加熱させず、側面加熱コイル5bに鍋2を加熱させる。
この構成により本実施の形態では、吸水工程において、調理物の温度を高精度に検知できる。したがって、検知した温度変化に基づいて炊飯量を推定する場合に、高精度に推定できる。なお、従来は、炊飯量の推定のために、昇温工程において、火力を一定にしていた。しかし本実施の形態では、昇温工程において、炊飯量に応じて火力を変えることができる。具体的には炊飯量の少ないときは弱火、炊飯量の多いときは強火として、沸騰までにかかる時間が炊飯量によって大きく変わるのを抑制できる。これにより、本実施の形態の炊飯器100は、炊飯量による食味の差を低減することができて、より食味のよいごはんを炊飯できる。
また本実施の形態では、制御部6は、吸水工程において、第1の基準温度を検知してから第2の基準温度を検知するまでの時間に基づいて、調理物の容量を推定するように構成される。
これにより本実施の形態では、吸水工程において、炊飯量の推定を高精度に実行できる。その結果、制御部6は、昇温工程において、炊飯量に応じて火力を制御できる。したがって、炊飯器100は、より食味のよいごはんを炊飯できる。
また、本実施の形態では、調理物は米を含む。鍋に収容できる米の最大量は、予め規定される。第2のヒータである側面加熱コイル5bは、側面加熱コイル5bの高さ方向の中心を通り、水平方向に平行な線が、鍋2に最大量の米を入れたときの米の高さよりも上に位置するように配置される。なお、このときの米の高さは、水を入れる前に、米のみを鍋2に入れたときの米の高さ、又は鍋2に水を入れた直後の米の高さとする。
この構成により、本実施の形態の炊飯器100は、吸水工程において、米よりも水を先に加熱できる。したがって本実施の形態は、吸水工程において、炊飯量をより精度よく推定できる。なお、従来は、昇温工程において、炊飯量の推定のために火力を一定にしていた。しかし本実施の形態では、昇温工程において、炊飯量に応じて火力を変えることができる。具体的には、炊飯量の少ないときは弱火、炊飯量の多いときは強火として、沸騰までにかかる時間を炊飯量に関わらず一定とできる。これにより炊飯量による食味の差を低減できる。その結果、炊飯器100は、より食味のよいごはんを炊飯できる。
4.他の実施の形態
本実施の形態では、第1のヒータ及び第2のヒータとして加熱コイルを例に挙げたが、第1のヒータ及び第2のヒータの少なくとも一方は、加熱コイル以外によるヒータであってもよい。具体的には、第1のヒータ及び第2のヒータの少なくとも一方は、電磁波加熱又は誘導加熱などを用いたヒータでもよい。
本実施の形態では、第1のヒータ及び第2のヒータとして加熱コイルを例に挙げたが、第1のヒータ及び第2のヒータの少なくとも一方は、加熱コイル以外によるヒータであってもよい。具体的には、第1のヒータ及び第2のヒータの少なくとも一方は、電磁波加熱又は誘導加熱などを用いたヒータでもよい。
また本実施の形態では、吸水工程における炊飯量推定モード中において、側面加熱コイル5bのみを用いて調理物を加熱したが、側面加熱コイル5bに加えて、底面と離れた位置にあるヒータ(たとえば内蓋加熱コイル5c)を用いてもよい。いずれの場合も、炊飯量推定モード中に底面加熱コイル5aが通電されなければよい。
また本実施の形態では、昇温工程、沸騰維持工程、むらし工程、及び保温工程において、底面加熱コイル5a、側面加熱コイル5b、及び内蓋加熱コイル5cが適時駆動されると説明したが、適時駆動とは、底面加熱コイル5a、側面加熱コイル5b、及び内蓋加熱コイル5cの全てが駆動されるだけでなく、底面加熱コイル5a、側面加熱コイル5b、及び内蓋加熱コイル5cの少なくともいずれか一つが駆動されることを含む。
また本実施の形態では、昇温工程、沸騰維持工程、むらし工程、及び保温工程において、底面温度センサ8、側面温度センサ13、及び蓋温度センサ11が適時温度を検知すると説明したが、「適時温度を検知する」とは、底面温度センサ8、側面温度センサ13、及び蓋温度センサ11の全てが温度を検知するだけでなく、底面温度センサ8、側面温度センサ13、及び蓋温度センサ11の少なくともいずれか一つが温度を検知することを含む。
また本実施の形態では、吸水工程において、炊飯量の推定を開始する温度Aに至るまでは、底面加熱コイル5a及び側面加熱コイル5bを交互に間欠駆動させたが、この加熱制御は一例であり、いずれか一方を間欠駆動させてもよい。またいずれか一方を、所定の温度まで常時駆動させてもよい。
以上のように、本開示にかかる炊飯器は、調理物の加熱に関して、調理物の量の推定を、沸騰前の早い段階で行うことができ、沸騰させるときの加熱時間を、調理物の量に関わらず一定とする制御によって、食味よく調理ができる調理器の用途に適用できる。
1 炊飯器本体
2 鍋
2a 底部
2b 側部
2c フランジ
3 蓋
4 内蓋
4a 内蓋パッキン
4b 蒸気口
5 加熱部
5a 底面加熱コイル
5a-1 底内加熱コイル
5a-2 底外加熱コイル
5b 側面加熱コイル
5c 内蓋加熱コイル
6 制御部
7 蒸気口パッキン
8 底面温度センサ
9 保護枠
9a 開口
9b 開口
10 蒸気筒
11 蓋温度センサ
12 操作入力表示部
13 側面温度センサ
20 米
21 水
30 線
31 中心線
100 炊飯器
A 温度(炊飯量推定開始温度)
B 温度(炊飯量推定終了温度)
C 他の比較例の昇温工程における計測時間
D 比較例の吸水工程における計測時間
E 本実施の形態の吸水工程における計測時間
2 鍋
2a 底部
2b 側部
2c フランジ
3 蓋
4 内蓋
4a 内蓋パッキン
4b 蒸気口
5 加熱部
5a 底面加熱コイル
5a-1 底内加熱コイル
5a-2 底外加熱コイル
5b 側面加熱コイル
5c 内蓋加熱コイル
6 制御部
7 蒸気口パッキン
8 底面温度センサ
9 保護枠
9a 開口
9b 開口
10 蒸気筒
11 蓋温度センサ
12 操作入力表示部
13 側面温度センサ
20 米
21 水
30 線
31 中心線
100 炊飯器
A 温度(炊飯量推定開始温度)
B 温度(炊飯量推定終了温度)
C 他の比較例の昇温工程における計測時間
D 比較例の吸水工程における計測時間
E 本実施の形態の吸水工程における計測時間
Claims (2)
- 底部と側部とを有し、調理物を収容する鍋と、
前記底部の温度を検知する温度検知部と、
前記底部を加熱する第1のヒータと、
前記側部を加熱する第2のヒータと、
予め設定された炊飯コースにおいて、前記第1のヒータ及び前記第2のヒータを制御するように構成された制御部と、を備え、
前記炊飯コースは、前記調理物の沸騰温度より低い低温度帯を維持する吸水工程と、前記低温度帯から前記沸騰温度まで昇温させる昇温工程と、を含み、
前記制御部は、前記吸水工程において、
前記温度検知部が、第1の基準温度を検知してから前記第1の基準温度よりも高い第2の基準温度を検知するまでの間、前記第1のヒータに前記鍋を加熱させず、前記第2のヒータに前記鍋を加熱させ、
前記温度検知部が、前記第1の基準温度を検知してから前記第2の基準温度を検知するまでの時間に基づいて、前記調理物の容量を推定するように構成された、
炊飯器。 - 前記調理物は米を含み、
前記第2のヒータは、前記第2のヒータの高さ方向の中心を通り、水平方向に平行な線が、前記鍋に最大量の前記米を入れたときの前記米の高さより上に位置するように配置される、
請求項1記載の炊飯器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-207447 | 2016-10-24 | ||
JP2016207447A JP2018068326A (ja) | 2016-10-24 | 2016-10-24 | 炊飯器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018079140A1 true WO2018079140A1 (ja) | 2018-05-03 |
Family
ID=62024825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/034038 WO2018079140A1 (ja) | 2016-10-24 | 2017-09-21 | 炊飯器 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018068326A (ja) |
WO (1) | WO2018079140A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111096650B (zh) * | 2018-10-26 | 2022-01-28 | 佛山市顺德区美的电热电器制造有限公司 | 烹饪控制方法、装置、烹饪器具和计算机可读存储介质 |
CN113397381A (zh) * | 2021-08-06 | 2021-09-17 | 珠海格力电器股份有限公司 | 烧水装置的烧水方法、烧水装置及计算机可读存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11265A (ja) * | 1997-06-10 | 1999-01-06 | Sharp Corp | 電気炊飯器 |
JP2002253424A (ja) * | 2001-03-05 | 2002-09-10 | Hitachi Hometec Ltd | 誘導加熱式炊飯器 |
JP2008067899A (ja) * | 2006-09-14 | 2008-03-27 | Matsushita Electric Ind Co Ltd | 炊飯器 |
JP2010012138A (ja) * | 2008-07-07 | 2010-01-21 | Tiger Vacuum Bottle Co Ltd | 電気炊飯器 |
JP2013081590A (ja) * | 2011-10-07 | 2013-05-09 | Mitsubishi Electric Corp | 炊飯器 |
-
2016
- 2016-10-24 JP JP2016207447A patent/JP2018068326A/ja active Pending
-
2017
- 2017-09-21 WO PCT/JP2017/034038 patent/WO2018079140A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11265A (ja) * | 1997-06-10 | 1999-01-06 | Sharp Corp | 電気炊飯器 |
JP2002253424A (ja) * | 2001-03-05 | 2002-09-10 | Hitachi Hometec Ltd | 誘導加熱式炊飯器 |
JP2008067899A (ja) * | 2006-09-14 | 2008-03-27 | Matsushita Electric Ind Co Ltd | 炊飯器 |
JP2010012138A (ja) * | 2008-07-07 | 2010-01-21 | Tiger Vacuum Bottle Co Ltd | 電気炊飯器 |
JP2013081590A (ja) * | 2011-10-07 | 2013-05-09 | Mitsubishi Electric Corp | 炊飯器 |
Also Published As
Publication number | Publication date |
---|---|
JP2018068326A (ja) | 2018-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013035228A1 (ja) | 炊飯器 | |
JP6305421B2 (ja) | 加熱調理器 | |
WO2018079140A1 (ja) | 炊飯器 | |
JP2012010873A (ja) | 電気炊飯器 | |
JP5496168B2 (ja) | 加熱調理器 | |
JP2016112182A (ja) | 電気炊飯器 | |
JP6341080B2 (ja) | 電気炊飯器 | |
JP6355399B2 (ja) | 加熱調理器及び加熱制御方法 | |
JP5389240B1 (ja) | 炊飯器 | |
JP5945800B2 (ja) | 加熱調理器 | |
JP7407520B2 (ja) | 加熱調理器 | |
JP6239014B2 (ja) | 炊飯器 | |
JP2012165793A (ja) | 炊飯器 | |
JP5367042B2 (ja) | 炊飯器 | |
JP2015217056A (ja) | 炊飯器 | |
JP6488247B2 (ja) | 加熱調理器 | |
JP2015217055A (ja) | 炊飯器 | |
JPH0324211B2 (ja) | ||
JP5934902B2 (ja) | 加熱調理器 | |
JP2013120005A (ja) | 加熱調理器 | |
JP2013106817A (ja) | 炊飯器 | |
JP2005245821A (ja) | 調理器 | |
JP2018068327A (ja) | 炊飯器 | |
JP2009291267A (ja) | 炊飯器 | |
JP6008888B2 (ja) | 加熱調理器及び加熱制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17865849 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17865849 Country of ref document: EP Kind code of ref document: A1 |