[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016076300A1 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
WO2016076300A1
WO2016076300A1 PCT/JP2015/081562 JP2015081562W WO2016076300A1 WO 2016076300 A1 WO2016076300 A1 WO 2016076300A1 JP 2015081562 W JP2015081562 W JP 2015081562W WO 2016076300 A1 WO2016076300 A1 WO 2016076300A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous semiconductor
semiconductor layer
type amorphous
region
photoelectric conversion
Prior art date
Application number
PCT/JP2015/081562
Other languages
English (en)
French (fr)
Inventor
督章 國吉
神川 剛
真臣 原田
敏彦 酒井
柳民 鄒
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016076300A1 publication Critical patent/WO2016076300A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to a photoelectric conversion element.
  • JP-T-2010-503222 discloses an example of a back junction solar cell in which a passivation layer and a back contact layer are formed on the back surface of a semiconductor substrate.
  • a passivation layer is formed on the entire back surface of the semiconductor substrate, an opening is formed in the passivation layer by etching using hydrogen plasma.
  • the back contact layer is formed in the opening of the passivation layer.
  • JP-T-2010-503222 an opening penetrating in the thickness direction is formed in the passivation layer by etching the passivation layer until it reaches the back surface of the semiconductor substrate. As a result, the interface portion between the semiconductor substrate and the passivation layer is damaged, so that the passivation property is deteriorated and the contact resistance may be increased.
  • the present disclosure aims to provide a photoelectric conversion element that can ensure good passivation and reduce contact resistance.
  • the photoelectric conversion element according to the present disclosure is formed on a semiconductor substrate, one surface of the semiconductor substrate, and has at least one concave portion on the surface, and is formed on a passivation layer made of an intrinsic amorphous semiconductor, and on the passivation layer.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of the photoelectric conversion element according to the first embodiment.
  • FIG. 2A is a diagram showing a first step in the method of manufacturing the photoelectric conversion element shown in FIG.
  • FIG. 2B is a diagram showing a second step in the method of manufacturing the photoelectric conversion element shown in FIG.
  • FIG. 2C is a diagram showing a third step in the method of manufacturing the photoelectric conversion element shown in FIG.
  • FIG. 2D is a diagram showing a fourth step in the method of manufacturing the photoelectric conversion element shown in FIG.
  • FIG. 2E is a diagram showing a fifth step in the method for manufacturing the photoelectric conversion element shown in FIG. 1.
  • 2F is a diagram showing a sixth step in the method of manufacturing the photoelectric conversion element shown in FIG. FIG.
  • FIG. 2G is a diagram showing a seventh step in the method of manufacturing the photoelectric conversion element shown in FIG.
  • FIG. 2H is a diagram showing an eighth step in the method of manufacturing the photoelectric conversion element shown in FIG.
  • FIG. 2I is a cross-sectional view illustrating a schematic configuration of the photoelectric conversion element completed through the first to eighth steps.
  • FIG. 3 is a diagram showing the shape of the recess formed in the fourth step.
  • FIG. 4A is a diagram showing the shape of the n-type amorphous semiconductor layer formed in the fifth step.
  • FIG. 4B is a diagram showing another shape of the n-type amorphous semiconductor layer formed in the fifth step.
  • FIG. 5 is a diagram showing the lifetime of the photoelectric conversion element for each thickness of the passivation layer.
  • FIG. 5 is a diagram showing the lifetime of the photoelectric conversion element for each thickness of the passivation layer.
  • FIG. 6A is a diagram showing contact resistance for each thickness of a portion where an n-type amorphous semiconductor layer is disposed in the passivation layer.
  • FIG. 6B is a diagram showing contact resistance for each thickness of a portion where the p-type amorphous semiconductor layer is disposed in the passivation layer.
  • FIG. 7 is a cross-sectional view illustrating a schematic configuration of the photoelectric conversion element according to the second embodiment.
  • FIG. 8A is a diagram showing one step in the method of manufacturing the photoelectric conversion element shown in FIG.
  • FIG. 8B is a diagram illustrating a step in the method for manufacturing the photoelectric conversion element illustrated in FIG. 7.
  • FIG. 8C is a diagram showing one step in the method for manufacturing the photoelectric conversion element shown in FIG. 7.
  • FIG. 8A is a diagram showing contact resistance for each thickness of a portion where an n-type amorphous semiconductor layer is disposed in the passivation layer.
  • FIG. 6B is a diagram showing contact resistance for
  • FIG. 8D is a cross-sectional view showing a schematic configuration of the photoelectric conversion element completed through the steps shown in FIGS. 8A to 8C.
  • FIG. 9 is a cross-sectional view illustrating a schematic configuration of the photoelectric conversion element according to the third embodiment.
  • FIG. 10 is a cross-sectional view illustrating a schematic configuration of the photoelectric conversion element according to the fourth embodiment.
  • FIG. 11A is a diagram illustrating a step in the method of manufacturing the photoelectric conversion element illustrated in FIG. 10.
  • FIG. 11B is a diagram illustrating a step in the method for manufacturing the photoelectric conversion element illustrated in FIG. 10.
  • FIG. 11C is a diagram illustrating a step in the method of manufacturing the photoelectric conversion element illustrated in FIG. 10.
  • FIG. 11A is a diagram illustrating a step in the method of manufacturing the photoelectric conversion element illustrated in FIG. 10.
  • FIG. 11B is a diagram illustrating a step in the method for manufacturing the photoelectric conversion element illustrated in FIG. 10.
  • FIG. 11D is a diagram illustrating a step in the method of manufacturing the photoelectric conversion element illustrated in FIG. 10.
  • FIG. 11E is a cross-sectional view showing a schematic configuration of the photoelectric conversion element completed through the steps shown in FIGS. 11A to 11D.
  • FIG. 12 is a cross-sectional view illustrating a schematic configuration of the photoelectric conversion element according to the fifth embodiment.
  • FIG. 13 is a schematic diagram illustrating a configuration example of a photoelectric conversion module according to the sixth embodiment.
  • FIG. 14 is a schematic diagram illustrating a configuration example of the solar power generation system according to the seventh embodiment.
  • FIG. 15 is a schematic diagram illustrating a configuration example of the photoelectric conversion module array illustrated in FIG. 14.
  • FIG. 16 is a schematic diagram illustrating another configuration example of the solar power generation system according to the seventh embodiment.
  • FIG. 17 is a schematic diagram illustrating a configuration example of the solar power generation system according to the eighth embodiment.
  • FIG. 18 is a schematic diagram illustrating another configuration example of the solar power generation system according to the eighth embodiment.
  • the photoelectric conversion element according to the embodiment is formed on a semiconductor substrate, one surface of the semiconductor substrate, and has at least one concave portion on the surface, and is formed on a passivation layer made of an intrinsic amorphous semiconductor, and on the passivation layer.
  • the passivation layer is interposed between the first and second amorphous semiconductor layers and the semiconductor substrate, the semiconductor is formed when the first and second amorphous semiconductor layers are formed.
  • the interface portion between the substrate and the passivation layer is not easily damaged. For this reason, favorable passivation property can be ensured.
  • At least one of the first and second amorphous semiconductor layers is disposed in the recess provided on the surface of the passivation layer. That is, in the passivation layer, the thickness of at least one of the portion where the first amorphous semiconductor layer is disposed and the portion where the second amorphous semiconductor layer is disposed is smaller than the thickness of the other portion. For this reason, the contact resistance between the semiconductor substrate and the passivation layer can be reduced.
  • Both the first amorphous semiconductor layer and the second amorphous semiconductor layer may be disposed in the recess (second configuration).
  • the thickness of both the portion where the first amorphous semiconductor layer is disposed and the portion where the second amorphous semiconductor layer is disposed is smaller than the thickness of the other portion. Become. For this reason, the contact resistance between the passivation layer and the semiconductor substrate can be further reduced.
  • the thickness of the passivation layer in the region where the first amorphous semiconductor layer is in contact may be different from the thickness in the region where the second amorphous semiconductor layer is in contact (third configuration).
  • the thickness of the region in contact with the first amorphous semiconductor layer and the thickness of the region in contact with the second amorphous semiconductor layer can be determined according to the characteristics of the photoelectric conversion element. For this reason, passivation property can be improved efficiently.
  • the first amorphous semiconductor layer may have an n-type conductivity
  • the second amorphous semiconductor layer may have a p-type conductivity.
  • the thickness in the region in contact with the second amorphous semiconductor layer may be larger than the thickness in the region in contact with the first amorphous semiconductor layer (fourth configuration).
  • the passivation layer is formed so that the thickness of the region in contact with the second amorphous semiconductor layer having the p-type conductivity is relatively large.
  • the passivation layer may have a thickness of 5 nm to 20 nm in a portion where no recess is provided (fifth configuration).
  • the portion of the passivation layer where the first and second amorphous semiconductor layers are not disposed has a sufficient thickness to protect the semiconductor substrate. Therefore, recombination of carriers (electrons and holes) can be suppressed in a region corresponding to the first and second amorphous semiconductor layers in the semiconductor substrate, and good passivation can be realized. .
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of the photoelectric conversion element according to the first embodiment.
  • the photoelectric conversion element 10 includes a semiconductor substrate 1, an antireflection film 2, a passivation layer 3, an n-type amorphous semiconductor layer 4, a p-type amorphous semiconductor layer 5, an electrode. 6 and 7.
  • the semiconductor substrate 1 is, for example, an n-type single crystal silicon substrate.
  • the semiconductor substrate 1 has a thickness of 100 to 150 ⁇ m, for example.
  • a texture structure is formed on one surface of the semiconductor substrate 1.
  • the surface on which the texture structure is formed is referred to as a light receiving surface, and the surface opposite to the light receiving surface is referred to as a back surface.
  • the antireflection film 2 is formed on the light receiving surface of the semiconductor substrate 1.
  • the antireflection film 2 is made of, for example, a silicon nitride film.
  • the antireflection film 2 has a film thickness of 60 nm, for example.
  • the passivation layer 3 is formed on the back surface of the semiconductor substrate 1.
  • the passivation layer 3 has a plurality of recesses 34a and 34b on the surface.
  • the recesses 34a and 34b are formed in the passivation layer 3 by, for example, etching using hydrogen plasma.
  • the upper surface in the thickness direction of the passivation layer 3 includes a first region 31 in contact with the n-type amorphous semiconductor layer 4 and a second region 32 in contact with the p-type amorphous semiconductor layer 5.
  • the upper surface in the thickness direction of the passivation layer 3 further includes a third region 33 where neither the n-type amorphous semiconductor layer 4 nor the p-type amorphous semiconductor layer 5 is in contact.
  • region 31 is an area
  • the bottom surface of the recess 34 a does not reach the interface between the semiconductor substrate 1 and the passivation layer 3.
  • the bottom surface of the recess 34 a is positioned above the interface between the semiconductor substrate 1 and the passivation layer 3 in the thickness direction.
  • the thickness T31 of the passivation layer 3 in the first region 31 is smaller than the thickness T33 of the passivation layer 3 in the third region 33.
  • the thickness T31 can be appropriately determined within a range of 2 to 10 nm, for example.
  • region 32 is an area
  • the bottom surface of the recess 34 b does not reach the interface between the semiconductor substrate 1 and the passivation layer 3. That is, the bottom surface of the recess 34 b is positioned above the interface between the semiconductor substrate 1 and the passivation layer 3 in the thickness direction.
  • the thickness T32 of the passivation layer 3 in the second region 32 is smaller than the thickness T33 of the passivation layer 3 in the third region 33.
  • the thickness T32 can be appropriately determined within a range of 2 to 10 nm, for example.
  • the thickness T32 in the second region 32 is different from the thickness T31 in the first region 31.
  • the thickness T32 is larger than the thickness T31.
  • the thickness T32 may be smaller than the thickness T31 or may be equal to the thickness T31.
  • the recesses 34a and 34b are provided so as not to overlap each other. That is, the first region 31 and the second region 32 are spaced apart in the in-plane direction of the semiconductor substrate 1. A third region 33 is interposed between the first region 31 and the second region 32 in the in-plane direction of the semiconductor substrate 1.
  • the distance G between the first region 31 and the second region 32 in the in-plane direction of the semiconductor substrate 1 is preferably 250 ⁇ m or less.
  • the interval G is the shortest distance between the edge of the first region 31 and the edge of the second region 32 in the in-plane direction of the semiconductor substrate 1.
  • region 33 is an area
  • the thickness T33 in the third region 33 can be set in the range of 5 nm to 20 nm.
  • the n-type amorphous semiconductor layer 4 is formed on the passivation layer 3. More specifically, the n-type amorphous semiconductor layer 4 is formed in the recess 34a. Therefore, the n-type amorphous semiconductor layer 4 is in contact with the bottom surface of the recess 34 a that is the first region 31.
  • the thickness of the n-type amorphous semiconductor layer 4 is, for example, 3 to 50 nm.
  • the n-type amorphous semiconductor layer 4 is an amorphous semiconductor layer having n-type conductivity and containing hydrogen.
  • the n-type amorphous semiconductor layer 4 contains, for example, phosphorus (P) as an n-type dopant.
  • the n-type amorphous semiconductor layer 4 includes, for example, n-type amorphous silicon, n-type amorphous silicon germanium, n-type amorphous germanium, n-type amorphous silicon carbide, and n-type amorphous silicon nitride. N-type amorphous silicon oxide, n-type amorphous silicon oxynitride, n-type amorphous silicon carbon oxide, or the like.
  • the p-type amorphous semiconductor layer 5 is formed on the passivation layer 3. More specifically, the p-type amorphous semiconductor layer 5 is formed in the recess 34b. Therefore, the p-type amorphous semiconductor layer 5 is in contact with the bottom surface of the recess 34 b that is the second region 32.
  • the thickness of the p-type amorphous semiconductor layer 5 is, for example, 5 to 50 nm.
  • the p-type amorphous semiconductor layer 5 is an amorphous semiconductor layer having p-type conductivity and containing hydrogen.
  • the p-type amorphous semiconductor layer 5 includes, for example, boron (B) as a p-type dopant.
  • the p-type amorphous semiconductor layer 5 includes, for example, p-type amorphous silicon, p-type amorphous silicon germanium, p-type amorphous germanium, p-type amorphous silicon carbide, and p-type amorphous silicon nitride. , P-type amorphous silicon oxide, p-type amorphous silicon oxynitride, p-type amorphous silicon carbon oxide, or the like.
  • the second region 32 is arranged away from the first region 31 in the in-plane direction of the semiconductor substrate 1. Therefore, on the surface of the passivation layer 3, the p-type amorphous semiconductor layer 5 provided on the second region 32 is disposed away from the n-type amorphous semiconductor layer 4 provided on the first region 31. .
  • a plurality of n-type amorphous semiconductor layers 4 and a plurality of p-type amorphous semiconductor layers 5 are alternately arranged in the in-plane direction of the semiconductor substrate 1 on the passivation layer 3. .
  • the electrode 6 is formed on the n-type amorphous semiconductor layer 4.
  • the electrode 7 is formed on the p-type amorphous semiconductor layer 5.
  • each electrode 6 and 7 may have a laminated structure.
  • each electrode 6 and 7 may include a transparent conductive layer and a metal layer.
  • the thickness of the transparent conductive layer of each electrode 6 and 7 can be 3 to 100 nm, for example.
  • the thickness of the metal layer of each electrode 6 and 7 is preferably 50 nm or more.
  • the transparent conductive layer of the electrode 6 is preferably made of a material having high adhesion to the n-type amorphous semiconductor layer 4.
  • the transparent conductive layer of the electrode 7 is preferably made of a material having high adhesion to the p-type amorphous semiconductor layer 5.
  • the metal layers of the electrodes 6 and 7 are preferably made of a metal having high conductivity.
  • the transparent conductive layers of the electrodes 6 and 7 can be made of, for example, ITO (Indium Tin Oxide), ZnO, or IWO (Indium Tungsten Oxide).
  • the metal layers of the electrodes 6 and 7 are, for example, silver (Ag), nickel (Ni), aluminum (Al), copper (Cu), tin (Sn), platinum (Pt), gold (Au), chromium (Cr ), Tungsten (W), cobalt (Co), titanium (Ti), alloys thereof, or laminated films thereof.
  • the electrodes 6 and 7 may not include the above-described transparent conductive layer or metal layer.
  • the metal layer of each electrode 6, 7 is made of Ti, Ni, Al, Cr, etc., and has an adhesion layer having a thickness of about 1 to 10 nm, Al, It can have a laminated structure with a light reflecting metal layer mainly composed of Ag or the like.
  • FIG. 1 Manufacturing method of photoelectric conversion element
  • the semiconductor substrate 1 shown in FIG. 2A is prepared (first step).
  • a wafer having a thickness of 100 to 300 ⁇ m is cut out from bulk silicon, and etching for removing a damaged layer on the wafer surface and etching for adjusting the thickness are performed.
  • a protective film is formed on one surface of the etched wafer.
  • silicon oxide, silicon nitride, or the like is used for the protective film.
  • wet etching is performed on the wafer on which the protective film is formed using an alkaline solution such as NaOH or KOH (for example, an aqueous solution of KOH: 1 to 5 wt%, isopropyl alcohol: 1 to 10 wt%).
  • an alkaline solution such as NaOH or KOH
  • KOH for example, an aqueous solution of KOH: 1 to 5 wt%, isopropyl alcohol: 1 to 10 wt%.
  • the antireflection film 2 is formed on the light receiving surface of the semiconductor substrate 1, that is, the surface on which the texture structure is formed (second step).
  • the antireflection film 2 can be formed, for example, by sequentially stacking a silicon oxide film and a silicon nitride film on the light receiving surface of the semiconductor substrate 1.
  • the silicon oxide film can be formed by subjecting the light receiving surface of the semiconductor substrate 1 to thermal oxidation or wet treatment.
  • the thermal oxidation treatment for example, the semiconductor substrate 1 is heated to 900 to 1000 ° C. in an atmosphere of oxygen or water vapor.
  • wet processing for example, the semiconductor substrate 1 is immersed in hydrogen peroxide, nitric acid, ozone water, or the like, and then heated to 800 to 1000 ° C. in a dry atmosphere.
  • the silicon nitride film can be formed by, for example, a plasma CVD (Plasma Chemical Vapor Deposition) method.
  • An i-type amorphous semiconductor layer and an n-type amorphous semiconductor layer can be sequentially formed between the silicon nitride film and the semiconductor substrate 1 instead of the silicon oxide film.
  • the i-type amorphous semiconductor layer and the n-type amorphous semiconductor layer can be formed by, for example, a plasma CVD method.
  • an i-type amorphous semiconductor layer 300 is formed on the back surface of the semiconductor substrate 1 (third step).
  • i-type amorphous semiconductor layer 300 is formed by depositing i-type amorphous silicon on the entire back surface of semiconductor substrate 1 by plasma CVD.
  • the i-type amorphous silicon is deposited to a thickness sufficient to ensure good passivation, for example, 5 to 20 nm.
  • the i-type amorphous semiconductor layer 300 is formed to have a thickness T300 equal to the thickness T33 (FIG. 1) in the third region 33 of the passivation layer 3.
  • the reaction gas introduced into the reaction chamber provided in the plasma CVD apparatus is, for example, hydrogen gas and silane gas.
  • the processing conditions at this time are, for example, the temperature of the semiconductor substrate 1: 130 to 210 ° C., the hydrogen gas flow rate: 0 to 100 sccm, the silane gas (SiH 4 ) flow rate: about 40 sccm, the pressure in the reaction chamber: 40 to 120 Pa, and the frequency: 13 .56 MHz, power density: 5 to 15 mW / cm 2 .
  • the recess 34a is formed in the i-type amorphous semiconductor layer 300 (fourth step).
  • a shadow mask 200 is disposed on the i-type amorphous semiconductor layer 300.
  • the i-type amorphous semiconductor layer 300 is etched by, for example, hydrogen plasma through the opening 200 a of the shadow mask 200.
  • etching of a depth smaller than the thickness T300 of the i-type amorphous semiconductor layer 300 is performed so that the semiconductor substrate 1 is not exposed from the i-type amorphous semiconductor layer 300.
  • the recess 34 a is formed in the i-type amorphous semiconductor layer 300.
  • Etching with hydrogen plasma can be performed using a plasma CVD apparatus.
  • the processing conditions at this time are, for example, the temperature of the semiconductor substrate 1: 130 to 210 ° C., an atmosphere of 100% hydrogen gas, the pressure in the reaction chamber: 40 to 300 Pa, the frequency: 13.56 MHz, and the power density: 10 to 100 mW / cm 2 , treatment time: 10 to 300 seconds.
  • etch back of several nm can be performed without penetrating the i-type amorphous semiconductor layer 300, and the interface between the semiconductor substrate 1 and the i-type amorphous semiconductor layer 300 is damaged by etching. Can be prevented.
  • FIG. 3 is a diagram showing the relationship between the etching depth and the width of the opening 200a (the length of the opening 200a in the in-plane direction of the semiconductor substrate 1).
  • FIG. 3 shows the etching depth when etching is performed in the same time when the width of the opening 200a of the shadow mask 200 is 200 ⁇ m, 400 ⁇ m, 600 ⁇ m, 800 ⁇ m, and 1000 ⁇ m.
  • FIG. 3 shows that the larger the width of the opening 200a, the smaller the etching depth and the slower the etching rate. That is, if the width of the opening 200a is large, a wide and shallow concave portion 34a is formed, and if the width of the opening 200a is small, a narrow and deep concave portion 34a is formed.
  • the recesses 34a having various shapes can be formed.
  • the n-type amorphous semiconductor layer 4 is formed in the recess 34a (fifth step).
  • an n-type amorphous material is formed in the recess 34a through the opening 200a by plasma CVD. Deposit quality silicon. Thereby, the n-type amorphous semiconductor layer 4 is formed in the recess 34a.
  • the reaction gas introduced into the reaction chamber provided in the plasma CVD apparatus is, for example, silane gas, hydrogen gas, and phosphine gas diluted with hydrogen gas (phosphine concentration is 1%, for example) ).
  • the processing conditions at this time are, for example, a temperature of the semiconductor substrate 1 of about 170 ° C., a hydrogen gas flow rate of 0 to 100 sccm, a silane gas flow rate of about 40 sccm, a phosphine gas flow rate of about 40 sccm, a pressure in the reaction chamber of about 40 Pa, and a high frequency power. Density: about 8.33 mW / cm 2 .
  • FIG. 4A shows a result of measuring the film thickness of the n-type amorphous semiconductor layer 4 by scanning the n-type amorphous semiconductor layer 4 in the in-plane direction of the semiconductor substrate 1 with a stylus profilometer.
  • the n-type amorphous semiconductor layer 4 formed through the opening 200a of the shadow mask 200 includes a flat region L, a film thickness reduction region T, and a tapered region R, as shown in FIG. 4A.
  • the thickness of the n-type amorphous semiconductor layer 4 normalized by setting the thickness of the flat region L to 1.0 is plotted on the vertical axis.
  • the n-type amorphous semiconductor layer 4 has the maximum film thickness at a point C that is substantially the center in the in-plane direction of the semiconductor substrate 1.
  • the flat region L is a region where the film thickness hardly changes from the maximum film thickness. In the example of FIG. 4A, the region between the lengths in the scanning direction between 280 ⁇ m and 380 ⁇ m is the flat region L.
  • the length of the flat region L depends on the width of the opening 200a, but the deposition (deposition rate) does not depend on the width of the opening 200a.
  • the film thickness gradually decreases in the region from one end K10 to the point K11 of the flat region L and the region from the other end K20 to the point K12 of the flat region L.
  • the film thickness sharply decreases in the region from the point K11 to the point K21 and the region from the point K12 to the point K22. That is, rather than the reduction rate (first reduction rate) of each film thickness in the region from one end K10 to the point K11 of the flat region L and the region from the other end K20 to the point K12 of the flat region L, The decreasing rate (second decreasing rate) of each film thickness in the region from the point K11 to the point K21 and the region from the point K12 to the point K22 is large.
  • the film thickness reduction region T is a region in which the film thickness reduction rate gradually changes in the n-type amorphous semiconductor layer 4, and includes a region from the end K10 to the point K11 of the flat region L and an end of the flat region L. This is an area from the portion K20 to the point K12. That is, the film thickness reduction region T has a first point at which the film thickness of the thin film is maximized in one thin film formed on the semiconductor substrate 1, and the film thickness decreases in the in-plane direction of the thin film. When the point at which the rate of decrease changes from the first rate of decrease to the second rate of decrease is taken as the second point, this is the region from the first point to the second point in the in-plane direction of the thin film.
  • the tapered region R is a region formed in a tapered shape, and is a region from the points K21 and K22 to the lower ends K31 and K32 of the n-type amorphous semiconductor layer 4, respectively.
  • the tapered region R is a region formed around the opening 200 a, that is, around the shadow mask 200.
  • the width of the tapered region R varies depending on the film forming conditions of the n-type amorphous semiconductor layer 4 and is, for example, 400 ⁇ m or less, preferably 100 ⁇ m or less.
  • the amount of film thickness reduction in the film thickness reduction region T is preferably 5% or more of the film thickness of the flat region L, and more preferably 10% or more. That is, in FIG. 4A, the amount of decrease in the film thickness from the ends K10, K20 of the flat region L to the points K11, K21 is preferably 5% or more of the film thickness of the flat region L, and is preferably 10% or more. It is more preferable. In the example of FIG. 4A, the film thickness reduction region T is reduced by 20% or more than the film thickness of the flat region L, which is a preferable state.
  • the width of the film thickness reduction region T is preferably 20 ⁇ m or more, and more preferably 100 ⁇ m or more.
  • FIG. 4B is a diagram showing another shape of the n-type amorphous semiconductor layer 4.
  • the n-type amorphous semiconductor layer 4 does not have the flat region L, but the film thickness of the region from the point C to the point K10 that is the approximate center of the n-type amorphous semiconductor layer 4 is increased.
  • the decreasing rate is smaller than the decreasing rate of the film thickness in the region from the point K10 to the point K20.
  • Each region T1 from the point C10 to the point K10 is a film thickness decreasing region of the n-type amorphous semiconductor layer 4 having the shape shown in FIG. 4B.
  • the film thickness outside the point K20 is substantially constant, and the tapered region R is not formed.
  • the tapered region R can be formed by adjusting the film forming pressure, the distance between the shadow mask 200 and the passivation layer 3, or the like.
  • the n-type amorphous semiconductor layer 4 may have a film thickness at a point C that is substantially the center in the in-plane direction of the semiconductor substrate 1 smaller than the film thickness at both ends. That is, the n-type amorphous semiconductor layer 4 may be formed in a shape in which the central portion is recessed from both end portions.
  • the n-type amorphous semiconductor layer 4 has the first point at which the film thickness is maximum, and the reduction rate of the film thickness in the in-plane direction of the n-type amorphous semiconductor layer 4 is The region from the first point to the second point in the in-plane direction of the n-type amorphous semiconductor layer 4 when the point where the first decrease rate changes to the second decrease rate is the second point.
  • a film thickness reduction region can be provided.
  • a recess 34b is formed in the i-type amorphous semiconductor layer 300 (sixth step).
  • a shadow mask 201 is disposed on the i-type amorphous semiconductor layer 300. Then, the i-type amorphous semiconductor layer 300 is etched by, for example, hydrogen plasma through the opening 201 a of the shadow mask 201. At this time, etching with a depth smaller than the thickness of the i-type amorphous semiconductor layer 300 is performed so that the semiconductor substrate 1 is not exposed from the i-type amorphous semiconductor layer 300. Thereby, the recess 34b is formed in the i-type amorphous semiconductor layer 300, and the passivation layer 3 is completed.
  • Etching with hydrogen plasma can be performed using a plasma CVD apparatus under the same processing conditions as in the fourth step. Therefore, even when the recess 34b is formed, etch back of several nm can be performed without penetrating the i-type amorphous semiconductor layer 300, and the interface between the semiconductor substrate 1 and the i-type amorphous semiconductor layer 300 is etched. Can prevent damage.
  • the etching depth when forming the recess 34b is different from the etching depth when forming the recess 34a.
  • the etching depth D34b when forming the recess 34b is smaller than the etching depth D34a when forming the recess 34a.
  • the recess 34b can be formed in various shapes depending on the width of the opening 201a of the shadow mask 201.
  • the concave portion 34b shallower than the concave portion 34a may be formed by making the width of the opening 201a larger than the opening 200a of the shadow mask 200 used for forming the concave portion 34a.
  • the shape of the recess 34b may be adjusted by changing the processing conditions such as the etching time when forming the recess 34a.
  • the p-type amorphous semiconductor layer 5 is formed in the recess 34b (seventh step).
  • a p-type is formed in the recess 34b through the opening 201a by the plasma CVD method.
  • Amorphous silicon is deposited.
  • the p-type amorphous semiconductor layer 5 is formed in the recess 34b.
  • the reaction gas introduced into the reaction chamber provided in the plasma CVD apparatus is, for example, silane gas, hydrogen gas, and diborane gas diluted with hydrogen (diborane concentration is about 2%, for example). is there.
  • the processing conditions at this time are, for example, the temperature of the semiconductor substrate 1: 150 to 210 ° C., hydrogen gas flow rate: 0 to 100 sccm, silane gas flow rate: about 40 sccm, diborane gas flow rate: about 40 sccm, pressure in the reaction chamber: 40 to 120 Pa, high frequency Power density: 5 to 15 mW / cm 2 .
  • the p-type amorphous semiconductor layer 5 formed through the opening 201a of the shadow mask 201 has the same shape as the n-type amorphous semiconductor layer 4 shown in FIG. That is, similarly to the n-type amorphous semiconductor layer 4, the p-type amorphous semiconductor layer 5 includes a flat region L, a film thickness reduction region T, and a tapered region R.
  • electrodes 6 and 7 are formed on the n-type amorphous semiconductor layer 4 and the p-type amorphous semiconductor layer 5, respectively (eighth step).
  • a mask 202 is disposed on the back surface of the semiconductor substrate 1 on which the passivation layer 3, the n-type amorphous semiconductor layer 4, and the p-type amorphous semiconductor layer 5 are formed. Then, electrodes 6 and 7 are formed on the n-type amorphous semiconductor layer 4 and the p-type amorphous semiconductor layer 5 through the openings 202a of the mask 202, for example, by vapor deposition or sputtering.
  • the photoelectric conversion element 10 shown in FIG. 2I is manufactured.
  • each mask 200, 201, 202 used in each of the above steps is, for example, a metal made of a metal such as stainless steel, copper, nickel, an alloy containing nickel (for example, 42 alloy or Invar material), molybdenum or the like. It is a mask.
  • Each mask 200 to 204 may be made of glass, ceramic, organic film or the like.
  • the passivation layer 3 is interposed between the semiconductor substrate 1 and the n-type amorphous semiconductor layer 4 and the p-type amorphous semiconductor layer 5. Yes.
  • the interface portion between the semiconductor substrate 1 and the passivation layer 3 is not easily damaged. Therefore, good passivation properties can be ensured.
  • the n-type amorphous semiconductor layer 4 and the p-type amorphous semiconductor layer 5 are disposed in the recesses 34a and 34b of the passivation layer 3, respectively. That is, in the passivation layer 3, the thickness T31 in the first region 31 that is in contact with the n-type amorphous semiconductor layer 4 and the thickness T32 in the second region 32 that is in contact with the p-type amorphous semiconductor layer 5 are n-type amorphous. It is smaller than the thickness T33 in the third region 33 where the semiconductor layer 4 and the p-type amorphous semiconductor layer 5 are not in contact. For this reason, the contact resistance between the semiconductor substrate 1 and the passivation layer 3 can be reduced in the n-side region and the p-side region.
  • the thickness T32 of the second region 32 in contact with the p-type amorphous semiconductor layer 5 is larger than the thickness T31 of the first region 31 in contact with the n-type amorphous semiconductor layer 4.
  • the recesses 34 a and 34 b are formed without exposing the semiconductor substrate 1 from the i-type amorphous semiconductor layer 300. For this reason, when forming the recesses 34a and 34b, the interface portion between the semiconductor substrate 1 and the i-type amorphous semiconductor layer 300 (passivation layer 3) is not damaged, and the passivation property can be improved.
  • the semiconductor substrate 1 has a texture structure on the light receiving surface. For this reason, it is possible to prevent light from being reflected from the light receiving surface of the semiconductor substrate 1, and to ensure a large amount of light incident on the photoelectric conversion element 10.
  • the thickness T33 of the third region 33 where the n-type and p-type amorphous semiconductor layers 4 and 5 are not in contact with each other is, for example, 5 nm to 20 nm.
  • the thicknesses T31 and T32 of the first region 31 in contact with the n-type amorphous semiconductor layer 4 and the second region 32 in contact with the p-type amorphous semiconductor layer 5 are, for example, 2 nm to 10 nm. .
  • the thickness of the portion where the n-type amorphous semiconductor layer 4 and the p-type amorphous semiconductor layer 5 are disposed is sufficiently small, and the contact resistance in the n-side and p-side regions is more reliably ensured. Can be reduced.
  • the distance G between the first region 31 and the second region 32 in the in-plane direction of the semiconductor substrate 1 is, for example, 250 ⁇ m or less. Thereby, a large area of the n-type amorphous semiconductor layer 4 and the p-type amorphous semiconductor layer 5 disposed on the passivation layer 3 can be secured, and the collection efficiency of carriers (electrons and holes) is improved. Can be made.
  • the passivation layer 3 is formed by forming the i-type amorphous semiconductor layer 300 on the back surface of the semiconductor substrate 1 and then providing the recesses 34 a and 34 b in the i-type amorphous semiconductor layer 300.
  • the back surface of the semiconductor substrate 1 is not exposed from the i-type amorphous semiconductor layer 300. That is, the passivation layer 3 is formed without going through a step of exposing a part of the back surface of the semiconductor substrate 1. For this reason, the interface portion between the semiconductor substrate 1 and the passivation layer 3 is not damaged, and good passivation can be realized.
  • the formation of the recess 34 a of the passivation layer 3 and the formation of the n-type amorphous semiconductor layer 4 are performed continuously using the same shadow mask 200.
  • the formation of the recess 34 b of the passivation layer 3 and the formation of the p-type amorphous semiconductor layer 5 are performed continuously using the same shadow mask 201. For this reason, it can suppress that an impurity mixes into the passivation layer 3, and can ensure favorable passivation property.
  • FIG. 5 is a diagram illustrating the lifetime of the photoelectric conversion element 10 for each thickness of the passivation layer 3.
  • FIG. 6A is a diagram illustrating the contact resistance in the n-side region for each thickness of the first region 31.
  • FIG. 6B is a diagram showing the contact resistance in the p-side region for each thickness of the second region 32.
  • the film thickness of 1.75 times, the film thickness of 1.5 times, and the film thickness of 1.25 times are 1.75 times that the passivation layer 3 has a predetermined thickness (standard film thickness). It means having double thickness, 1.5 times thickness, and 1.25 times thickness.
  • the lifetime of the photoelectric conversion element 10 exhibiting passivation properties increases as the thickness of the passivation layer 3 increases.
  • the thickness of the passivation layer 3 increases, deterioration with time is alleviated. From this, it can be seen that if the thickness of the passivation layer 3 is increased, good passivation properties can be secured.
  • the contact resistance in the p-side region significantly increases as the thickness T32 of the second region 32 increases. Therefore, it can be seen that the contact resistance can be effectively reduced by making the thickness T32 of the second region 32 smaller than the thicknesses T31 and T33 of the other regions in the passivation layer 3.
  • the contact resistance in the n-side region does not increase significantly according to the thickness T31 of the first region 31, but in addition to the thickness T32 of the second region 32, If the thickness T31 is made smaller than the thickness T33 of other regions, the contact resistance can be further reduced.
  • the thickness T33 of the third region 33 where the n-type and p-type amorphous semiconductor layers 4 and 5 are not in contact is sufficiently ensured.
  • the thickness T31 of the first region 31 in contact with the n-type amorphous semiconductor layer 4 and the thickness T32 of the second region 32 in contact with the p-type amorphous semiconductor layer 5 are the third region. It is smaller than the thickness T33 of 33. Therefore, it is possible to reduce contact resistance while ensuring good passivation.
  • FIG. 7 is a cross-sectional view illustrating a schematic configuration of the photoelectric conversion element according to the second embodiment.
  • the photoelectric conversion element 102 is first in that a part of the n-type amorphous semiconductor layer 4 and a part of the p-type amorphous semiconductor layer 5 overlap on the passivation layer 320. Different from the embodiment.
  • a recess 324 having a stepped bottom surface is formed in the passivation layer 320.
  • the lower surface of the bottom surface of the recess 324 is a first region 321 in contact with the n-type amorphous semiconductor layer 4.
  • the upper surface of the bottom surface of the recess 324 is a second region 322 that is in contact with the p-type amorphous semiconductor layer 5.
  • the thickness T321 in the first region 321 is smaller than the thickness T322 in the second region 322, as in the first embodiment.
  • the thickness T323 of the third region 303 where the n-type amorphous semiconductor layer 4 and the p-type amorphous semiconductor layer 5 are not in contact is larger than the thickness T321 in the first region 321 and the thickness T322 in the second region 322. .
  • the entire bottom surface of the n-type amorphous semiconductor layer 4 is in contact with the first region 321 of the passivation layer 3.
  • the p-type amorphous semiconductor layer 5 has most of the bottom surface in contact with the second region 322 of the passivation layer 3, but part of the bottom surface is in contact with the top surface in the thickness direction of the n-type amorphous semiconductor layer 4. Yes. That is, the n-type amorphous semiconductor layer 4 and the p-type amorphous semiconductor layer 5 are disposed on the passivation layer 3 so as to partially overlap.
  • the p-type amorphous semiconductor layer 5 partially overlaps the n-type amorphous semiconductor layer 4, but the n-type amorphous semiconductor layer is formed on the p-type amorphous semiconductor layer 5.
  • a part of 4 may overlap.
  • the thickness T321 of the first region 321 in which the n-type amorphous semiconductor layer 4 is disposed is set to a p-type amorphous.
  • the thickness T322 of the second region 322 where the quality semiconductor layer 5 is disposed may be smaller.
  • a texture structure is formed on the light receiving surface of the semiconductor substrate 1, and the antireflection film 2 is formed.
  • an i-type amorphous semiconductor layer 302 is formed on the back surface of the semiconductor substrate 1 in the same manner as in the third step of the first embodiment.
  • the recess 400a is formed on the i-type amorphous semiconductor layer 302, and the n-type amorphous semiconductor layer 4 is formed in the recess 400a.
  • the concave portion 400 b is formed in the i-type amorphous semiconductor layer 302.
  • the recess 400b can be formed by the same method and conditions as in the sixth step of the first embodiment. However, the recess 400b is different from the recess 34b formed in the sixth step of the first embodiment in that the recess 400b is formed in contact with the recess 400a. That is, the recess 400 b is formed adjacent to the recess 400 a so as not to be separated from the recess 400 a in the in-plane direction of the semiconductor substrate 1.
  • the i-type amorphous semiconductor layer 302 is etched by, for example, hydrogen plasma through the opening 203a of the shadow mask 200 to form the recess 400b.
  • etching with a depth smaller than the thickness of the i-type amorphous semiconductor layer 302 is performed so that the semiconductor substrate 1 is not exposed from the i-type amorphous semiconductor layer 302.
  • the etching depth for forming the recess 400b is smaller than the etching depth for forming the recess 400a.
  • a recess 324 having a stepped bottom surface is formed by the recesses 400a and 400b.
  • the p-type amorphous semiconductor layer 5 is formed in the recess 400b.
  • the p-type amorphous semiconductor layer 5 can be formed using, for example, a plasma CVD method under the same processing conditions as in the seventh step of the first embodiment. Specifically, as shown in FIG. 8C, the p-type amorphous semiconductor layer 5 is formed in the recess 400b through the opening 204a of the shadow mask 204. At this time, the recess 400b and a part of the n-type amorphous semiconductor layer 4 are exposed from the opening 204a. Therefore, a part of the p-type amorphous semiconductor layer 5 is formed on the n-type amorphous semiconductor layer 4 and the other part is formed in the recess 400b.
  • a plasma CVD method under the same processing conditions as in the seventh step of the first embodiment. Specifically, as shown in FIG. 8C, the p-type amorphous semiconductor layer 5 is formed in the recess 400b through the opening 204a of the shadow mask 204. At this time, the recess 400b and a part of the
  • electrodes 6 and 7 are formed on the n-type amorphous semiconductor layer 4 and the p-type amorphous semiconductor layer 5, respectively, in the same manner as in the eighth step of the first embodiment.
  • FIG. 9 is a cross-sectional view illustrating a schematic configuration of the photoelectric conversion element according to the third embodiment.
  • the n-type amorphous semiconductor layer 4 is disposed in the recess 334, and the p-type amorphous semiconductor layer 5 is disposed in the recess.
  • the first embodiment There is no difference from the first embodiment.
  • the bottom surface of the recess 334 formed in the passivation layer 330 is a first region 331 in contact with the n-type amorphous semiconductor layer 4.
  • the thickness T331 in the first region 331 is smaller than the thickness in other regions. That is, the thickness T331 is smaller than the thickness T332 of the second region 332 in contact with the p-type amorphous semiconductor layer 5, and the third region in which the n-type amorphous semiconductor layer 4 and the p-type amorphous semiconductor layer 5 are not in contact. It is smaller than the thickness T333 of 333.
  • the p-type amorphous semiconductor layer 5 is not disposed in the recess of the passivation layer 330. Accordingly, in the passivation layer 330, the thickness T332 of the second region 332 in contact with the p-type amorphous semiconductor layer 5 is equal to the third region 333 in which the n-type amorphous semiconductor layer 4 and the p-type amorphous semiconductor layer 5 are not in contact. Is substantially equal to the thickness T333.
  • the photoelectric conversion element 103 can be manufactured by the same method as the photoelectric conversion element 10 according to the first embodiment. However, in the photoelectric conversion element 103, since the p-type amorphous semiconductor layer 5 is not disposed in the recess of the passivation layer 330, the sixth step of forming the recess 34b for disposing the p-type amorphous semiconductor layer 5 is performed. It is unnecessary. That is, the photoelectric conversion element 103 can be manufactured through the first to fifth steps, the seventh step, and the eighth step of Embodiment 1.
  • the n-type amorphous semiconductor layer 4 is disposed in the recess 334 of the passivation layer 330.
  • the thickness T331 of the first region 331 with which the n-type amorphous semiconductor layer 4 is in contact is smaller than the thickness of other regions, so that the contact resistance can be reduced.
  • the thicknesses T332 and T333 of regions other than the first region 331 are relatively large, so that good passivation properties can be ensured.
  • the thickness T332 of the second region 332 in contact with the p-type amorphous semiconductor layer 5 is larger than the thickness T331 of the first region 331 in contact with the n-type amorphous semiconductor layer 4. For this reason, in the p-side region where the passivation property is likely to deteriorate, it is possible to suppress the deterioration of the passivation property.
  • FIG. 10 is a cross-sectional view illustrating a schematic configuration of the photoelectric conversion element according to the fourth embodiment.
  • the photoelectric conversion element 104 in the passivation layer 340, the p-type amorphous semiconductor layer 5 is disposed in the recess 344, and the n-type amorphous semiconductor layer 44 is disposed in the recess.
  • the photoelectric conversion element 104 is also different from the first embodiment in that the n-type amorphous semiconductor layer 44 has a separation portion 441.
  • the bottom surface of the recess 344 formed in the passivation layer 340 is a second region 342 in contact with the p-type amorphous semiconductor layer 5.
  • the thickness T342 in the second region 342 is smaller than the thickness in other regions. That is, the thickness T342 is smaller than the thickness T341 of the first region 341 in contact with the n-type amorphous semiconductor layer 44.
  • the n-type amorphous semiconductor layer 44 is separated into a plurality of parts by the separation part 441 in the in-plane direction of the semiconductor substrate 1. That is, the separation part 441 penetrates the n-type amorphous semiconductor layer 44 in the thickness direction and divides it in the in-plane direction of the semiconductor substrate 1.
  • a p-type amorphous semiconductor layer 5 is disposed in the separation portion 441.
  • a texture structure is formed on the light receiving surface of the semiconductor substrate 1, and the antireflection film 2 is formed.
  • an i-type amorphous semiconductor layer 304 is formed on the back surface of the semiconductor substrate 1 in the same manner as in the third step of the first embodiment.
  • an n-type amorphous semiconductor film 500 is formed on the i-type amorphous semiconductor layer 304.
  • the n-type amorphous semiconductor film 500 can be formed by a plasma CVD method in the same manner as the fifth step of the first embodiment. However, in the fourth embodiment, the n-type amorphous semiconductor film 500 is formed on the entire surface of the i-type amorphous semiconductor layer 304. For this reason, the shadow mask 200 used in the fifth step of the first embodiment is not disposed on the i-type amorphous semiconductor layer 304, and n-type amorphous silicon is deposited by plasma CVD.
  • a separation portion 441 is formed in the n-type amorphous semiconductor film 500 and a recess 344 is formed in the i-type amorphous semiconductor layer 304.
  • the n-type amorphous semiconductor film 500 and the i-type amorphous semiconductor layer 304 are etched using, for example, hydrogen plasma through the opening 205a of the shadow mask 205.
  • Do. Etching can be performed under the same conditions as in the fourth step of the first embodiment. The etching is performed at a depth that penetrates the n-type amorphous semiconductor film 500 and does not reach the interface between the i-type amorphous semiconductor layer 304 and the semiconductor substrate 1.
  • the passivation layer 340 having the recess 344 and the n-type amorphous semiconductor layer 44 separated in the in-plane direction of the semiconductor substrate 1 by the separation portion 441 are completed.
  • the p-type amorphous semiconductor layer 5 is formed in the recess 344 of the passivation layer 340 and the separation part 441 of the n-type amorphous semiconductor layer 44.
  • the p-type amorphous semiconductor layer 5 is formed by plasma CVD or the like through the opening 205a while the shadow mask 205 is disposed on the n-type amorphous semiconductor layer 44.
  • the film formation conditions at this time can be the same as those in the seventh step of the first embodiment.
  • the p-type amorphous semiconductor layer 5 is formed in the recess 344 of the passivation layer 340 and the separation portion 441 of the n-type amorphous semiconductor layer 44.
  • electrodes 6 and 7 are formed on the n-type amorphous semiconductor layer 4 and the p-type amorphous semiconductor layer 5, respectively, in the same manner as in the eighth step of the first embodiment.
  • the p-type amorphous semiconductor layer 5 is disposed in the recess 344 of the passivation layer 340.
  • the thickness T342 of the second region 342 in contact with the p-type amorphous semiconductor layer 5 is smaller than other regions, so that the contact resistance can be reduced.
  • the thickness T341 of the first region 341 in contact with the n-type amorphous semiconductor layer 44 in the passivation layer 340 is relatively large, good passivation can be ensured.
  • FIG. 12 is a cross-sectional view illustrating a schematic configuration of the photoelectric conversion element according to the fifth embodiment.
  • the photoelectric conversion element 105 is different from the first embodiment in that the thickness T351 of the first region 351 and the thickness T352 of the second region 352 are equal in the passivation layer 350.
  • the passivation layer 350 has recesses 354a and 354b.
  • the n-type amorphous semiconductor layer 4 is disposed in the recess 354a.
  • the p-type amorphous semiconductor layer 5 is disposed in the recess 354b.
  • the bottom surfaces of the recesses 354a and 354b are a first region 351 in contact with the n-type amorphous semiconductor layer 4 and a second region 352 in contact with the p-type amorphous semiconductor layer 5, respectively.
  • the depths of the recesses 354a and 354b are substantially equal. That is, in the thickness direction of the passivation layer 350, the position of the bottom surface of the recess 354a is substantially equal to the position of the bottom surface of the recess 354b. Therefore, in the passivation layer 350, the thickness T351 of the first region 351 and the thickness T352 of the second region 352 are substantially equal. The thickness T351 of the first region 351 and the thickness T352 of the second region 352 are smaller than the thickness T353 of the third region 353 where the n-type amorphous semiconductor layer 4 and the p-type amorphous semiconductor layer 5 do not contact.
  • the photoelectric conversion element 105 can be manufactured by the same method as in the first embodiment.
  • the first embodiment since the depths of the recesses 34a and 34b are different from each other, it is necessary to form the recesses 34a and 34b by changing the processing conditions such as the opening width of the shadow mask and the etching time.
  • the fifth embodiment since the depths of the recesses 354a and 354b are the same, the recesses 354a and 354b can be formed with the same opening width of the shadow mask and other processing conditions.
  • the photoelectric conversion element 105 also has the thickness T351 of the first region 351 in contact with the n-type amorphous semiconductor layer 4 and the p-type in the passivation layer 330, as in the first embodiment.
  • Both the thickness T352 of the second region 352 that the amorphous semiconductor layer 5 is in contact with are smaller than the thickness T353 of the third region 353 that the n-type amorphous semiconductor layer 4 and the p-type amorphous semiconductor layer 5 are not in contact with. For this reason, favorable passivation property can be ensured and contact resistance can be reduced.
  • FIG. 13 is a schematic diagram illustrating a configuration of a photoelectric conversion module according to the sixth embodiment.
  • the photoelectric conversion module 1000 includes a plurality of photoelectric conversion elements 1001, a cover 1002, and output terminals 1003 and 1004.
  • At least one of the plurality of photoelectric conversion elements 1001 is any one of the photoelectric conversion elements 10 and 102 to 105 according to the first to fifth embodiments.
  • the plurality of photoelectric conversion elements 1001 are, for example, arranged in an array and connected in series. Instead of connecting in series, parallel connection or a combination of series and parallel may be performed.
  • the cover 1002 is made of a weather resistant cover and covers the plurality of photoelectric conversion elements 1001.
  • the cover 1002 includes, for example, a transparent base material (for example, glass) provided on the light receiving surface side of the photoelectric conversion element 1001 and a back surface base material (on the reverse side opposite to the light receiving surface side of the photoelectric conversion element 1001).
  • a transparent base material for example, glass
  • a back surface base material on the reverse side opposite to the light receiving surface side of the photoelectric conversion element 1001
  • glass, a resin sheet, etc. and the sealing material (for example, EVA etc.) which fills the clearance gap between the said transparent base material and the said resin base material are included.
  • the output terminal 1003 is connected to a photoelectric conversion element 1001 with a wiring sheet disposed at one end of a plurality of photoelectric conversion elements 1001 connected in series.
  • the output terminal 1004 is connected to the photoelectric conversion element 1001 disposed at the other end of the plurality of photoelectric conversion elements 1001 connected in series.
  • the photoelectric conversion elements 10 and 102 to 105 have a high open circuit voltage (Voc) and improved element characteristics. Therefore, the performance of the photoelectric conversion module 1000 can be improved.
  • Voc open circuit voltage
  • the photoelectric conversion module according to the present embodiment is not limited to the configuration shown in FIG. 13, but any configuration as long as any one of the photoelectric conversion elements 10 and 102 to 105 according to the first to fifth embodiments is used. May be.
  • FIG. 14 is a schematic diagram illustrating a configuration of a photovoltaic power generation system according to the seventh embodiment.
  • the photovoltaic power generation system 1100 includes a photoelectric conversion module array 1101, a connection box 1102, a power conditioner 1103, a distribution board 1104, and a power meter 1105.
  • Functions such as “Home Energy Management System (HEMS)” and “Building Energy Management System (BEMS)” are added to the photovoltaic power generation system 1100. Can do.
  • HEMS Home Energy Management System
  • BEMS Building Energy Management System
  • connection box 1102 is connected to the photoelectric conversion module array 1101.
  • the power conditioner 1103 is connected to the connection box 1102.
  • Distribution board 1104 is connected to power conditioner 1103 and electrical equipment 1110.
  • the power meter 1105 is connected to the distribution board 1104 and system linkage.
  • the photoelectric conversion module array 1101 converts sunlight into electricity to generate DC power, and supplies the generated DC power to the connection box 1102.
  • connection box 1102 receives the DC power generated by the photoelectric conversion module array 1101 and supplies the received DC power to the power conditioner 1103.
  • the power conditioner 1103 converts the DC power received from the connection box 1102 into AC power, and supplies the converted AC power to the distribution board 1104.
  • Distribution board 1104 supplies AC power received from power conditioner 1103 and / or commercial power received via power meter 1105 to electrical equipment 1110. Further, when the AC power received from the power conditioner 1103 is larger than the power consumption of the electrical equipment 1110, the distribution board 1104 supplies the surplus AC power to the system linkage via the power meter 1105.
  • the power meter 1105 measures the power in the direction from the grid connection to the distribution board 1104 and measures the power in the direction from the distribution board 1104 to the grid cooperation.
  • FIG. 15 is a schematic diagram showing the configuration of the photoelectric conversion module array 1101 shown in FIG.
  • photoelectric conversion module array 1101 includes a plurality of photoelectric conversion modules 1120 and output terminals 1121 and 1122.
  • the plurality of photoelectric conversion modules 1120 are arranged in an array and connected in series. Each of the plurality of photoelectric conversion modules 1120 includes a photoelectric conversion module 1000 shown in FIG.
  • the output terminal 1121 is connected to a photoelectric conversion module 1120 located at one end of a plurality of photoelectric conversion modules 1120 connected in series.
  • the output terminal 1122 is connected to the photoelectric conversion module 1120 located at the other end of the plurality of photoelectric conversion modules 1120 connected in series.
  • the photoelectric conversion module array 1101 generates sunlight by converting sunlight into electricity, and supplies the generated DC power to the power conditioner 1103 via the connection box 1102.
  • the power conditioner 1103 converts the DC power received from the photoelectric conversion module array 1101 into AC power, and supplies the converted AC power to the distribution board 1104.
  • the distribution board 1104 supplies the AC power received from the power conditioner 1103 to the electrical device 1110 when the AC power received from the power conditioner 1103 is greater than or equal to the power consumption of the electrical device 1110. Then, the distribution board 1104 supplies surplus AC power to the system linkage via the power meter 1105.
  • Distribution board 1104 supplies AC power received from system cooperation and AC power received from power conditioner 1103 to electric device 1110 when the AC power received from power conditioner 1103 is less than the power consumption of electric device 1110. To do.
  • the photovoltaic power generation system 1100 includes any of the photoelectric conversion elements according to the first to fifth embodiments having improved element characteristics. Therefore, the performance of the photovoltaic power generation system 1100 can be improved.
  • the photovoltaic power generation system according to the present embodiment is not limited to the configuration shown in FIGS. 14 and 15, and may have any configuration as long as any of the photoelectric conversion elements according to the first to fifth embodiments is used. Also good.
  • a storage battery 1106 may be connected to the power conditioner 1103. In this case, output fluctuation due to fluctuations in the amount of sunlight can be suppressed, and power stored in the storage battery 1106 can be supplied even in a time zone without sunlight.
  • the storage battery 1106 may be built in the power conditioner 1103.
  • FIG. 17 is a schematic diagram illustrating a configuration of a photovoltaic power generation system according to the eighth embodiment.
  • the photovoltaic power generation system 1200 includes subsystems 1201 to 120n (n is an integer of 2 or more), power conditioners 1211 to 121n, and a transformer 1221.
  • the photovoltaic power generation system 1200 is a photovoltaic power generation system having a larger scale than the photovoltaic power generation system 1100 shown in FIGS.
  • the power conditioners 1211 to 121n are connected to the subsystems 1201 to 120n, respectively.
  • the transformer 1221 is connected to the power conditioners 1211 to 121n and the system linkage.
  • Each of the subsystems 1201 to 120n includes module systems 1231 to 123j (j is an integer of 2 or more).
  • Each of the module systems 1231 to 123j includes photoelectric conversion module arrays 1301 to 130i (i is an integer of 2 or more), connection boxes 1311 to 131i, and a current collection box 1321.
  • Each of the photoelectric conversion module arrays 1301 to 130i has the same configuration as the photoelectric conversion module array 1101 shown in FIG.
  • connection boxes 1311 to 131i are connected to the photoelectric conversion module arrays 1301 to 130i, respectively.
  • the current collection box 1321 is connected to the connection boxes 1311 to 131i. Also, j current collection boxes 1321 of the subsystem 1201 are connected to the power conditioner 1211. The j current collection boxes 1321 of the subsystem 1202 are connected to the power conditioner 1212. Hereinafter, similarly, j current collection boxes 1321 of the subsystem 120n are connected to the power conditioner 121n.
  • the i photoelectric conversion module arrays 1301 to 130i of the module system 1231 generate sunlight by converting sunlight into electricity, and the generated DC power is collected through the connection boxes 1311 to 131i, respectively.
  • the i photoelectric conversion module arrays 1301 to 130i of the module system 1232 generate sunlight by converting sunlight into electricity, and the generated DC power is collected through the connection boxes 1311 to 131i, respectively.
  • the i photoelectric conversion module arrays 1301 to 130i of the module system 123j convert sunlight into electricity to generate DC power, and the generated DC power is connected to the connection boxes 1311 to 131i, respectively. To the current collection box 1321.
  • the j current collection boxes 1321 of the subsystem 1201 supply DC power to the power conditioner 1211.
  • the j current collection boxes 1321 of the subsystem 1202 supply DC power to the power conditioner 1212 in the same manner.
  • the j current collecting boxes 1321 of the subsystem 120n supply DC power to the power conditioner 121n.
  • the power conditioners 1211 to 121n convert the DC power received from the subsystems 1201 to 120n into AC power, and supply the converted AC power to the transformer 1221.
  • the transformer 1221 receives AC power from the power conditioners 1211 to 121n, converts the voltage level of the received AC power, and supplies it to the system linkage.
  • the photovoltaic power generation system 1200 includes any of the photoelectric conversion elements according to the first to fifth embodiments having improved element characteristics. Therefore, the performance of the photovoltaic power generation system 1200 can be improved.
  • the photovoltaic power generation system according to the eighth embodiment is not limited to the configuration shown in FIG. 17, and any configuration can be used as long as any of the photoelectric conversion elements according to the first to fifth embodiments is used. Good.
  • a storage battery 1213 may be connected to the power conditioners 1211 to 121n, or the storage battery 1213 may be built in the power conditioners 1211 to 121n.
  • the power conditioners 1211 to 121n can appropriately convert part or all of the DC power received from the current collection box 1321 and store it in the storage battery 1213.
  • the electric power stored in the storage battery 1213 is appropriately supplied to the power conditioners 1211 to 121n according to the power generation amount of the subsystems 1201 to 120n, and is appropriately converted into electric power and supplied to the transformer 1221.
  • the texture structure is formed only on the light receiving surface of the semiconductor substrate.
  • the texture structure can be formed on the back surface of the semiconductor substrate.
  • the adhesion between the n-type amorphous semiconductor layer and the p-type amorphous semiconductor layer and each electrode is improved, and as a result, the yield and reliability of the photoelectric conversion element can be improved.
  • the contact area between the n-type amorphous semiconductor layer and the p-type amorphous semiconductor layer and each electrode is larger than when the back surface of the semiconductor substrate is flat, the contact resistance can also be reduced. .
  • the semiconductor substrate is an n-type single crystal silicon substrate.
  • the semiconductor substrate may be a p-type silicon substrate.
  • the antireflection film is formed on the light receiving surface of the semiconductor substrate, but the antireflection film may not be provided on the light receiving surface of the semiconductor substrate.
  • an n + layer in which a high concentration n-type dopant is diffused may be formed on the light receiving surface of the semiconductor substrate instead of the antireflection film.
  • an n + layer in which a high concentration n-type dopant is diffused may be formed between the light receiving surface of the semiconductor substrate and the antireflection film.
  • each amorphous semiconductor layer is formed using the plasma CVD method.
  • a CatCVD (Catalytic Chemical Vapor Deposition) method is used instead of the plasma CVD method. You can also.
  • the temperature of the semiconductor substrate is 100 to 300 ° C.
  • the deposition pressure is 10 to 500 Pa
  • the temperature of the thermal catalyst is 1500 to 2000 ° C.
  • RF power The film may be formed at a density of 0.01 to 1 W / cm 2 . By doing so, a high-quality amorphous semiconductor layer and a separation portion can be formed at a relatively low temperature and in a short time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

良好なパッシベーション性を確保し、コンタクト抵抗を低減することができる光電変換素子を提供する。光電変換素子(10)は、半導体基板(1)と、半導体基板(1)の一方面上に形成され、表面に少なくとも1つの凹部(34a,34b)を有しており、真性非晶質半導体からなるパッシベーション層(3)と、パッシベーション層(3)上に形成され、第1導電型を有する第1非晶質半導体層(4)と、パッシベーション層(3)上に形成され、第1導電型と反対の第2導電型を有する第2非晶質半導体層(5)と、を備える。第1非晶質半導体層(4)及び第2非晶質半導体層(5)の少なくとも一方は、凹部(34a,34b)内に配置されている。

Description

光電変換素子
 本開示は、光電変換素子に関する。
 近年、光電変換素子としての太陽電池が注目されている。太陽電池の一例として、裏面接合型の太陽電池を挙げることができる。
 特表2010-503222号公報には、半導体基板の裏面に、パッシベーション層及びバックコンタクト層が形成された裏面接合型の太陽電池の例が開示されている。特表2010-503222号公報では、半導体基板の裏面全体にパッシベーション層が形成された後、水素プラズマを用いたエッチングによってパッシベーション層に開口が形成される。バックコンタクト層は、パッシベーション層の開口内に形成される。
 特表2010-503222号公報では、半導体基板の裏面に到達するまでパッシベーション層をエッチングすることにより、厚み方向に貫通した開口をパッシベーション層に形成する。これにより、半導体基板とパッシベーション層との界面部分が損傷するため、パッシベーション性が悪化し、コンタクト抵抗が高くなる可能性がある。
 本開示は、良好なパッシベーション性を確保し、コンタクト抵抗を低減することができる光電変換素子を提供することを目的とする。
 本開示に係る光電変換素子は、半導体基板と、半導体基板の一方面上に形成され、表面に少なくとも1つの凹部を有しており、真性非晶質半導体からなるパッシベーション層と、パッシベーション層上に形成され、第1導電型を有する第1非晶質半導体層と、パッシベーション層上に形成され、第1導電型と反対の第2導電型を有する第2非晶質半導体層と、を備え、第1非晶質半導体層及び第2非晶質半導体層の少なくとも一方は、凹部内に配置されている。
 本開示によれば、良好なパッシベーション性を確保し、コンタクト抵抗を低減することができる。
図1は、第1実施形態に係る光電変換素子の概略構成を示す断面図である。 図2Aは、図1に示す光電変換素子の製造方法における第1工程を示す図である。 図2Bは、図1に示す光電変換素子の製造方法における第2工程を示す図である。 図2Cは、図1に示す光電変換素子の製造方法における第3工程を示す図である。 図2Dは、図1に示す光電変換素子の製造方法における第4工程を示す図である。 図2Eは、図1に示す光電変換素子の製造方法における第5工程を示す図である。 図2Fは、図1に示す光電変換素子の製造方法における第6工程を示す図である。 図2Gは、図1に示す光電変換素子の製造方法における第7工程を示す図である。 図2Hは、図1に示す光電変換素子の製造方法における第8工程を示す図である。 図2Iは、第1~第8工程を経て完成した光電変換素子の概略構成を示す断面図である。 図3は、第4工程で形成する凹部の形状を示す図である。 図4Aは、第5工程で形成するn型非晶質半導体層の形状を示す図である。 図4Bは、第5工程で形成するn型非晶質半導体層の別の形状を示す図である。 図5は、パッシベーション層の厚みごとに光電変換素子のライフタイムをした図である。 図6Aは、パッシベーション層のうちn型非晶質半導体層が配置される部分について、その厚みごとのコンタクト抵抗を示す図である。 図6Bは、パッシベーション層のうちp型非晶質半導体層が配置される部分について、その厚みごとのコンタクト抵抗を示す図である。 図7は、第2実施形態に係る光電変換素子の概略構成を示す断面図である。 図8Aは、図7に示す光電変換素子の製造方法における一工程を示す図である。 図8Bは、図7に示す光電変換素子の製造方法における一工程を示す図である。 図8Cは、図7に示す光電変換素子の製造方法における一工程を示す図である。 図8Dは、図8A~図8Cに示す工程を経て完成した光電変換素子の概略構成を示す断面図である。 図9は、第3実施形態に係る光電変換素子の概略構成を示す断面図である。 図10は、第4実施形態に係る光電変換素子の概略構成を示す断面図である。 図11Aは、図10に示す光電変換素子の製造方法における一工程を示す図である。 図11Bは、図10に示す光電変換素子の製造方法における一工程を示す図である。 図11Cは、図10に示す光電変換素子の製造方法における一工程を示す図である。 図11Dは、図10に示す光電変換素子の製造方法における一工程を示す図である。 図11Eは、図11A~図11Dに示す工程を経て完成した光電変換素子の概略構成を示す断面図である。 図12は、第5実施形態に係る光電変換素子の概略構成を示す断面図である。 図13は、第6実施形態に係る光電変換モジュールの構成例を示す概略図である。 図14は、第7実施形態に係る太陽光発電システムの構成例を示す概略図である。 図15は、図14に示す光電変換モジュールアレイの構成例を示す概略図である。 図16は、第7実施形態に係る太陽光発電システムの他の構成例を示す概略図である。 図17は、第8実施形態に係る太陽光発電システムの構成例を示す概略図である。 図18は、第8実施形態に係る太陽光発電システムの他の構成例を示す概略図である。
 実施形態に係る光電変換素子は、半導体基板と、半導体基板の一方面上に形成され、表面に少なくとも1つの凹部を有しており、真性非晶質半導体からなるパッシベーション層と、パッシベーション層上に形成され、第1導電型を有する第1非晶質半導体層と、パッシベーション層上に形成され、第1導電型と反対の第2導電型を有する第2非晶質半導体層と、を備え、第1非晶質半導体層及び第2非晶質半導体層の少なくとも一方は、凹部内に配置されている(第1の構成)。
 第1の構成によれば、第1及び第2非晶質半導体層と半導体基板との間にはパッシベーション層が介在しているため、第1及び第2非晶質半導体層の形成に際し、半導体基板とパッシベーション層との界面部分が損傷を受けにくい。このため、良好なパッシベーション性を確保することができる。
 第1の構成によれば、パッシベーション層の表面に設けられた凹部内に、第1及び第2非晶質半導体層の少なくとも一方が配置されている。すなわち、パッシベーション層において、第1非晶質半導体層が配置される部分及び第2非晶質半導体層が配置される部分の少なくとも一方の厚みが、その他の部分の厚みよりも小さくなる。このため、半導体基板とパッシベーション層とのコンタクト抵抗を低減することができる。
 上記第1非晶質半導体層及び第2非晶質半導体層は、いずれも凹部内に配置してもよい(第2の構成)。
 第2の構成によれば、パッシベーション層において、第1非晶質半導体層が配置される部分及び第2非晶質半導体層が配置される部分の双方の厚みがその他の部分の厚みよりも小さくなる。このため、パッシベーション層と半導体基板とのコンタクト抵抗をより低減することができる。
 上記パッシベーション層は、第1非晶質半導体層が接する領域における厚みと、第2非晶質半導体層が接する領域における厚みとが異なっていてもよい(第3の構成)。
 第3の構成によれば、光電変換素子の特性に応じて、第1非晶質半導体層が接する領域における厚み及び第2非晶質半導体層が接する領域の厚み各々を決定することができる。このため、パッシベーション性を効率的に向上させることができる。
 上記第1非晶質半導体層は、n型の導電型を有し、第2非晶質半導体層は、p型の導電型を有していてもよい。この場合、パッシベーション層において、第2非晶質半導体層が接する領域における厚みは、第1非晶質半導体層が接する領域における厚みよりも大きくてもよい(第4の構成)。
 第4の構成によれば、パッシベーション層は、p型の導電型を有する第2非晶質半導体層が接する領域の厚みが比較的大きくなるように形成される。このように構成することで、パッシベーション性が低下しやすいp側領域において、パッシベーション性の低下を抑制することができる。
 上記パッシベーション層は、凹部が設けられていない部分の厚みが5nm~20nmであってもよい(第5の構成)。
 第5の構成によれば、パッシベーション層のうち、第1及び第2非晶質半導体層が配置されていない部分は、半導体基板を保護するのに十分な厚みを有する。このため、半導体基板内の第1及び第2非晶質半導体層間に相当する領域において、キャリア(電子及び正孔)の再結合を抑制することができ、良好なパッシベーション性を実現することができる。
 以下、実施の形態について図面を参照しつつ説明する。図中同一又は相当する構成については同一の符号を付し、同じ説明を繰り返さない。
 [第1実施形態]
 (光電変換素子の構成)
 図1は、第1実施形態に係る光電変換素子の概略構成を示す断面図である。図1に示すように、光電変換素子10は、半導体基板1と、反射防止膜2と、パッシベーション層3と、n型非晶質半導体層4と、p型非晶質半導体層5と、電極6,7とを備える。
 半導体基板1は、例えば、n型単結晶シリコン基板である。半導体基板1は、例えば、100~150μmの厚みを有する。
 半導体基板1の一方の面には、テクスチャ構造が形成されている。以下、半導体基板1において、テクスチャ構造が形成されている面を受光面と称し、受光面と反対の面を裏面と称する。
 反射防止膜2は、半導体基板1の受光面上に形成されている。反射防止膜2は、例えば、窒化シリコン膜で構成される。反射防止膜2は、例えば、60nmの膜厚を有する。
 パッシベーション層3は、半導体基板1の裏面上に形成されている。パッシベーション層3は、表面に複数の凹部34a,34bを有する。凹部34a,34bは、例えば、水素プラズマを用いたエッチングによってパッシベーション層3に形成される。
 パッシベーション層3の厚み方向における上面は、n型非晶質半導体層4が接する第1領域31と、p型非晶質半導体層5が接する第2領域32とを含む。パッシベーション層3の厚み方向の上面は、さらに、n型非晶質半導体層4及びp型非晶質半導体層5のいずれもが接していない第3領域33を含む。
 第1領域31は、凹部34aの底面で構成される領域である。凹部34aの底面は、半導体基板1とパッシベーション層3との界面までは到達していない。凹部34aの底面は、厚み方向において、半導体基板1とパッシベーション層3との界面よりも上方に位置付けられている。
 第1領域31におけるパッシベーション層3の厚みT31は、第3領域33におけるパッシベーション層3の厚みT33よりも小さい。厚みT31は、例えば、2~10nmの範囲で適宜決定することができる。
 第2領域32は、凹部34bの底面で構成される領域である。凹部34bの底面は、半導体基板1とパッシベーション層3との界面までは到達していない。すなわち、凹部34bの底面は、厚み方向において、半導体基板1とパッシベーション層3との界面よりも上方に位置付けられている。
 第2領域32におけるパッシベーション層3の厚みT32は、第3領域33におけるパッシベーション層3の厚みT33よりも小さい。厚みT32は、例えば、2~10nmの範囲で適宜決定することができる。
 第2領域32における厚みT32は、第1領域31における厚みT31とは異なる。図1の例では、厚みT32の方が厚みT31よりも大きい。しかしながら、厚みT32は、厚みT31よりも小さくてもよく、厚みT31と等しくてもよい。
 パッシベーション層3の厚み方向の上面において、凹部34a,34bは、互いに重なり合わないように設けられている。すなわち、第1領域31及び第2領域32は、半導体基板1の面内方向において離間して配置されている。半導体基板1の面内方向において、第1領域31と第2領域32との間には第3領域33が介在している。
 半導体基板1の面内方向において、第1領域31と第2領域32との間隔Gは、250μm以下とすることが好ましい。間隔Gは、半導体基板1の面内方向において、第1領域31のエッジと第2領域32のエッジとの最短距離である。
 第3領域33は、厚み方向において、パッシベーション層3の上面の全領域の中で最も上方に位置する領域である。パッシベーション層3は、第3領域33において、良好なパッシベーション性を確保することが可能な程度の厚みを有することが好ましい。例えば、第3領域33における厚みT33は、5nm~20nmの範囲で設定することができる。
 n型非晶質半導体層4は、パッシベーション層3上に形成されている。より具体的には、n型非晶質半導体層4は、凹部34a内に形成されている。したがって、n型非晶質半導体層4は、第1領域31である凹部34aの底面に接している。n型非晶質半導体層4の厚みは、例えば、3~50nmである。
 n型非晶質半導体層4は、n型の導電型を有し、水素を含有する非晶質半導体層である。n型非晶質半導体層4は、例えば、n型ドーパントとしてリン(P)を含有する。n型非晶質半導体層4は、例えば、n型非晶質シリコン、n型非晶質シリコンゲルマニウム、n型非晶質ゲルマニウム、n型非晶質シリコンカーバイド、n型非晶質シリコンナイトライド、n型非晶質シリコンオキサイド、n型非晶質シリコンオキシナイトライド、又はn型非晶質シリコンカーボンオキサイド等で構成することができる。
 p型非晶質半導体層5は、パッシベーション層3上に形成されている。より具体的には、p型非晶質半導体層5は、凹部34b内に形成されている。したがって、p型非晶質半導体層5は、第2領域32である凹部34bの底面に接している。p型非晶質半導体層5の厚みは、例えば、5~50nmである。
 p型非晶質半導体層5は、p型の導電型を有し、水素を含有する非晶質半導体層である。p型非晶質半導体層5は、例えば、p型ドーパントとしてボロン(B)を含む。p型非晶質半導体層5は、例えば、p型非晶質シリコン、p型非晶質シリコンゲルマニウム、p型非晶質ゲルマニウム、p型非晶質シリコンカーバイド、p型非晶質シリコンナイトライド、p型非晶質シリコンオキサイド、p型非晶質シリコンオキシナイトライド、又はp型非晶質シリコンカーボンオキサイド等で構成することができる。
 上述した通り、第2領域32は、半導体基板1の面内方向において、第1領域31から離間して配置されている。よって、パッシベーション層3の表面において、第2領域32上に設けられるp型非晶質半導体層5は、第1領域31上に設けられるn型非晶質半導体層4から離間して配置される。
 図示は省略するが、パッシベーション層3上には、複数のn型非晶質半導体層4及び複数のp型非晶質半導体層5が、半導体基板1の面内方向において交互に配置されている。
 電極6は、n型非晶質半導体層4上に形成される。電極7は、p型非晶質半導体層5上に形成される。
 各電極6,7は、積層構造を有していてもよい。例えば、各電極6,7は、透明導電層と、金属層とを含んでいてもよい。各電極6,7の透明導電層の厚みは、例えば、3~100nmとすることができる。各電極6,7の金属層の厚みは、50nm以上であることが好ましい。
 電極6の透明導電層は、n型非晶質半導体層4と密着性が高い材料で構成されることが好ましい。電極7の透明導電層は、p型非晶質半導体層5と密着性が高い材料で構成されることが好ましい。各電極6,7の金属層は、導電率が高い金属で構成されることが好ましい。
 各電極6,7の透明導電層は、例えば、ITO(Indium Tin Oxide)、ZnO、又はIWO(Indium Tungsten Oxide)で構成することができる。各電極6,7の金属層は、例えば、銀(Ag)、ニッケル(Ni)、アルミニウム(Al)、銅(Cu)、錫(Sn)、白金(Pt)、金(Au)、クロム(Cr)、タングステン(W)、コバルト(Co)、もしくはチタン(Ti)、これらの合金、又はこれらの積層膜で構成することができる。
 各電極6,7は、上述の透明導電層又は金属層を含んでいなくてもよい。各電極6,7が透明導電層を含まない場合、各電極6,7の金属層は、Ti,Ni,Al,Cr等からなり、且つ1~10nm程度の厚みを有する密着層と、Al,Ag等を主成分とする光反射金属層との積層構造を有することができる。
 (光電変換素子の製造方法)
 以下、上述のように構成された光電変換素子10の製造方法について説明する。図2A~図2Iは、光電変換素子10の製造方法における各工程を示す図である。
 まず、図2Aに示す半導体基板1を準備する(第1工程)。
 具体的には、バルクのシリコンから100~300μmの厚さのウェハを切り出し、ウェハ表面のダメージ層を除去するためのエッチングと、厚さを調整するためのエッチングとを行う。これらのエッチングがなされたウェハの片面に保護膜を形成する。保護膜には、例えば、酸化シリコン、窒化シリコン等が用いられる。
 保護膜が形成されたウェハに対し、NaOH、KOH等のアルカリ溶液(例えば、KOH:1~5wt%、イソプロピルアルコール:1~10wt%の水溶液)を用いてウェットエッチングを行う。これにより、保護膜が形成されていない面が異方性エッチングされ、当該面に複数のピラミッド形状を含むテクスチャ構造が形成される。その後、ウェハから保護膜を除去することにより、図2Aに示す半導体基板1が得られる。
 次に、図2Bに示すように、半導体基板1の受光面、つまりテクスチャ構造が形成された面に反射防止膜2を形成する(第2工程)。
 反射防止膜2は、例えば、酸化シリコン膜と、窒化シリコン膜とを半導体基板1の受光面上に順に積層することによって形成することができる。酸化シリコン膜は、半導体基板1の受光面を熱酸化又はウェット処理することによって形成することができる。熱酸化処理の場合、例えば、半導体基板1を酸素又は水蒸気の雰囲気中で900~1000℃に加熱する。ウェット処理の場合、例えば、半導体基板1を過酸化水素、硝酸、又はオゾン水等に浸漬し、その後、ドライ雰囲気中で800~1000℃に加熱する。窒化シリコン膜は、例えば、プラズマCVD(Plasma Chemical Vapor Deposition)法によって形成することができる。
 窒化シリコン膜と半導体基板1との間には、酸化シリコン膜に代えて、i型非晶質半導体層及びn型非晶質半導体層を順次形成することができる。i型非晶質半導体層及びn型非晶質半導体層は、例えば、プラズマCVD法によって形成することができる。
 次に、図2Cに示すように、半導体基板1の裏面にi型非晶質半導体層300を形成する(第3工程)。
 例えば、プラズマCVD法によって半導体基板1の裏面全体にi型非晶質シリコンを堆積することにより、i型非晶質半導体層300が形成される。i型非晶質シリコンは、良好なパッシベーション性を確保するために十分な厚さ、例えば、5~20nmの厚さになるまで堆積される。i型非晶質半導体層300は、パッシベーション層3の第3領域33における厚みT33(図1)と等しい厚みT300を有するように形成される。
 i型非晶質半導体層300の形成に際し、プラズマCVD装置が備える反応室に導入される反応ガスは、例えば、水素ガス及びシランガスである。このときの処理条件は、例えば、半導体基板1の温度:130~210℃、水素ガス流量:0~100sccm、シランガス(SiH)流量:約40sccm、反応室内の圧力:40~120Pa、周波数:13.56MHz、電力密度:5~15mW/cmとすることができる。
 次に、凹部34aをi型非晶質半導体層300に形成する(第4工程)。
 具体的には、図2Dに示すように、i型非晶質半導体層300上にシャドーマスク200を配置する。そして、i型非晶質半導体層300に対し、シャドーマスク200の開口200aを介して、例えば、水素プラズマによるエッチングを行う。このとき、i型非晶質半導体層300から半導体基板1が露出しないよう、i型非晶質半導体層300の厚みT300よりも小さい深さのエッチングが行われる。これにより、凹部34aがi型非晶質半導体層300に形成される。
 水素プラズマによるエッチングは、プラズマCVD装置を用いて行うことができる。このときの処理条件は、例えば、半導体基板1の温度:130~210℃、水素ガス100%の雰囲気中、反応室内の圧力:40~300Pa、周波数:13.56MHz、電力密度:10~100mW/cm、処理時間:10~300秒とすることができる。このような処理条件により、i型非晶質半導体層300を貫通させることなく数nmのエッチバックを行うことができ、半導体基板1とi型非晶質半導体層300との界面がエッチングによって損傷するのを防止することができる。
 ここで、第4工程で形成された凹部34aの形状とシャドーマスク200の開口200aとの関係について説明する。図3は、エッチング深さと、開口200aの幅(半導体基板1の面内方向における開口200aの長さ)との関係を示す図である。
 図3には、シャドーマスク200の開口200aの幅が200μm,400μm,600μm,800μm,1000μmである場合について、同一時間でエッチングを行ったときのエッチング深さが示されている。図3から、開口200aの幅が大きくなるほどエッチング深さが小さく、エッチング速度が遅くなることがわかる。すなわち、開口200aの幅が大きければ広くて浅い凹部34aが形成され、開口200aの幅が小さければ狭くて深い凹部34aが形成される。このように、シャドーマスク200の開口200aの幅を変更することにより、様々な形状の凹部34aを形成することができる。
 i型非晶質半導体層300に凹部34aを形成した後、図2Eに示すように、凹部34a内にn型非晶質半導体層4を形成する(第5工程)。
 具体的には、第4工程で用いたシャドーマスク200をi型非晶質半導体層300上に配置したまま、例えば、プラズマCVD法により、開口200aを介して凹部34a内にn型の非晶質シリコンを堆積する。これにより凹部34a内にn型非晶質半導体層4が形成される。
 n型非晶質半導体層4の形成に際し、プラズマCVD装置が備える反応室に導入される反応ガスは、例えば、シランガス、水素ガス、及び水素ガスで希釈されたホスフィンガス(ホスフィン濃度は例えば1%)である。このときの処理条件は、例えば、半導体基板1の温度:約170℃、水素ガス流量:0~100sccm、シランガス流量:約40sccm、ホスフィンガス流量:約40sccm、反応室内の圧力:約40Pa、高周波電力密度:約8.33mW/cmとすることができる。
 ここで、第5工程で形成されるn型非晶質半導体層4の形状について説明する。図4Aは、触針段差計にてn型非晶質半導体層4を半導体基板1の面内方向にスキャンし、n型非晶質半導体層4の膜厚を測定した結果を示している。
 シャドーマスク200の開口200aを介して形成されたn型非晶質半導体層4は、図4Aに示すように、フラット領域Lと、膜厚減少領域Tと、テーパー形状領域Rとを含む。図4Aでは、フラット領域Lの膜厚を1.0として規格化したn型非晶質半導体層4の膜厚を縦軸にとっている。
 n型非晶質半導体層4は、半導体基板1の面内方向における略中心である点Cにおいて最大の膜厚を有する。フラット領域Lは、最大の膜厚から膜厚がほとんど変化しない領域をいう。図4Aの例では、スキャン方向の長さが280μm~380μmの間の領域がフラット領域Lである。フラット領域Lの長さは開口200aの幅に依存するが、デポレート(堆積速度)は開口200aの幅に依存しない。
 図4Aに示すように、フラット領域Lの一方の端部K10から点K11までの領域と、フラット領域Lの他方の端部K20から点K12までの領域は、膜厚が緩やかに減少している。これに対し、点K11から点K21までの領域及び点K12から点K22までの領域は、膜厚が急峻に減少している。つまり、フラット領域Lの一方の端部K10から点K11までの領域、及びフラット領域Lの他方の端部K20から点K12までの領域における各膜厚の減少率(第1減少率)よりも、点K11から点K21までの領域及び点K12から点K22までの領域における各膜厚の減少率(第2減少率)が大きくなっている。
 膜厚減少領域Tは、n型非晶質半導体層4において膜厚の減少率が緩やかに変化する領域であり、フラット領域Lの端部K10から点K11までの領域、及びフラット領域Lの端部K20から点K12までの領域である。すなわち、膜厚減少領域Tは、半導体基板1上に成膜される一の薄膜において、当該薄膜の膜厚が最大となる点を第1の点とし、当該薄膜の面内方向において膜厚の減少率が第1減少率から第2減少率に変化する点を第2の点とした場合、当該薄膜の面内方向における第1の点から第2の点までの領域である。
 テーパー形状領域Rは、テーパー状に成膜された領域であり、点K21,K22それぞれからn型非晶質半導体層4の下方端K31,K32までの領域である。テーパー形状領域Rは、開口200aの外側、つまりシャドーマスク200の下方に回り込んで成膜された領域である。テーパー形状領域Rの幅は、n型非晶質半導体層4の成膜条件等によって変動するが、例えば400μm以下であり、好ましくは100μm以下である。
 膜厚減少領域Tにおける膜厚の減少量は、フラット領域Lの膜厚の5%以上であることが好ましく、10%以上であることがより好ましい。つまり、図4Aにおいて、フラット領域Lの端部K10,K20から点K11,K21までの膜厚の減少量が、フラット領域Lの膜厚の5%以上であることが好ましく、10%以上であることがより好ましい。図4Aの例では、膜厚減少領域Tは、フラット領域Lの膜厚よりも20%以上減少しており、好ましい状態である。膜厚減少領域Tの幅は、20μm以上が好ましく、100μm以上がより好ましい。
 図4Bは、n型非晶質半導体層4の別の形状を示す図である。図4Bの例では、n型非晶質半導体層4がフラット領域Lを有していないが、n型非晶質半導体層4の略中心である点Cから点K10までの領域の膜厚の減少率は、点K10から点K20までの領域の膜厚の減少率よりも小さい。点C10から点K10までの各領域T1は、図4Bに示す形状を有するn型非晶質半導体層4の膜厚減少領域である。
 図4Bの例では、点K20の外側の膜厚はほぼ一定であり、テーパー形状領域Rが形成されていない。しかしながら、例えば、成膜圧力や、シャドーマスク200とパッシベーション層3との距離等を調整することにより、テーパー形状領域Rを形成することもできる。
 図示は省略するが、n型非晶質半導体層4は、半導体基板1の面内方向における略中心である点Cの膜厚が両端部の膜厚よりも小さいものであってもよい。すなわち、n型非晶質半導体層4は、両端部よりも中心部が窪んだ形状に形成されていてもよい。この場合であっても、n型非晶質半導体層4は、膜厚が最大となる点を第1の点とし、n型非晶質半導体層4の面内方向における膜厚の減少率が第1減少率から第2減少率に変化する点を第2の点としたときに、n型非晶質半導体層4の面内方向における第1の点から第2の点までの領域である膜厚減少領域を有することができる。
 n型非晶質半導体層4の形成後、図2Fに示すように、凹部34bをi型非晶質半導体層300に形成する(第6工程)。
 具体的には、i型非晶質半導体層300上にシャドーマスク201を配置する。そして、i型非晶質半導体層300に対し、シャドーマスク201の開口201aを介して、例えば、水素プラズマによるエッチングを行う。このとき、i型非晶質半導体層300から半導体基板1が露出しないよう、i型非晶質半導体層300の厚みよりも小さい深さのエッチングが行われる。これにより、凹部34bがi型非晶質半導体層300に形成され、パッシベーション層3が完成する。
 水素プラズマによるエッチングは、第4工程と同様の処理条件で、プラズマCVD装置を用いて行うことができる。よって、凹部34bの形成においても、i型非晶質半導体層300を貫通させることなく数nmのエッチバックを行うことができ、半導体基板1とi型非晶質半導体層300との界面がエッチングによって損傷するのを防止することができる。
 ただし、凹部34bの形成の際のエッチング深さは、凹部34aの形成の際のエッチング深さと異なる。図2Fに示す例では、凹部34bの形成の際のエッチング深さD34bは、凹部34aの形成の際のエッチング深さD34aよりも小さい。
 凹部34aと同様に、凹部34bは、シャドーマスク201の開口201aの幅に応じて様々な形状に形成することができる。例えば、凹部34aの形成に用いたシャドーマスク200の開口200aよりも開口201aの幅を大きくすることにより、凹部34aよりも浅い凹部34bを形成してもよい。また、エッチング時間等の処理条件を凹部34aの形成時と変更することによって、凹部34bの形状を調整してもよい。
 次に、凹部34b内上にp型非晶質半導体層5を形成する(第7工程)。
 具体的には、図2Gに示すように、第6工程で用いたシャドーマスク201をパッシベーション層3上に配置したまま、例えば、プラズマCVD法により、開口201aを介して凹部34b内にp型の非晶質シリコンを堆積する。これにより、凹部34b内にp型非晶質半導体層5が形成される。
 p型非晶質半導体層5の形成に際し、プラズマCVD装置が備える反応室に導入される反応ガスは、例えば、シランガス、水素ガス、及び水素希釈されたジボランガス(ジボラン濃度は例えば約2%)である。このときの処理条件は、例えば、半導体基板1の温度:150~210℃、水素ガス流量:0~100sccm、シランガス流量:約40sccm、ジボランガス流量:約40sccm、反応室内の圧力:40~120Pa、高周波電力密度:5~15mW/cmとすることができる。
 図示は省略するが、シャドーマスク201の開口201aを介して形成されたp型非晶質半導体層5は、図4に示すn型非晶質半導体層4と同様の形状を有する。すなわち、p型非晶質半導体層5は、n型非晶質半導体層4と同様に、フラット領域Lと、膜厚減少領域Tと、テーパー形状領域Rとを含んでいる。
 次に、n型非晶質半導体層4及びp型非晶質半導体層5上にそれぞれ電極6,7を形成する(第8工程)。
 具体的には、図2Hに示すように、パッシベーション層3、n型非晶質半導体層4及びp型非晶質半導体層5が形成された半導体基板1の裏面にマスク202を配置する。そして、例えば、蒸着法やスパッタ法等により、マスク202の開口202aを介して、n型非晶質半導体層4及びp型非晶質半導体層5上にそれぞれ電極6,7を形成する。
 以上の各工程により、図2Iに示す光電変換素子10が製造される。
 なお、上記各工程において使用される各マスク200,201,202は、例えば、ステンレス鋼、銅、ニッケル、ニッケルを含む合金(例えば、42アロイ、又はインバー材等)、モリブデン等の金属からなるメタルマスクである。各マスク200~204は、ガラス、セラミック、有機フィルム等で構成されていてもよい。
 (効果)
 以上のように、第1実施形態に係る光電変換素子10では、半導体基板1と、n型非晶質半導体層4及びp型非晶質半導体層5との間にパッシベーション層3が介在している。このため、n型非晶質半導体層4及びp型非晶質半導体層5を形成する際、半導体基板1とパッシベーション層3との界面部分が損傷を受けにくい。よって、良好なパッシベーション性を確保することができる。
 n型非晶質半導体層4及びp型非晶質半導体層5は、それぞれパッシベーション層3の凹部34a,34b内に配置されている。すなわち、パッシベーション層3において、n型非晶質半導体層4が接する第1領域31における厚みT31、及びp型非晶質半導体層5が接する第2領域32における厚みT32は、n型非晶質半導体層4及びp型非晶質半導体層5が接していない第3領域33における厚みT33よりも小さい。このため、n側領域及びp側領域において、半導体基板1とパッシベーション層3とのコンタクト抵抗を低減することができる。
 パッシベーション層3において、p型非晶質半導体層5が接する第2領域32の厚みT32は、n型非晶質半導体層4が接する第1領域31の厚みT31よりも大きい。このようにすることで、半導体基板1がn型単結晶シリコン基板の場合、パッシベーション層3において第2領域32に相当する部分と半導体基板1との界面における少数キャリア(正孔)の再結合が抑制され、パッシベーション層3全体としてのパッシベーション性を高めることができる。
 凹部34a,34bは、半導体基板1をi型非晶質半導体層300から露出させることなく形成される。このため、凹部34a,34bの形成に際し、半導体基板1とi型非晶質半導体層300(パッシベーション層3)との界面部分が損傷を受けず、パッシベーション性を高めることができる。
 光電変換素子10において、半導体基板1は受光面にテクスチャ構造を有している。このため、半導体基板1の受光面で光が反射するのを防止することができ、光電変換素子10に対する光入射量を大きく確保することができる。
 パッシベーション層3において、n型及びp型非晶質半導体層4,5が接しない第3領域33の厚みT33は、例えば、5nm~20nmとされる。これにより、半導体基板1をパッシベーション層3によって十分に保護することができ、パッシベーション性をより向上させることができる。
 パッシベーション層3において、n型非晶質半導体層4が接する第1領域31及びp型非晶質半導体層5が接する第2領域32の各厚みT31,T32は、例えば、2nm~10nmとされる。これにより、パッシベーション層3において、n型非晶質半導体層4及びp型非晶質半導体層5が配置される部分の厚みが十分に小さくなり、n側及びp側領域におけるコンタクト抵抗をより確実に低減することができる。
 半導体基板1の面内方向において、第1領域31と第2領域32との間隔Gは、例えば、250μm以下とされる。これにより、パッシベーション層3上に配置されるn型非晶質半導体層4及びp型非晶質半導体層5の面積を大きく確保することができ、キャリア(電子及び正孔)の収集効率を向上させることができる。
 パッシベーション層3は、半導体基板1の裏面にi型非晶質半導体層300を形成した後、i型非晶質半導体層300に凹部34a,34bを設けることで形成される。i型非晶質半導体層300に凹部34a,34bを設ける工程において、半導体基板1の裏面がi型非晶質半導体層300から露出することはない。つまり、パッシベーション層3は、半導体基板1の裏面の一部を露出させる工程を経ることなく形成される。このため、半導体基板1とパッシベーション層3との界面部分が損傷を受けることがなく、良好なパッシベーション性を実現することができる。
 第1実施形態では、パッシベーション層3の凹部34aの形成及びn型非晶質半導体層4の形成は、同一のシャドーマスク200を使用し、連続して行われる。また、パッシベーション層3の凹部34bの形成及びp型非晶質半導体層5の形成は、同一のシャドーマスク201を使用し、連続して行われる。このため、パッシベーション層3に不純物が混入するのを抑制することができ、良好なパッシベーション性を確保することができる。
 ここで、第1実施形態に係る光電変換素子10によって得られる効果をより具体的に説明する。図5は、光電変換素子10のライフタイムをパッシベーション層3の厚みごとに示す図である。図6Aは、n側領域のコンタクト抵抗を第1領域31の厚みごとに示す図である。図6Bは、p側領域のコンタクト抵抗を第2領域32の厚みごとに示す図である。
 図5において、1.75倍の膜厚、1.5倍の膜厚、及び1.25倍の膜厚とは、それぞれ、パッシベーション層3が、所定の厚み(標準膜厚)の1.75倍の厚み、1.5倍の厚み、及び1.25倍の厚みを有することを意味する。図5に示すように、パッシベーション性を示す光電変換素子10のライフタイムは、パッシベーション層3の厚みが大きいほど大きい。また、パッシベーション層3の厚みが大きいほど、経時劣化が緩和されている。このことから、パッシベーション層3の厚みを大きくすれば、良好なパッシベーション性を確保できることがわかる。
 ただし、図6Bに示すように、p側領域におけるコンタクト抵抗は、第2領域32の厚みT32が大きくなると顕著に増加する。よって、パッシベーション層3において、第2領域32の厚みT32を他の領域の厚みT31,T33よりも小さくすることで、コンタクト抵抗を効果的に低減できることがわかる。一方、図6Aに示すように、n側領域におけるコンタクト抵抗は、第1領域31の厚みT31に応じて顕著に増加するものではないが、第2領域32の厚みT32に加え、第1領域31の厚みT31を他の領域の厚みT33よりも小さくすれば、コンタクト抵抗のさらなる低減を図ることができる。
 第1実施形態に係る光電変換素子10では、パッシベーション層3において、n型及びp型非晶質半導体層4,5が接しない第3領域33の厚みT33が十分に確保されている。その一方で、パッシベーション層3において、n型非晶質半導体層4が接する第1領域31の厚みT31、及びp型非晶質半導体層5が接する第2領域32の厚みT32は、第3領域33の厚みT33よりも小さくなっている。したがって、良好なパッシベーション性を確保しつつ、コンタクト抵抗を低減することができる。
 [第2実施形態]
 (光電変換素子の構成)
 図7は、第2実施形態に係る光電変換素子の概略構成を示す断面図である。図7に示すように、光電変換素子102は、パッシベーション層320上でn型非晶質半導体層4の一部とp型非晶質半導体層5の一部とが重なり合っている点で第1実施形態と異なる。
 パッシベーション層320には、階段状の底面を有する凹部324が形成されている。凹部324の底面のうち下段面は、n型非晶質半導体層4が接する第1領域321である。凹部324の底面のうち上段面は、p型非晶質半導体層5が接する第2領域322である。
 パッシベーション層320でも、第1実施形態と同様、第1領域321における厚みT321が第2領域322における厚みT322よりも小さい。また、n型非晶質半導体層4及びp型非晶質半導体層5が接していない第3領域303の厚みT323は、第1領域321における厚みT321及び第2領域322における厚みT322よりも大きい。
 n型非晶質半導体層4は、底面全体がパッシベーション層3の第1領域321に接している。p型非晶質半導体層5は、底面の大部分がパッシベーション層3の第2領域322に接しているが、底面の一部がn型非晶質半導体層4の厚み方向の上面に接している。すなわち、n型非晶質半導体層4及びp型非晶質半導体層5は、一部が重なり合うようにパッシベーション層3上に配置されている。
 図7の例では、n型非晶質半導体層4上にp型非晶質半導体層5の一部が重なっているが、p型非晶質半導体層5上にn型非晶質半導体層4の一部が重なっていてもよい。p型非晶質半導体層5上にn型非晶質半導体層4の一部を重ねる場合、n型非晶質半導体層4が配置される第1領域321の厚みT321を、p型非晶質半導体層5が配置される第2領域322の厚みT322よりも小さくしてもよい。
 (光電変換素子の製造方法)
 以下、光電変換素子102の製造方法について説明する。
 図8Aに示すように、まず、第1実施形態の第1及び第2工程と同様にして、半導体基板1の受光面にテクスチャ構造を形成し、反射防止膜2を形成する。続いて、第1実施形態の第3工程と同様にして、半導体基板1の裏面にi型非晶質半導体層302を形成する。さらに、第1実施形態の第4及び第5工程と同様にして、i型非晶質半導体層302上に凹部400aを形成し、凹部400a内にn型非晶質半導体層4を形成する。
 次に、凹部400bをi型非晶質半導体層302に形成する。
 凹部400bは、第1実施形態の第6工程と同様の方法及び条件で形成することができる。しかしながら、凹部400bは、凹部400aと接するように形成される点で、第1実施形態の第6工程で形成した凹部34bとは異なる。すなわち、凹部400bは、半導体基板1の面内方向において凹部400aから離間しないよう、凹部400aに隣接して形成される。
 具体的には、図8Bに示すように、シャドーマスク200の開口203aを介して、例えば、水素プラズマによるエッチングをi型非晶質半導体層302に施し、凹部400bを形成する。このとき、i型非晶質半導体層302から半導体基板1が露出しないよう、i型非晶質半導体層302の厚みよりも小さい深さのエッチングが行われる。ただし、凹部400bの形成に際するエッチング深さは、凹部400aの形成に際するエッチング深さよりも小さい。凹部400a,400bにより、階段状の底面を有する凹部324が構成される。
 次に、凹部400b内にp型非晶質半導体層5を形成する。
 p型非晶質半導体層5は、例えば、プラズマCVD法を用い、第1実施形態の第7工程と同様の処理条件で形成することができる。具体的には、図8Cに示すように、シャドーマスク204の開口204aを介し、凹部400b内にp型非晶質半導体層5を形成する。このとき、凹部400b及びn型非晶質半導体層4の一部が開口204aから露出している。したがって、p型非晶質半導体層5は、一部がn型非晶質半導体層4上に形成され、その他の部分が凹部400b内に形成される。
 その後、図8Dに示すように、第1実施形態の第8工程と同様にして、n型非晶質半導体層4及びp型非晶質半導体層5上にそれぞれ電極6,7を形成する。
 (効果)
 以上のように、第2実施形態に係る光電変換素子102では、パッシベーション層3上において、n型非晶質半導体層4の一部とp型非晶質半導体層5の一部とが重なり合っている。すなわち、パッシベーション層3において、n型非晶質半導体層4が接する第1領域321と、p型非晶質半導体層5が接する第2領域322とが互いに接している。これにより、パッシベーション層3上におけるn型非晶質半導体層4及びp型非晶質半導体層5の面積を大きくすることができ、キャリア(電子及び正孔)の収集効率を向上させることができる。
 [第3実施形態]
 (光電変換素子の構成及び製造方法)
 図9は、第3実施形態に係る光電変換素子の概略構成を示す断面図である。図9に示すように、光電変換素子103は、パッシベーション層330において、n型非晶質半導体層4が凹部334内に配置され、p型非晶質半導体層5が凹部内には配置されていない点で第1実施形態と異なる。
 パッシベーション層330に形成されている凹部334の底面は、n型非晶質半導体層4が接する第1領域331である。パッシベーション層330のうち、第1領域331における厚みT331は、その他の領域における厚みよりも小さい。すなわち、厚みT331は、p型非晶質半導体層5が接する第2領域332の厚みT332よりも小さく、n型非晶質半導体層4及びp型非晶質半導体層5が接しない第3領域333の厚みT333よりも小さい。
 上述したように、p型非晶質半導体層5は、パッシベーション層330の凹部内に配置されていない。したがって、パッシベーション層330において、p型非晶質半導体層5が接する第2領域332の厚みT332は、n型非晶質半導体層4及びp型非晶質半導体層5が接しない第3領域333の厚みT333と実質的に等しい。
 光電変換素子103は、第1実施形態に係る光電変換素子10と同様の方法で製造することができる。ただし、光電変換素子103では、p型非晶質半導体層5がパッシベーション層330の凹部内に配置されないため、p型非晶質半導体層5を配置するための凹部34bを形成する第6工程は不要である。すなわち、光電変換素子103は、実施形態1の第1~第5工程、第7工程、及び第8工程を経て製造することができる。
 (効果)
 以上のように、第3実施形態に係る光電変換素子103では、n型非晶質半導体層4がパッシベーション層330の凹部334内に配置されている。この場合、パッシベーション層330において、n型非晶質半導体層4が接する第1領域331の厚みT331が他の領域の厚みよりも小さくなるため、コンタクト抵抗を低減することができる。また、パッシベーション層330において、第1領域331以外の領域の厚みT332,T333は比較的大きいため、良好なパッシベーション性を確保することもできる。
 また、パッシベーション層330において、p型非晶質半導体層5が接する第2領域332の厚みT332は、n型非晶質半導体層4が接する第1領域331の厚みT331よりも大きい。このため、パッシベーション性が低下しやすいp側領域において、パッシベーション性の低下を抑制することができる。
 [第4実施形態]
 (光電変換素子の構成)
 図10は、第4実施形態に係る光電変換素子の概略構成を示す断面図である。図10に示すように、光電変換素子104は、パッシベーション層340において、p型非晶質半導体層5が凹部344内に配置され、n型非晶質半導体層44が凹部内には配置されていない点で第1実施形態と異なる。また、光電変換素子104は、n型非晶質半導体層44が分離部441を有する点でも第1実施形態と異なる。
 パッシベーション層340に形成されている凹部344の底面は、p型非晶質半導体層5が接する第2領域342である。パッシベーション層330のうち、第2領域342における厚みT342は、その他の領域における厚みよりも小さい。すなわち、厚みT342は、n型非晶質半導体層44が接する第1領域341の厚みT341よりも小さい。
 n型非晶質半導体層44は、半導体基板1の面内方向において、分離部441によって複数部分に分離される。すなわち、分離部441は、n型非晶質半導体層44を厚み方向に貫通し、且つ半導体基板1の面内方向に分断する。分離部441内には、p型非晶質半導体層5が配置されている。
 (光電変換素子の製造方法)
 以下、光電変換素子104の製造方法について説明する。
 図11Aに示すように、まず、第1実施形態の第1及び第2工程と同様にして、半導体基板1の受光面にテクスチャ構造を形成し、反射防止膜2を形成する。続いて、第1実施形態の第3工程と同様にして、半導体基板1の裏面にi型非晶質半導体層304を形成する。
 次に、図11Bに示すように、i型非晶質半導体層304上にn型非晶質半導体膜500を形成する。
 n型非晶質半導体膜500は、第1実施形態の第5工程と同様にして、プラズマCVD法により形成することができる。ただし、第4実施形態では、i型非晶質半導体層304の表面全体にn型非晶質半導体膜500を形成する。このため、第1実施形態の第5工程で使用したシャドーマスク200をi型非晶質半導体層304上に配置せず、プラズマCVD法によるn型の非晶質シリコンの堆積を行う。
 次に、n型非晶質半導体膜500に分離部441を形成するとともに、i型非晶質半導体層304に凹部344を形成する。
 具体的には、図11Cに示すように、n型非晶質半導体膜500及びi型非晶質半導体層304に対し、例えば、シャドーマスク205の開口205aを介して水素プラズマを用いたエッチングを行う。エッチングは、第1実施形態の第4工程と同様の条件で行うことができる。エッチングは、n型非晶質半導体膜500を貫通し、且つi型非晶質半導体層304と半導体基板1の界面まで到達しない深さで行われる。これにより、凹部344を有するパッシベーション層340、及び分離部441によって半導体基板1の面内方向に分離されたn型非晶質半導体層44が完成する。
 次に、パッシベーション層340の凹部344及びn型非晶質半導体層44の分離部441内にp型非晶質半導体層5を形成する。
 具体的には、図11Dに示すように、シャドーマスク205をn型非晶質半導体層44上に配置したまま、開口205aを介し、プラズマCVD法等によって、p型非晶質半導体層5を形成する。このときの成膜条件は、第1実施形態の第7工程と同様のものとすることができる。これにより、パッシベーション層340の凹部344及びn型非晶質半導体層44の分離部441内にp型非晶質半導体層5が形成される。
 その後、図11Eに示すように、第1実施形態の第8工程と同様にして、n型非晶質半導体層4及びp型非晶質半導体層5上にそれぞれ電極6,7を形成する。
 (効果)
 以上のように、第4実施形態に係る光電変換素子104では、p型非晶質半導体層5がパッシベーション層340の凹部344内に配置されている。この場合、パッシベーション層340において、p型非晶質半導体層5が接する第2領域342の厚みT342が他の領域よりも小さくなるため、コンタクト抵抗を低減することができる。また、パッシベーション層340において、n型非晶質半導体層44が接する第1領域341の厚みT341は比較的大きいため、良好なパッシベーション性を確保することもできる。
 [第5実施形態]
 (光電変換素子の構成及び製造方法)
 図12は、第5実施形態に係る光電変換素子の概略構成を示す断面図である。図12に示すように、光電変換素子105は、パッシベーション層350において、第1領域351の厚みT351と、第2領域352の厚みT352とが等しい点で第1実施形態と異なる。
 パッシベーション層350は、凹部354a,354bを有する。凹部354a内には、n型非晶質半導体層4が配置される。凹部354b内には、p型非晶質半導体層5が配置される。凹部354a,354bの底面は、それぞれ、n型非晶質半導体層4が接する第1領域351及びp型非晶質半導体層5が接する第2領域352である。
 凹部354a,354bの深さは実質的に等しい。すなわち、パッシベーション層350の厚み方向において、凹部354aの底面の位置は、凹部354bの底面の位置と実質的に等しい。したがって、パッシベーション層350において、第1領域351の厚みT351と、第2領域352の厚みT352とは実質的に等しい。第1領域351の厚みT351及び第2領域352の厚みT352は、n型非晶質半導体層4及びp型非晶質半導体層5が接しない第3領域353の厚みT353よりも小さい
 光電変換素子105は、第1実施形態と同様の方法で製造することができる。なお、第1実施形態では、凹部34a,34bの深さが互いに異なるため、シャドーマスクの開口幅や、エッチング時間等の処理条件を変更して凹部34a,34bを形成する必要がある。一方、第5実施形態では、凹部354a,354bの深さが同じであるため、シャドーマスクの開口幅及びその他の処理条件を同一にして、凹部354a,354bの形成を行うことができる。
 (効果)
 以上のように、第5実施形態に係る光電変換素子105も、第1実施形態と同様、パッシベーション層330において、n型非晶質半導体層4が接する第1領域351の厚みT351、及びp型非晶質半導体層5が接する第2領域352の厚みT352の双方が、n型非晶質半導体層4及びp型非晶質半導体層5が接しない第3領域353の厚みT353よりも小さい。このため、良好なパッシベーション性を確保し、且つコンタクト抵抗を低減することができる。
 [第6実施形態]
 本実施形態では、上述した第1~第5実施形態の少なくとも1つの光電変換素子を備えた光電変換モジュールについて説明する。図13は、第6実施形態に係る光電変換モジュールの構成を示す概略図である。光電変換モジュール1000は、複数の光電変換素子1001と、カバー1002と、出力端子1003,1004とを備える。
 複数の光電変換素子1001の少なくとも1つは、第1~第5実施形態に係る光電変換素子10,102~105のいずれかである。複数の光電変換素子1001は、例えば、アレイ状に配置され、直列に接続されている。直列に接続する代わりに、並列接続、又は、直列と並列を組み合わせた接続を行ってもよい。
 カバー1002は、耐候性のカバーからなり、複数の光電変換素子1001を覆う。カバー1002は、例えば、光電変換素子1001の受光面側に設けられた透明基材(例えばガラス等)と、光電変換素子1001の受光面側とは反対の裏面側に設けられた裏面基材(例えば、ガラス、樹脂シート等)と、前記透明基材と前記樹脂基材との間の隙間を埋める封止材(例えばEVA等)とを含む。
 出力端子1003は、直列に接続された複数の光電変換素子1001の一方端に配置される配線シート付き光電変換素子1001に接続される。
 出力端子1004は、直列に接続された複数の光電変換素子1001の他方端に配置される光電変換素子1001に接続される。
 上述したように、第1~第5実施形態に係る光電変換素子10、102~105は、開放電圧(Voc)を高く、素子特性が向上している。したがって、光電変換モジュール1000の性能を向上させることができる。
 なお、本実施形態による光電変換モジュールは、図13に示す構成に限らず、第1~第5実施形態に係る光電変換素子10、102~105のいずれかを用いる限り、どのような構成であってもよい。
 [第7実施形態]
 図14は、第7実施形態に係る太陽光発電システムの構成を示す概略図である。太陽光発電システム1100は、光電変換モジュールアレイ1101と、接続箱1102と、パワーコンディショナー1103と、分電盤1104と、電力メーター1105とを備える。太陽光発電システム1100には、「ホーム・エネルギー・マネジメント・システム(HEMS:Home Energy Management System)」、「ビルディング・エネルギー・マネジメント・システム(BEMS:Building Energy Management System)」等の機能を付加することができる。これにより、太陽光発電システム1100の発電量の監視、太陽光発電システム1100に接続される各電気機器類の消費電力量の監視・制御等を行うことができ、エネルギー消費量を削減することができる。
 接続箱1102は、光電変換モジュールアレイ1101に接続される。パワーコンディショナー1103は、接続箱1102に接続される。分電盤1104は、パワーコンディショナー1103及び電気機器1110に接続される。電力メーター1105は、分電盤1104及び系統連携に接続される。
 光電変換モジュールアレイ1101は、太陽光を電気に変換して直流電力を発電し、その発電した直流電力を接続箱1102に供給する。
 接続箱1102は、光電変換モジュールアレイ1101が発電した直流電力を受け、その受けた直流電力をパワーコンディショナー1103へ供給する。
 パワーコンディショナー1103は、接続箱1102から受けた直流電力を交流電力に変換し、その変換した交流電力を分電盤1104に供給する。
 分電盤1104は、パワーコンディショナー1103から受けた交流電力及び/又は電力メーター1105を介して受けた商用電力を電気機器1110へ供給する。また、分電盤1104は、パワーコンディショナー1103から受けた交流電力が電気機器1110の消費電力よりも多いとき、余った交流電力を、電力メーター1105を介して、系統連携へ供給する。
 電力メーター1105は、系統連携から分電盤1104へ向かう方向の電力を計測するとともに、分電盤1104から系統連携へ向かう方向の電力を計測する。
 図15は、図14に示す光電変換モジュールアレイ1101の構成を示す概略図である。図15を参照して、光電変換モジュールアレイ1101は、複数の光電変換モジュール1120と、出力端子1121,1122とを含む。
 複数の光電変換モジュール1120は、アレイ状に配列され、直列に接続される。複数の光電変換モジュール1120の各々は、図13に示す光電変換モジュール1000からなる。
 出力端子1121は、直列に接続された複数の光電変換モジュール1120の一方端に位置する光電変換モジュール1120に接続される。
 出力端子1122は、直列に接続された複数の光電変換モジュール1120の他方端に位置する光電変換モジュール1120に接続される。
 太陽光発電システム1100における動作を説明する。光電変換モジュールアレイ1101は、太陽光を電気に変換して直流電力を発電し、その発電した直流電力を、接続箱1102を介してパワーコンディショナー1103へ供給する。
 パワーコンディショナー1103は、光電変換モジュールアレイ1101から受けた直流電力を交流電力に変換し、その変換した交流電力を分電盤1104へ供給する。
 分電盤1104は、パワーコンディショナー1103から受けた交流電力が電気機器1110の消費電力以上であるとき、パワーコンディショナー1103から受けた交流電力を電気機器1110に供給する。そして、分電盤1104は、余った交流電力を、電力メーター1105を介して系統連携へ供給する。
 また、分電盤1104は、パワーコンディショナー1103から受けた交流電力が電気機器1110の消費電力よりも少ないとき、系統連携から受けた交流電力及びパワーコンディショナー1103から受けた交流電力を電気機器1110へ供給する。
 太陽光発電システム1100は、上述したように、素子特性が向上している第1~第5実施形態に係る光電変換素子のいずれかを備えている。したがって、太陽光発電システム1100の性能を向上させることができる。
 なお、本実施形態による太陽光発電システムは、図14及び図15に示す構成に限らず、第1~第5実施形態に係る光電変換素子のいずれかを用いる限り、どのような構成であってもよい。また、図16に示すようにパワーコンディショナー1103には蓄電池1106が接続されていてもよい。この場合、日照量の変動による出力変動を抑制することができるとともに、日照のない時間帯であっても蓄電池1106に蓄電された電力を供給することができる。蓄電池1106はパワーコンディショナー1103に内蔵されていてもよい。
 [第8実施形態]
 図17は、第8実施形態に係る太陽光発電システムの構成を示す概略図である。太陽光発電システム1200は、サブシステム1201~120n(nは2以上の整数)と、パワーコンディショナー1211~121nと、変圧器1221とを備える。太陽光発電システム1200は、図14、18Bに示す太陽光発電システム1100よりも規模が大きい太陽光発電システムである。
 パワーコンディショナー1211~121nは、それぞれ、サブシステム1201~120nに接続される。
 変圧器1221は、パワーコンディショナー1211~121n及び系統連携に接続される。
 サブシステム1201~120nの各々は、モジュールシステム1231~123j(jは2以上の整数)からなる。
 モジュールシステム1231~123jの各々は、光電変換モジュールアレイ1301~130i(iは2以上の整数)と、接続箱1311~131iと、集電箱1321とを含む。
 光電変換モジュールアレイ1301~130iの各々は、図18に示す光電変換モジュールアレイ1101と同じ構成からなる。
 接続箱1311~131iは、それぞれ、光電変換モジュールアレイ1301~130iに接続される。
 集電箱1321は、接続箱1311~131iに接続される。また、サブシステム1201のj個の集電箱1321は、パワーコンディショナー1211に接続される。サブシステム1202のj個の集電箱1321は、パワーコンディショナー1212に接続される。以下、同様にして、サブシステム120nのj個の集電箱1321は、パワーコンディショナー121nに接続される。
 モジュールシステム1231のi個の光電変換モジュールアレイ1301~130iは、太陽光を電気に変換して直流電力を発電し、その発電した直流電力を、それぞれ接続箱1311~131iを介して集電箱1321へ供給する。モジュールシステム1232のi個の光電変換モジュールアレイ1301~130iは、太陽光を電気に変換して直流電力を発電し、その発電した直流電力をそれぞれ、接続箱1311~131iを介して集電箱1321へ供給する。以下、同様にして、モジュールシステム123jのi個の光電変換モジュールアレイ1301~130iは、太陽光を電気に変換して直流電力を発電し、その発電した直流電力をそれぞれ、接続箱1311~131iを介して集電箱1321へ供給する。
 そして、サブシステム1201のj個の集電箱1321は、直流電力をパワーコンディショナー1211へ供給する。
 サブシステム1202のj個の集電箱1321は、同様にして直流電力をパワーコンディショナー1212へ供給する。
 以下、同様にして、サブシステム120nのj個の集電箱1321は、直流電力をパワーコンディショナー121nへ供給する。
 パワーコンディショナー1211~121nは、それぞれ、サブシステム1201~120nから受けた直流電力を交流電力に変換し、その変換した交流電力を変圧器1221へ供給する。
 変圧器1221は、パワーコンディショナー1211~121nから交流電力を受け、その受けた交流電力の電圧レベルを変換して系統連携へ供給する。
 太陽光発電システム1200は、上述したように、素子特性が向上している第1~第5実施形態に係る光電変換素子のいずれかを備えている。したがって、太陽光発電システム1200の性能を向上させることができる。
 なお、第8実施形態に係る太陽光発電システムは、図17に示す構成に限らず、第1~第5実施形態に係る光電変換素子のいずれかを用いる限り、どのような構成であってもよい。
 また、図18に示すようにパワーコンディショナー1211~121nに蓄電池1213が接続されていてもよいし、蓄電池1213がパワーコンディショナー1211~121nに内蔵されていてもよい。この場合、パワーコンディショナー1211~121nは、集電箱1321から受けた直流電力の一部又は全部を適切に電力変換して、蓄電池1213に蓄電することができる。蓄電池1213に蓄電された電力は、サブシステム1201~120nの発電量に応じて適宜パワーコンディショナー1211~121n側に供給され、適切に電力変換されて変圧器1221へ供給される。
 [変形例]
 以上、実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。
 上記第1~第5実施形態では、半導体基板の受光面にのみテクスチャ構造が形成される例を説明したが、半導体基板の裏面にもテクスチャ構造を形成することができる。この場合、n型非晶質半導体層及びp型非晶質半導体層と各電極との密着性が向上し、結果として、光電変換素子の歩留まり及び信頼性を向上させることができる。また、半導体基板の裏面が平坦な場合と比較して、n型非晶質半導体層及びp型非晶質半導体層と各電極との接触面積が大きくなるため、接触抵抗を低減することもできる。
 上記第1~第5実施形態では、半導体基板がn型単結晶シリコン基板である例を説明したが、半導体基板は、p型のシリコン基板であってもよい。
 上記第1~第5実施形態では、半導体基板の受光面に反射防止膜が形成される例を説明したが、半導体基板の受光面には反射防止膜が設けられていなくてもよい。また、半導体基板の受光面には、反射防止膜に代えて、高濃度のn型ドーパントが拡散されたn層が形成されていてもよい。あるいは、半導体基板の受光面と反射防止膜との間に、高濃度のn型ドーパントが拡散されたn層が形成されていてもよい。
 上記第1~第5実施形態では、プラズマCVD法を用いて、各非晶質半導体層を形成する例を説明したが、プラズマCVD法に代えて、CatCVD(Catalytic Chemical Vapor Deposition)法を用いることもできる。CatCVD法を用いる場合、例えば、半導体基板の温度を100~300℃、成膜圧力を10~500Pa、熱触媒体としてタングステンを使用する際には熱触媒体の温度を1500~2000℃、RFパワー密度を0.01~1W/cmとして成膜を行ってもよい。このようにすることで、品質の高い非晶質半導体層及び分離部を比較的低温且つ短時間で形成することができる。

Claims (5)

  1.  半導体基板と、
     前記半導体基板の一方面上に形成され、表面に少なくとも1つの凹部を有しており、真性非晶質半導体からなるパッシベーション層と、
     前記パッシベーション層上に形成され、第1導電型を有する第1非晶質半導体層と、
     前記パッシベーション層上に形成され、前記第1導電型と反対の第2導電型を有する第2非晶質半導体層と、
    を備え、
     前記第1非晶質半導体層及び前記第2非晶質半導体層の少なくとも一方は、前記凹部内に配置されている、光電変換素子。
  2.  請求項1に記載の光電変換素子であって、
     前記第1非晶質半導体層及び前記第2非晶質半導体層は、いずれも前記凹部内に配置されている、光電変換素子。
  3.  請求項1又は2に記載の光電変換素子であって、
     前記パッシベーション層は、前記第1非晶質半導体層が接する領域における厚みと、前記第2非晶質半導体層が接する領域における厚みとが異なる、光電変換素子。
  4.  請求項3に記載の光電変換素子であって、
     前記第1非晶質半導体層は、n型の導電型を有し、
     前記第2非晶質半導体層は、p型の導電型を有しており、
     前記パッシベーション層において、前記第2非晶質半導体層が接する領域における厚みは、前記第1非晶質半導体層が接する領域における厚みよりも大きい、光電変換素子。
  5.  請求項1から4のいずれか1項に記載の光電変換素子であって、
     前記パッシベーション層は、前記凹部が設けられていない部分の厚みが5nm~20nmである、光電変換素子。
PCT/JP2015/081562 2014-11-14 2015-11-10 光電変換素子 WO2016076300A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014232118 2014-11-14
JP2014-232118 2014-11-14

Publications (1)

Publication Number Publication Date
WO2016076300A1 true WO2016076300A1 (ja) 2016-05-19

Family

ID=55954383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081562 WO2016076300A1 (ja) 2014-11-14 2015-11-10 光電変換素子

Country Status (1)

Country Link
WO (1) WO2016076300A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181834A1 (ja) * 2018-03-23 2019-09-26 株式会社カネカ 太陽電池の製造方法、および、太陽電池
WO2020035987A1 (ja) * 2018-08-13 2020-02-20 株式会社カネカ 光電変換素子および光電変換素子の製造方法
WO2020217999A1 (ja) * 2019-04-23 2020-10-29 株式会社カネカ 太陽電池の製造方法および太陽電池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129872A (ja) * 2008-11-28 2010-06-10 Kyocera Corp 太陽電池素子
JP2013191656A (ja) * 2012-03-13 2013-09-26 Sharp Corp 光電変換素子およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129872A (ja) * 2008-11-28 2010-06-10 Kyocera Corp 太陽電池素子
JP2013191656A (ja) * 2012-03-13 2013-09-26 Sharp Corp 光電変換素子およびその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181834A1 (ja) * 2018-03-23 2019-09-26 株式会社カネカ 太陽電池の製造方法、および、太陽電池
JPWO2019181834A1 (ja) * 2018-03-23 2021-03-11 株式会社カネカ 太陽電池の製造方法、および、太陽電池
JP7221276B2 (ja) 2018-03-23 2023-02-13 株式会社カネカ 太陽電池の製造方法、および、太陽電池
WO2020035987A1 (ja) * 2018-08-13 2020-02-20 株式会社カネカ 光電変換素子および光電変換素子の製造方法
CN112567535A (zh) * 2018-08-13 2021-03-26 株式会社钟化 光电转换元件和光电转换元件的制造方法
JPWO2020035987A1 (ja) * 2018-08-13 2021-08-10 株式会社カネカ 光電変換素子および光電変換素子の製造方法
JP7053851B2 (ja) 2018-08-13 2022-04-12 株式会社カネカ 光電変換素子および光電変換素子の製造方法
CN112567535B (zh) * 2018-08-13 2024-03-26 株式会社钟化 光电转换元件和光电转换元件的制造方法
WO2020217999A1 (ja) * 2019-04-23 2020-10-29 株式会社カネカ 太陽電池の製造方法および太陽電池
JPWO2020217999A1 (ja) * 2019-04-23 2021-11-25 株式会社カネカ 太陽電池の製造方法および太陽電池
JP7169440B2 (ja) 2019-04-23 2022-11-10 株式会社カネカ 太陽電池の製造方法および太陽電池

Similar Documents

Publication Publication Date Title
US10424685B2 (en) Method for manufacturing solar cell having electrodes including metal seed layer and conductive layer
US8552520B2 (en) Semiconductor devices and methods for manufacturing the same
US10224441B2 (en) Solar cell and method of manufacturing the same
US20180122964A1 (en) Solar battery and solar battery module
JP6719548B2 (ja) 光電変換装置、光電変換モジュールおよび太陽光発電システム
JPWO2017047375A1 (ja) 光電変換素子、それを備えた太陽電池モジュールおよび太陽光発電システム
WO2016076300A1 (ja) 光電変換素子
JP6639496B2 (ja) 光電変換装置
US20150372165A1 (en) Photoelectric converting element
JP6639295B2 (ja) 光電変換装置、光電変換モジュールおよび太陽光発電システム
JP6639407B2 (ja) 光電変換素子
JP5913446B2 (ja) 光電変換装置およびその製造方法
WO2016114371A1 (ja) 光電変換素子、それを備えた太陽電池モジュールおよび太陽光発電システム
JP6133465B2 (ja) 光電変換装置およびその製造方法
WO2016076299A1 (ja) 光電変換装置
JP5871996B2 (ja) 光電変換装置およびその製造方法
WO2015198978A1 (ja) 光電変換装置およびその製造方法
WO2016163168A1 (ja) 光電変換素子
JP2017183347A (ja) 光電変換装置、光電変換モジュールおよび光電変換装置の製造方法
US10355145B2 (en) Photovoltaic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15859671

Country of ref document: EP

Kind code of ref document: A1