[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015020103A1 - 短絡素子、及び短絡回路 - Google Patents

短絡素子、及び短絡回路 Download PDF

Info

Publication number
WO2015020103A1
WO2015020103A1 PCT/JP2014/070772 JP2014070772W WO2015020103A1 WO 2015020103 A1 WO2015020103 A1 WO 2015020103A1 JP 2014070772 W JP2014070772 W JP 2014070772W WO 2015020103 A1 WO2015020103 A1 WO 2015020103A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
short
soluble conductor
circuit
heating element
Prior art date
Application number
PCT/JP2014/070772
Other languages
English (en)
French (fr)
Inventor
吉弘 米田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201480044984.1A priority Critical patent/CN105453212B/zh
Priority to KR1020167003405A priority patent/KR102233539B1/ko
Publication of WO2015020103A1 publication Critical patent/WO2015020103A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a short-circuit element and a short-circuit that physically and electrically short-circuit an open power supply line and signal line with an electric signal.
  • a battery pack incorporates a number of protection circuits such as overcharge protection and overdischarge protection, It has a function of shutting off the output of the battery pack in a predetermined case.
  • Some types of protection elements perform overcharge protection or overdischarge protection operation of the battery pack by turning on / off the output using an FET switch built in the battery pack.
  • FET switch When the FET switch is short-circuited for some reason, a lightning surge or the like is applied and an instantaneous large current flows, or the output voltage drops abnormally due to the life of the battery cell, or excessively abnormal Even when the voltage is output, the battery pack and the electronic device must be protected from accidents such as ignition. Therefore, in order to safely shut off the output of the battery cell in any possible abnormal state, a protection element made of a fuse element having a function of cutting off the current path by an external signal is used. .
  • a protection element of a protection circuit for a lithium ion secondary battery or the like As a protection element of a protection circuit for a lithium ion secondary battery or the like, as described in Patent Document 1, it can be extended between the first electrode, the heating element extraction electrode, and the second electrode on the current path.
  • a molten conductor is connected to form a part of a current path, and the fusible conductor on the current path is melted by a self-heating due to an overcurrent or a heating element provided inside the protective element.
  • the molten liquid soluble conductor is collected on the conductor layer connected to the heating element, thereby interrupting the current path.
  • HEVs Electric Vehicles
  • EVs Electric Vehicles
  • a lithium ion secondary battery has been used from the viewpoint of energy density and output characteristics.
  • a high voltage and a large current are required.
  • dedicated cells that can withstand high voltages and large currents have been developed, but in many cases due to manufacturing cost problems, it is necessary to connect multiple battery cells in series and in parallel to use general-purpose cells. Secures the correct voltage and current.
  • the short-circuit element 50 is connected in parallel with the battery cell 51 on the charge / discharge path, and is normally opened, and the two open electrodes 52 and 53 that are open when melted.
  • a fusible conductor 54 that short-circuits between 52 and 53 and a heating element 55 that is connected in series with the fusible conductor 54 and that melts the fusible conductor 54.
  • the heating element 55 self-heats when a current flows through the charge / discharge path, and melts the soluble conductor 54 by this heat (Joule heat).
  • the heating element 55 is connected to a current control element 56 such as an FET.
  • the current control element 56 regulates power supply to the heating element 55 when the battery cell 51 is normal, and controls the current to flow to the heating element 55 via the charge / discharge path when abnormal.
  • the battery circuit using the short-circuit element 50 shuts off the battery cell 51 from the charge / discharge path by the protection element 57 and activates the current control element 56.
  • a current is passed through the heating element 55.
  • the soluble conductor 54 is melted by the heat of the heating element 55, and the molten conductor is aggregated and bonded onto the two open electrodes 52 and 53. Therefore, the open electrodes 52 and 53 are short-circuited by the molten conductor, thereby forming a current path that bypasses the battery cell 51.
  • the short-circuit element 50 when used in a digital signal line that passes a current weaker than that of the power supply line, power is supplied to obtain a sufficient amount of heat to cause the heat generating element 55 to melt the fusible conductor 54. Therefore, the use of the short-circuit element 50 is limited to the use of the power supply line.
  • the current control element 56 that switches the current path to the heating element 55 side is required to improve the rating in the same manner as the current rating increases.
  • a highly rated current control element is generally expensive and disadvantageous in terms of cost.
  • the present invention can supply sufficient power for fusing a soluble conductor to a heating element even when incorporated in a weak current path, and can be used for any application, and An object is to provide a short circuit.
  • a short-circuit element includes an insulating substrate, a heating element, first and second electrodes provided adjacent to each other on the insulating substrate, and the first electrode.
  • a third electrode provided adjacent to the electrode; a fourth electrode provided adjacent to the second electrode; and the heating element mounted from the first electrode to the third electrode.
  • the first fusible conductor fused between the first electrode and the third electrode by heating from the first electrode and the fourth fusible electrode mounted from the second electrode to the fourth electrode.
  • a second soluble conductor that is fused between the second electrode and the fourth electrode by heating; a fifth electrode that is electrically connected to the heating element; and the fifth electrode.
  • a sixth electrode provided adjacent to the sixth electrode is mounted from the fifth electrode to the sixth electrode.
  • a third soluble conductor that is connected in series with the heating element and is fused between the fifth electrode and the sixth electrode by heating from the heating element.
  • the first and second fusible conductors are melted by heating, and the fused conductors aggregated on the first and second electrodes are combined to short-circuit the first and second electrodes. is there.
  • a short circuit includes a first circuit having a first fuse, first and second electrodes formed adjacent to each other and insulated, and the first circuit, A second circuit formed electrically independently and having a heating element and a second fuse connected to one end of the heating element; The first fuse is melted by the generated heat to short-circuit the first and second electrodes, and then the second fuse is blown to stop the heat generation of the heating element.
  • the current path extending between the first and second electrodes incorporated in the external circuit and the power feeding path to the heating element for fusing the first and second soluble conductors are electrically independent. Therefore, it is possible to supply electric power for obtaining a heat generation amount sufficient for fusing the first and second soluble conductors to the heating element regardless of the type of the external circuit. Therefore, according to the present invention, the present invention can be applied not only to a power supply circuit but also to a digital signal circuit for passing a weak current as an external circuit.
  • the power supply path to the heating element is formed electrically independent of the current path between the first and second electrodes incorporated in the external circuit, the power supply to the heating element is performed.
  • the current control element to be controlled can be selected according to the rating of the heating element regardless of the current rating of the external circuit, and can be manufactured at a lower cost.
  • FIG. 1A and 1B are diagrams showing a short-circuit element to which the present invention is applied, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view.
  • FIG. 2 is a plan view showing the heat generation center of the heat generating element in the short-circuit element.
  • FIG. 3 is a circuit diagram of a short-circuit element to which the present invention is applied.
  • FIG. 4 is a circuit diagram showing a short circuit to which the present invention is applied.
  • 5A and 5B are diagrams showing a short-circuit element in which the first and second electrodes are short-circuited.
  • FIG. 5A is a cross-sectional view and FIG. 5B is a circuit diagram.
  • FIG. 6A and 6B are diagrams showing a short-circuit element in which the fifth and sixth electrodes are cut off and heat generation from the heating element is stopped.
  • FIG. 6A is a cross-sectional view
  • FIG. 6B is a circuit diagram
  • 7A and 7B are diagrams showing another short-circuit element to which the present invention is applied, in which FIG. 7A is a plan view and FIG. 7B is a cross-sectional view.
  • 8A and 8B are diagrams showing another short-circuit element to which the present invention is applied, in which FIG. 8A is a plan view and FIG. 8B is a cross-sectional view.
  • FIG. 8A is a plan view
  • FIG. 8B is a cross-sectional view.
  • FIG. 9 is a cross-sectional view showing a short-circuit element in which a heating element is formed on the back surface of the insulating substrate.
  • FIG. 10 is a cross-sectional view showing a short-circuit element in which a heating element is formed inside an insulating layer.
  • FIG. 11 is a cross-sectional view showing a short-circuit element in which a heating element is formed inside an insulating substrate.
  • FIG. 12 is a plan view showing a short-circuit element in which a heating element and first to sixth electrodes are formed on the surface of an insulating substrate.
  • FIG. 13 is a circuit diagram of a battery pack having a short-circuit element having a protective resistor.
  • FIG. 14 is a perspective view showing a soluble conductor having a high-melting-point metal layer and a low-melting-point metal layer and having a coating structure
  • (A) is a structure in which the high-melting-point metal layer is an inner layer and is covered with a low-melting-point metal layer.
  • (B) shows a structure in which a low melting point metal layer is used as an inner layer and is covered with a high melting point metal layer.
  • FIG. 15 is a perspective view showing a soluble conductor having a laminated structure of a high-melting point metal layer and a low-melting point metal layer, where (A) shows a two-layer structure, and (B) shows a three-layer structure of an inner layer and an outer layer. .
  • FIG. 16 is a cross-sectional view showing a soluble conductor having a multilayer structure of a high melting point metal layer and a low melting point metal layer.
  • FIG. 17 is a plan view showing a fusible conductor in which a linear opening is formed on the surface of the refractory metal layer and the low melting point metal layer is exposed.
  • FIG. 17A shows the opening along the longitudinal direction.
  • the formed part (B) has an opening formed in the width direction.
  • FIG. 18 is a plan view showing a soluble conductor in which a circular opening is formed on the surface of the refractory metal layer and the low melting point metal layer is exposed.
  • FIG. 19 is a plan view showing a soluble conductor in which a circular opening is formed in a refractory metal layer and a low melting point metal is filled therein.
  • FIG. 20 is a circuit diagram showing a battery circuit using the short-circuit element according to the reference example.
  • the short-circuit element 1 to which the present invention is applied is provided adjacent to each other on the insulating substrate 10, the heating element 17, and the surface 10 a side of the insulating substrate 10.
  • a first fusible conductor 21 mounted between the first electrode 11 and the third electrode 13 and fusing between the first electrode 11 and the third electrode 13 by heating from the heating element 17;
  • the second soluble conductor 22 is mounted between the second electrode 12 and the fourth electrode 14 and is fused between the second electrode 12 and the fourth electrode 14 by heating from the heating element 17.
  • the short-circuit element 1 includes a fifth electrode 15 electrically connected to the heating element 17 and a sixth electrode 16 provided adjacent to the fifth electrode 15 on the surface 10 a side of the insulating substrate 10. And is connected in series with the heating element 17 by being mounted from the fifth electrode 15 to the sixth electrode 16, and between the fifth electrode 15 and the sixth electrode 16 by heating from the heating element 17. And a third fusible conductor 23 that is melted at the same time.
  • the short circuit element 1 fuses the 1st, 2nd soluble conductors 21 and 22 by the heating from the heat generating body 17, and the aggregated molten conductor couple
  • the first and second electrodes 11 and 12 are short-circuited.
  • the insulating substrate 10 is formed in a substantially square shape using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
  • the insulating substrate 10 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but attention should be paid to the temperature at which the first to third soluble conductors 21 to 23 are blown. There is a need to.
  • the heating element 17 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 10 using a screen printing technique and then fired.
  • the heating element 17 is covered with an insulating layer 18 on the surface 10 a of the insulating substrate 10.
  • the insulating layer 18 is provided to protect and insulate the heating element 17 and efficiently transmit the heat of the heating element 17 to the first to sixth electrodes 11 to 16, and is made of, for example, a glass layer.
  • the heating element 17 has one end connected to a heating element extraction electrode 19 formed on the insulating substrate 10 and the other end connected to a fifth electrode 15 described later.
  • the heating element extraction electrode 19 is formed with a heating element electrode terminal portion 20 facing the side edge of the insulating substrate 10.
  • the heating element extraction electrode 19 is connected to an external connection terminal (not shown) provided on the back surface of the insulating substrate 10 through the through hole 27.
  • the heating element 17 is connected to a current control element 33 described later via a heating element extraction electrode 19, a heating element electrode terminal portion 20, and an external connection terminal.
  • First to sixth electrodes 11 to 16 are formed on the insulating layer 18 covering the heating element 17.
  • the first electrode 11 is formed adjacent to the second electrode 12 on one side, and is insulated by being separated.
  • a third electrode 13 is formed on the other side of the first electrode 11, and the first and third electrodes 11, 13 support both side edges of the first soluble conductor 21, thereby The misalignment of the soluble conductor 21 is prevented.
  • the first electrode 11 and the third electrode 13 are electrically connected by being integrally formed on the insulating layer 18 and physically separated by laminating an insulating member 25 such as glass. Has been.
  • the first and third electrodes 11 and 13 are integrally formed on the insulating layer 18, the insulating member 25 is stacked, and the first fusible conductor 21 is stacked on the insulating member 25, whereby the insulating member 25 is stacked.
  • the first and third electrodes 11 and 13 are mounted with a first soluble conductor 21 to be described later via a mounting solder 26.
  • the first electrode 11 has a first electrode terminal portion 11 a that faces the side surface of the insulating substrate 10.
  • the first electrode terminal portion 11 a is connected to an external connection terminal (not shown) provided on the back surface of the insulating substrate 10 through the through hole 27.
  • the 1st electrode terminal part 11a is connected to the end of the electric current path of the device in which the short circuit element 1 is mounted via an external connection terminal.
  • a fourth electrode 14 is formed on the other side opposite to the one side adjacent to the first electrode 11 of the second electrode 12, and the second fusible electrode 12, 14 provides a second soluble property. By supporting both side edges of the conductor 22, the displacement of the second fusible conductor 22 is prevented.
  • the second electrode 12 and the fourth electrode 14 are electrically connected by being integrally formed on the insulating layer 18, and an insulating member 25 such as glass is provided. They are physically separated by being stacked.
  • the second and fourth electrodes 12 and 14 are mounted with a second soluble conductor 22 to be described later via a mounting solder 26.
  • the second electrode 12 has a second electrode terminal portion 12 a that faces the side surface of the insulating substrate 10.
  • the second electrode terminal portion 12 a is connected to an external connection terminal (not shown) provided on the back surface of the insulating substrate 10 through the through hole 27.
  • the second electrode terminal portion 12a is connected to the other end of the current path of the device on which the short-circuit element is mounted via the external connection terminal.
  • the first and second electrodes 11 and 12 are short-circuited by agglomeration and bonding of the molten conductors of the first and second fusible conductors 21 and 22, so that more molten conductors can be held and reliably It is preferable to form a larger area than the third and fourth electrodes 13 and 14 so that they can be combined (see FIG. 1B).
  • the fifth electrode 15 has a lower layer portion 15a connected to the heating element 17, and an upper layer portion 15b formed on the insulating layer 18 and on which the third soluble conductor 23 is mounted.
  • a sixth electrode 16 is formed on a side opposite to the side where the lower layer portion 15a of the upper layer portion 15b of the fifth electrode 15 is provided with a predetermined distance therebetween.
  • the fifth and sixth electrodes 15 and 16 are mounted with a third fusible conductor 23 to be described later via a mounting solder 26.
  • the sixth electrode 16 is formed with a sixth electrode terminal portion 16 a that faces the side surface of the insulating substrate 10.
  • the sixth electrode terminal portion 16 a is connected to an external connection terminal (not shown) provided on the back surface of the insulating substrate 10 through the through hole 27.
  • the sixth electrode terminal portion 16a is connected to an external power source 34 that supplies current to the heating element 17 via an external connection terminal.
  • the first to sixth electrodes 11 to 16 and the heating element extraction electrode 19 can be formed using a general electrode material such as Cu or Ag.
  • a coating such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating is formed on at least the surfaces of the first and second electrodes 11 and 12 by a known plating process. Is preferred. Thereby, the oxidation of the 1st, 2nd electrodes 11 and 12 can be prevented, and a molten conductor can be hold
  • the first and second electrodes 11 and 12 can be prevented from being melted (soldered) and cut.
  • a film such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating is also applied to the surfaces of the third to sixth electrodes 13 to 16. Of course, it may be formed.
  • the first electrode terminal portion 11a, the second electrode terminal portion 12a, the sixth electrode terminal portion 16a, and the heating element electrode terminal portion 20 respectively facing the side surface of the insulating substrate 10 are connected to the circuit board.
  • An insulating wall 28 for preventing solder for mounting on the surface 10a of the insulating substrate 10 is formed.
  • the insulating wall 28 provided on the first electrode terminal portion 11a is formed along the mounting region of the first and second soluble conductors 21 and 22 of the first to fourth electrodes 11 to 14 with the second wall. It is formed over the electrode 12.
  • the first to third fusible conductors 21 to 23 can be made of any metal that is quickly melted by the heat generated by the heating element 17, for example, a low-melting-point metal such as Pb-free solder containing Sn as a main component. Can be suitably used.
  • the first to third soluble conductors 21 to 23 may contain a low melting point metal and a high melting point metal.
  • the low melting point metal it is preferable to use solder such as Pb-free solder containing Sn as a main component, and as the high melting point metal, it is preferable to use Ag, Cu or an alloy containing these as main components.
  • the first to third fusible conductors 21 to 23 can be formed by various configurations as will be described later.
  • the short-circuit element 1 is formed such that the first and second fusible conductors 21 and 22 are blown before the third fusible conductor 23.
  • the third fusible conductor 23 is blown before the first and second fusible conductors 21 and 22, power supply to the heating element 17 is stopped, and the first and second fusible conductors 21 and 22 are stopped. This is because the first and second electrodes 11 and 12 cannot be short-circuited without melting.
  • the short-circuit element 1 is formed such that the first and second soluble conductors 21 and 22 are blown first when the heating element 17 generates heat. Specifically, the first and second soluble conductors 21 and 22 of the short-circuit element 1 are mounted closer to the heat generation center of the heating element 17 than the third soluble conductor 23.
  • the heat generation center of the heating element 17 refers to a region where the temperature becomes the highest in the initial stage of heat generation in the heat distribution that is generated when the heating element 17 generates heat.
  • the heat generated from the heating element 17 has the largest amount of heat released from the insulating substrate 10, and when the insulating substrate 10 is formed of a ceramic material having excellent thermal shock resistance but high thermal conductivity, the insulating substrate 10 The heat will diffuse. Therefore, in the initial stage of heat generation when energization is started, the heating element 17 is the hottest at the center farthest from the outer edge in contact with the insulating substrate 10, and the heat is radiated toward the outer edge in contact with the insulating substrate 10, so that the temperature hardly rises.
  • the short-circuit element 1 generates heat at the first and second fusible conductors 21 and 22 that is the highest temperature in the early stage of heat generation of the heating element 17 compared to the third fusible conductor 23.
  • the third soluble conductor 23 is heated later than the first and second soluble conductors 21 and 22, the third soluble conductor 23 is blown after the first and second soluble conductors 21 and 22 are fused.
  • the short circuit element 1 changes the shape of the 1st, 2nd soluble conductors 21 and 22 and the 3rd soluble conductor 23, and the 1st, 2nd soluble conductors 21 and 22 are 3rd. You may make it fuse
  • the short-circuit element 1 includes the first and second elements as shown in FIG. By making the thickness of the fusible conductors 21 and 22 thinner than the thickness of the third fusible conductor 23, the fusible conductors 21 and 22 can be blown before the third fusible conductor 23.
  • the thickness of the high melting point metal layer is set to the first and second soluble conductors.
  • the conductors 21 and 22 may be thin and the second fusible conductor 23 may be thick.
  • the low melting point metal foil may be thin in the first and second fusible conductors 21 and 22, and the third fusible conductor 23.
  • the conductor 23 may be thick.
  • the short-circuit element 1 has a different layer structure such that the first and second soluble conductors 21 and 22 are formed of a low melting point metal and the third soluble conductor 23 is formed of a high melting point metal. Therefore, the first and second fusible conductors 21 and 22 are relatively easier to blow than the third fusible conductor 23, and the first and second fusible conductors 17 generate heat. The fusible conductors 21 and 22 may be melted before the third fusible conductor 23.
  • the cover member 29 has a side wall 29 a and a top surface portion 29 b, and the side wall 29 a is connected to the insulating substrate 10 to be a lid that closes the inside of the short-circuit element 1.
  • the cover member 29 is formed by using an insulating member such as a thermoplastic plastic, a ceramic, a glass epoxy substrate, etc., like the insulating substrate 10.
  • the cover member 29 may be formed with a cover electrode 29c on the inner surface side of the top surface portion 29b.
  • the cover part electrode 29 c is formed at a position overlapping the first and second electrodes 11 and 12.
  • the cover electrode 29c comes into contact with the molten conductor aggregated on the first and second electrodes 11 and 12.
  • the molten conductor can be reliably held between the first and second electrodes 11 and 12, and the allowable amount of the molten conductor to be held can be increased.
  • FIG. 3 shows a circuit diagram of the short-circuit element 1.
  • FIG. 4 shows an example of the short circuit 30 to which the short element 1 is applied.
  • the short-circuit element 1 constitutes a switch 2 that is short-circuited when the first electrode 11 and the second electrode 12 are opened from each other in the initial state and the first and second fusible conductors 21 and 22 are melted.
  • the first circuit 3 is connected to the first electrode 11 and the second electrode 12 by the switch 2.
  • the first circuit 3 is incorporated between various external circuits 31A and 31B such as a power supply circuit and a digital signal circuit by being connected in series on the current path of the circuit board on which the short-circuit element 1 is mounted.
  • the fifth electrode 15, the sixth electrode 16, the heating element 17, and the third fusible conductor 23 constitute a power supply path to the heating element 17 in the initial state, and the heating element
  • the second fusible conductor 23 is melted by the heat generated by the heat 17 and the power supply path is cut off. Since the second circuit 4 is electrically independent of the first circuit 3 and melts the first and second fusible conductors 21 and 22 by the heat of the heating element 17, the second circuit 4 and the first circuit 3 are heated.
  • One end of the heating element 17 is connected to a current control element 33 that controls power supply to the second circuit 4 via the heating element extraction electrode 19 and the heating element electrode terminal portion 20.
  • the other end of the heating element 17 is connected in series with the third soluble conductor 23 via the fifth electrode 15.
  • the third soluble conductor 23 is mounted on the fifth and sixth electrodes 15 and 16, and the sixth electrode 16 is connected to the external power supply 34.
  • the current control element 33 is a switch element that controls power supply to the second circuit 4, and is configured by, for example, an FET, and is connected to a detection circuit 35 that detects the necessity of a physical short circuit of the first circuit 3. ing.
  • the detection circuit 35 is a circuit that detects whether it is necessary to energize the various external circuits 31A and 31B in which the first circuit 3 of the short-circuit element 1 is incorporated.
  • a bypass current path at the time of an abnormal voltage of the battery pack The external circuit 31A, physically or irreversibly due to a short circuit of the first circuit 3, such as a bypass signal path that bypasses the data server for hacking or cracking in network communication devices, or activation of a device or software
  • the current control element 33 is operated.
  • the power of the external power supply 34 is supplied to the second circuit 4 and the heating element 17 generates heat, so that the first and second fusible conductors 21 and 22 are first blown (FIG. 5A).
  • Most of the molten conductors of the first and second soluble conductors 21 and 22 are attracted onto the first and second electrodes 11 and 12 having high wettability and a large area, and are aggregated on the first electrode 11.
  • the molten conductor thus bonded to the molten conductor aggregated on the second electrode 12 is bonded. Thereby, the 1st electrode 11 and the 2nd electrode 12 are short-circuited via a fusion conductor, and external circuits 31A and 31B are connected.
  • the short-circuit element 1 is provided with the first and second fusible conductors 21 and 22 closer to the heat generation center of the heating element 17 than the third fusible conductor 23, and the first and second possible conductors.
  • the molten conductors 21 and 22 can be thinner than the third soluble conductor 23, the molten conductors 21 and 22 can be blown before the third soluble conductor 23. Therefore, the short-circuit element 1 can reliably continue to supply power to the heating element 17 of the second circuit 4 until the first circuit 3 is short-circuited.
  • the short-circuit element 1 can hold more molten conductors by forming the first and second electrodes 11 and 12 in a larger area than the third and fourth electrodes 13 and 14.
  • the first and second electrodes 11 and 12 can be short-circuited by reliably bonding the molten conductor (FIG. 1B, FIG. 5A).
  • the heating element 17 continues to generate heat after the first and second fusible conductors 21 and 22 are melted, but the third fusible conductor 23 is also fused after the first and second fusible conductors 21 and 22. As a result, the second circuit 4 is also shut off (FIGS. 6A and 6B). As a result, the power supply path to the heating element 17 is interrupted and heat generation is stopped.
  • the first circuit 3 incorporated in the external circuits 31A and 31B and the second circuit 4 that short-circuits the first circuit 3 are electrically independent. Therefore, regardless of the type of the external circuit 31, the power supply voltage of the second circuit can be set high, and the first and second fusible conductors 21 and 22 can be connected even when the low-rated heating element 17 is used. Electric power for obtaining a calorific value sufficient for fusing can be supplied. Therefore, according to the short-circuit element 1 and the short-circuit 30, the external circuit 31 in which the first circuit 3 is incorporated can be applied to a digital signal circuit that allows a weak current to flow as well as a power supply circuit.
  • the second circuit 4 is formed independently of the first circuit 3, so that the current control element 33 that controls power supply to the heating element 17. Can be selected according to the rating of the heating element 17 regardless of the rating of the first circuit 3, and by using the current control element 33 that controls the low-rated heating element 17 (for example, 1A), It can be manufactured at low cost.
  • the short-circuit element 40 according to the second embodiment is different from the short-circuit element 1 in that the fourth electrode 14 and the second soluble conductor 22 are not formed, as shown in FIGS. .
  • the first soluble conductor 21 is melted, so that the molten conductor is aggregated over the first electrode 11 and the second electrode 12, thereby the first and second electrodes 11, 12. It can be short-circuited.
  • the first fusible conductor 21 is mounted closer to the heat generation center of the heating element 17 than the third fusible conductor 23. Further, in the short-circuit element 40, the first soluble conductor 21 is formed thinner than the third soluble conductor 23. Thereby, also in the short circuit element 40, the 1st soluble conductor 21 can be blown ahead of the 3rd soluble conductor 23. FIG.
  • the first electrode 11 and the third electrode 13 are electrically connected by being integrally formed on the insulating layer 18, and an insulating member 25 such as glass is laminated. By being physically separated. Further, the second electrode 12 is exposed to the same extent as the first electrode 11 on the side adjacent to the first electrode 11, and the side opposite to the first electrode 11 is covered with an insulating member 25.
  • the short-circuit element 50 according to the third embodiment is different from the short-circuit element 1 in that the fourth electrode 14 is not formed.
  • the molten conductors are aggregated and bonded onto the first electrode 11 and the second electrode 12, whereby the first The second electrodes 11 and 12 can be short-circuited.
  • the first and second soluble conductors 21 and 22 are mounted closer to the heat generation center of the heating element 17 than the third soluble conductor 23.
  • the first and second fusible conductors 21 and 22 are formed thinner than the third fusible conductor 23.
  • the first electrode 11 and the third electrode 13 are electrically connected by being integrally formed on the insulating layer 18, and an insulating member 25 such as glass is laminated. By being physically separated. Further, the second electrode 12 is exposed on the side adjacent to the first electrode 11 to the same extent as the first electrode 11, and the second soluble conductor 22 is mounted via the mounting solder 26. The side opposite to the first electrode 11 is covered with an insulating member 25.
  • the heating element 17 is formed on the surface 10a of the insulating substrate 10 and the first to third fusible conductors 21 to 23 are superposed.
  • the heating element 17 is shown in FIG.
  • the insulating substrate 10 may be formed on the back surface 10b.
  • the heating element 17 is covered with the insulating layer 18 on the back surface 10 b of the insulating substrate 10.
  • the heating element lead electrode 19 and the heating element electrode terminal portion 20 connected to one end of the heating element 17 are also formed on the back surface 10 b of the insulating substrate 10.
  • the fifth electrode 15 has a lower layer portion 15a connected to the other end of the heating element 17 formed on the back surface 10b of the insulating substrate 10, and an upper layer portion 15b on which the third soluble conductor 23 is mounted has a surface of the insulating substrate 10. 10a, the lower layer portion 15b and the upper layer portion 15b are continued through the conductive through hole.
  • the heating element 17 is preferably formed at a position overlapping the first to third soluble conductors 21 to 23 on the back surface 10 b of the insulating substrate 10. At this time, it is preferable that the first and second fusible conductors 21 and 22 are mounted closer to the heat generation center of the heating element 17 than the third fusible conductor 23.
  • the heating element 17 is formed on the back surface 10b of the insulating substrate 10, whereby the surface 10a of the insulating substrate 10 is flattened, whereby the first to sixth electrodes 11 to 16 are placed on the surface 10a. Can be formed. Therefore, the short-circuit element 1 can simplify the manufacturing process of the first to sixth electrodes 11 to 16 and reduce the height.
  • the short-circuit element 1 uses the material having excellent thermal conductivity such as fine ceramic as the material of the insulating substrate 10.
  • the first to third fusible conductors 21 to 23 can be heated and blown in the same manner as when laminated on the surface 10a of the insulating substrate 10.
  • heating element 17 may also be formed on the back surface 10 b of the insulating substrate 10 in the short-circuit elements 40 and 50.
  • the short-circuit element 1 may have the heating element 17 formed inside the insulating layer 18 formed on the surface 10 a of the insulating substrate 10.
  • the heating element lead-out electrode 19 to which one end of the heating element 17 is connected also has one end connected to the heating element 17 to the inside of the insulating layer 18.
  • the fifth electrode 15 to which the other end of the heating element 17 is connected has the lower layer portion 15 a formed up to the inside of the insulating layer 18.
  • the heating element 17 is preferably formed at a position overlapping the first to third soluble conductors 21 to 23 inside the insulating layer 18. At this time, it is preferable that the first and second fusible conductors 21 and 22 are mounted closer to the heat generation center of the heating element 17 than the third fusible conductor 23. In the short-circuit element 1, the heating element 17 may be formed inside the insulating layer 18 formed on the back surface 10 b of the insulating substrate 10.
  • the heating element 17 may be formed inside the insulating layer 18 formed on the front surface 10a or the back surface 10b of the insulating substrate 10.
  • the short-circuit element 1 may have a heating element 17 formed inside the insulating substrate 10. In this case, it is not necessary to provide the insulating layer 18 that covers the heating element 17.
  • the heating element extraction electrode 19 to which one end of the heating element 17 is connected has one end connected to the heating element 17 extending to the inside of the insulating substrate 10 and is provided on the surface 10a of the insulating substrate 10 through a conductive through hole. The other end portion and the heating element electrode terminal portion 20 are connected.
  • the fifth electrode 15 has a lower layer portion 15a connected to the other end of the heat generating body 17 formed up to the inside of the insulating substrate 10, an upper layer portion 15b on which the third soluble conductor 23 is mounted, and a conductive through hole. Is continued through.
  • the heating element 17 is formed at a position overlapping the first to third soluble conductors 21 to 23 inside the insulating substrate 10. At this time, it is preferable that the first and second fusible conductors 21 and 22 are mounted closer to the heat generation center of the heating element 17 than the third fusible conductor 23.
  • heating element 17 may also be formed inside the insulating substrate 10 in the short-circuit elements 40 and 50.
  • the heating element 17 may be formed side by side with the first to sixth electrodes 11 to 16 on the surface 10a of the insulating substrate 10. In this case, the heating element 17 is covered with the insulating layer 18.
  • the fifth electrode 15 connected to the other end of the heating element 17 is formed as a single layer on the surface 10 a of the insulating substrate 10.
  • the first and second fusible conductors 21 and 22 are preferably mounted closer to the heat generation center of the heating element 17 than the third fusible conductor 23.
  • the heating element 17 may be formed side by side with the first to sixth electrodes 11 to 16 on the surface 10a of the insulating substrate 10.
  • the short-circuit element 1 may be configured to include a protective resistor connected to either the first electrode 11 or the second electrode 12.
  • the protective resistance is a resistance value corresponding to the internal resistance of the electronic component connected to the short-circuit element 1.
  • the short-circuit element 1 has a bypass current path that bypasses the battery cell 61 in which an abnormal voltage such as overcharge or overdischarge has occurred in the circuit 60 in the battery pack of the lithium ion secondary battery.
  • a protective resistor 62 having a resistance value corresponding to the internal resistance of the battery cell 61 is connected to the first electrode 12.
  • the circuit 60 of the battery pack includes a short-circuit element 1, a current control element 33 that controls the operation of the short-circuit element 1, a battery cell 61, and a protection element 63 that blocks the battery cell 61 from the charge / discharge path.
  • a short-circuit element 1 a current control element 33 that controls the operation of the short-circuit element 1
  • a battery cell 61 a battery cell 61
  • a protection element 63 that blocks the battery cell 61 from the charge / discharge path.
  • a plurality of battery units 64 are connected in series.
  • the battery pack circuit 60 also includes a detection circuit 35 that detects the voltage of the battery cell 61 of each battery unit 64 and outputs an abnormal signal to the protection element 63 and the current control element 33.
  • Each battery unit 64 has a protection element 63 connected in series with the battery cell 61. Further, in the battery unit 64, the first electrode 11 of the short-circuit element 1 is connected to the open end of the protective element 63 via the protective resistor 62, and the second electrode 12 is connected to the open end of the battery cell 61. Thus, the protection element 63 and the battery cell 61 and the short-circuit element 1 are connected in parallel.
  • the current control element 33 and the protection element 63 are connected to the detection circuit 35, respectively.
  • the detection circuit 35 is connected to each battery cell 61, detects the voltage value of each battery cell 61, and the battery unit having the battery cell 61 when the battery cell 61 becomes an overcharge voltage or an overdischarge voltage. 64 protection elements 63 are driven, and an abnormal signal is output to the current control element 33.
  • the protective element 62 can be configured by, for example, a field effect transistor (hereinafter referred to as FET).
  • FET field effect transistor
  • the protective element 62 is mounted across the pair of electrodes connected on the charge / discharge path, the soluble conductor that short-circuits between the electrodes, and the soluble conductor in series.
  • it can be constituted by an element having a heating element that is energized and generates heat and melts a soluble conductor.
  • the circuit 60 operates the protection element 63 and the short-circuit element 1 when the voltage value of the battery cell 61 becomes a voltage exceeding a predetermined overdischarge or overcharge state by the detection signal output from the detection circuit 35.
  • the battery unit 64 is cut off from the charging / discharging current path, and the switch 2 of the short-circuit element 1 is short-circuited to control to form a bypass current path that bypasses the battery unit 64.
  • the circuit 60 is controlled so that an abnormal signal is also output to the current control element 33 by the detection circuit 35 so that a current flows through the heating element 17 of the short-circuit element 1.
  • the first and second soluble conductors 21 and 22 are heated and melted by the heating element 17, so that the molten conductors aggregate and bond on the first and second electrodes 11 and 12. 1 and the 2nd electrodes 11 and 12 are short-circuited.
  • the circuit 60 can form a bypass current path that bypasses the battery cell 61 by the short-circuit element 1.
  • the third soluble conductor 23 is melted after the first and second fusible conductors 8 and 9 are melted, whereby the power supply to the heating element 17 is stopped.
  • the circuit 60 can form a bypass current path that bypasses the battery cell 61 via the short-circuit element 1, and the remaining normal battery cells
  • the charge / discharge function can be maintained by 61.
  • the short-circuit element 1 is provided with the protective resistor 62 having substantially the same resistance value as the internal resistance of the blocked battery cell 61, the circuit 60 is normal even after the bypass current path is constructed.
  • the resistance value can be the same as the time.
  • the protective resistor 62 may be formed in the short-circuit element 1 as shown in FIG. 13, or may be formed in the circuit 60 and connected to the first electrode terminal portion 11 a of the short-circuit element 1.
  • any or all of the first to third soluble conductors 21 to 23 may contain a low melting point metal and a high melting point metal.
  • the first to third soluble conductors 21 to 23 are provided with a refractory metal layer 70 made of Ag, Cu or an alloy containing these as a main component as an inner layer.
  • a soluble conductor provided with a low melting point metal layer 71 made of Pb-free solder containing Sn as a main component as an outer layer may be used.
  • the first to third fusible conductors 21 to 23 may have a structure in which the entire surface of the high melting point metal layer 70 is covered with the low melting point metal layer 71 and is covered except for a pair of opposite side surfaces. It may be a structure.
  • the covering structure with the high melting point metal layer 70 and the low melting point metal layer 71 can be formed using a known film forming technique such as plating.
  • the first to third soluble conductors 21 to 23 are soluble in which a low melting point metal layer 71 is provided as an inner layer and a high melting point metal layer 70 is provided as an outer layer.
  • a conductor may be used.
  • the first to third fusible conductors 21 to 23 may have a structure in which the entire surface of the low melting point metal layer 71 is covered with the high melting point metal layer 70, and is covered except for a pair of opposing side surfaces. The structure may be different.
  • first to third fusible conductors 21 to 23 may have a laminated structure in which a high melting point metal layer 71 and a low melting point metal layer 71 are laminated as shown in FIG.
  • the first to third fusible conductors 21 to 23 are laminated on the lower layer mounted on the first to sixth electrodes 11 to 16 and on the lower layer, as shown in FIG.
  • the lower melting point metal layer 71 may be laminated on the upper surface of the lower refractory metal layer 70, and the upper layer of the lower melting point metal layer 71 may be laminated.
  • the upper refractory metal layer 70 may be laminated.
  • the first to third soluble conductors 21 to 23 may be formed as a three-layer structure including an inner layer and an outer layer laminated on the upper and lower surfaces of the inner layer.
  • the low melting point metal layer 71 serving as the outer layer may be laminated on the upper and lower surfaces of the refractory metal layer 70 serving as the inner layer. You may laminate.
  • the first to third soluble conductors 21 to 23 may have a multilayer structure of four or more layers in which high melting point metal layers 70 and low melting point metal layers 71 are alternately laminated.
  • the first to third fusible conductors 21 to 23 may be structured so as to be covered with the metal layer constituting the outermost layer except for the entire surface or a pair of opposite side surfaces.
  • the high melting point metal layer 70 may be partially laminated in a stripe shape on the surface of the low melting point metal layer 71 constituting the inner layer.
  • FIG. 17 is a plan view of the first to third fusible conductors 21 to 23.
  • the first to third fusible conductors 21 to 23 shown in FIG. 17A have a plurality of linear refractory metal layers 70 in the longitudinal direction on the surface of the low melting point metal layer 71 at predetermined intervals in the width direction.
  • a linear opening 72 is formed along the longitudinal direction, and the low melting point metal layer 71 is exposed from the opening 72.
  • the low melting point metal layer 71 is exposed from the opening 72, thereby increasing the contact area between the molten low melting point metal and the high melting point metal. It is possible to improve the fusing property by further promoting the erosion action.
  • the opening 72 can be formed, for example, by subjecting the low melting point metal layer 71 to partial plating of a metal constituting the high melting point metal layer 70.
  • the first to third fusible conductors 21 to 23 are formed on the surface of the low melting point metal layer 71 at a predetermined interval in the longitudinal direction at the linear refractory metal layer 70.
  • the linear openings 72 may be formed along the width direction.
  • the first to third soluble conductors 21 to 23 form a refractory metal layer 70 on the surface of the low melting point metal layer 71 and extend over the entire surface of the refractory metal layer 70.
  • a circular opening 73 may be formed, and the low melting point metal layer 71 may be exposed from the opening 73.
  • the opening 73 can be formed, for example, by subjecting the low melting point metal layer 71 to partial plating of a metal constituting the high melting point metal layer 70.
  • the contact area between the molten low melting point metal and the high melting point metal is increased, and the high melting point metal is eroded.
  • the action can be further promoted to improve the fusing property.
  • the first to third fusible conductors 21 to 23 are formed with a large number of openings 74 in the refractory metal layer 70 as an inner layer, and the refractory metal layer 70 is plated.
  • the low melting point metal layer 71 may be formed using a technique or the like and filled in the opening 74.
  • the first to third soluble conductors 21 to 23 are preferably formed such that the volume of the low melting point metal layer 71 is larger than the volume of the high melting point metal layer 70.
  • the first to third soluble conductors 21 to 23 are heated by the heating element 17 to melt the low melting point metal when the low melting point metal melts, and thereby can be melted and blown quickly. . Therefore, the first to third soluble conductors 21 to 23 promote this corrosion action by forming the volume of the low melting point metal layer 71 larger than the volume of the high melting point metal layer 70, and promptly
  • the molten conductor can be aggregated and bonded onto the first and second electrodes 11 and 12, and the fifth and sixth electrodes 15 and 16 can be blocked.
  • the short-circuit element according to the present invention is not limited to use in a battery pack of a lithium ion secondary battery, and various types that require blocking and bypassing current paths by electric signals such as power supply lines and digital signal lines of electronic devices. Of course, it can be applied to various applications.
  • the operating condition of the current control element 33 is not limited to the case where the voltage of the battery cell 61 is abnormal, and can be operated by detecting any accident such as an abnormal increase in ambient temperature or submergence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuses (AREA)
  • Combustion & Propulsion (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

短絡素子において、微弱な電流経路上でも、発熱体の加熱による可溶導体の溶断に伴い開放回路を短絡させる短絡素子を実現する。絶縁基板(10)と、発熱体(17)と、相隣接する第1及び第2の電極(11),(12)と、第1の電極(11)と隣接する第3の電極(13)と、第2の電極(12)と隣接する第4の電極(14)と、第1、第3の電極(11),(13)間にわたって搭載された第1の可溶導体(21)と、第2、第4の電極(12),(14)間にわたって搭載された第2の可溶導体(22)と、発熱体(17)と接続された第5の電極(15)と、第5の電極(15)と隣接する第6の電極(16)と、第5、第6の電極(15),(16)間にわたって搭載された第3の可溶導体(23)とを備え、発熱体(17)により第1、第2の可溶導体(21),(22)を溶融させ、第1、第2の電極(11),(12)間を溶融導体により短絡させる。

Description

短絡素子、及び短絡回路
 本発明は、開放状態の電源ラインや信号ラインを電気信号により物理的且つ電気的に短絡させる短絡素子、及び短絡回路に関する。本出願は、日本国において2013年8月7日に出願された日本特許出願番号特願2013-164616を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギー密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。
 この種の保護素子には、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行うものがある。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加されて瞬間的な大電流が流れた場合、あるいはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大な異常電圧を出力した場合であっても、バッテリパックや電子機器は、発火等の事故から保護されなければならない。そこで、このような想定し得るいかなる異常状態においても、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられている。
 リチウムイオン二次電池等向けの保護回路の保護素子としては、特許文献1に記載されているように、電流経路上の第1の電極,発熱体引出電極,第2の電極間に亘って可溶導体を接続して電流経路の一部をなし、この電流経路上の可溶導体を、過電流による自己発熱、あるいは保護素子内部に設けた発熱体によって溶断するものがある。このような保護素子では、溶融した液体状の可溶導体を発熱体に繋がる導体層上に集めることにより電流経路を遮断する。
特開2010-003665号公報 特開2004-185960号公報 特開2012-003878号公報
 ところで、近年、バッテリとモーターを使用したHEV(Hybrid Electric Vehicle)やEV(Electric Vehicle)が急速に普及している。HEVやEVの動力源としては、エネルギー密度と出力特性からリチウムイオン二次電池が使用されるようになってきている。自動車用途では、高電圧、大電流が必要とされる。このため、高電圧、大電流に耐えられる専用セルが開発されているが、製造コスト上の問題から多くの場合、複数のバッテリセルを直列、並列に接続することで、汎用セルを用いて必要な電圧電流を確保している。
 ここで、高速移動中の自動車等では、急激な駆動力の低下や急停止は却って危険な場合があり、非常時を想定したバッテリ管理が求められている。例えば、走行中にバッテリーシステムの異常が起きた際にも、修理工場もしくは安全な場所まで移動するための駆動力、あるいはハザードランプやエアコン用の駆動力を供給できることが、危険回避上、好ましい。
 しかし、特許文献1のような複数のバッテリセルが直列に接続されたバッテリパックにおいては、充放電経路上にのみ保護素子を設けたような場合、バッテリセルの一部に異常が発生し保護素子を作動させると、バッテリパック全体の充放電経路が遮断されてしまい、これ以上、電力を供給することができない。
 そこで、複数セルで構成されたバッテリパック内の異常なバッテリセルのみを排除し、正常なバッテリセルを有効に活用するために、異常なバッテリセルのみをバイパスするバイパス経路を形成することができる短絡素子が提案されている。
 この短絡素子50は、図20に示すように、充放電経路上においてバッテリセル51と並列に接続され、正常時には開放されている二つの開放電極52,53と、溶融することにより二つの開放電極52,53間を短絡させる可溶導体54と、可溶導体54と直列に接続され、当該可溶導体54を溶融させる発熱体55を有する。
 発熱体55は、充放電経路を介して電流が流れることにより自己発熱し、この熱(ジュール熱)によって可溶導体54を溶融させる。発熱体55は、FET等の電流制御素子56と接続されている。電流制御素子56は、バッテリセル51の正常時には発熱体55への給電を規制し、異常時に充放電経路を介して発熱体55へ電流が流れるように制御する。
 短絡素子50が用いられたバッテリ回路は、バッテリセル51に異常電圧等が検出されると、保護素子57によって当該バッテリセル51を充放電経路上から遮断するとともに、電流制御素子56を作動させ、発熱体55へ電流を流す。これにより、発熱体55の熱により可溶導体54が溶融し、溶融導体が二つの開放電極52,53上に凝集、結合する。したがって、開放電極52,53は溶融導体によって短絡され、これにより、バッテリセル51をバイパスする電流経路を形成することができる。
 しかし、短絡素子50を、電源ラインよりも微弱な電流を流すデジタル信号ラインにおいて用いる場合には、発熱体55に可溶導体54を溶断させるのに十分な発熱量を得るほどの電力を供給することができず、短絡素子50の用途が電源ライン用途に限られていた。
 また、電流経路を発熱体55側に切り替える電流制御素子56も、電流定格の向上に伴って同様に定格の向上が求められる。そして、高定格の電流制御素子は、一般的に高価であり、コスト上も不利となる。
 そこで、本発明は、微弱な電流経路に組み込まれた場合にも、発熱体に可溶導体を溶断させるのに十分な電力を供給することができ、あらゆる用途に用いることができる短絡素子、及び短絡回路を提供することを目的とする。
 上述した課題を解決するために、本発明に係る短絡素子は、絶縁基板と、発熱体と、上記絶縁基板に、互いに隣接して設けられた第1及び第2の電極と、上記第1の電極と隣接して設けられた第3の電極と、上記第2の電極と隣接して設けられた第4の電極と、上記第1の電極から上記第3の電極にわたって搭載され、上記発熱体からの加熱により、上記第1の電極と上記第3の電極との間で溶断する第1の可溶導体と、上記第2の電極から上記第4の電極にわたって搭載され、上記発熱体からの加熱により、上記第2の電極と上記第4の電極との間で溶断する第2の可溶導体と、上記発熱体と電気的に接続された第5の電極と、上記第5の電極と隣接して設けられた第6の電極と、上記第5の電極から上記第6の電極にわたって搭載されることにより上記発熱体と直列に接続され、上記発熱体からの加熱により、上記第5の電極と上記第6の電極との間で溶断する第3の可溶導体とを備え、上記発熱体からの加熱により上記第1、第2の可溶導体を溶融させ、上記第1、第2の電極上に凝集した溶融導体が結合することによって上記第1、第2の電極間を短絡させるものである。
 また、本発明に係る短絡回路は、第1のヒューズと、互いに隣接して形成されるとともに絶縁されている第1、第2の電極とを有する第1の回路と、上記第1の回路と電気的に独立して形成され、発熱体と、上記発熱体の一端と接続された第2のヒューズとを有する第2の回路とを備え、上記第2の回路に電流を流し上記発熱体が発熱した熱により、上記第1のヒューズを溶融させて上記第1、第2の電極間を短絡した後に、上記第2のヒューズを溶断させて上記発熱体の発熱を停止するものである。
 本発明によれば、外部回路に組み込まれる第1、第2の電極間にわたる電流経路と、第1、第2の可溶導体を溶断させる発熱体への給電経路とが、電気的に独立しているため、外部回路の種類によらず、発熱体に対して第1、第2の可溶導体を溶断させるのに十分な発熱量を得る電力を供給することができる。したがって、本発明によれば、外部回路として、電源回路の他、微弱な電流を流すデジタル信号回路にも適用することができる。
 また、本発明によれば、外部回路に組み込まれる第1、第2の電極間にわたる電流経路と電気的に独立して発熱体への給電経路を形成しているため、発熱体への給電を制御する電流制御素子を、外部回路の電流定格に関わらず、発熱体の定格に応じて選択することができ、より安価に製造することができる。
図1は、本発明が適用された短絡素子を示す図であり、(A)は平面図、(B)は断面図である。 図2は、短絡素子における発熱体の発熱中心を示す平面図である。 図3は、本発明が適用された短絡素子の回路図である。 図4は、本発明が適用された短絡回路を示す回路図である。 図5は、第1、第2の電極間が短絡された短絡素子を示す図であり、(A)は断面図、(B)は回路図である。 図6は、第5、第6の電極間が遮断され発熱体の発熱が停止された短絡素子を示す図であり、(A)は断面図、(B)は回路図である。 図7は、本発明が適用された他の短絡素子を示す図であり、(A)は平面図、(B)は断面図である。 図8は、本発明が適用された他の短絡素子を示す図であり、(A)は平面図、(B)は断面図である。 図9は、発熱体が絶縁基板の裏面に形成された短絡素子を示す断面図である。 図10は、発熱体が絶縁層の内部に形成された短絡素子を示す断面図である。 図11は、発熱体が絶縁基板の内部に形成された短絡素子を示す断面図である。 図12は、発熱体及び第1~第6の電極が絶縁基板の表面に形成された短絡素子を示す平面図である。 図13は、保護抵抗を備えた短絡素子を有するバッテリパックの回路図である。 図14は、高融点金属層と低融点金属層を有し、被覆構造を備える可溶導体を示す斜視図であり、(A)は高融点金属層を内層とし低融点金属層で被覆した構造を示し、(B)は低融点金属層を内層とし高融点金属層で被覆した構造を示す。 図15は、高融点金属層と低融点金属層の積層構造を備える可溶導体を示す斜視図であり、(A)は上下2層構造、(B)は内層及び外層の3層構造を示す。 図16は、高融点金属層と低融点金属層の多層構造を備える可溶導体を示す断面図である。 図17は、高融点金属層の表面に線状の開口部が形成され低融点金属層が露出されている可溶導体を示す平面図であり、(A)は長手方向に沿って開口部が形成されたもの、(B)は幅方向に沿って開口部が形成されたものである。 図18は、高融点金属層の表面に円形の開口部が形成され低融点金属層が露出されている可溶導体を示す平面図である。 図19は、高融点金属層に円形の開口部が形成され、内部に低融点金属が充填された可溶導体を示す平面図である。 図20は、参考例に係る短絡素子が用いられたバッテリ回路を示す回路図である。
 以下、本発明が適用された短絡素子、及び短絡回路について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [短絡素子]
 [第1の形態]
 本発明が適用された短絡素子1は、図1(A)(B)に示すように、絶縁基板10と、発熱体17と、絶縁基板10の表面10a側に、互いに隣接して設けられた第1及び第2の電極11,12と、第1の電極11と隣接して設けられた第3の電極13と、第2の電極12と隣接して設けられた第4の電極14と、第1の電極11から第3の電極13にわたって搭載され、発熱体17からの加熱により、第1の電極11と第3の電極13との間で溶断する第1の可溶導体21と、第2の電極12から第4の電極14にわたって搭載され、発熱体17からの加熱により、第2の電極12と第4の電極14との間で溶断する第2の可溶導体22とを備える。
 また、短絡素子1は、絶縁基板10の表面10a側に、発熱体17と電気的に接続された第5の電極15と、第5の電極15と隣接して設けられた第6の電極16と、第5の電極15から第6の電極16にわたって搭載されることにより発熱体17と直列に接続され、発熱体17からの加熱により、第5の電極15と第6の電極16との間で溶断する第3の可溶導体23とを備える。
 そして、短絡素子1は、発熱体17からの加熱により第1、第2の可溶導体21,22を溶融させ、第1、第2の電極11,12上に凝集した溶融導体が結合することによって、これら第1、第2の電極11,12間を短絡させる。
 絶縁基板10は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材を用いて略方形状に形成されている。絶縁基板10は、その他にも、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、第1~第3の可溶導体21~23の溶断時の温度に留意する必要がある。
 発熱体17は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板10上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成する。
 発熱体17は、絶縁基板10の表面10a上において絶縁層18に被覆されている。絶縁層18は、発熱体17の保護及び絶縁を図るとともに、発熱体17の熱を効率よく第1~第6の電極11~16へ伝えるために設けられ、例えばガラス層からなる。第1~第6の電極11~16は、発熱体17によって加熱されることにより、第1~第3の可溶導体21~23の溶融導体を凝集しやすくすることができる。
 また、発熱体17は、一端が絶縁基板10に形成された発熱体引出電極19と接続され、他端が後述する第5の電極15と接続されている。発熱体引出電極19は、絶縁基板10の側縁に臨む発熱体電極端子部20が形成されている。発熱体引出電極19は、スルーホール27を介して絶縁基板10の裏面に設けられた外部接続端子(図示せず)と接続されている。発熱体17は、発熱体引出電極19、発熱体電極端子部20及び外部接続端子を介して、後述する電流制御素子33と接続されている。
 [第1~第6の電極]
 発熱体17を被覆する絶縁層18上には、第1~第6の電極11~16が形成されている。第1の電極11は、一方側において第2の電極12と隣接して形成されるとともに、離間されることにより絶縁されている。第1の電極11の他方側には第3の電極13が形成され、これら第1、第3の電極11,13によって第1の可溶導体21の両側縁を支持することにより、第1の可溶導体21の位置ズレ防止を図る。第1の電極11と第3の電極13とは、絶縁層18上において一体に形成されることにより電気的に接続されるとともに、ガラス等の絶縁部材25が積層されることによって物理的に離間されている。第1、第3の電極11,13を絶縁層18上に一体形成するとともに、絶縁部材25を積層し、さらに絶縁部材25上に第1の可溶導体21を積層することで、絶縁部材25が発熱体17の熱を第1の可溶導体21や第1及び第3の電極11,13へ効率よく伝えるヒートスプレッダとして機能する。したがって、短絡素子1は、発熱体17が発熱すると、短時間で第1の可溶導体21を溶断することができる。
 第1、第3の電極11,13は、実装用ハンダ26を介して、後述する第1の可溶導体21が搭載されている。また、第1の電極11は、絶縁基板10の側面に臨む第1の電極端子部11aが形成されている。第1の電極端子部11aは、スルーホール27を介して絶縁基板10の裏面に設けられた外部接続端子(図示せず)と接続されている。そして、第1の電極端子部11aは、外部接続端子を介して、短絡素子1が実装されるデバイスの電流経路の一端と接続される。
 第2の電極12の第1の電極11と隣接する一方側と反対の他方側には、第4の電極14が形成され、これら第2、第4の電極12,14によって第2の可溶導体22の両側縁を支持することにより、第2の可溶導体22の位置ズレ防止を図る。第2の電極12と第4の電極14とも、第1、第3の電極と同様に、絶縁層18上において一体に形成されることにより電気的接続されるとともに、ガラス等の絶縁部材25が積層されることによって物理的に離間されている。第2、第4の電極12,14は、実装用ハンダ26を介して、後述する第2の可溶導体22が搭載されている。また、第2の電極12は、絶縁基板10の側面に臨む第2の電極端子部12aが形成されている。第2の電極端子部12aは、スルーホール27を介して絶縁基板10の裏面に設けられた外部接続端子(図示せず)と接続されている。第2の電極端子部12aは、外部接続端子を介して、短絡素子が実装されるデバイスの電流経路の他端と接続される。
 第1、第2の電極11,12は、第1、第2の可溶導体21,22の溶融導体が凝集、結合することにより短絡させることから、より多くの溶融導体を保持し、確実に結合できるように、第3、第4の電極13,14よりも広面積に形成することが好ましい(図1(B)参照)。
 第5の電極15は、発熱体17と接続されている下層部15aと、絶縁層18上に形成され、第3の可溶導体23が搭載される上層部15bとを有する。第5の電極15の上層部15bの下層部15aが設けられた側と反対側には、所定距離を隔てて第6の電極16が形成されている。第5、第6の電極15,16は、実装用ハンダ26を介して、後述する第3の可溶導体23が搭載されている。また、第6の電極16は、絶縁基板10の側面に臨む第6の電極端子部16aが形成されている。第6の電極端子部16aは、スルーホール27を介して絶縁基板10の裏面に設けられた外部接続端子(図示せず)と接続されている。第6の電極端子部16aは、外部接続端子を介して、発熱体17に電流を供給する外部電源34と接続される。
 これら第1~第6の電極11~16、及び発熱体引出電極19は、CuやAg等の一般的な電極材料を用いて形成することができる。また、少なくとも第1、第2の電極11、12の表面上には、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の被膜が、公知のメッキ処理により形成されていることが好ましい。これにより、第1、第2の電極11,12の酸化を防止し、溶融導体を確実に保持させることができる。また、短絡素子1をリフロー実装する場合に、第1、第2の可溶導体21,22を接続する実装用ハンダ26あるいは第1、第2の可溶導体21,22の外層を形成する低融点金属が溶融することにより第1、第2の電極11,12を溶食(ハンダ食われ)して切断するのを防ぐことができる。なお、第1、第2の電極11,12に加え、第3~第6の電極13~16の表面上にもNi/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の被膜を形成してもよいのはもちろんである。
 また、それぞれ絶縁基板10の側面に臨む第1の電極端子部11a、第2の電極端子部12a、第6の電極端子部16a、及び発熱体電極端子部20には、短絡素子1を回路基板に実装するためのハンダが絶縁基板10の表面10aに上がってくるのを防ぐ絶縁壁28が形成されている。第1の電極端子部11a上に設けられた絶縁壁28は、第1~第4の電極11~14の第1、第2の可溶導体21,22の搭載領域に沿って、第2の電極12上にわたって形成されている。これにより、第1、第2の可溶導体21,22の溶融導体が第1、第2の電極端子部11a,12aを通じて流出ことを防止し、確実に第1、第2の電極11,12上に凝集、結合させることができる。
 [第1~第3の可溶導体]
 第1~第3の可溶導体21~23は、発熱体17の発熱により速やかに溶断されるいずれの金属を用いることができ、例えば、Snを主成分とするPbフリーハンダ等の低融点金属を好適に用いることができる。
 また、第1~第3の可溶導体21~23は、低融点金属と高融点金属とを含有してもよい。低融点金属としては、Snを主成分とするPbフリーハンダなどのハンダを用いることが好ましく、高融点金属としては、Ag、Cu又はこれらを主成分とする合金などを用いることが好ましい。高融点金属と低融点金属とを含有することによって、短絡素子1をリフロー実装する場合に、リフロー温度が低融点金属の溶融温度を超えて、低融点金属が溶融しても、低融点金属の外部への流出を抑制し、第1~第3の可溶導体21~23の形状を維持することができる。また、溶断時も、低融点金属が溶融することにより、高融点金属を溶食(ハンダ食われ)することで、高融点金属の融点以下の温度で速やかに溶断することができる。なお、第1~第3の可溶導体21~23は、後に説明するように、様々な構成によって形成することができる。
 [第1の可溶導体の先溶融]
 ここで、短絡素子1は、第1、第2の可溶導体21,22が、第3の可溶導体23よりも先に溶断するように形成されている。第1、第2の可溶導体21,22よりも先に第3の可溶導体23が溶断すると、発熱体17への給電が停止され、第1、第2の可溶導体21,22が溶融せず、第1、第2の電極11,12間を短絡させることができないからである。
 そこで、短絡素子1は、発熱体17が発熱すると、第1、第2の可溶導体21,22が先に溶断するように形成されている。具体的に、短絡素子1の第1、第2の可溶導体21,22は、第3の可溶導体23よりも、発熱体17の発熱中心に近い位置に搭載されている。
 ここで、発熱体17の発熱中心とは、発熱体17が発熱することにより発現する熱分布のうち、発熱初期の段階で最も高温となる領域をいう。発熱体17より発せされる熱は絶縁基板10からの放熱量が最も多く、絶縁基板10を、耐熱衝撃性に優れるが熱伝導率も高いセラミックス材料により形成した場合などには、絶縁基板10に熱が拡散してしまう。そのため、発熱体17は通電が開始された発熱初期の段階では、絶縁基板10と接する外縁から最も遠い中心が最も熱く、絶縁基板10と接する外縁に向かうにつれて放熱されて温度が上がりにくくなる。
 そこで、図2に示すように、短絡素子1は、第1、第2の可溶導体21,22を、第3の可溶導体23よりも、発熱体17の発熱初期において最も高温となる発熱中心Cに近い位置に搭載することにより、第3の可溶導体23よりも早く熱が伝わり、溶断するようにする。第3の可溶導体23は、第1、第2の可溶導体21,22より遅れて加熱されるため、第1、第2の可溶導体21,22が溶断した後に溶断される。
 また、短絡素子1は、第1、第2の可溶導体21,22と第3の可溶導体23の形状を変えることにより、第1、第2の可溶導体21,22が第3の可溶導体23よりも先に溶断するようにしてもよい。例えば、第1、第2の可溶導体17,19は、厚さが薄いほど溶断が容易となることから、図1(B)に示すように、短絡素子1は、第1、第2の可溶導体21,22の厚さを第3の可溶導体23の厚さよりも薄くすることにより、第3の可溶導体23よりも先に溶断させることができる。なお、第1~第3の可溶導体21~23は、例えば低融点金属箔を高融点金属メッキで被覆した構造を有する場合、高融点金属層の厚さを第1、第2の可溶導体21,22では薄く、第2の可溶導体23では厚くしてもよく、あるいは、低融点金属箔の厚みを第1、第2の可溶導体21,22では薄く、第3の可溶導体23では厚くしてもよい。
 その他にも、短絡素子1は、第1、第2の可溶導体21,22を低融点金属により形成し、第3の可溶導体23を高融点金属により形成するなど、層構造を変えることによって融点に差を設け、相対的に第1、第2の可溶導体21,22を第3の可溶導体23よりも溶断しやすくし、発熱体17の発熱により、第1、第2の可溶導体21,22を第3の可溶導体23よりも先に溶断させるようにしてもよい。
 [その他]
 なお、第1~第3の可溶導体21~23の酸化防止、及び溶融時における濡れ性を向上させるために、第1~第3の可溶導体21~23の上にはフラックス32が塗布されている。
 また、短絡素子1は、絶縁基板10がカバー部材29に覆われることによりその内部が保護されている。カバー部材29は、側壁29aと、天面部29bとを有し、側壁29aが絶縁基板10上に接続されることにより、短絡素子1の内部を閉塞する蓋体となる。カバー部材29は、上記絶縁基板10と同様に、たとえば、熱可塑性プラスチック,セラミックス,ガラスエポキシ基板等の絶縁性を有する部材を用いて形成されている。
 また、カバー部材29は、天面部29bの内面側に、カバー部電極29cが形成されても良い。カバー部電極29cは、第1、第2の電極11,12と重畳する位置に形成されている。このカバー部電極29cは、発熱体17が発熱し、第1、第2の可溶導体21,22が溶融されると、第1、第2の電極11,12上に凝集した溶融導体が接触して濡れ広がることにより、溶融導体を第1、第2の電極11,12間にわたって確実に保持させるとともに、保持する溶融導体の許容量を増加させることができる。
 [回路構成]
 次いで、短絡素子1の回路構成について説明する。図3に短絡素子1の回路図を示す。図4に、短絡素子1が適用された短絡回路30の一例を示す。
 短絡素子1は、第1の電極11及び第2の電極12が、初期状態において互いに開放されるとともに、第1、第2の可溶導体21、22が溶融することにより短絡するスイッチ2を構成し、当該スイッチ2によって第1の電極11と第2の電極12とが接続される第1の回路3を有する。第1の回路3は、短絡素子1が実装される回路基板の電流経路上に直列接続されることにより、電源回路やデジタル信号回路等の各種外部回路31A,31B間に組み込まれる。
 また、短絡素子1は、第5の電極15、第6の電極16、発熱体17、及び第3の可溶導体23が、初期状態において発熱体17への給電経路を構成するとともに、発熱体17の発熱により第3の可溶導体23が溶断し当該給電経路が遮断される第2の回路4を構成する。第2の回路4は、第1の回路3と電気的に独立し、発熱体17の熱によって第1、第2の可溶導体21,22を溶融させることから、第1の回路3と熱的に接続されている。発熱体17は、一端が発熱体引出電極19及び発熱体電極端子部20を介して、第2の回路4への給電を制御する電流制御素子33に接続されている。また、発熱体17は、他端が、第5の電極15を介して第3の可溶導体23と直列に接続されている。また、第3の可溶導体23は、第5、第6の電極15,16上に搭載され、第6の電極16は、外部電源34と接続されている。
 電流制御素子33は、第2の回路4への給電を制御するスイッチ素子であり、例えばFETにより構成され、第1の回路3の物理的な短絡の要否を検出する検出回路35と接続されている。検出回路35は、短絡素子1の第1の回路3が組み込まれた各種外部回路31A,31B間を通電する必要が生じたかを検出する回路であり、例えばバッテリパックの異常電圧時におけるバイパス電流経路の構築、ネットワーク通信機器におけるハッキングやクラッキング対してデータサーバを迂回するバイパス信号経路の構築、あるいはデバイスやソフトウェアのアクティベーション等、第1の回路3の短絡により物理的、不可逆的に外部回路31A,31B間の電流経路を短絡させる必要が生じた場合に電流制御素子33を動作させる。
 これにより、第2の回路4に外部電源34の電力が供給され、発熱体17が発熱することにより、先ず第1、第2の可溶導体21,22が溶断される(図5(A)(B))。第1、第2の可溶導体21,22の溶融導体の大部分は、濡れ性が高く広面積の第1、第2の電極11,12上に引き寄せられ、第1の電極11上に凝集した溶融導体と、第2の電極12上に凝集した溶融導体とが結合する。これにより、溶融導体を介して第1の電極11と第2の電極12とが短絡され、外部回路31A,31Bが接続される。
 このとき、短絡素子1は、第1、第2の可溶導体21,22を、第3の可溶導体23よりも発熱体17の発熱中心の近くに設け、また第1、第2の可溶導体21,22を、第3の可溶導体23よりも厚さを薄く形成することで、第3の可溶導体23よりも先に溶断させることができる。したがって、短絡素子1は、第1の回路3が短絡するまで、確実に第2の回路4の発熱体17に給電し続けることができる。
 また、短絡素子1は、第1、第2の電極11,12を、第3、第4の電極13,14よりも広面積に形成することにより、より多くの溶融導体を保持することができ、確実に溶融導体を結合させて、第1、第2の電極11,12間を短絡させることができる(図1(B)、図5(A))。
 発熱体17は、第1、第2の可溶導体21,22の溶断後も発熱を続けるが、第1、第2の可溶導体21,22に続き第3の可溶導体23も溶断することにより、第2の回路4も遮断される(図6(A)(B))。これにより、発熱体17への給電経路が遮断され、発熱が停止される。
 このような短絡素子1及び短絡素子回路30によれば、外部回路31A,31Bに組み込まれる第1の回路3と、第1の回路3を短絡させる第2の回路4とが、電気的に独立しているため、外部回路31の種類に関わらず、第2の回路の電源電圧を高く設定でき、低定格の発熱体17を用いても、第1、第2の可溶導体21,22を溶断させるのに十分な発熱量を得る電力を供給することができる。したがって、短絡素子1及び短絡回路30によれば、第1の回路3が組み込まれる外部回路31として、電源回路の他、微弱な電流を流すデジタル信号回路にも適用することができる。
 また、短絡素子1及び短絡回路30によれば、第1の回路3と電気的に独立して第2の回路4を形成しているため、発熱体17への給電を制御する電流制御素子33を、第1の回路3の定格に関わらず、発熱体17の定格に応じて選択することができ、低定格の発熱体17(例えば1A)を制御する電流制御素子33を用いることで、より安価に製造することができる。
 [第2の形態]
 また、本発明が適用された短絡素子は、以下のように構成してもよい。なお、以降の説明において、上述した短絡素子1及び短絡回路30と同一の構成については、同一の符号を付してその詳細を省略する。
 第2の形態に係る短絡素子40は、図7(A)(B)に示すように、第4の電極14及び第2の可溶導体22が形成されていない点が、短絡素子1と異なる。短絡素子40では、第1の可溶導体21が溶融することにより、その溶融導体が第1の電極11と第2の電極12にわたって凝集し、これにより、第1、第2の電極11,12間を短絡させることができる。
 また、短絡素子40においても、第1の可溶導体21は、第3の可溶導体23よりも、発熱体17の発熱中心に近い位置に搭載されている。また短絡素子40は、第1の可溶導体21が第3の可溶導体23よりも厚さが薄く形成されている。これにより、短絡素子40においても、第1の可溶導体21を第3の可溶導体23よりも先に溶断させることができる。
 また、短絡素子40においても、第1の電極11と第3の電極13とは、絶縁層18上において一体に形成されることにより電気的接続されるとともに、ガラス等の絶縁部材25が積層されることによって物理的に離間されている。また、第2の電極12は、第1の電極11と隣接する側が第1の電極11と同程度に露出され、第1の電極11と反対側は絶縁部材25によって被覆されている。
 [第3の形態]
 第3の形態に係る短絡素子50は、図8に示すように、第4の電極14が形成されていない点が、短絡素子1と異なる。短絡素子50では、第1、第2の可溶導体21,22が溶融することにより、その溶融導体が第1の電極11と第2の電極12上に凝集、結合し、これにより、第1、第2の電極11,12間を短絡させることができる。
 また、短絡素子50においても、第1、第2の可溶導体21,22は、第3の可溶導体23よりも、発熱体17の発熱中心に近い位置に搭載されている。また短絡素子50は、第1、第2の可溶導体21,22が第3の可溶導体23よりも厚さが薄く形成されている。これにより、短絡素子50においても、第1、第2の可溶導体21,22を第3の可溶導体23よりも先に溶断させることができる。
 また、短絡素子50においても、第1の電極11と第3の電極13とは、絶縁層18上において一体に形成されることにより電気的接続されるとともに、ガラス等の絶縁部材25が積層されることによって物理的に離間されている。また、第2の電極12は、第1の電極11と隣接する側が第1の電極11と同程度に露出されるとともに、実装用ハンダ26を介して第2の可溶導体22が実装され、第1の電極11と反対側は絶縁部材25によって被覆されている。
 [発熱体]
 上述した短絡素子1においては、発熱体17を絶縁基板10の表面10a上に形成し、第1~第3の可溶導体21~23を重畳させたが、発熱体17は、図9に示すように、絶縁基板10の裏面10bに形成してもよい。この場合、発熱体17は、絶縁基板10の裏面10bにおいて絶縁層18に被覆されている。また、発熱体17の一端と接続される発熱体引出電極19及び発熱体電極端子部20も同様に絶縁基板10の裏面10bに形成される。第5の電極15は、発熱体17の他端と接続される下層部15aが絶縁基板10裏面10bに形成され、第3の可溶導体23が搭載される上層部15bが絶縁基板10の表面10aに形成され、下層部15bと上層部15bとが、導電スルーホールを介して連続される。
 また、発熱体17は、絶縁基板10の裏面10bにおいて、第1~第3の可溶導体21~23と重畳する位置に形成されることが好ましい。このとき、第1、第2の可溶導体21,22が第3の可溶導体23よりも、発熱体17の発熱中心に近い位置に搭載されることが好ましい。
 短絡素子1は、発熱体17が絶縁基板10の裏面10bに形成されることにより、絶縁基板10の表面10aが平坦化され、これにより、第1~第6の電極11~16を表面10a上に形成することができる。したがって、短絡素子1は、第1~第6の電極11~16の製造工程を簡略化することができるとともに、低背化を図ることができる。
 また、短絡素子1は、発熱体17を絶縁基板10の裏面10bに形成した場合にも、絶縁基板10の材料としてファインセラミック等の熱伝導性に優れた材料を用いることにより、発熱体17によって、絶縁基板10の表面10a上に積層した場合と同等に第1~第3の可溶導体21~23を加熱、溶断することができる。
 なお、短絡素子40,50においても発熱体17を絶縁基板10の裏面10bに形成してもよい。
 また、短絡素子1は、図10に示すように、発熱体17を絶縁基板10の表面10a上に形成された絶縁層18の内部に形成してもよい。この場合、発熱体17の一端が接続された発熱体引出電極19も、発熱体17と接続する一端部が絶縁層18の内部まで形成される。また、発熱体17の他端が接続された第5の電極15は、下層部15aが絶縁層18の内部まで形成されている。
 また、発熱体17は、絶縁層18の内部において、第1~第3の可溶導体21~23と重畳する位置に形成されることが好ましい。このとき、第1、第2の可溶導体21,22が第3の可溶導体23よりも、発熱体17の発熱中心に近い位置に搭載されることが好ましい。また、短絡素子1は、発熱体17を絶縁基板10の裏面10b上に形成された絶縁層18の内部に形成してもよい。
 なお、短絡素子40,50においても発熱体17を絶縁基板10の表面10a又は裏面10b上に形成された絶縁層18の内部に形成してもよい。
 また、短絡素子1は、図11に示すように、発熱体17を絶縁基板10の内部に形成してもよい。この場合、発熱体17を被覆する絶縁層18は設ける必要がない。また、発熱体17の一端が接続された発熱体引出電極19は、発熱体17と接続する一端部が絶縁基板10の内部まで形成され、導電スルーホールを介して絶縁基板10の表面10aに設けられた他端部及び発熱体電極端子部20と接続される。第5の電極15は、発熱体17の他端と接続される下層部15aが絶縁基板10の内部まで形成され、第3の可溶導体23が搭載される上層部15bと、導電スルーホールを介して連続される。
 また、発熱体17は、絶縁基板10の内部において、第1~第3の可溶導体21~23と重畳する位置に形成されることが好ましい。このとき、第1、第2の可溶導体21,22が第3の可溶導体23よりも、発熱体17の発熱中心に近い位置に搭載されることが好ましい。
 なお、短絡素子40,50においても発熱体17を絶縁基板10の内部に形成してもよい。
 また、短絡素子1は、図12に示すように、発熱体17を絶縁基板10の表面10a上において、第1~第6の電極11~16と並んで形成してもよい。この場合、発熱体17は、絶縁層18によって被覆されている。また、発熱体17の他端と接続される第5の電極15は、絶縁基板10の表面10a上に単層で形成される。さらに、第1、第2の可溶導体21,22は、第3の可溶導体23よりも、発熱体17の発熱中心に近い位置に搭載されることが好ましい。
 なお、短絡素子40,50においても発熱体17を絶縁基板10の表面10a上において、第1~第6の電極11~16と並んで形成してもよい。
 [保護抵抗]
 また、短絡素子1は、第1の電極11又は第2の電極12のいずれか一方に接続される保護抵抗を備える構成としてもよい。ここで、保護抵抗は、短絡素子1に接続する電子部品の内部抵抗相当の抵抗値とする。例えば、短絡素子1は、図13に示すように、リチウムイオン二次電池のバッテリパック内の回路60において、過充電や過放電等の異常電圧が生じたバッテリセル61をバイパスするバイパス電流経路の構築に用いられる場合、第1の電極12に、バッテリセル61の内部抵抗相当の抵抗値を有する保護抵抗62が接続される。
 図13において、バッテリパックの回路60は、短絡素子1と、短絡素子1の動作を制御する電流制御素子33と、バッテリセル61と、バッテリセル61を充放電経路上から遮断する保護素子63とで構成されるバッテリユニット64を複数備え、複数のバッテリユニット64が直列に接続されている。
 また、バッテリパックの回路60は、各バッテリユニット64のバッテリセル61の電圧を検出するとともに、保護素子63と電流制御素子33とに異常信号を出力する検出回路35を備える。
 各バッテリユニット64は、保護素子63がバッテリセル61と直列に接続されている。また、バッテリユニット64は、短絡素子1の第1の電極11が保護抵抗62を介して保護素子63の開放端と接続され、第2の電極12がバッテリセル61の開放端と接続され、これにより、保護素子63及びバッテリセル61と、短絡素子1とが並列に接続されている。
 また、バッテリユニット64は、電流制御素子33、及び保護素子63が、それぞれ検出回路35と接続されている。検出回路35は、各バッテリセル61と接続され、各バッテリセル61の電圧値を検出して、バッテリセル61が過充電電圧又は過放電電圧になったときに、当該バッテリセル61を有するバッテリユニット64の保護素子63を駆動させ、また電流制御素子33へ異常信号を出力する。
 保護素子62は、例えば電界効果トランジスタ(以下、FETという)により構成することができる。また、保護素子62は、充放電経路上に接続された一対の電極と、当該電極間にわたって搭載され、当該電極間を短絡させる可溶導体と、可溶導体と直列に接続され、電圧異常の際に通電されて発熱し、可溶導体を溶融する発熱体を有する素子により構成することができる。
 この回路60は、検出回路35から出力される検出信号によって、バッテリセル61の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、保護素子63及び短絡素子1を動作させて、当該バッテリユニット64を充放電電流経路から遮断するとともに、短絡素子1のスイッチ2を短絡させ、当該バッテリユニット64をバイパスするバイパス電流経路を形成するように制御する。
 このようなバッテリパックの回路60は、正常時には、短絡素子1のスイッチ2が開放されているため、電流は保護素子63及びバッテリセル61側に流れる。バッテリセル61に電圧異常等が検知されると、回路60は、検出回路35より保護素子63に異常信号が出力され、保護素子63によって異常なバッテリセル61を、バッテリパックの充放電電流経路上から遮断する。
 次いで、回路60は、検出回路35により電流制御素子33にも異常信号が出力され、短絡素子1の発熱体17に電流が流れるよう制御される。短絡素子1は、発熱体17によって第1、第2の可溶導体21,22を加熱、溶融させることにより、第1、第2の電極11,12上に溶融導体が凝集、結合し、第1、第2の電極11,12間が短絡される。これにより、回路60は、短絡素子1によってバッテリセル61をバイパスするバイパス電流経路を形成することができる。なお、短絡素子1は、第1、第2の可溶導体8,9の溶断後に第3の可溶導体23が溶断することにより、発熱体17への給電は停止される。
 これにより、回路60は、一つのバッテリセル61に異常が起きた場合にも、短絡素子1を介して当該バッテリセル61を迂回するバイパス電流経路を形成することができ、残りの正常なバッテリセル61によって充放電機能を維持することができる。このとき、短絡素子1には、遮断されたバッテリセル61の内部抵抗とほぼ同じ抵抗値を有する保護抵抗62が設けられているため、回路60は、バイパス電流経路を構築した後においても、正常時と同じ抵抗値とすることができる。
 なお、保護抵抗62は、図13に示すように短絡素子1に形成してもよく、あるいは回路60に形成し、短絡素子1の第1の電極端子部11aと接続されてもよい。
 [第1~第3の可溶導体]
 上述したように、第1~第3の可溶導体21~23のいずれか又は全部は、低融点金属と高融点金属とを含有してもよい。このとき、第1~第3の可溶導体21~23は、図14(A)に示すように、内層としてAg、Cu又はこれらを主成分とする合金等からなる高融点金属層70が設けられ、外層としてSnを主成分とするPbフリーハンダ等からなる低融点金属層71が設けられた可溶導体を用いてもよい。この場合、第1~第3の可溶導体21~23は、高融点金属層70の全面が低融点金属層71によって被覆された構造としてもよく、相対向する一対の側面を除き被覆された構造であってもよい。高融点金属層70や低融点金属層71による被覆構造は、メッキ等の公知の成膜技術を用いて形成することができる。
 また、図14(B)に示すように、第1~第3の可溶導体21~23は、内層として低融点金属層71が設けられ、外層として高融点金属層70が設けられた可溶導体を用いてもよい。この場合も、第1~第3の可溶導体21~23は、低融点金属層71の全面が高融点金属層70によって被覆された構造としてもよく、相対向する一対の側面を除き被覆された構造であってもよい。
 また、第1~第3の可溶導体21~23は、図15に示すように、高融点金属層71と低融点金属層71とが積層された積層構造としてもよい。
 この場合、第1~第3の可溶導体21~23は、図15(A)に示すように、第1~第6の電極11~16に搭載される下層と、下層の上に積層される上層からなる2層構造として形成され、下層となる高融点金属層70の上面に上層となる低融点金属層71を積層してもよく、反対に下層となる低融点金属層71の上面に上層となる高融点金属層70を積層してもよい。あるいは、第1~第3の可溶導体21~23は、図15(B)に示すように、内層と内層の上下面に積層される外層とからなる3層構造として形成してもよく、内層となる高融点金属層70の上下面に外層となる低融点金属層71を積層してもよく、反対に内層となる低融点金属層71の上下面に外層となる高融点金属層70を積層してもよい。
 また、第1~第3の可溶導体21~23は、図16に示すように、高融点金属層70と低融点金属層71とが交互に積層された4層以上の多層構造としてもよい。この場合、第1~第3の可溶導体21~23は、最外層を構成する金属層によって、全面又は相対向する一対の側面を除き被覆された構造としてもよい。
 また、第1~第3の可溶導体21~23は、内層を構成する低融点金属層71の表面に高融点金属層70をストライプ状に部分的に積層させてもよい。図17は、第1~第3の可溶導体21~23の平面図である。
 図17(A)に示す第1~第3の可溶導体21~23は、低融点金属層71の表面に、幅方向に所定間隔で、線状の高融点金属層70が長手方向に複数形成されることにより、長手方向に沿って線状の開口部72が形成され、この開口部72から低融点金属層71が露出されている。第1~第3の可溶導体21~23は、低融点金属層71が開口部72より露出することにより、溶融した低融点金属と高融点金属との接触面積が増え、高融点金属層70の浸食作用をより促進させて溶断性を向上させることができる。開口部72は、例えば、低融点金属層71に高融点金属層70を構成する金属の部分メッキを施すことにより形成することができる。
 また、第1~第3の可溶導体21~23は、図17(B)に示すように、低融点金属層71の表面に、長手方向に所定間隔で、線状の高融点金属層70を幅方向に複数形成することにより、幅方向に沿って線状の開口部72を形成してもよい。
 また、第1~第3の可溶導体21~23は、図18に示すように、低融点金属層71の表面に高融点金属層70を形成するとともに、高融点金属層70の全面に亘って円形の開口部73が形成され、この開口部73から低融点金属層71を露出させてもよい。開口部73は、例えば、低融点金属層71に高融点金属層70を構成する金属の部分メッキを施すことにより形成することができる。
 第1~第3の可溶導体21~23は、低融点金属層71が開口部73より露出することにより、溶融した低融点金属と高融点金属との接触面積が増え、高融点金属の浸食作用をより促進させて溶断性を向上させることができる。
 また、第1~第3の可溶導体21~23は、図19に示すように、内層となる高融点金属層70に多数の開口部74を形成し、この高融点金属層70に、メッキ技術等を用いて低融点金属層71を成膜し、開口部74内に充填してもよい。これにより、第1~第3の可溶導体21~23は、溶融する低融点金属が高融点金属に接する面積が増大するので、より短時間で低融点金属が高融点金属を溶食することができるようになる。
 また、第1~第3の可溶導体21~23は、低融点金属層71の体積を、高融点金属層70の体積よりも多く形成することが好ましい。第1~第3の可溶導体21~23は、発熱体17によって加熱されることにより、低融点金属が溶融することにより高融点金属を溶食し、これにより速やかに溶融、溶断することができる。したがって、1~第3の可溶導体21~23は、低融点金属層71の体積を、高融点金属層70の体積よりも多く形成することにより、この溶食作用を促進し、速やかに第1、第2の電極11,12上への溶融導体の凝集、結合を行い、また、第5、第6の電極15,16間の遮断を行うことができる。
 なお、本発明に係る短絡素子は、リチウムイオン二次電池のバッテリパックに用いる場合に限らず、電子機器の電源ラインやデジタル信号ライン等、電気信号による電流経路の遮断及びバイパスを必要とする様々な用途にももちろん応用可能である。また、電流制御素子33の作動条件は、バッテリセル61の電圧異常の場合に限らず、例えば周囲の温度の異常な上昇や、水没等、あらゆるアクシデントを検知することによって作動させることができる。
1 短絡素子、2 スイッチ、3 第1の回路、4 第2の回路、10 絶縁基板、10a 表面、10b 裏面、11 第1の電極、11a 第1の電極端子部、12 第2の電極、12a 第2の電極端子部、13 第3の電極、14 第4の電極、15 第5の電極、15a 下層部、15b 上層部、16 第6の電極、16a 第6の電極端子部、17 発熱体、18 絶縁層、19 発熱体引出電極、20 発熱体電極端子部、21 第1の可溶導体、22 第2の可溶導体、23 第3の可溶導体、25 絶縁部材、26 実装用ハンダ、27 スルーホール、28 絶縁壁、32 フラックス、29 カバー部材、30 短絡回路、31 外部回路、33 電流制御素子、34 外部電源、35 検出回路、40 短絡素子、50 短絡素子、60 回路、61 バッテリセル、62 保護抵抗、63 保護素子、64 バッテリユニット、70 高融点金属層、71 低融点金属層、72 開口部、73 開口部、74 開口部

Claims (44)

  1.  絶縁基板と、
     発熱体と、
     上記絶縁基板に、互いに隣接して設けられた第1及び第2の電極と、
     上記第1の電極と隣接して設けられた第3の電極と、
     上記第2の電極と隣接して設けられた第4の電極と、
     上記第1の電極から上記第3の電極にわたって搭載され、上記発熱体からの加熱により、上記第1の電極と上記第3の電極との間で溶断する第1の可溶導体と、
     上記第2の電極から上記第4の電極にわたって搭載され、上記発熱体からの加熱により、上記第2の電極と上記第4の電極との間で溶断する第2の可溶導体と、
     上記発熱体と電気的に接続された第5の電極と、
     上記第5の電極と隣接して設けられた第6の電極と、
     上記第5の電極から上記第6の電極にわたって搭載されることにより上記発熱体と直列に接続され、上記発熱体からの加熱により、上記第5の電極と上記第6の電極との間で溶断する第3の可溶導体とを備え、
     上記発熱体からの加熱により上記第1、第2の可溶導体を溶融させ、上記第1、第2の電極上に凝集した溶融導体が結合することによって上記第1、第2の電極間を短絡させる短絡素子。
  2.  上記第1、第2の可溶導体を溶融させて上記第1、第2の電極間を短絡させた後、上記第3の可溶導体を溶融させることにより、上記発熱体への給電経路を遮断し、発熱を停止する請求項1記載の短絡素子。
  3.  上記第1の電極と上記第3の電極、及び上記第2の電極と上記第4の電極とは、それぞれ電気的に接続されるとともに、絶縁部材によって物理的に離間されている請求項1又は2に記載の短絡素子。
  4.  上記第1の可溶導体及び上記第2の可溶導体は、上記第3の可溶導体よりも、上記発熱体の発熱中心に近い位置に搭載されている請求項1又は2に記載の短絡素子。
  5.  上記第1の可溶導体及び上記第2の可溶導体は、上記第3の可溶導体よりも、厚さが薄く形成されている請求項1又は2に記載の短絡素子。
  6.  上記第1の可溶導体及び上記第2の可溶導体は、上記第3の可溶導体よりも、融点が低い請求項1又は2に記載の短絡素子。
  7.  上記第3の可溶導体の材料構成が、上記第1及び第2の可溶導体と同じである請求項1又は2に記載の短絡素子。
  8.  上記絶縁基板の上記第1~第4の電極が形成された表面側に積層された絶縁層を備え、
     上記第1~第4の電極は、上記絶縁層上に形成され、
     上記発熱体は、上記絶縁層の内部、又は上記絶縁層と上記絶縁基板との間に形成されている請求項1又は2に記載の短絡素子。
  9.  上記発熱体は、上記絶縁基板の内部に形成されている請求項1又は2に記載の短絡素子。
  10.  上記発熱体は、上記絶縁基板の上記第1~第4の電極が形成された表面と反対側の裏面に形成されている請求項1又は2に記載の短絡素子。
  11.  上記発熱体及び上記第1~第4の電極は、上記絶縁基板の上記第1~第4の電極が形成された表面に形成されている請求項1又は2に記載の短絡素子。
  12.  絶縁基板と、
     発熱体と、
     上記絶縁基板に、互いに隣接して設けられた第1及び第2の電極と、
     上記第1の電極と隣接して設けられた第3の電極と、
     上記第1の電極から上記第3の電極にわたって搭載され、上記発熱体からの加熱により、上記第1の電極と上記第3の電極との間で溶断する第1の可溶導体と、
     上記発熱体と電気的に接続された第5の電極と、
     上記第5の電極と隣接して設けられた第6の電極と、
     上記第5の電極から上記第6の電極にわたって搭載されることにより上記発熱体と直列に接続され、上記発熱体からの加熱により、上記第5の電極と上記第6の電極との間で溶断する第3の可溶導体とを備え、
     上記発熱体からの加熱により上記第1の可溶導体を溶融させ、上記第1の電極上に凝集した溶融導体が上記第2の電極上にも凝集することによって上記第1、第2の電極間を短絡させる短絡素子。
  13.  上記第1の可溶導体を溶融させて上記第1、第2の電極間を短絡させた後、上記第3の可溶導体を溶融させることにより、上記発熱体への給電経路を遮断し、発熱を停止する請求項12記載の短絡素子。
  14.  上記第1の電極と上記第3の電極は、電気的に接続されるとともに、絶縁部材によって物理的に離間されている請求項12又は13に記載の短絡素子。
  15.  上記第2の電極上に搭載された第2の可溶導体を備え、
     上記発熱体からの加熱により上記第1、第2の可溶導体を溶融させ、上記第1、第2の電極上に凝集した溶融導体が結合することによって上記第1、第2の電極間を短絡させる請求項12又は13に記載の短絡素子。
  16.  上記第1の可溶導体は、上記第3の可溶導体よりも、上記発熱体の発熱中心に近い位置に搭載されている請求項12又は13に記載の短絡素子。
  17.  上記第1の可溶導体及び上記第2の可溶導体は、上記第3の可溶導体よりも、上記発熱体の発熱中心に近い位置に搭載されている請求項15に記載の短絡素子。
  18.  上記第1の可溶導体は、上記第3の可溶導体よりも、厚さが薄く形成されている請求項12又は13に記載の短絡素子。
  19.  上記第1の可溶導体及び上記第2の可溶導体は、上記第3の可溶導体よりも、厚さが薄く形成されている請求項15記載の短絡素子。
  20.  上記第1の可溶導体は、上記第3の可溶導体よりも、融点が低い請求項12又は13に記載の短絡素子。
  21.  上記第1の可溶導体及び上記第2の可溶導体は、上記第3の可溶導体よりも、融点が低い請求項15記載の短絡素子。
  22.  上記第3の可溶導体の材料構成が、上記第1の可溶導体と同じである請求項12又は13に記載の短絡素子。
  23.  上記第3の可溶導体の材料構成が、上記第1及び第2の可溶導体と同じである請求項15記載の短絡素子。
  24.  上記絶縁基板の上記第1~第3の電極が形成された表面側に積層された絶縁層を備え、
     上記第1~第3の電極は、上記絶縁層上に形成され、
     上記発熱体は、上記絶縁層の内部、又は上記絶縁層と上記絶縁基板との間に形成されている請求項12又は13に記載の短絡素子。
  25.  上記発熱体は、上記絶縁基板の内部に形成されている請求項12又は13に記載の短絡素子。
  26.  上記発熱体は、上記絶縁基板の上記第1~第3の電極が形成された表面と反対側の裏面に形成されている請求項12又は13に記載の短絡素子。
  27.  上記発熱体及び上記第1~第3の電極は、上記絶縁基板の上記第1~第3の電極が形成された表面に形成されている請求項12又は13に記載の短絡素子。
  28.  少なくとも上記第1の電極及び上記第2の電極の表面に、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキのいずれかが被覆されている請求項1,2,12,13のいずれか1項に記載の短絡素子。
  29.  上記第1の電極の面積が上記第3の電極の面積よりも広い請求項1,2,12,13のいずれか1項に記載の短絡素子。
  30.  上記第1の電極の面積が上記第3の電極の面積よりも広く、上記第2の電極の面積が上記第4の電極の面積よりも広い請求項1又は2に記載の短絡素子。
  31.  上記絶縁基板上に設けられ、内部を保護するカバー部材を備え、
     上記カバー部材は、上記第1の電極及び上記第2の電極と重畳する位置に、カバー部電極が形成されている請求項1,2,12,13のいずれか1項に記載の短絡素子。
  32.  上記第1の電極又は上記第2の電極には、保護抵抗が接続されている請求項1,2,12,13のいずれか1項に記載の短絡素子。
  33.  上記第2の電極上に搭載された第2の可溶導体を備え、
     上記第1の可溶導体及び上記第2の可溶導体は、Snを主成分とするPbフリーハンダである請求項1,2,12,13のいずれか1項に記載の短絡素子。
  34.  上記第2の電極上に搭載された第2の可溶導体を備え、
     上記第1の可溶導体及び上記第2の可溶導体は、低融点金属と高融点金属とを含有し、
     上記低融点金属が上記発熱体からの加熱により溶融し、上記高融点金属を溶食する請求項1,2,12,13のいずれか1項に記載の短絡素子。
  35.  上記低融点金属はハンダであり、
     上記高融点金属は、Ag、Cu又はAg若しくはCuを主成分とする合金である請求項34記載の短絡素子。
  36.  上記第1の可溶導体及び上記第2の可溶導体は、内層が高融点金属であり、外層が低融点金属の被覆構造である請求項34記載の短絡素子。
  37.  上記第1の可溶導体及び上記第2の可溶導体は、内層が低融点金属であり、外層が高融点金属の被覆構造である請求項34記載の短絡素子。
  38.  上記第1の可溶導体及び上記第2の可溶導体は、低融点金属と、高融点金属とが積層された積層構造である請求項34記載の短絡素子。
  39.  上記第1の可溶導体及び上記第2の可溶導体は、低融点金属と、高融点金属とが交互に積層された4層以上の多層構造である請求項34記載の短絡素子。
  40.  上記第1の可溶導体及び上記第2の可溶導体は、内層を構成する低融点金属の表面に形成された高融点金属に、開口部が設けられている請求項34記載の短絡素子。
  41.  上記第1の可溶導体及び上記第2の可溶導体は、多数の開口部を有する高融点金属層と、上記高融点金属層上に形成された低融点金属層とを有し、上記開口部に低融点金属が充填されている請求項34記載の短絡素子。
  42.  上記第1の可溶導体及び上記第2の可溶導体は、低融点金属の体積が、高融点金属の体積よりも多い請求項34記載の短絡素子。
  43.  第1のヒューズと、互いに隣接して形成されるとともに絶縁されている第1、第2の電極とを有する第1の回路と、
     上記第1の回路と電気的に独立して形成され、発熱体と、上記発熱体の一端と接続された第2のヒューズとを有する第2の回路とを備え、
     上記第2の回路に電流を流し上記発熱体が発熱した熱により、上記第1のヒューズを溶融させて上記第1、第2の電極間を短絡した後に、上記第2のヒューズを溶断させて上記発熱体の発熱を停止する短絡回路。
  44.  上記第2の回路は、上記発熱体及び上記第2のヒューズが電源及びスイッチ素子に接続され、上記スイッチ素子を駆動させることにより電流が流れる請求項43記載の短絡回路。
PCT/JP2014/070772 2013-08-07 2014-08-06 短絡素子、及び短絡回路 WO2015020103A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480044984.1A CN105453212B (zh) 2013-08-07 2014-08-06 短路元件以及短路电路
KR1020167003405A KR102233539B1 (ko) 2013-08-07 2014-08-06 단락 소자 및 단락 회로

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-164616 2013-08-07
JP2013164616A JP6184238B2 (ja) 2013-08-07 2013-08-07 短絡素子、及び短絡回路

Publications (1)

Publication Number Publication Date
WO2015020103A1 true WO2015020103A1 (ja) 2015-02-12

Family

ID=52461434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070772 WO2015020103A1 (ja) 2013-08-07 2014-08-06 短絡素子、及び短絡回路

Country Status (5)

Country Link
JP (1) JP6184238B2 (ja)
KR (1) KR102233539B1 (ja)
CN (1) CN105453212B (ja)
TW (1) TWI653796B (ja)
WO (1) WO2015020103A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107681218A (zh) * 2016-08-01 2018-02-09 福特全球技术公司 用于电池阵列的传感器熔断部

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6719983B2 (ja) * 2015-06-04 2020-07-08 デクセリアルズ株式会社 ヒューズエレメント、ヒューズ素子、保護素子、短絡素子、切替素子
DE102015222939A1 (de) * 2015-11-20 2017-05-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrische Überbrückungseinrichtung zum Überbrücken elektrischer Bauelemente, insbesondere einer Energiequelle oder eines Energieverbrauchers
CN109980736B (zh) * 2019-04-04 2023-02-10 创泽智能机器人集团股份有限公司 一种机器人充电桩对桩确认方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136946U (ja) * 1989-04-17 1990-11-15
JP2010165685A (ja) * 2010-03-04 2010-07-29 Sony Chemical & Information Device Corp 保護素子及びバッテリーパック

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200529A (ja) 1999-01-07 2000-07-18 Nec Kansai Ltd 保護素子およびその製造方法
JP2004185960A (ja) * 2002-12-03 2004-07-02 Kamaya Denki Kk 回路保護素子とその製造方法
JP5072796B2 (ja) * 2008-05-23 2012-11-14 ソニーケミカル&インフォメーションデバイス株式会社 保護素子及び二次電池装置
JP5656466B2 (ja) * 2010-06-15 2015-01-21 デクセリアルズ株式会社 保護素子、及び、保護素子の製造方法
JP2012164756A (ja) * 2011-02-04 2012-08-30 Denso Corp 電子制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136946U (ja) * 1989-04-17 1990-11-15
JP2010165685A (ja) * 2010-03-04 2010-07-29 Sony Chemical & Information Device Corp 保護素子及びバッテリーパック

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107681218A (zh) * 2016-08-01 2018-02-09 福特全球技术公司 用于电池阵列的传感器熔断部

Also Published As

Publication number Publication date
JP6184238B2 (ja) 2017-08-23
CN105453212A (zh) 2016-03-30
CN105453212B (zh) 2018-06-12
KR102233539B1 (ko) 2021-03-29
JP2015035286A (ja) 2015-02-19
TW201519546A (zh) 2015-05-16
KR20160040574A (ko) 2016-04-14
TWI653796B (zh) 2019-03-11

Similar Documents

Publication Publication Date Title
KR102115999B1 (ko) 단락 소자, 및 이것을 사용한 회로
WO2014123139A1 (ja) 短絡素子、およびこれを用いた回路
KR102239935B1 (ko) 단락 소자
JP6161967B2 (ja) 短絡素子、およびこれを用いた回路
JP6184238B2 (ja) 短絡素子、及び短絡回路
KR102386943B1 (ko) 단락 소자
JP6246503B2 (ja) 短絡素子、およびこれを用いた回路
KR102378639B1 (ko) 스위치 소자 및 스위치 회로
JP6254777B2 (ja) 短絡素子、およびこれを用いた回路
KR102527559B1 (ko) 단락 소자
TWI615940B (zh) 短路元件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044984.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833837

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20167003405

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14833837

Country of ref document: EP

Kind code of ref document: A1