[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014123139A1 - 短絡素子、およびこれを用いた回路 - Google Patents

短絡素子、およびこれを用いた回路 Download PDF

Info

Publication number
WO2014123139A1
WO2014123139A1 PCT/JP2014/052634 JP2014052634W WO2014123139A1 WO 2014123139 A1 WO2014123139 A1 WO 2014123139A1 JP 2014052634 W JP2014052634 W JP 2014052634W WO 2014123139 A1 WO2014123139 A1 WO 2014123139A1
Authority
WO
WIPO (PCT)
Prior art keywords
short
electrode
circuit element
switch
fuse
Prior art date
Application number
PCT/JP2014/052634
Other languages
English (en)
French (fr)
Inventor
吉弘 米田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013125078A external-priority patent/JP6246503B2/ja
Priority claimed from JP2013125077A external-priority patent/JP6254777B2/ja
Priority claimed from JP2013125079A external-priority patent/JP6161967B2/ja
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020157024285A priority Critical patent/KR102115999B1/ko
Priority to CN201480007625.9A priority patent/CN105027252B/zh
Publication of WO2014123139A1 publication Critical patent/WO2014123139A1/ja
Priority to US14/818,862 priority patent/US9899179B2/en
Priority to US14/819,061 priority patent/US9953792B2/en
Priority to US14/819,328 priority patent/US9953793B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/02Electrothermal relays wherein the thermally-sensitive member is heated indirectly, e.g. resistively, inductively
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/767Normally open
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/108Normal resistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a short-circuit element that eliminates only abnormal parts in an electronic device using a short-circuit element provided with a heating resistor and a fuse element on a substrate, and a circuit using the same.
  • a battery pack incorporates a number of protection circuits such as overcharge protection and overdischarge protection, It has a function of shutting off the output of the battery pack in a predetermined case.
  • Some types of protection elements perform overcharge protection or overdischarge protection operation of the battery pack by turning on / off the output using an FET switch built in the battery pack.
  • FET switch When the FET switch is short-circuited for some reason, a lightning surge or the like is applied and an instantaneous large current flows, or the output voltage drops abnormally due to the life of the battery cell, or excessively abnormal Even when the voltage is output, the battery pack and the electronic device must be protected from accidents such as ignition. Therefore, in order to safely shut off the output of the battery cell in any possible abnormal state, a protection element made of a fuse element having a function of cutting off the current path by an external signal is used. .
  • a protection element of a protection circuit for such a lithium ion secondary battery or the like As a protection element of a protection circuit for such a lithium ion secondary battery or the like, as described in Patent Document 1, a first electrode on a current path, a conductor layer connected to a heating element, a second electrode Some fusible conductors are connected to form part of the current path, and the fusible conductor on the current path is melted by self-heating due to overcurrent or by a heating element provided inside the protective element. . In such a protection element, the molten liquid soluble conductor is collected on the conductor layer connected to the heating element, thereby interrupting the current path.
  • a configuration has been proposed in which a short-circuit element is connected in parallel to each of the LED elements connected in series, and when the LED is abnormal, the short-circuit element is short-circuited at a predetermined voltage to emit a normal LED.
  • Patent Document 2 a plurality of elements each having a predetermined thickness of an insulating barrier layer sandwiched between metals are connected in series.
  • HEV Hybrid Electric Vehicle
  • EV Electric Vehicle
  • a lithium ion secondary battery has been used from the viewpoint of energy density and output characteristics.
  • a high voltage and a large current are required.
  • dedicated cells that can withstand high voltages and large currents have been developed, but in many cases due to manufacturing cost problems, it is necessary to connect multiple battery cells in series and in parallel to use general-purpose cells. Secures the correct voltage and current.
  • the resistance value when 10 V is applied is as high as about 17 K ⁇ , and the resistance value is further increased in order to bypass the open LED element efficiently. Lowering is desired.
  • the present invention eliminates only abnormal battery cells in a battery pack composed of a plurality of cells, and in a protective element that can effectively use normal battery cells, a short-circuit element that can form a bypass path, and the same
  • An object of the present invention is to provide a circuit using this.
  • a short-circuit element includes an insulating substrate, a heating resistor provided on the insulating substrate, and first and second electrodes provided adjacent to each other on the insulating substrate. Between the first electrode and the third electrode, the third electrode provided on the insulating substrate adjacent to the first electrode, and electrically connected to the heating resistor. Provided with a first soluble conductor that melts the current path between the first and third electrodes by heating from the heating resistor, and the heating resistor. The first electrode and the second electrode are short-circuited by the first soluble conductor that is melted by heating from the first electrode and aggregated on the first and second electrodes. is there.
  • the short-circuit element circuit includes a fuse, a heating resistor connected to one end of the fuse, and a switch connected to the other end of the fuse to which the heating resistor is not connected.
  • the switch is short-circuited in conjunction with the fusing of the fuse.
  • the compensation circuit includes a fuse, a heating resistor connected to one end of the fuse, and a switch connected to the other end of the fuse to which the heating resistor is not connected.
  • the switch includes a short-circuit element that is short-circuited in conjunction with the fusing of the fuse and an electronic component, and the switch has both terminals connected in parallel to the electronic component, and the open terminal of the heating resistor is the The switch terminal is connected to a terminal to which the fuse is not connected, and when the electronic component is abnormal, the fuse is melted to short-circuit the switch, thereby forming a bypass current path that bypasses the electronic component. It is.
  • the compensation circuit includes a fuse, a heating resistor connected to one end of the fuse, and a switch connected to the other end of the fuse to which the heating resistor is not connected.
  • the switch is connected to a short-circuit element that is short-circuited in conjunction with the melting of the fuse, an electronic component, and a current path of the electronic component, and interrupts energization of the electronic component with an electrical signal when the electronic component is abnormal
  • a protection element that detects an abnormality of the electronic component and outputs an abnormality signal
  • a control element that operates in response to the abnormality signal of the protection component, and includes both ends of the electronic component and the protection element.
  • Both terminals of the switch are connected in parallel, the open terminal of the heating resistor and the input terminal of the electrical signal of the protection element are connected to the control element, and when the electronic component is abnormal, the protection unit
  • the control element operates in response to an abnormal signal from the protective element, the current path of the electronic component is cut off by the protection element, and the switch is short-circuited in conjunction with the fusing of the fuse to form a bypass current path It is.
  • the short-circuit element circuit includes a fuse, a heating resistor connected to one end of the fuse, a switch connected to the other end of the fuse to which the heating resistor is not connected, and the switch And a protective resistor connected to at least one of the terminals, and the switch is short-circuited in conjunction with the fusing of the fuse.
  • the compensation circuit according to the present invention includes a fuse, a heating resistor connected to one end of the fuse, a switch connected to the other end of the fuse not connected to the heating resistor, A protection resistor connected to a terminal to which the fuse is not connected, and the switch includes a short-circuit element that is short-circuited in conjunction with the melting of the fuse, and an electronic component, The terminal to which the fuse is connected and the open terminal of the protective resistor and the electronic component are connected in parallel, and the heating resistor is connected to the protective resistor, and when the electronic component is abnormal, the fuse is By melting, the switch is turned on, and a bypass current path is formed.
  • the compensation circuit includes a fuse, a heating resistor connected to one end of the fuse, a switch connected to the other end of the fuse not connected to the heating resistor, A protection resistor connected to a terminal to which the fuse is not connected, and the switch includes a short-circuit element that is short-circuited in conjunction with the melting of the fuse, an electronic component, and a current of the electronic component A protection element that is connected on the path and that interrupts energization of the electronic component with an electric signal when the electronic component is abnormal; a protective component that detects an abnormality of the electronic component and outputs an abnormal signal; and A control element that operates in response to an abnormal signal, and connects both ends of the electronic component and the protection element, a connection terminal to the fuse of the switch, and the protection resistor in parallel, and An open terminal of a resistor and an input terminal of the electrical signal of the protective element are connected to the control element, and when the electronic component is abnormal, the control element is operated in response to an abnormal signal from the protective component, By interrupt
  • the mounting body according to the present invention is a mounting body in which the short-circuit element is mounted on the mounting target, and the short-circuit element is formed on the insulating substrate, the heating resistor provided on the insulating substrate, and the insulating substrate.
  • First and second electrodes provided adjacent to each other; and a third electrode provided on the insulating substrate adjacent to the first electrode and electrically connected to the heating resistor;
  • a first current path is formed between the first and third electrodes to form a current path, and the current path between the first and third electrodes is fused by heating from the heating resistor.
  • a first external connection electrode that is formed on the same surface as the surface on which the first and second electrodes of the insulating substrate are formed, and is continuous with the first electrode, and the second electrode.
  • a second external connection electrode that is continuous with the first electrode.
  • a second external connection terminal connected to the mounting object via a first external connection terminal connected on the external connection electrode, and the second electrode connected to the second external connection electrode.
  • the first electrode and the first electrode are connected by the first soluble conductor that is connected to the mounting object through the heating resistor, melted by heating from the heating resistor, and aggregated on the first and second electrodes.
  • the combined resistance of the first external connection terminal and the second external connection terminal is lower than the conduction resistance between the first and second external connection electrodes when the second electrode is short-circuited. It is characterized by.
  • a short-circuit element according to the present invention is provided adjacent to each other on an insulating substrate, first and second heating resistors formed on the insulating substrate, and the insulating substrate.
  • the first and second electrodes, the third electrode provided on the insulating substrate adjacent to the first electrode, and electrically connected to the first heating resistor, and the insulation Provided adjacent to the second electrode on the substrate, and provided between the fourth electrode electrically connected to the second heating resistor and the first and third electrodes.
  • a first fusible conductor that cuts off the current path between the first and third electrodes by heating from the first heating resistor, and the second and fourth Current path is formed by being provided between the electrodes, and the second heating resistor is formed.
  • a second fusible conductor that melts the current path between the second and fourth electrodes, and melts by heating from the first and second heating resistors. 1.
  • the first electrode and the second electrode are short-circuited by the first and second soluble conductors aggregated on the second electrode.
  • the short-circuit element circuit includes a switch, a first fuse connected to one end of the switch, a second fuse connected to the other end of the switch, and the first fuse.
  • a first heating resistor connected to the other end opposite to the one end connected to the switch; and a second heating resistor connected to the other end opposite to the one end connected to the switch of the second fuse.
  • the switch has a heating resistor, and the switch is short-circuited by the molten conductor of the first and second fuses when the first and second fuses are blown.
  • the compensation circuit includes a switch, a first fuse connected to one end of the switch, a second fuse connected to the other end of the switch, and the switch of the first fuse.
  • a first heating resistor connected to the other end opposite to the one end connected to the second end, and a second heat generation connected to the other end opposite to the one end connected to the switch of the second fuse.
  • the switch includes a short-circuit element that is short-circuited by the molten conductor of the first and second fuses when the first and second fuses are blown, an electronic component, and the above-described switch
  • a protection element that is connected on the current path of the electronic component and that cuts off the energization of the electronic component with an electric signal when the electronic component is abnormal; a protective component that detects an abnormality of the electronic component and outputs an abnormal signal; Abnormal signal of the above protection parts First to third control elements that operate in parallel, both ends of the electronic component and the protection element, and both terminals of the switch are connected in parallel, and the first and second heating resistors, And the electrical signal input terminal of the protection element are connected to the first to third control elements, respectively, and when the electronic component is abnormal, the abnormality signal from the protection component is received and the first to third control elements are received.
  • the control element operates, the current path of the electronic component is cut off by the protection element, and the switch is short-circuited in conjunction with the fusing
  • the compensation circuit includes a switch, a first fuse connected to one end of the switch, a second fuse connected to the other end of the switch, and the switch of the first fuse.
  • a first heating resistor connected to the other end opposite to the one end connected to the second end, and a second heat generation connected to the other end opposite to the one end connected to the switch of the second fuse.
  • the switch includes a short-circuit element that is short-circuited by the molten conductor of the first and second fuses when the first and second fuses are blown, an electronic component, and the above-described switch
  • a protection element that is connected on the current path of the electronic component and that cuts off the energization of the electronic component with an electric signal when the electronic component is abnormal; a protective component that detects an abnormality of the electronic component and outputs an abnormal signal; Abnormal signal of the above protection parts
  • First and second control elements operating in parallel, both ends of the electronic component and the protection element, and both terminals of the switch are connected in parallel, and the terminal of the first heating resistor is connected to the terminal Connected to the first control element, and connected to the second control element are electrical signal input terminals of the second heating resistor and the protection element.
  • the first and second control elements operate to interrupt the current path of the electronic component by the protection element and to short-circuit the switch in conjunction with the fusing of the first and second fuses.
  • the short-circuit element circuit includes a switch, a first fuse connected to one end of the switch, a second fuse connected to the other end of the switch, and the first fuse.
  • a first heating resistor connected to the other end opposite to the one end connected to the switch; and a second heating resistor connected to the other end opposite to the one end connected to the switch of the second fuse.
  • a heating resistor and a protective resistor connected to the switch, the switch being short-circuited by the molten conductor of the first and second fuses when the first and second fuses are blown; It is what is done.
  • the compensation circuit according to the present invention is connected to the first fuse connected to one end of the switch, the second fuse connected to the other end of the switch, and the switch of the first fuse.
  • a first heating resistor connected to the other end opposite to the other end, and a second heating resistor connected to the other end opposite to the one end connected to the switch of the second fuse.
  • a protective resistor connected to the switch, the switch being short-circuited by the molten conductor of the first and second fuses when the first and second fuses are blown.
  • an electronic component a protection element that is connected on the current path of the electronic component, and that interrupts energization of the electronic component with an electric signal when the electronic component is abnormal, and detects an abnormality of the electronic component
  • Protective parts that output First to third control elements that operate in response to an abnormality signal of the protective component, and connect both ends of the electronic component and the protective element to both terminals of the switch and the protective resistor in parallel.
  • the first and second heating resistors and the electrical signal input terminal of the protection element are connected to the first to third control elements, respectively.
  • the first to third control elements operate to interrupt the current path of the electronic component by the protection element and to short-circuit the switch in conjunction with the fusing of the first and second fuses. And a bypass current path is formed.
  • the compensation circuit includes a switch, a first fuse connected to one end of the switch, a second fuse connected to the other end of the switch, and the switch of the first fuse.
  • a first heating resistor connected to the other end opposite to the one end connected to the second end, and a second heat generation connected to the other end opposite to the one end connected to the switch of the second fuse.
  • a first control element and a second control element that operate in response to an abnormality signal of the protection part, and both ends of the electronic part and the protection element, both terminals of the switch, and the protection resistor are arranged in parallel.
  • the terminal of the first heating resistor is connected to the first control element, and the input terminals of the electrical signals of the second heating resistor and the protection element are connected to the second control element.
  • the first and second control elements are operated in response to an abnormal signal from the protective component, and the current path of the electronic component is blocked by the protective element, and the first The switch is short-circuited in conjunction with the fusing of the second fuse, thereby forming a bypass current path.
  • the mounting body according to the present invention is a mounting body in which the short-circuit element is mounted on the mounting target, wherein the short-circuit element includes an insulating substrate, and first and second heating resistors formed on the insulating substrate.
  • the first and second electrodes provided adjacent to each other on the insulating substrate, and provided on the insulating substrate adjacent to the first electrode and electrically connected to the first heating resistor.
  • a first current path is formed between the first and third electrodes to form a current path, and the current path between the first and third electrodes is blown by heating from the first heating resistor.
  • a second fusible conductor that forms a flow path and blows off the current path between the second and fourth electrodes by heating from the second heating resistor; and A first external connection electrode that is formed on the same surface as the surface on which the second electrode is formed and that is continuous with the first electrode; and a second external connection electrode that is continuous with the second electrode, and The first electrode is connected to the mounting object via a first external connection terminal connected to the first external connection electrode, and the second electrode is connected to the second external connection electrode. The second object is connected to the mounting object via the second external connection terminal, melted by heating from the first and second heating resistors, and aggregated on the first and second electrodes. 1.
  • the first electrode and the second electrode are short-circuited by the second soluble conductor, 1, than the conduction resistance between the second electrode for external connection, and is characterized in that the combined resistance between the first external connection terminal and the second external connection terminals is low.
  • a short-circuit element according to the present invention is provided adjacent to each other on an insulating substrate, first and second heating resistors formed on the insulating substrate, and the insulating substrate.
  • the first soluble conductor for fusing the path, and the second to the fourth electrodes, and the above 5 is provided across the five electrodes to form a current path, and by heating from the second heating resistor, between the second electrode and the fourth electrode, and the fourth electrode, A second fusible conductor that melts each current path between the first electrode and the fifth electrode, and is melted by heating from the first and second heating resistors.
  • the first and second soluble conductors agglomerated on the electrode short-circuit the first electrode and the second electrode.
  • the short-circuit element circuit includes a switch, a first fuse connected to one end of the switch, a first heating resistor connected to an open end of the first fuse, and the switch Second and third fuses connected in series to the open end of the first and second heating resistors connected to the connection point of the second and third fuses, and the second heating resistor
  • the second and third fuses are blown by the heat generation of the first fuse, and the first fuse is blown by the heat generation of the first heating resistor, whereby the switch is short-circuited by the molten conductor of the first fuse. It is what is done.
  • the compensation circuit includes a switch, a first fuse connected to one end of the switch, a first heating resistor connected to the open end of the first fuse, and the switch.
  • a second and third fuse connected in series with the open end; and a second heating resistor connected to a connection point of the second and third fuses;
  • the second and third fuses are blown by heat generation, and the first fuse is blown by heat generation of the first heating resistor, whereby the switch is short-circuited by the molten conductor of the first fuse.
  • a short circuit element an electronic component, a protective component that detects an abnormality of the electronic component and outputs an abnormal signal, and first and second control elements that operate in response to the abnormal signal of the protective component,
  • the second and third fuses and the electrons Are connected in series to form a current path, the connection point between the switch and the first fuse is bypassed to the open end of the electronic component, and the first heating resistor is opened.
  • the first control element is connected to the end, the second control element is connected to the open end of the second heating resistor, and when the electronic component is abnormal, an abnormal signal is received from the protective component.
  • the first and second control elements operate to cut off the current path of the electronic component and short the switch in conjunction with the fusing of the first fuse, thereby forming a bypass current path. .
  • the short-circuit element circuit includes a switch, a first fuse connected to one end of the switch, a first heating resistor connected to an open end of the first fuse, and the switch And a protective resistor connected to a connection point of the first fuse, a second and third fuse connected in series with the open end of the switch, and a connection point of the second and third fuses.
  • a second heat generating resistor connected, the second and third fuses are blown by heat generated by the second heat generating resistor, and the first fuse is generated by heat generated by the first heat generating resistor. Is blown, the switch is short-circuited by the molten conductor of the first fuse.
  • the compensation circuit includes a switch, a first fuse connected to one end of the switch, a first heating resistor connected to an open end of the first fuse, and the switch.
  • a protective resistor connected to the connection point with the first fuse, a second and third fuse connected in series with the open end of the switch, and a connection point between the second and third fuses.
  • the second heat generating resistor, the second and third fuses are blown by the heat generated by the second heat generating resistor, and the first fuse is heated by the heat generated by the first heat generating resistor.
  • First and second control elements, the second and third fuses and the electronic component are connected in series to form a current path, and the open end of the protective resistor is the open end of the electronic component Connecting the first control element to the open end of the first heating resistor, connecting the second control element to the open end of the second heating resistor,
  • the first and second control elements operate in response to an abnormal signal from the protective component, and are linked to the interruption of the current path of the electronic component and the fusing of the first fuse.
  • the switch is short-circuited to form a bypass current path.
  • the mounting body according to the present invention is a mounting body in which the short-circuit element is mounted on the mounting target, wherein the short-circuit element includes an insulating substrate, and first and second heating resistors formed on the insulating substrate.
  • the first and second electrodes provided adjacent to each other on the insulating substrate, and provided on the insulating substrate adjacent to the first electrode and electrically connected to the first heating resistor.
  • a third electrode connected to the second substrate; a fourth electrode provided on the insulating substrate adjacent to the second electrode; and electrically connected to the second heating resistor;
  • a current path is formed by being provided between the first electrode and the third electrode, and by heating from the first heating resistor, A first soluble conductor for fusing the current path between the first and third electrodes;
  • a current path is formed by being provided across the fifth electrode from the second through the fourth electrode, and the second electrode and the second electrode are heated by the second heating resistor.
  • a second soluble conductor that blows off each of the current paths between the fourth electrode and between the fourth electrode and the fifth electrode, and the first and second electrodes of the insulating substrate.
  • the combined resistance of the first external connection terminal and the second external connection terminal is lower than the conduction resistance between the second external connection electrodes.
  • the insulated first electrode and the second electrode are short-circuited by the molten conductor that is melted by heating from the heating resistor and aggregated on the first and second electrodes.
  • a new bypass current path can be formed.
  • the first electrode and the second electrode which are melted by heating from the first and second heating resistors and are insulated by the molten conductor aggregated on the first and second electrodes.
  • a new bypass current path can be formed.
  • FIG. 1 It is a figure which shows the short circuit element to which this invention was applied, (A) is a top view, (B) is sectional drawing. It is a circuit diagram of a short circuiting element, (A) shows a state where the switch is turned off, and (B) shows a state where the switch is short-circuited. It is a figure which shows the state by which the 1st, 2nd electrode which was insulated was short-circuited by the molten conductor, (A) is a top view, (B) is sectional drawing. It is a top view which shows the state which the 2nd soluble conductor melt
  • FIG. 1 It is a figure which shows the other short circuit element to which this invention was applied, (A) shows the state after melt
  • FIG. 1 It is a figure which shows a protection element, (A) is sectional drawing, (B) is a top view. It is a circuit diagram of a protection element. It is a top view which shows the short circuit element which incorporated the protective resistance. It is a circuit diagram of a short circuit element incorporating a protective resistor. It is a circuit diagram of the LED illuminating device using the short circuit element which incorporated the protective resistance. It is a circuit diagram of a battery pack using a short-circuit element incorporating a protective resistor. It is a figure which shows the short circuit element to which this invention was applied, (A) is a top view, (B) is sectional drawing.
  • FIG. 1 It is a circuit diagram of a short circuiting element, (A) shows a state where the switch is turned off, and (B) shows a state where the switch is short-circuited. It is a figure which shows a short circuit element, (A) is a top view which shows the state by which the insulated 1st, 2nd electrode was short-circuited by the molten conductor, (B) is sectional drawing. In a short circuiting element, it is a top view showing the state where the 2nd soluble conductor has melted previously. It is sectional drawing which shows the modification of a short circuit element. It is sectional drawing which shows the modification of a short circuit element. It is sectional drawing which shows the modification of a short circuit element. It is sectional drawing which shows the modification of a short circuit element.
  • FIG. 4 is a circuit diagram of a battery pack using a short-circuit element, where (A) is normal, (B) is a state in which a protection element is operated, and (C) and (D) are operating a short-circuit element to form a bypass current path Indicates the state. It is a figure which shows a protection element, (A) is sectional drawing, (B) is a top view.
  • a short circuiting element it is a top view showing the state where the 2nd soluble conductor melted first. It is a figure which shows a short circuit element, (A) is a top view which shows the state by which the insulated 1st, 2nd electrode was short-circuited by the molten conductor, (B) is sectional drawing. It is sectional drawing which shows the modification of a short circuit element. It is sectional drawing which shows the modification of a short circuit element. It is sectional drawing which shows the modification of a short circuit element.
  • FIG. 1 It is sectional drawing which shows the other short circuit element to which this invention was applied, (A) shows the state after melt
  • FIG. 1A shows a plan view of the short-circuit element 1
  • FIG. 1B shows a cross-sectional view of the short-circuit element 1.
  • the short-circuit element 1 includes an insulating substrate 2, a heating resistor 3 provided on the insulating substrate 2, a first electrode 4 and a second electrode 5 provided adjacent to each other on the insulating substrate 2, and a first element A third electrode 6 provided adjacent to the first electrode 4 and electrically connected to the heating resistor 3; a fourth electrode 7 provided adjacent to the second electrode 5;
  • the first current path is formed between the third electrodes 4 and 6 and the current path between the first and third electrodes 4 and 6 is blown by heating from the heating resistor 3.
  • the second conductor 4 is provided between the fusible conductor 8 and the second and fourth electrodes 5 and 7, and melts the current path between the second and fourth electrodes 5 and 7 by heating from the heating resistor 3. 2 soluble conductors 9.
  • a cover member 10 that protects the inside is attached on the insulating substrate 2.
  • the insulating substrate 2 is formed in a substantially square shape using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
  • the insulating substrate 2 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but it is necessary to pay attention to the temperature at which the fuse is blown.
  • the insulating substrate 2 has external terminals 12 formed on the back surface.
  • the heating resistor 3 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 2 by patterning using a screen printing technique and firing.
  • the heating resistor 3 is covered with an insulating layer 11 on the insulating substrate 2.
  • the insulating layer 11 is provided to efficiently transmit the heat of the heating resistor 3 to the first to fourth electrodes 4 to 7, and is made of, for example, a glass layer.
  • the heating resistor 3 can easily aggregate the molten conductor by heating the first to fourth electrodes 4 to 7.
  • first to fourth electrodes 4, 5, 6, and 7 are formed on the insulating layer 11 covering the heating resistor 3.
  • the first electrode 4 is formed adjacent to the second electrode 5 on one side and insulated.
  • a third electrode 6 is formed on the other side of the first electrode 4.
  • the first electrode 4 and the third electrode 6 are electrically connected by connecting a first soluble conductor 8 to be described later, and constitute a current path of the short-circuit element 1.
  • the first electrode 4 is formed with a first electrode terminal portion 4 a that faces the side surface of the insulating substrate 2.
  • the first electrode terminal portion 4a is connected to an external terminal 12 provided on the back surface of the insulating substrate 2 through a through hole.
  • the third electrode 6 is connected to the heating resistor 3 through the heating element lead electrode 13 provided on the insulating substrate 2 or the insulating layer 11. Further, the heating resistor 3 is formed with a resistor terminal portion 3 a that faces the side edge of the insulating substrate 2 through the heating element lead-out electrode 13. The resistor terminal portion 3a is connected to an external terminal 12 provided on the back surface of the insulating substrate 2 through a through hole.
  • a fourth electrode 7 is formed on the other side of the second electrode 5 opposite to the one side adjacent to the first electrode 4.
  • a second soluble conductor 9 described later is connected to the second electrode 5 and the fourth electrode 7.
  • the second electrode 5 is formed with a second electrode terminal portion 5 a facing the side surface of the insulating substrate 2.
  • the second electrode terminal portion 5a is connected to an external terminal 12 provided on the back surface of the insulating substrate 2 through a through hole.
  • the first to fourth electrodes 4, 5, 6, and 7 can be formed using a general electrode material such as Cu or Ag, but at least the first and second electrodes 4, 5 are formed.
  • a coating such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating is preferably formed on the surface by a known plating process. Thereby, oxidation of the 1st, 2nd electrodes 4 and 5 can be prevented, and a molten conductor can be hold
  • a solder that connects the first and second soluble conductors 8 and 9 or a low melting point metal that forms an outer layer of the first and second soluble conductors 8 and 9 is used. By melting, the first and second electrodes 4 and 5 can be prevented from being melted (soldered) and cut.
  • the first and second fusible conductors 8 and 9 are made of a low melting point metal that is quickly melted by the heat generated by the heating resistor 3, and, for example, Pb-free solder containing Sn as a main component can be suitably used.
  • the first and second soluble conductors 8 and 9 may contain a low melting point metal and a high melting point metal.
  • the low melting point metal it is preferable to use solder such as Pb-free solder, and as the high melting point metal, it is preferable to use Ag, Cu or an alloy containing these as a main component.
  • the first and second fusible conductors 8 and 9 may be formed by depositing a low melting point metal on a high melting point metal using a plating technique, and other well-known lamination techniques and film forming techniques may be used. You may form by using.
  • the first and second soluble conductors 8 and 9 are connected to the first and third electrodes 4 and 6 or the second and fourth electrodes 5 and 7 by using a low melting point metal constituting the outer layer. Can be soldered.
  • the first and second fusible conductors 8 and 9 may have an inner layer made of a low melting point metal and an outer layer made of a high melting point metal.
  • a soluble conductor in which the entire surface of the inner low melting point metal layer is covered with the outer high melting point metal layer, even when using a low melting point metal having a melting point lower than the reflow temperature, the inner layer has a low Outflow of the melting point metal to the outside can be suppressed. Further, when the inner layer low melting point metal melts, the outer layer high melting point metal is also eroded (soldered) and can be quickly melted.
  • first and second soluble conductors 8 and 9 may have a covering structure in which the inner layer is made of a high melting point metal and the outer layer is made of a low melting point metal.
  • the inner layer is made of a high melting point metal
  • the outer layer is made of a low melting point metal.
  • the first and second soluble conductors 8 and 9 may have a laminated structure in which a low melting point metal layer and a high melting point metal layer are laminated. Moreover, it is good also as a multilayered structure of four or more layers by which the low melting metal layer and the high melting metal layer were laminated
  • the first and second soluble conductors 8 and 9 may be composed of a high melting point metal having a large number of openings and a low melting point metal inserted into the openings.
  • the area of the refractory metal layer in contact with the molten low melting point metal layer increases, so that the low melting point metal layer can erode the refractory metal layer in a shorter time. Therefore, the soluble conductor can be blown out more quickly and reliably.
  • the first and second soluble conductors 8 and 9 have a volume of the low melting point metal larger than that of the high melting point metal. Thereby, the 1st, 2nd soluble conductors 8 and 9 can perform fusing in a short time by the corrosion of a refractory metal layer effectively.
  • the first and second possible conductors 8 and 9 are used.
  • a flux 15 is applied on the molten conductors 8 and 9.
  • the inside of the short-circuit element 1 is protected by covering the insulating substrate 2 with the cover member 10.
  • the cover member 10 has a side wall 16 that constitutes a side surface of the short-circuit element 1 and a top surface portion 17 that constitutes an upper surface of the short-circuit element 1, and the short-circuit element 1 is connected to the side wall 16 on the insulating substrate 2. It becomes a lid that closes the inside of the.
  • the cover member 10 is formed using an insulating member such as a thermoplastic, ceramic, glass epoxy substrate, etc., as with the insulating substrate 2.
  • the cover member 10 may have a cover electrode 18 formed on the inner surface side of the top surface portion 17.
  • the cover part electrode 18 is formed at a position overlapping the first and second electrodes 4 and 5.
  • the cover electrode 18 has a molten conductor aggregated on the first and second electrodes 4 and 5.
  • the short-circuit element 1 as described above has a circuit configuration as shown in FIGS. That is, in the short-circuit element 1, the first electrode 4 a and the second electrode 5 a are normally insulated (FIG. 2A), and the first and second soluble conductors 8 are generated by the heat generated by the heating resistor 3. , 9 constitutes a switch 20 that is short-circuited through the molten conductor (FIG. 2B). The first electrode terminal portion 4a and the second electrode terminal portion 5a constitute both terminals of the switch 20. The first fusible conductor 8 is connected to the heating resistor 3 via the third electrode 6 and the heating element lead electrode 13.
  • the short-circuit element 1 is incorporated in an electronic device or the like, whereby both terminals 4a and 5a of the switch 20 are connected in parallel with the current path of the electronic device, and the electronic component on the current path When an abnormality occurs, the switch 20 is short-circuited to form a bypass current path that bypasses the electronic component.
  • the short-circuit element 1 when an abnormality occurs in the electronic components connected in parallel, the short-circuit element 1 is supplied with electric power from the resistor terminal portion 3a side, and generates heat when the heating resistor 3 is energized. When the first and second fusible conductors 8 and 9 are melted by this heat, the molten conductors aggregate on the first and second electrodes 4 and 5 as shown in FIGS. . Since the first and second electrodes 4 and 5 are formed adjacent to each other, the agglomerated molten conductors are coupled to each other on the first and second electrodes 4 and 5, thereby the first and second electrodes 4. , 5 are short-circuited. That is, the short-circuit element 1 is short-circuited between both terminals of the switch 20 (FIG. 2B).
  • the short-circuit element 1 has a heating resistor 3 in which the overlapping area with the second soluble conductor 9 is larger than the overlapping area with the first soluble conductor 8. It is formed on the second soluble conductor 9 side so as to be wide. Thereby, although the heating resistor 3 can be heated over almost the entire surface of the second soluble conductor 9, the heating area of the first soluble conductor 8 is reduced, and as shown in FIG. The soluble conductor 9 can be melted prior to the first soluble conductor 8.
  • the short-circuit element 1 forms the second fusible conductor 9 by forming the second fusible conductor 9 narrower than the first fusible conductor 8.
  • the fusible conductor may be melted before the fusible conductor. Since the fusing time can be shortened by forming the second fusible conductor 9 narrow, the second fusible conductor 9 can be melted ahead of the first fusible conductor 8. it can.
  • the area of the first electrode 4 is preferably larger than that of the third electrode 6, and the area of the second electrode 5 is preferably larger than that of the fourth electrode 7. Since the holding amount of the molten conductor increases in proportion to the electrode area, the area of the first and second electrodes 4 and 5 is made larger than that of the third and fourth electrodes 6 and 7, thereby increasing the amount of the molten conductor.
  • the molten conductor can be agglomerated on the first and second electrodes 4 and 5, and the first and second electrodes 4 and 5 can be reliably short-circuited (FIG. 1B, FIG. 3). (B)).
  • the short-circuit element 1 does not necessarily need to cover the heating resistor 3 with the insulating layer 11, and the heating resistor 3 may be installed inside the insulating substrate 2 as shown in FIG. 6.
  • the heating resistor 3 can be heated in the same manner as when the insulating layer 11 such as a glass layer is interposed.
  • the short-circuit element 1 is shown in FIG.
  • the heating resistor 3 may be disposed on the surface of the insulating substrate 2 opposite to the surface on which the first to fourth electrodes 4, 5, 6, 7 are formed.
  • the heating resistor 3 By forming the heating resistor 3 on the back surface of the insulating substrate 2, it can be formed by a simpler process than in the insulating substrate 2.
  • the insulating layer 11 is formed on the heating resistor 3 in terms of protecting the resistor and ensuring insulation during mounting.
  • the heating resistor 3 may be disposed on the formation surface of the first to fourth electrodes 4, 5, 6, 7 of the insulating substrate 2 as shown in FIG.
  • the heating resistor 3 By forming the heating resistor 3 on the surface of the insulating substrate 2, it can be formed by a simpler process than in the insulating substrate 2.
  • the insulating layer 11 is formed on the heating resistor 3.
  • the short-circuit element according to the present invention may be formed by omitting the fourth electrode 7 and the second soluble conductor 9 of the short-circuit element 1 as shown in FIGS.
  • the first soluble conductor 8 connected between the first and third electrodes 4 and 6 is melted, so that the molten conductor wets and spreads to the second electrode 5.
  • the short-circuit element 1 is the same as that described above except that the fourth electrode 7 and the second fusible conductor 9 are omitted.
  • the first and second electrodes 4 and 5 preferably have a larger area than the third electrode 6.
  • the short-circuit element 1 can agglomerate more molten conductors on the first and second electrodes 4 and 5, and without the second soluble conductor 9, The first and second electrodes 4 and 5 can be reliably short-circuited.
  • the second electrode 5 may be provided with a second soluble conductor.
  • the second soluble conductor on the second electrode 5 is melted together with the first soluble conductor 8 by heating from the heating resistor 3, and draws the first soluble conductor 8. Thereby, the 1st electrode 4 and the 2nd electrode 5 can be short-circuited.
  • the protective resistance is a resistance value corresponding to the internal resistance of the electronic component connected to the short-circuit element.
  • the short-circuit element to which the present invention is applied is not limited to the provision of the external terminal 12 that is continuous with the first and second electrodes through the through-holes on the back surface of the insulating substrate 2, as shown in FIGS.
  • the first external connection electrode 21 that is continuous with the first electrode 4 on the surface of the insulating substrate 2 on which the first and second electrodes 4 and 5 are formed, as shown in FIG.
  • One or a plurality of first external connection terminals 22 provided on the connection electrode 21, a second external connection electrode 23 continuous with the second electrode 5, and a second external connection electrode 23 are provided.
  • one or a plurality of second external connection terminals 24 may be formed.
  • the first and second external connection electrodes 21 and 23 are electrodes that connect the short-circuit element 25 and a circuit of an electronic device in which the short-circuit element 25 is incorporated, and the first external connection electrode 21 is the same as the first electrode 4.
  • the second external connection electrode 23 is continuous with the second electrode 5.
  • the first and second external connection electrodes 21 and 23 are formed using a general electrode material such as Cu or Ag, and are the same surface as the formation surfaces of the first and second electrodes 4 and 5 of the insulating substrate 2. Is formed. That is, as for the short circuit element 25 shown in FIG. 11, the surface in which the soluble conductor 13 is provided becomes a mounting surface.
  • the first and second external connection electrodes 21 and 23 can be formed simultaneously with the first and second electrodes 4 and 5.
  • a first external connection terminal 22 is provided on the first external connection electrode 21.
  • a second external connection terminal 24 is provided on the second external connection electrode 23.
  • These first and second external connection terminals 22 and 24 are connection terminals for mounting on an electronic device, and are formed using, for example, metal bumps or metal posts. Further, as shown in FIG. 11A, the first and second external connection terminals 22 and 24 have a height protruding from the cover member 10 provided on the insulating substrate 2, and the short-circuit element 25. It can be mounted on the side of the board that is the mounting target.
  • the heating resistor 3 of the short-circuit element 25 is formed with a resistor connecting terminal 3b via the heating element lead-out electrode 13 and the resistor terminal portion 3a.
  • the resistor connection terminal 3 b is formed using a metal bump or a metal post, and protrudes upward through the insulating layer 11.
  • the short circuit element 25 is provided with the external terminal 12 on the back surface of the insulating substrate 2 like the short circuit element 1 and connects the first and second electrodes 4 and 5 and the external terminal 12 through a through hole.
  • the external connection terminals 22 and 24 are formed on the same surface as the first and second electrodes 4 and 5 via the external connection electrodes 21 and 23. Then, as shown in FIG. 11B, the short-circuit element 25 is connected between the first and second external connection electrodes 21 and 23 when the first electrode 4 and the second electrode 5 are short-circuited.
  • the combined resistance of the first external connection terminal 22 and the second external connection terminal 24 is configured to be lower than the resistance.
  • the short-circuit element 25 can improve the rating when the first and second electrodes 4 and 5 are short-circuited to form a bypass current path, and can cope with a large current. That is, in high current applications such as lithium ion secondary batteries used as power sources such as HEV and EV, further improvement of the rating of the short-circuit element is required. Then, the conduction resistance between the first and second external connection electrodes 21 and 23 short-circuited by the fusible conductor can be sufficiently lowered (for example, less than 0.4 m ⁇ ) to meet the rating improvement.
  • the first and second electrodes 4 , 5 and the external terminal 12 have a high conduction resistance (for example, 0.5 to 1.0 m ⁇ ), and even if a conductor is filled in the through hole, there is a limit to lowering the conduction resistance of the entire short-circuit element.
  • heat generated by flowing a large current between the high resistance first and second electrodes 4 and 5 and the external terminal 12 may cause damage to the bypass current path and thermal effects on other peripheral devices.
  • the short-circuit element 25 is provided with external connection terminals 22 and 24 on the same surface as the first and second electrodes 4 and 5.
  • the external connection terminals 22 and 24 are provided on the external connection electrodes 21 and 23, and a terminal having a high degree of freedom in shape and size and a low conduction resistance can be easily provided.
  • the short-circuit element 25 has a first external connection rather than a conduction resistance between the first and second external connection electrodes 21 and 23 when the first electrode 4 and the second electrode 5 are short-circuited.
  • the combined resistance of the terminal 22 and the second external connection terminal 24 is configured to be low.
  • the conduction resistance ahead of the first and second external connection electrodes 21 and 23, which are high in the configuration of the short-circuit element 1, can be easily lowered, and the rating is dramatically improved. Can be achieved.
  • first and second external connection terminals 22 and 24 for example, metal bumps or metal posts made of Pb-free solder whose main component is Sn can be used.
  • the shape of the metal bump or the metal post is not limited.
  • the resistance values of the first and second external connection terminals 22 and 24 can be obtained from the material, shape, and size. As an example, when a rectangular parallelepiped metal post (Cu core: 0.6 mm ⁇ 0.6 mm, cross-sectional area 0.36 mm 2, height 1 mm, specific resistance 17.2 ⁇ m ⁇ ⁇ mm) is used.
  • the resistance value of the Cu core of one terminal is about 0.048 m ⁇ , and the resistance value obtained by connecting the first and second external connection terminals 22 and 24 in series is as low as less than 0.096 m ⁇ in consideration of the solder coating. It can be seen that the overall rating of the short-circuit element 25 can be improved.
  • the short-circuit element 25 obtains the total resistance value of the entire element from the resistance value between the first and second external connection terminals 22 and 24 at the time of the short-circuit, and this total resistance value is known as the first and second values. From the difference with the combined resistance of the external connection terminals 22 and 24, the conduction resistance between the first and second external connection electrodes 21 and 23 at the time of short circuit can be obtained.
  • the short-circuit element 25 measures the resistance between the first and second external connection electrodes 21 and 23 at the time of short-circuit, and the first and second external elements are calculated from the difference from the total resistance value of the entire element at the time of short-circuit. The combined resistance of the connection terminals 22 and 24 can be obtained.
  • the short-circuit element 25 is widely provided by forming the first and second external connection electrodes 21 and 23 in a rectangular shape, and the first and second external connection terminals 22 and 24 are provided.
  • the conduction resistance may be lowered by providing a plurality.
  • the short-circuit element 25 reduces the conduction resistance by providing the first and second external connection terminals 22 and 24 having large diameters on the first and second external connection electrodes 21 and 23 that are widely provided. May be.
  • the first and second external connection terminals 22 and 24 may be formed by providing low melting point metal layers 22b and 24b on the surfaces of the high melting point metals 22a and 24a serving as cores.
  • the metal constituting the low melting point metal layers 22b and 24b solder such as Pb free solder containing Sn as a main component can be preferably used.
  • the high melting point metals 22a and 24a Cu or Ag is used as a main component. An alloy to be used can be preferably used.
  • the reflow temperature exceeds the melting temperature of the low melting point metal layers 22b and 24b when the short circuit element 25 is reflow mounted. Even if the metal is melted, it can be prevented from melting as the first and second external connection terminals 22 and 24.
  • the first and second external connection terminals 22 and 24 can be connected to the first and second external connection electrodes 21 and 23 using a low melting point metal constituting the outer layer.
  • the first and second external connection terminals 22 and 24 can be formed by forming a low melting point metal on the high melting point metal 22a and 24a by using a plating technique, and other known lamination techniques and films. It can also be formed by using a forming technique.
  • the first and second external connection terminals 22 and 24 are formed by a conductive plating layer or a conductive layer formed by applying a conductive paste, in addition to using metal bumps or metal posts. May be.
  • first and second external connection terminals 22 and 24 are provided in advance on the mounting object side such as a substrate on which the short-circuit element 25 is mounted, and in the mounting body on which the short-circuit element is mounted, You may make it connect with the external connection electrodes 21 and 23.
  • FIG. 13 is a diagram illustrating a circuit configuration of the LED lighting device 30 as an example of the electronic apparatus.
  • the LED lighting device 30 has a plurality of light emitting diodes 31 connected in series on the current path. Further, in the LED lighting device 30, each light emitting diode 31 and both terminals 4 a and 5 a of the switch 20 of the short-circuit element 1 are connected in parallel via the protective resistor 34, and the resistor terminal portion 3 a of the short-circuit element 1. Are connected on the current path, thereby forming the LED unit 32.
  • the LED lighting device 30 is configured by connecting a plurality of LED units 32 in series.
  • the protective resistor 34 has a resistance value corresponding to the internal resistance of the light emitting diode 31. Further, the resistance value of the heating resistor 3 is larger than the internal resistance of the light emitting diode 31. Therefore, when the light emitting diode 31 is operating normally, the LED lighting device 30 does not flow to the short-circuit element 1 side but flows to the light emitting diode 31 side as shown in FIG. 13B.
  • the LED lighting device 30 causes the current E to flow to the resistor terminal portion 3a side of the short-circuit element 1. Flowing. As a result, in the short-circuit element 1, the heating resistor 3 generates heat, the first and second soluble conductors 8 and 9 are melted, and the molten conductor is aggregated on the first and second electrodes 4 and 5. . Therefore, as shown in FIG. 13D, the short-circuit element 1 can form a bypass current path by short-circuiting both terminals 4a and 5a of the switch 20. The first and second fusible conductors 8 and 9 are fused to stop the power supply to the heating resistor 3.
  • a bypass current path that bypasses the light emitting diode 31 can be formed.
  • the lighting function can be maintained.
  • the protection resistor 34 has substantially the same resistance value as the internal resistance of the light emitting diode 31, the LED lighting device 30 can have substantially the same current value as in the normal state on the bypass current path.
  • FIG. 14 is a diagram illustrating a circuit configuration of a battery pack 40 in which a lithium ion battery used in various electronic devices such as a car and an electric tool is built.
  • the battery pack 40 ensures a high voltage and a large current by connecting a plurality of battery cells 41 in series on the current path.
  • a protection element 42 that interrupts the current path when an abnormality such as overcharge or overdischarge of the battery cell 41 is connected to each battery cell 41.
  • the protection element 42 is formed on the insulating substrate 44, the heating resistor 46 laminated on the insulating substrate 44 and covered with the insulating member 45, and both ends of the insulating substrate 44. Electrodes 47 (A 1) and 47 (A 2), a heating element extraction electrode 48 laminated on the insulating member 45 so as to overlap the heating resistor 46, and electrodes 47 (A 1) and 47 (A 2) at both ends. And a fusible conductor 49 having a central portion connected to the heating element extraction electrode 48.
  • the insulating substrate 44 is formed in a substantially rectangular shape using the same material as that of the insulating substrate 2 described above.
  • the heating resistor 46 is formed by the same manufacturing method using the same material as the heating resistor 3 described above.
  • an insulating member 45 is disposed so as to cover the heating resistor 46, and a heating element extraction electrode 48 is disposed so as to face the heating resistor 46 through the insulating member 45.
  • an insulating member 45 may be laminated between the heating resistor 46 and the insulating substrate 44.
  • One end of the heating element extraction electrode 48 is connected to the heating element electrode 50 (P1).
  • the other end of the heating resistor 46 is connected to the other heating element electrode 50 (P2).
  • the soluble conductor 49 can be the same as the first and second soluble conductors 8 and 9 described above.
  • the flux may be applied to almost the entire surface of the soluble conductor 49 in order to prevent the soluble conductor 49 from being oxidized, as in the case of the short-circuit element 1.
  • the protection element 42 may place a cover member on the insulating substrate 44 in order to protect the inside.
  • the protective element 42 as described above has a circuit configuration as shown in FIG. That is, the protection element 42 generates heat by melting the soluble conductor 49 by energizing the soluble conductor 49 connected in series via the heating element extraction electrode 48 and the connection point of the soluble conductor 49 to generate heat.
  • the circuit configuration includes a resistor 46. Of the two electrodes 47 of the protection element 42, one is connected to A1, and the other is connected to A2. Further, the heating element extraction electrode 48 and the heating element electrode 50 connected thereto are connected to P1, and the other heating element electrode 50 is connected to P2.
  • the protection element 42 is used for the circuit in the battery pack 40 of a lithium ion secondary battery, as shown to FIG. 14 (A).
  • the battery pack 40 includes a battery cell 41, a protection element 42, a short-circuit element 1, a first current control element 52 that controls the operation of the protection element 42, and a second current control that controls the operation of the short-circuit element 1.
  • a plurality of battery units 51 each including an element 53 and a protective resistor 54 are provided, and the plurality of battery units 51 are connected in series.
  • the battery pack 40 detects the voltage of the battery unit 51, the charge / discharge control circuit 55 that controls charging / discharging of the battery unit 51, and the battery cell 41 of each battery unit 51, and the protection element 42 and the short-circuit element 1. And a detection circuit 56 for outputting an abnormal signal to the first and second current control elements 52 and 53 for controlling the operation.
  • the electrode 47 (A1) of the protection element 42 is connected in series with the battery cell 41, and the electrode 47 (A2) is connected to the charge / discharge current path of the battery pack 40.
  • the second electrode terminal portion 5 a of the short-circuit element 1 is connected to the open end of the protective element 42 via the protective resistor 54, and the first electrode terminal portion 4 a is open to the battery cell 41.
  • the protection element 42 and the battery cell 41 and the short-circuit element 1 are connected in parallel.
  • the heating element electrode 50 (P2) of the protection element 42 is connected to the first current control element 52, and the resistor terminal portion 3a of the short circuit element 1 is connected to the second current control element 53. ing.
  • the detection circuit 56 is connected to each battery cell 41, detects the voltage value of each battery cell 41, and supplies each voltage value to the control unit 59 of the charge / discharge control circuit 55. Further, when the battery cell 41 becomes an overcharge voltage or an overdischarge voltage, the detection circuit 56 sends an abnormal signal to the first and second current control elements 52 and 53 of the battery unit 51 having the battery cell 41. Output.
  • the first and second current control elements 52 and 53 are constituted by, for example, field effect transistors (hereinafter referred to as FETs), and the voltage value of the battery cell 41 is set to a predetermined value by a detection signal output from the detection circuit 56.
  • FETs field effect transistors
  • the protection element 42 and the short-circuit element 1 are operated to switch the charge / discharge current path of the battery unit 51 through the third and fourth current control elements 57 and 58. Regardless of whether it is cut off, the switch 20 of the short-circuit element 1 is short-circuited, and control is performed so as to form a bypass current path that bypasses the battery unit 51.
  • the battery pack 40 is detachably connected to the charging device via the positive terminal 40a and a negative terminal (not shown), and the charging voltage from the charging device is applied to each battery cell 41.
  • the battery pack 40 charged by the charging device can operate the electronic device by connecting the positive electrode terminal 40a and the negative electrode terminal to the electronic device operated by the battery.
  • the charge / discharge control circuit 55 controls the operations of the third and fourth current control elements 57 and 58 connected in series to the current path flowing from the battery unit 51 to the charging device, and the operations of these current control elements 57 and 58.
  • the third and fourth current control elements 57 and 58 are configured by, for example, FETs, and control the gate voltage by the control unit 59 to control conduction and interruption of the current path of the battery unit 51.
  • the control unit 59 operates by receiving power supply from the charging device, and according to the detection result by the detection circuit 56, when the battery unit 51 is overdischarged or overcharged, the current control element is cut off.
  • the operations of 57 and 58 are controlled.
  • the battery pack 40 when a voltage abnormality or the like is detected in the battery cell 41, an abnormality signal is output from the detection circuit 56 to the first current control element 52, and the heating resistor 46 of the protection element 42 generates heat. . As shown in FIG. 14C, the protection element 42 heats and melts the fusible conductor 49 by the heating resistor 46, thereby blocking between the electrodes 47 (A1) and 47 (A2). Thereby, the battery unit 51 having the abnormal battery cell 41 can be shut off from the charge / discharge current path of the battery pack 40. Note that power supply to the heating resistor 46 is stopped when the fusible conductor 49 is melted.
  • the short-circuit element 1 has the first and second electrodes 4, 5 by heating and melting the first and second soluble conductors 8, 9 by the heating resistor 3.
  • the molten conductor agglomerates on the top, and the first electrode terminal portion 4a and the second electrode terminal portion 5a of the switch 20 are short-circuited.
  • the short circuit element 1 can form a bypass current path that bypasses the battery unit 51.
  • the first and second fusible conductors 8 and 9 are fused to stop the power supply to the heating resistor 3.
  • the protective resistor 54 has substantially the same resistance value as the internal resistance of the battery cell 41, so that it can have the same capacity as normal even on the bypass current path.
  • a bypass current path that bypasses the battery unit 51 can be formed and is charged by the remaining normal battery units 51.
  • the discharge function can be maintained.
  • the protection element of the present invention is not limited to use in a battery pack of a lithium ion secondary battery, and can of course be applied to various uses that require interruption of a current path and bypass by an electric signal.
  • the operating conditions of the first and second current control elements 52 and 53 and the third and fourth current control elements 57 and 58 are not limited to the case where the voltage of the battery cell 41 is abnormal. It can be activated by detecting any accident such as a sudden rise or submersion.
  • the short-circuit element may be formed by incorporating a protective resistor in advance.
  • symbol is attached
  • FIG. 17 is a plan view of the short-circuit element 60 in which the protective resistor 61 is formed on the insulating substrate 2.
  • the short-circuit element 60 includes a protective resistor 61 connected to the second electrode 5, and a second electrode terminal portion 5 a is formed via the protective resistor 61.
  • the protective resistor 61 can be formed simultaneously by the same process using the same material as the heating resistor 3 described above.
  • FIG. 18 is a diagram illustrating a circuit configuration of the short-circuit element 60.
  • the first electrode terminal portion 4 a and the second electrode terminal portion 5 a are connected via the protective resistor 61 when the switch 20 is short-circuited. That is, the circuit configuration of the short-circuit element 60 is connected to the fuses 8 and 9, the heating resistor 3 connected to one end of the fuses 8 and 9, and the other end of the fuses 8 and 9 to which the heating resistor 3 is not connected.
  • the switch 20 and a protective resistor 61 connected to at least one of the terminals of the switch 20 are provided, and the switch 20 is short-circuited in conjunction with the fusing of the fuses 8 and 9.
  • FIG. 19 is a diagram illustrating a circuit configuration of the LED lighting device 62 in which the short-circuit element 60 is incorporated.
  • the circuit configuration of the LED lighting device 62 has the same configuration as the LED lighting device 30 described above except that the short-circuit element 60 is used instead of the short-circuit element 1. That is, the circuit configuration of the LED lighting device 62 includes the short-circuit element 60 and the light-emitting diode 31 described above, the terminal 4a to which the switch 20 and the fuses 8 and 9 are connected, the open terminal 5a of the protective resistor 61, and the light-emitting diode. 31 are connected in parallel, and the heating resistor 3 is connected to the protective resistor 61.
  • the protective resistor 61 of the short-circuit element 60 has substantially the same resistance value as the internal resistance of the light emitting diode 31 of each LED unit 32.
  • a bypass current path that bypasses the light emitting diode 31 can be formed.
  • the lighting function can be maintained.
  • the protection resistor 61 has substantially the same resistance value as the internal resistance of the light emitting diode 31
  • the LED illumination device 62 can have the same current value as that in the normal state on the bypass current path.
  • FIG. 20 is a diagram illustrating a circuit configuration of the battery pack 65 in which the short-circuit element 60 is incorporated.
  • the circuit configuration of the battery pack 65 is the same as the circuit configuration of the battery pack 40 described above except that the short-circuit element 60 is used instead of the short-circuit element 1. That is, the circuit configuration of the battery pack 65 is connected to the above-described short-circuit element 60, the battery cell 41, and the current path of the battery cell 41, and the battery cell 41 is energized by an electrical signal when the battery cell 41 is abnormal.
  • a protection element 42 that shuts off, a detection circuit 56 that detects an abnormality of the battery cell 41 and outputs an abnormality signal, and first and second current control elements 52 and 53 that operate in response to the abnormality signal of the detection circuit 56; And connecting both ends of the battery cell 41 and the protection element 42 to the connection terminal 4a of the fuse 8.9 of the switch 20 and the open terminal 5a of the protection resistor 61 in parallel, and a resistor terminal portion of the heating resistor 3 3a and the input terminal P2 of the electric signal of the protection element 42 are connected to the first and second current control elements 52 and 53, and when the battery cell 41 is abnormal, an abnormal signal from the detection circuit 56 In response, the first and second current control elements 52 and 53 operate, the protection element 42 cuts off the current path of the battery cell 41, and the switch 20 is short-circuited in conjunction with the fusing of the fuses 8 and 9. A path is formed.
  • the protective resistance 61 of the short-circuit element 60 provided in each battery unit 51 has substantially the
  • a bypass current path that bypasses the battery unit 51 can be formed and charged by the remaining normal battery units 51.
  • the discharge function can be maintained.
  • the battery pack 65 can have the same current value as that in the normal state on the bypass current path because the protective resistance 61 has substantially the same resistance value as the internal resistance of the battery cell 41.
  • the external terminal 12 is provided on the back surface of the insulating substrate 2, and the first electrode terminal portion 4a and the second electrode terminal portion 5a are connected to the external terminal 12 through a through hole.
  • the first external connection electrode 21 that is continuous with the first electrode 4 the first electrode 4 is formed on the surface of the insulating substrate 2 on which the first and second electrodes 4 and 5 are formed. You may make it form the 2nd external connection electrode 23 and the 2nd external connection terminal 24 which follow the 2nd electrode 5 via the external connection terminal 22, the protective resistance 61, and.
  • FIG. 21A is a plan view of the short-circuit element 101
  • FIG. 21B is a cross-sectional view of the short-circuit element 101.
  • the short circuit element 101 includes an insulating substrate 102, a first heating resistor 121 and a second heating resistor 122 provided on the insulating substrate 102, and a first electrode provided adjacent to the insulating substrate 102.
  • 104, the second electrode 105, and the third electrode 106 provided adjacent to the first electrode 104 and electrically connected to the first heating resistor 121, and adjacent to the second electrode 105.
  • a current path configured by being provided between the fourth electrode 107 electrically connected to the second heating resistor 122 and the first and third electrodes 104 and 106, Between the first fusible conductor 108 and the second and fourth electrodes 105 and 107, which melt the current path between the first and third electrodes 104 and 106 by heating from the first heating resistor 121.
  • a second exothermic resistor By heating from the body 122, and a second, second fusible conductor 109 to fuse the current path between the fourth electrode 105 and 107.
  • the short-circuit element 101 has a cover member 110 that protects the inside on the insulating substrate 102.
  • the insulating substrate 102 is formed in a substantially square shape using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
  • the insulating substrate 102 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but it is necessary to pay attention to the temperature at which the fuse is blown.
  • the insulating substrate 102 has an external terminal 112 formed on the back surface.
  • the first and second heating resistors 121 and 122 are conductive members that have a relatively high resistance value and generate heat when energized, and are made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 102 using a screen printing technique and then fired.
  • the first and second heating resistors 121 and 122 are covered with the insulating layer 111 on the insulating substrate 102.
  • First and third electrodes 104 and 106 are formed on the insulating layer 111 covering the first heating resistor 121, and the second electrode 104, 106 is formed on the insulating layer 111 covering the second heating resistor 122.
  • the fourth electrodes 105 and 107 are formed.
  • the first electrode 104 is formed adjacent to the second electrode 105 on one side and is insulated.
  • a third electrode 106 is formed on the other side of the first electrode 104.
  • the first electrode 104 and the third electrode 106 are electrically connected when the first fusible conductor 108 is connected to form a current path of the short-circuit element 101.
  • the first electrode 104 is connected to the first electrode terminal portion 104 a facing the side surface of the insulating substrate 102.
  • the first electrode terminal portion 104a is connected to an external terminal 112 provided on the back surface of the insulating substrate 102 through a through hole.
  • the third electrode 106 is connected to the first heating resistor 121 through the first heating element lead electrode 123 provided on the insulating substrate 102 or the insulating layer 111.
  • the first heating resistor 121 is connected to the first resistor terminal portion 121 a facing the side edge of the insulating substrate 102 via the first heating element lead-out electrode 123.
  • the first resistor terminal portion 121a is connected to an external terminal 112 provided on the back surface of the insulating substrate 102 through a through hole.
  • a fourth electrode 107 is formed on the other side of the second electrode 105 opposite to the one side adjacent to the first electrode 104.
  • a second soluble conductor 109 is connected to the second electrode 105 and the fourth electrode 107.
  • the second electrode 105 is connected to the second electrode terminal portion 105 a facing the side surface of the insulating substrate 102.
  • the second electrode terminal portion 105a is connected to an external terminal 112 provided on the back surface of the insulating substrate 102 through a through hole.
  • the fourth electrode 107 is connected to the second heating resistor 122 through the second heating element lead electrode 124 provided on the insulating substrate 102 or the insulating layer 111.
  • the second heating resistor 122 is connected to the second resistor terminal portion 122a facing the side edge of the insulating substrate 102 through the second heating element lead-out electrode 124.
  • the second resistor terminal portion 122a is connected to an external terminal 112 provided on the back surface of the insulating substrate 102 through a through hole.
  • the first to fourth electrodes 104, 105, 106, and 107 can be formed using a general electrode material such as Cu or Ag, but at least the first and second electrodes 104 and 105 are formed.
  • a coating such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating is preferably formed on the surface by a known plating process. Thereby, the oxidation of the first and second electrodes 104 and 105 can be prevented, and the molten conductor can be reliably held.
  • the short-circuit element 101 when the short-circuit element 101 is mounted by reflow soldering, a solder that connects the first and second soluble conductors 108 and 109 or a low melting point metal that forms an outer layer of the first and second soluble conductors 108 and 109 is used. By melting, the first and second electrodes 104 and 105 can be prevented from being eroded (soldered) and cut.
  • the first and second fusible conductors 108 and 109 are made of a low melting point metal that is quickly melted by the heat generated by the first and second heat generating resistors 121 and 122, for example, Pb-free solder containing Sn as a main component. Can be suitably used.
  • the first and second soluble conductors 108 and 109 may contain a low melting point metal and a high melting point metal.
  • the low melting point metal it is preferable to use solder such as Pb-free solder, and as the high melting point metal, it is preferable to use Ag, Cu or an alloy containing these as a main component.
  • the high melting point metal and the low melting point metal even when the reflow temperature exceeds the melting temperature of the low melting point metal layer and the low melting point metal is melted when the short circuit element 101 is reflow mounted, the first, The second soluble conductors 108 and 109 do not blow out.
  • the first and second fusible conductors 108 and 109 may be formed by depositing a low melting point metal on a high melting point metal using a plating technique, and other well-known lamination techniques and film forming techniques may be used. You may form by using.
  • the first and second fusible conductors 108 and 109 are connected to the first and third electrodes 104 and 106 or the second and fourth electrodes 105 and 107 using a low melting point metal constituting the outer layer. Can be soldered.
  • the first and second soluble conductors 108 and 109 may have a low melting point metal for the inner layer and a high melting point metal for the outer layer.
  • a soluble conductor in which the entire surface of the inner low melting point metal layer is covered with the outer high melting point metal layer even when using a low melting point metal having a melting point lower than the reflow temperature, the inner layer has a low Outflow of the melting point metal to the outside can be suppressed. Further, when the inner layer low melting point metal melts, the outer layer high melting point metal is also eroded (soldered) and can be quickly melted.
  • the first and second fusible conductors 108 and 109 may have a coating structure in which the inner layer is made of a high melting point metal and the outer layer is made of a low melting point metal.
  • the inner layer is made of a high melting point metal
  • the outer layer is made of a low melting point metal.
  • first and second soluble conductors 108 and 109 may have a laminated structure in which a low melting point metal layer and a high melting point metal layer are laminated. Moreover, it is good also as a multilayered structure of four or more layers by which the low melting metal layer and the high melting metal layer were laminated
  • the first and second fusible conductors 108 and 109 may be composed of a high melting point metal having a large number of openings and a low melting point metal inserted into the openings.
  • a high melting point metal having a large number of openings
  • a low melting point metal inserted into the openings.
  • the first and second soluble conductors 108 and 109 have a low melting point metal volume larger than the high melting point metal volume. Thereby, the 1st, 2nd soluble conductors 108 and 109 can perform fusing in a short time by the corrosion of a refractory metal layer effectively.
  • the first and second soluble conductors 108 and 109 can be improved.
  • a flux 115 is applied on the molten conductors 108 and 109.
  • the inside of the short circuit element 101 is protected by covering the insulating substrate 102 with the cover member 110.
  • the cover member 110 has a side wall 116 that constitutes a side surface of the short-circuit element 101 and a top surface portion 117 that constitutes an upper surface of the short-circuit element 101, and the short-circuit element 101 is connected to the side wall 116 on the insulating substrate 102. It becomes a lid that closes the inside of the.
  • the cover member 110 is formed using an insulating member such as a thermoplastic, ceramic, or glass epoxy substrate.
  • the cover member 110 may be formed with a cover portion electrode 118 on the inner surface side of the top surface portion 117.
  • the cover part electrode 118 is formed at a position overlapping the first and second electrodes 104 and 105.
  • the cover electrode 118 has the first and second electrodes 104, When the molten conductor aggregated on 105 comes into contact and spreads wet, the allowable amount for holding the molten conductor can be increased.
  • the short circuit element 101 as described above has a circuit configuration as shown in FIGS. That is, in the short-circuit element 101, the first electrode 104 and the second electrode 105 are insulated during normal operation, and the first and second fusible conductors are generated by the heat generated by the first and second heating resistors 121 and 122. When the fuses 108 and 109 are melted, the switch 120 is configured to be short-circuited through the molten conductor (FIG. 22B).
  • the first electrode terminal portion 104a and the second electrode terminal portion 105a constitute both terminals of the switch 120.
  • the first fusible conductor 108 is connected to the first heating resistor 121 through the third electrode 106 and the first heating element extraction electrode 123.
  • the second fusible conductor 109 is connected to the second heating resistor 122 via the fourth electrode 107 and the second heating element extraction electrode 124.
  • the short-circuit element 101 is incorporated in an electronic device or the like, whereby both terminals 104a and 105a of the switch 120 are connected in parallel with the current path of the electronic device, and the electronic component on the current path is connected.
  • the switch 120 is short-circuited to form a bypass current path that bypasses the electronic component.
  • the short-circuit element 101 when an abnormality occurs in the electronic components connected in parallel, the short-circuit element 101 is supplied with power from the first and second resistor terminal portions 121a and 122a, and the first and second heating resistors.
  • the body 121, 122 generates heat when energized.
  • the first and second fusible conductors 108 and 109 are melted by this heat, the molten conductor aggregates on the first and second electrodes 104 and 105. Since the first and second electrodes 104 and 105 are formed adjacent to each other, the agglomerated molten conductors are coupled to each other on the first and second electrodes 104 and 105, thereby the first and second electrodes 104. , 105 are short-circuited. That is, the shorting element 101 is short-circuited between both terminals of the switch 120 (FIG. 22B).
  • first heating resistor 121 is stopped because the first fusible conductor 108 is cut off and the first and third electrodes 104 and 106 are cut off, and the second heating element 121 is stopped.
  • the energization of the resistor 122 is stopped because the second fusible conductor 109 is melted and the second and fourth electrodes 105 and 107 are cut off.
  • the second soluble conductor 109 is preferably melted before the first soluble conductor 108. Since the first heating resistor 121 and the second heating resistor 122 are separately heated in the short-circuit element 101, the second heating resistor 122 is first heated as the energization timing, and thereafter By causing the first heating resistor 121 to generate heat, as shown in FIG. 24, the second soluble conductor 109 is easily melted ahead of the first soluble conductor 108, and FIG.
  • the molten conductors of the first and second fusible conductors 108 and 109 are surely agglomerated and bonded onto the first and second electrodes 104 and 105, so that the first and second The electrodes 104 and 105 can be short-circuited.
  • the short-circuit element 101 forms the second fusible conductor 109 narrower than the first fusible conductor 108 by forming the second fusible conductor 109 more narrowly than the first fusible conductor 108. It may be melted first.
  • the fusing time can be shortened, so that the second soluble conductor 109 can be melted ahead of the first soluble conductor 108. it can.
  • the area of the first electrode 104 is preferably larger than that of the third electrode 106 and the area of the second electrode 105 is preferably larger than that of the fourth electrode 107. Since the holding amount of the molten conductor increases in proportion to the electrode area, the area of the first and second electrodes 104 and 105 is made larger than that of the third and fourth electrodes 106 and 107. These molten conductors can be agglomerated on the first and second electrodes 104 and 105, and the first and second electrodes 104 and 105 can be reliably short-circuited.
  • the short-circuit element 101 does not necessarily need to cover the first and second heat generating resistors 121 and 122 with the insulating layer 111.
  • the first and second heating resistors 121 and 122 can be heated in the same manner as when the insulating layer 111 such as a glass layer is interposed. it can.
  • the short-circuit element 101 has the first and second heating resistors 121 and 122 opposite to the formation surfaces of the first to fourth electrodes 104, 105, 106, and 107 of the insulating substrate 102. It may be installed on the back side of.
  • the first and second heat generating resistors 121 and 122 can be formed by a simpler process than in the insulating substrate 102.
  • the insulating layer 111 is formed on the first and second heating resistors 121 and 122 in terms of protecting the resistor and ensuring insulation during mounting.
  • the short-circuit element 101 has the first and second heating resistors 121 and 122 on the formation surface of the first to fourth electrodes 104, 105, 106, and 107 of the insulating substrate 2. It may be installed.
  • the first and second heat generating resistors 121 and 122 can be formed by a simpler process than that in the insulating substrate 102.
  • the insulating layer 111 is formed on the first and second heating resistors 121 and 122.
  • the protective resistance is a resistance value corresponding to the internal resistance of the electronic component connected to the short-circuit element, and is smaller than the resistance values of the heating resistors 121 and 122. That is, when the electronic component is operating normally, current does not flow to the short-circuit element side but flows to the electronic component side.
  • the short-circuit element 101 to which the present invention is applied is not limited to the provision of the external terminal 112 continuous with the first and second electrodes 104 and 105 through the through-holes on the back surface of the insulating substrate 102 as shown in FIG. )
  • a first external connection electrode 131 continuous with the first electrode 104 is formed on the surface of the insulating substrate 102 on which the first and second electrodes 104 and 105 are formed, like a short-circuit element 130 shown in FIG.
  • first external connection terminals 132 provided on the first external connection electrode 131, a second external connection electrode 133 continuous with the second electrode 105, and a second external connection electrode 133 You may make it form the 2nd external connection terminal 134 which consists of one or more provided on the top.
  • the first and second external connection electrodes 131 and 133 are electrodes that connect the short-circuit element 130 and a circuit of an electronic device in which the short-circuit element 130 is incorporated, and the first external connection electrode 131 is connected to the first electrode 104.
  • the second external connection electrode 133 is continuous with the second electrode 105.
  • the first and second external connection electrodes 131 and 133 are formed using a general electrode material such as Cu or Ag, and are the same as the formation surfaces of the first and second electrodes 104 and 105 of the insulating substrate 102. Is formed. In other words, in the short-circuit element 130 shown in FIG. Note that the first and second external connection electrodes 131 and 133 can be formed simultaneously with the first and second electrodes 104 and 105.
  • the first external connection terminal 132 is provided on the first external connection electrode 131.
  • a second external connection terminal 134 is provided on the second external connection electrode 133.
  • These first and second external connection terminals 132 and 134 are connection terminals for mounting on an electronic device, and are formed using, for example, metal bumps or metal posts. Further, as shown in FIG. 28A, the first and second external connection terminals 132 and 134 have a height protruding from the cover member 110 provided on the insulating substrate 102, and the short-circuit element 130. It can be mounted on the side of the board that is the mounting target.
  • the first heating resistor 121 of the short-circuit element 130 is formed with a first resistor connection terminal 121b via the first heating element lead-out electrode 123 and the first resistor terminal portion 121a.
  • the second heating resistor 122 of the short-circuit element 130 has a second resistor connection terminal 122b formed through the second heating element lead electrode 124 and the second resistor terminal portion 122a.
  • the first and second resistor connection terminals 121b and 122b are formed by using metal bumps or metal posts, and upward through the insulating layer 111. It is protruding.
  • the short-circuit element 130 is provided with the external terminal 112 on the back surface of the insulating substrate 102 like the short-circuit element 101 and connects the first and second electrodes 104 and 105 and the external terminal 112 through a through hole.
  • external connection terminals 132 and 134 are formed on the same surface as the first and second electrodes 104 and 105 via external connection electrodes 131 and 133.
  • the short-circuit element 130 is connected between the first and second external connection electrodes 131 and 133 when the first electrode 104 and the second electrode 105 are short-circuited.
  • the combined resistance of the first external connection terminal 132 and the second external connection terminal 134 is configured to be lower than the resistance.
  • the short-circuit element 130 can improve the rating when the first and second electrodes 104 and 105 are short-circuited to form a bypass current path, and can cope with a large current. That is, in high current applications such as lithium ion secondary batteries used as power sources such as HEV and EV, further improvement of the rating of the short-circuit element is required. Then, the conduction resistance between the first and second external connection electrodes 131 and 133 short-circuited by the fusible conductor can be lowered sufficiently to meet the rating improvement (for example, less than 0.4 m ⁇ ).
  • the first and second electrodes 104 are provided.
  • 105 and the external terminal 112 have high conduction resistance (for example, 0.5 to 1.0 m ⁇ ), and there is a limit to lowering the conduction resistance of the entire short-circuit element even if a conductor is filled in the through hole.
  • heat generated by flowing a large current between the high resistance first and second electrodes 104 and 105 and the external terminal 112 may cause damage to the bypass current path and heat effects on other peripheral devices.
  • the short-circuit element 130 has external connection terminals 132 and 134 on the same surface as the first and second electrodes 104 and 105.
  • the external connection terminals 132 and 134 are provided on the external connection electrodes 131 and 133, and a terminal having a high degree of freedom in shape and size and a low conduction resistance can be easily provided.
  • the short-circuit element 130 is connected to the first external connection rather than the conduction resistance between the first and second external connection electrodes 131 and 133 when the first electrode 104 and the second electrode 105 are short-circuited.
  • the combined resistance of the terminal 132 and the second external connection terminal 134 is configured to be low.
  • the conduction resistance ahead of the first and second external connection electrodes 131 and 133 which are high in the configuration of the short-circuit element 101, can be easily lowered, and the rating is dramatically improved. Can be achieved.
  • the first and second external connection terminals 132 and 134 can be configured using, for example, metal bumps or metal posts made of Pb-free solder whose main component is Sn.
  • the shape of the metal bump or the metal post is not limited.
  • the resistance values of the first and second external connection terminals 132 and 134 can be obtained from the material, shape, and size. As an example, when a rectangular parallelepiped metal post (Cu core: 0.6 mm ⁇ 0.6 mm, cross-sectional area 0.36 mm 2, height 1 mm, specific resistance 17.2 ⁇ ⁇ mm) is used.
  • the resistance value of the Cu core of one terminal is about 0.048 m ⁇ , and considering the solder coating, the resistance value obtained by connecting the first and second external connection terminals 132 and 134 in series is as low as less than 0.096 m ⁇ . It can be seen that the overall rating of the short-circuit element 130 can be improved.
  • the short-circuit element 130 obtains the total resistance value of the entire element from the resistance value between the first and second external connection terminals 132 and 134 at the time of the short circuit, and the total resistance value and the known first and second values. From the difference from the combined resistance of the external connection terminals 132 and 134, the conduction resistance between the first and second external connection electrodes 131 and 133 at the time of a short circuit can be obtained. In addition, the short-circuit element 130 measures the resistance between the first and second external connection electrodes 131 and 133 at the time of the short-circuit, and the first and second external elements are calculated based on the difference from the total resistance value of the entire element at the time of the short-circuit. The combined resistance of the connection terminals 132 and 134 can be obtained.
  • the short-circuit element 130 is widely provided by forming the first and second external connection electrodes 131 and 133 in a rectangular shape or the like, and the first and second external connection terminals 132 and 134 are provided.
  • the conduction resistance may be lowered by providing a plurality.
  • the short-circuit element 130 reduces the conduction resistance by providing the first and second external connection terminals 132 and 134 having large diameters on the widely provided first and second external connection electrodes 131 and 133. May be.
  • first and second external connection terminals 132 and 134 may be formed by providing the low melting point metal layers 132b and 134b on the surfaces of the high melting point metals 132a and 134a serving as the core.
  • the metal constituting the low melting point metal layers 132b and 134b solder such as Pb-free solder containing Sn as a main component can be preferably used.
  • the high melting point metals 132a and 134a Cu or Ag is used as a main component.
  • An alloy to be used can be preferably used.
  • the reflow temperature exceeds the melting temperature of the low melting point metal layers 132b and 134b when the short circuit element 130 is reflow mounted. Even if the metal is melted, it can be prevented from melting as the first and second external connection terminals 132 and 134.
  • the first and second external connection terminals 132 and 134 can be connected to the first and second external connection electrodes 131 and 133 using a low melting point metal constituting the outer layer.
  • the first and second external connection terminals 132 and 134 can be formed by forming a low melting point metal on the high melting point metals 132a and 134a by using a plating technique, and other well-known lamination techniques and films. It can also be formed by using a forming technique.
  • the first and second external connection terminals 132 and 134 are formed by using a conductive plating layer or a conductive layer formed by applying a conductive paste, in addition to using metal bumps or metal posts. May be.
  • first and second external connection terminals 132 and 134 are provided in advance on the mounting object side such as a substrate on which the short-circuit element 130 is mounted, and in the mounting body on which the short-circuit element is mounted,
  • the external connection electrodes 131 and 133 or the first and second electrodes 104 and 105 may be connected.
  • FIG. 30 is a diagram showing a circuit configuration of a battery pack 140 in which a lithium ion battery used in various electronic devices such as cars and electric tools is built.
  • the battery pack 140 ensures a high voltage and a large current by connecting a plurality of battery cells 141 in series on the current path.
  • each battery cell 141 is connected to a protection element 142 that interrupts the current path when an abnormality such as overcharge or overdischarge of the battery cell 141 occurs.
  • the protective element 142 is formed on the insulating substrate 144, the heating resistor 146 laminated on the insulating substrate 144 and covered with the insulating member 145, and both ends of the insulating substrate 144. Electrodes 147 (A1) and 147 (A2), a heating element extraction electrode 148 laminated on the insulating member 145 so as to overlap the heating resistor 146, and electrodes 147 (A1) and 147 (A2) at both ends. And a soluble conductor 149 having a central portion connected to the heating element extraction electrode 148.
  • the insulating substrate 144 is formed in a substantially rectangular shape using the same material as the insulating substrate 102 described above.
  • the heating resistor 146 is formed by the same manufacturing method using the same material as the first and second heating resistors 121 and 122 described above.
  • an insulating member 145 is disposed so as to cover the heating resistor 146, and a heating element extraction electrode 148 is disposed so as to face the heating resistor 146 through the insulating member 145.
  • an insulating member 145 may be laminated between the heating resistor 146 and the insulating substrate 144.
  • the soluble conductor 149 may be the same as the first and second soluble conductors 108 and 109 described above.
  • the protective element 142 similarly to the short-circuit element 101, flux may be applied to almost the entire surface of the soluble conductor 149 in order to prevent the soluble conductor 149 from being oxidized. Further, the protective element 142 may have a cover member placed on the insulating substrate 144 in order to protect the inside.
  • the protective element 142 as described above has a circuit configuration as shown in FIG. That is, the protection element 142 generates heat by melting the soluble conductor 149 by energizing the soluble conductor 149 connected in series via the heating element extraction electrode 148 and the connection point of the soluble conductor 149 to generate heat.
  • the circuit configuration includes a resistor 146. Of the two electrodes 147 of the protective element 142, one is connected to A1, and the other is connected to A2. Further, the heating element extraction electrode 148 and the heating element electrode 150 connected thereto are connected to P1, and the other heating element electrode 150 is connected to P2.
  • Battery pack 140 has a plurality of battery units 184 connected in series.
  • Each battery unit 184 includes a battery cell 141, a protection element 142, a short-circuit element 101, a first current control element 181 that controls the operation of the protection element 142, and a second and second control that controls the operation of the short-circuit element 101.
  • the battery pack 140 detects the voltage of the battery unit 184, the charge / discharge control circuit 155 that controls the charge / discharge of the battery unit 184, and the battery cell 141 of each battery unit 184, and the protection element 142 and the short-circuit element 101. And a detection circuit 156 that outputs an abnormal signal to the first to third current control elements 181 to 183 that control the operation of the first current control element.
  • the electrode 147 (A1) of the protection element 142 is connected in series with the battery cell 141, and the electrode 147 (A2) is connected to the charge / discharge current path of the battery pack 140.
  • the second electrode terminal portion 105a of the short-circuit element 101 is connected to the open end of the protective element 142 via the protective resistor 154, and the first electrode terminal portion 104a is connected to the open end of the battery cell 141.
  • the protection element 142 and the battery cell 141 and the short-circuit element 101 are connected in parallel.
  • the heating element electrode 150 (P2) of the protection element 142 is connected to the first current control element 181, and the first resistor terminal portion 121a of the short-circuit element 101 is the second current control element 182. And the second resistor terminal portion 122a of the short-circuit element 101 is connected to the third current control element 183.
  • the detection circuit 156 is connected to each battery cell 141, detects the voltage value of each battery cell 141, and supplies each voltage value to the control unit 159 of the charge / discharge control circuit 155. Further, when the battery cell 141 becomes an overcharge voltage or an overdischarge voltage, the detection circuit 156 sends an abnormal signal to the first to third current control elements 181 to 183 of the battery unit 184 having the battery cell 141. Output.
  • the first to third current control elements 181 to 183 are constituted by, for example, FETs, and the voltage value of the battery cell 141 is set to a voltage exceeding a predetermined overdischarge or overcharge state by a detection signal output from the detection circuit 156. Then, the protection element 142 and the short-circuit element 101 are operated to cut off the charging / discharging current path of the battery unit 184 regardless of the switching operation of the third and fourth current control elements 157 and 158 and the short-circuit element 101. Is controlled to form a bypass current path that bypasses the battery unit 184.
  • an abnormality signal is output from the detection circuit 156 to the first current control element 181, and the heating resistor 146 of the protection element 142 is heated.
  • the protection element 142 heats and melts the fusible conductor 149 with the heating resistor 146, thereby blocking between the electrodes 147 (A1) and 147 (A2).
  • the battery unit 184 having the abnormal battery cell 141 can be cut off from the charge / discharge current path of the battery pack 140.
  • power supply to the heating resistor 146 is stopped when the fusible conductor 149 is melted.
  • the detection circuit 156 outputs an abnormal signal to the second current control element 182 of the battery unit 184, and the first heating resistor 121 of the short-circuit element 101 also generates heat.
  • the molten conductor aggregates on the first electrode 104 by heating and melting the first soluble conductor 108 by the first heating resistor 121.
  • the battery pack 140 outputs an abnormal signal to the third current control element 183 following the output to the second current control element 182 to cause the second heating resistor 122 to generate heat.
  • the molten conductor aggregates on the second electrode 104 by heating and melting the second soluble conductor 109 by the second heating resistor 122.
  • the battery pack 140 has a bypass current path in which the first electrode terminal portion 104a and the second electrode terminal portion 105a of the switch 120 are short-circuited to bypass the battery unit 184. Can be formed.
  • the first and second fusible conductors 108 and 109 are blown, whereby the power supply to the first and second heating resistors 121 and 122 is stopped.
  • the protective resistor 154 has substantially the same resistance value as the internal resistance of the battery cell 141, and thus can have the same capacity as that in the normal state on the bypass current path.
  • FIG. 33 is a plan view of the short-circuit element 160 in which the protective resistor 161 is formed on the insulating substrate 102.
  • the short-circuit element 160 includes a protective resistor 161 connected to the second electrode 105, and a second electrode terminal portion 105 a is formed via the protective resistor 161.
  • the protective resistor 161 can be formed simultaneously by the same process using the same material as the first and second heating resistors 121 and 122 described above.
  • FIG. 34A and 34B are diagrams showing the circuit configuration of the short-circuit element 160.
  • FIG. The circuit configuration of the short-circuit element 160 is such that the first electrode terminal portion 104a and the second electrode terminal portion 105a are connected via the protective resistor 161 when the switch 120 is short-circuited.
  • the circuit configuration of the short-circuit element 160 is such that the first and second fusible conductors (fuses) 108 and 109 and the first and second fusible conductors 108 and 109 connected to one end of the first and second fusible conductors 108 and 109.
  • the switch 120 connected to the other end to which the first and second heat generating resistors 121 and 122 are not connected, and the switch And a protective resistor 161 connected to at least one of the 120 terminals, and the switch 120 is short-circuited in conjunction with the fusing of the first and second fusible conductors 108 and 109.
  • the external terminal 112 is provided on the back surface of the insulating substrate 102 and the first electrode terminal portion 104a and the second electrode terminal portion 105a are connected to the external terminal 112 through a through hole.
  • the first external connection electrode 131 that is continuous with the first electrode 104, the first electrode on the surface of the insulating substrate 102 on which the first and second electrodes 104 and 105 are formed.
  • a second external connection electrode 133 continuous with the second electrode 105 and a second external connection terminal 134 may be formed via the external connection terminal 132, the protective resistor 161.
  • FIG. 35 is a diagram showing a circuit configuration of a battery pack 170 in which the short-circuit element 160 is incorporated.
  • the battery pack 170 has the same configuration as the battery pack 140 described above except that the short-circuit element 160 is used. That is, the circuit configuration of the battery pack 170 is connected to the above-described short-circuit element 160, the battery cell 141, and the current path of the battery cell 141, and the electric current is supplied to the battery cell 141 by an electric signal when the battery cell 141 is abnormal.
  • a protection element 142 that shuts off, a detection circuit 156 that detects abnormality of the battery cell 141 and outputs an abnormality signal, and first to third current control elements 181 and 182 that operate in response to the abnormality signal of the detection circuit 156, 183, and both ends of the battery cell 141 and the protection element 142 are connected in parallel with the connection terminal 104 a of the first and second fusible conductors 108 and 109 of the switch 120 and the open terminal 105 a of the protection resistor 161.
  • the first and second resistor terminal portions 121a and 122a of the first and second heating resistors 121 and 122 are connected to the second and third current control elements.
  • the heating element electrode 150 (P2) which is connected to 182 and 183 and serves as an input terminal for the electrical signal of the protection element 142 is connected to the first control element 181.
  • an abnormal signal is output from the detection circuit 156.
  • the first to third current control elements 181, 182, and 183 operate to interrupt the current path of the battery cell 141 by the protection element 142 and to blow the first and second fusible conductors 108 and 109.
  • the interlocked switch 120 is short-circuited to form a bypass current path.
  • the protective resistance 161 of the short-circuit element 160 provided in each battery unit 184 has substantially the same resistance value as the internal resistance of the battery cell 141 of the battery unit 184.
  • a bypass current path that bypasses the battery unit 184 can be formed and charged by the remaining normal battery units 184.
  • the discharge function can be maintained.
  • the battery pack 170 can have the same capacity as that in the normal state on the bypass current path because the protective resistor 161 has substantially the same resistance value as the internal resistance of the battery cell 141.
  • the battery pack 190 incorporating the short-circuit element 160 shown in FIG. 36 is connected to the current control element connected to the protection element 142 and the first resistor terminal portion 121a among the first to third current control elements.
  • the current control element to be shared is shared. That is, as shown in FIG. 36, in the battery pack 190, the heating element electrode 150 (P2) of the protection element 142 and the first resistor terminal portion 121a of the short-circuit element 160 are connected to the first current control element 191.
  • the second resistor terminal portion 122a of the short-circuit element 160 is connected to the second current control element 192.
  • the first and second current control elements 191 and 192 are connected to the detection circuit 156, and when the overcharge voltage or overdischarge voltage of the battery cell 141 is detected by the detection circuit 156, an abnormal signal is output.
  • the first and second current control elements 191 and 192 are constituted by, for example, FETs, and the voltage value of the battery cell 141 exceeds a predetermined overdischarge or overcharge state by an abnormal signal output from the detection circuit 156. When this happens, the protection element 142 and the short-circuit element 160 are operated.
  • the detection circuit 156 first outputs an abnormal signal to the first current control element 191, and then outputs an abnormal signal to the second current control element 192.
  • the heating resistor 146 of the protection element 142 and the first heating resistor 121 of the short circuit element 160 are energized to generate heat.
  • the battery pack 190 cuts off the charging / discharging current path of the battery unit 184 when the soluble conductor 149 of the protection element 142 is melted, and the first soluble conductor 108 of the short-circuit element 160 is melted.
  • the second current control element 192 receives an abnormal signal
  • the second heating resistor 122 of the short-circuit element 160 is energized to generate heat.
  • the battery pack 190 is melted in the second fusible conductor 109 of the short-circuiting element 160 and is coupled to the first fusible conductor 108 that has been melted first. Aggregate on 105. Accordingly, the short-circuit element 160 short-circuits the switch 120 and forms a bypass current path that bypasses the battery unit 184. According to such a battery pack 190, the number of current control elements can be reduced, and the circuit configuration can be simplified.
  • FIG. 37A is a plan view of the short-circuit element 201
  • FIG. 37B is a cross-sectional view of the short-circuit element 201.
  • the short-circuit element 201 includes an insulating substrate 202, a first heating resistor 221 and a second heating resistor 222 provided on the insulating substrate 202, and a first electrode provided adjacent to the insulating substrate 202.
  • a current path is formed by being provided between the fifth electrode 231 (A2) and the first and third electrodes 204 and 206, and the first and second electrodes are heated by the first heating resistor 221.
  • Current flow between the three electrodes 204 and 206 A first fusible conductor 208, a second electrode 205 (A 1), a fourth electrode 207 (P 1), and a fifth electrode 231 (A 2).
  • the short-circuit element 201 is provided with a cover member 210 that protects the inside on the insulating substrate 202.
  • the insulating substrate 202 is formed in a substantially square shape using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
  • the insulating substrate 202 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but it is necessary to pay attention to the temperature at the time of blowing the fuse.
  • the insulating substrate 202 has an external terminal 212 formed on the back surface.
  • the first and second heat generating resistors 221 and 222 are conductive members that have a relatively high resistance value and generate heat when energized, and are made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 2 by patterning using a screen printing technique and firing.
  • first and second heating resistors 221 and 222 are covered with the insulating layer 211 on the insulating substrate 202.
  • First and third electrodes 204 and 206 are formed on the insulating layer 211 covering the first heating resistor 221, and the second electrode 204 and 206 are formed on the insulating layer 211 covering the second heating resistor 222.
  • Fourth and fifth electrodes 205, 207, and 231 are formed.
  • the first electrode 204 is formed adjacent to the second electrode 205 on one side and insulated.
  • a third electrode 206 is formed on the other side of the first electrode 204.
  • the first electrode 204 and the third electrode 206 are brought into conduction when the first fusible conductor 208 is connected to form a current path of the short-circuit element 201.
  • the first electrode 204 is connected to the first electrode terminal portion 204 a facing the side surface of the insulating substrate 202.
  • the first electrode terminal portion 204a is connected to an external terminal 212 provided on the back surface of the insulating substrate 202 through a through hole.
  • the third electrode 206 is connected to the first heating resistor 221 via the first heating element lead-out electrode 223 provided on the insulating substrate 202 or the insulating layer 211.
  • the first heating resistor 221 is connected to the first resistor terminal portion 221 a facing the side edge of the insulating substrate 202 via the first heating element lead-out electrode 223.
  • the first resistor terminal portion 221a is connected to an external terminal 212 provided on the back surface of the insulating substrate 202 through a through hole.
  • the fourth electrode 207 (P1) is formed on the other side opposite to the one side adjacent to the first electrode 204 of the second electrode 205 (A1).
  • a fifth electrode 231 (A2) is formed on the other side of the fourth electrode 207 (P1) opposite to the one side adjacent to the second electrode 205 (A1).
  • the second electrode 205 (A1), the fourth electrode 207 (P1), and the fifth electrode 231 (A2) are connected to the second soluble conductor 209.
  • the second electrode 205 (A1) is connected to the second electrode terminal portion 205a facing the side surface of the insulating substrate 202.
  • the second electrode terminal portion 205a is connected to an external terminal 212 provided on the back surface of the insulating substrate 202 through a through hole.
  • the fourth electrode 207 (P1) is connected to the second heating resistor 222 via the second heating element extraction electrode 224 provided on the insulating substrate 202 or the insulating layer 211.
  • the second heating resistor 222 is connected to the second resistor terminal portion 222a (P2) facing the side edge of the insulating substrate 202 via the second heating element lead-out electrode 224.
  • the second resistor terminal portion 222a (P2) is connected to an external terminal 212 provided on the back surface of the insulating substrate 202 through a through hole.
  • the fifth electrode 231 (A2) is connected to the fifth electrode terminal portion 231a facing the side surface of the insulating substrate 202.
  • the fifth electrode terminal portion 231a is connected to an external terminal 212 provided on the back surface of the insulating substrate 202 through a through hole.
  • the first to fifth electrodes 204, 205, 206, 207, 231 can be formed using a general electrode material such as Cu or Ag, but at least the first and second electrodes 204, A coating such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating is preferably formed on the surface of 205 by a known plating process. Thereby, the oxidation of the first and second electrodes 204 and 205 can be prevented, and the molten conductor can be reliably held.
  • the short-circuit element 201 when the short-circuit element 201 is mounted by reflow soldering, a solder that connects the first and second soluble conductors 208 and 209 or a low melting point metal that forms an outer layer of the first and second soluble conductors 208 and 209 is used. By melting, the first and second electrodes 204 and 205 can be prevented from being melted (soldered) and cut.
  • the first and second fusible conductors 208 and 209 are made of a low melting point metal that is quickly melted by the heat generated by the first and second heating resistors 221 and 222, for example, Pb-free solder mainly composed of Sn. Can be suitably used.
  • first and second soluble conductors 208 and 209 may contain a low melting point metal and a high melting point metal.
  • the low melting point metal it is preferable to use solder such as Pb-free solder, and as the high melting point metal, it is preferable to use Ag, Cu or an alloy containing these as a main component.
  • the high melting point metal and the low melting point metal even when the reflow temperature exceeds the melting temperature of the low melting point metal layer and the low melting point metal melts, The second soluble conductors 208 and 209 do not melt.
  • the first and second fusible conductors 208 and 209 may be formed by depositing a low melting point metal on a high melting point metal using a plating technique, and other well-known lamination techniques and film forming techniques may be used. You may form by using.
  • the first and second fusible conductors 208 and 209 are made of a low melting point metal constituting the outer layer, and the first and third electrodes 204 and 206 or the second, fourth and fifth electrodes 205 are used. , 207, 231 can be soldered.
  • the first and second soluble conductors 208 and 209 may have an inner layer made of a low melting point metal and an outer layer made of a high melting point metal.
  • an inner layer made of a low melting point metal By using a soluble conductor in which the entire surface of the inner low melting point metal layer is covered with the outer high melting point metal layer, even when using a low melting point metal having a melting point lower than the reflow temperature, the inner layer has a low Outflow of the melting point metal to the outside can be suppressed. Further, when the inner layer low melting point metal melts, the outer layer high melting point metal is also eroded (soldered) and can be quickly melted.
  • first and second soluble conductors 208 and 209 may have a covering structure in which the inner layer is made of a high melting point metal and the outer layer is made of a low melting point metal.
  • the inner layer is made of a high melting point metal
  • the outer layer is made of a low melting point metal.
  • first and second soluble conductors 208 and 209 may have a laminated structure in which a low melting point metal layer and a high melting point metal layer are laminated. Moreover, it is good also as a multilayered structure of four or more layers by which the low melting metal layer and the high melting metal layer were laminated
  • the first and second soluble conductors 208 and 209 may be composed of a high melting point metal having a large number of openings and a low melting point metal inserted into the openings.
  • the area of the refractory metal layer in contact with the molten low melting point metal layer increases, so that the low melting point metal layer can erode the refractory metal layer in a shorter time. Therefore, the soluble conductor can be blown out more quickly and reliably.
  • the first and second soluble conductors 208 and 209 have a volume of the low melting point metal larger than that of the high melting point metal. Thereby, the 1st, 2nd soluble conductors 208 and 209 can perform fusing in a short time by the corrosion of a refractory metal layer effectively.
  • the first and second soluble conductors 208 and 209 are improved.
  • a flux 215 is applied on the molten conductors 208 and 209.
  • the inside of the short-circuit element 201 is protected by covering the insulating substrate 202 with the cover member 210.
  • the cover member 210 has a side wall 216 that forms the side surface of the short-circuit element 201 and a top surface portion 217 that forms the upper surface of the short-circuit element 201, and the short-circuit element 201 is connected to the side wall 216 on the insulating substrate 202. It becomes a lid that closes the inside of the.
  • the cover member 210 is formed using an insulating member such as a thermoplastic, ceramic, glass epoxy substrate, or the like.
  • the cover member 210 may have a cover portion electrode 218 formed on the inner surface side of the top surface portion 217.
  • the cover part electrode 218 is formed at a position overlapping the first and second electrodes 204 and 205.
  • the cover electrode 218 has the first and second electrodes 204, When the molten conductor agglomerated on 205 contacts and spreads wet, the allowable amount for holding the molten conductor can be increased.
  • the short circuit element 201 as described above has a circuit configuration as shown in FIG. That is, in the short-circuit element 201, the first electrode 204 and the second electrode 205 are normally insulated, and the first and second fusible conductors are generated by the heat generated by the first and second heating resistors 221 and 222. When 208 and 209 are melted, the switch 220 is configured to be short-circuited through the molten conductor.
  • the first electrode terminal portion 204a and the second electrode terminal portion 205a constitute both terminals of the switch 220.
  • the first soluble conductor 208 is connected to the first heating resistor 221 via the third electrode 206 and the first heating element lead-out electrode 223.
  • the second soluble conductor 209 is connected to the second heating resistor 222 and the second resistor terminal portion 222a (P2) through the fourth electrode 207 (P1) and the second heating element lead-out electrode 224.
  • the second electrode 205 (A1), the fourth electrode 207 (P1), and the fifth electrode 231 (A2) to which the second soluble conductor 209 is connected function as a protective element.
  • the short-circuit element 201 When the short-circuit element 201 is energized from the second resistor terminal portion 222a (P2), as shown in FIG. 39, the second heating resistor 222 generates heat, and the second soluble conductor 209 is connected. By melting, the current path extending between the second electrode 205 (A1) and the fifth electrode 231 (A2) connected via the fourth electrode 207 (P1) is cut off. Further, when the short-circuit element 201 is energized from the first resistor terminal portion 221a, the first heating resistor 221 generates heat and melts the first soluble conductor 208. As a result, as shown in FIG.
  • the short-circuit element 201 is formed by combining the molten conductors of the first and second soluble conductors 208 and 209 that are aggregated into the first electrode 204 and the second electrode 205.
  • the insulated first electrode 204 and second electrode 205 can be short-circuited, that is, the switch 220 can be short-circuited.
  • the energization of the first heating resistor 221 is stopped because the first fusible conductor 208 is cut off and the first and third electrodes 204 and 206 are cut off, and the second heat generation is stopped. Since the current to the resistor 222 is cut off between the second and fourth electrodes 205 and 207 and between the fourth and fifth electrodes 207 and 231 when the second soluble conductor 209 is melted, Stopped.
  • the second soluble conductor 209 is melted prior to the first soluble conductor 208.
  • the first heating resistor 221 and the second heating resistor 222 are separately heated, so that the second heating resistor 222 is first heated as the energization timing, and thereafter
  • the first heating resistor 221 By causing the first heating resistor 221 to generate heat, as shown in FIG. 39, the second soluble conductor 209 is easily melted ahead of the first soluble conductor 208, as shown in FIG.
  • the molten conductors of the first and second fusible conductors 208 and 209 are surely aggregated and bonded onto the first and second electrodes 204 and 205, and the first and second electrodes 204 and 205 are short-circuited. Can be made.
  • the short-circuit element 201 forms the second fusible conductor 209 narrower than the first fusible conductor 208 by forming the second fusible conductor 209 narrower than the first fusible conductor 208. It may be melted first.
  • the fusing time can be shortened, so that the second soluble conductor 209 can be melted prior to the first soluble conductor 208. it can.
  • the area of the first electrode 204 is preferably larger than that of the third electrode 206, and the area of the second electrode 205 is preferably larger than those of the fourth and fifth electrodes 207 and 231. . Since the holding amount of the molten conductor increases in proportion to the electrode area, the areas of the first and second electrodes 204 and 205 are formed wider than those of the third, fourth, and fifth electrodes 206, 207, and 231. As a result, more molten conductors can be aggregated on the first and second electrodes 204 and 205, and the first and second electrodes 204 and 205 can be short-circuited reliably.
  • the short-circuit element 201 does not necessarily have to cover the first and second heating resistors 221 and 222 with the insulating layer 211.
  • the first and second heating resistors 221 and 221 222 may be installed inside the insulating substrate 202.
  • the first and second heating resistors 221 and 222 can be heated in the same manner as when the insulating layer 211 such as a glass layer is interposed. it can.
  • the first and second heating resistors 221 and 222 are formed on the surface on which the first to fifth electrodes 204, 205, 206, 207, and 231 of the insulating substrate 202 are formed. It may be installed on the back side opposite to.
  • the first and second heat generating resistors 221 and 222 can be formed by a simpler process than forming in the insulating substrate 202.
  • the insulating layer 211 is formed on the first and second heating resistors 221 and 222 in terms of protecting the resistor and ensuring insulation during mounting.
  • the first and second heating resistors 221 and 222 are formed on the surface on which the first to fifth electrodes 204, 205, 206, 207, and 231 of the insulating substrate 2 are formed. It may be installed on top.
  • the first and second heat generating resistors 221 and 222 can be formed by a simpler process than forming in the insulating substrate 202. In this case as well, it is desirable to form the insulating layer 211 on the first and second heating resistors 221 and 222.
  • a configuration may be employed in which a protective resistor connected to either the first electrode 204 or the second electrode 205 is provided.
  • the protective resistance is a resistance value corresponding to the internal resistance of the electronic component connected to the short circuit element, and is smaller than the resistance value of the first or second heating resistor 221, 222. That is, when the electronic component is operating normally, current does not flow to the short-circuit element side but flows to the electronic component side.
  • the short-circuit element to which the present invention is applied is not limited to the provision of the external terminal 212 continuous with the first and second electrodes 204 and 205 through the through-holes on the back surface of the insulating substrate 202, as shown in FIG.
  • the first external connection electrode 234 continuous with the first electrode 204, the first electrode 204, 205 are formed on the surface of the insulating substrate 202 where the first and second electrodes 204, 205 are formed.
  • One or a plurality of second external connection terminals 237 may be formed.
  • the first and second external connection electrodes 234 and 236 are electrodes that connect the short-circuit element 233 and the circuit of the electronic device in which the short-circuit element 233 is incorporated, and the first external connection electrode 234 is the same as the first electrode 204.
  • the second external connection electrode 236 is continuous with the second electrode 205.
  • the first and second external connection electrodes 234 and 236 are formed using a general electrode material such as Cu or Ag, and are the same surface as the formation surface of the first and second electrodes 204 and 205 of the insulating substrate 202. Is formed. That is, in the short-circuit element 233 shown in FIG. 44, the surface on which the first and second fusible conductors 208 and 209 are provided is the mounting surface. Note that the first and second external connection electrodes 234 and 236 can be formed simultaneously with the first and second electrodes 204 and 205.
  • the first external connection terminal 235 is provided on the first external connection electrode 234.
  • a second external connection terminal 237 is provided on the second external connection electrode 236.
  • the first and second external connection terminals 235 and 237 are connection terminals for mounting on an electronic device, and are formed using, for example, metal bumps or metal posts. Further, as shown in FIG. 44A, the first and second external connection terminals 235 and 237 have a height protruding from the cover member 210 provided on the insulating substrate 202, and the short-circuit element 233. It can be mounted on the substrate side that is the mounting object.
  • the first heating resistor 221 of the short-circuit element 233 is formed with a first resistor connection terminal 221b via the first heating element lead-out electrode 223 and the first resistor terminal portion 221a.
  • the second heating resistor 222 of the short-circuit element 233 has a second resistor connection terminal 222b formed via the second heating element lead-out electrode 224 and the second resistor terminal portion 222a.
  • the fifth electrode 231 has a third external connection terminal 231b formed on the fifth electrode terminal portion 231a.
  • the first and second resistor connection terminals 221b and 222b and the third external connection terminal 231b are formed using metal bumps or metal posts, similarly to the first and second external connection terminals 235 and 237. It protrudes upward through the insulating layer 211.
  • the short-circuit element 233 is provided with the external terminal 212 on the back surface of the insulating substrate 202 like the short-circuit element 201 and connects the first and second electrodes 204 and 205 and the external terminal 212 through a through hole.
  • the first and second external connection terminals 235 and 237 are formed on the same surface as the first and second electrodes 204 and 205 via the first and second external connection electrodes 234 and 236. Yes.
  • the short-circuit element 233 is connected between the first and second external connection electrodes 234 and 236 when the first electrode 204 and the second electrode 205 are short-circuited.
  • the combined resistance of the first external connection terminal 235 and the second external connection terminal 237 is configured to be lower than the resistance.
  • the short-circuit element 233 can improve the rating when the first and second electrodes 204 and 205 are short-circuited to form a bypass current path, and can cope with a large current. That is, in high current applications such as lithium ion secondary batteries used as power sources such as HEV and EV, further improvement of the rating of the short-circuit element is required.
  • the conduction resistance between the first and second external connection electrodes 234 and 236 short-circuited by the fusible conductor can be sufficiently lowered to meet the rating improvement (for example, less than 0.4 m ⁇ ).
  • the first and second electrodes 204 are provided.
  • the first and second electrodes 204 have a high conduction resistance (for example, 0.5 to 1.0 m ⁇ ), and even if a conductor is filled in the through hole, there is a limit to lowering the conduction resistance of the entire short-circuit element.
  • the short-circuit element 233 is provided with external connection terminals 235 and 237 on the same surface as the first and second electrodes 204 and 205.
  • the external connection terminals 235 and 237 are provided on the external connection electrodes 234 and 236, and a terminal having a high degree of freedom in shape and size and having a low conduction resistance can be easily provided.
  • the short-circuit element 233 has a first external connection rather than a conduction resistance between the first and second external connection electrodes 234 and 236 when the first electrode 204 and the second electrode 205 are short-circuited.
  • the combined resistance of the terminal 235 and the second external connection terminal 237 is configured to be low.
  • the conduction resistance ahead of the first and second external connection electrodes 234 and 236, which is high in the configuration of the short-circuit element 201, can be easily lowered, and the rating is dramatically improved. Can be achieved.
  • the first and second external connection terminals 232 and 234 can be configured using, for example, metal bumps or metal posts made of Pb-free solder whose main component is Sn.
  • the shape of the metal bump or the metal post is not limited.
  • the resistance values of the first and second external connection terminals 235 and 237 can be obtained from the material, shape, and size. As an example, when a rectangular parallelepiped metal post (Cu core: 0.6 mm ⁇ 0.6 mm, cross-sectional area 0.36 mm 2, height 1 mm, specific resistance 17.2 ⁇ ⁇ mm) is used.
  • the resistance value of the Cu core of one terminal is about 0.048 m ⁇ , and the resistance value obtained by connecting the first and second external connection terminals 235 and 237 in series is as low as less than 0.096 m ⁇ in consideration of the solder coating. It can be seen that the overall rating of the short-circuit element 233 can be improved.
  • the short-circuit element 233 obtains the total resistance value of the entire element from the resistance value between the first and second external connection terminals 235 and 237 at the time of the short-circuit, and the total resistance value and the known first and second values. From the difference between the combined resistance of the external connection terminals 235 and 237, the conduction resistance between the first and second external connection electrodes 234 and 236 at the time of short circuit can be obtained. The short-circuit element 233 measures the resistance between the first and second external connection electrodes 234 and 236 at the time of short-circuit, and the first and second external elements are calculated from the difference from the total resistance value of the entire element at the time of short-circuit. The combined resistance of the connection terminals 235 and 237 can be obtained.
  • the short-circuit element 233 is provided wider by forming the first and second external connection electrodes 234 and 236 in a rectangular shape, and the first and second external connection terminals 235 and 237 are provided.
  • the conduction resistance may be lowered by providing a plurality.
  • the short-circuit element 233 reduces the conduction resistance by providing the first and second external connection terminals 235 and 237 having large diameters on the first and second external connection electrodes 234 and 236 that are widely provided. May be.
  • first and second external connection terminals 235 and 237 may be formed by providing low melting point metal layers 235b and 237b on the surfaces of the high melting point metals 235a and 237a serving as cores.
  • solder such as Pb-free solder containing Sn as a main component can be suitably used.
  • An alloy to be used can be preferably used.
  • the reflow temperature exceeds the melting temperature of the low melting point metal layers 235b and 237b, Even when the metal is melted, it can be prevented that the first and second external connection terminals 235 and 237 are melted.
  • the first and second external connection terminals 235 and 237 can be connected to the first and second external connection electrodes 234 and 236 using a low melting point metal constituting the outer layer.
  • the first and second external connection terminals 235 and 237 can be formed by forming a low melting point metal on the high melting point metal 235a and 237a by using a plating technique, and other well-known lamination techniques and films. It can also be formed by using a forming technique.
  • the first and second external connection terminals 235 and 237 are formed by using a conductive plating layer or a conductive layer formed by applying a conductive paste, in addition to using metal bumps or metal posts. May be.
  • first and second external connection terminals 235 and 237 are provided in advance on the mounting object side such as a substrate on which the short-circuit element 233 is mounted.
  • the external connection electrodes 234 and 236 or the first and second electrodes 204 and 205 may be connected.
  • FIG. 46 is a diagram showing a circuit configuration of a battery pack 240 in which a lithium ion battery used in various electronic devices such as cars and electric tools is built.
  • the battery pack 240 includes a battery cell 241, a short-circuit element 201, first and second current control elements 261 and 262 that control the operation of the short-circuit element 201, and a protective resistor 254. And a plurality of battery units 263 connected in series.
  • the battery pack 240 detects the voltage of the battery unit 263, the charge / discharge control circuit 255 that controls the charge / discharge of the battery unit 263, and the battery cell 241 of each battery unit 263, and the operation of the short-circuit element 201. And a detection circuit 256 that outputs an abnormal signal to the first and second current control elements 261 and 262 to be controlled.
  • the charge / discharge control circuit 255 controls the operation of the third and fourth current control elements 257 and 258 connected in series to the current path flowing from the battery unit 263 to the charging device, and the operation of these current control elements 257 and 258. Part 259.
  • the second electrode terminal portion 205a of the second electrode 205 (A1) of the short-circuit element 201 is connected to the charge / discharge current path of the battery pack 240, and the fifth electrode 231 (A2) By connecting the electrode terminal portion 231 a to the battery cell 41, the short-circuit element 201 is connected in series with the battery cell 241.
  • the second heating resistor 222 is connected to the first current control element 261 via the second resistor terminal portion 222a (P2).
  • the first electrode terminal portion 204a of the first electrode 204 is connected to the open end of the battery cell 241 via the protective resistor 254, so that the switch 220 is charged / discharged by the battery cell 241. Bypassed from the route.
  • the first heating resistor 221 is connected to the second current control element 262 via the first resistor terminal portion 221a.
  • the detection circuit 256 is connected to each battery cell 241, detects the voltage value of each battery cell 241, and when the battery cell 241 becomes an overcharge voltage or an overdischarge voltage, the battery unit having the battery cell 241. An abnormal signal is output to the first and second current control elements 261 and 262 of H.263.
  • the first and second current control elements 261 and 262 are configured by, for example, FETs, and the voltage value of the battery cell 241 exceeds a predetermined overdischarge or overcharge state by a detection signal output from the detection circuit 256.
  • the short-circuit element 201 is operated to cut off the charging / discharging current path of the battery unit 263 regardless of the switching operation of the third and fourth current control elements 257 and 258, and the switch 220 of the short-circuit element 201 is turned off. Control is performed so as to form a bypass current path that short-circuits and bypasses the battery unit 263.
  • the short-circuit element 201 is formed by heating and melting the second fusible conductor 209 with the second heating resistor 222 to thereby form the second electrode 205 (A1) and the fourth electrode. Between the first electrode 207 (P1) and between the fourth electrode 207 (P1) and the fifth electrode 231 (A2). Thus, as shown in FIG. 46B, the battery unit 263 having the abnormal battery cell 241 can be blocked from the charge / discharge current path of the battery pack 240. Note that power supply to the second heating resistor 222 is stopped when the second fusible conductor 209 is melted.
  • the battery pack 240 causes the detection circuit 256 to output an abnormal signal to the second current control element 262 of the battery unit 263 with a slight delay from the first current control element 261, and the first heat generation of the short-circuit element 201.
  • the resistor 221 also generates heat.
  • the short-circuit element 201 is configured to heat and melt the first fusible conductor 208 by the first heating resistor 221, so that the first and second possible electrodes aggregated into the first electrode 204 and the second electrode 205.
  • the molten conductors 208 and 209 are joined together.
  • the short-circuit element 201 can form a bypass current path that bypasses the battery unit 263 as shown in FIG. Note that power supply to the first heating resistor 221 is stopped when the first fusible conductor 208 is melted.
  • the protective resistor 254 has almost the same resistance value as the internal resistance of the battery cell 241, so that it can have the same capacity as that in the normal state even on the bypass current path.
  • a bypass current path that bypasses the battery unit 263 can be formed and is charged by the remaining normal battery units 263.
  • the discharge function can be maintained.
  • FIG. 47 is a plan view of the short-circuit element 270 in which the protective resistor 271 is formed on the insulating substrate 202.
  • the short-circuit element 270 includes a protective resistor 271 connected to the first electrode 204, and a first electrode terminal portion 204a is formed via the protective resistor 271.
  • the protective resistor 271 can be formed simultaneously by the same process using the same material as the first and second heating resistors 221 and 222 described above.
  • FIG. 48 is a diagram showing a circuit configuration of the short-circuit element 270.
  • the circuit configuration of the short-circuit element 270 includes a first fusible conductor (fuse) 208, a first heating resistor 221 connected to one end of the first fusible conductor 208, and a first fusible conductor. 208, a switch 220 connected to the other end to which the first heating resistor 221 is not connected, and a protective resistor 271 connected to at least one of the terminals of the switch 220. This is a short circuit in conjunction with the melting of the fusible conductor 208.
  • an external terminal 212 is provided on the back surface of the insulating substrate 202 and the first electrode terminal portion 204a and the second electrode terminal portion 205a are connected to the external terminal 212 through a through hole.
  • a first external connection that is continuous with the first electrode 204 through the protective resistor 271 is formed on the surface of the insulating substrate 202 on which the first and second electrodes 204 and 205 are formed.
  • the electrode 234, the first external connection terminal 235, the second external connection electrode 236 continuous with the second electrode 205, and the second external connection terminal 237 may be formed.
  • FIG. 49 is a diagram showing a circuit configuration of a battery pack 280 in which the short-circuit element 270 is incorporated.
  • Battery pack 280 has the same configuration as battery pack 240 described above except that short-circuit element 270 is used instead of short-circuit element 201. That is, the battery pack 280 includes a plurality of battery units 273 including battery cells 241, short-circuit elements 270, and first and second current control elements 261 and 262 that control the operation of the short-circuit elements 270. A plurality of battery units 273 are connected in series.
  • the protective resistance 271 of the short-circuit element 270 provided in each battery unit has substantially the same resistance value as the internal resistance of the battery cell 241 of the battery unit 273.
  • a bypass current path that bypasses the battery unit 273 can be formed, and the remaining normal battery unit 273 can be charged.
  • the discharge function can be maintained.
  • the battery pack 280 can have the same current capacity as that in the normal state on the bypass current path because the protective resistance 271 has substantially the same resistance value as the internal resistance of the battery cell 241.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuses (AREA)

Abstract

 複数のバッテリセルや電子部品で構成された電子機器の異常セルや異常電子部品のみを排除し、機能を維持しつつバイパス経路を形成することにより低抵抗化を図る。 絶縁基板2と、絶縁基板2に設けられた発熱抵抗体3と、絶縁基板2に、互いに隣接して設けられた第1、第2の電極4,5と、絶縁基板2に、第1の電極4と隣接して設けられるとともに、発熱抵抗体に電気的に接続された第3の電極6と、第1、第3の電極4,6間に亘って設けられることにより電流経路構成し、発熱抵抗体3からの加熱により、第1、第3の電極4,6間の電流経路を溶断する第1の可溶導体8とを備える。発熱抵抗体3からの加熱により溶融し、第1、第2の電極4,5上に凝集した第1の可溶導体8によって、第1の電極4と第2の電極5とが短絡する。

Description

短絡素子、およびこれを用いた回路
 本発明は、基板上に発熱抵抗体とヒューズエレメントを設けた短絡素子を用いて、電子機器内の異常部品のみを排除する短絡素子及びこれを用いた回路に関する。
 充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギー密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。
 この種の保護素子には、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行うものがある。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加されて瞬間的な大電流が流れた場合、あるいはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大な異常電圧を出力した場合であっても、バッテリパックや電子機器は、発火等の事故から保護されなければならない。そこで、このような想定し得るいかなる異常状態においても、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられている。
 このようなリチウムイオン二次電池等向けの保護回路の保護素子としては、特許文献1に記載されているように、電流経路上の第1の電極,発熱体に繋がる導体層,第2の電極間に亘って可溶導体を接続して電流経路の一部をなし、この電流経路上の可溶導体を、過電流による自己発熱、あるいは保護素子内部に設けた発熱体によって溶断するものがある。このような保護素子では、溶融した液体状の可溶導体を発熱体に繋がる導体層上に集めることにより電流経路を遮断する。
 また、LED照明装置においては、直列接続されたLED素子の個々に短絡素子を並列に接続し、LEDの異常時に所定の電圧で短絡素子が短絡して正常なLEDを発光させる構成が提案されている(特許文献2)。特許文献2に記載の短絡素子は、所定膜厚の絶縁障壁層を、金属で挟んで構成された素子を、複数個直列に接続させている。
特開2010-003665号公報 特開2007-12381号公報
 近年、バッテリとモーターを使用したHEV(Hybrid Electric Vehicle)やEV(Electric Vehicle)が急速に普及している。HEVやEVの動力源としては、エネルギー密度と出力特性からリチウムイオン二次電池が使用されるようになってきている。自動車用途では、高電圧、大電流が必要とされる。このため、高電圧、大電流に耐えられる専用セルが開発されているが、製造コスト上の問題から多くの場合、複数のバッテリセルを直列、並列に接続することで、汎用セルを用いて必要な電圧電流を確保している。
 ところで、高速移動中の自動車等では、急激な駆動力の低下や急停止は却って危険な場合があり、非常時を想定したバッテリ管理が求められている。例えば、走行中にバッテリーシステムの異常が起きた際にも、修理工場もしくは安全な場所まで移動するための駆動力、あるいはハザードランプやエアコン用の駆動力を供給できることが、危険回避上、好ましい。
 しかし、特許文献1のような複数のバッテリセルが直列に接続されたバッテリパックにおいては、充放電経路上にのみ保護素子を設けたような場合、バッテリセルの一部に異常が発生し保護素子を作動させると、バッテリパック全体の充放電経路が遮断されてしまい、これ以上、電力を供給することができない。
 また、特許文献2に記載されている短絡素子においては、電流電圧特性カーブによると、10V印加時の抵抗値が約17KΩと高く、オープン状態のLED素子を効率よくバイパスするには更に抵抗値を下げることが望まれる。
 そこで、本発明は、複数セルで構成されたバッテリパック内の異常バッテリセルのみを排除し、正常なバッテリセルを有効に活用できる保護素子において、バイパス経路を形成することができる短絡素子、およびこれを用いた回路を提供することを目的とする。
 上述した課題を解決するために、本発明に係る短絡素子は、絶縁基板と、上記絶縁基板に設けられた発熱抵抗体と、上記絶縁基板に、互いに隣接して設けられた第1、第2の電極と、上記絶縁基板に、上記第1の電極と隣接して設けられるとともに、上記発熱抵抗体に電気的に接続された第3の電極と、上記第1、第3の電極間に亘って設けられることにより電流経路を構成し、上記発熱抵抗体からの加熱により、上記第1、第3の電極間の上記電流経路を溶断する第1の可溶導体とを備え、上記発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1の可溶導体によって、上記第1の電極と上記第2の電極とが短絡することを特徴とするものである。
 また、本発明に係る短絡素子回路は、ヒューズと、上記ヒューズの一端に接続された発熱抵抗体と、上記ヒューズの上記発熱抵抗体が接続されていない他端に接続されたスイッチとを備え、上記スイッチは、上記ヒューズの溶断に連動して短絡するものである。
 また、本発明に係る補償回路は、ヒューズと、上記ヒューズの一端に接続された発熱抵抗体と、上記ヒューズの上記発熱抵抗体が接続されていない他端に接続されたスイッチとを有し、上記スイッチは、上記ヒューズの溶断に連動して短絡する短絡素子と、電子部品とを備え、上記スイッチは、両端子が上記電子部品と並列に接続され、上記発熱抵抗体の開放端子が、上記スイッチ端子のうち上記ヒューズが接続されていない端子に接続され、上記電子部品の異常時には、上記ヒューズが溶融することにより上記スイッチが短絡され、上記電子部品を迂回するバイパス電流経路が形成されるものである。
 また、本発明に係る補償回路は、ヒューズと、上記ヒューズの一端に接続された発熱抵抗体と、上記ヒューズの上記発熱抵抗体が接続されていない他端に接続されたスイッチとを有し、上記スイッチは、上記ヒューズの溶断に連動して短絡する短絡素子と、電子部品と、上記電子部品の電流経路上に接続され、上記電子部品の異常時に該電子部品への通電を電気信号で遮断する保護素子と、上記電子部品の異常を検知し、異常信号を出力する保護部品と、上記保護部品の異常信号を受けて動作する制御素子とを備え、上記電子部品及び上記保護素子の両端と、上記スイッチの両端子とを並列に接続し、上記発熱抵抗体の開放端子と上記保護素子の上記電気信号の入力端子を、上記制御素子に接続し、上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記制御素子が動作し、上記保護素子による上記電子部品の電流経路の遮断と、上記ヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成されるものである。
 また、本発明に係る短絡素子回路は、ヒューズと、上記ヒューズの一端に接続された発熱抵抗体と、上記ヒューズの上記発熱抵抗体が接続されていない他端に接続されたスイッチと、上記スイッチの端子の少なくとも一方の端子に接続された保護抵抗とを備え、上記スイッチは、上記ヒューズの溶断に連動して短絡するものである。
 また、本発明に係る補償回路は、ヒューズと、上記ヒューズの一端に接続された発熱抵抗体と、上記ヒューズの上記発熱抵抗体が接続されていない他端に接続されたスイッチと、上記スイッチの端子のうち、上記ヒューズが接続されていない端子に接続された保護抵抗とを有し、上記スイッチは、上記ヒューズの溶断に連動して短絡する短絡素子と、電子部品とを備え、上記スイッチと上記ヒューズが接続された端子及び上記保護抵抗の開放端子と、上記電子部品とを、並列に接続し、上記発熱抵抗体は、上記保護抵抗と接続し、上記電子部品の異常時には、上記ヒューズが溶融することにより上記スイッチがオンとなり、バイパス電流経路が形成されるものである。
 また、本発明に係る補償回路は、ヒューズと、上記ヒューズの一端に接続された発熱抵抗体と、上記ヒューズの上記発熱抵抗体が接続されていない他端に接続されたスイッチと、上記スイッチの端子のうち、上記ヒューズが接続されていない端子に接続された保護抵抗とを有し、上記スイッチは、上記ヒューズの溶断に連動して短絡する短絡素子と、電子部品と、上記電子部品の電流経路上に接続され、上記電子部品の異常時に該電子部品への通電を電気信号で遮断する保護素子と、上記電子部品の異常を検知し、異常信号を出力する保護部品と、上記保護部品の異常信号を受けて動作する制御素子とを備え、上記電子部品及び上記保護素子の両端と、上記スイッチの上記ヒューズとの接続端子及び上記保護抵抗とを並列に接続し、上記発熱抵抗体の開放端子と上記保護素子の上記電気信号の入力端子を、上記制御素子に接続し、上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記制御素子が動作し、上記保護素子による上記電子部品の電流経路の遮断と、上記ヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成されるものである。
 また、本発明に係る実装体は、短絡素子が実装対象物に実装された実装体において、上記短絡素子は、絶縁基板と、上記絶縁基板に設けられた発熱抵抗体と、上記絶縁基板に、互いに隣接して設けられた第1、第2の電極と、上記絶縁基板に、上記第1の電極と隣接して設けられるとともに、上記発熱抵抗体に電気的に接続された第3の電極と、上記第1、第3の電極間に亘って設けられることにより電流経路を構成し、上記発熱抵抗体からの加熱により、上記第1、第3の電極間の上記電流経路を溶断する第1の可溶導体と、上記絶縁基板の上記第1、第2の電極が形成された面と同一表面に形成され、上記第1の電極と連続する第1の外部接続電極及び上記第2の電極と連続する第2の外部接続電極とを備え、上記第1の電極が上記第1の外部接続電極上に接続された第1の外部接続端子を介して上記実装対象物と接続され、上記第2の電極が上記第2の外部接続電極上に接続された第2の外部接続端子を介して上記実装対象物と接続され、上記発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1の可溶導体によって、上記第1の電極と上記第2の電極とが短絡したときの、上記第1、第2の外部接続電極間の導通抵抗よりも、上記第1の外部接続端子と上記第2の外部接続端子との合成抵抗が低いことを特徴とするものである。
 上述した課題を解決するために、本発明に係る短絡素子は、絶縁基板と、上記絶縁基板に形成された第1及び第2の発熱抵抗体と、上記絶縁基板に、互いに隣接して設けられた第1、第2の電極と、上記絶縁基板に、上記第1の電極と隣接して設けられるとともに、上記第1の発熱抵抗体に電気的に接続された第3の電極と、上記絶縁基板に、上記第2の電極と隣接して設けられるとともに、上記第2の発熱抵抗体に電気的に接続された第4の電極と、上記第1、第3の電極間に亘って設けられることにより電流経路を構成し、上記第1の発熱抵抗体からの加熱により、上記第1、第3の電極間の上記電流経路を溶断する第1の可溶導体と、上記第2、第4の電極間に亘って設けられることにより電流経路を構成し、上記第2の発熱抵抗体からの加熱により、上記第2、第4の電極間の上記電流経路を溶断する第2の可溶導体とを備え、上記第1、第2の発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1、第2の可溶導体によって、上記第1の電極と上記第2の電極とが短絡するものである。
 また、本発明に係る短絡素子回路は、スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記スイッチの他端に接続された第2のヒューズと、上記第1のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第1の発熱抵抗体と、上記第2のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第2の発熱抵抗体とを有し、上記スイッチは、上記第1及び第2のヒューズが溶断されることにより、該第1及び第2のヒューズの溶融導体によって短絡されるものである。
 また、本発明に係る補償回路は、スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記スイッチの他端に接続された第2のヒューズと、上記第1のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第1の発熱抵抗体と、上記第2のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第2の発熱抵抗体とを有し、上記スイッチは、上記第1及び第2のヒューズが溶断されることにより、該第1及び第2のヒューズの溶融導体によって短絡される短絡素子と、電子部品と、上記電子部品の電流経路上に接続され、上記電子部品の異常時に該電子部品への通電を電気信号で遮断する保護素子と、上記電子部品の異常を検知し、異常信号を出力する保護部品と、上記保護部品の異常信号を受けて動作する第1~第3の制御素子とを備え、上記電子部品及び上記保護素子の両端と、上記スイッチの両端子とを並列に接続し、上記第1、第2の発熱抵抗体、及び上記保護素子の電気信号の入力端子とを、それぞれ上記第1~第3の制御素子に接続し、上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1~第3の制御素子が動作し、上記保護素子による上記電子部品の電流経路の遮断と、上記第1、第2のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成されるものである。
 また、本発明に係る補償回路は、スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記スイッチの他端に接続された第2のヒューズと、上記第1のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第1の発熱抵抗体と、上記第2のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第2の発熱抵抗体とを有し、上記スイッチは、上記第1及び第2のヒューズが溶断されることにより、該第1及び第2のヒューズの溶融導体によって短絡される短絡素子と、電子部品と、上記電子部品の電流経路上に接続され、上記電子部品の異常時に該電子部品への通電を電気信号で遮断する保護素子と、上記電子部品の異常を検知し、異常信号を出力する保護部品と、上記保護部品の異常信号を受けて動作する第1、第2の制御素子とを備え、上記電子部品及び上記保護素子の両端と、上記スイッチの両端子とを並列に接続し、上記第1の発熱抵抗体の端子を上記第1の制御素子に接続し、上記第2の発熱抵抗体及び上記保護素子の電気信号の入力端子を、上記第2の制御素子に接続し、上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1、第2の制御素子が動作し、上記保護素子による上記電子部品の電流経路の遮断と、上記第1、第2のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成されるものである。
 また、本発明に係る短絡素子回路は、スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記スイッチの他端に接続された第2のヒューズと、上記第1のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第1の発熱抵抗体と、上記第2のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第2の発熱抵抗体と、上記スイッチに接続された保護抵抗とを有し、上記スイッチが、上記第1及び第2のヒューズが溶断されることにより、該第1及び第2のヒューズの溶融導体によって短絡されるものである。
 また、本発明に係る補償回路は、上記スイッチの一端に接続された第1のヒューズと、上記スイッチの他端に接続された第2のヒューズと、上記第1のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第1の発熱抵抗体と、上記第2のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第2の発熱抵抗体と、上記スイッチに接続された保護抵抗とを有し、上記スイッチは、上記第1及び第2のヒューズが溶断されることにより、該第1及び第2のヒューズの溶融導体によって短絡される短絡素子と、電子部品と、上記電子部品の電流経路上に接続され、上記電子部品の異常時に該電子部品への通電を電気信号で遮断する保護素子と、上記電子部品の異常を検知し、異常信号を出力する保護部品と、上記保護部品の異常信号を受けて動作する第1~第3の制御素子とを備え、上記電子部品及び上記保護素子の両端と、上記スイッチの両端子及び上記保護抵抗とを並列に接続し、上記第1、第2の発熱抵抗体、及び上記保護素子の電気信号の入力端子とを、それぞれ上記第1~第3の制御素子に接続し、上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1~第3の制御素子が動作し、上記保護素子による上記電子部品の電流経路の遮断と、上記第1、第2のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成されるものである。
 また、本発明に係る補償回路は、スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記スイッチの他端に接続された第2のヒューズと、上記第1のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第1の発熱抵抗体と、上記第2のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第2の発熱抵抗体と、上記スイッチに接続された保護抵抗とを有し、上記スイッチは、上記第1及び第2のヒューズが溶断されることにより、該第1及び第2のヒューズの溶融導体によって短絡される短絡素子と、電子部品と、上記電子部品の電流経路上に接続され、上記電子部品の異常時に該電子部品への通電を電気信号で遮断する保護素子と、上記電子部品の異常を検知し、異常信号を出力する保護部品と、上記保護部品の異常信号を受けて動作する第1、第2の制御素子とを備え、上記電子部品及び上記保護素子の両端と、上記スイッチの両端子及び上記保護抵抗とを並列に接続し、上記第1の発熱抵抗体の端子を上記第1の制御素子に接続し、上記第2の発熱抵抗体及び上記保護素子の電気信号の入力端子を、上記第2の制御素子に接続し、上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1、第2の制御素子が動作し、上記保護素子による上記電子部品の電流経路の遮断と、上記第1、第2のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成されるものである。
 また、本発明に係る実装体は、短絡素子が実装対象物に実装された実装体において、上記短絡素子は、絶縁基板と、上記絶縁基板に形成された第1及び第2の発熱抵抗体と、上記絶縁基板に、互いに隣接して設けられた第1、第2の電極と、上記絶縁基板に、上記第1の電極と隣接して設けられるとともに、上記第1の発熱抵抗体に電気的に接続された第3の電極と、上記絶縁基板に、上記第2の電極と隣接して設けられるとともに、上記第2の発熱抵抗体に電気的に接続された第4の電極と、上記第1、第3の電極間に亘って設けられることにより電流経路を構成し、上記第1の発熱抵抗体からの加熱により、上記第1、第3の電極間の上記電流経路を溶断する第1の可溶導体と、上記第2、第4の電極間に亘って設けられることにより電流経路を構成し、上記第2の発熱抵抗体からの加熱により、上記第2、第4の電極間の上記電流経路を溶断する第2の可溶導体と、上記絶縁基板の上記第1、第2の電極が形成された面と同一表面に形成され、上記第1の電極と連続する第1の外部接続電極及び上記第2の電極と連続する第2の外部接続電極とを備え、上記第1の電極が上記第1の外部接続電極上に接続された第1の外部接続端子を介して上記実装対象物と接続され、上記第2の電極が上記第2の外部接続電極上に接続された第2の外部接続端子を介して上記実装対象物と接続され、上記第1、第2の発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1、第2の可溶導体によって、上記第1の電極と上記第2の電極とが短絡したときの、上記第1、第2の外部接続電極間の導通抵抗よりも、上記第1の外部接続端子と上記第2の外部接続端子との合成抵抗が低いことを特徴とするものである。
 上述した課題を解決するために、本発明に係る短絡素子は、絶縁基板と、上記絶縁基板に形成された第1及び第2の発熱抵抗体と、上記絶縁基板に、互いに隣接して設けられた第1、第2の電極と、上記絶縁基板に、上記第1の電極と隣接して設けられるとともに、上記第1の発熱抵抗体に電気的に接続された第3の電極と、上記絶縁基板に、上記第2の電極と隣接して設けられるとともに、上記第2の発熱抵抗体に電気的に接続された第4の電極と、上記第4の電極に隣接して設けられた第5の電極と、上記第1、第3の電極間に亘って設けられることにより電流経路を構成し、上記第1の発熱抵抗体からの加熱により、上記第1、第3の電極間の上記電流経路を溶断する第1の可溶導体と、上記第2から上記第4の電極を経由して上記第5の電極に亘って設けられることにより電流経路を構成し、上記第2の発熱抵抗体からの加熱により、上記第2の電極と上記第4の電極との間、及び上記第4の電極と上記第5の電極との間の各上記電流経路を溶断する第2の可溶導体とを備え、上記第1、第2の発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1、第2の可溶導体によって、上記第1の電極と上記第2の電極とが短絡するものである。
 また、本発明に係る短絡素子回路は、スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、上記スイッチの開放端と直列に接続された第2、第3のヒューズと、上記第2、第3のヒューズの接続点に接続された第2の発熱抵抗体とを備え、上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡されるものである。
 また、本発明に係る補償回路は、スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、上記スイッチの開放端と直列に接続された第2、第3のヒューズと、上記第2、第3のヒューズの接続点と接続された第2の発熱抵抗体とを備え、上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡される短絡素子と、電子部品と、上記電子部品の異常を検知し、異常信号を出力する保護部品と、上記保護部品の異常信号を受けて動作する第1、第2の制御素子とを備え、上記第2、第3のヒューズと上記電子部品とを直列に接続して電流経路を構成し、上記スイッチと上記第1のヒューズとの接続点を上記電子部品の開放端にバイパスするように接続し、上記第1の発熱抵抗体の開放端に上記第1の制御素子を接続し、上記第2の発熱抵抗体の開放端に上記第2の制御素子を接続し、上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1、第2の制御素子が動作し、上記電子部品の電流経路の遮断と、上記第1のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成されるものである。
 また、本発明に係る短絡素子回路は、スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、上記スイッチと上記第1のヒューズとの接続点と接続された保護抵抗と、上記スイッチの開放端と直列に接続された第2、第3のヒューズと、上記第2、第3のヒューズの接続点に接続された第2の発熱抵抗体とを備え、上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡されるものである。
 また、本発明に係る補償回路は、スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、上記スイッチと上記第1のヒューズとの接続点と接続された保護抵抗と、上記スイッチの開放端と直列に接続された第2、第3のヒューズと、上記第2、第3のヒューズの接続点に接続された第2の発熱抵抗体とを備え、上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡される短絡素子と、電子部品と、上記電子部品の異常を検知し、異常信号を出力する保護部品と、上記保護部品の異常信号を受けて動作する第1、第2の制御素子とを備え、上記第2、第3のヒューズと上記電子部品とを直列に接続して電流経路を構成し、上記保護抵抗の開放端を上記電子部品の開放端にバイパスするように接続し、上記第1の発熱抵抗体の開放端に上記第1の制御素子を接続し、上記第2の発熱抵抗体の開放端に上記第2の制御素子を接続し、上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1、第2の制御素子が動作し、上記電子部品の電流経路の遮断と、上記第1のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成されるものである。
 また、本発明に係る実装体は、短絡素子が実装対象物に実装された実装体において、上記短絡素子は、絶縁基板と、上記絶縁基板に形成された第1及び第2の発熱抵抗体と、上記絶縁基板に、互いに隣接して設けられた第1、第2の電極と、上記絶縁基板に、上記第1の電極と隣接して設けられるとともに、上記第1の発熱抵抗体に電気的に接続された第3の電極と、上記絶縁基板に、上記第2の電極と隣接して設けられるとともに、上記第2の発熱抵抗体に電気的に接続された第4の電極と、上記第4の電極に隣接して設けられた第5の電極と、上記第1、第3の電極間に亘って設けられることにより電流経路を構成し、上記第1の発熱抵抗体からの加熱により、上記第1、第3の電極間の上記電流経路を溶断する第1の可溶導体と、上記第2から上記第4の電極を経由して上記第5の電極に亘って設けられることにより電流経路を構成し、上記第2の発熱抵抗体からの加熱により、上記第2の電極と上記第4の電極との間、及び上記第4の電極と上記第5の電極との間の各上記電流経路を溶断する第2の可溶導体と、上記絶縁基板の上記第1、第2の電極が形成された面と同一表面に形成され、上記第1の電極と連続する第1の外部接続電極及び上記第2の電極と連続する第2の外部接続電極とを備え、上記第1の電極が上記第1の外部接続電極上に接続された第1の外部接続端子を介して上記実装対象物と接続され、上記第2の電極が上記第2の外部接続電極上に接続された第2の外部接続端子を介して上記実装対象物と接続され、上記第1、第2の発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1、第2の可溶導体によって、上記第1の電極と上記第2の電極とが短絡したときの、上記第1、第2の外部接続電極間の導通抵抗よりも、上記第1の外部接続端子と上記第2の外部接続端子との合成抵抗が低いことを特徴とするものである。
 本発明によれば、発熱抵抗体からの加熱により溶融し、第1、第2の電極上に凝集した溶融導体によって、絶縁されていた第1の電極と第2の電極とが短絡することにより、新たなバイパス電流経路を形成することができる。
 また、本発明によれば、第1、第2の発熱抵抗体からの加熱により溶融し、第1、第2の電極上に凝集した溶融導体によって、絶縁されていた第1の電極と第2の電極とが短絡することにより、新たなバイパス電流経路を形成することができる。
本発明が適用された短絡素子を示す図であり、(A)は平面図、(B)は断面図である。 短絡素子の回路図であり、(A)はスイッチが切れている状態、(B)はスイッチが短絡した状態を示す。 絶縁されていた第1、第2の電極が溶融導体によって短絡された状態を示す図であり、(A)は平面図、(B)は断面図である。 第2の可溶導体が先に溶融している状態を示す平面図である。 第2の可溶導体を幅狭に形成した短絡素子を示す平面図である。 短絡素子の変形例を示す断面図である。 短絡素子の変形例を示す断面図である。 短絡素子の変形例を示す断面図である。 第4の電極及び第2の可溶導体を省略して形成された短絡素子を示す図であり、(A)は平面図、(B)は断面図である。 第4の電極及び第2の可溶導体を省略して形成された短絡素子において、絶縁されていた第1、第2の電極が溶融導体によって短絡された状態を示す断面図である。 本発明が適用された他の短絡素子を示す図であり、(A)は可溶導体の溶融前、(B)は可溶導体の溶融後の状態を示す。 本発明が適用された他の短絡素子を示す平面図である。 短絡素子を用いたLED照明装置の回路図であり、(A)(B)は正常時、(C)は異常発生時、(D)はバイパス電流経路が形成された状態を示す。 短絡素子を用いたバッテリパックの回路図であり、(A)(B)は正常時、(C)は異常発生時、(D)はバイパス電流経路が形成された状態を示す。 保護素子を示す図であり、(A)は断面図、(B)は平面図である。 保護素子の回路図である。 保護抵抗を内蔵した短絡素子を示す平面図である。 保護抵抗を内蔵した短絡素子の回路図である。 保護抵抗を内蔵した短絡素子を用いたLED照明装置の回路図である。 保護抵抗を内蔵した短絡素子を用いたバッテリパックの回路図である。 本発明が適用された短絡素子を示す図であり、(A)は平面図、(B)は断面図である。 短絡素子の回路図であり、(A)はスイッチが切れている状態、(B)はスイッチが短絡した状態を示す。 短絡素子を示す図であり、(A)は、絶縁されていた第1、第2の電極が溶融導体によって短絡された状態を示す平面図であり、(B)は断面図である。 短絡素子において、第2の可溶導体が先に溶融している状態を示す平面図である。 短絡素子の変形例を示す断面図である。 短絡素子の変形例を示す断面図である。 短絡素子の変形例を示す断面図である。 本発明が適用された他の短絡素子を示す断面図であり、(A)は可溶導体の溶融前、(B)は可溶導体の溶融後の状態を示す。 本発明が適用された他の短絡素子を示す平面図である。 短絡素子を用いたバッテリパックの回路図であり、(A)は正常時、(B)は保護素子を動作させた状態、(C)(D)は短絡素子を動作させバイパス電流経路が形成された状態を示す。 保護素子を示す図であり、(A)は断面図、(B)は平面図である。 保護素子の回路図である。 保護抵抗を備える短絡素子を示す平面図である。 保護抵抗を備える短絡素子の回路図であり、(A)はスイッチが切れている状態、(B)はスイッチが短絡した状態を示す。 保護抵抗を備える短絡素子を用いたバッテリパックの回路図である。 保護抵抗を備える短絡素子を用いたバッテリパックの変形例を示す回路図である。 短絡素子を示す図であり、(A)は平面図、(B)は断面図である。 短絡素子の回路図である。 短絡素子において、第2の可溶導体が先に溶融した状態を示す平面図である。 短絡素子を示す図であり、(A)は絶縁されていた第1、第2の電極が溶融導体によって短絡された状態を示す平面図であり、(B)は断面図である。 短絡素子の変形例を示す断面図である。 短絡素子の変形例を示す断面図である。 短絡素子の変形例を示す断面図である。 本発明が適用された他の短絡素子を示す断面図であり、(A)は可溶導体の溶融前、(B)は可溶導体の溶融後の状態を示す。 本発明が適用された他の短絡素子を示す平面図である。 短絡素子を用いたバッテリパックの回路図であり、(A)は正常時、(B)は異常発生時、(C)はバイパス電流経路が形成された状態を示す。 保護抵抗を備える短絡素子を示す平面図である。 保護抵抗を備える短絡素子の回路図である。 保護抵抗を備える短絡素子を用いたバッテリパックの回路図である。
 以下、本発明が適用された短絡素子およびこれを用いた回路について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [第1の実施の形態]
 [短絡素子]
 先ず、本発明の第1の実施の形態について説明する。図1(A)に、短絡素子1の平面図を示し、図1(B)に、短絡素子1の断面図を示す。短絡素子1は、絶縁基板2と、絶縁基板2に設けられた発熱抵抗体3と、絶縁基板2に、互いに隣接して設けられた第1の電極4及び第2の電極5と、第1の電極4と隣接して設けられるとともに、発熱抵抗体3に電気的に接続された第3の電極6と、第2の電極5と隣接して設けられた第4の電極7と、第1、第3の電極4,6間に亘って設けられることにより電流経路構成し、発熱抵抗体3からの加熱により、第1、第3の電極4,6間の電流経路を溶断する第1の可溶導体8と、第2、第4の電極5,7間に亘って設けられ、発熱抵抗体3からの加熱により、第2、第4の電極5,7間の電流経路を溶断する第2の可溶導体9とを備える。そして、短絡素子1は、絶縁基板2上に内部を保護するカバー部材10が取り付けられている。
 絶縁基板2は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材を用いて略方形状に形成されている。絶縁基板2は、その他にも、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。なお、絶縁基板2は、裏面に外部端子12が形成されている。
 発熱抵抗体3は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板2上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成する。
 発熱抵抗体3は、絶縁基板2上において絶縁層11に被覆されている。絶縁層11は、発熱抵抗体3の熱を効率よく第1~第4の電極4~7へ伝えるために設けられ、例えばガラス層からなる。発熱抵抗体3は、第1~第4の電極4~7を加熱することにより、溶融導体を凝集しやすくすることができる。
 発熱抵抗体3を被覆する絶縁層11上には、第1~第4の電極4,5,6,7が形成されている。第1の電極4は、一方側において第2の電極5と隣接して形成されるとともに、絶縁されている。第1の電極4の他方側には第3の電極6が形成されている。第1の電極4と第3の電極6とは、後述する第1の可溶導体8が接続されることにより導通され、短絡素子1の電流経路を構成する。また、第1の電極4は、絶縁基板2の側面に臨む第1の電極端子部4aが形成されている。第1の電極端子部4aは、スルーホールを介して絶縁基板2の裏面に設けられた外部端子12と接続されている。
 また、第3の電極6は、絶縁基板2あるいは絶縁層11に設けられた発熱体引出電極13を介して発熱抵抗体3と接続されている。また、発熱抵抗体3は、発熱体引出電極13を介して、絶縁基板2の側縁に臨む抵抗体端子部3aが形成されている。抵抗体端子部3aは、スルーホールを介して、絶縁基板2の裏面に設けられた外部端子12と接続されている。
 第2の電極5の第1の電極4と隣接する一方側と反対の他方側には、第4の電極7が形成されている。第2の電極5と第4の電極7とは、後述する第2の可溶導体9が接続されている。また、第2の電極5は、絶縁基板2の側面に臨む第2の電極端子部5aが形成されている。第2の電極端子部5aは、スルーホールを介して絶縁基板2の裏面に設けられた外部端子12と接続されている。
 なお、第1~第4の電極4,5,6,7は、CuやAg等の一般的な電極材料を用いて形成することができるが、少なくとも第1、第2の電極4,5の表面上には、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の被膜が、公知のメッキ処理により形成されていることが好ましい。これにより、第1、第2の電極4,5の酸化を防止し、溶融導体を確実に保持させることができる。また、短絡素子1をリフロー実装する場合に、第1、第2の可溶導体8,9を接続するハンダあるいは第1、第2の可溶導体8,9の外層を形成する低融点金属が溶融することにより第1、第2の電極4,5を溶食(ハンダ食われ)して切断するのを防ぐことができる。
 [可溶導体]
 第1、第2の可溶導体8,9は、発熱抵抗体3の発熱により速やかに溶断される低融点金属からなり、例えばSnを主成分とするPbフリーハンダを好適に用いることができる。
 また、第1、第2の可溶導体8,9は、低融点金属と高融点金属とを含有してもよい。低融点金属としては、Pbフリーハンダなどのハンダを用いることが好ましく、高融点金属としては、Ag、Cu又はこれらを主成分とする合金などを用いることが好ましい。高融点金属と低融点金属とを含有することによって、短絡素子1をリフロー実装する場合に、リフロー温度が低融点金属層の溶融温度を超えて、低融点金属が溶融しても、第1、第2の可溶導体8,9として溶断するに至らない。かかる第1、第2の可溶導体8,9は、高融点金属に低融点金属をメッキ技術を用いて成膜することによって形成してもよく、他の周知の積層技術、膜形成技術を用いることによって形成してもよい。なお、第1、第2の可溶導体8,9は、外層を構成する低融点金属を用いて、第1及び第3の電極4,6、又は第2及び第4の電極5,7へ、ハンダ接続することができる。
 第1、第2の可溶導体8,9は、内層を低融点金属とし、外層を高融点金属としてもよい。内層の低融点金属層の全表面を外層の高融点金属層で被覆した可溶導体を用いることにより、リフロー温度よりも融点の低い低融点金属を用いた場合でも、リフロー実装時に、内層の低融点金属の外部への流出を抑制することができる。また、溶断時も、内層の低融点金属が溶融することにより、外層の高融点金属を溶食(ハンダ食われ)し、速やかに溶断することができる。
 また、第1、第2の可溶導体8,9は、内層を高融点金属とし、外層を低融点金属とする被覆構造としてもよい。内層の高融点金属層の全表面を外層の低融点金属層で被覆した可溶導体を用いることにより、外層の低融点金属層を介して電極上に接続することができ、また、溶断時も、低融点金属層が速やかに溶融して高融点金属を溶食するため、速やかに溶断することができる。
 また、第1、第2の可溶導体8,9は、低融点金属層と、高融点金属層とが積層された積層構造としてもよい。また、低融点金属層と、高融点金属層とが交互に積層された4層以上の多層構造としてもよい。また、第1、第2の可溶導体8,9は、低融点金属層の表面に高融点金属層が面方向にストライプ状に積層してもよい。これらの構造によっても、低融点金属による高融点金属の溶食/溶断を短時間で行うことができる。
 また、第1、第2の可溶導体8,9は、多数の開口部を有する高融点金属と、上記開口部に挿入された低融点金属とから構成してもよい。これにより、溶融する低融点金属層に接する高融点金属層の面積が増大するので、より短時間で低融点金属層が高融点金属層を溶食することができるようになる。したがって、より速やか、かつ確実に可溶導体を溶断させることが可能となる。
 また、第1、第2の可溶導体8,9は、高融点金属の体積よりも低融点金属の体積を多くすることが好ましい。これにより、第1、第2の可溶導体8,9は、効果的に高融点金属層の溶食による短時間での溶断を行うことができる。
 なお、第1、第2の可溶導体8,9の酸化防止、及び第1、第2の可溶導体8,9の溶融時における濡れ性を向上させるために、第1、第2の可溶導体8,9の上にはフラックス15が塗布されている。
 短絡素子1は、絶縁基板2がカバー部材10に覆われることによりその内部が保護されている。カバー部材10は、短絡素子1の側面を構成する側壁16と、短絡素子1の上面を構成する天面部17とを有し、側壁16が絶縁基板2上に接続されることにより、短絡素子1の内部を閉塞する蓋体となる。このカバー部材10は、上記絶縁基板2と同様に、たとえば、熱可塑性プラスチック,セラミックス,ガラスエポキシ基板等の絶縁性を有する部材を用いて形成されている。
 また、カバー部材10は、天面部17の内面側に、カバー部電極18が形成されても良い。カバー部電極18は、第1、第2の電極4,5と重畳する位置に形成されている。このカバー部電極18は、発熱抵抗体3が発熱し、第1、第2の可溶導体8,9が溶融されると、第1、第2の電極4,5上に凝集した溶融導体が接触して濡れ広がることにより、溶融導体を保持する許容量を増加させることができる。
 [短絡素子回路]
 以上のような短絡素子1は、図2(A)(B)に示すような回路構成を有する。すなわち、短絡素子1は、第1の電極4aと第2の電極5aとが、正常時には絶縁され(図2(A))、発熱抵抗体3の発熱により第1、第2の可溶導体8,9が溶融すると、当該溶融導体を介して短絡するスイッチ20を構成する(図2(B))。そして、第1の電極端子部4aと第2の電極端子部5aは、スイッチ20の両端子を構成する。また、第1の可溶導体8は、第3の電極6及び発熱体引出電極13を介して発熱抵抗体3と接続されている。
 そして、短絡素子1は、後述するように、電子機器等に組み込まれることにより、スイッチ20の両端子4a、5aが、当該電子機器の電流経路と並列に接続され、当該電流経路上の電子部品に異常が発生した場合に、スイッチ20を短絡させ、当該電子部品をバイパスするバイパス電流経路を形成する。
 具体的に、短絡素子1は、並列接続されている電子部品に異常が生じると、抵抗体端子部3a側から電力が供給され、発熱抵抗体3が通電することにより発熱する。この熱により第1、第2の可溶導体8,9が溶融すると、溶融導体は、図3(A)(B)に示すように、第1、第2の電極4,5上に凝集する。第1、第2の電極4,5は隣接して形成されているため、第1、第2の電極4,5上に凝集した溶融導体が結合し、これにより第1、第2の電極4,5が短絡する。すなわち、短絡素子1は、スイッチ20の両端子間が短絡される(図2(B))。
 なお、発熱抵抗体3への通電は、第1の可溶導体8が溶断することにより第1、第3の電極4,6間が遮断されるため、停止される。
 [第2の可溶導体の先溶融]
 ここで、短絡素子1は、第2の可溶導体9が第1の可溶導体8よりも先行して溶融することが好ましい。第1の可溶導体8が第2の可溶導体9よりも先行して溶融すると、第2の可溶導体9が溶融する前に第1、第3の電極4,6間が遮断され、第1,第2の電極4,5上での溶融導体の結合が不充分となるおそれがある。
 このため、短絡素子1は、図1(A)に示すように、発熱抵抗体3は、第2の可溶導体9との重畳面積が、第1の可溶導体8との重畳面積よりも広くなるように、第2の可溶導体9側に形成されている。これにより、発熱抵抗体3は、第2の可溶導体9のほぼ全面に亘って加熱できるが、第1の可溶導体8は加熱面積が少なくなり、図4に示すように、第2の可溶導体9が第1の可溶導体8よりも先行して溶融させることができる。
 また、短絡素子1は、図5に示すように、第2の可溶導体9を、第1の可溶導体8よりも幅狭に形成することにより、第2の可溶導体9を第1の可溶導体よりも先に溶断するようにしてもよい。第2の可溶導体9を幅狭に形成することにより、溶断時間を短くすることができるため、第2の可溶導体9が第1の可溶導体8よりも先行して溶融させることができる。
 [電極面積]
 また、短絡素子1は、第1の電極4の面積を第3の電極6よりも広くし、第2の電極5の面積を第4の電極7よりも広くすることが好ましい。溶融導体の保持量は、電極面積に比例して多くなるため、第1、第2の電極4,5の面積を第3、第4の電極6,7よりも広く形成することにより、より多くの溶融導体を第1、第2の電極4,5上に凝集させることができ、第1、第2の電極4,5間を確実に短絡させることができる(図1(B)、図3(B))。
 [短絡素子の変形例]
 なお、短絡素子1は、必ずしも、発熱抵抗体3を絶縁層11によって被覆する必要はなく、図6に示すように、発熱抵抗体3が絶縁基板2の内部に設置されてもよい。絶縁基板2の材料として熱伝導性に優れたものを用いることにより、発熱抵抗体3をガラス層等の絶縁層11を介した場合と同等に加熱することができる。
 また、短絡素子1は、上述したように発熱抵抗体3を絶縁基板2上の第1~第4の電極4,5,6,7の形成面側に形成する他にも、図7に示すように、発熱抵抗体3が絶縁基板2の第1~第4の電極4,5,6,7の形成面と反対の面に設置されてもよい。発熱抵抗体3を絶縁基板2の裏面に形成することにより、絶縁基板2内に形成するよりも簡易な工程で形成することができる。なお、この場合、発熱抵抗体3上には、絶縁層11が形成されると抵抗体の保護や実装時の絶縁性確保と言う意味で好ましい。
 さらに、短絡素子1は、図8に示すように、発熱抵抗体3が絶縁基板2の第1~第4の電極4,5,6,7の形成面上に設置されてもよい。発熱抵抗体3を絶縁基板2の表面に形成することにより、絶縁基板2内に形成するよりも簡易な工程で形成することができる。なお、この場合も、発熱抵抗体3上には、絶縁層11が形成される事が好ましい。
 [第4の電極、第2の可溶導体の省略]
 また、本発明に係る短絡素子は、図9(A)(B)に示すように、短絡素子1の第4の電極7及び第2の可溶導体9を省いて形成してもよい。この短絡素子1では、第1、第3の電極4,6間に亘って接続された第1の可溶導体8が溶融することにより、当該溶融導体が第2の電極5まで濡れ拡がり、第1、第2の電極4,5を短絡させる。短絡素子1は、第4の電極7及び第2の可溶導体9が省かれている他は、上述した構成と同じであるため、同一の符号を付して詳細を省略する。
 短絡素子1においても、第1、第2の電極4,5は、第3の電極6よりも広い面積を有することが好ましい。これにより、図10に示すように、短絡素子1は、より多くの溶融導体を第1、第2の電極4,5上に凝集させることができ、第2の可溶導体9が無くとも第1、第2の電極4,5間を確実に短絡させることができる。
 また、図9(A)(B)に示す短絡素子おいて、第2の電極5に第2の可溶導体を設けるようにしてもよい。第2の電極5上の第2の可溶導体は、発熱抵抗体3からの加熱により第1の可溶導体8とともに溶融し、第1の可溶導体8を引き寄せる。これにより、第1の電極4と第2の電極5とを短絡させることができる。
 また、第1の電極4又は第2の電極5のいずれか一方に接続される保護抵抗を備える構成としてもよい。ここで、保護抵抗は、短絡素子に接続する電子部品の内部抵抗相当の抵抗値とする。
 また、本発明が適用された短絡素子は、絶縁基板2の裏面に第1、第2の電極とスルーホールを介して連続する外部端子12を設ける以外にも、図11(A)(B)に示す短絡素子25のように、絶縁基板2の第1、第2の電極4,5が形成された表面に、第1の電極4と連続する第1の外部接続電極21、第1の外部接続電極21上に設けられた1個もしくは複数個からなる第1の外部接続端子22、第2の電極5と連続する第2の外部接続電極23、第2の外部接続電極23上に設けられた1個もしくは複数個からなる第2の外部接続端子24を形成するようにしてもよい。
 第1、第2の外部接続電極21,23は、短絡素子25と短絡素子25が組み込まれる電子機器の回路とを接続する電極であり、第1の外部接続電極21は第1の電極4と連続され、第2の外部接続電極23は第2の電極5と連続されている。
 第1、第2の外部接続電極21,23は、CuやAg等の一般的な電極材料を用いて形成され、絶縁基板2の第1、第2の電極4,5の形成面と同一面に形成されている。すなわち、図11に示す短絡素子25は、可溶導体13が設けられる表面が実装面となる。なお、第1、第2の外部接続電極21,23は、第1、第2の電極4,5と同時に形成することができる。
 第1の外部接続電極21上には、第1の外部接続端子22が設けられている。同様に、第2の外部接続電極23上には、第2の外部接続端子24が設けられている。これら第1、第2の外部接続端子22,24は、電子機器へ実装するための接続端子であり、例えば金属バンプや、金属ポストを用いて形成されている。また、第1、第2の外部接続端子22,24は、図11(A)に示すように、絶縁基板2上に設けられたカバー部材10よりも突出する高さを有し、短絡素子25の実装対象物となる基板側に実装可能とされている。
 なお、短絡素子25の発熱抵抗体3は、発熱体引出電極13、及び抵抗体端子部3aを介して、抵抗体接続端子3bが形成されている。抵抗体接続端子3bは、第1、第2の外部接続端子22,24と同様に、金属バンプや金属ポストを用いて形成され、絶縁層11を介して上方に突出されている。
 このように、短絡素子25は、上記短絡素子1のように絶縁基板2の裏面に外部端子12を設けて第1、第2の電極4,5と当該外部端子12とをスルーホールによって接続するものではなく、第1、第2の電極4,5と同一表面に、外部接続電極21,23を介して外部接続端子22,24を形成している。そして、図11(B)に示すように、短絡素子25は、第1の電極4と第2の電極5とが短絡したときの、第1、第2の外部接続電極21,23間の導通抵抗よりも、第1の外部接続端子22と第2の外部接続端子24との合成抵抗が低く構成されている。
 これにより、短絡素子25は、第1、第2の電極4,5が短絡しバイパス電流経路を構成した際における定格を向上させ、大電流に対応することができる。すなわち、HEVやEV等の動力源として使用されるリチウムイオン二次電池等の大電流用途においては、短絡素子の定格のさらなる向上が求められている。そして、可溶導体によって短絡された第1、第2の外部接続電極21,23間の導通抵抗は定格向上に応えることができる程度に十分下げることができる(例えば0.4mΩ未満)。
 しかし、絶縁基板2の裏面に外部端子12を設け、第1、第2の電極4,5と当該外部端子12とをスルーホールによって接続する短絡素子1においては、第1、第2の電極4,5と外部端子12との間の導通抵抗が高く(例えば0.5~1.0mΩ)、スルーホール内に導体を充填したとしても、短絡素子全体の導通抵抗を下げるには限界がある。
 また、高抵抗の第1、第2の電極4,5と外部端子12との間に大電流を流すことによる発熱で、バイパス電流経路の破壊や、他の周辺機器への熱影響も懸念される。
 この点、短絡素子25は、第1、第2の電極4,5と同一表面に外部接続端子22,24を設けている。この外部接続端子22,24は、外部接続電極21,23上に設けるものであり、形状やサイズ等の自由度が高く、導通抵抗の低い端子を容易に設けることができる。これにより、短絡素子25は、第1の電極4と第2の電極5とが短絡したときの、第1、第2の外部接続電極21,23間の導通抵抗よりも、第1の外部接続端子22と第2の外部接続端子24との合成抵抗が低く構成されている。
 したがって、短絡素子25によれば、短絡素子1の構成おいては高くなる第1、第2の外部接続電極21,23から先の導通抵抗を容易に下げることができ、定格の飛躍的な向上を図ることができる。
 第1、第2の外部接続端子22,24としては、例えば、Snを主成分とするPbフリーハンダからなる金属バンプや金属ポストを用いて構成することができる。金属バンプや金属ポストの形状は問わない。第1、第2の外部接続端子22,24の抵抗値は材料や形状、サイズから求めることができる。一例として、Cuコアの表面にハンダをコーティングした直方体の金属ポスト(Cuコア:0.6mm×0.6mm、断面積0.36mm2、高さ1mm、比抵抗17.2μmΩ・mm)を用いた場合、その1端子のCuコア部抵抗値は約0.048mΩであり、ハンダコーティング分を考慮すると第1、第2の外部接続端子22,24を直列接続させた抵抗値が0.096mΩ未満と低く、短絡素子25全体の定格を向上できることがわかる。
 なお、短絡素子25は、短絡時における第1、第2の外部接続端子22,24間に亘る抵抗値より素子全体の全抵抗値を求め、この全抵抗値と既知である第1、第2の外部接続端子22,24の合成抵抗との差より、短絡時における第1、第2の外部接続電極21,23間の導通抵抗を求めることができる。また、短絡素子25は、短絡時における第1、第2の外部接続電極21,23間の抵抗を測定し、短絡時における素子全体の全抵抗値との差より、第1、第2の外部接続端子22,24の合成抵抗を求めることができる。
 また、図12に示すように、短絡素子25は、第1、第2の外部接続電極21,23を矩形状に形成する等により広く設け、第1、第2の外部接続端子22,24を複数設けることにより導通抵抗を下げるようにしてもよい。その他にも、短絡素子25は、広く設けた第1、第2の外部接続電極21,23に大径の第1、第2の外部接続端子22,24を設けることにより導通抵抗を下げるようにしてもよい。
 また、第1、第2の外部接続端子22,24は、コアとなる高融点金属22a,24aの表面に低融点金属層22b,24bを設けることにより形成してもよい。低融点金属層22b,24bを構成する金属としては、Snを主成分とするPbフリーハンダなどのハンダを好適に用いることができ、高融点金属22a,24aとしては、CuやAgを主成分とする合金などを好適に用いることができる。
 高融点金属22a,24aの表面に低融点金属層22b,24bを設けることにより、短絡素子25をリフロー実装する場合に、リフロー温度が低融点金属層22b,24bの溶融温度を超えて、低融点金属が溶融しても、第1、第2の外部接続端子22,24として溶融することを防止することができる。また、第1、第2の外部接続端子22,24は、外層を構成する低融点金属を用いて、第1、第2の外部接続電極21,23へ接続することができる。
 第1、第2の外部接続端子22,24は、高融点金属22a,24aに低融点金属をメッキ技術を用いて成膜することにより形成することができ、またその他の周知の積層技術、膜形成技術を用いることによっても形成することができる。
 なお、第1、第2の外部接続端子22,24は、金属バンプや金属ポストを用いて形成する他にも、導電メッキ層や、導電ペーストを塗布することにより形成された導電層により形成してもよい。
 また、第1、第2の外部接続端子22,24は、短絡素子25が実装される基板等の実装対象物側に予め設け、短絡素子が実装された実装体において、第1、第2の外部接続電極21,23と接続されるようにしてもよい。
 [LED補償回路]
 次いで、短絡素子1を組み込んだ電子機器の回路構成について説明する。図13は、電子機器の例としてLED照明装置30の回路構成を示す図である。図13(A)に示すように、LED照明装置30は、電流経路上に複数の発光ダイオード31が直列に接続されている。また、LED照明装置30は、各発光ダイオード31と、短絡素子1のスイッチ20の両端子4a、5aとが保護抵抗34を介して並列に接続されるとともに、短絡素子1の抵抗体端子部3aが電流経路上に接続され、これによりLEDユニット32を構成する。LED照明装置30は、複数のLEDユニット32が直列に接続されて構成されている。
 保護抵抗34は、発光ダイオード31の内部抵抗相当の抵抗値を有する。また、発熱抵抗体3の抵抗値は、発光ダイオード31の内部抵抗よりも大きい。したがって、発光ダイオード31が正常に作動している場合、LED照明装置30は、図13(B)に示すように、電流Eは短絡素子1側へは流れず、発光ダイオード31側に流れる。
 しかし、発光ダイオード31に異常が現れて、電気的に開放されてしまうと、図13(C)に示すように、LED照明装置30は、電流Eが短絡素子1の抵抗体端子部3a側へ流れる。これにより、短絡素子1は、発熱抵抗体3が発熱し、第1、第2の可溶導体8,9が溶融し、この溶融導体が第1、第2の電極4,5上へ凝集する。したがって、短絡素子1は、図13(D)に示すように、スイッチ20の両端子4a、5aが短絡することにより、バイパス電流経路を形成することができる。なお、第1、第2の可溶導体8,9が溶断することにより、発熱抵抗体3への給電は停止される。
 このようなLED照明装置30によれば、一つの発光ダイオード31に異常が起きた場合にも、当該発光ダイオード31を迂回するバイパス電流経路を形成することができ、残りの正常な発光ダイオード31によって照明機能を維持することができる。このとき、LED照明装置30は、保護抵抗34が発光ダイオード31の内部抵抗とほぼ同じ抵抗値を有するため、バイパス電流経路上においても、正常時とほぼ同じ電流値とすることができる。
 [バッテリ補償回路]
 次いで、短絡素子1を組み込んだ他の電子機器の回路構成について説明する。図14は、クルマや電動工具等の各種電子機器に搭載されて用いられるリチウムイオンバッテリーが内蔵されたバッテリパック40の回路構成を示す図である。図14(A)に示すように、バッテリパック40は、電流経路上に複数のバッテリセル41が直列に接続されることで、高電圧、大電流を確保している。また、バッテリパック40は、各バッテリセル41に、当該バッテリセル41の過充電あるいは過放電等の異常時に電流経路を遮断する保護素子42が接続されている。
 [保護素子の構成]
 保護素子42は、図15(A)(B)に示すように、絶縁基板44と、絶縁基板44に積層され、絶縁部材45に覆われた発熱抵抗体46と、絶縁基板44の両端に形成された電極47(A1),47(A2)と、絶縁部材45上に発熱抵抗体46と重畳するように積層された発熱体引出電極48と、両端が電極47(A1),47(A2)にそれぞれ接続され、中央部が発熱体引出電極48に接続された可溶導体49とを備える。
 絶縁基板44は、上述した絶縁基板2と同様の材料を用いて、略方形状に形成されている。発熱抵抗体46は、上述した発熱抵抗体3と同様の材料を用いて、同様の製法で形成される。保護素子42は、発熱抵抗体46を覆うように絶縁部材45が配置され、この絶縁部材45を介して発熱抵抗体46に対向するように発熱体引出電極48が配置される。発熱抵抗体46の熱を効率良く可溶導体49に伝えるために、発熱抵抗体46と絶縁基板44の間に絶縁部材45を積層しても良い。発熱体引出電極48の一端は、発熱体電極50(P1)に接続される。また、発熱抵抗体46の他端は、他方の発熱体電極50(P2)に接続される。可溶導体49は、上述した第1、第2の可溶導体8,9と同じものを用いることができる。
 なお、保護素子42においても、上記短絡素子1と同様に、可溶導体49の酸化防止のために、可溶導体49上のほぼ全面にフラックスを塗布してもよい。また、保護素子42は、内部を保護するためにカバー部材を絶縁基板44上に載置してもよい。
 以上のような保護素子42は、図16に示すような回路構成を有する。すなわち、保護素子42は、発熱体引出電極48を介して直列接続された可溶導体49と、可溶導体49の接続点を介して通電して発熱させることによって可溶導体49を溶融する発熱抵抗体46とからなる回路構成である。保護素子42の2個の電極47のうち、一方は、A1に接続され、他方は、A2に接続される。また、発熱体引出電極48とこれに接続された発熱体電極50は、P1に接続され、他方の発熱体電極50は、P2に接続される。
 [バッテリパックの回路構成]
 そして、保護素子42は、図14(A)に示すように、リチウムイオン二次電池のバッテリパック40内の回路に用いられる。バッテリパック40は、バッテリセル41と、保護素子42と、短絡素子1と、保護素子42の動作を制御する第1の電流制御素子52と、短絡素子1の動作を制御する第2の電流制御素子53と、保護抵抗54とで構成されるバッテリユニット51を複数備え、これら複数のバッテリユニット51が直列に接続されている。
 また、バッテリパック40は、バッテリユニット51と、バッテリユニット51の充放電を制御する充放電制御回路55と、各バッテリユニット51のバッテリセル41の電圧を検出するとともに、保護素子42や短絡素子1の動作を制御する第1、第2の電流制御素子52,53に異常信号を出力する検出回路56とを備える。
 各バッテリユニット51は、保護素子42の電極47(A1)がバッテリセル41と直列に接続され、電極47(A2)がバッテリパック40の充放電電流経路に接続される。また、バッテリユニット51は、短絡素子1の第2の電極端子部5aが保護素子42の開放端と、保護抵抗54を介して接続され、第1の電極端子部4aがバッテリセル41の開放端と接続されることにより、保護素子42及びバッテリセル41と、短絡素子1とが並列に接続されている。また、バッテリユニット51は、保護素子42の発熱体電極50(P2)が第1の電流制御素子52と接続され、短絡素子1の抵抗体端子部3aが第2の電流制御素子53と接続されている。
 検出回路56は、各バッテリセル41と接続され、各バッテリセル41の電圧値を検出して、各電圧値を充放電制御回路55の制御部59に供給する。また、検出回路56は、バッテリセル41が過充電電圧又は過放電電圧になったときに、当該バッテリセル41を有するバッテリユニット51の第1、第2の電流制御素子52,53へ異常信号を出力する。
 第1、第2の電流制御素子52,53は、たとえば電界効果トランジスタ(以下、FETと呼ぶ。)により構成され、検出回路56から出力される検出信号によって、バッテリセル41の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、保護素子42及び短絡素子1を動作させて、バッテリユニット51の充放電電流経路を第3、第4の電流制御素子57,58のスイッチ動作によらず遮断するとともに、短絡素子1のスイッチ20を短絡させ、当該バッテリユニット51をバイパスするバイパス電流経路を形成するように制御する。
 また、バッテリパック40は、正極端子40a、図示しない負極端子を介して、着脱可能に充電装置に接続され、各バッテリセル41に充電装置からの充電電圧が印加される。充電装置により充電されたバッテリパック40は、正極端子40a、負極端子をバッテリで動作する電子機器に接続することによって、この電子機器を動作させることができる。
 充放電制御回路55は、バッテリユニット51から充電装置に流れる電流経路に直列接続された第3、第4の電流制御素子57,58と、これらの電流制御素子57,58の動作を制御する制御部59とを備える。第3、第4の電流制御素子57,58は、たとえばFETにより構成され、制御部59によりゲート電圧を制御することによって、バッテリユニット51の電流経路の導通と遮断とを制御する。制御部59は、充電装置から電力供給を受けて動作し、検出回路56による検出結果に応じて、バッテリユニット51が過放電又は過充電であるとき、電流経路を遮断するように、電流制御素子57,58の動作を制御する。
 このようなバッテリパック40は、正常時には、短絡素子1のスイッチ20が短絡されていないため、図14(B)に示すように、電流Eは保護素子42及びバッテリセル41側に流れる。
 しかし、バッテリパック40は、バッテリセル41に電圧異常等が検知されると、検出回路56より第1の電流制御素子52に異常信号が出力され、保護素子42の発熱抵抗体46が発熱される。図14(C)に示すように、保護素子42は、発熱抵抗体46によって、可溶導体49を加熱、溶融させることにより、電極47(A1),47(A2)間を遮断する。これにより、異常なバッテリセル41を有する当該バッテリユニット51を、バッテリパック40の充放電電流経路上から遮断することができる。なお、可溶導体49が溶断することにより、発熱抵抗体46への給電は停止される。
 次いで、バッテリパック40は、検出回路56により当該バッテリユニット51の第2の電流制御素子53にも異常信号が出力され、短絡素子1の発熱抵抗体3も発熱する。図14(D)に示すように、短絡素子1は、発熱抵抗体3によって第1、第2の可溶導体8,9を加熱、溶融させることにより、第1、第2の電極4,5上に溶融導体が凝集し、スイッチ20の第1の電極端子部4a及び第2の電極端子部5aが短絡される。これにより、短絡素子1は、当該バッテリユニット51をバイパスするバイパス電流経路を形成することができる。なお、第1、第2の可溶導体8,9が溶断することにより、発熱抵抗体3への給電は停止される。
 なお、保護抵抗54は、バッテリセル41の内部抵抗とほぼ同じ抵抗値を有することにより、バイパス電流経路上においても、正常時と同じ容量とすることができる。
 このようなバッテリパック40によれば、一つのバッテリユニット51に異常が起きた場合にも、当該バッテリユニット51を迂回するバイパス電流経路を形成することができ、残りの正常なバッテリユニット51によって充放電機能を維持することができる。
 なお、本発明の保護素子は、リチウムイオン二次電池のバッテリパックに用いる場合に限らず、電気信号による電流経路の遮断及びバイパスを必要とする様々な用途にももちろん応用可能である。また、第1、第2の電流制御素子52,53や第3、第4の電流制御素子57,58の作動条件は、バッテリセル41の電圧異常の場合に限らず、例えば周囲の温度の異常な上昇や、水没等、あらゆるアクシデントを検知することによって作動させることができる。
 [短絡素子(保護抵抗内蔵)]
 また、短絡素子は、予め保護抵抗を内蔵させて形成してもよい。なお、以下の説明において、上述した短絡素子1や保護素子42、LED照明装置30やバッテリパック40と同じ構成については、同一の符号を付してその詳細を省略する。
 図17は、絶縁基板2上に保護抵抗61が形成された短絡素子60の平面図である。短絡素子60は、上述した短絡素子1の構成に加え、第2の電極5と接続された保護抵抗61が形成され、この保護抵抗61を介して第2の電極端子部5aが形成されている。保護抵抗61は、上述した発熱抵抗体3と同じ材料を用いて、同一のプロセスで同時に形成することができる。
 このように電子機器やバッテリパック40における内部抵抗が決まっているような場合、予め保護抵抗61を内蔵した短絡素子60を用いることにより、実装等の工程を省力化することができる。
 図18は、短絡素子60の回路構成を示す図である。短絡素子60の回路構成は、スイッチ20が短絡することにより、第1の電極端子部4aと第2の電極端子部5aとが、保護抵抗61を介して接続される。すなわち、短絡素子60の回路構成は、ヒューズ8,9と、ヒューズ8,9の一端に接続された発熱抵抗体3と、ヒューズ8,9の発熱抵抗体3が接続されていない他端に接続されたスイッチ20と、スイッチ20の端子の少なくとも一方の端子に接続された保護抵抗61とを備え、スイッチ20が、ヒューズ8,9の溶断に連動して短絡するものである。
 [LED補償回路(保護抵抗内蔵)]
 図19は、短絡素子60を組み込んだLED照明装置62の回路構成を示す図である。LED照明装置62の回路構成は、短絡素子1に代えて短絡素子60を用いた点を除いて、上述したLED照明装置30と同じ構成を有する。すなわち、LED照明装置62の回路構成は、前述の短絡素子60と、発光ダイオード31とを備え、スイッチ20とヒューズ8,9が接続された端子4a及び保護抵抗61の開放端子5aと、発光ダイオード31とを、並列に接続し、発熱抵抗体3は、保護抵抗61と接続し、発光ダイオード31の異常時には、ヒューズ8,9が溶融することによりスイッチ20がオンとなり、バイパス電流経路が形成されるものである。LED照明装置62の回路構成において、短絡素子60の保護抵抗61は、各LEDユニット32の発光ダイオード31の内部抵抗とほぼ同じ抵抗値を有する。
 このようなLED照明装置62によれば、一つの発光ダイオード31に異常が起きた場合にも、当該発光ダイオード31を迂回するバイパス電流経路を形成することができ、残りの正常な発光ダイオード31によって照明機能を維持することができる。このとき、LED照明装置62は、保護抵抗61が発光ダイオード31の内部抵抗とほぼ同じ抵抗値を有するため、バイパス電流経路上においても、正常時とほぼ同じ電流値とすることができる。
 [バッテリ補償回路(保護抵抗内蔵)]
 図20は、短絡素子60を組み込んだバッテリパック65の回路構成を示す図である。バッテリパック65の回路構成は、短絡素子1に代えて短絡素子60を用いた点を除いて、上述したバッテリパック40の回路構成と同じ構成を有する。すなわち、バッテリパック65の回路構成は、前述の短絡素子60と、バッテリセル41と、バッテリセル41の電流経路上に接続され、バッテリセル41の異常時に該バッテリセル41への通電を電気信号で遮断する保護素子42と、バッテリセル41の異常を検知し、異常信号を出力する検出回路56と、検出回路56の異常信号を受けて動作する第1、第2の電流制御素子52,53とを備え、バッテリセル41及び保護素子42の両端と、スイッチ20のヒューズ8.9との接続端子4a及び保護抵抗61の開放端子5aとを並列に接続し、発熱抵抗体3の抵抗体端子部3aと保護素子42の電気信号の入力端子P2を、第1、第2の電流制御素子52,53に接続し、バッテリセル41の異常時には、検出回路56からの異常信号を受けて第1、第2の電流制御素子52,53が動作し、保護素子42によるバッテリセル41の電流経路の遮断と、ヒューズ8,9の溶断に連動したスイッチ20の短絡を行い、バイパス電流経路が形成されるものである。バッテリパック65の回路構成において、各バッテリユニット51に設けられた短絡素子60の保護抵抗61は、当該バッテリユニット51のバッテリセル41の内部抵抗とほぼ同じ抵抗値を有する。
 このようなバッテリパック65によれば、一つのバッテリユニット51に異常が起きた場合にも、当該バッテリユニット51を迂回するバイパス電流経路を形成することができ、残りの正常なバッテリユニット51によって充放電機能を維持することができる。このとき、バッテリパック65は、保護抵抗61が、バッテリセル41の内部抵抗とほぼ同じ抵抗値を有することにより、バイパス電流経路上においても、正常時と同じ電流値とすることができる。
 なお、短絡素子60においても、絶縁基板2の裏面に外部端子12を設けて第1の電極端子部4a及び第2の電極端子部5aと当該外部端子12とをスルーホールによって接続する以外にも、上述した短絡素子25と同様に、絶縁基板2の第1、第2の電極4,5が形成された表面に、第1の電極4と連続する第1の外部接続電極21、第1の外部接続端子22、保護抵抗61を介して第2の電極5と連続する第2の外部接続電極23、及び第2の外部接続端子24を形成するようにしてもよい。
 [第2の実施の形態]
 [短絡素子]
 次いで、本発明の第2の実施の形態について説明する。図21(A)に短絡素子101の平面図、及び図21(B)に短絡素子101の断面図を示す。短絡素子101は、絶縁基板102と、絶縁基板102に設けられた第1の発熱抵抗体121及び第2の発熱抵抗体122と、絶縁基板102に、互いに隣接して設けられた第1の電極104及び第2の電極105と、第1の電極104と隣接して設けられるとともに、第1の発熱抵抗体121に電気的に接続された第3の電極106と、第2の電極105と隣接して設けられるとともに、第2の発熱抵抗体122に電気的に接続された第4の電極107と、第1、第3の電極104,106間に亘って設けられることにより電流経路構成し、第1の発熱抵抗体121からの加熱により、第1、第3の電極104,106間の電流経路を溶断する第1の可溶導体108と、第2、第4の電極105,107間に亘って設けられ、第2の発熱抵抗体122からの加熱により、第2、第4の電極105,107間の電流経路を溶断する第2の可溶導体109とを備える。そして、短絡素子101は、絶縁基板102上に内部を保護するカバー部材110が取り付けられている。
 絶縁基板102は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材を用いて略方形状に形成されている。絶縁基板102は、その他にも、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。なお、絶縁基板102は、裏面に外部端子112が形成されている。
 第1、第2の発熱抵抗体121,122は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板102上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成する。
 また、第1、第2の発熱抵抗体121,122は、絶縁基板102上において絶縁層111に被覆されている。第1の発熱抵抗体121を被覆する絶縁層111上には、第1、第3の電極104,106が形成され、第2の発熱抵抗体122を被覆する絶縁層111上には、第2、第4の電極105,107が形成されている。第1の電極104は、一方側において第2の電極105と隣接して形成されるとともに、絶縁されている。第1の電極104の他方側には第3の電極106が形成されている。第1の電極104と第3の電極106とは、第1の可溶導体108が接続されることにより導通され、短絡素子101の電流経路を構成する。また、第1の電極104は、絶縁基板102の側面に臨む第1の電極端子部104aに接続されている。第1の電極端子部104aは、スルーホールを介して絶縁基板102の裏面に設けられた外部端子112と接続されている。
 また、第3の電極106は、絶縁基板102あるいは絶縁層111に設けられた第1の発熱体引出電極123を介して第1の発熱抵抗体121と接続されている。また、第1の発熱抵抗体121は、第1の発熱体引出電極123を介して、絶縁基板102の側縁に臨む第1の抵抗体端子部121aに接続されている。第1の抵抗体端子部121aは、スルーホールを介して、絶縁基板102の裏面に設けられた外部端子112と接続されている。
 第2の電極105の第1の電極104と隣接する一方側と反対の他方側には、第4の電極107が形成されている。第2の電極105と第4の電極107とは、第2の可溶導体109が接続されている。また、第2の電極105は、絶縁基板102の側面に臨む第2の電極端子部105aに接続されている。第2の電極端子部105aは、スルーホールを介して絶縁基板102の裏面に設けられた外部端子112と接続されている。
 また、第4の電極107は、絶縁基板102あるいは絶縁層111に設けられた第2の発熱体引出電極124を介して第2の発熱抵抗体122と接続されている。また、第2の発熱抵抗体122は、第2の発熱体引出電極124を介して、絶縁基板102の側縁に臨む第2の抵抗体端子部122aに接続されている。第2の抵抗体端子部122aは、スルーホールを介して、絶縁基板102の裏面に設けられた外部端子112と接続されている。
 なお、第1~第4の電極104,105,106,107は、CuやAg等の一般的な電極材料を用いて形成することができるが、少なくとも第1、第2の電極104,105の表面上には、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の被膜が、公知のメッキ処理により形成されていることが好ましい。これにより、第1、第2の電極104,105の酸化を防止し、溶融導体を確実に保持させることができる。また、短絡素子101をリフロー実装する場合に、第1、第2の可溶導体108,109を接続するハンダあるいは第1、第2の可溶導体108,109の外層を形成する低融点金属が溶融することにより第1、第2の電極104,105を溶食(ハンダ食われ)して切断するのを防ぐことができる。
 [可溶導体]
 第1、第2の可溶導体108,109は、第1、第2の発熱抵抗体121,122の発熱により速やかに溶断される低融点金属からなり、例えばSnを主成分とするPbフリーハンダを好適に用いることができる。
 また、第1、第2の可溶導体108,109は、低融点金属と高融点金属とを含有してもよい。低融点金属としては、Pbフリーハンダなどのハンダを用いることが好ましく、高融点金属としては、Ag、Cu又はこれらを主成分とする合金などを用いることが好ましい。高融点金属と低融点金属とを含有することによって、短絡素子101をリフロー実装する場合に、リフロー温度が低融点金属層の溶融温度を超えて、低融点金属が溶融しても、第1、第2の可溶導体108,109として溶断するに至らない。かかる第1、第2の可溶導体108,109は、高融点金属に低融点金属をメッキ技術を用いて成膜することによって形成してもよく、他の周知の積層技術、膜形成技術を用いることによって形成してもよい。なお、第1、第2の可溶導体108,109は、外層を構成する低融点金属を用いて、第1及び第3の電極104,106、又は第2及び第4の電極105,107へ、ハンダ接続することができる。
 第1、第2の可溶導体108,109は、内層を低融点金属とし、外層を高融点金属としてもよい。内層の低融点金属層の全表面を外層の高融点金属層で被覆した可溶導体を用いることにより、リフロー温度よりも融点の低い低融点金属を用いた場合でも、リフロー実装時に、内層の低融点金属の外部への流出を抑制することができる。また、溶断時も、内層の低融点金属が溶融することにより、外層の高融点金属を溶食(ハンダ食われ)し、速やかに溶断することができる。
 また、第1、第2の可溶導体108,109は、内層を高融点金属とし、外層を低融点金属とする被覆構造としてもよい。内層の高融点金属層の全表面を外層の低融点金属層で被覆した可溶導体を用いることにより、外層の低融点金属層を介して電極上に接続することができ、また、溶断時も、低融点金属層が速やかに溶融して高融点金属を溶食するため、速やかに溶断することができる。
 また、第1、第2の可溶導体108,109は、低融点金属層と、高融点金属層とが積層された積層構造としてもよい。また、低融点金属層と、高融点金属層とが交互に積層された4層以上の多層構造としてもよい。また、第1、第2の可溶導体108,109は、低融点金属層の表面に高融点金属層が面方向にストライプ状に積層してもよい。これらの構造によっても、低融点金属による高融点金属の溶食/溶断を短時間で行うことができる。
 また、第1、第2の可溶導体108,109は、多数の開口部を有する高融点金属と、上記開口部に挿入された低融点金属とから構成してもよい。これにより、溶融する低融点金属層に接する高融点金属層の面積が増大するので、より短時間で低融点金属層が高融点金属層を溶食することができるようになる。したがって、より速やか、かつ確実に可溶導体を溶断させることが可能となる。
 また、第1、第2の可溶導体108,109は、高融点金属の体積よりも低融点金属の体積を多くすることが好ましい。これにより、第1、第2の可溶導体108,109は、効果的に高融点金属層の溶食による短時間での溶断を行うことができる。
 なお、第1、第2の可溶導体108,109の酸化防止、及び第1、第2の可溶導体108,109の溶融時における濡れ性を向上させるために、第1、第2の可溶導体108,109の上にはフラックス115が塗布されている。
 短絡素子101は、絶縁基板102がカバー部材110に覆われることによりその内部が保護されている。カバー部材110は、短絡素子101の側面を構成する側壁116と、短絡素子101の上面を構成する天面部117とを有し、側壁116が絶縁基板102上に接続されることにより、短絡素子101の内部を閉塞する蓋体となる。このカバー部材110は、上記絶縁基板102と同様に、たとえば、熱可塑性プラスチック,セラミックス,ガラスエポキシ基板等の絶縁性を有する部材を用いて形成されている。
 また、カバー部材110は、天面部117の内面側に、カバー部電極118が形成されても良い。カバー部電極118は、第1、第2の電極104,105と重畳する位置に形成されている。このカバー部電極118は、第1、第2の発熱抵抗体121,122が発熱し、第1、第2の可溶導体108,109が溶融されると、第1、第2の電極104,105上に凝集した溶融導体が接触して濡れ広がることにより、溶融導体を保持する許容量を増加させることができる。
 [短絡素子回路]
 以上のような短絡素子101は、図22(A)(B)に示すような回路構成を有する。すなわち、短絡素子101は、第1の電極104と第2の電極105とが、正常時には絶縁され、第1、第2の発熱抵抗体121,122の発熱により第1、第2の可溶導体108,109が溶融すると、当該溶融導体を介して短絡するスイッチ120を構成する(図22(B))。そして、第1の電極端子部104aと第2の電極端子部105aは、スイッチ120の両端子を構成する。また、第1の可溶導体108は、第3の電極106及び第1の発熱体引出電極123を介して第1の発熱抵抗体121と接続されている。同様に、第2の可溶導体109は、第4の電極107及び第2の発熱体引出電極124を介して第2の発熱抵抗体122と接続されている。
 そして、短絡素子101は、後述するように、電子機器等に組み込まれることにより、スイッチ120の両端子104a、105aが、当該電子機器の電流経路と並列に接続され、当該電流経路上の電子部品に異常が発生した場合に、スイッチ120を短絡させ、当該電子部品をバイパスするバイパス電流経路を形成する。
 具体的に、短絡素子101は、並列接続されている電子部品に異常が生じると、第1、第2の抵抗体端子部121a,122a側から電力が供給され、第1、第2の発熱抵抗体121,122が通電することにより発熱する。この熱により第1、第2の可溶導体108,109が溶融すると、溶融導体は、第1、第2の電極104,105上に凝集する。第1、第2の電極104,105は隣接して形成されているため、第1、第2の電極104,105上に凝集した溶融導体が結合し、これにより第1、第2の電極104,105が短絡する。すなわち、短絡素子101は、スイッチ120の両端子間が短絡される(図22(B))。
 なお、第1の発熱抵抗体121への通電は、第1の可溶導体108が溶断することにより第1、第3の電極104,106間が遮断されるため、停止され、第2の発熱抵抗体122への通電は、第2の可溶導体109が溶断することにより、第2、第4の電極105,107間が遮断されるため、停止される。
 [第2の可溶導体の先溶融]
 ここで、短絡素子101は、第2の可溶導体109が第1の可溶導体108よりも先行して溶融することが好ましい。短絡素子101は、第1の発熱抵抗体121と第2の発熱抵抗体122とが、別々に発熱されることから、通電のタイミングとして第2の発熱抵抗体122を先に発熱させ、その後に第1の発熱抵抗体121を発熱させることで、図24に示すように、容易に第2の可溶導体109を第1の可溶導体108よりも先行して溶融させ、図23(A)、(B)に示すように、確実に第1、第2の電極104,105上に、第1、第2の可溶導体108,109の溶融導体を凝集、結合させ、第1、第2の電極104,105を短絡させることができる。
 また、短絡素子101は、第2の可溶導体109を、第1の可溶導体108よりも幅狭に形成することにより、第2の可溶導体109を第1の可溶導体108よりも先に溶断するようにしてもよい。第2の可溶導体109を幅狭に形成することにより、溶断時間を短くすることができるため、第2の可溶導体109が第1の可溶導体108よりも先行して溶融させることができる。
 [電極面積]
 また、短絡素子101は、第1の電極104の面積を第3の電極106よりも広くし、第2の電極105の面積を第4の電極107よりも広くすることが好ましい。溶融導体の保持量は、電極面積に比例して多くなるため、第1、第2の電極104,105の面積を第3、第4の電極106,107よりも広く形成することにより、より多くの溶融導体を第1、第2の電極104,105上に凝集させることができ、第1、第2の電極104,105間を確実に短絡させることができる。
 [短絡素子の変形例]
 なお、短絡素子101は、必ずしも、第1、第2の発熱抵抗体121,122を絶縁層111によって被覆する必要はなく、図25に示すように、第1、第2の発熱抵抗体121,122が絶縁基板102の内部に設置されてもよい。絶縁基板102の材料として熱伝導性に優れたものを用いることにより、第1、第2の発熱抵抗体121,122は、ガラス層等の絶縁層111を介した場合と同等に加熱することができる。
 また、短絡素子101は、図26に示すように、第1、第2の発熱抵抗体121,122が絶縁基板102の第1~第4の電極104,105,106,107の形成面と反対の裏面に設置されてもよい。第1、第2の発熱抵抗体121,122を絶縁基板102の裏面に形成することにより、絶縁基板102内に形成するよりも簡易な工程で形成することができる。なお、この場合、第1、第2の発熱抵抗体121,122上には、絶縁層111が形成されると抵抗体の保護や実装時の絶縁性確保と言う意味で好ましい。
 さらに、短絡素子101は、図27に示すように、第1、第2の発熱抵抗体121,122が絶縁基板2の第1~第4の電極104,105,106,107の形成面上に設置されてもよい。第1、第2の発熱抵抗体121,122を絶縁基板102の表面に形成することにより、絶縁基板102内に形成するよりも簡易な工程で形成することができる。なお、この場合も、第1、第2の発熱抵抗体121,122上には、絶縁層111が形成される事が好ましい。
 また、第1の電極104又は第2の電極105のいずれか一方に接続される保護抵抗を備える構成としてもよい。ここで、保護抵抗は、短絡素子に接続する電子部品の内部抵抗相当の抵抗値とし、発熱抵抗体121,122の抵抗値よりも小さくする。すなわち、電子部品が正常に作動している場合、電流は短絡素子側へは流れず電子部品側に流れる。
 また、本発明が適用された短絡素子101は、絶縁基板102の裏面に第1、第2の電極104,105とスルーホールを介して連続する外部端子112を設ける以外にも、図28(A)(B)に示す短絡素子130のように、絶縁基板102の第1、第2の電極104,105が形成された表面に、第1の電極104と連続する第1の外部接続電極131、第1の外部接続電極131上に設けられた1個もしくは複数個からなる第1の外部接続端子132、第2の電極105と連続する第2の外部接続電極133、第2の外部接続電極133上に設けられた1個もしくは複数個からなる第2の外部接続端子134を形成するようにしてもよい。
 第1、第2の外部接続電極131,133は、短絡素子130と短絡素子130が組み込まれる電子機器の回路とを接続する電極であり、第1の外部接続電極131は第1の電極104と連続され、第2の外部接続電極133は第2の電極105と連続されている。
 第1、第2の外部接続電極131,133は、CuやAg等の一般的な電極材料を用いて形成され、絶縁基板102の第1、第2の電極104,105の形成面と同一面に形成されている。すなわち、図28に示す短絡素子130は、第1、第2の可溶導体108,109が設けられる表面が実装面となる。なお、第1、第2の外部接続電極131,133は、第1、第2の電極104,105と同時に形成することができる。
 第1の外部接続電極131上には、第1の外部接続端子132が設けられている。同様に、第2の外部接続電極133上には、第2の外部接続端子134が設けられている。これら第1、第2の外部接続端子132,134は、電子機器へ実装するための接続端子であり、例えば金属バンプや、金属ポストを用いて形成されている。また、第1、第2の外部接続端子132,134は、図28(A)に示すように、絶縁基板102上に設けられたカバー部材110よりも突出する高さを有し、短絡素子130の実装対象物となる基板側に実装可能とされている。
 なお、短絡素子130の第1の発熱抵抗体121は、第1の発熱体引出電極123、及び第1の抵抗体端子部121aを介して、第1の抵抗体接続端子121bが形成されている。また、短絡素子130の第2の発熱抵抗体122は、第2の発熱体引出電極124、及び第2の抵抗体端子部122aを介して、第2の抵抗体接続端子122bが形成されている。第1、第2の抵抗体接続端子121b,122bは、第1、第2の外部接続端子132,134と同様に、金属バンプや金属ポストを用いて形成され、絶縁層111を介して上方に突出されている。
 このように、短絡素子130は、上記短絡素子101のように絶縁基板102の裏面に外部端子112を設けて第1、第2の電極104,105と当該外部端子112とをスルーホールによって接続するものではなく、第1、第2の電極104,105と同一表面に、外部接続電極131,133を介して外部接続端子132,134を形成している。そして、図28(B)に示すように、短絡素子130は、第1の電極104と第2の電極105とが短絡したときの、第1、第2の外部接続電極131,133間の導通抵抗よりも、第1の外部接続端子132と第2の外部接続端子134との合成抵抗が低く構成されている。
 これにより、短絡素子130は、第1、第2の電極104,105が短絡しバイパス電流経路を構成した際における定格を向上させ、大電流に対応することができる。すなわち、HEVやEV等の動力源として使用されるリチウムイオン二次電池等の大電流用途においては、短絡素子の定格のさらなる向上が求められている。そして、可溶導体によって短絡された第1、第2の外部接続電極131,133間の導通抵抗は定格向上に応えることができる程度に十分下げることができる(例えば0.4mΩ未満)。
 しかし、絶縁基板102の裏面に外部端子112を設け、第1、第2の電極104,105と当該外部端子112とをスルーホールによって接続する短絡素子101においては、第1、第2の電極104,105と外部端子112との間の導通抵抗が高く(例えば0.5~1.0mΩ)、スルーホール内に導体を充填したとしても、短絡素子全体の導通抵抗を下げるには限界がある。
 また、高抵抗の第1、第2の電極104,105と外部端子112との間に大電流を流すことによる発熱で、バイパス電流経路の破壊や、他の周辺機器への熱影響も懸念される。
 この点、短絡素子130は、第1、第2の電極104,105と同一表面に外部接続端子132,134を設けている。この外部接続端子132,134は、外部接続電極131,133上に設けるものであり、形状やサイズ等の自由度が高く、導通抵抗の低い端子を容易に設けることができる。これにより、短絡素子130は、第1の電極104と第2の電極105とが短絡したときの、第1、第2の外部接続電極131,133間の導通抵抗よりも、第1の外部接続端子132と第2の外部接続端子134との合成抵抗が低く構成されている。
 したがって、短絡素子130によれば、短絡素子101の構成おいては高くなる第1、第2の外部接続電極131,133から先の導通抵抗を容易に下げることができ、定格の飛躍的な向上を図ることができる。
 第1、第2の外部接続端子132,134としては、例えば、Snを主成分とするPbフリーハンダからなる金属バンプや金属ポストを用いて構成することができる。金属バンプや金属ポストの形状は問わない。第1、第2の外部接続端子132,134の抵抗値は材料や形状、サイズから求めることができる。一例として、Cuコアの表面にハンダをコーティングした直方体の金属ポスト(Cuコア:0.6mm×0.6mm、断面積0.36mm2、高さ1mm、比抵抗17.2μΩ・mm)を用いた場合、その1端子のCuコア部抵抗値は約0.048mΩであり、ハンダコーティング分を考慮すると第1、第2の外部接続端子132,134を直列接続させた抵抗値が0.096mΩ未満と低く、短絡素子130全体の定格を向上できることがわかる。
 なお、短絡素子130は、短絡時における第1、第2の外部接続端子132,134間に亘る抵抗値より素子全体の全抵抗値を求め、この全抵抗値と既知である第1、第2の外部接続端子132,134の合成抵抗との差より、短絡時における第1、第2の外部接続電極131,133間の導通抵抗を求めることができる。また、短絡素子130は、短絡時における第1、第2の外部接続電極131,133間の抵抗を測定し、短絡時における素子全体の全抵抗値との差より、第1、第2の外部接続端子132,134の合成抵抗を求めることができる。
 また、図29に示すように、短絡素子130は、第1、第2の外部接続電極131,133を矩形状に形成する等により広く設け、第1、第2の外部接続端子132,134を複数設けることにより導通抵抗を下げるようにしてもよい。その他にも、短絡素子130は、広く設けた第1、第2の外部接続電極131,133に大径の第1、第2の外部接続端子132,134を設けることにより導通抵抗を下げるようにしてもよい。
 また、第1、第2の外部接続端子132,134は、コアとなる高融点金属132a,134aの表面に低融点金属層132b,134bを設けることにより形成してもよい。低融点金属層132b,134bを構成する金属としては、Snを主成分とするPbフリーハンダなどのハンダを好適に用いることができ、高融点金属132a,134aとしては、CuやAgを主成分とする合金などを好適に用いることができる。
 高融点金属132a,134aの表面に低融点金属層132b,134bを設けることにより、短絡素子130をリフロー実装する場合に、リフロー温度が低融点金属層132b,134bの溶融温度を超えて、低融点金属が溶融しても、第1、第2の外部接続端子132,134として溶融することを防止することができる。また、第1、第2の外部接続端子132,134は、外層を構成する低融点金属を用いて、第1、第2の外部接続電極131,133へ接続することができる。
 第1、第2の外部接続端子132,134は、高融点金属132a,134aに低融点金属をメッキ技術を用いて成膜することにより形成することができ、またその他の周知の積層技術、膜形成技術を用いることによっても形成することができる。
 なお、第1、第2の外部接続端子132,134は、金属バンプや金属ポストを用いて形成する他にも、導電メッキ層や、導電ペーストを塗布することにより形成された導電層により形成してもよい。
 また、第1、第2の外部接続端子132,134は、短絡素子130が実装される基板等の実装対象物側に予め設け、短絡素子が実装された実装体において、第1、第2の外部接続電極131,133、あるいは第1、第2の電極104,105と接続されるようにしてもよい。
 [バッテリパックの回路構成]
 次いで、短絡素子101を組み込んだ電子機器の回路構成について説明する。図30は、クルマや電動工具等の各種電子機器に搭載されて用いられるリチウムイオンバッテリーが内蔵されたバッテリパック140の回路構成を示す図である。図30(A)に示すように、バッテリパック140は、電流経路上に複数のバッテリセル141が直列に接続されることで、高電圧、大電流を確保している。また、バッテリパック140は、各バッテリセル141に、当該バッテリセル141の過充電あるいは過放電等の異常時に電流経路を遮断する保護素子142が接続されている。
 保護素子142は、図31(A)(B)に示すように、絶縁基板144と、絶縁基板144に積層され、絶縁部材145に覆われた発熱抵抗体146と、絶縁基板144の両端に形成された電極147(A1),147(A2)と、絶縁部材145上に発熱抵抗体146と重畳するように積層された発熱体引出電極148と、両端が電極147(A1),147(A2)にそれぞれ接続され、中央部が発熱体引出電極148に接続された可溶導体149とを備える。
 絶縁基板144は、上述した絶縁基板102と同様の材料を用いて、略方形状に形成されている。発熱抵抗体146は、上述した第1、第2の発熱抵抗体121,122と同様の材料を用いて、同様の製法で形成される。保護素子142は、発熱抵抗体146を覆うように絶縁部材145が配置され、この絶縁部材145を介して発熱抵抗体146に対向するように発熱体引出電極148が配置される。発熱抵抗体146の熱を効率良く可溶導体149に伝えるために、発熱抵抗体146と絶縁基板144の間に絶縁部材145を積層しても良い。発熱体引出電極148の一端は、発熱体電極150(P1)に接続される。また、発熱抵抗体146の他端は、他方の発熱体電極150(P2)に接続される。可溶導体149は、上述した第1、第2の可溶導体108,109と同じものを用いることができる。
 なお、保護素子142においても、上記短絡素子101と同様に、可溶導体149の酸化防止のために、可溶導体149上のほぼ全面にフラックスを塗布してもよい。また、保護素子142は、内部を保護するためにカバー部材を絶縁基板144上に載置してもよい。
 以上のような保護素子142は、図32に示すような回路構成を有する。すなわち、保護素子142は、発熱体引出電極148を介して直列接続された可溶導体149と、可溶導体149の接続点を介して通電して発熱させることによって可溶導体149を溶融する発熱抵抗体146とからなる回路構成である。保護素子142の2個の電極147のうち、一方は、A1に接続され、他方は、A2に接続される。また、発熱体引出電極148とこれに接続された発熱体電極150は、P1に接続され、他方の発熱体電極150は、P2に接続される。
 そして、保護素子142は、図30(A)に示すように、リチウムイオン二次電池のバッテリパック140内の回路に用いられる。バッテリパック140は、直列に接続された複数のバッテリユニット184を有する。各バッテリユニット184は、バッテリセル141と、保護素子142と、短絡素子101と、保護素子142の動作を制御する第1の電流制御素子181と、短絡素子101の動作を制御する第2、第3の電流制御素子182,183と、保護抵抗154とで構成される。
 また、バッテリパック140は、バッテリユニット184と、バッテリユニット184の充放電を制御する充放電制御回路155と、各バッテリユニット184のバッテリセル141の電圧を検出するとともに、保護素子142や短絡素子101の動作を制御する第1~第3の電流制御素子181~183に異常信号を出力する検出回路156とを備える。
 各バッテリユニット184は、保護素子142の電極147(A1)がバッテリセル141と直列に接続され、電極147(A2)がバッテリパック140の充放電電流経路に接続される。また、バッテリユニット184は、短絡素子101の第2の電極端子部105aが保護素子142の開放端と、保護抵抗154を介して接続され、第1の電極端子部104aがバッテリセル141の開放端と接続されることにより、保護素子142及びバッテリセル141と、短絡素子101とが並列に接続されている。また、バッテリユニット184は、保護素子142の発熱体電極150(P2)が第1の電流制御素子181と接続され、短絡素子101の第1の抵抗体端子部121aが第2の電流制御素子182と接続され、短絡素子101の第2の抵抗体端子部122aが第3の電流制御素子183と接続されている。
 検出回路156は、各バッテリセル141と接続され、各バッテリセル141の電圧値を検出して、各電圧値を充放電制御回路155の制御部159に供給する。また、検出回路156は、バッテリセル141が過充電電圧又は過放電電圧になったときに、当該バッテリセル141を有するバッテリユニット184の第1~第3の電流制御素子181~183へ異常信号を出力する。
 第1~第3の電流制御素子181~183は、たとえばFETにより構成され、検出回路156から出力される検出信号によって、バッテリセル141の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、保護素子142及び短絡素子101を動作させて、バッテリユニット184の充放電電流経路を第3、第4の電流制御素子157,158のスイッチ動作によらず遮断するとともに、短絡素子101のスイッチ120を短絡させ、当該バッテリユニット184をバイパスするバイパス電流経路を形成するように制御する。
 このようなバッテリパック140は、正常時には、短絡素子101のスイッチ120が短絡されていないため、図30(A)に示すように、電流Eは保護素子142及びバッテリセル141側に流れる。
 バッテリセル141に電圧異常等が検知されると、検出回路156より第1の電流制御素子181に異常信号が出力され、保護素子142の発熱抵抗体146が発熱される。図30(B)に示すように、保護素子142は、発熱抵抗体146によって、可溶導体149を加熱、溶融させることにより、電極147(A1),147(A2)間を遮断する。これにより、異常なバッテリセル141を有する当該バッテリユニット184を、バッテリパック140の充放電電流経路上から遮断することができる。なお、可溶導体149が溶断することにより、発熱抵抗体146への給電は停止される。
 次いで、バッテリパック140は、検出回路156により当該バッテリユニット184の第2の電流制御素子182にも異常信号が出力され、短絡素子101の第1の発熱抵抗体121も発熱する。図30(C)に示すように、短絡素子101は、第1の発熱抵抗体121によって第1の可溶導体108を加熱、溶融させることにより、第1の電極104上に溶融導体が凝集する。また、バッテリパック140は、第2の電流制御素子182への出力に続いて、第3の電流制御素子183へ異常信号を出力し、第2の発熱抵抗体122を発熱させる。短絡素子101は、第2の発熱抵抗体122によって第2の可溶導体109を加熱、溶融させることにより、第2の電極104上に溶融導体が凝集する。
 これにより、バッテリパック140は、図30(D)に示すように、スイッチ120の第1の電極端子部104a及び第2の電極端子部105aが短絡され、当該バッテリユニット184をバイパスするバイパス電流経路を形成することができる。なお、第1、第2の可溶導体108,109が溶断することにより、第1、第2の発熱抵抗体121,122への給電は停止される。
 なお、保護抵抗154は、バッテリセル141の内部抵抗とほぼ同じ抵抗値を有することにより、バイパス電流経路上においても、正常時と同じ容量とすることができる。
 このようなバッテリパック140によっても、一つのバッテリユニット184に異常が起きた場合にも、当該バッテリユニット184を迂回するバイパス電流経路を形成することができ、残りの正常なバッテリユニット184によって充放電機能を維持することができる。
 [短絡素子(保護抵抗内蔵)]
 また、短絡素子は、予め保護抵抗を内蔵させて形成してもよい。図33は、絶縁基板102上に保護抵抗161が形成された短絡素子160の平面図である。短絡素子160は、上述した短絡素子101の構成に加え、第2の電極105と接続された保護抵抗161が形成され、この保護抵抗161を介して第2の電極端子部105aが形成されている。保護抵抗161は、上述した第1,第2の発熱抵抗体121,122と同じ材料を用いて、同一のプロセスで同時に形成することができる。
 このように電子機器やバッテリパックにおける内部抵抗が決まっているような場合、予め保護抵抗161を内蔵した短絡素子160を用いることにより、実装等の工程を省力化することができる。
 図34(A)(B)は、短絡素子160の回路構成を示す図である。短絡素子160の回路構成は、スイッチ120が短絡することにより、第1の電極端子部104aと第2の電極端子部105aとが、保護抵抗161を介して接続される。すなわち、短絡素子160の回路構成は、第1、第2の可溶導体(ヒューズ)108,109と、第1、第2の可溶導体108,109の一端に接続された第1、第2の発熱抵抗体121、122と、第1、第2の可溶導体108,109の第1、第2の発熱抵抗体121,122が接続されていない他端に接続されたスイッチ120と、スイッチ120の端子の少なくとも一方の端子に接続された保護抵抗161とを備え、スイッチ120が、第1、第2の可溶導体108,109の溶断に連動して短絡するものである。
 なお、短絡素子160においても、絶縁基板102の裏面に外部端子112を設けて第1の電極端子部104a及び第2の電極端子部105aと当該外部端子112とをスルーホールによって接続する以外にも、上述した短絡素子130と同様に、絶縁基板102の第1、第2の電極104,105が形成された表面に、第1の電極104と連続する第1の外部接続電極131、第1の外部接続端子132、保護抵抗161を介して第2の電極105と連続する第2の外部接続電極133、及び第2の外部接続端子134を形成するようにしてもよい。
 [バッテリパックの回路構成(保護抵抗内蔵)]
 図35は、短絡素子160を組み込んだバッテリパック170の回路構成を示す図である。バッテリパック170は、短絡素子160を用いた点を除いて、上述したバッテリパック140と同じ構成を有する。すなわち、バッテリパック170の回路構成は、前述の短絡素子160と、バッテリセル141と、バッテリセル141の電流経路上に接続され、バッテリセル141の異常時に該バッテリセル141への通電を電気信号で遮断する保護素子142と、バッテリセル141の異常を検知し、異常信号を出力する検出回路156と、検出回路156の異常信号を受けて動作する第1~第3の電流制御素子181,182、183とを備え、バッテリセル141及び保護素子142の両端と、スイッチ120の第1、第2の可溶導体108,109との接続端子104a及び保護抵抗161の開放端子105aとを並列に接続し、第1、第2の発熱抵抗体121,122の第1、第2の抵抗体端子部121a、122aを第2、第3の電流制御素子182,183に接続し、保護素子142の電気信号の入力端子となる発熱体電極150(P2)を第1の制御素子181に接続し、バッテリセル141の異常時には、検出回路156からの異常信号を受けて第1~第3の電流制御素子181,182,183が動作し、保護素子142によるバッテリセル141の電流経路の遮断と、第1、第2の可溶導体108,109の溶断に連動したスイッチ120の短絡を行い、バイパス電流経路が形成されるものである。バッテリパック170において、各バッテリユニット184に設けられた短絡素子160の保護抵抗161は、当該バッテリユニット184のバッテリセル141の内部抵抗とほぼ同じ抵抗値を有する。
 このようなバッテリパック170によれば、一つのバッテリユニット184に異常が起きた場合にも、当該バッテリユニット184を迂回するバイパス電流経路を形成することができ、残りの正常なバッテリユニット184によって充放電機能を維持することができる。このとき、バッテリパック170は、保護抵抗161が、バッテリセル141の内部抵抗とほぼ同じ抵抗値を有することにより、バイパス電流経路上においても、正常時と同じ容量とすることができる。
 [バッテリパックの回路構成(制御素子共有)]
 また、図36に示す短絡素子160を組み込んだバッテリパック190は、第1~第3の電流制御素子のうち、保護素子142と接続する電流制御素子と、第1の抵抗体端子部121aと接続する電流制御素子とを共有にしたものである。すなわち、図36に示すように、バッテリパック190は、保護素子142の発熱体電極150(P2)、及び短絡素子160の第1の抵抗体端子部121aが第1の電流制御素子191と接続され、短絡素子160の第2の抵抗体端子部122aが第2の電流制御素子192と接続されている。第1、第2の電流制御素子191,192は、検出回路156と接続され、検出回路156によってバッテリセル141の過充電電圧又は過放電電圧が検出されると、異常信号が出力される。
 第1、第2の電流制御素子191,192は、たとえばFETにより構成され、検出回路156から出力される異常信号によって、バッテリセル141の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、保護素子142及び短絡素子160を動作させる。
 このとき検出回路156は、先ず第1の電流制御素子191に異常信号を出力し、次いで、第2の電流制御素子192に異常信号を出力する。第1の電流制御素子191が異常信号を受信すると、保護素子142の発熱抵抗体146、及び短絡素子160の第1の発熱抵抗体121に通電し、発熱させる。これにより、バッテリパック190は、保護素子142の可溶導体149が溶断することによりバッテリユニット184の充放電電流経路を遮断するとともに、短絡素子160の第1の可溶導体108が溶融する。次いで、第2の電流制御素子192が異常信号を受信すると、短絡素子160の第2の発熱抵抗体122に通電し、発熱させる。これにより、バッテリパック190は、短絡素子160の第2の可溶導体109が溶融し、先に溶融している第1の可溶導体108と結合して、第1、第2の電極104,105上に凝集する。したがって、短絡素子160は、スイッチ120を短絡させ、当該バッテリユニット184をバイパスするバイパス電流経路を形成する。このようなバッテリパック190によれば、電流制御素子を減らすことができ、回路構成を単純化することができる。
 [第3の実施の形態]
 [短絡素子]
 次いで、本発明の第3の実施の形態について説明する。図37(A)に短絡素子201の平面図、及び図37(B)に短絡素子201の断面図を示す。短絡素子201は、絶縁基板202と、絶縁基板202に設けられた第1の発熱抵抗体221及び第2の発熱抵抗体222と、絶縁基板202に、互いに隣接して設けられた第1の電極204及び第2の電極205(A1)と、第1の電極204と隣接して設けられるとともに、第1の発熱抵抗体221に電気的に接続された第3の電極206と、第2の電極205(A1)と隣接して設けられるとともに、第2の発熱抵抗体222に電気的に接続された第4の電極207(P1)と、第4の電極207(P1)に隣接して設けられる第5の電極231(A2)と、第1、第3の電極204,206間に亘って設けられることにより電流経路を構成し、第1の発熱抵抗体221からの加熱により、第1、第3の電極204,206間の電流経路を溶断する第1の可溶導体208と、第2の電極205(A1)から第4の電極207(P1)を経て第5の電極231(A2)に亘って設けられ、第2の発熱抵抗体222からの加熱により、第2、第4、第5の電極205(A1),207(P1),231(A2)間の電流経路を溶断する第2の可溶導体209とを備える。そして、短絡素子201は、絶縁基板202上に内部を保護するカバー部材210が取り付けられている。
 絶縁基板202は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材を用いて略方形状に形成されている。絶縁基板202は、その他にも、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。なお、絶縁基板202は、裏面に外部端子212が形成されている。
 第1、第2の発熱抵抗体221,222は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板2上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成する。
 また、第1、第2の発熱抵抗体221,222は、絶縁基板202上において絶縁層211に被覆されている。第1の発熱抵抗体221を被覆する絶縁層211上には、第1、第3の電極204,206が形成され、第2の発熱抵抗体222を被覆する絶縁層211上には、第2、第4、第5の電極205,207,231が形成されている。第1の電極204は、一方側において第2の電極205と隣接して形成されるとともに、絶縁されている。第1の電極204の他方側には第3の電極206が形成されている。第1の電極204と第3の電極206とは、第1の可溶導体208が接続されることにより導通され、短絡素子201の電流経路を構成する。また、第1の電極204は、絶縁基板202の側面に臨む第1の電極端子部204aに接続されている。第1の電極端子部204aは、スルーホールを介して絶縁基板202の裏面に設けられた外部端子212と接続されている。
 また、第3の電極206は、絶縁基板202あるいは絶縁層211に設けられた第1の発熱体引出電極223を介して第1の発熱抵抗体221と接続されている。また、第1の発熱抵抗体221は、第1の発熱体引出電極223を介して、絶縁基板202の側縁に臨む第1の抵抗体端子部221aに接続されている。第1の抵抗体端子部221aは、スルーホールを介して、絶縁基板202の裏面に設けられた外部端子212と接続されている。
 第2の電極205(A1)の第1の電極204と隣接する一方側と反対の他方側には、第4の電極207(P1)が形成されている。また、第4の電極207(P1)の第2の電極205(A1)と隣接する一方側と反対の他方側には、第5の電極231(A2)が形成されている。第2の電極205(A1)、第4の電極207(P1)及び第5の電極231(A2)は、第2の可溶導体209と接続されている。また、第2の電極205(A1)は、絶縁基板202の側面に臨む第2の電極端子部205aに接続されている。第2の電極端子部205aは、スルーホールを介して絶縁基板202の裏面に設けられた外部端子212と接続されている。
 また、第4の電極207(P1)は、絶縁基板202あるいは絶縁層211に設けられた第2の発熱体引出電極224を介して第2の発熱抵抗体222と接続されている。また、第2の発熱抵抗体222は、第2の発熱体引出電極224を介して、絶縁基板202の側縁に臨む第2の抵抗体端子部222a(P2)に接続されている。第2の抵抗体端子部222a(P2)は、スルーホールを介して、絶縁基板202の裏面に設けられた外部端子212と接続されている。
 さらに、第5の電極231(A2)は、絶縁基板202の側面に臨む第5の電極端子部231aに接続されている。第5の電極端子部231aは、スルーホールを介して絶縁基板202の裏面に設けられた外部端子212と接続されている。
 なお、第1~第5の電極204,205,206,207,231は、CuやAg等の一般的な電極材料を用いて形成することができるが、少なくとも第1、第2の電極204,205の表面上には、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の被膜が、公知のメッキ処理により形成されていることが好ましい。これにより、第1、第2の電極204,205の酸化を防止し、溶融導体を確実に保持させることができる。また、短絡素子201をリフロー実装する場合に、第1、第2の可溶導体208,209を接続するハンダあるいは第1、第2の可溶導体208,209の外層を形成する低融点金属が溶融することにより第1、第2の電極204,205を溶食(ハンダ食われ)して切断するのを防ぐことができる。
 [可溶導体]
 第1、第2の可溶導体208,209は、第1、第2の発熱抵抗体221,222の発熱により速やかに溶断される低融点金属からなり、例えばSnを主成分とするPbフリーハンダを好適に用いることができる。
 また、第1、第2の可溶導体208,209は、低融点金属と高融点金属を含有してもよい。低融点金属としては、Pbフリーハンダなどのハンダを用いることが好ましく、高融点金属としては、Ag、Cu又はこれらを主成分とする合金などを用いることが好ましい。高融点金属と低融点金属とを含有することによって、短絡素子201をリフロー実装する場合に、リフロー温度が低融点金属層の溶融温度を超えて、低融点金属が溶融しても、第1、第2の可溶導体208,209として溶断するに至らない。かかる第1、第2の可溶導体208,209は、高融点金属に低融点金属をメッキ技術を用いて成膜することによって形成してもよく、他の周知の積層技術、膜形成技術を用いることによって形成してもよい。なお、第1、第2の可溶導体208,209は、外層を構成する低融点金属を用いて、第1及び第3の電極204,206、又は第2、第4及び第5の電極205,207,231へ、ハンダ接続することができる。
 第1、第2の可溶導体208,209は、内層を低融点金属とし、外層を高融点金属としてもよい。内層の低融点金属層の全表面を外層の高融点金属層で被覆した可溶導体を用いることにより、リフロー温度よりも融点の低い低融点金属を用いた場合でも、リフロー実装時に、内層の低融点金属の外部への流出を抑制することができる。また、溶断時も、内層の低融点金属が溶融することにより、外層の高融点金属を溶食(ハンダ食われ)し、速やかに溶断することができる。
 また、第1、第2の可溶導体208,209は、内層を高融点金属とし、外層を低融点金属とする被覆構造としてもよい。内層の高融点金属層の全表面を外層の低融点金属層で被覆した可溶導体を用いることにより、外層の低融点金属層を介して電極上に接続することができ、また、溶断時も、低融点金属層が速やかに溶融して高融点金属を溶食するため、速やかに溶断することができる。
 また、第1、第2の可溶導体208,209は、低融点金属層と、高融点金属層とが積層された積層構造としてもよい。また、低融点金属層と、高融点金属層とが交互に積層された4層以上の多層構造としてもよい。また、第1、第2の可溶導体208,209は、内層を構成する低融点金属層の表面を高融点金属層にてストライプ状に部分的に積層してもよい。これらの構造によっても、低融点金属による高融点金属の溶食による短時間での溶断を行うことができる。
 また、第1、第2の可溶導体208,209は、多数の開口部を有する高融点金属と、上記開口部に挿入された低融点金属とから構成してもよい。これにより、溶融する低融点金属層に接する高融点金属層の面積が増大するので、より短時間で低融点金属層が高融点金属層を溶食することができるようになる。したがって、より速やか、かつ確実に可溶導体を溶断させることが可能となる。
 また、第1、第2の可溶導体208,209は、高融点金属の体積よりも低融点金属の体積を多くすることが好ましい。これにより、第1、第2の可溶導体208,209は、効果的に高融点金属層の溶食による短時間での溶断を行うことができる。
 なお、第1、第2の可溶導体208,209の酸化防止、及び第1、第2の可溶導体208,209の溶融時における濡れ性を向上させるために、第1、第2の可溶導体208,209の上にはフラックス215が塗布されている。
 短絡素子201は、絶縁基板202がカバー部材210に覆われることによりその内部が保護されている。カバー部材210は、短絡素子201の側面を構成する側壁216と、短絡素子201の上面を構成する天面部217とを有し、側壁216が絶縁基板202上に接続されることにより、短絡素子201の内部を閉塞する蓋体となる。このカバー部材210は、上記絶縁基板202と同様に、たとえば、熱可塑性プラスチック,セラミックス、ガラスエポキシ基板等の絶縁性を有する部材を用いて形成されている。
 また、カバー部材210は、天面部217の内面側に、カバー部電極218が形成されていても良い。カバー部電極218は、第1、第2の電極204,205と重畳する位置に形成されている。このカバー部電極218は、第1、第2の発熱抵抗体221,222が発熱し、第1、第2の可溶導体208,209が溶融されると、第1、第2の電極204,205上に凝集した溶融導体が接触して濡れ広がることにより、溶融導体を保持する許容量を増加させることができる。
 [短絡素子回路]
 以上のような短絡素子201は、図38に示すような回路構成を有する。すなわち、短絡素子201は、第1の電極204と第2の電極205とが、正常時には絶縁され、第1、第2の発熱抵抗体221,222の発熱により第1、第2の可溶導体208,209が溶融すると、当該溶融導体を介して短絡するスイッチ220を構成する。そして、第1の電極端子部204aと第2の電極端子部205aは、スイッチ220の両端子を構成する。
 また、第1の可溶導体208は、第3の電極206及び第1の発熱体引出電極223を介して第1の発熱抵抗体221と接続されている。第2の可溶導体209は、第4の電極207(P1)及び第2の発熱体引出電極224を介して第2の発熱抵抗体222及び第2の抵抗体端子部222a(P2)と接続されている。すなわち、第2の可溶導体209が接続される第2の電極205(A1)、第4の電極207(P1)及び第5の電極231(A2)は、保護素子として機能する。
 そして、短絡素子201は、第2の抵抗体端子部222a(P2)より通電されると、図39に示すように、第2の発熱抵抗体222が発熱し、第2の可溶導体209を溶融させることにより、第4の電極207(P1)を介して接続されている第2の電極205(A1)と第5の電極231(A2)とに亘る電流経路を遮断する。また、短絡素子201は、第1の抵抗体端子部221aより通電されると、第1の発熱抵抗体221が発熱し、第1の可溶導体208を溶融させる。これにより、短絡素子201は、図40に示すように、第1の電極204と第2の電極205とに凝集した第1、第2の可溶導体208,209の溶融導体が結合することにより、絶縁されていた第1の電極204と第2の電極205とを短絡させる、すなわちスイッチ220を短絡させることができる。
 なお、第1の発熱抵抗体221への通電は、第1の可溶導体208が溶断することにより第1、第3の電極204,206間が遮断されるため、停止され、第2の発熱抵抗体222への通電は、第2の可溶導体209が溶断することにより、第2、第4の電極205,207間及び第4、第5の電極207,231間が遮断されるため、停止される。
 [第2の可溶導体の先溶融]
 ここで、短絡素子201は、第2の可溶導体209が第1の可溶導体208よりも先行して溶融することが好ましい。短絡素子201は、第1の発熱抵抗体221と第2の発熱抵抗体222とが、別々に発熱されることから、通電のタイミングとして第2の発熱抵抗体222を先に発熱させ、その後に第1の発熱抵抗体221を発熱させることで、図39に示すように、容易に第2の可溶導体209を第1の可溶導体208よりも先行して溶融させ、図40に示すように、確実に第1、第2の電極204,205上に、第1、第2の可溶導体208,209の溶融導体を凝集、結合させ、第1、第2の電極204,205を短絡させることができる。
 また、短絡素子201は、第2の可溶導体209を、第1の可溶導体208よりも幅狭に形成することにより、第2の可溶導体209を第1の可溶導体208よりも先に溶断するようにしてもよい。第2の可溶導体209を幅狭に形成することにより、溶断時間を短くすることができるため、第2の可溶導体209が第1の可溶導体208よりも先行して溶融させることができる。
 [電極面積]
 また、短絡素子201は、第1の電極204の面積を第3の電極206よりも広くし、第2の電極205の面積を第4、第5の電極207,231よりも広くすることが好ましい。溶融導体の保持量は、電極面積に比例して多くなるため、第1、第2の電極204,205の面積を第3、第4、第5の電極206,207,231よりも広く形成することにより、より多くの溶融導体を第1、第2の電極204,205上に凝集させることができ、第1、第2の電極204,205間を確実に短絡させることができる。
 [短絡素子の変形例]
 なお、短絡素子201は、必ずしも、第1、第2の発熱抵抗体221,222を絶縁層211によって被覆する必要はなく、図41に示すように、第1、第2の発熱抵抗体221,222が絶縁基板202の内部に設置されてもよい。絶縁基板202の材料として熱伝導性に優れたものを用いることにより、第1、第2の発熱抵抗体221,222は、ガラス層等の絶縁層211を介した場合と同等に加熱することができる。
 また、短絡素子201は、図42に示すように、第1、第2の発熱抵抗体221,222が絶縁基板202の第1~第5の電極204,205,206,207,231の形成面と反対の裏面に設置されてもよい。第1、第2の発熱抵抗体221,222を絶縁基板202の裏面に形成することにより、絶縁基板202内に形成するよりも簡易な工程で形成することができる。なお、この場合、第1、第2の発熱抵抗体221,222上には、絶縁層211が形成されると抵抗体の保護や実装時の絶縁性確保と言う意味で好ましい。
 さらに、短絡素子201は、図43に示すように、第1、第2の発熱抵抗体221,222が絶縁基板2の第1~第5の電極204,205,206,207,231の形成面上に設置されてもよい。第1、第2の発熱抵抗体221,222を絶縁基板202の表面に形成することにより、絶縁基板202内に形成するよりも簡易な工程で形成することができる。なお、この場合も、第1、第2の発熱抵抗体221,222上には、絶縁層211が形成される事が望ましい。
 また、第1の電極204又は第2の電極205のいずれか一方に接続される保護抵抗を備える構成としてもよい。ここで、保護抵抗は、短絡素子に接続する電子部品の内部抵抗相当の抵抗値とし、第1又は第2の発熱抵抗体221,222の抵抗値よりも小さくする。すなわち、電子部品が正常に作動している場合、電流は短絡素子側へは流れず電子部品側に流れる。
 また、本発明が適用された短絡素子は、絶縁基板202の裏面に第1、第2の電極204,205とスルーホールを介して連続する外部端子212を設ける以外にも、図44(A)(B)に示す短絡素子233のように、絶縁基板202の第1、第2の電極204,205が形成された表面に、第1の電極204と連続する第1の外部接続電極234、第1の外部接続電極234上に設けられた1個もしくは複数個からなる第1の外部接続端子235、第2の電極205と連続する第2の外部接続電極236、第2の外部接続電極236上に設けられた1個もしくは複数個からなる第2の外部接続端子237を形成するようにしてもよい。
 第1、第2の外部接続電極234,236は、短絡素子233と短絡素子233が組み込まれる電子機器の回路とを接続する電極であり、第1の外部接続電極234は第1の電極204と連続され、第2の外部接続電極236は第2の電極205と連続されている。
 第1、第2の外部接続電極234,236は、CuやAg等の一般的な電極材料を用いて形成され、絶縁基板202の第1、第2の電極204,205の形成面と同一面に形成されている。すなわち、図44に示す短絡素子233は、第1、第2の可溶導体208,209が設けられる表面が実装面となる。なお、第1、第2の外部接続電極234,236は、第1、第2の電極204,205と同時に形成することができる。
 第1の外部接続電極234上には、第1の外部接続端子235が設けられている。同様に、第2の外部接続電極236上には、第2の外部接続端子237が設けられている。これら第1、第2の外部接続端子235,237は、電子機器へ実装するための接続端子であり、例えば金属バンプや、金属ポストを用いて形成されている。また、第1、第2の外部接続端子235,237は、図44(A)に示すように、絶縁基板202上に設けられたカバー部材210よりも突出する高さを有し、短絡素子233の実装対象物となる基板側に実装可能とされている。
 なお、短絡素子233の第1の発熱抵抗体221は、第1の発熱体引出電極223、及び第1の抵抗体端子部221aを介して、第1の抵抗体接続端子221bが形成されている。また、短絡素子233の第2の発熱抵抗体222は、第2の発熱体引出電極224、及び第2の抵抗体端子部222aを介して、第2の抵抗体接続端子222bが形成されている。また、第5の電極231は、第5の電極端子部231a上に第3の外部接続端子231bが形成されている。第1、第2の抵抗体接続端子221b,222b及び第3の外部接続端子231bは、第1、第2の外部接続端子235,237と同様に、金属バンプや金属ポストを用いて形成され、絶縁層211を介して上方に突出されている。
 このように、短絡素子233は、上記短絡素子201のように絶縁基板202の裏面に外部端子212を設けて第1、第2の電極204,205と当該外部端子212とをスルーホールによって接続するものではなく、第1、第2の電極204,205と同一表面に、第1、第2の外部接続電極234,236を介して第1、第2の外部接続端子235,237を形成している。そして、図44(B)に示すように、短絡素子233は、第1の電極204と第2の電極205とが短絡したときの、第1、第2の外部接続電極234,236間の導通抵抗よりも、第1の外部接続端子235と第2の外部接続端子237との合成抵抗が低く構成されている。
 これにより、短絡素子233は、第1、第2の電極204,205が短絡しバイパス電流経路を構成した際における定格を向上させ、大電流に対応することができる。すなわち、HEVやEV等の動力源として使用されるリチウムイオン二次電池等の大電流用途においては、短絡素子の定格のさらなる向上が求められている。そして、可溶導体によって短絡された第1、第2の外部接続電極234,236間の導通抵抗は定格向上に応えることができる程度に十分下げることができる(例えば0.4mΩ未満)。
 しかし、絶縁基板202の裏面に外部端子212を設け、第1、第2の電極204,205と当該外部端子212とをスルーホールによって接続する短絡素子201においては、第1、第2の電極204,205と外部端子212との間の導通抵抗が高く(例えば0.5~1.0mΩ)、スルーホール内に導体を充填したとしても、短絡素子全体の導通抵抗を下げるには限界がある。
 また、高抵抗の第1、第2の電極204,205と外部端子212との間に大電流を流すことによる発熱で、バイパス電流経路の破壊や、他の周辺機器への熱影響も懸念される。
 この点、短絡素子233は、第1、第2の電極204,205と同一表面に外部接続端子235,237を設けている。この外部接続端子235,237は、外部接続電極234,236上に設けるものであり、形状やサイズ等の自由度が高く、導通抵抗の低い端子を容易に設けることができる。これにより、短絡素子233は、第1の電極204と第2の電極205とが短絡したときの、第1、第2の外部接続電極234,236間の導通抵抗よりも、第1の外部接続端子235と第2の外部接続端子237との合成抵抗が低く構成されている。
 したがって、短絡素子233によれば、短絡素子201の構成おいては高くなる第1、第2の外部接続電極234,236から先の導通抵抗を容易に下げることができ、定格の飛躍的な向上を図ることができる。
 第1、第2の外部接続端子232,234としては、例えば、Snを主成分とするPbフリーハンダからなる金属バンプや金属ポストを用いて構成することができる。金属バンプや金属ポストの形状は問わない。第1、第2の外部接続端子235,237の抵抗値は材料や形状、サイズから求めることができる。一例として、Cuコアの表面にハンダをコーティングした直方体の金属ポスト(Cuコア:0.6mm×0.6mm、断面積0.36mm2、高さ1mm、比抵抗17.2μΩ・mm)を用いた場合、その1端子のCuコア部抵抗値は約0.048mΩであり、ハンダコーティング分を考慮すると第1、第2の外部接続端子235,237を直列接続させた抵抗値が0.096mΩ未満と低く、短絡素子233全体の定格を向上できることがわかる。
 なお、短絡素子233は、短絡時における第1、第2の外部接続端子235,237間に亘る抵抗値より素子全体の全抵抗値を求め、この全抵抗値と既知である第1、第2の外部接続端子235,237の合成抵抗との差より、短絡時における第1、第2の外部接続電極234,236間の導通抵抗を求めることができる。また、短絡素子233は、短絡時における第1、第2の外部接続電極234,236間の抵抗を測定し、短絡時における素子全体の全抵抗値との差より、第1、第2の外部接続端子235,237の合成抵抗を求めることができる。
 また、図45に示すように、短絡素子233は、第1、第2の外部接続電極234,236を矩形状に形成する等により広く設け、第1、第2の外部接続端子235,237を複数設けることにより導通抵抗を下げるようにしてもよい。その他にも、短絡素子233は、広く設けた第1、第2の外部接続電極234,236に大径の第1、第2の外部接続端子235,237を設けることにより導通抵抗を下げるようにしてもよい。
 また、第1、第2の外部接続端子235,237は、コアとなる高融点金属235a,237aの表面に低融点金属層235b,237bを設けることにより形成してもよい。低融点金属層235b,237bを構成する金属としては、Snを主成分とするPbフリーハンダなどのハンダを好適に用いることができ、高融点金属235a,237aとしては、CuやAgを主成分とする合金などを好適に用いることができる。
 高融点金属235a,237aの表面に低融点金属層235b,237bを設けることにより、短絡素子233をリフロー実装する場合に、リフロー温度が低融点金属層235b,237bの溶融温度を超えて、低融点金属が溶融しても、第1、第2の外部接続端子235,237として溶融することを防止することができる。また、第1、第2の外部接続端子235,237は、外層を構成する低融点金属を用いて、第1、第2の外部接続電極234,236へ接続することができる。
 第1、第2の外部接続端子235,237は、高融点金属235a,237aに低融点金属をメッキ技術を用いて成膜することにより形成することができ、またその他の周知の積層技術、膜形成技術を用いることによっても形成することができる。
 なお、第1、第2の外部接続端子235,237は、金属バンプや金属ポストを用いて形成する他にも、導電メッキ層や、導電ペーストを塗布することにより形成された導電層により形成してもよい。
 また、第1、第2の外部接続端子235,237は、短絡素子233が実装される基板等の実装対象物側に予め設け、短絡素子が実装された実装体において、第1、第2の外部接続電極234,236、あるいは第1、第2の電極204,205と接続されるようにしてもよい。
 [バッテリパックの回路構成]
 次いで、短絡素子201を組み込んだ電子機器の回路構成について説明する。図46は、クルマや電動工具等の各種電子機器に搭載されて用いられるリチウムイオンバッテリーが内蔵されたバッテリパック240の回路構成を示す図である。図46(A)に示すように、バッテリパック240は、バッテリセル241と、短絡素子201と、短絡素子201の動作を制御する第1、第2の電流制御素子261,262と、保護抵抗254とで構成されるバッテリユニット263を複数備え、これら複数のバッテリユニット263が直列に接続されている。
 その他に、バッテリパック240は、バッテリユニット263と、バッテリユニット263の充放電を制御する充放電制御回路255と、各バッテリユニット263のバッテリセル241の電圧を検出するとともに、短絡素子201の動作を制御する第1、第2の電流制御素子261,262に異常信号を出力する検出回路256とを備える。充放電制御回路255は、バッテリユニット263から充電装置に流れる電流経路に直列接続された第3、第4の電流制御素子257,258と、これらの電流制御素子257,258の動作を制御する制御部259とを備える。
 各バッテリユニット263は、短絡素子201の第2の電極205(A1)の第2の電極端子部205aがバッテリパック240の充放電電流経路と接続され、第5の電極231(A2)の第5の電極端子部231aがバッテリセル41に接続されることにより、短絡素子201がバッテリセル241と直列に接続されている。また、バッテリユニット263は、第2の発熱抵抗体222が第2の抵抗体端子部222a(P2)を介して第1の電流制御素子261に接続されている。
 また、バッテリユニット263は、第1の電極204の第1の電極端子部204aが保護抵抗254を介してバッテリセル241の開放端と接続されることにより、スイッチ220がバッテリセル241の充放電電流経路からバイパスされている。また、バッテリユニット263は、第1の発熱抵抗体221が第1の抵抗体端子部221aを介して第2の電流制御素子262に接続されている。
 検出回路256は、各バッテリセル241と接続され、各バッテリセル241の電圧値を検出して、バッテリセル241が過充電電圧又は過放電電圧になったときに、当該バッテリセル241を有するバッテリユニット263の第1、第2の電流制御素子261,262へ異常信号を出力する。
 第1、第2の電流制御素子261,262は、たとえばFETにより構成され、検出回路256から出力される検出信号によって、バッテリセル241の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、短絡素子201を動作させて、バッテリユニット263の充放電電流経路を第3、第4の電流制御素子257,258のスイッチ動作によらず遮断するとともに、短絡素子201のスイッチ220を短絡させ、当該バッテリユニット263をバイパスするバイパス電流経路を形成するように制御する。
 このようなバッテリパック240は、正常時には、図46(A)に示すように、短絡素子201のスイッチ220が短絡されていないため、電流は第2の可溶導体209を介してバッテリセル241側に流れる。
 バッテリセル241に電圧異常等が検知されると、検出回路256より第1の電流制御素子261に異常信号が出力され、短絡素子201の第2の発熱抵抗体222が発熱される。図46(B)に示すように、短絡素子201は、第2の発熱抵抗体222によって、第2の可溶導体209を加熱、溶融させることにより、第2の電極205(A1)と第4の電極207(P1)との間、及び第4の電極207(P1)と第5の電極231(A2)との間を遮断する。これにより、図46(B)に示すように、異常なバッテリセル241を有する当該バッテリユニット263を、バッテリパック240の充放電電流経路上から遮断することができる。なお、第2の可溶導体209が溶断することにより、第2の発熱抵抗体222への給電は停止される。
 次いで、バッテリパック240は、検出回路256により第1の電流制御素子261に少し遅れて当該バッテリユニット263の第2の電流制御素子262にも異常信号が出力され、短絡素子201の第1の発熱抵抗体221も発熱する。短絡素子201は、第1の発熱抵抗体221によって第1の可溶導体208を加熱、溶融させることにより、第1の電極204と第2の電極205とに凝集した第1、第2の可溶導体208,209の溶融導体が結合する。これにより、絶縁されていた第1の電極204と第2の電極205とが短絡され、スイッチ220の第1の電極端子部204a及び第2の電極端子部205aが短絡される。これにより、短絡素子201は、図46(C)に示すように、当該バッテリユニット263をバイパスするバイパス電流経路を形成することができる。なお、第1の可溶導体208が溶断することにより、第1の発熱抵抗体221への給電は停止される。
 なお、保護抵抗254は、バッテリセル241の内部抵抗とほぼ同じ抵抗値を有することにより、バイパス電流経路上においても、正常時と同じ容量とすることができる。
 このようなバッテリパック240によれば、一つのバッテリユニット263に異常が起きた場合にも、当該バッテリユニット263を迂回するバイパス電流経路を形成することができ、残りの正常なバッテリユニット263によって充放電機能を維持することができる。
 [短絡素子(保護抵抗内蔵)]
 また、短絡素子は、予め保護抵抗を内蔵させて形成してもよい。図47は、絶縁基板202上に保護抵抗271が形成された短絡素子270の平面図である。短絡素子270は、上述した短絡素子201の構成に加え、第1の電極204と接続された保護抵抗271が形成され、この保護抵抗271を介して第1の電極端子部204aが形成されている。保護抵抗271は、上述した第1、第2の発熱抵抗体221,222と同じ材料を用いて、同一のプロセスで同時に形成することができる。
 このように電子機器やバッテリパックにおける内部抵抗が決まっているような場合、予め保護抵抗271を内蔵した短絡素子270を用いることにより、実装等の工程を省力化することができる。
 図48は、短絡素子270の回路構成を示す図である。短絡素子270の回路構成は、スイッチ220が短絡することにより、第1の電極端子部204aと第2の電極端子部205aとが、保護抵抗271を介して接続される。すなわち、短絡素子270の回路構成は、第1の可溶導体(ヒューズ)208と、第1の可溶導体208の一端に接続された第1の発熱抵抗体221と、第1の可溶導体208の第1の発熱抵抗体221が接続されていない他端に接続されたスイッチ220と、スイッチ220の端子の少なくとも一方の端子に接続された保護抵抗271とを備え、スイッチ220が、第1の可溶導体208の溶断に連動して短絡するものである。
 なお、短絡素子270においても、絶縁基板202の裏面に外部端子212を設けて第1の電極端子部204a及び第2の電極端子部205aと当該外部端子212とをスルーホールによって接続する以外にも、上述した短絡素子233と同様に、絶縁基板202の第1、第2の電極204,205が形成された表面に、保護抵抗271を介して第1の電極204と連続する第1の外部接続電極234、第1の外部接続端子235、第2の電極205と連続する第2の外部接続電極236、及び第2の外部接続端子237を形成するようにしてもよい。
 [バッテリパックの回路構成(保護抵抗内蔵)]
 図49は、短絡素子270を組み込んだバッテリパック280の回路構成を示す図である。バッテリパック280は、短絡素子201に代えて短絡素子270を用いた点を除いて、上述したバッテリパック240と同じ構成を有する。すなわち、バッテリパック280は、バッテリセル241と、短絡素子270と、短絡素子270の動作を制御する第1、第2の電流制御素子261,262とで構成されるバッテリユニット273を複数備え、これら複数のバッテリユニット273が直列に接続されている。バッテリパック280において、各バッテリユニットに設けられた短絡素子270の保護抵抗271は、当該バッテリユニット273のバッテリセル241の内部抵抗とほぼ同じ抵抗値を有する。
 このようなバッテリパック280によれば、一つのバッテリユニット273に異常が起きた場合にも、当該バッテリユニット273を迂回するバイパス電流経路を形成することができ、残りの正常なバッテリユニット273によって充放電機能を維持することができる。このとき、バッテリパック280は、保護抵抗271が、バッテリセル241の内部抵抗とほぼ同じ抵抗値を有することにより、バイパス電流経路上においても、正常時と同じ電流容量とすることができる。
 1 短絡素子、2 絶縁基板、3 発熱抵抗体、3a 抵抗体端子部、3b 抵抗体接続端子、4 第1の電極、4a 第1の電極端子部、5 第2の電極、5a 第2の電極端子部、6 第3の電極、7 第4の電極、8 第1の可溶導体、9 第2の可溶導体、10 カバー部材、11 絶縁層、12 外部端子、13 発熱体引出電極、15 フラックス、18 カバー部電極、20 スイッチ、21 第1の外部接続電極、22 第1の外部接続端子、23 第2の外部接続電極、24 第2の外部接続端子、25 短絡素子、30 LED照明装置、31 発光ダイオード、32 LEDユニット、34 保護抵抗、40 バッテリパック、41 バッテリセル、42 保護素子、44 絶縁基板、45 絶縁部材、46 発熱抵抗体、47 電極、48 発熱体引出電極、49 可溶導体、50 発熱体電極、51 バッテリユニット、52 第1の電流制御素子、53 第2の電流制御素子、54 保護抵抗、55 充放電制御回路、56 検出回路、57 第3の電流制御素子、58 第4の電流制御素子、59 制御部、60 短絡素子、61 保護抵抗、62 LED照明装置、65 バッテリパック、101 短絡素子、102 絶縁基板、104 第1の電極、104a 第1の電極端子部、105 第2の電極、105a 第2の電極端子部、106 第3の電極、107 第4の電極、108 第1の可溶導体、109 第2の可溶導体、110 カバー部材、111 絶縁層、112 外部端子、115 フラックス、118 カバー部電極、120 スイッチ、121 第1の発熱抵抗体、121a 第1の抵抗体端子部、121b 第1の抵抗体接続端子、122 第2の発熱抵抗体、122a 第2の抵抗体端子部、122b 第2の抵抗体接続端子、123 第1の発熱体引出電極、124 第1の発熱体引出電極、130 短絡素子、131 第1の外部接続電極、132 第1の外部接続端子、133 第2の外部接続電極、134 第2の外部接続端子、140 バッテリパック、141 バッテリセル、142 保護素子、144 絶縁基板、145 絶縁部材、146 発熱抵抗体、147 電極、148 発熱体引出電極、149 可溶導体、150 発熱体電極、154 保護抵抗、155 充放電制御回路、156 検出回路、157 第3の電流制御素子、158 第4の電流制御素子、159 制御部、160 短絡素子、161 保護抵抗、170 バッテリパック、181 第1の電流制御素子、182 第2の電流制御素子、183 第3の電流制御素子、184 バッテリユニット、190 バッテリパック、191 第1の電流制御素子、192 第2の電流制御素子、201 短絡素子、202 絶縁基板、204 第1の電極、204a 第1の電極端子部、205 第2の電極、205a 第2の電極端子部、206 第3の電極、207 第4の電極、208 第1の可溶導体、209 第2の可溶導体、210 カバー部材、211 絶縁層、212 外部端子、215 フラックス、218 カバー部電極、220 スイッチ、221 第1の発熱抵抗体、221a 第1の抵抗体端子部、221b 第1の抵抗体接続端子、222 第2の発熱抵抗体、222a 第2の抵抗体端子部、222b 第2の抵抗体接続端子、223 第1の発熱体引出電極、224 第2の発熱体引出電極、231 第5の電極、231a 第5の電極端子部、231b 第3の外部接続端子、233 短絡素子、234 第1の外部接続電極、235 第1の外部接続端子、236 第2の外部接続電極、237 第2の外部接続端子、240 バッテリパック、241 バッテリセル、254 保護抵抗、255 充放電制御回路、256 検出回路、257 第3の電流制御素子、258 第4の電流制御素子、259 制御部、261 第1の電流制御素子、262 第2の電流制御素子、263 バッテリユニット、270 短絡素子、271 保護抵抗、273 バッテリユニット、280 バッテリパック

Claims (121)

  1.  絶縁基板と、
     上記絶縁基板に設けられた発熱抵抗体と、
     上記絶縁基板に、互いに隣接して設けられた第1、第2の電極と、
     上記絶縁基板に、上記第1の電極と隣接して設けられるとともに、上記発熱抵抗体に電気的に接続された第3の電極と、
     上記第1、第3の電極間に亘って設けられることにより電流経路を構成し、上記発熱抵抗体からの加熱により、上記第1、第3の電極間の上記電流経路を溶断する第1の可溶導体とを備え、
     上記発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1の可溶導体によって、上記第1の電極と上記第2の電極とが短絡することを特徴とする短絡素子。
  2.  上記第2の電極に設けられた第2の可溶導体を備え、
     上記発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1、第2の可溶導体によって、上記第1の電極と上記第2の電極とが短絡することを特徴とする請求項1記載の短絡素子。
  3.  上記絶縁基板に、上記第2の電極と隣接して設けられた第4の電極と、
     上記第2、第4の電極間に亘って設けられ、上記発熱抵抗体からの加熱により、上記第2、第4の電極間の上記電流経路を溶断する第2の可溶導体とを有し、
     上記発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1、第2の可溶導体によって、上記第1の電極と上記第2の電極とが短絡することを特徴とする請求項1記載の短絡素子。
  4.  上記絶縁基板上に積層された絶縁層を備え、
     上記第1~第3の電極が、上記絶縁層上に設置され、
     上記発熱抵抗体が、上記絶縁層の内部もしくは上記絶縁層と上記絶縁基板の間に設置されている請求項1乃至請求項3のいずれか1項に記載の短絡素子。
  5.  上記発熱抵抗体が、前記絶縁基板の内部に設置されてなる請求項1乃至請求項3のいずれか1項に記載の短絡素子。
  6.  上記発熱抵抗体が、前記絶縁基板の電極形成面と反対の面に設置されてなる請求項1乃至請求項3のいずれか1項に記載の短絡素子。
  7.  上記発熱抵抗体が、前記絶縁基板の電極形成面上に設置されてなる請求項1乃至請求項3のいずれか1項に記載の短絡素子。
  8.  上記第2の電極に設けられた第2の可溶導体を備え、
     上記発熱抵抗体が、上記第1の可溶導体及び上記第2の可溶導体に重畳され、上記第2の可溶導体との重畳面積が、上記第1の可溶導体との重畳面積よりも広い請求項1乃至請求項3のいずれか1項に記載の短絡素子。
  9.  上記第2の可溶導体の幅が、上記第1の可溶導体よりも狭い請求項2又は請求項3のいずれか1項に記載の短絡素子。
  10.  上記第1の電極及び上記第2の電極の表面に、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキの何れか1つが被覆されている請求項1乃至請求項3のいずれか1項に記載の短絡素子。
  11.  上記絶縁基板に、上記第2の電極と隣接して設けられた第4の電極と、
     上記第2、第4の電極間に亘って設けられ、上記発熱抵抗体からの加熱により、上記第2、第4の電極間の上記電流経路を溶断する第2の可溶導体とを有し、
     上記第1の電極の面積が、上記第3の電極よりも広く、上記第2の電極の面積が、上記第4の電極よりも広い請求項1乃至請求項3のいずれか1項に記載の短絡素子。
  12.  上記絶縁基板上に設けられた内部を保護するカバー部材と、
     上記カバー部材の内面に設けられるカバー部電極とを備え、
     上記カバー部電極が、上記第1の電極及び上記第2の電極と重畳する位置に設置されてなる請求項1乃至請求項3のいずれか1項に記載の短絡素子。
  13.  上記絶縁基板上に、上記第1の電極又は上記第2の電極のいずれか一方に接続される保護抵抗を備える請求項1乃至請求項3のいずれか1項に記載の短絡素子。
  14.  上記第2の電極に設けられた第2の可溶導体を備え、
     上記第1及び第2の可溶導体が、Snを主成分とするPbフリーハンダである請求項1乃至請求項3のいずれか1項に記載の短絡素子。
  15.  上記第2の電極に設けられた第2の可溶導体を備え、
     上記第1及び第2の可溶導体が、低融点金属と高融点金属とを含有し、
     上記低融点金属が、上記発熱抵抗体から発する熱により溶融することで、上記高融点金属を溶食する請求項1乃至請求項3のいずれか1項に記載の短絡素子。
  16.  上記低融点金属が、ハンダであり、
     上記高融点金属が、Ag、Cu、又はAg若しくはCuを主成分とする合金である請求項15記載の短絡素子。
  17.  上記第1及び第2の可溶導体は、内層が上記低融点金属であり、外層が上記高融点金属の被覆構造である請求項15記載の短絡素子。
  18.  上記第1及び第2の可溶導体は、内層が上記高融点金属であり、外層が上記低融点金属の被覆構造である請求項15記載の短絡素子。
  19.  上記第1及び第2の可溶導体が、上記低融点金属と、上記高融点金属とが積層された積層構造である請求項15記載の短絡素子。
  20.  上記第1及び第2の可溶導体が、上記低融点金属と、上記高融点金属とが交互に積層された4層以上の多層構造である請求項15記載の短絡素子。
  21.  上記第1及び第2の可溶導体が、内層を構成する低融点金属の表面を高融点金属にてストライプ状に部分的に積層する請求項15記載の短絡素子。
  22.  上記第1及び第2の可溶導体が、多数の開口部を有する高融点金属と、上記開口部に挿入された低融点金属とからなる請求項15記載の短絡素子。
  23.  上記第1及び第2の可溶導体は、低融点金属の体積が、高融点金属の体積よりも多い請求項15記載の短絡素子。
  24.  ヒューズと、
     上記ヒューズの一端に接続された発熱抵抗体と、
     上記ヒューズの上記発熱抵抗体が接続されていない他端に接続されたスイッチとを備え、
     上記スイッチが、上記ヒューズの溶断に連動して短絡する短絡素子回路。
  25.  ヒューズと、上記ヒューズの一端に接続された発熱抵抗体と、上記ヒューズの上記発熱抵抗体が接続されていない他端に接続されたスイッチとを有し、上記スイッチは、上記ヒューズの溶断に連動して短絡する短絡素子と、
     電子部品とを備え、
     上記スイッチが、両端子が上記電子部品と並列に接続され、
     上記発熱抵抗体の開放端子が、上記スイッチ端子のうち上記ヒューズが接続されていない端子に接続され、
     上記電子部品の異常時には、上記ヒューズが溶融することにより上記スイッチが短絡され、上記電子部品を迂回するバイパス電流経路が形成される補償回路。
  26.  上記電子部品が、異常時に電気的開放を伴う発光ダイオードである請求項25記載の補償回路。
  27.  上記バイパス電流経路上に、上記電子部品の内部抵抗相当の保護抵抗が接続されている請求項25又は請求項26に記載の補償回路。
  28.  ヒューズと、上記ヒューズの一端に接続された発熱抵抗体と、上記ヒューズの上記発熱抵抗体が接続されていない他端に接続されたスイッチとを有し、上記スイッチは、上記ヒューズの溶断に連動して短絡する短絡素子と、
     電子部品と、
     上記電子部品の電流経路上に接続され、上記電子部品の異常時に該電子部品への通電を電気信号で遮断する保護素子と、
     上記電子部品の異常を検知し、異常信号を出力する保護部品と、
     上記保護部品の異常信号を受けて動作する制御素子とを備え、
     上記電子部品及び上記保護素子の両端と、上記スイッチの両端子とを並列に接続し、
     上記発熱抵抗体の開放端子と上記保護素子の上記電気信号の入力端子を、上記制御素子に接続し、
     上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記制御素子が動作し、上記保護素子による上記電子部品の電流経路の遮断と、上記ヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成される補償回路。
  29.  上記電子部品は、異常時に電気的短絡又は熱暴走を伴うバッテリセルである請求項28記載の補償回路。
  30.  上記バイパス電流経路上に、上記電子部品の内部抵抗相当の保護抵抗が接続されている請求項28に記載の補償回路。
  31.  上記制御素子は、上記発熱抵抗体の開放端子に接続された第1の制御素子と、上記保護素子の電気信号の入力端子に接続された第2の制御素子とを備え、
     上記保護部品及び上記第1、第2の制御素子を制御することにより、上記保護素子による電流経路の遮断を行い、その後、上記短絡素子によるバイパス電流経路を形成する請求項28又は請求項30のいずれか1項に記載の補償回路。
  32.  ヒューズと、
     上記ヒューズの一端に接続された発熱抵抗体と、
     上記ヒューズの上記発熱抵抗体が接続されていない他端に接続されたスイッチと、
     上記スイッチの端子の少なくとも一方の端子に接続された保護抵抗とを備え、
     上記スイッチは、上記ヒューズの溶断に連動して短絡する短絡素子回路。
  33.  ヒューズと、上記ヒューズの一端に接続された発熱抵抗体と、上記ヒューズの上記発熱抵抗体が接続されていない他端に接続されたスイッチと、上記スイッチの端子のうち、上記ヒューズが接続されていない端子に接続された保護抵抗とを有し、上記スイッチは、上記ヒューズの溶断に連動して短絡する短絡素子と、
     電子部品とを備え、
     上記スイッチと上記ヒューズが接続された端子及び上記保護抵抗の開放端子と、上記電子部品とを、並列に接続し、
     上記発熱抵抗体は、上記保護抵抗と接続し、
     上記電子部品の異常時には、上記ヒューズが溶融することにより上記スイッチがオンとなり、バイパス電流経路が形成される補償回路。
  34.  上記電子部品は、異常時に電気的開放を伴う発光ダイオードである請求項33記載の補償回路。
  35.  ヒューズと、上記ヒューズの一端に接続された発熱抵抗体と、上記ヒューズの上記発熱抵抗体が接続されていない他端に接続されたスイッチと、上記スイッチの端子のうち、上記ヒューズが接続されていない端子に接続された保護抵抗とを有し、上記スイッチは、上記ヒューズの溶断に連動して短絡する短絡素子と、
     電子部品と、
     上記電子部品の電流経路上に接続され、上記電子部品の異常時に該電子部品への通電を電気信号で遮断する保護素子と、
     上記電子部品の異常を検知し、異常信号を出力する保護部品と、
     上記保護部品の異常信号を受けて動作する制御素子とを備え、
     上記電子部品及び上記保護素子の両端と、上記スイッチの上記ヒューズとの接続端子及び上記保護抵抗とを並列に接続し、
     上記発熱抵抗体の開放端子と上記保護素子の上記電気信号の入力端子を、上記制御素子に接続し、
     上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記制御素子が動作し、上記保護素子による上記電子部品の電流経路の遮断と、上記ヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成される補償回路。
  36.  上記電子部品は、異常時に電気的短絡又は熱暴走を伴うバッテリセルである請求項35記載の補償回路。
  37.  上記制御素子は、上記発熱抵抗体の開放端子に接続された第1の制御素子と、上記保護素子の電気信号の入力端子に接続された第2の制御素子とを備え、
     上記保護部品及び上記第1、第2の制御素子を制御することにより、上記保護素子による電流経路の遮断を行い、その後、上記短絡素子によるバイパス電流経路を形成する請求項35又は請求項36に記載の補償回路。
  38.  上記絶縁基板には、上記可溶導体が設けられた面と同一面に、上記第1の電極と連続する第1の外部接続電極と、上記第1の外部接続電極上に設けられる1又は複数の第1の外部接続端子と、上記第2の電極と連続する第2の外部接続電極と、上記第2の外部接続電極上に設けられる1又は複数の第2の外部接続端子が形成され、
     上記第1の電極と上記第2の電極とが短絡したときの、上記第1、第2の外部接続電極間の導通抵抗よりも、上記第1の外部接続端子と上記第2の外部接続端子との合成抵抗が低い請求項1乃至請求項3のいずれか1項に記載の短絡素子。
  39.  上記外部接続端子が、金属バンプ又は金属ポストである請求項38記載の短絡素子。
  40.  上記金属バンプ又は金属ポストは、高融点金属の表面に低融点金属層が形成されている請求項39記載の短絡素子。
  41.  上記高融点金属は銅又は銀を主成分とし、上記低融点金属は錫を主成分とする鉛フリー半田である請求項40記載の短絡素子。
  42.  上記外部接続端子が、錫を主成分とする鉛フリー半田からなる金属バンプである請求項38記載の短絡素子。
  43.  短絡素子が実装対象物に実装された実装体において、
     上記短絡素子は、
     絶縁基板と、
     上記絶縁基板に設けられた発熱抵抗体と、
     上記絶縁基板に、互いに隣接して設けられた第1、第2の電極と、
     上記絶縁基板に、上記第1の電極と隣接して設けられるとともに、上記発熱抵抗体に電気的に接続された第3の電極と、
     上記第1、第3の電極間に亘って設けられることにより電流経路を構成し、上記発熱抵抗体からの加熱により、上記第1、第3の電極間の上記電流経路を溶断する第1の可溶導体と、
     上記絶縁基板の上記第1、第2の電極が形成された面と同一表面に形成され、上記第1の電極と連続する第1の外部接続電極及び上記第2の電極と連続する第2の外部接続電極とを備え、
     上記第1の電極が上記第1の外部接続電極上に接続された第1の外部接続端子を介して上記実装対象物と接続され、上記第2の電極が上記第2の外部接続電極上に接続された第2の外部接続端子を介して上記実装対象物と接続され、
     上記発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1の可溶導体によって、上記第1の電極と上記第2の電極とが短絡したときの、上記第1、第2の外部接続電極間の導通抵抗よりも、上記第1の外部接続端子と上記第2の外部接続端子との合成抵抗が低いことを特徴とする実装体。
  44.  絶縁基板と、
     上記絶縁基板に形成された第1及び第2の発熱抵抗体と、
     上記絶縁基板に、互いに隣接して設けられた第1、第2の電極と、
     上記絶縁基板に、上記第1の電極と隣接して設けられるとともに、上記第1の発熱抵抗体に電気的に接続された第3の電極と、
     上記絶縁基板に、上記第2の電極と隣接して設けられるとともに、上記第2の発熱抵抗体に電気的に接続された第4の電極と、
     上記第1、第3の電極間に亘って設けられることにより電流経路を構成し、上記第1の発熱抵抗体からの加熱により、上記第1、第3の電極間の上記電流経路を溶断する第1の可溶導体と、
     上記第2、第4の電極間に亘って設けられることにより電流経路を構成し、上記第2の発熱抵抗体からの加熱により、上記第2、第4の電極間の上記電流経路を溶断する第2の可溶導体とを備え、
     上記第1、第2の発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1、第2の可溶導体によって、上記第1の電極と上記第2の電極とが短絡することを特徴とする短絡素子。
  45.  上記第1、第2の可溶導体の一方を他方に先行して溶断させる請求項44記載の短絡素子。
  46.  上記第1、第2の可溶導体の一方の幅を他方の幅よりも狭くすることにより、当該幅の狭い方の可溶導体を先行して溶断させる請求項45記載の短絡素子。
  47.  上記絶縁基板上に積層された絶縁層を備え、
     上記第1~第4の電極が、上記絶縁層上に設置され、
     上記第1、第2の発熱抵抗体が、上記絶縁層の内部もしくは上記絶縁層と上記絶縁基板の間に設置されている請求項44乃至請求項46のいずれか1項に記載の短絡素子。
  48.  上記第1、第2の発熱抵抗体が、前記絶縁基板の内部に設置されてなる請求項44乃至請求項46のいずれか1項に記載の短絡素子。
  49.  上記第1、第2の発熱抵抗体が、前記絶縁基板の電極形成面と反対の面に設置されてなる請求項44乃至請求項46のいずれか1項に短絡素子。
  50.  上記第1、第2の発熱抵抗体が、前記絶縁基板の電極形成面上に設置されてなる請求項44乃至請求項46のいずれか1項に記載の短絡素子。
  51.  上記第1の電極及び上記第2の電極の表面に、Ni/Auメッキ,Ni/Pdメッキ,Ni/Pd/Auメッキのいずれか1つが被覆されている請求項44乃至請求項46のいずれか1項に記載の短絡素子。
  52.  上記第1の電極の面積が、上記第3の電極よりも広く、上記第2の電極の面積が、上記第4の電極よりも広い請求項44乃至請求項46のいずれか1項に記載の短絡素子。
  53.  上記絶縁基板上に設けられた内部を保護するカバー部材と、
     上記カバー部材の内面に設けられるカバー部電極とを備え、
     上記カバー部電極が、上記第1の電極及び上記第2の電極と重畳する位置に設置されてなる請求項44乃至請求項46のいずれか1項に記載の短絡素子。
  54.  上記絶縁基板上に、上記第1の電極又は上記第2の電極のいずれか一方に接続される保護抵抗を備える請求項44乃至請求項46のいずれか1項に記載の短絡素子。
  55.  上記第1及び第2の可溶導体が、Snを主成分とするPbフリーハンダである請求項44乃至請求項46のいずれか1項に記載の短絡素子。
  56.  上記第1及び第2の可溶導体が、低融点金属と高融点金属とを含有し、
     上記低融点金属が、上記発熱抵抗体から発する熱により溶融することで、上記高融点金属を溶食する請求項44乃至請求項46のいずれか1項に記載の短絡素子。
  57.  上記低融点金属が、ハンダであり、
     上記高融点金属が、Ag、Cu、又はAg若しくはCuを主成分とする合金である請求項56記載の短絡素子。
  58.  上記第1及び第2の可溶導体は、内層が上記低融点金属であり、外層が上記高融点金属である被覆構造である請求項56記載の短絡素子。
  59.  上記第1及び第2の可溶導体は、内層が上記高融点金属であり、外層が上記低融点金属である被覆構造である請求項56記載の短絡素子。
  60.  上記第1及び第2の可溶導体が、上記低融点金属と、上記高融点金属とが積層された積層構造である請求項56記載の短絡素子。
  61.  上記第1及び第2の可溶導体が、上記低融点金属と、上記高融点金属とが交互に積層された4層以上の多層構造である請求項56記載の短絡素子。
  62.  上記第1及び第2の可溶導体が、内層を構成する低融点金属の表面を高融点金属にてストライプ状に部分的に積層する請求項56記載の短絡素子。
  63.  上記第1及び第2の可溶導体が、多数の開口部を有する高融点金属と、上記開口部に挿入された低融点金属とからなる請求項56記載の短絡素子。
  64.  上記第1及び第2の可溶導体は、低融点金属の体積が、高融点金属の体積よりも多い請求項56記載の短絡素子。
  65.  スイッチと、
     上記スイッチの一端に接続された第1のヒューズと、
     上記スイッチの他端に接続された第2のヒューズと、
     上記第1のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第1
    の発熱抵抗体と、
     上記第2のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第2の発熱抵抗体とを有し、
     上記スイッチが、上記第1及び第2のヒューズが溶断されることにより、該第1及び第2のヒューズの溶融導体によって短絡される短絡素子回路。
  66.  スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記スイッチの他端に接続された第2のヒューズと、上記第1のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第1の発熱抵抗体と、上記第2のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第2の発熱抵抗体とを有し、上記スイッチは、上記第1及び第2のヒューズが溶断されることにより、該第1及び第2のヒューズの溶融導体によって短絡される短絡素子と、
     電子部品と、
     上記電子部品の電流経路上に接続され、上記電子部品の異常時に該電子部品への通電を電気信号で遮断する保護素子と、
     上記電子部品の異常を検知し、異常信号を出力する保護部品と、
     上記保護部品の異常信号を受けて動作する第1~第3の制御素子とを備え、
     上記電子部品及び上記保護素子の両端と、上記スイッチの両端子とを並列に接続し、
     上記第1、第2の発熱抵抗体、及び上記保護素子の電気信号の入力端子とを、それぞれ上記第1~第3の制御素子に接続し、
     上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1~第3の制御素子が動作し、上記保護素子による上記電子部品の電流経路の遮断と、上記第1、第2のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成される補償回路。
  67.  上記保護部品及び上記第1~第3の制御素子を制御することにより、上記保護素子による電流経路の遮断を行い、その後上記短絡素子による上記バイパス電流経路を形成する請求項66に記載の補償回路。
  68.  上記電子部品は、異常時に電気的短絡又は熱暴走を伴うバッテリセルである請求項66記載の補償回路。
  69.  スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記スイッチの他端に接続された第2のヒューズと、上記第1のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第1の発熱抵抗体と、上記第2のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第2の発熱抵抗体とを有し、上記スイッチは、上記第1及び第2のヒューズが溶断されることにより、該第1及び第2のヒューズの溶融導体によって短絡される短絡素子と、
     電子部品と、
     上記電子部品の電流経路上に接続され、上記電子部品の異常時に該電子部品への通電を電気信号で遮断する保護素子と、
     上記電子部品の異常を検知し、異常信号を出力する保護部品と、
     上記保護部品の異常信号を受けて動作する第1、第2の制御素子とを備え、
     上記電子部品及び上記保護素子の両端と、上記スイッチの両端子とを並列に接続し、
     上記第1の発熱抵抗体の端子を上記第1の制御素子に接続し、上記第2の発熱抵抗体及び上記保護素子の電気信号の入力端子を、上記第2の制御素子に接続し、
     上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1、第2の制御素子が動作し、上記保護素子による上記電子部品の電流経路の遮断と、上記第1、第2のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成される補償回路。
  70.  上記保護部品及び上記第1、第2の制御素子を制御することにより、上記保護素子による電流経路の遮断を行い、その後上記短絡素子による上記バイパス電流経路を形成する請求項69に記載の補償回路。
  71.  上記バイパス電流経路上に、上記電子部品の内部抵抗相当の保護抵抗が接続されている請求項66乃至請求項70のいずれか1項に記載の補償回路。
  72.  上記電子部品は、異常時に電気的短絡又は熱暴走を伴うバッテリセルである請求項69又は請求項70に記載の補償回路。
  73.  スイッチと、
     上記スイッチの一端に接続された第1のヒューズと、
     上記スイッチの他端に接続された第2のヒューズと、
     上記第1のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第1の発熱抵抗体と、
     上記第2のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第2の発熱抵抗体と、
     上記スイッチに接続された保護抵抗とを有し、
     上記スイッチが、上記第1及び第2のヒューズが溶断されることにより、該第1及び第2のヒューズの溶融導体によって短絡される短絡素子回路。
  74.  上記スイッチの一端に接続された第1のヒューズと、上記スイッチの他端に接続された第2のヒューズと、上記第1のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第1の発熱抵抗体と、上記第2のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第2の発熱抵抗体と、上記スイッチに接続された保護抵抗とを有し、上記スイッチは、上記第1及び第2のヒューズが溶断されることにより、該第1及び第2のヒューズの溶融導体によって短絡される短絡素子と、
     電子部品と、
     上記電子部品の電流経路上に接続され、上記電子部品の異常時に該電子部品への通電を電気信号で遮断する保護素子と、
     上記電子部品の異常を検知し、異常信号を出力する保護部品と、
     上記保護部品の異常信号を受けて動作する第1~第3の制御素子とを備え、
     上記電子部品及び上記保護素子の両端と、上記スイッチの両端子及び上記保護抵抗とを並列に接続し、
     上記第1、第2の発熱抵抗体、及び上記保護素子の電気信号の入力端子とを、それぞれ上記第1~第3の制御素子に接続し、
     上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1~第3の制御素子が動作し、上記保護素子による上記電子部品の電流経路の遮断と、上記第1、第2のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成される補償回路。
  75.  上記保護部品及び上記第1~第3の制御素子を制御することにより、上記保護素子による電流経路の遮断を行い、その後上記短絡素子による上記バイパス電流経路を形成する請求項74に記載の補償回路。
  76.  上記電子部品は、異常時に電気的短絡又は熱暴走を伴うバッテリセルである請求項74又は請求項75記載の補償回路。
  77.  スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記スイッチの他端
    に接続された第2のヒューズと、上記第1のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第1の発熱抵抗体と、上記第2のヒューズの上記スイッチと接続された一端と反対側の他端に接続された第2の発熱抵抗体と、上記スイッチに接続された保護抵抗とを有し、上記スイッチは、上記第1及び第2のヒューズが溶断されることにより、該第1及び第2のヒューズの溶融導体によって短絡される短絡素子と、
     電子部品と、
     上記電子部品の電流経路上に接続され、上記電子部品の異常時に該電子部品への通電を電気信号で遮断する保護素子と、
     上記電子部品の異常を検知し、異常信号を出力する保護部品と、
     上記保護部品の異常信号を受けて動作する第1、第2の制御素子とを備え、
     上記電子部品及び上記保護素子の両端と、上記スイッチの両端子及び上記保護抵抗とを並列に接続し、
     上記第1の発熱抵抗体の端子を上記第1の制御素子に接続し、上記第2の発熱抵抗体及び上記保護素子の電気信号の入力端子を、上記第2の制御素子に接続し、
     上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1、第2の制御素子が動作し、上記保護素子による上記電子部品の電流経路の遮断と、上記第1、第2のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成される補償回路。
  78.  上記保護部品及び上記第1、第2の制御素子を制御することにより、上記保護素子による電流経路の遮断を行い、その後上記短絡素子による上記バイパス電流経路を形成する請求項77に記載の補償回路。
  79.  上記電子部品は、異常時に電気的短絡又は熱暴走を伴うバッテリセルである請求項77又は請求項78記載の補償回路。
  80.  上記絶縁基板には、上記可溶導体が設けられた面と同一面に、上記第1の電極と連続する第1の外部接続電極と、上記第1の外部接続電極上に設けられる1又は複数の第1の外部接続端子と、上記第2の電極と連続する第2の外部接続電極と、上記第2の外部接続電極上に設けられる1又は複数の第2の外部接続端子が形成され、
     上記第1の電極と上記第2の電極とが短絡したときの、上記第1、第2の外部接続電極間の導通抵抗よりも、上記第1の外部接続端子と上記第2の外部接続端子との合成抵抗が低い請求項44乃至請求項46のいずれか1項に記載の短絡素子。
  81.  上記外部接続端子が、金属バンプ又は金属ポストである請求項80記載の短絡素子。
  82.  上記金属バンプ又は金属ポストは、高融点金属の表面に低融点金属層が形成されている請求項81記載の短絡素子。
  83.  上記高融点金属は銅又は銀を主成分とし、上記低融点金属は錫を主成分とする鉛フリー半田である請求項82記載の短絡素子。
  84.  上記外部接続端子が、錫を主成分とする鉛フリー半田からなる金属バンプである請求項80記載の短絡素子。
  85.  短絡素子が実装対象物に実装された実装体において、
     上記短絡素子は、
     絶縁基板と、
     上記絶縁基板に形成された第1及び第2の発熱抵抗体と、
     上記絶縁基板に、互いに隣接して設けられた第1、第2の電極と、
     上記絶縁基板に、上記第1の電極と隣接して設けられるとともに、上記第1の発熱抵抗体に電気的に接続された第3の電極と、
     上記絶縁基板に、上記第2の電極と隣接して設けられるとともに、上記第2の発熱抵抗体に電気的に接続された第4の電極と、
     上記第1、第3の電極間に亘って設けられることにより電流経路を構成し、上記第1の発熱抵抗体からの加熱により、上記第1、第3の電極間の上記電流経路を溶断する第1の可溶導体と、
     上記第2、第4の電極間に亘って設けられることにより電流経路を構成し、上記第2の発熱抵抗体からの加熱により、上記第2、第4の電極間の上記電流経路を溶断する第2の可溶導体と、
     上記絶縁基板の上記第1、第2の電極が形成された面と同一表面に形成され、上記第1の電極と連続する第1の外部接続電極及び上記第2の電極と連続する第2の外部接続電極とを備え、
     上記第1の電極が上記第1の外部接続電極上に接続された第1の外部接続端子を介して上記実装対象物と接続され、上記第2の電極が上記第2の外部接続電極上に接続された第2の外部接続端子を介して上記実装対象物と接続され、
     上記第1、第2の発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1、第2の可溶導体によって、上記第1の電極と上記第2の電極とが短絡したときの、上記第1、第2の外部接続電極間の導通抵抗よりも、上記第1の外部接続端子と上記第2の外部接続端子との合成抵抗が低いことを特徴とする実装体。
  86.  絶縁基板と、
     上記絶縁基板に形成された第1及び第2の発熱抵抗体と、
     上記絶縁基板に、互いに隣接して設けられた第1、第2の電極と、
     上記絶縁基板に、上記第1の電極と隣接して設けられるとともに、上記第1の発熱抵抗体に電気的に接続された第3の電極と、
     上記絶縁基板に、上記第2の電極と隣接して設けられるとともに、上記第2の発熱抵抗体に電気的に接続された第4の電極と、
     上記第4の電極に隣接して設けられた第5の電極と、
     上記第1、第3の電極間に亘って設けられることにより電流経路を構成し、上記第1の発熱抵抗体からの加熱により、上記第1、第3の電極間の上記電流経路を溶断する第1の可溶導体と、
     上記第2から上記第4の電極を経由して上記第5の電極に亘って設けられることにより電流経路を構成し、上記第2の発熱抵抗体からの加熱により、上記第2の電極と上記第4の電極との間、及び上記第4の電極と上記第5の電極との間の各上記電流経路を溶断する第2の可溶導体とを備え、
     上記第1、第2の発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1、第2の可溶導体によって、上記第1の電極と上記第2の電極とが短絡することを特徴とする短絡素子。
  87.  上記第2の可溶導体が、上記第1の可溶導体に先行して溶断する請求項86記載の短絡素子。
  88.  上記第2の可溶導体の幅が、上記第1の可溶導体よりも狭い請求項87記載の短絡素子。
  89.  上記絶縁基板上に積層された絶縁層を備え、
     上記第1~第5の電極が、上記絶縁層上に設置され、
     上記第1、第2の発熱抵抗体が、上記絶縁層の内部もしくは上記絶縁層と上記絶縁基板の間に設置されている請求項86乃至請求項88のいずれか1項に記載の短絡素子。
  90.  上記第1、第2の発熱抵抗体が、上記絶縁基板の内部に設置されてなる請求項86乃至請求項88のいずれか1項に記載の短絡素子。
  91.  上記第1、第2の発熱抵抗体が、上記絶縁基板の電極形成面と反対の面に設置されてなる請求項86乃至請求項88のいずれか1項に短絡素子。
  92.  上記第1、第2の発熱抵抗体が、上記絶縁基板の電極形成面上に設置されてなる請求項86乃至請求項88のいずれか1項に記載の短絡素子。
  93.  上記第1の電極及び上記第2の電極の表面に、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキのいずれか1つが被覆されている請求項86乃至請求項88のいずれか1項に記載の短絡素子。
  94.  上記第1の電極の面積が、上記第3の電極よりも広く、上記第2の電極の面積が、上記第4及び第5の電極よりも広い請求項86乃至請求項88のいずれか1項に記載の短絡素子。
  95.  上記絶縁基板上に設けられた内部を保護するカバー部材と、
     上記カバー部材の内面に設けられるカバー部電極とを備え、
     上記カバー部電極が、上記第1の電極及び上記第2の電極と重畳する位置に設置されてなる請求項86乃至請求項88のいずれか1項に記載の短絡素子。
  96.  上記絶縁基板上に、上記第1の電極又は上記第2の電極のいずれか一方に接続される保護抵抗を備える請求項86乃至請求項88のいずれか1項に記載の短絡素子。
  97.  上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、Snを主成分とするPbフリーハンダである請求項86乃至請求項88のいずれか1項に記載の短絡素子。
  98.  上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、低融点金属と高融点金属とを含有し、
     上記低融点金属が、上記発熱抵抗体から発する熱により溶融することで、上記高融点金属を溶食する請求項86乃至請求項88のいずれか1項に記載の短絡素子。
  99.  上記低融点金属が、ハンダであり、
     上記高融点金属が、Ag、Cu、又はAg若しくはCuを主成分とする合金である請求項98記載の短絡素子。
  100.  上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方は、内層が上記低融点金属であり、外層が上記高融点金属の被覆構造である請求項98記載の短絡素子。
  101.  上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方は、内層が上記高融点金属であり、外層が上記低融点金属の被覆構造である請求項98記載の短絡素子。
  102.  上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、上記低融点金属と、上記高融点金属とが積層された積層構造である請求項98記載の短絡素子。
  103.  上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、上記低融点金属と、上記高融点金属とが交互に積層された4層以上の多層構造である請求項98記載の短絡素子。
  104.  上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、内層を構成する低融点金属の表面を、高融点金属にてストライプ状に部分的に積層する請求項98記載の短絡素子。
  105.  上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方が、多数の開口部を
    有する高融点金属と、上記開口部に挿入された低融点金属とからなる請求項98記載の短絡素子。
  106.  上記第1の可溶導体又は第2の可溶導体の少なくともいずれか一方の低融点金属の体積が、高融点金属の体積よりも多い請求項98記載の短絡素子
  107.  スイッチと、
     上記スイッチの一端に接続された第1のヒューズと、
     上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、
     上記スイッチの開放端と直列に接続された第2、第3のヒューズと、
     上記第2、第3のヒューズの接続点に接続された第2の発熱抵抗体とを備え、
     上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、
     上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡される短絡素子回路。
  108.  スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、上記スイッチの開放端と直列に接続された第2、第3のヒューズと、上記第2、第3のヒューズの接続点に接続された第2の発熱抵抗体とを備え、上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡される短絡素子と、
     電子部品と、
     上記電子部品の異常を検知し、異常信号を出力する保護部品と、
     上記保護部品の異常信号を受けて動作する第1、第2の制御素子とを備え、
     上記第2、第3のヒューズと上記電子部品とを直列に接続して電流経路を構成し、
     上記スイッチと上記第1のヒューズとの接続点を上記電子部品の開放端にバイパスするように接続し、
     上記第1の発熱抵抗体の開放端に上記第1の制御素子を接続し、
     上記第2の発熱抵抗体の開放端に上記第2の制御素子を接続し、
     上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1、第2の制御素子が動作し、上記電子部品の電流経路の遮断と、上記第1のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成される補償回路。
  109.  上記保護部品及び上記第1、第2の制御素子を制御することにより、上記電子部品の電流経路の遮断を行い、その後上記短絡素子による上記バイパス電流経路を形成する請求項108に記載の補償回路。
  110.  上記電子部品は、異常時に電気的短絡又は熱暴走を伴うバッテリセルである請求項108記載の補償回路。
  111.  上記バイパス電流経路上に、上記電子部品の内部抵抗相当の保護抵抗が接続されている請求項108乃至請求項110記載の補償回路。
  112.  スイッチと、
     上記スイッチの一端に接続された第1のヒューズと、
     上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、
     上記スイッチと上記第1のヒューズとの接続点と接続された保護抵抗と、
     上記スイッチの開放端と直列に接続された第2、第3のヒューズと、
     上記第2、第3のヒューズの接続点に接続された第2の発熱抵抗体とを備え、
     上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、
     上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡される短絡素子回路。
  113.  スイッチと、上記スイッチの一端に接続された第1のヒューズと、上記第1のヒューズの開放端に接続された第1の発熱抵抗体と、上記スイッチと上記第1のヒューズとの接続点と接続された保護抵抗と、上記スイッチの開放端と直列に接続された第2、第3のヒューズと、上記第2、第3のヒューズの接続点に接続された第2の発熱抵抗体とを備え、上記第2の発熱抵抗体の発熱により上記第2、第3のヒューズが溶断され、上記第1の発熱抵抗体の発熱により上記第1のヒューズが溶断されることにより、該第1のヒューズの溶融導体によって上記スイッチが短絡される短絡素子と、
     電子部品と、
     上記電子部品の異常を検知し、異常信号を出力する保護部品と、
     上記保護部品の異常信号を受けて動作する第1、第2の制御素子とを備え、
     上記第2、第3のヒューズと上記電子部品とを直列に接続して電流経路を構成し、
     上記保護抵抗の開放端を上記電子部品の開放端にバイパスするように接続し、
     上記第1の発熱抵抗体の開放端に上記第1の制御素子を接続し、
     上記第2の発熱抵抗体の開放端に上記第2の制御素子を接続し、
     上記電子部品の異常時には、上記保護部品からの異常信号を受けて上記第1、第2の制御素子が動作し、上記電子部品の電流経路の遮断と、上記第1のヒューズの溶断に連動した上記スイッチの短絡を行い、バイパス電流経路が形成される補償回路。
  114.  上記保護部品及び上記第1、第2の制御素子を制御することにより、上記電子部品の電流経路の遮断を行い、その後上記短絡素子による上記バイパス電流経路を形成する請求項113に記載の補償回路。
  115.  上記電子部品は、異常時に電気的短絡又は熱暴走を伴うバッテリセルである請求項113又は請求項114記載の補償回路。
  116.  上記絶縁基板には、上記可溶導体が設けられた面と同一面に、上記第1の電極と連続する第1の外部接続電極と、上記第1の外部接続電極上に設けられる1又は複数の第1の外部接続端子と、上記第2の電極と連続する第2の外部接続電極と、上記第2の外部接続電極上に設けられる1又は複数の第2の外部接続端子が形成され、
     上記第1の電極と上記第2の電極とが短絡したときの、上記第1、第2の外部接続電極間の導通抵抗よりも、上記第1の外部接続端子と上記第2の外部接続端子との合成抵抗が低い請求項86乃至請求項88のいずれか1項に記載の短絡素子。
  117.  上記外部接続端子が、金属バンプ又は金属ポストである請求項116記載の短絡素子。
  118.  上記金属バンプ又は金属ポストは、高融点金属の表面に低融点金属層が形成されている請求項117記載の短絡素子。
  119.  上記高融点金属は銅又は銀を主成分とし、上記低融点金属は錫を主成分とする鉛フリー半田である請求項118記載の短絡素子。
  120.  上記外部接続端子が、錫を主成分とする鉛フリー半田からなる金属バンプである請求項116記載の短絡素子。
  121.  短絡素子が実装対象物に実装された実装体において、
     上記短絡素子は、
     絶縁基板と、
     上記絶縁基板に形成された第1及び第2の発熱抵抗体と、
     上記絶縁基板に、互いに隣接して設けられた第1、第2の電極と、
     上記絶縁基板に、上記第1の電極と隣接して設けられるとともに、上記第1の発熱抵抗体に電気的に接続された第3の電極と、
     上記絶縁基板に、上記第2の電極と隣接して設けられるとともに、上記第2の発熱抵抗体に電気的に接続された第4の電極と、
     上記第4の電極に隣接して設けられた第5の電極と、
     上記第1、第3の電極間に亘って設けられることにより電流経路を構成し、上記第1の発熱抵抗体からの加熱により、上記第1、第3の電極間の上記電流経路を溶断する第1の可溶導体と、
     上記第2から上記第4の電極を経由して上記第5の電極に亘って設けられることにより電流経路を構成し、上記第2の発熱抵抗体からの加熱により、上記第2の電極と上記第4の電極との間、及び上記第4の電極と上記第5の電極との間の各上記電流経路を溶断する第2の可溶導体と、
     上記絶縁基板の上記第1、第2の電極が形成された面と同一表面に形成され、上記第1の電極と連続する第1の外部接続電極及び上記第2の電極と連続する第2の外部接続電極とを備え、
     上記第1の電極が上記第1の外部接続電極上に接続された第1の外部接続端子を介して上記実装対象物と接続され、上記第2の電極が上記第2の外部接続電極上に接続された第2の外部接続端子を介して上記実装対象物と接続され、
     上記第1、第2の発熱抵抗体からの加熱により溶融し、上記第1、第2の電極上に凝集した上記第1、第2の可溶導体によって、上記第1の電極と上記第2の電極とが短絡したときの、上記第1、第2の外部接続電極間の導通抵抗よりも、上記第1の外部接続端子と上記第2の外部接続端子との合成抵抗が低いことを特徴とする実装体。
     
PCT/JP2014/052634 2013-02-05 2014-02-05 短絡素子、およびこれを用いた回路 WO2014123139A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157024285A KR102115999B1 (ko) 2013-02-05 2014-02-05 단락 소자, 및 이것을 사용한 회로
CN201480007625.9A CN105027252B (zh) 2013-02-05 2014-02-05 短路元件及利用该短路元件的电路
US14/818,862 US9899179B2 (en) 2013-02-05 2015-08-05 Short-circuit element and a circuit using the same
US14/819,061 US9953792B2 (en) 2013-02-05 2015-08-05 Short-circuit element and a circuit using the same
US14/819,328 US9953793B2 (en) 2013-02-05 2015-08-05 Short-circuit element and a circuit using the same

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2013020756 2013-02-05
JP2013-020756 2013-02-05
JP2013-023171 2013-02-08
JP2013023171 2013-02-08
JP2013-024643 2013-02-12
JP2013024643 2013-02-12
JP2013125078A JP6246503B2 (ja) 2013-02-08 2013-06-13 短絡素子、およびこれを用いた回路
JP2013125077A JP6254777B2 (ja) 2013-02-05 2013-06-13 短絡素子、およびこれを用いた回路
JP2013-125077 2013-06-13
JP2013-125078 2013-06-13
JP2013125079A JP6161967B2 (ja) 2013-02-12 2013-06-13 短絡素子、およびこれを用いた回路
JP2013-125079 2013-06-13

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/819,061 Continuation US9953792B2 (en) 2013-02-05 2015-08-05 Short-circuit element and a circuit using the same
US14/819,328 Continuation US9953793B2 (en) 2013-02-05 2015-08-05 Short-circuit element and a circuit using the same
US14/818,862 Continuation US9899179B2 (en) 2013-02-05 2015-08-05 Short-circuit element and a circuit using the same

Publications (1)

Publication Number Publication Date
WO2014123139A1 true WO2014123139A1 (ja) 2014-08-14

Family

ID=51299731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052634 WO2014123139A1 (ja) 2013-02-05 2014-02-05 短絡素子、およびこれを用いた回路

Country Status (1)

Country Link
WO (1) WO2014123139A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037210A1 (ja) * 2013-09-11 2015-03-19 デクセリアルズ株式会社 切替回路
WO2016031502A1 (ja) * 2014-08-26 2016-03-03 デクセリアルズ株式会社 回路基板及び電子部品の実装方法
WO2016098854A1 (ja) * 2014-12-18 2016-06-23 デクセリアルズ株式会社 スイッチ素子
CN107735849A (zh) * 2014-11-11 2018-02-23 迪睿合株式会社 熔丝单元、熔丝元件、保护元件、短路元件、切换元件
CN109103521A (zh) * 2018-08-23 2018-12-28 江门市钧崴电子科技有限公司苏州分公司 电池保护装置及其加热结构、电子设备
CN109239438A (zh) * 2018-10-12 2019-01-18 四川大学 多股绝缘自制热导线的制热控制检测设备与检测控制方法
TWI736443B (zh) * 2019-11-07 2021-08-11 日商日立全球先端科技股份有限公司 燃料電池陣列、燃料電池檢查方法
CN117912915A (zh) * 2024-03-15 2024-04-19 嘉兴模度新能源有限公司 复合熔断电连接结构及电池组

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133318A (ja) * 1998-08-21 2000-05-12 Sony Corp バッテリパック
JP2010003665A (ja) * 2008-05-23 2010-01-07 Sony Chemical & Information Device Corp 保護素子及び二次電池装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133318A (ja) * 1998-08-21 2000-05-12 Sony Corp バッテリパック
JP2010003665A (ja) * 2008-05-23 2010-01-07 Sony Chemical & Information Device Corp 保護素子及び二次電池装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037210A1 (ja) * 2013-09-11 2015-03-19 デクセリアルズ株式会社 切替回路
WO2016031502A1 (ja) * 2014-08-26 2016-03-03 デクセリアルズ株式会社 回路基板及び電子部品の実装方法
JP2016046208A (ja) * 2014-08-26 2016-04-04 デクセリアルズ株式会社 回路基板及び電子部品の実装方法
CN106663567A (zh) * 2014-08-26 2017-05-10 迪睿合株式会社 电路基板及电子部件的安装方法
TWI672984B (zh) * 2014-08-26 2019-09-21 日商迪睿合股份有限公司 電路基板及電子零件之安裝方法
CN107735849A (zh) * 2014-11-11 2018-02-23 迪睿合株式会社 熔丝单元、熔丝元件、保护元件、短路元件、切换元件
TWI697022B (zh) * 2014-11-11 2020-06-21 日商迪睿合股份有限公司 熔絲單元、熔絲元件、保護元件、短路元件、切換元件
TWI705468B (zh) * 2014-12-18 2020-09-21 日商迪睿合股份有限公司 開關元件
CN107408474A (zh) * 2014-12-18 2017-11-28 迪睿合株式会社 开关元件
JP2016119172A (ja) * 2014-12-18 2016-06-30 デクセリアルズ株式会社 スイッチ素子
WO2016098854A1 (ja) * 2014-12-18 2016-06-23 デクセリアルズ株式会社 スイッチ素子
CN109103521A (zh) * 2018-08-23 2018-12-28 江门市钧崴电子科技有限公司苏州分公司 电池保护装置及其加热结构、电子设备
CN109103521B (zh) * 2018-08-23 2024-05-03 钧崴电子科技股份有限公司 电池保护装置及其加热结构、电子设备
CN109239438A (zh) * 2018-10-12 2019-01-18 四川大学 多股绝缘自制热导线的制热控制检测设备与检测控制方法
CN109239438B (zh) * 2018-10-12 2023-09-12 四川大学 多股绝缘自制热导线的制热控制检测设备与检测控制方法
TWI736443B (zh) * 2019-11-07 2021-08-11 日商日立全球先端科技股份有限公司 燃料電池陣列、燃料電池檢查方法
CN117912915A (zh) * 2024-03-15 2024-04-19 嘉兴模度新能源有限公司 复合熔断电连接结构及电池组

Similar Documents

Publication Publication Date Title
KR102115999B1 (ko) 단락 소자, 및 이것을 사용한 회로
WO2014123139A1 (ja) 短絡素子、およびこれを用いた回路
CN106796857B (zh) 保护元件及安装体
KR20210089766A (ko) 보호 소자 및 배터리 팩
JP6161967B2 (ja) 短絡素子、およびこれを用いた回路
WO2015045278A1 (ja) 短絡素子
JP6246503B2 (ja) 短絡素子、およびこれを用いた回路
KR102233539B1 (ko) 단락 소자 및 단락 회로
KR102386943B1 (ko) 단락 소자
JP6254777B2 (ja) 短絡素子、およびこれを用いた回路
KR102378639B1 (ko) 스위치 소자 및 스위치 회로
KR102217413B1 (ko) 보호 소자, 및 보호 소자가 실장된 실장체
KR102527559B1 (ko) 단락 소자
JP6223142B2 (ja) 短絡素子
TW201530955A (zh) 保護電路、電池電路、保護元件以及保護元件的驅動方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480007625.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749589

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157024285

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14749589

Country of ref document: EP

Kind code of ref document: A1