[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014181996A1 - 발광 소자 - Google Patents

발광 소자 Download PDF

Info

Publication number
WO2014181996A1
WO2014181996A1 PCT/KR2014/003781 KR2014003781W WO2014181996A1 WO 2014181996 A1 WO2014181996 A1 WO 2014181996A1 KR 2014003781 W KR2014003781 W KR 2014003781W WO 2014181996 A1 WO2014181996 A1 WO 2014181996A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
straight line
wire
disposed
metal layer
Prior art date
Application number
PCT/KR2014/003781
Other languages
English (en)
French (fr)
Inventor
박기훈
박정환
조현석
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US14/890,095 priority Critical patent/US9543489B2/en
Priority to JP2016512822A priority patent/JP2016524322A/ja
Priority to EP14795411.9A priority patent/EP2996164B1/en
Priority to CN201480026275.0A priority patent/CN105210201B/zh
Publication of WO2014181996A1 publication Critical patent/WO2014181996A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48229Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • This embodiment relates to a light emitting device.
  • a light emitting device such as a light emitting device, is a kind of semiconductor device that converts electrical energy into light, and has been spotlighted as a next-generation light source by replacing a conventional fluorescent lamp and an incandescent lamp.
  • light emitting diodes Since light emitting diodes generate light using semiconductor devices, they consume much less power than incandescent lamps that generate light by heating tungsten or fluorescent lamps that generate light by colliding ultraviolet light generated through high-pressure discharge with phosphors. .
  • the light emitting diode since the light emitting diode generates light using the potential gap of the semiconductor device, the light emitting diode has a longer life, a faster response characteristic, and an environment-friendly characteristic than a conventional light source.
  • the light emitting diodes are increasingly used as light sources of lighting devices such as various lamps, liquid crystal displays, electronic displays, and street lamps that are used indoors and outdoors. have.
  • the embodiment provides a light emitting device in which a plurality of wires are arranged in a radial direction.
  • the embodiment provides a light emitting device in which a plurality of wires connected to different light emitting chips are arranged in a radial direction.
  • the embodiment provides a light emitting device in which a plurality of wires protruding through different regions of a spherical surface of a molding member are arranged in a radial direction.
  • the embodiment provides a light emitting device in which a plurality of wires passing through an outer line of a heat dissipation plate on which a plurality of light emitting chips are arranged are arranged in a radial direction.
  • the embodiment provides a light emitting device in which wires passing through an outline of a circular heat dissipation plate are arranged in a normal direction with respect to a tangent passing through a point of an outline of the heat dissipation plate.
  • the embodiment provides a light emitting device in which a straight line connecting both ends of a wire connected to a metal layer and a light emitting chip disposed on a heat sink is arranged in a radial direction from the center of the heat sink.
  • the embodiment can provide a light emitting device in which a plurality of wires coupled to a molding member and the reflective member are arranged in a radial direction from the center of the heat dissipation plate.
  • the embodiment can improve heat radiation efficiency of a light emitting device having a plurality of light emitting chips.
  • the embodiment can improve electrical reliability of a light emitting device having a plurality of light emitting chips.
  • the light emitting device the body; First and second metal layers disposed on an upper surface of the body; A heat dissipation plate disposed between the first and second metal layers and having a circular outline; A plurality of light emitting parts disposed on the heat dissipation plate; A plurality of first and second bonding regions disposed on the first and second metal layers and electrically connected to the plurality of light emitting units, and a molding member disposed on the heat dissipation plate and covering the plurality of light emitting units.
  • Each of the light emitting units may include a plurality of light emitting chips connected to each other; And a plurality of wires electrically connecting the plurality of light emitting chips to the first and second bonding regions, wherein the plurality of wires of each light emitting unit are arranged in a radial direction from the center of the heat dissipation plate.
  • the embodiment can improve the reliability of a light emitting device having a plurality of light emitting chips.
  • the embodiment can improve heat radiation efficiency of a light emitting device having a plurality of light emitting chips.
  • the embodiment can improve the reliability of the light emitting device and the lighting system having the same.
  • FIG. 1 is a plan view of a light emitting device according to a first embodiment.
  • FIG. 2 is a plan view illustrating in detail the heat sink and the first and second metal layers in the light emitting device of FIG. 1.
  • FIG. 3 is a cross-sectional view along the A-A side of the light emitting device of FIG.
  • FIG. 4 is a view illustrating a connection state of a first wire of a first light emitting unit in the light emitting device of FIG. 1.
  • FIG. 5 is a view illustrating a connection state of a first wire of a first light emitting unit in the light emitting device of FIG. 1.
  • FIG. 6 is a diagram illustrating an example of compressive deformation of a circuit board of the light emitting device of FIG. 1.
  • FIG. 7 is a diagram illustrating an example of tensile deformation of a circuit board of the light emitting device of FIG. 1.
  • FIG. 8 is a graph illustrating a moving distance according to vertical deformation due to compression and tensile deformation of the circuit boards of FIGS. 6 and 7.
  • FIG. 9 is a graph illustrating an equivalent stress for each temperature at a boundary area between a molding member and a reflective member of a circuit board according to an exemplary embodiment.
  • FIG. 10 is a diagram illustrating a maximum deformation for each temperature at a boundary area between a molding member and a reflective member of a circuit board according to an exemplary embodiment.
  • FIG. 11 is a diagram illustrating another example of the light emitting device of FIG. 3.
  • FIG. 12 is a diagram illustrating still another example of the light emitting device of FIG. 3.
  • FIG. 13 is a diagram illustrating another example of the light emitting device of FIG. 1.
  • FIG. 14 is a plan view illustrating a light emitting device according to a second embodiment.
  • FIG. 15 is a partially enlarged view of the light emitting device of FIG. 14.
  • 16 is a view showing an example of a light emitting chip of a light emitting device according to the embodiment.
  • 17 is a diagram illustrating a display device having a light emitting device according to an exemplary embodiment.
  • FIG. 18 is a diagram illustrating another example of a display device having a light emitting device according to an exemplary embodiment.
  • 19 is a perspective view of a lighting device having a light emitting device according to the embodiment.
  • FIGS. 1 to 5 a light emitting device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. 1 is a plan view of a light emitting device according to the first embodiment
  • FIG. 2 is a plan view showing in detail the heat dissipation plate and the first and second metal layers in the light emitting device of FIG. 4 is a side cross-sectional view
  • FIG. 4 is a view showing a connection state of the first light emitting unit of the first light emitting unit in FIG. 1, and FIG. to be.
  • the light emitting device includes a body 11 and a plurality of metal layers 13 and 15 disposed on an upper surface of the body 11; A heat sink 17 disposed between the plurality of metal layers 13 and 15; A plurality of light emitting parts 30 and 30A having light emitting chips 31, 32, 33, 41, 42, and 43 on the heat sink 17; A reflection member 23 disposed around the heat sink 17; And a molding member 25 disposed on the heat sink 17. And a plurality of wires 71, 73, 81, and 83 connected to the light emitting parts 30 and 30A and the metal layers 13 and 15, respectively.
  • the light emitting device includes a plurality of metal layers 45 and 47 on a lower surface of the body 11; And a plurality of connection electrodes 14 and 16 disposed in the body 11.
  • the light emitting device is a package or unit having a plurality of light emitting chips 31, 32, 33, 41, 42, 43, and may be applied to lighting devices such as lighting lamps, indoor lamps, outdoor lamps, indicator lamps, and conducting lamps.
  • the body 11 of the light emitting device may include an insulating material, for example, a resin material such as silicon, epoxy, or plastic material.
  • the body 11 may be formed of a resin material such as polyphthalamide (PPA).
  • PPA polyphthalamide
  • the silicon includes a white resin.
  • the body 11 may be selectively added among an acid anhydride, an antioxidant, a release material, a light reflector, an inorganic filler, a curing catalyst, a light stabilizer, a lubricant, and titanium dioxide. It contains.
  • the body 11 may be molded by at least one selected from the group consisting of a modified epoxy resin, a modified silicone resin, an acrylic resin, and a urethane resin.
  • an epoxy resin composed of triglycidyl isocyanurate, hydrogenated bisphenol A diglycidyl ether, or the like, an acid composed of hexahydro phthalic anhydride, 3-methylhexahydro phthalic anhydride 4-methylhexahydrophthalic anhydride, or the like.
  • the anhydride was added to the epoxy resin by adding DBU (1,8-Diazabicyclo (5,4,0) undecene-7) as a curing accelerator, ethylene glycol, titanium oxide pigment and glass fiber as a promoter, and partially by heating.
  • DBU 1,8-Diazabicyclo (5,4,0) undecene-7
  • the solid epoxy resin composition hardened by reaction and B staged can be used, It does not limit to this.
  • the body 11 includes an insulating material, for example, a ceramic material.
  • the ceramic material includes a low temperature co-fired ceramic (LTCC) or a high temperature co-fired ceramic (HTCC) which is co-fired.
  • the body 11 may include a metal oxide, for example, SiO 2 , Si x O y , Si 3 N 4 , Si x N y , SiO x N y , Al 2 O 3 .
  • the body 11 is adjacent to the first side 1 and the second side 2 opposite to each other, and the third side and the third side 3 adjacent to the first side 1 and the second side 2 and opposite to each other. And 4).
  • the lengths of the first and second side surfaces 1 and 2 may be longer than or equal to the lengths of the third and fourth side surfaces 3 and 4.
  • the top view shape of the body 11 may have a polygonal shape, for example, a rectangular shape, but may include a shape having a curved surface.
  • the upper surface of the body 11 includes a plurality of metal layers 13 and 15, for example, first and second metal layers 13 and 15 separated from each other.
  • the first metal layer 13 may be disposed in a first region of the upper surface of the body 11 and adjacent to the first, second, and third side surfaces 1, 2, and 3 of the body 11.
  • the second metal layer 15 may be disposed in a second region of the upper surface of the body 11 and may be disposed adjacent to the first, second and fourth side surfaces 1, 2, and 4 of the body 11.
  • the body 11 and the first and second metal layers 13 and 15 may be defined as a circuit board 10.
  • the lower surface of the body 11 includes a plurality of metal layers, for example, third and fourth metal layers 45 and 47.
  • the circuit board 10 may further include the third and fourth metal layers 45 and 47.
  • the third metal layer 45 may be disposed to overlap the first metal layer 13 in the vertical direction.
  • the third metal layer 45 may be disposed to overlap the heat sink 17 in the vertical direction.
  • the third metal layer 45 may be disposed in an area larger than the area of the first metal layer 13.
  • the fourth metal layer 47 may be disposed to overlap the second metal layer 15 in the vertical direction.
  • the fourth metal layer 47 may be disposed to overlap the heat sink 17 in the vertical direction.
  • the fourth metal layer 47 may be formed with an area larger than the area of the second metal layer 15.
  • the heat dissipation efficiency of the light emitting device may be improved by the third and fourth metal layers 45 and 47.
  • the third and fourth metal layers 45 and 47 may be mounted on
  • the body 11 includes a plurality of connection electrodes 14 and 16, for example, a first connection electrode 14 and a second connection electrode 16 spaced apart from each other.
  • the circuit board 10 may include a first connection electrode 14 and a second connection electrode 16.
  • the first connection electrode 14 may overlap with the regions of the first and third metal layers 13 and 45 in the vertical direction.
  • the first connection electrode 14 is electrically connected to the first and third metal layers 13 and 45.
  • the first connection electrode 14 may be disposed in the body 11 or one or more, but is not limited thereto.
  • the second connection electrode 16 may overlap with the regions of the second and fourth metal layers 15 and 47 in a vertical direction.
  • the second connection electrode 16 is electrically connected to the second and fourth metal layers 15 and 47.
  • the second connection electrode 16 may be disposed in the body 11 or one or more, but is not limited thereto.
  • the distance between the first and second connection electrodes 14 and 16 may be wider than the width of the heat sink 17. Accordingly, the power path of the light emitting device can be dispersed, and the heat dissipation efficiency can be improved.
  • the heat sink 17 is disposed on the upper surface of the body (11).
  • the heat sink 17 may be disposed between the first and second metal layers 13 and 15 and overlap the third and fourth metal layers 45 and 47 in a vertical direction.
  • the first and second metal layers 13 and 15 may face each other on the outer side surface of the heat sink 17.
  • the first metal layer 13 covers 45 to 49% of the outer side of the heat sink 17, and the second metal layer 15 covers 45 to 49% of the outer side of the heat sink 17. Done.
  • the first and second metal layers 13 and 15 are disposed along an outline of the heat sink 17.
  • a region corresponding to the outer side surface of the heat sink 17 among the inner regions of the first metal layer 13 may be formed in a semicircular shape.
  • a region corresponding to the outer side surface of the heat sink 17 among the inner regions of the second metal layer 15 may be formed in a semicircular shape.
  • the heat sink 17 includes a shape having a curved top view shape, for example, a circular shape.
  • the outline of the heat sink 17 may be formed in a circular shape.
  • the diameter E1 of the heat sink 17 may be 50% or more, for example, 70% or more of the width of the body 11.
  • Diameter E1 of the heat sink 17 may be formed in the range of 70 ⁇ 95% of the width of the body (11).
  • the width of the body 11 may represent the length in the X-axis direction, the length represents the length in the Y-axis direction.
  • the width of the body 11 may be a gap between the first and second side surfaces (1, 2), but is not limited thereto.
  • the heat sink 17 may be formed to have the same thickness as that of the first and second metal layers 13 and 15, or may be formed to a thicker thickness.
  • the protective layer 21 may be disposed on upper surfaces of the first and second metal layers 13 and 15.
  • the protective layer 21 may be disposed on the boundary region and the outer side surface of the first and second metal layers 13 and 15.
  • the protective layer 21 may be formed on edges of the first, second, and fourth side surfaces 1, 2, and 4 of the body 11. Accordingly, the first metal layer 13 is spaced apart from edges of the first, second, and third side surfaces 1, 2, and 3 of the body 11, and the second metal layer 15 is separated from the edge. It is spaced apart from the edges of the first, second and fourth sides 1, 2, 4 of the body 11.
  • the protective layer 21 prevents the surfaces of the first and second metal layers 13 and 15 from being exposed.
  • the protective layer 21 may protect the first and second metal layers 13 and 15 from corrosion or electrical reliability.
  • the protective layer 21 may be formed of an insulating material, for example, a material such as a photoresist, but is not limited thereto.
  • the first metal layer 13 includes a first open region 13A, a first support protrusion 13B, and a first bonding region 12A.
  • the first open region 13A may be a region where the protective layer 21 is removed from the upper surface of the second metal layer 15, and wires may be contacted or bonded.
  • the first supporting protrusion 13B extends from the first metal layer 13 in at least one side surface of the body 11, for example, in the direction of the third side surface 3.
  • the first support protrusion 13B may be a lead terminal for plating or support the first metal layer 13 during injection.
  • the first bonding region 12A is disposed along a circumference of the heat sink 17, and is, for example, a region recessed in a hemispherical shape along an outer contour of the heat sink 17.
  • the first bonding region 12A is an open region in which the protective layer 21 is removed, is connected to the light emitting units 30 and 30A, and supplies the first polarity power.
  • the second metal layer 15 includes a second open region 15A, a second support protrusion 15B, and a second bonding region 12B.
  • the second open region 13A may be a region where the protective layer 21 is removed from the upper surface of the second metal layer 15.
  • a separate wire may be bonded or contacted to the second open area 13A.
  • the second supporting protrusion 15B includes at least one, and extends from the second metal layer 15 to the outer side of the body 11.
  • the second support protrusion 15B may be a lead terminal for plating or support the second metal layer 15 during injection. For example, when there are a plurality of second supporting protrusions 15B, the second supporting protrusions 15B may extend in the first and second side surfaces 1 and 2 of the body 11.
  • the second bonding region 12B is disposed along a circumference of the heat sink 17, and is, for example, a region recessed in a hemispherical shape along an outer contour of the heat sink 17.
  • the second bonding region 12B is an open region in which the protective layer 21 is removed and is connected to the light emitting units 30 and 30A to supply the second polarity power.
  • first and second bonding regions 12A and 12B are disposed along the outer circumference of the heat sink 17, the lengths and positions of the wires 71, 73, 81, and 83, and the light emitting chips 31, 32, and 33
  • the arrangement of (41, 42, 43) is easy.
  • the first to fourth metal layers 13, 15, 45, and 47 may include titanium (Ti), copper (Cu), nickel (Ni), gold (Au), chromium (Cr), tantalum (Ta), and platinum ( It may include at least one metal of Pt, tin (Sn), silver (Ag), phosphorus (P), aluminum (Al), and palladium (Pd).
  • the first to fourth metal layers 13, 15, 45, and 47 may be formed in multiple layers of, for example, different metals.
  • a plating layer may be formed on the surfaces of the first to fourth metal layers 13, 15, 45, and 47, but is not limited thereto. The plating layer may be exposed on the first and second bonding regions 12A and 12B.
  • the first gap portion 18 is disposed along the circumference of the heat sink 17, and is disposed between the first and second metal layers 13 and 15 and the heat sink 17.
  • the first gap portion 18 may be formed in a ring shape, and blocks contact between the heat sink 17 and the first and second metal layers 13 and 15.
  • a portion of the molding member 25 or a portion of the reflective member 23 may be disposed in the first gap portion 18.
  • the second gap portion 19 is disposed between the first and second metal layers 13 and 15 and is connected to the first gap portion 18.
  • the second gap portion 19 may be a gap between the first and second metal layers 13 and 15 in a region except for the heat sink 17.
  • the second gap portion 19 may be disposed to be wider than the width of the first gap portion 18. Accordingly, the gap between the first and second metal layers 13 and 15 may be wider than the gap between the heat sink 17 and the first metal layer 13 or the second metal layer 15.
  • the heat sink 17 includes a third support protrusion 17A, and the third support protrusion 17A is a side surface of the body 11 along the second gap portion 19, for example, the first and the second support protrusions 17A. It can extend to the side (1, 2).
  • the third support protrusion 17A may extend from the heat sink 17 in opposite directions to each other, but is not limited thereto.
  • the third support protrusion 17A may be spaced apart from the first and second metal layers 13 and 15 in the second gap portion 19.
  • the reflective member 23 is disposed around the heat sink 17.
  • the reflective member 23 may be formed in a ring shape.
  • the inner diameter of the ring may be equal to or smaller than the diameter of the heat sink 17.
  • the reflective member 23 corresponds to the outer surface of the molding member 25.
  • the reflective member 23 may be in contact with an outer side surface of the molding member 25.
  • the reflective member 23 may be disposed between the protective layer 21 and the molding member 25.
  • the reflective member 23 may include the first and second metal layers 13 and 15 and the protective member. Layer 21. Since the reflective member 23 reflects the light emitted through the molding member 25, the light extraction efficiency and the brightness of the light emitting device can be improved.
  • the reflective member 23 may be formed to be the same or thicker than the thickness of the protective layer 21. Accordingly, the light loss can be reduced by the reflective member 23.
  • the reflective member 23 may be in contact with, for example, the first and second bonding regions 12A and 12B on the first and second bonding regions 12A and 12B.
  • the reflective member 23 may be disposed in the first gap portion 18.
  • the reflective member 23 may include a resin material such as silicon or epoxy, and a metal oxide may be added therein.
  • the reflective member 23 may be formed of an insulating material.
  • the reflective member 23 is a material having a refractive index higher than that of the molding member, and the metal oxide includes, for example, TIO 2 , Al 2 O 3 , or SiO 2 .
  • the metal oxide may be added at 5wt% or more in the half-water member 23.
  • the reflective member 23 exhibits a reflectance of 50% or more, for example, 78% or more with respect to the light emitted from the light emitting chips 31, 32, and 33.
  • the height or thickness of the reflective member 23 is 600 ⁇ 20 ⁇ m, the width may be formed in the range of 1000 ⁇ 100 ⁇ m. When the height of the reflective member 23 is too low or high, the light reflection efficiency may be lowered. In addition, when the width of the reflective member 23 is too narrow, it is difficult to form, and when too wide, the heat radiation efficiency may be
  • the plurality of light emitting parts 30 and 30A are disposed on the heat sink 17.
  • the plurality of light emitting parts 30 and 30A may be electrically connected to the first and second metal layers 13 and 15 and may be connected to each other in parallel.
  • Each of the light emitting parts 30 and 30A may pass through the plurality of light emitting chips 31, 32, 33, 41, 42, and 43 and the outer side surface of the molding member 25 to pass through the first and second metal layers 13.
  • a plurality of wires 71, 73, 81, 83 optionally connected to.
  • the wires 71, 73, 81, and 83 may be connected to the first and second metal layers 13 and 15 passing through the reflective member 23.
  • the wires 71, 73, 81, and 83 may be in contact with the reflective member 23 and the molding member 25.
  • An arrangement direction of at least one of the plurality of light emitting parts 30 and 30A may be arranged so as not to be parallel to straight lines passing through both ends of each of the plurality of wires 71, 73, 81, and 83.
  • the plurality of light emitting units 30 and 30A include, for example, first and second light emitting units 30 and 30A.
  • first light emitting unit 30 a plurality of light emitting chips 31, 32, and 33 are connected in series.
  • the second light emitting unit 30A is spaced apart from the first light emitting unit 30, and a plurality of light emitting chips 41, 42, and 43 are connected in series.
  • Each of the first and second light emitting units 30 and 30A may be defined as a light emitting chip array, but is not limited thereto.
  • any one of the first and second light emitting parts 30 and 30A may not be disposed or may be disposed in the center area of the heat sink 17.
  • Each of the light emitting units 30 and 30A may have five or more light emitting chips connected in series.
  • Each of the light emitting chips is a light source, and selectively emits light in a wavelength band from ultraviolet rays to visible rays.
  • the light emitting chips 31, 32, 33, 41, 42, and 43 may include any one of an ultraviolet (Ultraviolet) LED chip, a green LED chip, a block LED chip, and a red LED chip. Phosphors may be applied to the light emitting regions of the light emitting chips 31, 32, 33, 41, 42, and 43, but embodiments are not limited thereto.
  • the molding member 25 is disposed on the heat sink 17.
  • the molding member 25 covers the plurality of light emitting parts 30 and 30A.
  • the molding member 25 may be formed of a transparent or transparent material such as silicon or epoxy.
  • the molding member 25 may include at least one of a hard silicone resin, a soft silicone resin, and a silicone rubber.
  • the molding member 25 may have a side cross section formed in a hemispherical shape, but is not limited thereto.
  • the outer side surface of the molding member 25 may be formed in a ring shape and may be in contact with the reflective member 23.
  • the molding member 25 covers the light emitting chips 31, 32, 33, 41, 42, and 43 disposed on the heat sink 17.
  • the molding member 25 covers the wires 71, 73, 75, 81, 83, 85.
  • the molding member 25 may be disposed in the first gap portion 18.
  • a phosphor may be added in the molding member 25, and the phosphor may include at least one of a yellow phosphor, a green phosphor, a blue phosphor, and a red phosphor.
  • a lanthanoid system such as Eu or Ce may be used.
  • Rare earth aluminate mainly activated by phosphor, alkaline earth metal aluminate phosphor, alkaline earth silicate, alkaline earth sulfide, alkaline earth thigallate, alkaline earth silicon nitride, germanium acid salt, or lanthanoid element such as Ce, Organic and organic complexes mainly activated by rare earth silicates or lanthanoids such as Eu At least one selected from sieves and the like.
  • the molding member 25 may include a filler therein, but is not limited thereto.
  • the outer contour of the molding member 25 may be formed in a circular shape.
  • the outer spherical surface of the molding member 25 may be in contact with the reflective member 23.
  • the molding member 25 and the reflective member 23 may be formed of different kinds of silicon materials. Accordingly, the adhesive force between the molding member 25 and the reflective member 23 may be improved.
  • the reflective member 23 may serve as a dam for suppressing the expansion of the molding member 25.
  • the reflective member 25 may prevent the molding member 25 from overflowing.
  • a protection chip (not shown) may be disposed on at least one of the heat dissipation plate 17 and the first and second metal layers 13 and 15, but is not limited thereto.
  • the first light emitting part 30 may include a first light emitting chip 31 adjacent to the first metal layer 13, a second light emitting chip 32 adjacent to the second metal layer 15, and the first light emitting chip 32. And a plurality of third light emitting chips 33 connected between the second light emitting chips 31 and 32, and a first wire 71 connected between the first light emitting chip 31 and the first metal layer 13. And a second wire 73 connected between the second light emitting chip 32 and the second metal layer 15.
  • the first light emitting part 30 may include a connection member 75 connecting the plurality of third light emitting chips 33, and the connection member 75 may include a wire.
  • both ends P1 and P2 of the first wire 71 are connected to the first light emitting chip 31 and the first metal layer 13. Both ends P3 and P4 of the second wire 73 are connected to the second light emitting chip 32 and the second metal layer 15.
  • the second end P2 of the first wire 71 is bonded to the first bonding region 12A of the first metal layer 13, and the second end P4 of the second wire 73 is connected to the first wire 71. It is bonded to the second bonding region 12B of the second metal layer 15.
  • a plurality of light emitting chips may be connected in series.
  • the plurality of third light emitting chips 33 may be arranged in one row, or may be arranged in two rows or three rows or more.
  • the plurality of third light emitting chips 33 are connected to each other by the connecting member 75.
  • the first and second light emitting chips 31 and 32 are chips disposed on the input and output sides of the first light emitting unit 30. At least one of the plurality of third light emitting chips 33 may be disposed in parallel or on the same line as a straight line passing through the centers of the first and second light emitting chips 31 and 32.
  • the second light emitting part 30A includes a fourth light emitting chip 41 adjacent to the first metal layer 13, a fifth light emitting chip 42 adjacent to the second metal layer 15, and the fourth and fifth light emitting chips 42.
  • a plurality of sixth light emitting chips 43 connected between the five light emitting chips 41 and 42, a third wire 81 connected between the fourth light emitting chip 41 and the first metal layer 13, and And a fourth wire 83 connected between the fifth light emitting chip 42 and the second metal layer 15.
  • the second light emitting part 30A may include a connection member 85 connecting the plurality of sixth light emitting chips 43, and the connection member 85 may include a wire.
  • Both ends of the third wire 81 are connected to the fourth light emitting chip 41 and the first metal layer 13. Both ends of the fourth wire 83 are connected to the fifth light emitting chip 42 and the second metal layer 15.
  • the third wire 81 is bonded to the first bonding region 12A of the first metal layer 13, and the fourth wire 83 is the second bonding region 12B of the second metal layer 15. Is bonded to.
  • a plurality of light emitting chips for example, may be connected in series.
  • the plurality of sixth light emitting chips 43 may be arranged in one row, or arranged in two rows or three rows or more.
  • the plurality of sixth light emitting chips 43 may be connected to each other by a connection member 85.
  • the fourth and fifth light emitting chips 41 and 42 are chips disposed on the input and output sides of the second light emitting unit 30A. At least one of the plurality of sixth light emitting chips 43 may be disposed in parallel or on the same line as a straight line passing through the centers of the fourth and fifth light emitting chips 41 and 42.
  • Each of the first to fourth wires 71, 73, 81, and 83 contacts the molding member 25 and the reflective member 23.
  • Each of the first to fourth wires 71, 73, 81, and 83 is coupled to the molding member 25 and the reflective member 23.
  • Each of the first to fourth wires 71, 73, 81, and 83 may protrude through the outer spherical surface of the molding member 25 and extend into the reflective member 23.
  • the distance E2 between the second end P2 of the first wire 71 and the fourth end P4 of the second wire 73 may be equal to or smaller than the diameter E1 of the heat sink 17. But it is not limited thereto.
  • the first wire 71 may extend in the radial direction from the first light emitting chip 31 with respect to the center of the heat sink 17.
  • the second wire 73 may extend in a radial direction from the second light emitting chip 32 with respect to the center of the heat sink 17.
  • the third wire 81 may extend in a radial direction from the fourth light emitting chip 41 with respect to the center of the heat sink 17.
  • the fourth wire 83 may extend in a radial direction from the sixth light emitting chip 43 with respect to the center of the heat sink 17.
  • the first to fourth wires 71, 73, 81, and 83 may extend in a radial direction with respect to the center of the heat sink 17.
  • the first to fourth wires 71, 73, 81, and 83 extend in a radial direction from the center of the molding member 25.
  • the first straight line passing through both ends P1 and P2 of the first wire 71 may extend in a radial direction with respect to the center of the heat sink 17 or the molding member 25.
  • a second straight line passing through both ends P3 and P4 of the second wire 73 may extend in a radial direction with respect to the center of the heat sink 17 or the molding member 25.
  • a third straight line passing through both ends of the third wire 81 may extend in a radial direction with respect to the center of the heat sink 17 or the molding member 25.
  • a fourth straight line passing through both ends of the fourth wire 83 may extend in a radial direction with respect to the center of the heat sink 17 or the molding member 25.
  • An angle R1 between a first straight line connecting both ends of the first wire 71 and a second straight line connecting both ends of the second wire 73 may be formed at an obtuse angle.
  • An angle between a third straight line connecting both ends of the third wire 81 and a fourth straight line connecting both ends of the fourth wire 83 may be formed at an obtuse angle.
  • An angle R2 between the first straight line and the third straight line may be formed at an acute angle.
  • An angle between the second straight line and the fourth straight line may be formed at an acute angle.
  • the height of the high point of the first wire 71 and the second wire 73 may be higher than the height of the high point of the connection member 75.
  • An interval T1 between the high points of the first and second wires 71 and 73 and the top surfaces of the first and second light emitting chips 31 and 32 may be in a range of 180 ⁇ m to 200 ⁇ m.
  • High points of the first and second wires 71 and 73 are located higher in the range of 30 ⁇ m to 50 ⁇ m than the high point of the connecting member 75.
  • the heights of the high points of the third and fourth wires 81 and 83 may be higher than the heights of the high points of the connecting member 85, for example, higher than 30 ⁇ m to 50 ⁇ m.
  • the first to fourth wires 71, 73, 81, 83 By placing the height of the high point of the first to fourth wires (71, 73, 81, 83) higher than the high point of the other connecting member (75, 85), according to the expansion and contraction of the molding member 25, the first The impact transmitted to the fourth wires 71, 73, 81, and 83 may be reduced.
  • both ends of each of the first to fourth wires 71, 73, 81, and 83 are arranged in the same direction as the expansion direction and the contraction direction of the molding member 25, thereby preventing thermal deformation of the molding member 25.
  • the impact transmitted to the first and second wires 71 and 73 can be reduced. That is, the first to fourth wires 71, 73, 81, and 83 are connected in a radial bonding manner to minimize the tensile force transmitted from the molding member 25.
  • the first ends P1 and P3 of the first and second wires 71 and 73 are bonded to the first and second light emitting chips 31 and 32. And is disposed in the molding member 25.
  • the second end P2 of the first wire 71 is bonded to the first bonding region 12A of the first metal layer 13, and the second end P4 of the second wire 73 is It is bonded to the second bonding region 12B of the second metal layer 15.
  • the second ends P2 and P4 of the first and second wires 71 and 73 are disposed in the reflective member 23.
  • First ends P1 and P3 of the first and second wires 71 and 73 are disposed in the molding member 25.
  • the first and second wires 71 and 73 are disposed in the reflective member 23 and the molding member 25, so that the first and second wires 71, 73 may differ due to thermal expansion differences between different resin members. 73) can reduce the tensile force transmitted to.
  • the first wire 71 among the first to fourth wires 71, 73, 81, and 83 according to the embodiment will be described in detail with reference to FIGS. 4 and 5.
  • the second to fourth wires 73, 81, and 83 will be referred to the description of the first wire 71 below.
  • the first wire 71 extends in the direction of the first angle ⁇ 1 with respect to the first tangent B1 passing through a point of the circular contour of the heat sink 17. do.
  • the first angle ⁇ 1 may be in a range of 85 degrees to 95 degrees, and the closer to 90 degrees the first angle ⁇ 1 is to the molding member 25 transmitted to the first wire 71. The impact caused by this can be minimized. That is, the first wire 71 has a first tangential line through which a first straight line connecting the first end P1 and the second end P2 passes through an outer contour line or an outline line of the heat dissipation plate 17 in a circle shape.
  • first wire 71 may be formed at an angle perpendicular to or close to the normal to B1), for example at an angle in the range from 85 degrees to 95 degrees.
  • the linear distance D3 between the first end P1 and the second end P2 of the first wire 71 may be shorter than the linear distance D2 of the wire 71a of the comparative example connected in the other direction.
  • a straight line passing through both ends P1 and P2 of the first wire 71 may be tilted at an angle ⁇ 11 of 5 degrees or more from a straight line passing through both ends of the wire 71a of the comparative example.
  • the straight line passing through both ends of the wire 71a of the comparative example may be defined as a straight line passing through the centers of the first and second light emitting chips 31 and 32 in FIG. 1.
  • the width D1 of the first bonding region 12A or the second bonding region 12B may be in the range of 280 ⁇ m to 320 ⁇ m, and the width D1 may be defined by the width of the first wire 71. It may be formed to a width for securing the space of the second end (P2).
  • the second to fourth wires 73, 81, and 83 are connected to a second tangent line passing through an arbitrary point of an outline of the heat sink 17, like the first wire 71. It may be arranged at an angle of, for example, 85 degrees to 95 degrees at a normal or close to normal. External impact transmitted to the second to fourth wires 73, 81 and 83 when a straight line passing through both ends of the second to fourth wires 73, 81 and 83 is normal or perpendicular to the second tangent line. This can be minimized.
  • Detailed descriptions of the second to fourth wires 73, 81, and 83 will be described with reference to the description of the first wire 71.
  • Each of the first to fourth wires 71, 73, 81, and 83 may be formed in a normal direction, for example, 90 degrees with respect to a tangent passing through a point of the contour of the heat sink 17.
  • the first straight line X2 through which both ends of the first wire 71 pass may have an angle ⁇ 3 with a straight line X1 of less than 90 degrees, for example, between 10 degrees and 80 degrees.
  • the straight line X1 extends in a straight line along the first side surface S1 of the first light emitting chip 31, and the straight line Y1 is the first side surface S1 of the first light emitting chip 31. It extends in a straight line along the second side (S2) adjacent to.
  • the first straight line X2 and the angle ⁇ 3 passing through both ends of the first wire 71 may vary depending on the position of the first light emitting chip 31.
  • the second side surface S2 may be formed to have a length equal to or longer than the length of the first side surface S1.
  • the first straight line X2 passing through both ends of the first wire 71 may be arranged to be shifted more than 5 degrees from a straight line passing through the centers of the first and second light emitting chips 31 and 32.
  • the first straight line X2 passing through both ends of the first wire 71 is 5 degrees or more with respect to the straight line Y1 passing through the second side surfaces S2 of the first and second light emitting chips 31 and 32. It may be displaced.
  • the first to fourth wires 71, 73, 81, and 83 may be formed from the first, second, fourth, and fifth light emitting chips 31, 32, 41, and 42 disposed on the heat sink 17. It extends in the radial direction with respect to the center of the heat sink 17. Accordingly, the first to fourth wires 71, 73, 81, and 83 may have improved tensile strength in the molding member 25.
  • the circuit board 10 is bent from the center to the downward direction as a dotted line 10A.
  • the circuit board 10 is restored upward as shown by a dotted line 10B.
  • the first to fourth wires 71, 73, 81, and 83 may be disposed in the same direction as the expansion or contraction direction of the molding member 25, thereby minimizing external impact.
  • the circuit board 10 when the molding member 25 is expanded, the circuit board 10 is bent in a difference Z1 of 50 ⁇ m or more in the Z-axis direction, and is bent in a difference Z2 of 70 ⁇ m or more in the Z-axis direction when it is contracted. All.
  • the difference between the expansion and contraction of the molding member 25 may vary depending on the material of the body 11, but is not limited thereto.
  • the bonding member of the wire 71a may be separated from the contracting and expanding direction of the molding member 25. Can be.
  • the bonding portion of the wire falls, the light emitting chips do not drive, and the reliability of the light emitting device may be degraded.
  • FIG. 8 is an example illustrating a maximum displacement and a minimum displacement distance in the vertical direction Z in the circuit board 10 shown in FIGS. 6 and 7.
  • 9 is a graph comparing equivalent stresses (Vonmises stress) at temperatures in a boundary region between a reflective member and a molding member on a circuit board according to an embodiment, and FIG. It is a graph showing the maximum deformation by temperature in the boundary region between them.
  • the equivalent stress represents Vonmises stress and represents the magnitude of the torsional energy by the stress components at one point of the boundary region. Even when such a circuit board is deformed by the molding member, the wires 71, 73, 81, and 83 passing through the outer spherical surface of the molding member may be prevented from boiling.
  • the temperature is taken as an example of -40 ° C or 100 ° C.
  • the first to fourth wires 71, 73, 81, and 83 may extend in a radial direction from the center of the molding member 25.
  • the first to fourth wires 71, 73, 81, and 83 may reduce the tensile force transmitted from the molding member 25, and prevent the bonding portion from falling off from an external impact.
  • the first to fourth wires 71, 73, 81, and 83 may be protected from the molding member 25.
  • the comparative example is a case in which the wire is bonded together with the dotted wire of FIG. Or a second wire).
  • the high point height of the wire of an Example shall be the height of 180 micrometers-220 micrometers, and the high point height of the wire of a comparative example shall be 150 micrometers-170 micrometers.
  • the cycle is one cycle of one repetition at a predetermined temperature (-40oC to 100 oC) among reliability items, and the failure of the comparative example and the embodiment is checked at 100 cycles, 200 cycles, 300 cycles, 400 cycles, and 500 cycles. It is.
  • the wire defect gradually increases from 100 cycles to 500 cycles. For example, six wire failures occur at 400 cycles out of 23 wires, and ten wire failures occur at 500 cycles. Is generated.
  • the embodiment does not have a defective wire regardless of the period. Therefore, it is possible to prevent the defect of the wire in the bonding method of the wire of the embodiment compared to the bonding method of the wire of the comparative example. That is, the wires connected to the bonding region of the light emitting chip and the first and second metal layers may withstand the external impact well.
  • the reflective member 23A may be in contact with the heat dissipation plate 17. Therefore, since the reflective member 23A is filled in the first gap portion 18 and extends to the upper surface of the heat dissipation plate 17, the adhesive force may be enhanced.
  • the inner surface of the reflective member 23A for example, the surface in which the molding member 25 is in contact, may be a curved surface or an inclined surface.
  • the molding member 25 includes an extension 25A extending on the first and second bonding regions 12A and 12B around the periphery. This does not form the reflective member separately, but covers the second ends of the first and second wires 71 and 73 with the extension portion 25A of the molding member 25. In this case, the wires may be covered with the same material.
  • FIG. 13 is another example of FIG. 1, wherein the plurality of light emitting parts 30, 30A, 30B includes at least three first to third light emitting parts 30, 30A, and 30B, for example.
  • the first and second light emitting units 30 and 30A will be described with reference to FIG. 1.
  • the third light emitting part 30B is disposed between a center area of the heat sink 17, for example, the first light emitting part 30 and the second light emitting part 30A.
  • the third light emitting part 30B includes a seventh light emitting chip 51 adjacent to the first metal layer 13, an eighth light emitting chip 52 adjacent to the second metal layer 15, and the seventh and fifth elements.
  • a plurality of ninth light emitting chips 53 connected between the eight light emitting chips 51 and 52, a fifth wire 77 connected between the seventh light emitting chip 51 and the first metal layer 13, and And a sixth wire 78 connected between the eighth light emitting chip 52 and the second metal layer 15.
  • the third light emitting part 30B may include a connection member connecting the plurality of ninth light emitting chips 53, and the connection member may include a wire.
  • Both ends of the fifth wire 77 are connected to the seventh light emitting chip 51 and the first metal layer 13. Both ends of the sixth wire 78 are connected to the eighth light emitting chip 52 and the second metal layer 15.
  • the fifth wire 77 is bonded to the first bonding region 12A of the first metal layer 13, and the sixth wire 78 is the second bonding region 12B of the second metal layer 15. Is bonded to.
  • a plurality of light emitting chips 53 may be connected in series.
  • the plurality of ninth light emitting chips 53 may be arranged in one row, or may be arranged in two rows or three rows or more.
  • the plurality of ninth light emitting chips 53 are connected to each other by a connecting member.
  • the seventh and eighth light emitting chips 51 and 52 are chips disposed on the input and output sides of the third light emitting unit 30B.
  • Each of the first to sixth wires 71, 73, 81, 83, 77, and 78 is in contact with the molding member 25 and the reflective member 23.
  • Each of the first to sixth wires 71, 73, 81, 83, 77, and 78 is coupled to the molding member 25 and the reflective member 23.
  • Each of the first to sixth wires 71, 73, 81, 83, 77, and 78 may protrude through an outer spherical surface of the molding member 25 and may extend into the reflective member 23.
  • the fifth wire 77 may extend in the radial direction from the seventh light emitting chip 51 with respect to the center of the heat sink 17.
  • the eighth wire 78 may extend in a radial direction from the eighth light emitting chip 52 with respect to the center of the heat sink 17.
  • the first to sixth wires 71, 73, 81, 83, 77, and 78 may extend in a radial direction with respect to the center of the heat sink 17.
  • the first to sixth wires 71, 73, 81, 83, 77, and 78 extend in a radial direction from the center of the molding member 25.
  • a straight line passing through both ends of the fifth wire 77 may extend in a radial direction with respect to the center of the heat sink 17 or the molding member 25.
  • a straight line passing through both ends of the eighth wire 78 may extend in a radial direction with respect to the center of the heat sink 17 or the molding member 25.
  • An angle between a straight line connecting both ends of the first wire 71 or the third wire 81 and a straight line connecting both ends of the fifth wire 77 may be formed at an acute angle, for example, 45 degrees or less.
  • An angle between a straight line connecting both ends of the first wire 71 or the third wire 81 and a straight line connecting both ends of the sixth wire 78 may be formed to be less than an acute angle, for example, 45 degrees or less.
  • an angle R1 between a first straight line connecting both ends of the first wire 71 and a second straight line connecting both ends of the second wire 73 may be formed at an obtuse angle.
  • An angle between a third straight line connecting both ends of the third wire 81 and a fourth straight line connecting both ends of the fourth wire 83 may be formed at an obtuse angle.
  • An angle R2 between the first straight line and the third straight line may be formed at an acute angle.
  • An angle between the second straight line and the fourth straight line may be formed at an acute angle.
  • Each of the fifth and sixth wires 77 and 78 may extend in a range of 85 degrees to 95 degrees, for example, in a normal direction, with respect to a tangent passing through a point of the contour of the heat sink 17.
  • FIG. 14 is a plan view illustrating a light emitting device according to the second embodiment
  • FIG. 15 is a partially enlarged view of the light emitting device of FIG. 14.
  • the same parts as the first embodiment will be described with reference to the description of the first embodiment.
  • the light emitting device includes a body 11, a first metal layer 13 and a second metal layer 15 disposed on an upper surface of the body 11; A heat sink 17 disposed between the first and second metal layers 13 and 15 on an upper surface of the body 11; A plurality of light emitting parts 30, 30A, and 30B disposed on the heat sink 17; A reflection member 23 disposed around the heat sink 17; And a molding member 25 on the heat sink 17. Wires 71, 73, 81, and 83 connected to the first and second metal layers 13 and 15 and disposed radially around the heat sink 17 are included.
  • the plurality of light emitting parts 30, 30A, and 30B may include at least three, and for example, the first light emitting part 30 and the heat sink 17 are disposed in a first area of the heat sink 17.
  • the second light emitting unit 30A disposed in the second region, and the third light emitting unit 30, 30A, 30B disposed in the region between the first and second light emitting units 30 and 30A are included.
  • the first light emitting unit 30 is connected to a first light emitting chip 31A, a second light emitting chip 32A, a plurality of third light emitting chips 33, a first wire 71, and a second wire 73. And a member 75.
  • the second light emitting part 30A is connected to the fourth light emitting chip 41A, the fifth light emitting chip 42A, the plurality of sixth light emitting chips 43, the third wire 81, the fourth wire 83, and the like. And a member 85.
  • Two side surfaces of the first light emitting chip 31A may be disposed in parallel with a first straight line passing through both ends of the first wire 71.
  • the two side surfaces of the first light emitting chip 31A may be disposed in the same direction as the extending direction of the first straight line.
  • Two of the side surfaces of the second light emitting chip 32A are disposed in parallel with a second straight line passing through both ends of the second wire 73.
  • Two side surfaces of the second light emitting chip 32A are disposed in the same direction as an extension direction of a second straight line of the second wire 73.
  • At least one side surface of the first and second light emitting chips 31A and 32A may be tilted with the direction in which the plurality of third light emitting chips 33 are arranged, or the first and second light emitting chips 31A and 32A may be disposed.
  • Tilt is arranged from a straight line passing through the center of.
  • Third and fourth straight lines connected to both ends of the third and fourth wires 81 and 83 extend in the same direction as an extension direction of at least one side of each of the fourth and fifth light emitting chips 41A and 42A. .
  • the angle between the straight line X1 horizontal to the first side surface S1 and the straight line Y1 horizontal to the second side surface S2 may be perpendicular to the first light emitting chip 31A.
  • the planar direction of the second side surface S2 of the first light emitting chip 31A is disposed in the same direction as the extension direction of the first straight line X3 passing through both ends of the first wire 71.
  • an angle ⁇ 4 between the first straight line X3 and the straight line X1 from which the first wire 71 extends may be formed in a range of 30 degrees to 70 degrees.
  • the first straight line X3 may be a straight line through which the first end P5 of the third wire 75 connected to the first light emitting chip 31A passes.
  • the first straight line X3 passing through both ends of the first wire 71 is disposed in parallel with a straight line parallel to the second side surface S2 of the first light emitting chip 31A, and with respect to the tangent B1. It may be formed in an angle close to the normal, for example, in the range from 85 degrees to 95 degrees.
  • a first straight line X3 passing through both ends of the first wire 71 may be disposed in a normal line with respect to the tangent B1. When the first straight line X3 passing through both ends of the first wire 71 is disposed in the normal direction with respect to the tangent B1, the impact transmitted from the outside may be minimized.
  • At least one of the first, second, fourth, and fifth light emitting chips 31A, 32A, 41A, and 42A of the first and second light emitting parts 30 and 30A may be formed by the third and sixth light emitting chips 33 and 43. It can be arranged tilted from the direction in which it is arranged.
  • 16 is a view illustrating an example of a light emitting chip of a light emitting device according to the embodiment.
  • the light emitting device may include a substrate 111, a buffer layer 113, a first conductive semiconductor layer 115, an active layer 117, a second conductive semiconductor layer 119, an electrode layer 131, and a second light emitting device.
  • the first electrode pad 141 and the second electrode pad 151 are included.
  • the substrate 111 may be a light transmissive, insulating or conductive substrate, for example, sapphire (Al 2 O 3 ), SiC, Si, GaAs, GaN, ZnO, Si, GaP, InP, Ge, Ga 2 O 3 , At least one of LiGaO 3 may be used.
  • a plurality of protrusions may be formed on an upper surface of the substrate 111, and the plurality of protrusions may be formed by etching the substrate 111 or may be formed of a light extraction structure such as a separate roughness.
  • the protrusion may include a stripe shape, a hemispherical shape, or a dome shape.
  • the thickness of the substrate 111 may be formed in the range of 30 ⁇ m ⁇ 300 ⁇ m, but is not limited thereto.
  • a buffer layer 113 is formed on the substrate 111, and the buffer layer 113 may be formed of at least one layer using group 2 to group 6 compound semiconductors.
  • the buffer layer 113 includes a semiconductor layer using a group III-V group compound semiconductor, for example, In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y
  • a semiconductor having a compositional formula of ⁇ 1) includes at least one of compound semiconductors such as GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN and the like.
  • the buffer layer 113 may be formed in a super lattice structure by alternately arranging different semiconductor layers.
  • the buffer layer 113 may be formed to alleviate the difference in lattice constant between the substrate 111 and the nitride-based semiconductor layer, and may be defined as a defect control layer.
  • the buffer layer 113 may have a value between lattice constants between the substrate 111 and the nitride-based semiconductor layer.
  • the buffer layer 113 may be formed of an oxide such as a ZnO layer, but is not limited thereto.
  • the buffer layer 113 may be formed in the range of 30 to 500 nm, but is not limited thereto.
  • a low conductive layer is formed on the buffer layer 113, and the low conductive layer is an undoped semiconductor layer, and has a lower conductivity than that of the first conductive semiconductor layer.
  • the low conductive layer may be implemented as a GaN-based semiconductor using a group III-V compound semiconductor, and the undoped semiconductor layer may have a first conductivity type even without intentionally doping a conductive dopant.
  • the undoped semiconductor layer may not be formed, but is not limited thereto.
  • the first conductive semiconductor layer 115 may be formed on the buffer layer 113.
  • the first conductive semiconductor layer 115 is implemented as a Group III-V compound semiconductor doped with a first conductive dopant, and is, for example, In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y It can be formed from a semiconductor material having a composition formula of ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the first conductive dopant is an N-type dopant and includes Si, Ge, Sn, Se, and Te.
  • a semiconductor layer may be formed between the buffer layer 113 and the first conductive semiconductor layer 115, and the semiconductor layer may have a superlattice structure in which different first and second layers are alternately arranged.
  • the thickness of the first layer and the second layer may be formed to a number A or more.
  • a first conductive clad layer (not shown) may be formed between the first conductive semiconductor layer 115 and the active layer 117.
  • the first conductive clad layer may be formed of a GaN-based semiconductor, and the band gap may be formed to be greater than or equal to the band gap of the barrier layer of the active layer 117.
  • the first conductive clad layer serves to constrain the carrier.
  • An active layer 117 is formed on the first conductive semiconductor layer 115.
  • the active layer 117 may be formed of at least one of a single quantum well, a multiple quantum well (MQW), a quantum line, and a quantum dot structure.
  • a well layer / barrier layer is alternately arranged, and the period of the well layer / barrier layer is 2 using a stacked structure of InGaN / GaN, AlGaN / GaN, InGaN / AlGaN, InGaN / InGaN. It may be formed in ⁇ 30 cycles.
  • a second conductive cladding layer is formed on the active layer 117, and the second conductive cladding layer has a higher band gap than the band gap of the barrier layer of the active layer 117, and is a group III-V compound semiconductor.
  • the second conductive cladding layer may be formed of a GaN-based semiconductor.
  • a second conductive semiconductor layer 119 is formed on the second conductive cladding layer, and the second conductive semiconductor layer 119 includes a second conductive dopant.
  • the second conductive semiconductor layer 119 may be formed of any one of compound semiconductors such as GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN, and the like.
  • the second conductive dopant may include Mg, Zn, Ca, Sr, and Ba as a P-type dopant.
  • the conductive type of the first conductive type and the second conductive type may be formed to be opposite to the above structure.
  • the second conductive type semiconductor layer 119 may be an N type semiconductor layer
  • the first conductive semiconductor layer 115 may be implemented as a P-type semiconductor layer.
  • an N-type semiconductor layer which is a third conductive semiconductor layer having a polarity opposite to that of the second conductive type, may be further formed on the second conductive semiconductor layer 119.
  • the light emitting device may define the first conductive semiconductor layer 115, the active layer 117, and the second conductive semiconductor layer 119 as a light emitting structure 120, and the light emitting structure 120 may be an NP junction.
  • the structure, the PN junction structure, the NPN junction structure, or the PNP junction structure can be implemented with any of the structures.
  • the N-P and P-N junctions have an active layer disposed between the two layers, and the N-P-N junction or P-N-P junction includes at least one active layer between the three layers.
  • a first electrode pad 141 is formed on the first conductive semiconductor layer 115, and an electrode layer 131 and a second electrode pad 151 are formed on the second conductive semiconductor layer 119.
  • the electrode layer 131 is a current spreading layer and may be formed of a material having transparency and electrical conductivity.
  • the electrode layer 131 may be formed at a refractive index lower than that of the compound semiconductor layer.
  • the electrode layer 131 is formed on the upper surface of the second conductive semiconductor layer 119, and the material may be indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), or indium aluminum zinc oxide (IGZO), indium gallium zinc oxide (IGZO), indium gallium tin oxide (IGTO), aluminum zinc oxide (AZO), antimony tin oxide (ATO), gallium zinc oxide (GZO), ZnO, IrOx, RuOx, NiO, etc. It may be selected from, and may be formed of at least one layer. As another example, the electrode layer 131 may be formed of a reflective electrode layer, and the material may be selectively formed from a metal material such as, for example, Al, Ag, Pd, Rh, Pt, and Ir.
  • a metal material such as, for example, Al, Ag, Pd, Rh, Pt, and Ir.
  • the first electrode pad 141 and the second electrode pad 151 may be formed of Ti, Ru, Rh, Ir, Mg, Zn, Al, In, Ta, Pd, Co, Ni, Si, Ge, Ag, and Au. May be selected from among these optional alloys.
  • An insulating layer may be further formed on the surface of the light emitting device, and the insulating layer may prevent an interlayer short of the light emitting structure 120 and prevent moisture penetration.
  • the second electrode pad 151 may be formed on the second conductive semiconductor layer 119 and / or the electrode layer 131, and may include a second electrode pattern 153.
  • the second electrode pattern 153 may have an arm structure or a finger structure branched from the second electrode pad 151.
  • the second electrode pad 151 may include metal layers having characteristics of ohmic contact, an adhesive layer, and a bonding layer, and may be made of non-transmissive material, but is not limited thereto.
  • the second electrode pad 151 When viewed from the top of the light emitting chip, the second electrode pad 151 is spaced apart from the width of one side of the first electrode pad 141 by one side of the light emitting chip, and the second electrode pattern 153 is disposed on the electrode layer.
  • the light emitting chip may have a length greater than or equal to 1/2 of the width of one side of the light emitting chip.
  • a portion of at least one of the second electrode pad 151 and the second electrode pattern 153 may be in ohmic contact with an upper surface of the second conductive semiconductor layer 119, but is not limited thereto.
  • the first electrode pad 141 is formed in a first region A1 of an upper surface of the first conductive semiconductor layer 115, and the first region A1 is formed in the first conductive semiconductor layer 115.
  • a portion of the second conductive semiconductor layer 119 and a portion of the active layer 117 is etched and a portion of the upper surface of the first conductive semiconductor layer 115 is exposed.
  • an upper surface of the first conductive semiconductor layer 115 is a stepped area from the side surface of the active layer 117, and is formed at a position lower than the lower surface of the active layer 117.
  • Grooves 125 are formed in the light emitting structure 120, and the grooves 125 are formed to have a depth at which the first conductive semiconductor layer 115 is exposed from an upper surface of the light emitting structure 120. Depths of the first region A1 and the groove 125 of the first conductive semiconductor layer 115 may be the same depth or different depths from the top surface of the light emitting structure 120.
  • the first electrode pad 141 may be connected to a first electrode pattern disposed in the groove 125.
  • wires are bonded to the first electrode pad 141 and the second electrode pad 151.
  • the light emitting device or the light emitting device according to the embodiment may be applied to a lighting system.
  • the lighting system includes a structure in which a plurality of light emitting elements are arranged, and includes a display device as shown in FIGS. 17 and 18 and a lighting device as shown in FIG. 19. have.
  • 17 is an exploded perspective view of a display device having a light emitting device according to the embodiment.
  • the display apparatus 1000 includes a light guide plate 1041, a light source module 1031 providing light to the light guide plate 1041, and a reflective member 1022 under the light guide plate 1041. ), An optical sheet 1051 on the light guide plate 1041, a display panel 1061, a light guide plate 1041, a light source module 1031, and a reflective member 1022 on the optical sheet 1051.
  • the bottom cover 1011 may be included, but is not limited thereto.
  • the bottom cover 1011, the reflective sheet 1022, the light guide plate 1041, and the optical sheet 1051 may be defined as a light unit 1050.
  • the light guide plate 1041 diffuses light to serve as a surface light source.
  • the light guide plate 1041 is made of a transparent material, for example, acrylic resin-based such as polymethyl metaacrylate (PMMA), polyethylene terephthlate (PET), polycarbonate (PC), cycloolefin copolymer (COC), and polyethylene naphthalate (PEN). It may include one of the resins.
  • PMMA polymethyl metaacrylate
  • PET polyethylene terephthlate
  • PC polycarbonate
  • COC cycloolefin copolymer
  • PEN polyethylene naphthalate
  • the light source module 1031 provides light to at least one side of the light guide plate 1041, and ultimately serves as a light source of the display device.
  • the light source module 1031 may include at least one, and may provide light directly or indirectly at one side of the light guide plate 1041.
  • the light source module 1031 includes a substrate 1033 and a light emitting device or a light emitting device 1035 according to the above-described embodiment, and the light emitting device or the light emitting device 1035 is disposed on the substrate 1033 at a predetermined interval. Can be arrayed.
  • the substrate 1033 may be a printed circuit board (PCB) including a circuit pattern (not shown).
  • the substrate 1033 may include not only a general PCB but also a metal core PCB (MCPCB, Metal Core PCB), a flexible PCB (FPCB, Flexible PCB) and the like, but is not limited thereto.
  • MCPCB Metal Core PCB
  • FPCB Flexible PCB
  • the substrate 1033 may be removed.
  • a part of the heat dissipation plate may contact the upper surface of the bottom cover 1011.
  • the light emitting devices 1035 may be mounted on the substrate 1033 such that an emission surface from which light is emitted is spaced apart from the light guide plate 1041 by a predetermined distance, but is not limited thereto.
  • the light emitting device 1035 may directly or indirectly provide light to a light incident part, which is one side of the light guide plate 1041, but is not limited thereto.
  • the reflective member 1022 may be disposed under the light guide plate 1041.
  • the reflective member 1022 may improve the brightness of the light unit 1050 by reflecting light incident to the lower surface of the light guide plate 1041 and pointing upward.
  • the reflective member 1022 may be formed of, for example, PET, PC, or PVC resin, but is not limited thereto.
  • the reflective member 1022 may be an upper surface of the bottom cover 1011, but is not limited thereto.
  • the bottom cover 1011 may accommodate the light guide plate 1041, the light source module 1031, the reflective member 1022, and the like. To this end, the bottom cover 1011 may be provided with an accommodating part 1012 having a box shape having an upper surface opened thereto, but is not limited thereto. The bottom cover 1011 may be combined with the top cover, but is not limited thereto.
  • the bottom cover 1011 may be formed of a metal material or a resin material, and may be manufactured using a process such as press molding or extrusion molding.
  • the bottom cover 1011 may include a metal or non-metal material having good thermal conductivity, but is not limited thereto.
  • the display panel 1061 is, for example, an LCD panel, and includes a first and second substrates of transparent materials facing each other, and a liquid crystal layer interposed between the first and second substrates.
  • a polarizer may be attached to at least one surface of the display panel 1061, but the polarizer is not limited thereto.
  • the display panel 1061 displays information by light passing through the optical sheet 1051.
  • the display device 1000 may be applied to various portable terminals, monitors of notebook computers, monitors of laptop computers, televisions, and the like.
  • the optical sheet 1051 is disposed between the display panel 1061 and the light guide plate 1041 and includes at least one light transmissive sheet.
  • the optical sheet 1051 may include at least one of a sheet such as, for example, a diffusion sheet, a horizontal and vertical prism sheet, and a brightness enhancement sheet.
  • the diffusion sheet diffuses the incident light
  • the horizontal and / or vertical prism sheet focuses the incident light into the display area
  • the brightness enhancement sheet reuses the lost light to improve the brightness.
  • a protective sheet may be disposed on the display panel 1061, but is not limited thereto.
  • the light guide plate 1041 and the optical sheet 1051 may be included as an optical member on the optical path of the light source module 1031, but are not limited thereto.
  • FIG. 18 is a diagram illustrating a display device having a light emitting device according to an exemplary embodiment.
  • the display device 1100 includes a bottom cover 1152, a substrate 1020 on which the light emitting device 1124 disclosed above is arranged, an optical member 1154, and a display panel 1155.
  • the substrate 1020 and the light emitting device 1124 may be defined as a light source module 1160.
  • the bottom cover 1152, the at least one light source module 1160, and the optical member 1154 may be defined as a light unit 1150.
  • the bottom cover 1152 may include an accommodating part 1153, but is not limited thereto.
  • the light source module 1160 includes a substrate 1020 and a plurality of light emitting devices 1124 arranged on the substrate 1020.
  • the optical member 1154 may include at least one of a lens, a light guide plate, a diffusion sheet, horizontal and vertical prism sheets, and a brightness enhancement sheet.
  • the light guide plate may be made of a PC material or a poly methyl methacrylate (PMMA) material, and the light guide plate may be removed.
  • the diffusion sheet diffuses the incident light
  • the horizontal and vertical prism sheets focus the incident light onto the display area
  • the brightness enhancement sheet reuses the lost light to improve the brightness.
  • the optical member 1154 is disposed on the light source module 1060 and performs surface light, or diffuses, condenses, or the like the light emitted from the light source module 1060.
  • FIG. 19 is an exploded perspective view of a lighting apparatus having a light emitting device according to the embodiment.
  • the lighting apparatus may include a cover 2100, a light source module 2200, a heat radiator 2400, a power supply unit 2600, an inner case 2700, and a socket 2800. Can be.
  • the lighting apparatus according to the embodiment may further include any one or more of the member 2300 and the holder 2500.
  • the light source module 2200 may include a light emitting device according to an embodiment.
  • the cover 2100 may have a shape of a bulb or hemisphere, may be hollow, and may be provided in an open shape.
  • the cover 2100 may be optically coupled to the light source module 2200 and coupled to the radiator 2400.
  • the cover 2100 may have a coupling part coupled to the heat sink 2400.
  • An inner surface of the cover 2100 may be coated with a milky paint having a diffusion material. Using the milky white material, light from the light source module 2200 may be scattered and diffused to be emitted to the outside.
  • the cover 2100 may be made of glass, plastic, polypropylene (PP), polyethylene (PE), polycarbonate (PC), or the like.
  • polycarbonate is excellent in light resistance, heat resistance, and strength.
  • the cover 2100 may be transparent and opaque so that the light source module 2200 is visible from the outside.
  • the cover 2100 may be formed through blow molding.
  • the light source module 2200 may be disposed on one surface of the heat sink 2400. Thus, heat from the light source module 2200 is conducted to the heat sink 2400.
  • the light source module 2200 may include a light emitting element 2210, a connection plate 2230, and a connector 2250.
  • the member 2300 is disposed on an upper surface of the heat dissipator 2400, and includes a plurality of lighting elements 2210 and guide grooves 2310 into which the connector 2250 is inserted.
  • the guide groove 2310 corresponds to the board and the connector 2250 of the lighting device 2210.
  • the surface of the member 2300 may be coated or coated with a white paint.
  • the member 2300 is reflected on the inner surface of the cover 2100 to reflect the light returned to the light source module 2200 side again toward the cover 2100. Therefore, it is possible to improve the light efficiency of the lighting apparatus according to the embodiment.
  • the member 2300 may be made of an insulating material, for example.
  • the connection plate 2230 of the light source module 2200 may include an electrically conductive material. Therefore, electrical contact may be made between the radiator 2400 and the connection plate 2230.
  • the member 2300 may be formed of an insulating material to block an electrical short between the connection plate 2230 and the radiator 2400.
  • the radiator 2400 receives heat from the light source module 2200 and heat from the power supply unit 2600 to radiate heat.
  • the holder 2500 may block the accommodating groove 2719 of the insulating portion 2710 of the inner case 2700. Therefore, the power supply unit 2600 accommodated in the insulating unit 2710 of the inner case 2700 is sealed.
  • the holder 2500 has a guide protrusion 2510.
  • the guide protrusion 2510 may include a hole through which the protrusion 2610 of the power supply unit 2600 passes.
  • the power supply unit 2600 processes or converts an electrical signal provided from the outside to provide the light source module 2200.
  • the power supply unit 2600 is accommodated in the accommodating groove 2725 of the inner case 2700, and is sealed in the inner case 2700 by the holder 2500.
  • the power supply unit 2600 may include a protrusion 2610, a guide unit 2630, a base 2650, and an extension unit 2670.
  • the guide part 2630 has a shape protruding outward from one side of the base 2650.
  • the guide part 2630 may be inserted into the holder 2500.
  • a plurality of parts may be disposed on one surface of the base 2650.
  • the plurality of components may include, for example, a DC converter, a driving chip for controlling the driving of the light source module 2200, an electrostatic discharge (ESD) protection element for protecting the light source module 2200, and the like. It is not limited to.
  • the extension part 2670 has a shape protruding outward from the other side of the base 2650.
  • the extension part 2670 is inserted into the connection part 2750 of the inner case 2700 and receives an electrical signal from the outside.
  • the extension part 2670 may be provided to be equal to or smaller than the width of the connection part 2750 of the inner case 2700.
  • the extension 2670 may be electrically connected to the socket 2800 through a wire.
  • the inner case 2700 may include a molding unit together with the power supply unit 2600 therein.
  • the molding part is a part where the molding liquid is hardened, so that the power supply part 2600 can be fixed inside the inner case 2700.
  • the embodiment can improve the reliability of the light emitting device.
  • the light emitting device of the embodiment may be applied to lighting devices such as a lighting lamp, an indoor lamp, an outdoor lamp, an indicator lamp, and a conductive lamp using the LED.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

실시 예는 발광 소자에 관한 것이다. 개시된 발광 소자는, 몸체; 상기 몸체의 상면에 배치된 제1 및 제2금속층; 상기 제1 및 제2금속층 사이에 배치되며 원 형상의 외곽선을 갖는 방열 판; 상기 방열 판 상에 배치된 복수의 발광부; 상기 제1 및 제2금속층 상에 배치되며 상기 복수의 발광부와 전기적으로 연결된 제1 및 제2본딩 영역 및 상기 방열 판 상에 배치되고 상기 복수의 발광부를 덮는 몰딩 부재를 포함한다. 상기 복수의 발광부의 각각은 서로 연결된 복수의 발광 칩; 및 복수의 발광 칩을 상기 제1 및 제2본딩 영역에 전기적으로 연결하는 복수의 와이어를 포함한다. 상기 각 발광부의 복수의 와이어는 상기 방열 판의 중심으로부터 방사 방향으로 배열된다.

Description

발광 소자
본 실시 예는 발광 소자에 관한 것이다.
발광 소자, 예컨대 발광 다이오드(Light Emitting Device)는 전기 에너지를 빛으로 변환하는 반도체 소자의 일종으로, 기존의 형광등, 백열등을 대체하여 차세대 광원으로서 각광받고 있다.
발광 다이오드는 반도체 소자를 이용하여 빛을 생성하므로, 텅스텐을 가열하여 빛을 생성하는 백열등이나, 또는 고압 방전을 통해 생성된 자외선을 형광체에 충돌시켜 빛을 생성하는 형광등에 비해 매우 낮은 전력만을 소모한다.
또한, 발광 다이오드는 반도체 소자의 전위 갭을 이용하여 빛을 생성하므로 기존의 광원에 비해 수명이 길고 응답특성이 빠르며, 친환경적 특징을 갖는다.
이에 따라, 기존의 광원을 발광 다이오드로 대체하기 위한 많은 연구가 진행되고 있으며, 발광 다이오드는 실내 및 실외에서 사용되는 각종 램프, 액정표시장치, 전광판, 가로등 등의 조명 장치의 광원으로서 사용이 증가하고 있다.
실시 예는 복수의 와이어들이 방사 방향으로 배열된 발광 소자를 제공한다.
실시 예는 서로 다른 발광 칩에 연결된 복수의 와이어들이 방사 방향으로 배열된 발광 소자를 제공한다.
실시 예는 몰딩 부재의 구면의 서로 다른 영역을 통해 돌출된 복수의 와이어들이 방사 방향으로 배열된 발광 소자를 제공한다.
실시 예는 복수의 발광 칩이 배치된 방열 판의 외곽 선을 지나는 복수의 와이어들이 방사 방향으로 배열된 발광 소자를 제공한다.
실시 예는 원 형상의 방열 판의 외곽 선을 지나는 와이어들이 상기 방열 판의 외곽선의 한 점을 지나는 접선에 대해 법선 방향으로 배열되는 발광 소자를 제공한다.
실시 예는 금속층과 방열판 상에 배치된 발광 칩에 연결된 와이어의 양단을 연결한 직선이 상기 방열 판의 중심에서 방사 방향으로 배열되는 발광 소자를 제공한다.
실시 예는 몰딩 부재와 상기 반사 부재에 결합된 복수의 와이어들이 상기 방열 판의 중심에서 방사 방향으로 배열되는 발광 소자를 제공할 수 있다.
실시 예는 복수의 발광 칩을 갖는 발광 소자의 방열 효율이 개선될 수 있다.
실시 예는 복수의 발광 칩을 갖는 발광 소자의 전기적인 신뢰성을 개선시켜 줄 수 있다.
실시 예에 따른 발광 소자는, 몸체; 상기 몸체의 상면에 배치된 제1 및 제2금속층; 상기 제1 및 제2금속층 사이에 배치되며 원 형상의 외곽선을 갖는 방열 판; 상기 방열 판 상에 배치된 복수의 발광부; 상기 제1 및 제2금속층 상에 배치되며 상기 복수의 발광부와 전기적으로 연결된 제1 및 제2본딩 영역 및 상기 방열 판 상에 배치되고 상기 복수의 발광부를 덮는 몰딩 부재를 포함하며, 상기 복수의 발광부의 각각은 서로 연결된 복수의 발광 칩; 및 상기 복수의 발광 칩을 상기 제1 및 제2본딩 영역에 전기적으로 연결하는 복수의 와이어를 포함하며, 상기 각 발광부의 복수의 와이어는 상기 방열 판의 중심으로부터 방사 방향으로 배열된다.
실시 예는 복수의 발광 칩을 갖는 발광 소자의 신뢰성을 개선시켜 줄 수 있다.
실시 예는 복수의 발광 칩을 갖는 발광 소자의 방열 효율을 개선시켜 줄 수 있다.
실시 예는 발광 소자 및 이를 구비한 조명 시스템의 신뢰성이 개선될 수 있다.
도 1은 제1 실시 예에 따른 발광소자의 평면도이다.
도 2는 도 1의 발광 소자에서 방열판과 제1 및 제2금속층을 상세하게 나타낸 평면도이다.
도 3은 도 1의 발광 소자의 A-A측 단면도이다.
도 4는 도 1의 발광 소자에서 제1발광부의 제1와이어의 연결 상태를 나타낸 도면이다.
도 5는 도 1의 발광 소자에서 제1발광부의 제1와이어의 연결 상태를 나타낸 도면이다.
도 6은 도 1의 발광 소자의 회로 기판의 압축 변형 예를 나타낸 도면이다.
도 7은 도 1의 발광 소자의 회로 기판의 인장 변형 예를 나타낸 도면이다.
도 8은 도 6 및 도 7의 회로 기판의 압축 및 인장 변형에 따른 수직 변형에 따른 이동 거리를 나타낸 그래프이다.
도 9는 실시 예에 따른 회로 기판의 몰딩 부재와 반사 부재의 경계 영역에서 온도별 등가 응력을 나타낸 그래프이다.
도 10은 실시 예에 따른 회로 기판의 몰딩 부재와 반사 부재의 경계 영역에서 온도별 최대 변형을 나타낸 도면이다.
도 11은 도 3의 발광 소자의 다른 예를 나타낸 도면이다.
도 12는 도 3의 발광 소자의 또 다른 예를 나타낸 도면이다.
도 13은 도 1의 발광 소자의 다른 예를 나타낸 도면이다.
도 14는 제2실시 예에 따른 발광 소자를 나타낸 평면도이다.
도 15는 도 14의 발광 소자의 부분 확대도이다.
도 16은 실시 예에 따른 발광 소자의 발광 칩의 예를 나타낸 도면이다.
도 17은 실시 예에 따른 발광 소자를 갖는 표시 장치를 나타낸 도면이다.
도 18은 실시 예에 따른 발광 소자를 갖는 표시 장치의 다른 예를 나타낸 도면이다.
도 19는 실시 예에 따른 발광 소자를 갖는 조명 장치를 나타낸 사시도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하고, 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
이하에서는 도 1 내지 도 5을 참고하여 본 발명의 제1 실시예에 따른 발광소자를 설명한다.
도 1은 제1 실시 예에 따른 발광소자의 평면도이며, 도 2는 도 1의 발광 소자에서 방열 판과 제1 및 제2금속층을 상세하게 나타낸 평면도이고, 도 3은 도 1의 발광 소자의 A-A측 단면도이며, 도 4는 도 1의 발광 소자에서 제1발광부의 제1와이어의 연결 상태를 나타낸 도면이고, 도 5는 도 1의 발광 소자에서 제1발광부의 제1와이어의 연결 상태를 나타낸 도면이다.
도 1 내지 도 5를 참조하면, 발광 소자는 몸체(11), 상기 몸체(11)의 상면에 배치된 복수의 금속층(13,15); 상기 복수의 금속층(13,15) 사이에 배치된 방열판(17); 상기 방열판(17) 상에 발광 칩(31,32,33,41,42,43)을 갖는 복수의 발광부(30,30A); 상기 방열판(17)의 둘레에 배치된 반사부재(23); 및 상기 방열판(17) 상에 배치된 몰딩 부재(25); 및 상기 각 발광부(30,30A)와 각 금속층(13,15)에 연결된 복수의 와이어(71,73,81,83)를 포함할 수 있다. 상기 발광 소자는 상기 몸체(11)의 하면에 복수의 금속층(45,47); 및 상기 몸체(11) 내에 배치된 복수의 연결 전극(14,16)를 포함할 수 있다.
상기 발광 소자는 복수의 발광 칩(31,32,33,41,42,43)을 갖는 패키지 또는 유닛으로서, 조명등, 실내등, 실외등, 지시등 및 전도등과 같은 조명 장치에 적용될 수 있다.
상기 발광 소자의 몸체(11)는 절연 재질 예컨대, 실리콘, 에폭시 또는 플라스틱 재질과 같은 수지 재질을 포함할 수 있다. 상기 몸체(11)는 예컨대, 폴리프탈아미드(PPA: Polyphthalamide)와 같은 수지 재질로 형성될 수 있다. 상기 실리콘은 백색 계열의 수지를 포함한다. 또한 상기 몸체(11) 내에는 산무수물, 산화 방지제, 이형재, 광 반사재, 무기 충전재, 경화 촉매, 광 안정제, 윤활제, 이산화티탄 중에서 선택적으로 첨가될 수 있다. 함유하고 있다. 상기 몸체(11)는 변성 에폭시 수지, 변성 실리콘 수지, 아크릴 수지, 우레탄 수지로 이루어지는 군으로부터 선택되는 적어도 1종에 의해 성형될 수 있다. 예를 들면, 트리글리시딜이소시아누레이트, 수소화 비스페놀 A 디글리시딜에테르 등으로 이루어지는 에폭시 수지와, 헥사히드로 무수 프탈산, 3-메틸헥사히드로 무수 프탈산4-메틸헥사히드로 무수프탈산 등으로 이루어지는 산무수물을, 에폭시 수지에 경화 촉진제로서 DBU(1,8-Diazabicyclo(5,4,0)undecene-7), 조촉매로서 에틸렌 그리콜, 산화티탄 안료, 글래스 섬유를 첨가하고, 가열에 의해 부분적으로 경화 반응시켜 B 스테이지화한 고형상 에폭시 수지 조성물을 사용할 수 있으며, 이에 대해 한정하지는 않는다.
다른 예로서, 상기 몸체(11)는 절연 재질을 포함하며, 예컨대 세라믹 소재를 포함한다. 상기 세라믹 소재는 동시 소성되는 저온 소성 세라믹(LTCC: low temperature co-fired ceramic) 또는 고온 소성 세라믹(HTCC: high temperature co-fired ceramic)을 포함한다. 상기 몸체(11)는 금속 산화물 예컨대, SiO2, SixOy, Si3N4, SixNy, SiOxNy, Al2O3을 포함할 수 있다.
상기 몸체(11)는 서로 반대측 제1측면(1) 및 제2측면(2)과, 상기 제 1측면(1)과 제2측면(2)에 인접하며 서로 반대측 제3 및 제4측면(3,4)을 포함한다. 상기 제1 및 제2측면(1,2)의 길이는 상기 제3 및 제4측면(3,4)의 길이보다 더 길거나 같을 수 있다. 상기 몸체(11)의 탑뷰 형상은 다각형 형상 예컨대, 사각형 형상을 제시하였으나, 곡면을 갖는 형상을 포함할 수 있다.
도 1 및 도 3과 같이, 상기 몸체(11)의 상면에는 복수의 금속층(13,15) 예컨대, 서로 분리된 제1 및 제2금속층(13,15)을 포함한다. 상기 제1금속층(13)은 상기 몸체(11)의 상면의 제1영역에 배치되고 상기 몸체(11)의 제1, 2 및 3측면(1,2,3)에 인접하게 배치될 수 있다. 상기 제2금속층(15)는 상기 몸체(11)의 상면의 제2영역에 배치되며 상기 몸체(11)의 제1,2 및 4측면(1,2,4)에 인접하게 배치될 수 있다.
상기 몸체(11), 상기 제1 및 제2금속층(13,15)은 회로 기판(10)으로 정의할 수 있다. 상기 몸체(11)의 하면에는 복수의 금속층 예컨대, 제3 및 제4금속층(45,47)을 포함한다. 상기 회로 기판(10)은 상기 제3 및 제4금속층(45,47)을 더 포함할 수 있다. 상기 제3금속층(45)은 상기 제1금속층(13)과 수직 방향으로 오버랩되게 배치될 수 있다. 상기 제3금속층(45)은 상기 방열판(17)과 수직 방향으로 오버랩되게 배치될 수 있다. 상기 제3금속층(45)은 상기 제1금속층(13)의 면적보다 큰 면적으로 배치될 수 있다. 상기 제4금속층(47)은 상기 제2금속층(15)와 수직 방향으로 오버랩되게 배치될 수 있다. 상기 제4금속층(47)은 상기 방열판(17)과 수직 방향으로 오버랩되게 배치될 수 있다. 상기 제4금속층(47)은 상기 제2금속층(15)의 면적보다 큰 면적으로 형성될 수 있다. 이러한 제3 및 제4금속층(45,47)에 의해 발광 소자의 방열 효율은 개선될 수 있다. 상기 제3 및 제4금속층(45,47)은 회로 패턴을 갖는 보드에 탑재될 수 있으며, 이에 대해 한정하지는 않는다.
상기 몸체(11) 내에는 복수의 연결 전극(14,16) 예컨대, 서로 이격된 제1연결 전극(14) 및 제2연결 전극(16)을 포함한다. 상기 회로 기판(10)은 제1연결 전극(14)과 제2연결 전극(16)을 포함할 수 있다. 상기 제1연결 전극(14)은 상기 제1 및 제3금속층(13,45)의 영역들과 수직 방향으로 오버랩될 수 있다. 상기 제1연결 전극(14)는 상기 제1 및 제3금속층(13,45)과 전기적으로 연결된다. 상기 제1연결 전극(14)는 상기 몸체(11) 내에 하나 또는 복수로 배치될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제2연결 전극(16)은 상기 제2 및 제4금속층(15,47)의 영역과 수직 방향으로 오버랩될 수 있다. 상기 제2연결 전극(16)은 제2 및 제4금속층(15,47)에 전기적으로 연결된다. 상기 제2연결 전극(16)는 상기 몸체(11) 내에 하나 또는 복수로 배치될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제1 및 제2연결 전극(14,16) 사이의 간격은 상기 방열판(17)의 너비보다 넓게 배치될 수 있다. 이에 따라 발광 소자의 전원 경로는 분산될 수 있고, 방열 효율은 개선될 수 있다.
상기 방열판(17)은 상기 몸체(11)의 상면에 배치된다. 상기 방열판(17)은 상기 제1 및 제2금속층(13,15) 사이에 배치되며, 상기 제3 및 제4금속층(45,47)과 수직 방향으로 오버랩될 수 있다. 상기 방열판(17)의 외 측면에는 상기 제1 및 제2금속층(13,15)이 대면하게 배치될 수 있다. 상기 제1금속층(13)은 상기 방열판(17)의 외 측면의 45~49% 범위를 커버하며, 상기 제2금속층(15)은 상기 방열판(17)의 외 측면의 45~49% 범위를 커버하게 된다. 상기 제1 및 제2금속층(13,15)은 상기 방열판(17)의 외곽선을 따라 배치된다.
상기 제1금속층(13)의 내측 영역 중 상기 방열판(17)의 외 측면과 대응되는 영역은 반원 형상으로 형성될 수 있다. 상기 제2금속층(15)의 내측 영역 중 상기 방열판(17)의 외 측면과 대응되는 영역은 반원 형상으로 형성될 수 있다.
상기 방열판(17)은 탑뷰 형상이 곡면을 갖는 형상 예컨대, 원 형상을 포함한다. 상기 방열판(17)의 외곽선은 원 형상으로 형성될 수 있다. 상기 방열판(17)의 직경(E1)은 상기 몸체(11)의 너비의 50% 이상 예컨대, 70% 이상일 수 있다. 상기 방열판(17)의 직경(E1)은 상기 몸체(11)의 너비의 70~95% 범위로 형성될 수 있다. 상기 몸체(11)의 너비는 X축 방향의 길이를 나타낼 수 있으며, 길이는 Y축 방향의 길이를 나타낸다. 여기서, 상기 몸체(11)의 너비는 제1 및 제2측면(1,2) 사이의 간격일 수 있으며, 이에 대해 한정하지는 않는다.
상기 방열판(17)은 상기 제1 및 제2금속층(13,15)의 두께와 동일한 두께로 형성되거나, 더 두꺼운 두께로 형성될 수 있다.
보호층(21)은 상기 제1 및 제2금속층(13,15)의 상면에 배치될 수 있다. 상기 보호층(21)은 상기 제1 및 제2금속층(13,15) 사이의 경계 영역 및 외 측면에 배치될 수 있다. 상기 보호층(21)은 상기 몸체(11)의 제1, 제2 및 제4측면(1,2,4)의 에지(Edge) 상에 형성될 수 있다. 이에 따라 상기 제1금속층(13)은 상기 몸체(11)의 제1, 제2 및 제3측면(1,2,3)의 에지(Edge)로부터 이격되고, 상기 제2금속층(15)은 상기 몸체(11)의 제1, 제2 및 제4측면(1,2,4)의 에지(Edge)로부터 이격된다. 상기 보호층(21)은 상기 제1 및 제2금속층(13,15)의 표면이 노출되는 것을 방지한다. 상기 보호층(21)은 상기 제1 및 제2금속층(13,15)이 부식되거나 전기적인 신뢰성이 저하되는 것을 보호할 수 있다. 상기 보호층(21)은 절연 재질 예컨대, 포토 레지스트와 같은 재질로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제1금속층(13)은 제1오픈 영역(13A), 제1지지 돌기(13B) 및 제1본딩 영역(12A)을 포함한다. 상기 제1오픈 영역(13A)은 상기 제2금속층(15)의 상면 중에서 보호층(21)이 제거된 영역이 될 수 있으며, 와이어가 접촉되거나 본딩될 수 있다. 상기 제1지지 돌기(13B)는 상기 제1금속층(13)으로부터 상기 몸체(11)의 적어도 한 측면 예컨대, 제3측면(3) 방향으로 연장된다. 상기 제1지지 돌기(13B)는 도금을 위한 인출 단자이거나 사출시 제1금속층(13)을 지지할 수 있다. 상기 제1본딩 영역(12A)은 상기 방열판(17)의 둘레를 따라 배치되며, 예컨대 상기 방열판(17)의 외측 윤곽선을 따라 반구형 형상으로 리세스된 영역이다. 상기 제1본딩 영역(12A)은 상기 보호층(21)이 제거된 오픈 영역이며 발광부(30,30A)에 연결되고 제1극성의 전원을 공급하게 된다.
상기 제2금속층(15)은 제2오픈 영역(15A), 제2지지 돌기(15B) 및 제2본딩 영역(12B)을 포함한다. 상기 제2오픈 영역(13A)은 상기 제2금속층(15)의 상면 중에서 보호층(21)이 제거된 영역이 될 수 있다. 상기 제2오픈 영역(13A)은 별도의 와이어가 본딩되거나 접촉될 수 있다. 상기 제2지지 돌기(15B)는 적어도 하나를 포함하며, 상기 제2금속층(15)으로부터 상기 몸체(11)의 외 측면으로 연장된다. 상기 제2지지 돌기(15B)는 도금을 위한 인출 단자이거나 사출시 제2금속층(15)을 지지할 수 있다. 예컨대, 상기 제2지지 돌기(15B)가 복수개인 경우, 상기 몸체(11)의 제1 및 제2측면(1,2) 방향으로 연장될 수 있다. 상기 제2본딩 영역(12B)은 상기 방열판(17)의 둘레를 따라 배치되며, 예컨대 상기 방열판(17)의 외측 윤곽선을 따라 반구 형상으로 리세스(Recess)된 영역이다. 상기 제2본딩 영역(12B)은 상기 보호층(21)이 제거된 오픈 영역이며 발광부(30,30A)에 연결되고 제2극성의 전원을 공급하게 된다.
상기 제1 및 제2본딩 영역(12A,12B)이 상기 방열판(17)의 외측 둘레를 따라 배치되므로, 와이어(71,73,81,83)의 길이 및 위치, 발광 칩들(31,32,33,41,42,43)의 배열이 용이한 효과가 있다.
상기 제1내지 제4금속층(13,15,45,47)은 티타늄(Ti), 구리(Cu), 니켈(Ni), 금(Au), 크롬(Cr), 탄탈늄(Ta), 백금(Pt), 주석(Sn), 은(Ag), 인(P), 알루미늄(Al), 팔라듐(Pd) 중 적어도 하나의 금속을 포함할 수 있다. 상기 제1내지 제4금속층(13,15,45,47)은 예컨대 서로 다른 금속으로 다층으로 형성될 수 있다. 상기 제1 내지 제4금속층(13,15,45,47)의 표면에는 도금층이 형성될 수 있으며, 이에 대해 한정하지는 않는다. 상기 도금층은 상기 제1 및 제2본딩 영역(12A,12B)상에 노출될 수 있다.
제1간극부(18)는 상기 방열판(17)의 둘레를 따라 배치되며, 상기 제1 및 제2금속층(13,15)과 상기 방열판(17) 사이에 배치된다. 상기 제1간극부(18)는 링 형상으로 형성될 수 있으며, 상기 방열판(17)과 제1 및 제2금속층(13,15) 간의 접촉을 차단한다. 상기 제1간극부(18) 내에는 몰딩 부재(25)의 일부가 배치되거나, 반사 부재(23)의 일부가 배치될 수 있다.
제2간극부(19)는 상기 제1 및 제2금속층(13,15) 사이에 배치되며, 상기 제1간극부(18)에 연결된다. 상기 제2간극부(19)는 상기 방열판(17)을 제외한 영역에서 제1 및 제2금속층(13,15) 사이의 간격이 될 수 있다. 상기 제2간극부(19)는 상기 제1간극부(18)의 너비보다 넓은 너비로 배치될 수 있다. 이에 따라 제1 및 제2금속층(13,15) 사이의 간격은 방열판(17)과 제1금속층(13) 또는 제2금속층(15) 사이의 간격보다 넓을 수 있다.
상기 방열판(17)은 제3지지 돌기(17A)를 포함하며, 상기 제3지지 돌기(17A)는 상기 제2간극부(19)를 따라 상기 몸체(11)의 측면 예컨대, 제1 및 제2측면(1,2)으로 연장될 수 있다. 상기 제3지지 돌기(17A)는 상기 방열판(17)으로부터 서로 반대측 방향으로 연장될 수 있으며, 이에 대해 한정하지는 않는다. 상기 제3지지 돌기(17A)는 상기 제2간극부(19) 내에서 상기 제1 및 제2금속층(13,15)으로부터 이격될 수 있다.
도 1 및 도 3과 같이, 상기 반사부재(23)는 상기 방열판(17)의 둘레에 배치된다. 상기 반사부재(23)는 링 형상으로 형성될 수 있다. 상기 링의 내경은 상기 방열판(17)의 직경과 같거나 작을 수 있다. 상기 반사 부재(23)는 상기 몰딩 부재(25)의 외측 면과 대응된다. 상기 반사 부재(23)는 상기 몰딩 부재(25)의 외 측면과 접촉될 수 있다. 상기 반사 부재((23)는 상기 보호층(21)과 상기 몰딩 부재(25) 사이에 배치될 수 있다. 상기 반사 부재(23)는 상기 제1 및 제2금속층(13,15) 및 상기 보호층(21)과 접촉될 수 있다. 이러한 반사 부재(23)가 상기 몰딩 부재(25)를 통해 방출된 광을 반사시켜 주므로, 발광 소자의 광 추출 효율 및 광도는 개선될 수 있다.
상기 반사부재(23)는 상기 보호층(21)의 두께와 동일하거나 두꺼운 두께로 형성될 수 있다. 이에 따라 광 손실은 상기 반사부재(23)에 의해 줄일 수 있다. 상기 반사부재(23)는 상기 제1 및 제2본딩 영역(12A,12B) 상에 예컨대, 상기 제1 및 제2본딩 영역(12A,12B)과 접촉될 수 있다. 상기 반사부재(23)는 상기 제1간극부(18)에 배치될 수 있다.
상기 반사부재(23)는 실리콘 또는 에폭시 등과 같은 수지 재질을 포함하며, 내부에 금속 산화물이 첨가될 수 있다. 상기 반사 부재(23)는 절연 재질로 형성될 수 있다. 상기 반사 부재(23)는 상기 금속 산화물은 상기 몰딩 부재의 굴절률보다 높은 굴절률을 갖는 물질로서, 예컨대 TIO2, Al2O3, 또는 SiO2를 포함한다. 상기 금속 산화물은 상기 반수 부재(23) 내에 5wt% 이상으로 첨가될 수 있다. 상기 반사 부재(23)는 상기 발광 칩(31,32,33)로부터 방출된 광에 대해 50% 이상 예컨대, 78% 이상의 반사율을 나타낸다. 상기 반사 부재(23)의 높이 또는 두께는 600±20㎛이며, 너비는 1000±100㎛ 범위로 형성될 수 있다. 상기 반사부재(23)의 높이가 너무 낮거나 높은 경우, 광 반사효율이 저하될 수 있다. 또한 상기 반사부재(23)의 너비가 너무 좁은 경우 형성에 어려움이 있고, 너무 넓은 경우 방열 효율이 저하될 수 있다.
상기 복수의 발광부(30,30A)는 상기 방열판(17) 위에 배치된다. 상기 복수의 발광부(30,30A)는 제1 및 제2금속층(13,15)과 전기적으로 연결되며, 서로 병렬로 연결될 수 있다. 각 발광부(30,30A)는 서로 연결된 복수의 발광 칩(31,32,33,41,42,43)과, 상기 몰딩 부재(25)의 외 측면을 지나 상기 제1 및 제2금속층(13,15)에 선택적으로 연결된 복수의 와이어(71,73,81,83)를 포함한다. 상기 복수의 와이어(71,73,81,83)는 상기 반사 부재(23)를 지나는 제1 및 제2금속층(13,15)에 연결될 수 있다. 상기 복수의 와이어(71,73,81,83)는 상기 반사 부재(23)과 상기 몰딩 부재(25)에 접촉될 수 있다. 상기 복수의 발광부(30,30A) 중 적어도 하나의 배열 방향은 상기 복수의 와이어(71,73,81,83) 각각의 양단을 지나는 직선들과 평행하지 않게 배열될 수 있다.
상기 복수의 발광부(30,30A)는 예컨대, 제1 및 제2발광부(30,30A)를 포함한다. 상기 제1발광부(30)는 복수의 발광 칩(31,32,33)이 직렬로 연결된다. 상기 제2발광부(30A)는 상기 제1발광부(30)으로부터 이격되며 복수의 발광 칩(41,42,43)이 직렬로 연결된다. 상기 제1 및 제2발광부(30,30A) 각각은 발광 칩 어레이로 정의될 수 있으며, 이에 대해 한정하지는 않는다. 또한 상기 제1 및 제2발광부(30,30A) 중 어느 하나는 배치하지 않거나, 방열판(17)의 센터 영역에 배치될 수 있다.
상기 각 발광부(30,30A)는 5개 이상의 발광 칩이 직렬 연결될 수 있다. 상기 각 발광 칩은 광원으로서, 자외선부터 가시광선까지의 파장 대역 중에서 선택적으로 발광하게 된다. 상기 발광 칩(31,32,33,41,42,43)은 UV(Ultraviolet) LED 칩, 그린 LED 칩, 블록 LED 칩, 레드 LED 칩 중 어느 하나를 포함한다. 상기 발광 칩(31,32,33,41,42,43)의 광 출사 영역에는 형광체가 도포될 수 있으며, 이에 대해 한정하지는 않는다.
상기 방열판(17) 상에는 몰딩 부재(25)가 배치된다. 상기 몰딩 부재(25)는 복수의 발광부(30,30A)를 덮게 된다. 상기 몰딩 부재(25)는 실리콘 또는 에폭시 등의 투명 또는 투광 재질로 형성될 수 있다. 상기 몰딩 부재(25)는 다른 예로서, 경질 실리콘 수지, 연질 실리콘 수지, 실리콘 고무 중 적어도 하나를 포함할 수 있다. 상기 몰딩 부재(25)는 측 단면이 반구형 형상으로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 상기 몰딩 부재(25)의 외 측면은 링 형상으로 형성될 수 있으며, 상기 반사 부재(23)과 접촉될 수 있다. 상기 몰딩 부재(25)는 상기 방열판(17) 상에 배치된 발광 칩(31,32,33,41,42,43)을 커버하게 된다. 상기 몰딩 부재(25)는 와이어(71,73,75,81,83,85)를 커버한다. 상기 몰딩 부재(25)는 제1간극부(18)에 배치될 수 있다.
상기 몰딩 부재(25) 내에는 형광체가 첨가될 수 있으며, 상기 형광체는 황색 형광체, 녹색 형광체, 청색 형광체, 적색 형광체 중 적어도 하나를 포함할 수 있으며, 예를 들면, Eu, Ce 등의 란타노이드계 원소에 의해 주로 활성화되는 질화물계 형광체·산질화물계 형광체·사이어론계 형광체, Eu 등의 란타노이드계, Mn 등의 천이금속계의 원소에 의해 주로 활성화되는 알칼리 토류 할로겐 아파타이트 형광체, 알칼리 토류 금속 붕산 할로겐 형광체, 알칼리 토류 금속 알루민산염 형광체, 알칼리 토류 규산염, 알칼리 토류 황화물, 알칼리 토류 티오갈레이트, 알칼리 토류 질화규소, 게르마늄산염, 또는, Ce 등의 란타노이드계 원소에 의해 주로 활성화되는 희토류 알루민산염, 희토류 규산염 또는 Eu 등의 란타노이드계 원소에 의해 주로 활성화되는 유기 및 유기 착체 등으로부터 선택되는 적어도 어느 하나 이상일 수 있다. 구체적인 예로서, 상기의 형광체를 사용할 수 있지만, 이것에 한정되지 않는다. 상기 몰딩 부재(25)는 내부에 필러를 포함할 수 있으며, 이에 대해 한정하지는 않는다.
상기 몰딩 부재(25)의 외측 윤곽선은 원 형상으로 형성될 수 있다. 상기 몰딩 부재(25)의 외측 구면은 상기 반사부재(23)와 접촉될 수 있다. 상기 몰딩 부재(25)와 상기 반사부재(23)는 서로 다른 종류의 실리콘 재질로 형성될 수 있다. 이에 따라 상기 몰딩 부재(25)와 상기 반사부재(23) 간의 접착력은 개선될 수 있다. 상기 반사 부재(23)는 상기 몰딩 부재(25)가 팽창하는 것을 억제하기 위한 댐 역할을 할 수 있다. 또한 상기 반사 부재(25)는 상기 몰딩 부재(25)의 넘침을 방지할 수 있다. 상기 방열 판(17), 제1 및 제2금속층(13,15) 중 적어도 하나의 위에는 보호 칩(미도시)이 배치될 수 있으며, 이에 대해 한정하지는 않는다.
한편, 상기 제1발광부(30)는 상기 제1금속층(13)에 인접한 제1발광 칩(31)과, 상기 제2금속층(15)에 인접한 제2발광 칩(32)과, 상기 제1 및 제2발광 칩(31,32) 사이에 연결된 복수의 제3발광 칩(33)과, 상기 제1발광 칩(31)과 상기 제1금속층(13) 사이에 연결된 제1와이어(71)와, 상기 제2발광 칩(32)과 상기 제2금속층(15) 사이에 연결된 제2와이어(73)를 포함한다. 상기 제1발광부(30)는 상기 복수의 제3발광 칩(33)을 연결하는 연결 부재(75)를 포함할 수 있으며, 상기 연결 부재(75)는 와이어를 포함한다.
도 2와 같이, 상기 제1와이어(71)의 양단(P1,P2)은 상기 제1발광 칩(31)과 상기 제1금속층(13)에 연결된다. 상기 제2와이어(73)의 양단(P3,P4)은 상기 제2발광 칩(32)과 상기 제2금속층(15)에 연결된다. 상기 제1와이어(71)의 제2단(P2)은 상기 제1금속층(13)의 제1본딩 영역(12A)에 본딩되고, 상기 제2와이어(73)의 제2단(P4)는 상기 제2금속층(15)의 제2본딩 영역(12B)에 본딩된다.
상기 제3발광 칩(33)은 복수 예컨대, 3개 이상의 발광 칩이 직렬로 연결될 수 있다. 상기 복수의 제3발광 칩(33)은 1열로 배열되거나, 2열 또는 3열 이상으로 배치될 수 있다. 또한 상기 복수의 제3발광 칩(33)은 연결 부재(75)에 의해 서로 연결된다. 상기 제1 및 제2발광 칩(31,32)은 제1발광부(30)의 입력 및 출력 측에 배치된 칩들이다. 상기 복수의 제3발광 칩(33) 중 적어도 하나는 상기 제1 및 제2발광칩(31,32)의 중심을 지나는 직선과 평행하거나 동일 선상에 배치될 수 있다.
상기 제2발광부(30A)는 상기 제1금속층(13)에 인접한 제4발광 칩(41)과, 상기 제2금속층(15)에 인접한 제5발광 칩(42)과, 상기 제4 및 제5발광 칩(41,42) 사이에 연결된 복수의 제6발광 칩(43)과, 상기 제4발광 칩(41)과 상기 제1금속층(13) 사이에 연결된 제3와이어(81)와, 상기 제5발광 칩(42)과 상기 제2금속층(15) 사이에 연결된 제4와이어(83)를 포함한다. 상기 제2발광부(30A)는 상기 복수의 제6발광 칩(43)을 연결하는 연결 부재(85)를 포함할 수 있으며, 상기 연결 부재(85)는 와이어를 포함한다.
상기 제3와이어(81)의 양단은 상기 제4발광 칩(41)과 상기 제1금속층(13)에 연결된다. 상기 제4와이어(83)의 양단은 상기 제5발광 칩(42)과 상기 제2금속층(15)에 연결된다. 상기 제3와이어(81)는 상기 제1금속층(13)의 제1본딩 영역(12A)에 본딩되고, 상기 제4와이어(83)는 상기 제2금속층(15)의 제2본딩 영역(12B)에 본딩된다. 상기 제6발광 칩(43)은 복수 예컨대, 3개 이상의 발광 칩이 직렬로 연결될 수 있다. 상기 복수의 제6발광 칩(43)은 1열로 배열되거나, 2열 또는 3열 이상으로 배치될 수 있다. 또한 상기 복수의 제6발광 칩(43)은 연결 부재(85)에 의해 서로 연결된다. 상기 제4 및 제5발광 칩(41,42)은 제2발광부(30A)의 입력 및 출력 측에 배치된 칩들이다. 상기 복수의 제6발광 칩(43) 중 적어도 하나는 상기 제4 및 제5발광칩(41,42)의 중심을 지나는 직선과 평행하거나 동일 선상에 배치될 수 있다.
상기 제1 내지 제4와이어(71,73,81,83) 각각은 상기 몰딩 부재(25) 및 상기 반사 부재(23)에 접촉된다. 상기 제1 내지 제4와이어(71,73,81,83) 각각은 상기 몰딩 부재(25)와 상기 반사 부재(23)의 내에 결합된다. 상기 제1 내지 제4와이어(71,73,81,83) 각각은 상기 몰딩 부재(25)의 외측 구면을 통해 돌출되고 상기 반사 부재(23)의 내부로 연장될 수 있다.
상기 제1와이어(71)의 제2단(P2)과 상기 제2와이어(73)의 제4단(P4) 사이의 간격(E2)는 상기 방열판(17)의 직경(E1)과 같거나 작을 수 있으며, 이에 대해 한정하지는 않는다.
한편, 도 2와 같이, 상기 제1와이어(71)는 상기 제1발광 칩(31)으로부터 상기 방열판(17)의 중심에 대해 방사 방향으로 연장될 수 있다. 상기 제2와이어(73)는 상기 제2발광 칩(32)으로부터 상기 방열판(17)의 중심에 대해 방사 방향으로 연장될 수 있다. 상기 제3와이어(81)는 상기 제4발광 칩(41)으로부터 상기 방열판(17)의 중심에 대해 방사 방향으로 연장될 수 있다. 상기 제4와이어(83)는 상기 제6발광 칩(43)으로부터 상기 방열판(17)의 중심에 대해 방사 방향으로 연장될 수 있다. 상기 제1 내지 제4와이어(71,73,81,83)는 상기 방열판(17)의 중심에 대해 방사 방향으로 연장될 수 있다. 상기 제1 내지 제4와이어(71,73,81,83)는 상기 몰딩 부재(25)의 중심으로부터 방사 방향으로 연장된다.
상기 제1와이어(71)의 양단(P1,P2)을 지나는 제1직선은 상기 방열판(17) 또는 상기 몰딩 부재(25)의 중심에 대해 방사 방향으로 연장될 수 있다. 상기 제2와이어(73)의 양단(P3,P4)을 지나는 제2직선은 상기 방열판(17) 또는 상기 몰딩 부재(25)의 중심에 대해 방사 방향으로 연장될 수 있다. 상기 제3와이어(81)의 양단을 지나는 제3직선은 상기 방열판(17) 또는 상기 몰딩 부재(25)의 중심에 대해 방사 방향으로 연장될 수 있다. 상기 제4와이어(83)의 양단을 지나는 제4직선은 상기 방열판(17) 또는 상기 몰딩 부재(25)의 중심에 대해 방사 방향으로 연장될 수 있다.
상기 제1와이어(71)의 양단을 연결한 제1직선과 상기 제2와이어(73)의 양단을 연결한 제2직선 사이의 각도(R1)는 둔각으로 형성될 수 있다. 상기 제3와이어(81)의 양단을 연결한 제3직선과 상기 제4와이어(83)의 양단을 연결한 제4직선 사이의 각도는 둔각으로 형성될 수 있다. 상기 제1직선과 상기 제3직선 사이의 각도(R2)는 예각으로 형성될 수 있다. 상기 제2직선과 제4직선 사이의 각도는 예각으로 형성될 수 있다.
도 3과 같이, 상기 제1와이어(71) 및 상기 제2와이어(73)의 고점의 높이는 상기 연결 부재(75)의 고점의 높이보다 높게 위치할 수 있다. 상기 제1 및 제2와이어(71,73)의 고점과 상기 제1 및 제2발광 칩(31,32)의 상면 사이의 간격(T1)은 180㎛~200㎛ 범위로 형성될 수 있다. 상기 제1 및 제2와이어(71,73)의 고점은 상기 연결 부재(75)의 고점보다 30㎛~50㎛ 범위로 더 높게 위치한다. 또한 도시하지 않았지만, 제3 및 제4와이어(81,83)의 고점의 높이는 상기 연결 부재(85)의 고점의 높이보다 높게 위치할 수 있으며, 예컨대 30㎛~50㎛ 범위로 더 높게 위치한다.
상기 제1 내지 제4와이어(71,73,81,83)의 고점 높이를 다른 연결부재(75,85)의 고점보다 높게 배치함으로써, 상기 몰딩 부재(25)의 팽창과 수축에 따라 상기 제1 내지 제4와이어(71,73,81,83)에 전달되는 충격이 감소될 수 있다. 또한 상기 제1 내지 제4와이어(71,73,81,83) 각각의 양단은 상기 몰딩 부재(25)의 팽창 방향 및 수축 방향과 같은 방향으로 배열됨으로써, 상기 몰딩 부재(25)의 열 변형에 의해 상기 제1 및 제2와이어(71,73)에 전달되는 충격을 줄여줄 수 있다. 즉, 상기 제1 내지 제4와이어(71,73,81,83)는 상기 몰딩 부재(25)로부터 전달되는 인장력을 최소화할 수 있는 방사형 본딩 방식으로 연결된다.
구체적으로 설명하면, 도 2 및 도 3과 같이, 상기 제1 및 제2와이어(71,73)의 제1단(P1,P3)은 상기 제1 및 제2발광 칩(31,32)에 본딩되며, 상기 몰딩부재(25) 내에 배치된다. 상기 제1와이어(71)의 제2단(P2)은 상기 제1금속층(13)의 제1본딩 영역(12A)에 본딩되고, 상기 제2와이어(73)의 제2단(P4)은 상기 제2금속층(15)의 제2본딩 영역(12B)에 본딩된다. 여기서, 상기 제1 및 제2와이어(71,73)의 제2단(P2,P4)은 반사 부재(23) 내에 배치된다. 상기 제1 및 제2와이어(71,73)의 제1단(P1,P3)은 상기 몰딩 부재(25) 내에 배치된다. 상기 제1 및 제2와이어(71,73)가 상기 반사 부재(23) 및 상기 몰딩 부재(25) 내에 배치됨으로써, 서로 다른 수지 부재 간의 열 팽창 차이로 인해 상기 제1 및 제2와이어(71,73)에 전달되는 인장력을 감소시켜 줄 수 있다.
실시 예에 따른 제 1내지 제4와이어(71,73,81,83) 중 제1와이어(71)에 대해 상세하게 도 4 및 도 5를 참조하여 설명하기로 한다. 제2 내지 제4와이어(73,81,83)은 아래의 제1와이어(71)의 설명을 참조하기로 한다.
도 4 및 도 5를 참조하면, 상기 제1와이어(71)는 상기 방열판(17)의 원 형상의 윤곽선의 한 점을 지나는 제1접선(B1)에 대해 제1각도(θ1)의 방향으로 연장된다. 상기 제1각도(θ1)는 85도 내지 95도 범위로 형성될 수 있으며, 상기 제1각도(θ1)가 90도에 가까울수록 상기 제1와이어(71)에 전달되는 상기 몰딩 부재(25)에 의한 충격이 최소화될 수 있다. 즉, 상기 제1와이어(71)는 제1단(P1)과 제2단(P2)을 연결하는 제1직선이 원 형태의 상기 방열 판(17)의 외측 윤곽선 또는 외곽선을 지나는 제1접선(B1)에 대해 직각 또는 법선에 가까운 각으로 형성될 수 있으며, 예컨대 85도 내지 95도 범위의 각으로 형성될 수 있다. 상기 제1와이어(71)가 상기 제1접선(B1)에 직각 또는 법선인 경우 상기 제1와이어(71)에 전달되는 충격은 최소화될 수 있다.
여기서, 상기 제1와이어(71)의 제1단(P1)과 제2단(P2) 사이의 직선 거리(D3)는 다른 방향으로 연결된 비교 예의 와이어(71a)의 직선 거리(D2)보다 짧을 수 있다. 상기 제1와이어(71)의 양단(P1,P2)을 지나는 직선은 상기 비교 예의 와이어(71a)의 양단을 지나는 직선으로부터 5도 이상의 각도(θ11)로 틸트될 수 있다. 여기서, 비교 예의 와이어(71a)의 양단을 지나는 직선은 도 1에서 제1 및 제2발광 칩(31,32)의 중심을 지나는 직선으로 정의될 수 있다.
또한 상기 제1본딩 영역(12A) 또는 상기 제2본딩 영역(12B)의 너비(D1)는 280㎛ 내지 320㎛ 범위로 형성될 수 있으며, 이러한 너비(D1)는 상기 제1와이어(71)의 제2단(P2)의 공간 확보를 위한 너비로 형성될 수 있다.
도 1과 같이, 상기 제2 내지 제4와이어(73,81,83)는 상기 제1와이어(71)와 같이, 상기 방열판(17)의 외곽선의 임의의 한 점을 각각 지나는 제2접선에 대해 법선 또는 법선에 가까운 각도로 예컨대, 85도 내지 95도의 각도로 배치될 수 있다. 상기 제2 내지 제4와이어(73,81,83)의 양단을 지나는 직선이 상기 제2접선에 대해 법선 또는 직각인 경우 상기 제2 내지 제4와이어(73,81,83)에 전달되는 외부 충격이 최소화될 수 있다. 상기 제2내지 제4와이어(73,81,83)에 대한 상세한 설명은 상기 제1와이어(71)의 설명을 참조하기로 한다. 상기 제1 내지 제4와이어(71,73,81,83) 각각은 상기 방열판(17)의 윤곽선의 한 점을 지나는 접선에 대해 법선 방향 예컨대, 90도로 형성될 수 있다.
도 5와 같이, 제1발광 칩(31)의 제1측면(S1)에 수평한 직선(X1)과 제2측면(S2)에 수평한 직선(Y1) 사이의 각도(θ2)가 직각인 경우, 상기 제1와이어(71)의 양단이 지나는 제1직선(X2)은 직선(X1)과의 각도(θ3)가 90도 미만 예컨대, 10도 내지 80도 사이로 형성될 수 있다. 여기서, 상기 직선(X1)은 상기 제1발광 칩(31)의 제1측면(S1)을 따라 직선으로 연장되며, 직선(Y1)은 상기 제1발광 칩(31)의 제1측면(S1)에 인접한 제2측면(S2)을 따라 직선으로 연장된다. 상기 제1와이어(71)의 양단을 지나는 제1직선(X2)과 상기 각도(θ3)는 상기 제1발광 칩(31)의 위치에 따라 달라질 수 있다. 상기 제2측면(S2)은 상기 제1측면(S1)의 길이보다 길거나 동일한 길이로 형성될 수 있다.
상기 제1와이어(71)의 양단이 지나는 제1직선(X2)은 제1 및 제2발광 칩(31,32)의 중심을 지나는 직선으로부터 5도 이상 어긋나게 배열될 수 있다. 상기 제1와이어(71)의 양단을 지나는 제1직선(X2)은 상기 제1 및 제2발광 칩(31,32)의 제2측면(S2)을 지나는 직선(Y1)에 대해 5도 이상으로 어긋나게 배치될 수 있다.
실시 예에 따른 제1 내지 제4와이어(71,73,81,83)는 상기 방열판(17) 상에 배치된 제1, 2, 4, 5 발광 칩(31,32,41,42)으로부터 상기 방열판(17)의 중심에 대해 방사 방향으로 연장된다. 이에 따라 제1 내지 제4와이어(71,73,81,83)는 상기 몰딩 부재(25) 내에서 인장력에 견디는 힘이 개선될 수 있다.
한편, 도 6과 같이, 발광 칩들(31,32,33)의 동작에 따라 열이 발생되고, 상기 발생된 열은 몰딩 부재(25)를 통해 전도된다. 이때 상기 몰딩 부재(25)의 열 팽창에 따라 상기 회로기판(10)은 중심부부터 하 방향으로 점선(10A)와 같이 휘어지게 된다. 또한 도 7과 같이, 발광 칩들(31,32,33)이 오프되면, 상기 몰딩 부재(25)가 수축될 때, 상기 회로기판(10)은 점선(10B)와 같이 상 방향으로 복원된다. 이때 상기 제1 내지 제4와이어(71,73,81,83)는 몰딩 부재(25)의 팽창 또는 수축 방향과 동일한 방향으로 배치됨으로써, 외부 충격을 최소화할 수 있다. 여기서, 상기 회로기판(10)은 상기 몰딩 부재(25)가 팽창될 때에는 Z축 방향으로 50㎛ 이상의 차이(Z1)로 휘어지고, 수축될 때 Z축 방향으로 70㎛ 이상의 차이(Z2)로 휘어진다. 이러한 몰딩 부재(25)의 팽창과 수축의 차이는 몸체(11)의 재질에 따라 차이가 있을 수 있으며, 이에 대해 한정하지는 않는다.
만약, 도 4에 도시된, 비교 예의 와이어(71a)와 같이 연결한 경우, 상기 몰딩 부재(25)의 수축과 팽창 방향과 어긋나게 배치되어 있어서, 와이어(71a)의 본딩 부분이 떨어지는 문제가 발생될 수 있다. 또한 와이어의 본딩 부분이 떨어지면, 발광 칩들이 구동하지 않게 되고, 발광 소자의 신뢰성은 저하될 수 있다.
도 8은 도 6 및 도 7에 도시된 회로 기판(10)에서 수직 방향(Z)으로의 최대 이동(Max displacement) 및 최소 이동(Min displacement) 거리를 나타낸 예이다. 도 9는 실시 예에 따른 회로 기판 상의 반사 부재와 몰딩 부재 사이의 경계 영역에서의 온도별 등가 응력(Vonmises stress)을 비교한 그래프이며, 도 10은 실시 예에 따른 회로 기판 상의 반사 부재와 몰딩 부재 사이의 경계 영역에서의 온도별 최대 변형(Max deformation)을 나타낸 그래프이다. 상기 등가 응력은 Vonmises stress를 나타내며, 상기 경계 영역의 한 지점에서의 응력 성분들에 의한 비틀림 에너지의 크기를 나타낸다. 이러한 회로 기판이 몰딩 부재에 의한 변형이 발생하더라도, 상기 몰딩 부재의 외측 구면을 지나는 와이어들(71,73,81,83)이 끓어지는 것을 방지할 수 있다. 상기 온도는 -40ºC 또는 100 ºC인 경우를 예로 한 것이다.
실시 예는 제1 내지 제4와이어(71,73,81,83)는 몰딩 부재(25)의 중심으로부터 방사 방향으로 연장할 수 있다. 상기 제1 내지 제4와이어(71,73,81,83)는 상기 몰딩 부재(25)로부터 전달되는 인장력이 줄어들 수 있으며, 외부 충격으로부터 본딩 부분이 떨어지는 것을 방지할 수 있다. 상기 제1 내지 제4와이어(71,73,81,83)는 상기 몰딩 부재(25)로부터 보호받을 수 있다.
아래의 표 1과 같이, 비교 예는 와이어를 도 4의 점선 와이어와 같이 본딩한 경우이고, 실시 예는 방열 판의 윤곽선의 한 점을 지나는 접선에 대해 법선 방향으로 제1와이어(즉, 제1 또는 제2와이어)를 본딩한 경우이다. 또한 실시 예의 와이어의 고점 높이는 180㎛ 내지 220㎛ 범위의 높이로 하고, 비교 예의 와이어의 고점 높이는 150㎛ 내지 170㎛ 범위로 한다.
표 1
주기 0 100 200 300 400 500
비교 예(불량/수량) 0/23 1/23 1/23 3/23 6/23 10/23
실시 예(불량/수량) 0/22 0/22 0/22 0/22 0/22 0/22
주기(cycle)는 신뢰성 항목 중 소정의 온도(-40ºC ~ 100 ºC)에서 1회 반복한 것을 1주기로 하고, 100주기, 200주기, 300주기, 400주기, 500 주기로 비교 예와 실시 예의 불량을 체크한 것이다.
비교 예는 실험 결과와 같이, 100주기에서 500주기로 갈수록 와이어의 불량이 점차 증가하게 되며, 예컨대 23개의 와이어 중에서 400주기일 때 6개의 와이어의 불량이 발생되고, 500 주기에서 10개의 와이어가 불량이 발생된다.
그러나, 실시 예는 주기에 상관없이 와이어의 불량이 없게 된다. 따라서, 비교 예의 와이어의 본딩 방식에 비해 실시 예의 와이어의 본딩 방식에서 와이어의 불량을 방지할 수 있다. 즉, 발광 칩과 제1 및 제2금속층의 본딩 영역에 연결된 와이어들이 외부 충격에 잘 견디게 된다.
도 11은 도 3의 발광 소자의 다른 예이다. 도 11을 참조하면, 반사부재(23A)는 상기 방열 판(17) 상에 접촉될 수 있다. 따라서, 상기 반사부재(23A)는 제1간극부(18) 내에 채워지게 되고, 상기 방열 판(17)의 상면으로 연장되므로 접착력이 강화될 수 있다. 상기 반사부재(23A)의 내측면 예컨대, 상기 몰딩 부재(25)가 접촉되는 면은 곡면이거나 경사진 면일 수 있다.
도 12는 도 3의 발광 소자의 다른 예이다. 도 12를 참조하면, 몰딩 부재(25)는 외곽 둘레에 상기 제1 및 제2본딩 영역(12A,12B) 상에 연장된 연장부(25A)를 포함한다. 이는 반사부재를 별도로 형성하지 않고, 몰딩 부재(25)의 연장부(25A)로 제1 및 제2와이어(71,73)의 제2단을 덮게 된다. 이 경우 동일 물질로 와이어들을 덮을 수 있다.
도 13은 도 1의 다른 예로서, 복수의 발광부(30,30A,30B)는 적어도 3개 예컨대, 제1 내지 제3발광부(30,30A,30B)를 포함한다. 상기 제1 및 제2발광부(30,30A)는 도 1의 설명을 참조하기로 한다. 상기 제3발광부(30B)는 상기 방열판(17)의 센터 영역 예컨대, 상기 제1발광부(30)와 제2발광부(30A) 사이에 배치된다.
상기 제3발광부(30B)는 상기 제1금속층(13)에 인접한 제7발광 칩(51)과, 상기 제2금속층(15)에 인접한 제8발광 칩(52)과, 상기 제7 및 제8발광 칩(51,52) 사이에 연결된 복수의 제9발광 칩(53)과, 상기 제7발광 칩(51)과 상기 제1금속층(13) 사이에 연결된 제5와이어(77)와, 상기 제8발광 칩(52)과 상기 제2금속층(15) 사이에 연결된 제6와이어(78)를 포함한다. 상기 제3발광부(30B)는 상기 복수의 제9발광 칩(53)을 연결하는 연결 부재를 포함할 수 있으며, 상기 연결 부재는 와이어를 포함한다.
상기 제5와이어(77)의 양단은 상기 제7발광 칩(51)과 상기 제1금속층(13)에 연결된다. 상기 제6와이어(78)의 양단은 상기 제8발광 칩(52)과 상기 제2금속층(15)에 연결된다. 상기 제5와이어(77)은 상기 제1금속층(13)의 제1본딩 영역(12A)에 본딩되고, 상기 제6와이어(78)는 상기 제2금속층(15)의 제2본딩 영역(12B)에 본딩된다.
상기 제9발광 칩(53)은 복수 예컨대, 3개 이상의 발광 칩이 직렬로 연결될 수 있다. 상기 복수의 제9발광 칩(53)은 1열로 배열되거나, 2열 또는 3열 이상으로 배치될 수 있다. 또한 상기 복수의 제9발광 칩(53)은 연결 부재에 의해 서로 연결된다. 상기 제7 및 제8발광 칩(51,52)은 제3발광부(30B)의 입력 및 출력 측에 배치된 칩들이다.
상기 제1 내지 제6와이어(71,73,81,83,77,78) 각각은 상기 몰딩 부재(25) 및 상기 반사 부재(23)에 접촉된다. 상기 제1 내지 제6와이어(71,73,81,83,77,78) 각각은 상기 몰딩 부재(25)와 상기 반사 부재(23)의 내에 결합된다. 상기 제1 내지 제6와이어(71,73,81,83,77,78) 각각은 상기 몰딩 부재(25)의 외측 구면을 통해 돌출되고 상기 반사 부재(23)의 내부로 연장될 수 있다.
한편, 상기 제5와이어(77)는 상기 제7발광 칩(51)으로부터 상기 방열판(17)의 중심에 대해 방사 방향으로 연장될 수 있다. 상기 제8와이어(78)는 상기 제8발광 칩(52)으로부터 상기 방열판(17)의 중심에 대해 방사 방향으로 연장될 수 있다. 상기 제1 내지 제6와이어(71,73,81,83,77,78)는 상기 방열판(17)의 중심에 대해 방사 방향으로 연장될 수 있다. 상기 제1 내지 제6와이어(71,73,81,83,77,78)는 상기 몰딩 부재(25)의 중심으로부터 방사 방향으로 연장된다.
상기 제5와이어(77)의 양단을 지나는 직선은 상기 방열판(17) 또는 상기 몰딩 부재(25)의 중심에 대해 방사 방향으로 연장될 수 있다. 상기 제8와이어(78)의 양단을 지나는 직선은 상기 방열판(17) 또는 상기 몰딩 부재(25)의 중심에 대해 방사 방향으로 연장될 수 있다.
상기 제1와이어(71) 또는 제3와이어(81)의 양단을 연결한 직선과 상기 제5와이어(77)의 양단을 연결한 직선 사이의 각도는 예각 이하 예컨대, 45도 이하로 형성될 수 있다. 상기 제1와이어(71) 또는 제3와이어(81)의 양단을 연결한 직선과 상기 제6와이어(78)의 양단을 연결한 직선 사이의 각도는 예각 이하 예컨대, 45도 이하로 형성될 수 있다. 도 2와 같이, 상기 제1와이어(71)의 양단을 연결한 제1직선과 상기 제2와이어(73)의 양단을 연결한 제2직선 사이의 각도(R1)는 둔각으로 형성될 수 있다. 상기 제3와이어(81)의 양단을 연결한 제3직선과 상기 제4와이어(83)의 양단을 연결한 제4직선 사이의 각도는 둔각으로 형성될 수 있다. 상기 제1직선과 상기 제3직선 사이의 각도(R2)는 예각으로 형성될 수 있다. 상기 제2직선과 제4직선 사이의 각도는 예각으로 형성될 수 있다.
상기 제5 및 제6와이어(77,78) 각각은 상기 방열 판(17)의 윤곽선의 한 점을 지나는 접선에 대해 85도 내지 95도 범위 예컨대, 법선 방향으로 연장될 수 있다.
도 14는 제2실시 예에 따른 발광 소자를 나타낸 평면도이며, 도 15는 도 14의 발광 소자의 부분 확대도이다. 제2실시 예를 설명함에 있어서, 제1실시 예와 동일한 부분은 제1실시 예의 설명을 참조하기로 한다.
도 14 및 도 15를 참조하면, 발광 소자는 몸체(11), 상기 몸체(11)의 상면에 배치된 제1금속층(13) 및 제2금속층(15); 상기 몸체(11)의 상면에서 상기 제1 및 제2금속층(13,15) 사이에 배치된 방열판(17); 상기 방열판(17) 상에 배치된 복수의 발광부(30,30A,30B); 상기 방열판(17)의 둘레에 배치된 반사부재(23); 및 상기 방열판(17) 상에 몰딩 부재(25); 상기 제1 및 제2금속층(13,15)에 연결되며 상기 방열판(17)을 중심으로 방사 방형으로 배치된 와이어(71,73,81,83)를 포함한다.
실시 예는 복수의 발광부(30,30A,30B)는 적어도 3개를 포함하며, 예컨대, 상기 방열판(17)의 제1영역에 배치된 제1발광부(30), 상기 방열판(17)의 제2영역에 배치된 제2발광부(30A), 상기 제1 및 제2발광부(30,30A) 사이의 영역에 배치된 제3발광부(30,30A,30B)를 포함한다.
상기 제3발광부(30B)의 구성은 도 13과 동일하므로, 도 13의 설명을 참조하기로 하며, 제1 및 제2발광부(30,30A)에 대해 설명하기로 한다.
상기 제1발광부(30)는 제1발광 칩(31A), 제2발광 칩(32A) 및 복수의 제3발광 칩(33), 제1와이어(71), 제2와이어(73) 및 연결 부재(75)를 포함한다. 상기 제2발광부(30A)는 제4발광 칩(41A), 제5발광 칩(42A) 및 복수의 제6발광 칩(43), 제3와이어(81), 제4와이어(83) 및 연결 부재(85)를 포함한다.
상기 제1발광 칩(31A)의 측면들 중에서 두 측면은 상기 제1와이어(71)의 양단을 지나는 제1직선과 평행하게 배치된다. 상기 제1발광 칩(31A)의 상기 두 측면은 상기 제1직선의 연장 방향과 동일한 방향으로 배치될 수 있다. 상기 제2발광 칩(32A)의 측면들 중에서 두 측면은 상기 제2와이어(73)의 양단을 지나는 제2직선과 평행하게 배치된다. 상기 제2발광 칩(32A)의 두 측면은 상기 제2와이어(73)의 제2직선의 연장 방향과 동일한 방향으로 배치된다. 상기 제1 및 제2발광 칩(31A,32A)의 적어도 한 측면은 복수의 제3발광 칩(33)의 배열되는 방향과 틸트되어 배치되거나, 상기 제1 및 제2발광 칩(31A,32A)의 중심을 지나는 직선으로부터 틸트되어 배치된다. 상기 제3 및 제4와이어(81,83)의 양단에 연결된 제3 및 제4직선은 상기 제4 및 제5발광 칩(41A,42A) 각각의 적어도 한 측면의 연장 방향과 동일한 방향으로 연장된다.
도 15와 같이, 제1발광 칩(31A)은 제1측면(S1)에 수평한 직선(X1)과 제2측면(S2)에 수평한 직선(Y1) 사이의 각도가 직각일 수 있다. 제1발광 칩(31A)의 제2측면(S2)의 평면 방향은 상기 제1와이어(71)의 양단을 지나는 제1직선(X3)의 연장 방향과 같은 방향으로 배치된다. 예컨대, 상기 제1와이어(71)가 연장되는 제1직선(X3)과 상기 직선(X1) 사이의 각도(θ4)는 30도 내지 70도 범위로 형성될 수 있다. 상기 제1직선(X3)은 상기 제1발광 칩(31A)에 연결된 제3와이어(75)의 제1단(P5)이 지나는 직선일 수 있다.
상기 제1와이어(71)의 양단을 지나는 제1직선(X3)은 상기 제1발광 칩(31A)의 제2측면(S2)에 평행한 직선과 평행하게 배치되고, 상기 접선(B1)에 대해 법선에 가까운 각도 예컨대, 85도 내지 95로 범위로 형성될 수 있다. 상기 제1와이어(71)의 양단을 지나는 제1직선(X3)이 상기 접선(B1)에 대해 법선으로 배치될 수 있다. 상기 제1와이어(71)의 양단을 지나는 제1직선(X3)이 상기 접선(B1)에 대해 법선 방향으로 배치되면, 외부에서 전달되는 충격이 최소화될 수 있다.
상기 제1 및 제2발광부(30,30A)의 제1, 2, 4, 5발광 칩(31A,32A,41A,42A) 중 적어도 하나는 제3 및 제6발광 칩(33,43)이 배열되는 방향으로부터 틸트되게 배치될 수 있다.
도 16은 실시 예에 따른 발광 소자의 발광 칩의 일 예를 나타낸 도면이다.
도 16을 참조하면, 발광소자는 기판(111), 버퍼층(113), 제1도전형 반도체층(115), 활성층(117), 제2도전형 반도체층(119), 전극층(131), 제1전극 패드(141) 및 제2전극 패드(151)를 포함한다.
상기 기판(111)은 투광성, 절연성 또는 도전성 기판을 이용할 수 있으며, 예컨대, 사파이어(Al2O3), SiC, Si, GaAs, GaN, ZnO, Si, GaP, InP, Ge, Ga2O3, LiGaO3 중 적어도 하나를 이용할 수 있다. 상기 기판(111)의 상면에는 복수의 돌출부가 형성될 수 있으며, 상기의 복수의 돌출부는 상기 기판(111)의 식각을 통해 형성하거나, 별도의 러프니스와 같은 광 추출 구조로 형성될 수 있다. 상기 돌출부는 스트라이프 형상, 반구형상, 또는 돔(dome) 형상을 포함할 수 있다. 상기 기판(111)의 두께는 30㎛~300㎛ 범위로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 기판(111) 위에는 버퍼층(113)이 형성되며, 상기 버퍼층(113)은 2족 내지 6족 화합물 반도체를 이용하여 적어도 한 층으로 형성될 수 있다. 상기 버퍼층(113)은 III족-V족 화합물 반도체를 이용한 반도체층을 포함하며, 예컨대, InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체로서, GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN 등과 같은 화합물 반도체 중 적어도 하나를 포함한다. 상기 버퍼층(113)은 서로 다른 반도체층을 교대로 배치하여 초 격자 구조로 형성될 수 있다.
상기 버퍼층(113)은 상기 기판(111)과 질화물 계열의 반도체층과의 격자 상수의 차이를 완화시켜 주기 위해 형성될 수 있으며, 결함 제어층으로 정의될 수 있다. 상기 버퍼층(113)은 상기 기판(111)과 질화물 계열의 반도체층 사이의 격자 상수 사이의 값을 가질 수 있다. 상기 버퍼층(113)은 ZnO 층과 같은 산화물로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 상기 버퍼층(113)은 30~500nm 범위로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 버퍼층(113) 위에는 저 전도층이 형성되며, 상기 저 전도층은 언도프드 반도체층으로서, 제1도전형 반도체층의 전도성 보다 낮은 전도성을 가진다. 상기 저 전도층은 3족-5족 화합물 반도체를 이용한 GaN계 반도체로 구현될 수 있으며, 이러한 언도프드 반도체층은 의도적으로 도전형 도펀트를 도핑하지 않더라도 제1도전형 특성을 가지게 된다. 상기 언도프드 반도체층은 형성하지 않을 수 있으며, 이에 대해 한정하지는 않는다.
상기 버퍼층(113) 위에는 제1도전형 반도체층(115)이 형성될 수 있다. 상기 제1도전형 반도체층(115)은 제1도전형 도펀트가 도핑된 3족-5족 화합물 반도체로 구현되며, 예컨대 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료로 형성될 수 있다. 상기 제1도전형 반도체층(115)이 N형 반도체층인 경우, 상기 제1도전형의 도펀트는 N형 도펀트로서, Si, Ge, Sn, Se, Te를 포함한다.
상기 버퍼층(113)과 상기 제1도전형 반도체층(115) 사이에는 반도체층이 형성되며, 상기 반도체층은 서로 다른 제1층과 제2층이 교대로 배치된 초격자 구조로 형성될 수 있으며, 상기 제1층과 제2층의 두께는 수 A 이상으로 형성될 수 있다.
상기 제1도전형 반도체층(115)과 상기 활성층(117) 사이에는 제1도전형 클래드층(미도시)이 형성될 수 있다. 상기 제1도전형 클래드층은 GaN계 반도체로 형성될 수 있으며, 그 밴드 갭은 상기 활성층(117)의 장벽층의 밴드 갭 이상으로 형성될 수 있다. 이러한 제1도전형 클래드층은 캐리어를 구속시켜 주는 역할을 한다.
상기 제1도전형 반도체층(115) 위에는 활성층(117)이 형성된다. 상기 활성층(117)은 단일 양자 우물, 다중 양자 우물(MQW), 양자 선, 양자 점 구조 중 적어도 하나로 형성될 수 있다. 상기 활성층(117)은 우물층/장벽층이 교대로 배치되며, 상기 우물층/장벽층의 주기는 예컨대, InGaN/GaN, AlGaN/GaN, InGaN/AlGaN, InGaN/InGaN의 적층 구조를 이용하여 2~30주기로 형성될 수 있다.
상기 활성층(117) 위에는 제2도전형 클래드층이 형성되며, 상기 제2도전형 클래드층은 상기 활성층(117)의 장벽층의 밴드 갭보다 더 높은 밴드 갭을 가지며, III족-V족 화합물 반도체 예컨대, GaN 계 반도체로 형성될 수 있다.
상기 제2도전형 클래드층 위에는 제2도전형 반도체층(119)이 형성되며, 상기 제2도전형 반도체층(119)은 제2도전형의 도펀트를 포함한다. 상기 제2도전형 반도체층(119)은 예컨대, GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN 등과 같은 화합물 반도체 중 어느 하나로 이루어질 수 있다. 상기 제2도전형 반도체층(119)이 P형 반도체층인 경우, 상기 제2도전형 도펀트는 P형 도펀트로서, Mg, Zn, Ca, Sr, Ba 등을 포함할 수 있다.
발광 구조물(120) 내에서 상기 제1도전형과 상기 제2도전형의 전도성 타입은 상기의 구조와 반대로 형성될 수 있으며, 예컨대 상기 제2도전형의 반도체층(119)은 N형 반도체층, 상기 제1도전형 반도체층(115)은 P형 반도체층으로 구현될 수 있다. 또한 상기 제2도전형 반도체층(119) 위에는 상기 제2도전형과 반대의 극성을 갖는 제3도전형 반도체층인 N형 반도체층이 더 형성할 수도 있다. 발광소자는 상기 제1도전형 반도체층(115), 활성층(117) 및 상기 제2도전형 반도체층(119)을 발광 구조물(120)로 정의될 수 있으며, 상기 발광 구조물(120)은 N-P 접합 구조, P-N 접합 구조, N-P-N 접합 구조, P-N-P 접합 구조 중 어느 한 구조로 구현할 수 있다. 상기 N-P 및 P-N 접합은 2개의 층 사이에 활성층이 배치되며, N-P-N 접합 또는 P-N-P 접합은 3개의 층 사이에 적어도 하나의 활성층을 포함하게 된다.
상기 제1도전형 반도체층(115) 위에 제1전극 패드(141)가 형성되며, 상기 제2도전형 반도체층(119) 위에 전극층(131) 및 제2전극 패드(151)가 형성된다.
상기 전극층(131)은 전류 확산층으로서, 투과성 및 전기 전도성을 가지는 물질로 형성될 수 있다. 상기 전극층(131)은 화합물 반도체층의 굴절률보다 낮은 굴절률로 형성될 수 있다.
상기 전극층(131)은 상기 제2도전형 반도체층(119)의 상면에 형성되며, 그 물질은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), ZnO, IrOx, RuOx, NiO 등 중에서 선택되며, 적어도 한 층으로 형성될 수 있다. 상기 전극층(131)은 다른 예로서, 반사 전극층으로 형성될 수 있으며, 그 물질은 예컨대, Al, Ag, Pd, Rh, Pt, Ir와 같은 금속 물질 중에서 선택적으로 형성될 수 있다.
상기 제1전극 패드(141)와 상기 제2전극 패드(151)는 Ti, Ru, Rh, Ir, Mg, Zn, Al, In, Ta, Pd, Co, Ni, Si, Ge, Ag 및 Au와 이들의 선택적인 합금 중에서 선택될 수 있다.
상기 발광 소자의 표면에 절연층이 더 형성될 수 있으며, 상기 절연층은 발광 구조물(120)의 층간 쇼트(short)를 방지하고, 습기 침투를 방지할 수 있다.
상기 제2전극패드(151)는 상기 제2도전형 반도체층(119) 및/또는 상기 전극층(131) 위에 형성될 수 있으며, 제2전극 패턴(153)를 포함할 수 있다. 상기 제2전극 패턴(153)은 상기 제2전극 패드(151)로부터 분기된 암(arm) 구조 또는 핑거(finger) 구조로 형성될 수 있다. 상기 제2전극 패드(151)는 오믹 접촉, 접착층, 본딩층의 특성을 갖는 금속층들을 포함하며, 비 투광성으로 이루어질 수 있으며, 이에 대해 한정하지는 않는다.
상기 제2전극 패드(151)는 발광 칩 위에서 볼 때, 상기 제1전극 패드(141)와 발광칩의 어느 한 변 너비의 1/2 이상 이격되며, 상기 제2전극 패턴(153)는 상기 전극층(131) 위에 상기 발광 칩의 어느 한 변 너비의 1/2 이상의 길이로 형성될 수 있다.
상기 제2전극 패드(151) 및 상기 제2전극 패턴(153) 중 적어도 하나의 일부는 상기 제2도전형 반도체층(119)의 상면에 오믹 접촉될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제1전극 패드(141)는 상기 제1도전형 반도체층(115)의 상면 중에서 제1영역(A1)에 형성되며, 상기 제1영역(A1)은 상기 제1도전형 반도체층(115)의 일부 영역으로서, 상기 제2도전형 반도체층(119) 및 상기 활성층(117)의 일부가 에칭되고 상기 제1도전형 반도체층(115)의 상면 일부가 노출되는 영역이다. 여기서, 상기 제1도전형 반도체층(115)의 상면은 상기 활성층(117)의 측면으로부터 단차진 영역이며, 상기 활성층(117)의 하면보다 낮은 위치에 형성된다.
상기 발광 구조물(120)에는 홈(125)이 형성되며, 상기 홈(125)은 상기 발광 구조물(120)의 상면으로부터 상기 제1도전형 반도체층(115)이 노출되는 깊이로 형성된다. 상기 제1도전형 반도체층(115)의 제1영역(A1)과 상기 홈(125)의 깊이는 상기 발광 구조물(120)의 상면으로부터 동일한 깊이이거나 서로 다른 깊이로 형성될 수 있다. 상기 제1전극 패드(141)에는 상기 홈(125) 내에 배치된 제1전극 패턴과 연결될 수 있다.
상기 제1전극 패드(141)과 상기 제2전극패드(151)는 실시 예에 따른 와이어가 본딩된다.
<조명 시스템>
실시예에 따른 발광 소자 또는 발광 소자는 조명 시스템에 적용될 수 있다. 상기 조명 시스템은 복수의 발광 소자가 어레이된 구조를 포함하며, 도 17 및 도 18에 도시된 표시 장치, 도 19에 도시된 조명 장치를 포함하고, 조명등, 신호등, 차량 전조등, 전광판 등이 포함될 수 있다.
도 17는 실시 예에 따른 발광 소자를 갖는 표시 장치의 분해 사시도이다.
도 17를 참조하면, 실시예에 따른 표시 장치(1000)는 도광판(1041)과, 상기 도광판(1041)에 빛을 제공하는 광원 모듈(1031)와, 상기 도광판(1041) 아래에 반사부재(1022)와, 상기 도광판(1041) 위에 광학 시트(1051)와, 상기 광학 시트(1051) 위에 표시 패널(1061)과, 상기 도광판(1041), 광원 모듈(1031) 및 반사부재(1022)를 수납하는 바텀 커버(1011)를 포함할 수 있으나, 이에 한정되지 않는다.
상기 바텀 커버(1011), 반사시트(1022), 도광판(1041), 광학 시트(1051)는 라이트 유닛(1050)으로 정의될 수 있다.
상기 도광판(1041)은 빛을 확산시켜 면광원화 시키는 역할을 한다. 상기 도광판(1041)은 투명한 재질로 이루어지며, 예를 들어, PMMA(polymethyl metaacrylate)와 같은 아크릴 수지 계열, PET(polyethylene terephthlate), PC(poly carbonate), COC(cycloolefin copolymer) 및 PEN(polyethylene naphthalate) 수지 중 하나를 포함할 수 있다.
상기 광원 모듈(1031)은 상기 도광판(1041)의 적어도 일 측면에 빛을 제공하며, 궁극적으로는 표시 장치의 광원으로써 작용하게 된다. 상기 광원 모듈(1031)은 적어도 하나를 포함하며, 상기 도광판(1041)의 일 측면에서 직접 또는 간접적으로 광을 제공할 수 있다. 상기 광원 모듈(1031)은 기판(1033)과 상기에 개시된 실시 예에 따른 발광 소자 또는 발광 소자(1035)를 포함하며, 상기 발광 소자 또는 발광 소자(1035)는 상기 기판(1033) 상에 소정 간격으로 어레이될 수 있다.
상기 기판(1033)은 회로패턴(미도시)을 포함하는 인쇄회로기판(PCB, Printed Circuit Board)일 수 있다. 다만, 상기 기판(1033)은 일반 PCB 뿐 아니라, 메탈 코어 PCB(MCPCB, Metal Core PCB), 연성 PCB(FPCB, Flexible PCB) 등을 포함할 수도 있으며, 이에 대해 한정하지는 않는다. 상기 발광 소자(1035)는 상기 바텀 커버(1011)의 측면 또는 방열 플레이트 상에 탑재될 경우, 상기 기판(1033)은 제거될 수 있다. 여기서, 상기 방열 플레이트의 일부는 상기 바텀 커버(1011)의 상면에 접촉될 수 있다.
그리고, 상기 복수의 발광 소자(1035)는 상기 기판(1033) 상에 빛이 방출되는 출사면이 상기 도광판(1041)과 소정 거리 이격되도록 탑재될 수 있으며, 이에 대해 한정하지는 않는다. 상기 발광 소자(1035)는 상기 도광판(1041)의 일측 면인 입광부에 광을 직접 또는 간접적으로 제공할 수 있으며, 이에 대해 한정하지는 않는다.
상기 도광판(1041) 아래에는 상기 반사부재(1022)가 배치될 수 있다. 상기 반사부재(1022)는 상기 도광판(1041)의 하면으로 입사된 빛을 반사시켜 위로 향하게 함으로써, 상기 라이트 유닛(1050)의 휘도를 향상시킬 수 있다. 상기 반사부재(1022)는 예를 들어, PET, PC, PVC 레진 등으로 형성될 수 있으나, 이에 대해 한정하지는 않는다. 상기 반사부재(1022)는 상기 바텀 커버(1011)의 상면일 수 있으며, 이에 대해 한정하지는 않는다.
상기 바텀 커버(1011)는 상기 도광판(1041), 광원 모듈(1031) 및 반사부재(1022) 등을 수납할 수 있다. 이를 위해, 상기 바텀 커버(1011)는 상면이 개구된 박스(box) 형상을 갖는 수납부(1012)가 구비될 수 있으며, 이에 대해 한정하지는 않는다. 상기 바텀 커버(1011)는 탑 커버와 결합될 수 있으며, 이에 대해 한정하지는 않는다.
상기 바텀 커버(1011)는 금속 재질 또는 수지 재질로 형성될 수 있으며, 프레스 성형 또는 압출 성형 등의 공정을 이용하여 제조될 수 있다. 또한 상기 바텀 커버(1011)는 열 전도성이 좋은 금속 또는 비 금속 재료를 포함할 수 있으며, 이에 대해 한정하지는 않는다.
상기 표시 패널(1061)은 예컨대, LCD 패널로서, 서로 대향되는 투명한 재질의 제 1 및 제 2기판, 그리고 제 1 및 제 2기판 사이에 개재된 액정층을 포함한다. 상기 표시 패널(1061)의 적어도 일면에는 편광판이 부착될 수 있으며, 이러한 편광판의 부착 구조로 한정하지는 않는다. 상기 표시 패널(1061)은 광학 시트(1051)를 통과한 광에 의해 정보를 표시하게 된다. 이러한 표시 장치(1000)는 각 종 휴대 단말기, 노트북 컴퓨터의 모니터, 랩탑 컴퓨터의 모니터, 텔레비젼 등에 적용될 수 있다.
상기 광학 시트(1051)는 상기 표시 패널(1061)과 상기 도광판(1041) 사이에 배치되며, 적어도 한 장의 투광성 시트를 포함한다. 상기 광학 시트(1051)는 예컨대 확산 시트, 수평 및 수직 프리즘 시트, 및 휘도 강화 시트 등과 같은 시트 중에서 적어도 하나를 포함할 수 있다. 상기 확산 시트는 입사되는 광을 확산시켜 주고, 상기 수평 또는/및 수직 프리즘 시트는 입사되는 광을 표시 영역으로 집광시켜 주며, 상기 휘도 강화 시트는 손실되는 광을 재사용하여 휘도를 향상시켜 준다. 또한 상기 표시 패널(1061) 위에는 보호 시트가 배치될 수 있으며, 이에 대해 한정하지는 않는다.
여기서, 상기 광원 모듈(1031)의 광 경로 상에는 광학 부재로서, 상기 도광판(1041), 및 광학 시트(1051)를 포함할 수 있으며, 이에 대해 한정하지는 않는다.
도 18은 실시 예에 따른 발광 소자를 갖는 표시 장치를 나타낸 도면이다.
도 18을 참조하면, 표시 장치(1100)는 바텀 커버(1152), 상기에 개시된 발광 소자(1124)가 어레이된 기판(1020), 광학 부재(1154), 및 표시 패널(1155)을 포함한다.
상기 기판(1020)과 상기 발광 소자(1124)는 광원 모듈(1160)로 정의될 수 있다. 상기 바텀 커버(1152), 적어도 하나의 광원 모듈(1160), 광학 부재(1154)는 라이트 유닛(1150)으로 정의될 수 있다. 상기 바텀 커버(1152)에는 수납부(1153)를 구비할 수 있으며, 이에 대해 한정하지는 않는다. 상기의 광원 모듈(1160)은 기판(1020) 및 상기 기판(1020) 위에 배열된 복수의 발광 소자(1124)를 포함한다.
여기서, 상기 광학 부재(1154)는 렌즈, 도광판, 확산 시트, 수평 및 수직 프리즘 시트, 및 휘도 강화 시트 등에서 적어도 하나를 포함할 수 있다. 상기 도광판은 PC 재질 또는 PMMA(poly methyl methacrylate) 재질로 이루어질 수 있으며, 이러한 도광판은 제거될 수 있다. 상기 확산 시트는 입사되는 광을 확산시켜 주고, 상기 수평 및 수직 프리즘 시트는 입사되는 광을 표시 영역으로 집광시켜 주며, 상기 휘도 강화 시트는 손실되는 광을 재사용하여 휘도를 향상시켜 준다.
상기 광학 부재(1154)는 상기 광원 모듈(1060) 위에 배치되며, 상기 광원 모듈(1060)로부터 방출된 광을 면 광원하거나, 확산, 집광 등을 수행하게 된다.
도 19는 실시 예에 따른 발광소자를 갖는 조명장치의 분해 사시도이다.
도 19를 참조하면, 실시 예에 따른 조명 장치는 커버(2100), 광원 모듈(2200), 방열체(2400), 전원 제공부(2600), 내부 케이스(2700), 소켓(2800)을 포함할 수 있다. 또한, 실시 예에 따른 조명 장치는 부재(2300)와 홀더(2500) 중 어느 하나 이상을 더 포함할 수 있다. 상기 광원 모듈(2200)은 실시 예에 따른 발광소자를 포함할 수 있다.
예컨대, 상기 커버(2100)는 벌브(bulb) 또는 반구의 형상을 가지며, 속이 비어 있고, 일 부분이 개구된 형상으로 제공될 수 있다. 상기 커버(2100)는 상기 광원 모듈(2200)과 광학적으로 결합되고, 상기 방열체(2400)와 결합될 수 있다. 상기 커버(2100)는 상기 방열체(2400)와 결합하는 결합부를 가질 수 있다.
상기 커버(2100)의 내면에는 확산재를 갖는 유백색 도료가 코팅될 수 있다. 이러한 유백색 재료를 이용하여 상기 광원 모듈(2200)로부터의 빛을 산란 및 확산되어 외부로 방출시킬 수 있다.
상기 커버(2100)의 재질은 유리(glass), 플라스틱, 폴리프로필렌(PP), 폴리에틸렌(PE), 폴리카보네이트(PC) 등일 수 있다. 여기서, 폴리카보네이트는 내광성, 내열성, 강도가 뛰어나다. 상기 커버(2100)는 외부에서 상기 광원 모듈(2200)이 보이도록 투명할 수 있고, 불투명할 수 있다. 상기 커버(2100)는 블로우(blow) 성형을 통해 형성될 수 있다.
상기 광원 모듈(2200)은 상기 방열체(2400)의 일 면에 배치될 수 있다. 따라서, 상기 광원 모듈(2200)로부터의 열은 상기 방열체(2400)로 전도된다. 상기 광원 모듈(2200)은 발광 소자(2210), 연결 플레이트(2230), 커넥터(2250)를 포함할 수 있다.
상기 부재(2300)는 상기 방열체(2400)의 상면 위에 배치되고, 복수의 조명소자(2210)들과 커넥터(2250)이 삽입되는 가이드홈(2310)들을 갖는다. 상기 가이드홈(2310)은 상기 조명소자(2210)의 기판 및 커넥터(2250)와 대응된다.
상기 부재(2300)의 표면은 백색의 도료로 도포 또는 코팅된 것일 수 있다. 이러한 상기 부재(2300)는 상기 커버(2100)의 내면에 반사되어 상기 광원 모듈(2200)측 방향으로 되돌아오는 빛을 다시 상기 커버(2100) 방향으로 반사한다. 따라서, 실시 예에 따른 조명 장치의 광 효율을 향상시킬 수 있다.
상기 부재(2300)는 예로서 절연 물질로 이루어질 수 있다. 상기 광원 모듈(2200)의 연결 플레이트(2230)는 전기 전도성의 물질을 포함할 수 있다. 따라서, 상기 방열체(2400)와 상기 연결 플레이트(2230) 사이에 전기적인 접촉이 이루어질 수 있다. 상기 부재(2300)는 절연 물질로 구성되어 상기 연결 플레이트(2230)와 상기 방열체(2400)의 전기적 단락을 차단할 수 있다. 상기 방열체(2400)는 상기 광원 모듈(2200)로부터의 열과 상기 전원 제공부(2600)로부터의 열을 전달받아 방열한다.
상기 홀더(2500)는 내부 케이스(2700)의 절연부(2710)의 수납홈(2719)을 막는다. 따라서, 상기 내부 케이스(2700)의 상기 절연부(2710)에 수납되는 상기 전원 제공부(2600)는 밀폐된다. 상기 홀더(2500)는 가이드 돌출부(2510)를 갖는다. 상기 가이드 돌출부(2510)는 상기 전원 제공부(2600)의 돌출부(2610)가 관통하는 홀을 구비할 수 있다.
상기 전원 제공부(2600)는 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 상기 광원 모듈(2200)로 제공한다. 상기 전원 제공부(2600)는 상기 내부 케이스(2700)의 수납홈(2719)에 수납되고, 상기 홀더(2500)에 의해 상기 내부 케이스(2700)의 내부에 밀폐된다.
상기 전원 제공부(2600)는 돌출부(2610), 가이드부(2630), 베이스(2650), 연장부(2670)를 포함할 수 있다.
상기 가이드부(2630)는 상기 베이스(2650)의 일 측에서 외부로 돌출된 형상을 갖는다. 상기 가이드부(2630)는 상기 홀더(2500)에 삽입될 수 있다. 상기 베이스(2650)의 일 면 위에 다수의 부품이 배치될 수 있다. 다수의 부품은 예를 들어, 직류변환장치, 상기 광원 모듈(2200)의 구동을 제어하는 구동칩, 상기 광원 모듈(2200)을 보호하기 위한 ESD(Electrostatic discharge) 보호 소자 등을 포함할 수 있으나 이에 대해 한정하지는 않는다.
상기 연장부(2670)는 상기 베이스(2650)의 다른 일 측에서 외부로 돌출된 형상을 갖는다. 상기 연장부(2670)는 상기 내부 케이스(2700)의 연결부(2750) 내부에 삽입되고, 외부로부터의 전기적 신호를 제공받는다. 예컨대, 상기 연장부(2670)는 상기 내부 케이스(2700)의 연결부(2750)의 폭과 같거나 작게 제공될 수 있다. 상기 연장부(2670)는 전선을 통해 소켓(2800)에 전기적으로 연결될 수 있다.
상기 내부 케이스(2700)는 내부에 상기 전원 제공부(2600)와 함께 몰딩부를 포함할 수 있다. 몰딩부는 몰딩 액체가 굳어진 부분으로서, 상기 전원 제공부(2600)가 상기 내부 케이스(2700) 내부에 고정될 수 있도록 한다.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
실시 예는 발광 소자의 신뢰성을 개선시켜 줄 수 있다.
실시 예의 발광 소자는 LED를 이용한 조명등, 실내등, 실외등, 지시등 및 전도등과 같은 조명 장치에 적용될 수 있다.

Claims (16)

  1. 몸체;
    상기 몸체의 상면에 배치된 제1 및 제2금속층;
    상기 제1 및 제2금속층 사이에 배치되며 원 형상의 외곽선을 갖는 방열 판;
    상기 방열 판 상에 배치된 복수의 발광부;
    상기 제1 및 제2금속층 상에 배치되며 상기 복수의 발광부와 전기적으로 연결된 제1 및 제2본딩 영역; 및
    상기 방열 판 상에 배치되고 상기 복수의 발광부를 덮는 몰딩 부재를 포함하며,
    상기 복수의 발광부의 각각은 서로 연결된 복수의 발광 칩; 및 상기 복수의 발광 칩을 상기 제1 및 제2본딩 영역에 전기적으로 연결하는 복수의 와이어를 포함하며,
    상기 각 발광부의 복수의 와이어는 상기 방열 판의 중심으로부터 방사 방향으로 배열되는 발광 소자.
  2. 제1항에 있어서,
    상기 몰딩 부재의 외측 둘레에 배치된 반사 부재를 포함하며,
    상기 복수의 와이어는 상기 반사 부재의 영역 아래에 배치된 상기 제 1 및 제2금속층의 제1 및 제2본딩 영역에 연결되는 발광 소자.
  3. 제1항 또는 제2항에 있어서,
    상기 복수의 발광부 중 적어도 하나는 상기 복수의 와이어 각각의 양단을 지나는 직선들이 서로 평행하지 않게 배열된 발광 소자.
  4. 제1항 또는 제2항에 있어서,
    상기 복수의 발광부는 상기 방열부의 제1영역에 배치된 제1발광부; 및 상기 방열판의 제2영역에 배치된 제2발광부를 포함하며,
    상기 제1발광부는 상기 제1금속층에 인접한 제1발광 칩; 상기 제2금속층에 인접한 제2발광 칩; 상기 제1발광 칩과 제2발광 칩 사이에 연결된 복수의 제3발광 칩; 상기 제1발광 칩과 상기 제1금속층의 제1본딩 영역에 연결된 제1와이어; 및 상기 제2발광 칩과 상기 제2금속층의 제2본딩 영역에 연결된 제2와이어를 포함하며,
    상기 제1와이어의 양단을 지나는 제1직선과 상기 제2와이어의 양단을 지나는 제2직선은 서로 팽행하지 않는 발광 소자.
  5. 제4항에 있어서,
    상기 제1와이어의 양단을 지나는 제1직선과 상기 제2와이어의 양단을 지나는 제2직선 사이의 각도는 둔각인 발광 소자.
  6. 제4항에 있어서,
    상기 제1와이어의 양단을 연결한 제1직선은 상기 방열 판의 외곽선의 한 점을 지나는 제1접선에 대해 법선에 가까운 방향으로 연장되며,
    상기 제2와이어의 양단을 연결한 제2직선은 상기 방열 판의 외곽선의 한 점을 지나는 제2접선에 대해 법선에 가까운 방향으로 연장되는 발광 소자.
  7. 제6항에 있어서,
    상기 제1직선은 상기 제1접선에 대해 85도 내지 95도의 범위의 각도로 배열되며,
    상기 제2직선은 상기 제2접선에 대해 85도 내지 95도의 범위의 각도로 배열되는 발광 소자.
  8. 제7항에 있어서,
    상기 제1직선은 상기 제1접선에 대해 90도의 각도로 배열되며,
    상기 제2직선은 상기 제2접선에 대해 90도의 각도로 배열되는 발광 소자.
  9. 제4항에 있어서,
    상기 제2발광부는 상기 제1금속층에 인접한 제4발광 칩; 상기 제2금속층에 인접한 제5발광 칩; 상기 제4발광 칩과 제5발광 칩 사이에 연결된 복수의 제6발광 칩; 상기 제4발광 칩과 상기 제1금속층의 제1본딩 영역에 연결된 제3와이어; 및 상기 제5발광 칩과 상기 제2금속층의 제2본딩 영역에 연결된 제4와이어를 포함하며,
    상기 제3와이어의 양단을 지나는 제3직선과 상기 제4와이어의 양단을 지나는 제4직선은 서로 팽행하지 않는 발광 소자.
  10. 제8항에 있어서,
    상기 제1와이어의 양단을 지나는 제1직선과 상기 제3와이어의 양단을 지나는 제3직선 사이의 각도는 예각인 발광 소자.
  11. 제4항에 있어서,
    상기 제1직선 및 제2직선 중 적어도 하나는 상기 제1발광 칩의 중심과 상기 제2발광 칩을 중심을 지나는 직선에 대해 5도 이상 어긋나게 배치되는 발광 소자.
  12. 제4항에 있어서,
    상기 제1금속층 및 제2금속층 상에 보호층이 배치되며,
    상기 제1 및 제2본딩 영역은 상기 보호층과 상기 몰딩 부재 사이에배치되며,
    상기 반사부재는 상기 제1 및 제2본딩 영역에 접촉되는 발광 소자.
  13. 제4항에 있어서,
    상기 복수의 제3발광 칩은 상기 제1 및 제2발광 칩 사이에 직렬로 연결된 적어도 3개의 발광 칩을 포함하며,
    상기 복수의 발광 칩 중 적어도 하나는 상기 제1 및 제2발광 칩의 중심을 지나는 직선과 평행하게 배열되는 발광 소자.
  14. 제13항에 있어서,
    상기 복수의 와이어 중 적어도 하나의 고점은 상기 복수의 제3발광 칩에 연결된 와이어의 고점의 높이보다 높게 위치되는 발광 소자.
  15. 제4항에 있어서,
    상기 제1 및 제2발광 칩 중 적어도 하나의 측면은 상기 제1직선 및 제2직선 중 적어도 하나와 평행하고 상기 제1 및 제2발광 칩의 중심을 지나는 직선에 대해 틸트된 발광 소자.
  16. 제1항 또는 제2항에 있어서,
    상기 복수의 발광부 중 어느 하나는 상기 복수의 발광 칩이 상기 복수의 와이어 각각의 양단을 연결하는 직선과 서로 평행하거나 동일 선상에 배열되는 발광 소자.
PCT/KR2014/003781 2013-05-08 2014-04-29 발광 소자 WO2014181996A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/890,095 US9543489B2 (en) 2013-05-08 2014-04-29 Light emitting device
JP2016512822A JP2016524322A (ja) 2013-05-08 2014-04-29 発光素子
EP14795411.9A EP2996164B1 (en) 2013-05-08 2014-04-29 Light emitting device
CN201480026275.0A CN105210201B (zh) 2013-05-08 2014-04-29 发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0051766 2013-05-08
KR1020130051766A KR102085888B1 (ko) 2013-05-08 2013-05-08 발광 소자

Publications (1)

Publication Number Publication Date
WO2014181996A1 true WO2014181996A1 (ko) 2014-11-13

Family

ID=51867433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003781 WO2014181996A1 (ko) 2013-05-08 2014-04-29 발광 소자

Country Status (6)

Country Link
US (1) US9543489B2 (ko)
EP (1) EP2996164B1 (ko)
JP (1) JP2016524322A (ko)
KR (1) KR102085888B1 (ko)
CN (1) CN105210201B (ko)
WO (1) WO2014181996A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085591B2 (en) 2014-09-28 2021-08-10 Zhejiang Super Lighting Electric Appliance Co., Ltd LED light bulb with curved filament
US11525547B2 (en) 2014-09-28 2022-12-13 Zhejiang Super Lighting Electric Appliance Co., Ltd LED light bulb with curved filament
US11543083B2 (en) 2014-09-28 2023-01-03 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and LED light bulb
US11073248B2 (en) 2014-09-28 2021-07-27 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED bulb lamp
US11421827B2 (en) 2015-06-19 2022-08-23 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and LED light bulb
US11686436B2 (en) 2014-09-28 2023-06-27 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and light bulb using LED filament
US11997768B2 (en) 2014-09-28 2024-05-28 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and LED light bulb
USD770987S1 (en) 2014-10-17 2016-11-08 Panasonic Intellectual Property Management Co., Ltd. Light emitting diode
KR102402577B1 (ko) * 2017-09-19 2022-05-26 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자 패키지
EP3460861B1 (en) * 2017-09-21 2023-03-01 InnoLux Corporation Display device
JP7037044B2 (ja) * 2017-12-27 2022-03-16 日亜化学工業株式会社 発光装置及びその製造方法
US10982048B2 (en) 2018-04-17 2021-04-20 Jiaxing Super Lighting Electric Appliance Co., Ltd Organosilicon-modified polyimide resin composition and use thereof
TWI728816B (zh) * 2020-05-21 2021-05-21 健策精密工業股份有限公司 發光二極體模組及其製作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090072644A (ko) * 2007-12-28 2009-07-02 한국 고덴시 주식회사 고출력 엘이디 패키지 및 그 제조방법
JP2010205777A (ja) * 2009-02-27 2010-09-16 Toshiba Lighting & Technology Corp 発光モジュール
JP2010287657A (ja) * 2009-06-10 2010-12-24 Toshiba Lighting & Technology Corp 発光モジュール及びその製造方法
JP2011009298A (ja) * 2009-06-23 2011-01-13 Citizen Electronics Co Ltd 発光ダイオード光源装置
US20120205689A1 (en) * 2011-02-16 2012-08-16 Welch Erin R F Light emitting devices and methods

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3993302B2 (ja) * 1998-05-20 2007-10-17 ローム株式会社 半導体装置
JP2005236182A (ja) * 2004-02-23 2005-09-02 Pentax Corp 半導体発光素子
US7514724B2 (en) * 2007-03-23 2009-04-07 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Solid state light source having a variable number of dies
WO2010098457A1 (ja) * 2009-02-27 2010-09-02 東芝ライテック株式会社 発光モジュールおよび照明装置
TW201116145A (en) * 2009-10-19 2011-05-01 Paragon Sc Lighting Tech Co LED package structure for generating similar-circle light-emitting effect
JP2011151268A (ja) * 2010-01-22 2011-08-04 Sharp Corp 発光装置
JP2011181888A (ja) * 2010-02-03 2011-09-15 Toshiba Lighting & Technology Corp 発光装置及び照明装置
EP2565951B1 (en) 2010-04-26 2019-07-31 Panasonic Intellectual Property Management Co., Ltd. Light emitting unit and illuminating apparatus
JP5531823B2 (ja) * 2010-06-29 2014-06-25 日亜化学工業株式会社 発光装置およびその検査方法、製造方法
TWI419373B (zh) * 2010-10-22 2013-12-11 Paragon Sc Lighting Tech Co 使用定電壓電源供應器之多晶封裝結構
JP2012124249A (ja) * 2010-12-07 2012-06-28 Toshiba Corp Ledパッケージ及びその製造方法
US8674376B2 (en) * 2011-04-28 2014-03-18 Paragon Semiconductor Lighting Technology Co., Ltd. LED package structure
US9412914B2 (en) * 2011-07-25 2016-08-09 Nichia Corporation Light emitting device
JP5810758B2 (ja) * 2011-08-31 2015-11-11 日亜化学工業株式会社 発光装置
KR20130046175A (ko) * 2011-10-27 2013-05-07 서울반도체 주식회사 멀티칩형 엘이디 패키지
JP6046514B2 (ja) 2012-03-01 2016-12-14 株式会社半導体エネルギー研究所 半導体装置
JP5857928B2 (ja) * 2012-09-25 2016-02-10 豊田合成株式会社 発光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090072644A (ko) * 2007-12-28 2009-07-02 한국 고덴시 주식회사 고출력 엘이디 패키지 및 그 제조방법
JP2010205777A (ja) * 2009-02-27 2010-09-16 Toshiba Lighting & Technology Corp 発光モジュール
JP2010287657A (ja) * 2009-06-10 2010-12-24 Toshiba Lighting & Technology Corp 発光モジュール及びその製造方法
JP2011009298A (ja) * 2009-06-23 2011-01-13 Citizen Electronics Co Ltd 発光ダイオード光源装置
US20120205689A1 (en) * 2011-02-16 2012-08-16 Welch Erin R F Light emitting devices and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2996164A4 *

Also Published As

Publication number Publication date
CN105210201B (zh) 2019-06-04
US9543489B2 (en) 2017-01-10
KR20140132517A (ko) 2014-11-18
US20160087178A1 (en) 2016-03-24
KR102085888B1 (ko) 2020-03-06
EP2996164A4 (en) 2016-11-30
CN105210201A (zh) 2015-12-30
EP2996164A1 (en) 2016-03-16
EP2996164B1 (en) 2021-06-16
JP2016524322A (ja) 2016-08-12

Similar Documents

Publication Publication Date Title
WO2014181996A1 (ko) 발광 소자
WO2016089052A1 (ko) 발광 모듈
JP6306842B2 (ja) 発光素子及びこれを具備した照明システム
WO2016117910A1 (ko) 발광 소자
WO2019098596A1 (ko) 조명 모듈 및 이를 구비한 조명 장치
WO2016032167A1 (ko) 발광 소자 패키지
WO2017078399A1 (ko) 발광소자 및 이를 구비한 조명 장치
WO2016148539A1 (ko) 발광 소자 및 이를 구비한 카메라 모듈
WO2016208957A1 (ko) 광학 렌즈, 발광 소자 및 이를 구비한 발광 모듈
WO2013183901A1 (ko) 발광소자, 발광소자 패키지 및 라이트 유닛
WO2015020358A1 (ko) 발광소자
WO2017188795A1 (ko) 형광체 조성물, 이를 포함하는 발광 소자 패키지 및 조명 장치
WO2016190651A1 (ko) 광학 렌즈, 조명 모듈 및 이를 구비한 라이트 유닛
WO2019231115A1 (ko) 반도체 소자 패키지 및 이를 포함하는 광조사장치
WO2019088704A1 (ko) 발광소자 패키지 및 이를 구비한 조명 장치
WO2013172606A1 (ko) 발광소자, 발광소자 페키지 및 라이트 유닛
WO2015111814A1 (ko) 발광소자, 발광소자 패키지, 라이트 유닛
WO2017074035A1 (ko) 발광소자 패키지, 및 이를 포함하는 조명시스템
WO2013183878A1 (ko) 발광소자, 발광소자 패키지 및 라이트 유닛
WO2018139803A1 (ko) 반도체 소자 패키지
WO2019027192A1 (ko) 반도체 소자 패키지 및 광원 장치
WO2017010851A1 (ko) 발광 소자 패키지
KR101831410B1 (ko) 발광 소자 패키지 및 이를 구비한 발광 장치
WO2019054750A1 (ko) 발광소자 패키지 및 광원 장치
WO2014054891A1 (ko) 발광소자 및 발광소자 패키지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14795411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14890095

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014795411

Country of ref document: EP