[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014050559A1 - 液体現像剤およびその製造方法 - Google Patents

液体現像剤およびその製造方法 Download PDF

Info

Publication number
WO2014050559A1
WO2014050559A1 PCT/JP2013/074529 JP2013074529W WO2014050559A1 WO 2014050559 A1 WO2014050559 A1 WO 2014050559A1 JP 2013074529 W JP2013074529 W JP 2013074529W WO 2014050559 A1 WO2014050559 A1 WO 2014050559A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
core
acid
shell
particles
Prior art date
Application number
PCT/JP2013/074529
Other languages
English (en)
French (fr)
Inventor
由紀子 宇野
松本 聡
直樹 吉江
みゆき 堀田
Original Assignee
三洋化成工業株式会社
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社, コニカミノルタ株式会社 filed Critical 三洋化成工業株式会社
Priority to US14/431,004 priority Critical patent/US10007207B2/en
Priority to JP2014538364A priority patent/JPWO2014050559A1/ja
Publication of WO2014050559A1 publication Critical patent/WO2014050559A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/13Developers with toner particles in liquid developer mixtures characterised by polymer components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0804Preparation methods whereby the components are brought together in a liquid dispersing medium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures

Definitions

  • the present invention relates to a liquid developer and a method for producing the same. More specifically, the present invention relates to a liquid developer useful for a wide range of applications such as an electrophotographic liquid developer, an electrostatic recording liquid developer, an oil-based ink for an inkjet printer, or an electronic paper ink, and a method for producing the same.
  • the toner particles dispersed in the liquid developer are: After fixing on the paper, it is required to firmly adhere to the paper and not easily peel off.
  • Patent Document 1 proposes a method in which a fatty acid monoester is added to a non-aqueous dispersion medium and a constituent resin resin particle is a polyester resin.
  • the fatty acid monoester plasticizes the polyester resin to improve the fixing property of the resin particles to the paper. After the toner particles are fixed, the recording material is used. It has been found that when the toner is stored in a high temperature and high humidity environment, the fixing properties deteriorate, such as toner particles falling off.
  • the present invention has been made in view of the circumstances as described above, and its object is to have excellent fixability that can be applied to various recording materials, and can be fixed in a wide temperature range. It is an object of the present invention to provide a liquid developer and a method for producing the same that have extremely low fixing deterioration.
  • the present inventors have conducted extensive research on the structure and physical properties of toner particles contained in a liquid developer.
  • the toner particles have a core-shell structure composed of two specific types of resins.
  • the resin has an acidic group and the acid dissociation constant occupies a certain range, the fixability is dramatically improved, and the storage characteristics after fixing are also found, and the present invention has been completed. .
  • the liquid developer of the present invention is a liquid developer (X) in which toner particles (C) are dispersed in an insulating liquid (L), and the toner particles (C) are shell resin (a).
  • the core particle (A) has a core-shell structure in which the surface of the core particle (B) containing the core resin (b) is attached or coated, and the core resin (b) has an acidic group And an acid dissociation constant is 2.90 or more and 8.00 or less.
  • the volume average particle diameter of the toner particles (C) is 0.01 ⁇ m or more and 100 ⁇ m or less, and the coefficient of variation of the volume distribution of the toner particles (C) is preferably 1% or more and 100% or less. .
  • the average value of the circularity of the toner particles (C) is preferably 0.92 or more and 1.0 or less.
  • the shell resin (a) is preferably at least one selected from the group consisting of vinyl resins, polyester resins, polyurethane resins and epoxy resins.
  • the shell resin (a) is a vinyl resin and is preferably a homopolymer or a copolymer containing a structural unit derived from a monomer having a polymerizable double bond.
  • the monomer having a polymerizable double bond is preferably a vinyl monomer (m) having a molecular chain (k).
  • the vinyl monomer (m) includes a vinyl monomer (m1) having a linear hydrocarbon chain having 12 to 27 carbon atoms, and a vinyl monomer (m2) having a branched hydrocarbon chain having 12 to 27 carbon atoms.
  • the vinyl monomer (m3) having a fluoroalkyl chain having 4 to 20 carbon atoms and at least one selected from the group consisting of a vinyl monomer (m4) having a polydimethylsiloxane chain are preferable.
  • the core resin (b) is preferably at least one selected from the group consisting of vinyl resins, polyester resins, polyurethane resins and epoxy resins.
  • the core particle (B) preferably contains at least one of a wax (c) and a modified wax (d) in which a vinyl polymer chain is graft-polymerized to the wax.
  • the surface coverage of the core particles (B) by the shell particles (A) is preferably 50% or more.
  • the liquid developer (X) is preferably a paint, an electrophotographic liquid developer, an electrostatic recording liquid developer, an oil-based ink for an ink jet printer, or an ink for electronic paper.
  • the core particle (B) preferably contains the core resin (b) and a colorant.
  • the manufacturing method of the liquid developer of this invention is the dispersion liquid (W) of the shell particle (A) in which the shell particle (A) containing shell resin (a) is disperse
  • the core particle (B) containing the core resin (b) is formed in the dispersion (W) by dispersing the core particle (B) forming solution in the dispersion (W) of the shell particles (A).
  • the toner particles (C) having a core-shell structure in which the shell particles (A) are attached or coated on the surfaces of the core particles (B), and obtaining the toner particles (C).
  • the organic solvent (M) is distilled off, the liquid developer (X) is removed. That includes a step of, the core resin (b) has an acidic group, the acid dissociation constant, characterized in that at 2.90 or more 8.00 or less.
  • the solubility parameter of the organic solvent (M) is preferably 8.5 to 20 (cal / cm 3 ) 1/2 .
  • the liquid developer of the present invention has the above-described configuration, it exhibits excellent fixability that can be applied to high-quality paper and the like, can be fixed in a wide temperature range, and has extremely low storage deterioration after fixing. It has an excellent effect of being less.
  • FIG. 1 is a schematic conceptual diagram of an electrophotographic image forming apparatus.
  • liquid developer of the present invention is not limited to the liquid developer shown below.
  • the liquid developer (X) includes an electrophotographic liquid developer, a paint, and the like used in an electrophotographic image forming apparatus (described later) such as a copying machine, a printer, a digital printing machine, and a simple printing machine. It is useful as a liquid developer for electrostatic recording, an oil-based ink for ink-jet printers, or an ink for electronic paper.
  • Toner particles (C) are dispersed in an insulating liquid (L).
  • the toner particles (C) have a core / shell structure in which the shell particles (A) containing the shell resin (a) are attached to or coated on the surfaces of the core particles (B) containing the core resin (b).
  • the shell resin (a) in the present embodiment may be a thermoplastic resin or a thermosetting resin.
  • the shell resin (a) include vinyl resin, polyester resin, polyurethane resin, epoxy resin, polyamide resin, polyimide resin, silicon resin, phenol resin, melamine resin, urea resin, aniline resin, ionomer resin, and polycarbonate resin. Etc.
  • the shell resin (a) two or more of the above listed resins may be used in combination.
  • the shell resin (a) is preferably at least one selected from the group consisting of vinyl resins, polyester resins, polyurethane resins, and epoxy resins. More preferably, at least one of a polyester resin and a polyurethane resin can be used.
  • the vinyl resin may be a homopolymer containing a structural unit derived from a monomer having a polymerizable double bond, or a copolymer containing structural units derived from two or more monomers having a polymerizable double bond. It may be.
  • Examples of the monomer having a polymerizable double bond include the following (1) to (9).
  • Hydrocarbon having a polymerizable double bond is, for example, an aliphatic hydrocarbon having a polymerizable double bond represented by the following (1-1), or the following (1 -2) is preferably an aromatic hydrocarbon having a polymerizable double bond.
  • Aliphatic hydrocarbon having a polymerizable double bond is, for example, a chain having a polymerizable double bond represented by the following (1-1-1): It is preferably a hydrocarbon or a cyclic hydrocarbon having a polymerizable double bond represented by the following (1-1-2).
  • Chain hydrocarbon having a polymerizable double bond examples include alkenes having 2 to 30 carbon atoms (for example, ethylene, propylene, butene). , Isobutylene, pentene, heptene, diisobutylene, octene, dodecene or octadecene); alkadienes having 4 to 30 carbon atoms (for example, butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene or 1,7-octadiene) Etc.).
  • alkenes having 2 to 30 carbon atoms for example, ethylene, propylene, butene.
  • Isobutylene pentene, heptene, diisobutylene, octene, dodecene or octadecene
  • alkadienes having 4 to 30 carbon atoms for example, butadiene, isoprene, 1,4-pent
  • Cyclic hydrocarbon having a polymerizable double bond examples include mono- or dicycloalkenes having 6 to 30 carbon atoms (for example, cyclohexene, vinyl, etc.). Cyclohexene or ethylidenebicycloheptene); mono- or dicycloalkadienes having 5 to 30 carbon atoms (for example, cyclopentadiene or dicyclopentadiene).
  • Aromatic hydrocarbon having a polymerizable double bond examples include styrene; styrene hydrocarbon (for example, alkyl having 1 to 30 carbon atoms, Cycloalkyl, aralkyl and / or alkenyl) substituted (eg, ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene, cyclohexylstyrene, benzylstyrene, crotylbenzene , Divinylbenzene, divinyltoluene, divinylxylene or trivinylbenzene); and vinylnaphthalene.
  • styrene for example, alkyl having 1 to 30 carbon atoms, Cycloalkyl, aralkyl and / or al
  • Monomers having a carboxyl group and a polymerizable double bond and salts thereof examples include unsaturated monocarboxylic acids having 3 to 15 carbon atoms [for example, ( (Meth) acrylic acid, crotonic acid, isocrotonic acid, cinnamic acid, etc.]; unsaturated dicarboxylic acid (anhydride) having 3 to 30 carbon atoms [for example, (anhydrous) maleic acid, fumaric acid, itaconic acid, (anhydrous) citracone Acid or mesaconic acid, etc.]; monoalkyl (1-10 carbon atoms) ester of unsaturated dicarboxylic acid having 3 to 10 carbon atoms (for example, maleic acid monomethyl ester, maleic acid monodecyl ester, fumaric acid monoethyl ester, Itaconic acid monobutyl ester or citraconic acid monodecyl ester
  • Examples of the salt of the monomer include alkali metal salts (for example, sodium salt or potassium salt), alkaline earth metal salts (for example, calcium salt or magnesium salt), ammonium salts, amine salts, and quaternary ammonium. Examples include salt.
  • the amine salt is not particularly limited as long as it is an amine compound.
  • primary amine salt for example, ethylamine salt, butylamine salt or octylamine salt
  • secondary amine salt for example, diethylamine salt or dibutylamine salt
  • Tertiary amine salts for example, triethylamine salt or tributylamine salt
  • Examples of the quaternary ammonium salt include tetraethylammonium salt, triethyllaurylammonium salt, tetrabutylammonium salt and tributyllaurylammonium salt.
  • Examples of the salt of the monomer having a carboxyl group and a polymerizable double bond include sodium acrylate, sodium methacrylate, monosodium maleate, disodium maleate, potassium acrylate, potassium methacrylate, monopotassium maleate, acrylic Examples include lithium acid, cesium acrylate, ammonium acrylate, calcium acrylate, and aluminum acrylate.
  • Monomers having a sulfo group and a polymerizable double bond and salts thereof examples include alkene sulfonic acids having 2 to 14 carbon atoms [for example, vinyl sulfonic acid , (Meth) allyl sulfonic acid or methyl vinyl sulfonic acid etc.]; styrene sulfonic acid and alkyl derivatives (2 to 24 carbon atoms) of styrene sulfonic acid (for example, ⁇ -methyl styrene sulfonic acid etc.); 18 sulfo (hydroxy) alkyl- (meth) acrylates [eg, sulfopropyl (meth) acrylate, 2-hydroxy-3- (meth) acryloxypropyl sulfonic acid, 2- (meth) acryloyloxyethane sulfonic acid or 3- (Meth)
  • polystyrene resin It may be a polymer
  • R 1 represents an alkylene group having 2 to 4 carbon atoms. If the formula (1) contains two or more R 1 O, 2 or more R 1 O may be constructed using the same alkylene groups, two or more alkylene groups is constructed by combination Also good. When two or more kinds of alkylene groups are used in combination, the sequence of R 1 in the chemical formula (1) may be a random sequence or a block sequence.
  • R 2 and R 3 each independently represents an alkyl group having 1 to 15 carbon atoms.
  • m and n are each independently an integer of 1 to 50.
  • Ar represents a benzene ring.
  • R 4 represents an alkyl group having 1 to 15 carbon atoms which may be substituted with a fluorine atom.
  • Examples of the salt of the monomer having a sulfo group and a polymerizable double bond include, for example, the same as those listed as “the salt of the monomer” in “(2) Monomer having a carboxyl group and a polymerizable double bond” above.
  • Examples thereof include alkali metal salts, alkaline earth metal salts, ammonium salts, amine salts, and quaternary ammonium salts.
  • Monomer having phosphono group and polymerizable double bond and salt thereof examples include (meth) acryloyloxyalkyl phosphoric acid monoester (wherein the carbon number of the alkyl group is 1-24) [for example, 2-hydroxyethyl (meth) acryloyl phosphate or phenyl-2-acryloyloxyethyl phosphate, etc.]; (meth) acryloyloxyalkylphosphonic acid (the alkyl group has 1 to 24 carbon atoms) (for example, 2-acryloyloxyethylphosphonic acid and the like.
  • Examples of the salt of the monomer having a phosphono group and a polymerizable double bond include, for example, the same as those listed as “the salt of the monomer” in “(2) Monomer having a carboxyl group and a polymerizable double bond” above.
  • Examples thereof include alkali metal salts, alkaline earth metal salts, ammonium salts, amine salts, and quaternary ammonium salts.
  • Monomer having a hydroxyl group and a polymerizable double bond examples include hydroxystyrene, N-methylol (meth) acrylamide, hydroxyethyl (meth) acrylate, and hydroxypropyl.
  • Nitrogen-containing monomer having polymerizable double bond examples include monomers shown in the following (6-1) to (6-4).
  • Monomer having amino group and polymerizable double bond examples include aminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl ( (Meth) acrylate, t-butylaminoethyl methacrylate, N-aminoethyl (meth) acrylamide, (meth) allylamine, morpholinoethyl (meth) acrylate, 4-vinylpyridine, 2-vinylpyridine, crotylamine, N, N-dimethylamino Styrene, methyl- ⁇ -acetaminoacrylate, vinylimidazole, N-vinylpyrrole, N-vinylthiopyrrolidone, N-arylphenylenediamine, aminocarbazole, aminothiazole, aminoindole, aminopyrrole, amino Examples include noimid
  • the monomer having an amino group and a polymerizable double bond may be a salt of the monomers listed above.
  • the salt of the above-listed monomer include, for example, alkali metal salts and alkaline earth metals similar to those listed as “salt of the above monomer” in “(2) monomer having a carboxyl group and a polymerizable double bond”. Examples thereof include metal salts, ammonium salts, amine salts, and quaternary ammonium salts.
  • (6-2) Monomer having an amide group and a polymerizable double bond examples include (meth) acrylamide, N-methyl (meth) acrylamide, N-butylacrylamide, Diacetone acrylamide, N-methylol (meth) acrylamide, N, N′-methylene-bis (meth) acrylamide, cinnamic amide, N, N-dimethylacrylamide, N, N-dibenzylacrylamide, methacrylformamide, N-methyl -N-vinylacetamide and N-vinylpyrrolidone.
  • (6-3) Monomer having 3 to 10 carbon atoms having a nitrile group and a polymerizable double bond for example, (meth) acrylonitrile , Cyanostyrene and cyanoacrylate.
  • Monomers having 6 to 18 carbon atoms having an epoxy group and a polymerizable double bond examples include glycidyl (meth) acrylate, etc. Is mentioned.
  • Monomers having 2 to 16 carbon atoms having a halogen element and a polymerizable double bond examples include vinyl chloride and vinyl bromide. , Vinylidene chloride, allyl chloride, chlorostyrene, bromostyrene, dichlorostyrene, chloromethylstyrene, tetrafluorostyrene and chloroprene.
  • ester having 4 to 16 carbon atoms having a polymerizable double bond examples include vinyl acetate; vinyl propionate; vinyl butyrate; Diallyl phthalate; diallyl adipate; isopropenyl acetate; vinyl methacrylate; methyl-4-vinyl benzoate; cyclohexyl methacrylate; benzyl methacrylate; phenyl (meth) acrylate; vinyl methoxyacetate; vinyl benzoate; ethyl- ⁇ -ethoxy acrylate; Alkyl (meth) acrylates having an alkyl group of ⁇ 11 [for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) Diacrylate fumarate (two alkyl
  • poly (meth) acrylates of polyhydric alcohols e.g. ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate or Polyethylene glycol di (meth) acrylate and the like] ⁇ and the like.
  • Ether having 3 to 16 carbon atoms having a polymerizable double bond examples include vinyl methyl ether, vinyl ethyl ether, and vinyl propyl.
  • Ketone having 4 to 12 carbon atoms having a polymerizable double bond examples include vinyl methyl ketone, vinyl ethyl ketone and vinyl phenyl. Examples include ketones.
  • Sulfur-containing compound having 2 to 16 carbon atoms having a polymerizable double bond examples include divinyl sulfide and p-vinyl diphenyl sulfide. , Vinyl ethyl sulfide, vinyl ethyl sulfone, divinyl sulfone and divinyl sulfoxide.
  • the copolymer include, for example, a styrene- (meth) acrylic acid ester copolymer, a styrene-butadiene copolymer, and a (meth) acrylic acid- (meth) acrylic acid ester copolymer.
  • Polymer Polymer, styrene-acrylonitrile copolymer, styrene- (anhydride) maleic acid copolymer, styrene- (meth) acrylic acid copolymer, styrene- (meth) acrylic acid-divinylbenzene copolymer, and styrene-styrenesulfonic acid -(Meth) acrylic acid ester copolymer.
  • the shell resin (a) is a homopolymer or copolymer of a monomer having a polymerizable double bond of the above (1) to (9), that is, a homopolymer or copolymer containing a constitutional unit derived from a vinyl monomer.
  • the monomer having a polymerizable double bond (1) to (9) and the vinyl monomer (m) having a molecular chain (k) and having a polymerizable double bond may be polymerized. It may be.
  • the molecular chain (k) include linear or branched hydrocarbon chains having 12 to 27 carbon atoms, fluoroalkyl chains having 4 to 20 carbon atoms, and polydimethylsiloxane chains.
  • the difference in SP value between the molecular chain (k) in the vinyl monomer (m) and the insulating liquid (L) is preferably 2 or less.
  • the “SP value” is a method by Fedors [Polym. Eng. Sci. 14 (2) 152, (1974)].
  • the vinyl monomer (m) having a polymerizable double bond having a molecular chain (k) is not particularly limited, and examples thereof include the following vinyl monomers (m1) to (m4).
  • the vinyl monomer (m) two or more kinds of vinyl monomers (m1) to (m4) may be used in combination.
  • vinyl monomer (m1) examples include mono-linear alkyls of unsaturated monocarboxylic acid (alkyl having 12 to 27 carbon atoms) esters and mono-linear alkyls of unsaturated dicarboxylic acid (carbon of alkyl). Examples thereof include esters having a number of 12 to 27).
  • unsaturated monocarboxylic acid and unsaturated dicarboxylic acid include (meth) acrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid and other carboxyl group-containing vinyl monomers having 3 to 24 carbon atoms. Etc.
  • vinyl monomer (m1) examples include, for example, dodecyl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate and (meta) ) Eicosyl acrylate.
  • vinyl monomers (m2) include mono-branched alkyls of unsaturated monocarboxylic acids (alkyl having 12 to 27 carbon atoms) esters and mono-branched alkyls of unsaturated dicarboxylic acids (of which carbon number of alkyl is 12-27) esters and the like.
  • Examples of the unsaturated monocarboxylic acid and unsaturated dicarboxylic acid include those similar to those listed as specific examples of the unsaturated monocarboxylic acid and unsaturated dicarboxylic acid in the vinyl monomer (m1).
  • vinyl monomer (m2) examples include 2-decyltetradecyl (meth) acrylate.
  • Vinyl monomer having a fluoroalkyl chain having 4 to 20 carbon atoms and a polymerizable double bond examples include perfluoroalkyl (alkyl) (meth) acrylic acid ester represented by the following chemical formula (4).
  • R represents a hydrogen atom or a methyl group
  • p is an integer of 0 to 3
  • q is any one of 2, 4, 6, 8, 10 or 12
  • Z is a hydrogen atom.
  • Or represents a fluorine atom.
  • vinyl monomer (m3) examples include, for example, [(2-perfluoroethyl) ethyl] (meth) acrylic acid ester, [(2-perfluorobutyl) ethyl] (meth) acrylic acid ester, [(2 -Perfluorohexyl) ethyl] (meth) acrylic acid ester, [(2-perfluorooctyl) ethyl] (meth) acrylic acid ester, [(2-perfluorodecyl) ethyl] (meth) acrylic acid ester, and And [(2-perfluorododecyl) ethyl] (meth) acrylic acid ester.
  • Vinyl monomer having polydimethylsiloxane chain and polymerizable double bond examples include (meth) acryl-modified silicone represented by the following chemical formula (5).
  • Chemical formula (5) In the above chemical formula (5), R represents a hydrogen atom or a methyl group, and m is an average value of 15 to 45.
  • vinyl monomer (m4) examples include, for example, modified silicone oil (eg, product names: “X-22-174DX”, “X-22-2426”, “X-22-2475”, etc.) Silicone Co., Ltd.).
  • preferable monomers are the vinyl monomer (m1) and the vinyl monomer (m2), and more preferable monomers are the vinyl monomer (m2).
  • the content of the vinyl monomer (m) is preferably 10% by mass or more and 90% by mass or less, more preferably 15% by mass or more and 80% by mass or less, and further preferably 20% by mass with respect to the mass of the vinyl resin. % To 60% by mass.
  • the content of the vinyl monomer (m) is within the above range, the toner particles (C) are difficult to unite with each other.
  • the vinyl monomer (m1), and the vinyl monomer (m2) are polymerized to form a vinyl resin
  • the vinyl monomer (m1) and the vinyl monomer (m2) are polymerized to form a vinyl resin
  • the mass ratio [(m1) :( m2)] with respect to the monomer (m2) is preferably 90:10 to 10:90 from the viewpoint of the particle size distribution of the toner particles (C) and the fixability of the toner particles (C). More preferably, it is 80:20 to 20:80, and more preferably 70:30 to 30:70.
  • polyester resin examples include polycondensates of polyols with polycarboxylic acids, polycarboxylic acid anhydrides or lower alkyl esters of polycarboxylic acids (alkyl group having 1 to 4 carbon atoms).
  • a known polycondensation catalyst or the like can be used for the polycondensation reaction.
  • polyol (11) examples include diol (10) and polyol (11) having a valence of 3 to 8 or more (hereinafter abbreviated as “polyol (11)”).
  • polycarboxylic acid examples include dicarboxylic acid (12) and polycarboxylic acid (13) having a valence of 3 to 6 or more (hereinafter abbreviated as “polycarboxylic acid (13)”).
  • acid anhydride of polycarboxylic acid examples include an acid anhydride of dicarboxylic acid (12) and an acid anhydride of polycarboxylic acid (13).
  • lower alkyl ester of polycarboxylic acid include a lower alkyl ester of dicarboxylic acid (12) and a lower alkyl ester of polycarboxylic acid (13).
  • the ratio of polyol and polycarboxylic acid is not particularly limited.
  • the equivalent ratio of hydroxyl group [OH] to carboxyl group [COOH] ([OH] / [COOH]) is preferably 2/1 to 1/5, more preferably 1.5 / 1 to 1/4.
  • the ratio of the polyol and the polycarboxylic acid may be set so that the ratio is more preferably 1.3 / 1 to 1/3.
  • diol (10) examples include alkylene glycols having 2 to 30 carbon atoms (for example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexane).
  • the diol (10) is preferably an alkylene glycol and an AO adduct of bisphenols, more preferably an AO adduct of bisphenols or a mixture of an AO adduct of bisphenols and an alkylene glycol.
  • the polyol (11) is preferably an AO adduct of an aliphatic polyhydric alcohol and a novolac resin, and more preferably an AO adduct of a novolac resin.
  • Examples of the dicarboxylic acid (12) include alkanedicarboxylic acids having 4 to 32 carbon atoms (for example, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid or octadecanedicarboxylic acid); 32 alkene dicarboxylic acids (eg maleic acid, fumaric acid, citraconic acid or mesaconic acid); branched alkene dicarboxylic acids having 8 to 40 carbon atoms [eg dimer acid or alkenyl succinic acid (eg dodecenyl succinic acid, penta Decenyl succinic acid or octadecenyl succinic acid etc.)]; branched alkanedicarboxylic acids having 12 to 40 carbon atoms [eg alkyl succinic acid (eg decyl succinic acid, dodecyl succinic acid or octade
  • alkene dicarboxylic acid and aromatic dicarboxylic acid are preferred as dicarboxylic acid (12), and aromatic dicarboxylic acid is more preferred.
  • polycarboxylic acid (13) examples include aromatic polycarboxylic acids having 9 to 20 carbon atoms (for example, trimellitic acid or pyromellitic acid).
  • the acid anhydrides of dicarboxylic acid (12) and polycarboxylic acid (13) include, for example, trimellitic acid anhydride and pyromellitic acid anhydride.
  • Examples of lower alkyl esters of dicarboxylic acid (12) and polycarboxylic acid (13) include methyl ester, ethyl ester, and isopropyl ester.
  • polyurethane resin examples include polyisocyanate (14) and active hydrogen-containing compound ⁇ for example, water; polyol [for example, diol (10) (including diol having a functional group other than hydroxyl group) or polyol (11), etc.]
  • a polycarboxylic acid for example, dicarboxylic acid (12) or polycarboxylic acid (13)]; a polyester polyol obtained by polycondensation of a polyol and a polycarboxylic acid; a ring-opening polymer of a lactone having 6 to 12 carbon atoms; Polyamine (15); polythiol (16); a combination of these and the like ⁇ , or a terminal isocyanate group prepolymer obtained by reacting polyisocyanate (14) with the active hydrogen-containing compound.
  • the isocyanate group of the terminal isocyanate group prepolymer To be a primary and / or secondary monoamine (17) and the amino group-containing polyurethane resin
  • the content of carboxyl groups in the polyurethane resin is preferably 0.1% by mass or more and 10% by mass or less.
  • polyisocyanate (14) examples include aromatic polyisocyanates having 6 to 20 carbon atoms (excluding carbon in the NCO group; hereinafter the same applies to ⁇ polyurethane resin>); aliphatic having 2 to 18 carbon atoms.
  • Polyisocyanates; modified products of these polyisocyanates for example, modified products containing urethane groups, carbodiimide groups, allophanate groups, urea groups, burette groups, uretdione groups, uretoimine groups, isocyanurate groups or oxazolidone groups); A combination of two or more types can be mentioned.
  • aromatic polyisocyanate examples include 1,3- or 1,4-phenylene diisocyanate; 2,4- or 2,6-tolylene diisocyanate (hereinafter also referred to as “TDI”); crude TDI; m- or p- ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate; 2,4′- or 4,4′-diphenylmethane diisocyanate (hereinafter also referred to as “MDI”); crude MDI ⁇ eg, crude diaminophenyl Methane [For example, a condensation product of formaldehyde and an aromatic amine (one or two or more may be used in combination), or diaminodiphenylmethane and a small amount (for example, 5% by mass to 20% by mass) ), And a mixture of a polyamine having three or more amine groups] Or polyallyl polyisocyanate, etc .; 1,5-naphthylene diis
  • aliphatic polyisocyanate examples include a chain aliphatic polyisocyanate and a cyclic aliphatic polyisocyanate.
  • chain aliphatic polyisocyanate examples include ethylene diisocyanate; tetramethylene diisocyanate; hexamethylene diisocyanate (hereinafter also referred to as “HDI”); dodecamethylene diisocyanate; 1,6,11-undecane triisocyanate; Lysine diisocyanate; 2,6-diisocyanatomethyl caproate; bis (2-isocyanatoethyl) fumarate; bis (2-isocyanatoethyl) carbonate; 2-isocyanatoethyl-2,6-di Isocyanatohexanoate; a combination of two or more of these may be used.
  • HDI hexamethylene diisocyanate
  • dodecamethylene diisocyanate 1,6,11-undecane triisocyanate
  • Lysine diisocyanate 2,6-diisocyanatomethyl caproate
  • cycloaliphatic polyisocyanate examples include isophorone diisocyanate (hereinafter also referred to as “IPDI”); dicyclohexylmethane-4,4′-diisocyanate (hydrogenated MDI); cyclohexylene diisocyanate; methylcyclohexylene diisocyanate (hydrogenated TDI); Examples thereof include bis (2-isocyanatoethyl) -4-cyclohexene-1,2-dicarboxylate; 2,5- or 2,6-norbornane diisocyanate; a combination of two or more of these.
  • IPDI isophorone diisocyanate
  • MDI dicyclohexylmethane-4,4′-diisocyanate
  • TDI methylcyclohexylene diisocyanate
  • Examples thereof include bis (2-isocyanatoethyl) -4-cyclohexene-1,2-dicarboxylate;
  • modified polyisocyanate examples include a polyisocyanate compound containing at least one of a urethane group, a carbodiimide group, an allophanate group, a urea group, a burette group, a uretdione group, a uretoimine group, an isocyanurate group, and an oxazolidone group.
  • modified polyisocyanates include, for example, modified MDI (for example, urethane-modified MDI, carbodiimide-modified MDI, or trihydrocarbyl phosphate-modified MDI); urethane-modified TDI; a combination of two or more of these [for example, modified MDI and urethane-modified TDI (For example, combined use with an isocyanate-containing prepolymer, etc.).
  • modified MDI for example, urethane-modified MDI, carbodiimide-modified MDI, or trihydrocarbyl phosphate-modified MDI
  • urethane-modified TDI a combination of two or more of these [for example, modified MDI and urethane-modified TDI (For example, combined use with an isocyanate-containing prepolymer, etc.).
  • the polyisocyanate (14) is preferably an aromatic polyisocyanate having 6 to 15 carbon atoms and an aliphatic polyisocyanate having 4 to 15 carbon atoms, and more preferably TDI, MDI, HDI, Hydrogenated MDI and IPDI.
  • polyamine (15) examples include an aliphatic polyamine having 2 to 18 carbon atoms and an aromatic polyamine (for example, having 6 to 20 carbon atoms).
  • Examples of the aliphatic polyamine having 2 to 18 carbon atoms include chain aliphatic polyamines; alkyls of chain aliphatic polyamines (1 to 4 carbon atoms); hydroxyalkyls of chain aliphatic polyamines (carbon number) 2-4) Substituents; cycloaliphatic polyamines and the like.
  • chain aliphatic polyamines examples include alkylene diamines having 2 to 12 carbon atoms (eg, ethylene diamine, propylene diamine, trimethylene diamine, tetramethylene diamine or hexamethylene diamine); polyalkylenes (having 2 to 6 carbon atoms). ) Polyamines [for example, diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine or pentaethylenehexamine] and the like.
  • alkylene diamines having 2 to 12 carbon atoms eg, ethylene diamine, propylene diamine, trimethylene diamine, tetramethylene diamine or hexamethylene diamine
  • polyalkylenes having 2 to 6 carbon atoms.
  • Polyamines for example, diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine or
  • alkyl-substituted (chains having 1 to 4 carbon atoms) of chain aliphatic polyamines and hydroxyalkyl (chain of 2 to 4 carbons) substitutions of chain aliphatic polyamines include dialkyl (having 1 to 3 carbon atoms). Examples include aminopropylamine; trimethylhexamethylenediamine; aminoethylethanolamine; 2,5-dimethyl-2,5-hexamethylenediamine; methyliminobispropylamine.
  • Cycloaliphatic polyamines include, for example, alicyclic polyamines having 4 to 15 carbon atoms [for example, 1,3-diaminocyclohexane, isophoronediamine, mensendiamine, 4,4′-methylenedicyclohexanediamine (hydrogenated methylene).
  • aromatic polyamine having 6 to 20 carbon atoms
  • aromatic polyamine having 6 to 20 carbon atoms
  • aromatic polyamine having 6 to 20 carbon atoms
  • an alkyl group for example, a methyl group, an ethyl group, an n- or isopropyl group, and a butyl group having 1 to 4 carbon atoms.
  • Aromatic polyamines having an alkyl group aromatic polyamines having electron-withdrawing groups (for example, halogen atoms such as Cl, Br, I and F, alkoxy groups such as methoxy and ethoxy groups, and nitro groups); secondary An aromatic polyamine having an amino group is exemplified.
  • Unsubstituted aromatic polyamines include, for example, 1,2-, 1,3- or 1,4-phenylenediamine; 2,4′- or 4,4′-diphenylmethanediamine; crude diphenylmethanediamine (for example, polyphenylpolyamine).
  • aromatic polyamine having an alkyl group examples include 2,4- or 2,6- Tolylenediamine, crude tolylenediamine, diethyltolylenediamine, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 4,4'-bis (o-toluidine), dianisidine, diaminoditolyl sulfone, 1, 3-dimethyl-2,4-diaminobenzene, 1,3-diethyl-2,4-diaminobenzene, 1,3-dimethyl-2,6-diaminobenzene, 1,4-diethyl-2,5-diaminobenzene, 1,4-diisopropyl-2,5-diaminobenzene, 1,4-diiisopropyl-2,5-diaminobenzene, 1,4-dii
  • Aromatic polyamines having electron-withdrawing groups include, for example, methylene bis-o-chloroaniline, 4-chloro-o-phenylenediamine, 2-chloro-1,4-phenylenediamine, 3-amino-4-chloroaniline, 4-bromo-1,3-phenylenediamine, 2,5-dichloro-1,4- Phenylenediamine, 5-nitro-1,3-phenylenediamine, 3-dimethoxy-4-aminoaniline; 4,4′-diamino-3,3′-dimethyl-5,5′-dibromo-diphenylmethane, 3,3 ′ -Dichlorobenzidine, 3,3'-dimethoxybenzidine, bis (4-amino-3-chlorophenyl) oxy Bis (4-amino
  • aromatic polyamine having a secondary amino group for example, a part or all of —NH 2 in the above-mentioned unsubstituted aromatic polyamine, aromatic polyamine having an alkyl group, and aromatic polyamine having an electron withdrawing group is —NH—.
  • R ′ is an alkyl group, for example, a lower alkyl group having 1 to 4 carbon atoms such as a methyl group and an ethyl group
  • R ′ is an alkyl group, for example, a lower alkyl group having 1 to 4 carbon atoms such as a methyl group and an ethyl group
  • polyamide polyamine dicarboxylic acid (eg, dimer acid) and excess (more than 2 moles per mole of acid) polyamines (eg, alkylene diamine or polyalkylene described above)
  • Polyamines hydrides of cyanoethylation products of polyether polyols (such as polyalkylene glycol, etc.).
  • Examples of the polythiol (16) include alkanedithiols having 2 to 36 carbon atoms (for example, ethanedithiol, 1,4-butanedithiol, 1,6-hexanedithiol, etc.).
  • Examples of the primary and / or secondary monoamine (17) include alkylamines having 2 to 24 carbon atoms (eg, ethylamine, n-butylamine, isobutylamine, diethylamine or n-butyl-n-dodecylamine). Is mentioned.
  • epoxy resin examples include a ring-opening polymer of polyepoxide (18); polyepoxide (18) and an active hydrogen-containing compound [for example, water, diol (10), dicarboxylic acid (12), polyamine (15) or polythiol (16 And the like; and a cured product of polyepoxide (18) and an acid anhydride of dicarboxylic acid (12).
  • the polyepoxide (18) is not particularly limited as long as it has two or more epoxy groups in the molecule. From the viewpoint of the mechanical properties of the cured product, preferred as the polyepoxide (18) is one having two epoxy groups in the molecule.
  • the epoxy equivalent (molecular weight per epoxy group) of the polyepoxide (18) is preferably 65 or more and 1000 or less, and more preferably 90 or more and 500 or less. When the epoxy equivalent is 1000 or less, the crosslinked structure becomes dense, and physical properties such as water resistance, chemical resistance and mechanical strength of the cured product are improved. On the other hand, if the epoxy equivalent is less than 65, synthesis of the polyepoxide (18) may be difficult.
  • polyepoxide (18) examples include aromatic polyepoxy compounds and aliphatic polyepoxy compounds.
  • aromatic polyepoxy compounds include glycidyl ethers of polyhydric phenols, glycidyl esters of aromatic polycarboxylic acids, glycidyl aromatic polyamines, and glycidylates of aminophenols.
  • polyglycol glycidyl ether examples include bisphenol F diglycidyl ether; bisphenol A diglycidyl ether; bisphenol B diglycidyl ether; bisphenol AD diglycidyl ether; bisphenol S diglycidyl ether; halogenated bisphenol A diglycidyl; Bisphenol A diglycidyl ether; catechin diglycidyl ether; resorcinol diglycidyl ether; hydroquinone diglycidyl ether; pyrogallol triglycidyl ether; 1,5-dihydroxynaphthalene diglycidyl ether; dihydroxybiphenyl diglycidyl ether; octachloro-4,4'-dihydroxy Biphenyl diglycidyl ether; tetramethylbiphenyl di Dihydroxynaphthylcresol triglycidyl ether; tris (hydroxyphenyl) methane triglycid
  • aromatic carboxylic acid glycidyl ester examples include phthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, and terephthalic acid diglycidyl ester.
  • Examples of the glycidyl aromatic polyamine include N, N-diglycidylaniline, N, N, N ′, N′-tetraglycidylxylylenediamine and N, N, N ′, N′-tetraglycidyldiphenylmethanediamine. It is done.
  • p-aminophenol triglycidyl ether an example of a glycidylated product of aminophenol
  • diglycidyl obtained by reacting tolylene diisocyanate or diphenylmethane diisocyanate with glycidol
  • examples thereof include urethane compounds; glycidyl group-containing polyurethane (pre) polymers obtained by reacting tolylene diisocyanate or diphenylmethane diisocyanate, glycidol and polyol
  • diglycidyl ethers of AO adducts of bisphenol A and the like.
  • Examples of the aliphatic polyepoxy compound include a chain aliphatic polyepoxy compound and a cyclic aliphatic polyepoxy compound.
  • the aliphatic polyepoxy compound may be a copolymer of diglycidyl ether and glycidyl (meth) acrylate.
  • chain aliphatic polyepoxy compound examples include polyglycidyl ethers of polyhydric aliphatic alcohols, polyglycidyl esters of polyhydric fatty acids, and glycidyl aliphatic amines.
  • polyglycidyl ethers of polyhydric aliphatic alcohols include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tetramethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, polyethylene glycol diglycidyl ether, Polypropylene glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, trimethylolpropane polyglycidyl ether, glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, sorbitol polyglycidyl ether and polyglycerol polyglycidyl ether Is mentioned.
  • polyglycidyl ester of polyvalent fatty acid examples include diglycidyl oxalate, diglycidyl malate, diglycidyl succinate, diglycidyl glutarate, diglycidyl adipate and diglycidyl pimelate.
  • Examples of the glycidyl aliphatic amine include N, N, N ′, N′-tetraglycidylhexamethylenediamine.
  • Examples of the cycloaliphatic polyepoxy compound include trisglycidyl melamine, vinylcyclohexene dioxide, limonene dioxide, dicyclopentadiene dioxide, bis (2,3-epoxycyclopentyl) ether, ethylene glycol bisepoxy dicyclopentyl ether, 3 , 4-epoxy-6-methylcyclohexylmethyl-3 ′, 4′-epoxy-6′-methylcyclohexanecarboxylate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, bis (3,4-epoxy And -6-methylcyclohexylmethyl) butylamine and dimer acid diglycidyl ester.
  • Examples of the cycloaliphatic polyepoxy compound include hydrogenated products of the above aromatic polyepoxide compounds.
  • polyamide resin examples include a ring-opening polymer of lactam, a polycondensate of aminocarboxylic acid, a polycondensate of polycarboxylic acid and polyamine, and the like.
  • polyimide resin examples include aliphatic polyimide resins (for example, condensation polymers obtained from aliphatic carboxylic dianhydrides and aliphatic diamines), and aromatic polyimide resins (for example, aromatic carboxylic dianhydrides). And condensation polymers obtained from aliphatic diamines or aromatic diamines).
  • silicon resin examples include compounds having at least one of silicon-silicon bond, silicon-carbon bond, siloxane bond and silicon-nitrogen bond in the molecular chain (for example, polysiloxane, polycarbosilane or polysilazane). Etc.
  • phenol resin examples include condensation polymers obtained from phenols (for example, phenol, cresol, nonylphenol, lignin, resorcin, or catechol) and aldehydes (for example, formaldehyde, acetaldehyde, or furfural).
  • phenols for example, phenol, cresol, nonylphenol, lignin, resorcin, or catechol
  • aldehydes for example, formaldehyde, acetaldehyde, or furfural.
  • melamine resin examples include a polycondensate obtained from melamine and formaldehyde.
  • urea resins include polycondensates obtained from urea and formaldehyde.
  • aniline resins include those obtained by reacting aniline and aldehydes under acidic conditions.
  • ionomer resin examples include a monomer having a polymerizable double bond (for example, ⁇ -olefin monomer or styrene monomer) and an ⁇ , ⁇ -unsaturated carboxylic acid (for example, acrylic acid, methacrylic acid, maleic acid, A copolymer with itaconic acid, maleic acid monomethyl ester, maleic anhydride or maleic acid monoethyl ester, etc., and a part or all of the carboxylic acid in the copolymer is a carboxylate (eg, potassium salt, sodium salt) , Magnesium salt or calcium salt).
  • a carboxylate eg, potassium salt, sodium salt
  • polycarbonate resin examples include condensation polymers of bisphenols (for example, bisphenol A, bisphenol F, or bisphenol S) and phosgene or carbonic acid diester.
  • the shell resin (a) may be a crystalline resin (a1), an amorphous resin (a2), or a crystalline resin (a1) and an amorphous resin (a2). It may be used in combination. From the viewpoint of fixability of the toner particles (C), the shell resin (a) is preferably a crystalline resin (a1).
  • crystallity means a ratio (Tm / Ta) between a softening point of a resin (hereinafter also referred to as “Tm”) and a maximum melting temperature of the resin (hereinafter also referred to as “Ta”). It means that it is 0.8 or more and 1.55 or less, and the result obtained by the differential scanning calorimeter (hereinafter also referred to as DSC) does not show a stepwise endothermic change but has a clear endothermic peak. means.
  • non-crystalline means that the ratio of Tm to Ta (Tm / Ta) is larger than 1.55. Tm and Ta can be measured by the following method.
  • Tm can be measured using a Koka flow tester (for example, product name: “CFT-500D”, manufactured by Shimadzu Corporation). Specifically, while a 1 g measurement sample is heated at a heating rate of 6 ° C./min, a load of 1.96 MPa is applied to the measurement sample by a plunger, and the measurement sample is pushed out from a nozzle having a diameter of 1 mm and a length of 1 mm. . Then, the relationship between “plunger descent amount (flow value)” and “temperature” is drawn on a graph. The temperature at which the plunger descending amount is 1 ⁇ 2 of the maximum value of the descending amount is read from the graph, and this value (temperature when half of the measurement sample is pushed out of the nozzle) is defined as Tm.
  • a Koka flow tester for example, product name: “CFT-500D”, manufactured by Shimadzu Corporation.
  • Ta can be measured using a differential scanning calorimeter (for example, product name: “DSC210”, manufactured by Seiko Instruments Inc.). Specifically, first, a sample used for measuring Ta is pretreated. After the sample is melted at 130 ° C., the temperature is lowered from 130 ° C. to 70 ° C. at a rate of 1.0 ° C./min, and then lowered from 70 ° C. to 10 ° C. at a rate of 0.5 ° C./min. Next, the sample is heated at a heating rate of 20 ° C./min by DSC method to measure the endothermic change of the sample, and the relationship between the “endothermic amount” and “temperature” is plotted on a graph.
  • a differential scanning calorimeter for example, product name: “DSC210”, manufactured by Seiko Instruments Inc.
  • the temperature of the endothermic peak observed between 20 ° C. and 100 ° C. is Ta ′.
  • the temperature of the peak with the largest endothermic amount is defined as Ta '.
  • the sample is stored at (Ta′-10) ° C. for 6 hours, and then stored at (Ta′-15) ° C. for 6 hours.
  • the sample subjected to the pretreatment was cooled to 0 ° C. at a temperature decrease rate of 10 ° C./min, and then the temperature was increased at a temperature increase rate of 20 ° C./min to measure the endothermic change.
  • the relationship between the "heat absorption and heat generation” and "temperature” is plotted on a graph.
  • the temperature at which the endotherm takes the maximum value is taken as the maximum peak temperature (Ta) of heat of fusion.
  • H1 is an index of the melting rate of the shell resin (a).
  • a resin having heat of fusion has a sharp melt property and can be melted with a small amount of energy. Therefore, if a resin having heat of fusion is selected as the shell resin (a), the energy required for fixing can be reduced. Therefore, it is preferable to select a resin having heat of fusion as the shell resin (a). However, if the heat of fusion of the resin is too large, it may be difficult to sufficiently melt the resin.
  • H2 / H1 in the above formula (2) is an index of the crystallization speed of the shell resin (a).
  • H2 / H1 is more preferably 0.3 or more, and further preferably 0.4 or more. Further, if the crystallization speed of the shell resin (a) is high, H2 / H1 approaches 1.0. Therefore, H2 / H1 preferably takes a value close to 1.0.
  • H2 / H1 in the above formula (2) does not theoretically exceed 1.0, but it may exceed 1.0 in the actual measurement value by DSC. Even when the actual measurement value (H2 / H1) by DSC exceeds 1.0, the above equation (2) is satisfied.
  • H1 and H2 can be measured in accordance with JIS-K7122 (1987) “Method for measuring the heat of transition of plastics”. Specifically, first, 5 mg of shell resin (a) is sampled and placed in an aluminum pan. Using a differential scanning calorimeter (for example, product name: “RDC220”, manufactured by SII Nano Technology Inc., or product name: “DSC20”, Seiko Instruments Inc., etc.) The temperature (melting point) at the endothermic peak of the shell resin (a) due to melting is measured at 10 ° C., and the area S1 of the endothermic peak is obtained. And H1 is computable from the area
  • RDC220 differential scanning calorimeter
  • the melting point of the shell resin (a) is preferably 0 ° C. or higher and 220 ° C. or lower, more preferably 30 ° C. or higher and 200 ° C. or lower, and further preferably 40 ° C. or higher and 80 ° C. or lower.
  • the melting point of the shell resin (a) is the liquid developer (X). It is preferable that it is more than the temperature when manufacturing.
  • the melting point of the shell resin is lower than the temperature at which the liquid developer is produced, it may be difficult to prevent the toner particles from uniting with each other, and it may be difficult to prevent the toner particles from splitting. .
  • the distribution width in the particle size distribution of the toner particles is difficult to be narrowed. In other words, there is a possibility that the variation in the particle size of the toner particles becomes large.
  • the melting point conforms to the method prescribed in ASTM D3418-82 using a differential scanning calorimeter (product name: “DSC20” or “SSC / 580”, manufactured by Seiko Instruments Inc.). Measured.
  • the Mn of the shell resin (a) [obtained by measurement by gel permeation chromatography (hereinafter also referred to as “GPC”)] is preferably 100 or more and 5000000 or less, preferably 200 or more and 5000000 or less, More preferably, it is 500 or more and 500,000 or less.
  • Mn and Mw of resins are measured for the soluble content of tetrahydrofuran (hereinafter also referred to as “THF”) using GPC under the following conditions.
  • Measuring device “HLC-8120” (product name, manufactured by Tosoh Corporation) Column: “TSKgelGMHXL” (product name, manufactured by Tosoh Corporation) (2) and “TSKgelMultiporeHXL-M” (product name, manufactured by Tosoh Corporation) (1) Sample solution: 0.25 mass% THF solution Injection amount of THF solution into the column: 100 ⁇ l Flow rate: 1 ml / min Measurement temperature: 40 ° C Detector: Refractive index detector Reference material: Standard polystyrene (Product name: TSK standard POLYSYRENE, manufactured by Tosoh Corporation) 12 points (Molecular weight: 500, 1050, 2800, 5970, 9100, 18100, 37900, 96400, 190000, 355000) 1090000, 2890000).
  • Mn and Mw of the polyurethane resin are measured using GPC under the following conditions.
  • Measuring device “HLC-8220GPC” (product name, manufactured by Tosoh Corporation) Column: “Guardcolum ⁇ ” (1) and “TSKgel ⁇ -M” (1) Sample solution: 0.125 mass% dimethylformamide solution Injection amount of dimethylformamide solution to the column: 100 ⁇ l Flow rate: 1 ml / min Measurement temperature: 40 ° C Detector: Refractive index detector Reference material: Standard polystyrene (Product name: TSK standard POLYSYRENE, manufactured by Tosoh Corporation) 12 points (Molecular weight: 500, 1050, 2800, 5970, 9100, 18100, 37900, 96400, 190000, 355000) 1090000, 2890000).
  • SP value the solubility parameter
  • the SP value of the shell resin (a) is preferably 7 (cal / cm 3 ) 1/2 or more and 18 (cal / cm 3 ) 1/2 or less, more preferably 8 (cal / cm 3 ) 1/2. It is 14 (cal / cm 3 ) 1/2 or less.
  • Shell particles (A) in the present embodiment include shell resin (a). Any known method can be adopted as the method for producing the shell particles (A), and the method is not particularly limited. For example, the following methods [1] to [7] can be mentioned.
  • the shell resin (a) is pulverized dry using a known dry pulverizer such as a jet mill.
  • a known wet disperser such as a bead mill or a roll mill.
  • the solution of the shell resin (a) is sprayed using a spray dryer or the like and dried.
  • the precursor of the shell resin (a) is polymerized in water by an emulsion polymerization method, a soap-free emulsion polymerization method, a seed polymerization method, a suspension polymerization method, or the like.
  • the shell resin (a) precursor is polymerized by dispersion polymerization or the like in an organic solvent.
  • the methods [4], [6] and [7] are preferable from the viewpoint of ease of production of the shell particles (A), and more preferably the methods [6] and [7]. Is preferred.
  • the core resin (b) in the present embodiment needs to have an acidic group and have an acid dissociation constant (hereinafter also referred to as pKa) of 2.90 or more and 8.00 or less.
  • pKa acid dissociation constant
  • the position of the acidic group is not particularly limited, but is preferably the terminal of the core resin (b).
  • the terminal of core resin (b) shows the start part and terminal part of the longest repeating structure (main chain) among the repeating structures of the structural unit in a molecule.
  • the pKa of the core resin (b) is less than 2.90, hydrolysis of the shell resin (a) or the core resin (b) may be promoted. In that case, the heat resistance stability of the toner particles (C) Is unfavorable because of lowering.
  • the fixability is deteriorated, which is not preferable in consideration of adaptability to uses such as electrophotography.
  • the pKa of the resin (b) in the present embodiment needs to be 2.90 or more and 8.00 or less, preferably 2.90 or more and 6.00 or less, more preferably 2.92 or more. It is preferable that it is 5.50 or less.
  • core resin (b) in this Embodiment what has an acidic group among what was illustrated as shell resin (a) above can be used, for example, vinyl resin, polyester resin, polyurethane resin, polyamide resin , Polyimide resin, phenol resin, polycarbonate resin and the like.
  • vinyl resin vinyl resin
  • polyester resin polyurethane resin
  • polyamide resin polyamide resin
  • Polyimide resin polyimide resin
  • phenol resin polycarbonate resin
  • a polyester resin, a polyurethane resin, or a combination of a polyester resin and a polyurethane resin can be suitably used.
  • polyester resin having an acidic group examples include those obtained by introducing a carboxylic acid into a polycondensate of a diol and a dicarboxylic acid with an acid anhydride described later.
  • the diol is, for example, an alkylene glycol having 2 to 30 carbon atoms (for example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1 , 4-butanediol, 1,6-hexanediol, octanediol, decanediol, dodecanediol, tetradecanediol, neopentyl glycol or 2,2-diethyl-1,3-propanediol), and a carbon number of 15-30 Bisphenols (for example, bisphenol A, bisphenol F, bisphenol S, etc.) AO [for example, EO, propylene oxide (hereinafter also referred to as “PO”) or butylene oxide, etc.] adducts (addition mole number is 2 to 100), and Al Such as a mixture of AO adducts of glycol, 1,2-propylene glycol, 1,3-propylene
  • dicarboxylic acid examples include those exemplified above as the dicarboxylic acid (12), such as alkane dicarboxylic acids having 4 to 32 carbon atoms (for example, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid or Octadecanedicarboxylic acid, etc.) and aromatic dicarboxylic acids having 8 to 20 carbon atoms (eg, phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, etc.).
  • alkane dicarboxylic acids having 4 to 32 carbon atoms for example, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid or Octadecanedicarboxylic acid, etc.
  • aromatic dicarboxylic acids having 8 to 20 carbon atoms eg, phthalic acid, isophthalic acid, ter
  • Polyurethane resin having acidic group includes polyisocyanate (14) and active hydrogen-containing compound ⁇ for example, water; polyol [for example, diol (10) (having a functional group other than hydroxyl group) Diols, and the like, and tri- to 8-valent and higher polyols (11), etc.]; polycarboxylic acids [for example, dicarboxylic acids (12) and 3- to 6-valent and higher polycarboxylic acids (13), etc.] Polyester polyol obtained by polycondensation of polyol and polycarboxylic acid; ring-opening polymer of lactone having 6 to 12 carbon atoms; polyadduct with polyamine (15); polythiol (16); And powder obtained by reacting polyisocyanate (14) with the active hydrogen-containing compound. And isocyanate prepolymers, such as the terminal primary of equivalents to isocyanate prepolymers isocyanate group and / or secondary monoamine (17) and the amino group
  • Vinyl resin having acidic group As vinyl resin having acidic group, the following monomer having carboxyl group and polymerizable double bond, monomer having sulfo group and polymerizable double bond, phosphono group and polymerizable Examples include homopolymers and copolymers such as monomers having a double bond.
  • the monomer having a carboxyl group and a polymerizable double bond include unsaturated monocarboxylic acids having 3 to 15 carbon atoms [for example, (meth) Acrylic acid, crotonic acid, isocrotonic acid, cinnamic acid, etc.]; unsaturated dicarboxylic acids having 3 to 30 carbon atoms (anhydrides) [for example, (anhydrous) maleic acid, fumaric acid, itaconic acid, (anhydrous) citraconic acid or Mesaconic acid etc.]; monoalkyl (1-10 carbon atoms) ester of unsaturated dicarboxylic acid having 3 to 10 carbon atoms (for example, maleic acid monomethyl ester, maleic acid monodecyl ester, fumaric acid monoethyl ester, itaconic acid Monobutyl ester or citraconic acid monodecyl ester, etc.).
  • the monomer having a sulfo group and a polymerizable double bond include alkene sulfonic acids having 2 to 14 carbon atoms [for example, vinyl sulfonic acid, ( Meth) allyl sulfonic acid or methyl vinyl sulfonic acid]; styrene sulfonic acid and alkyl derivatives (2 to 24 carbon atoms) of styrene sulfonic acid (for example, ⁇ -methyl styrene sulfonic acid etc.); Sulfo (hydroxy) alkyl- (meth) acrylate [eg, sulfopropyl (meth) acrylate, 2-hydroxy-3- (meth) acryloxypropyl sulfonic acid, 2- (meth) acryloyloxyethane sulfonic acid or 3- (meta ) Acryloyloxy
  • a monomer having a phosphono group and a polymerizable double bond for example, a (meth) acryloyloxyalkyl phosphate monoester (wherein the alkyl group has 1 carbon atom) To 24) [for example, 2-hydroxyethyl (meth) acryloyl phosphate or phenyl-2-acryloyloxyethyl phosphate]; (meth) acryloyloxyalkylphosphonic acid (the alkyl group has 1 to 24 carbon atoms) (for example, 2 -Acryloyloxyethylphosphonic acid, etc.).
  • a (meth) acryloyloxyalkyl phosphate monoester wherein the alkyl group has 1 carbon atom
  • To 24) for example, 2-hydroxyethyl (meth) acryloyl phosphate or phenyl-2-acryloyloxyethyl phosphate
  • Polyamide resin having an acidic group examples include lactam ring-opening polymers, polycondensates of aminocarboxylic acids, and polycondensates of polycarboxylic acids and polyamines.
  • Polyimide resins having an acidic group include fatty acid polyimide resins (polymers obtained from fatty acid carboxylic dianhydrides and fatty acid diamines) and aromatic polyimide resins (aromatic carboxylic acid dicarboxylic acids). A polymer obtained from an anhydride and an aliphatic diamine or an aromatic diamine).
  • Phenol resins having acidic groups are obtained by condensation of phenols (phenol, cresol, nonylphenol, lignin, resorcin, catechol, etc.) and aldehydes (formaldehyde, acetaldehyde, furfural, etc.). Examples thereof include polymers obtained.
  • Polycarbonate resin having an acidic group examples include polymers obtained by condensation of bisphenols (such as bisphenol A, bisphenol F, and bisphenol S) with phosgene or carbonic acid diester. .
  • the acidic group examples include a carboxyl group, a sulfonic acid group, a sulfine group, a phosphonic acid group, and a phosphine group.
  • the pKa of the core resin (b) can be adjusted by appropriately selecting the type of acidic group.
  • resin which provides an acid value that whose Mn is 2000 or more and 10,000 or less is preferable, and it is preferable that an acid value is 2 or more and 35 or less.
  • a carboxyl group can be suitably used from the viewpoint that it can be easily introduced into the molecule by an acid anhydride.
  • Such acid anhydrides include propionic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl nadic Acid anhydride, hydrogenated methyl nadic acid anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexene tetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, ethylene glycol bisanhydro trimellitate, glycerin bis (anhydro) Trimellitate) monoacetate, dodecenyl succinic anhydride, crocendic anhydride and the like.
  • propionic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydro Phthalic anhydride can be preferably used, and phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and methylhexahydrophthalic anhydride are more preferred.
  • pKa of core resin (b) The pKa of the core resin (b) can be calculated by the following formula (3).
  • pKa ⁇ log ⁇ [H 3 O + ] [(b ⁇ )] / [(b)] ⁇ (3)
  • [H 3 O + ] represents the hydrogen ion concentration (mol / L) when the core resin (b) is dispersed in water
  • [(b ⁇ )] represents the core resin (b) in water.
  • [(b)] shows the concentration (mol / L) of the core resin (b) when the core resin (b) is dispersed in water.
  • pKa is the acid dissociation constant of the first stage.
  • the Mn, melting point, glass transition temperature (hereinafter also referred to as Tg), and SP value of the core resin (b) can be adjusted to a suitable range depending on the application.
  • Mn is preferably 1000 or more and 5000000 or less, more preferably 2000 or more and 500000 or less.
  • the melting point is preferably 20 ° C. or higher and 300 ° C. or lower, more preferably 80 ° C. or higher and 250 ° C. or lower.
  • Tg is preferably 20 ° C. or higher and 200 ° C. or lower, more preferably 40 ° C. or higher and 150 ° C. or lower.
  • the SP value is preferably 8 (cal / cm 3 ) 1/2 or more and 16 (cal / cm 3 ) 1/2 or less, more preferably 9 (cal / cm 3 ) 1/2. It is 14 (cal / cm 3 ) 1/2 or less.
  • Tg may be measured by the DSC method or may be measured using a flow tester.
  • a differential scanning calorimeter product name: “DSC20” or “SSC / 580” or the like, both manufactured by Seiko Instruments Inc.
  • ASTM D3418-82 ASTM D3418-82. It is preferable to measure Tg according to the method specified in 1.
  • Tg measurement conditions When measuring Tg using a flow tester, it is preferable to use a Koka type flow tester (for example, product name: “CFT500 type” manufactured by Shimadzu Corporation). An example of Tg measurement conditions in this case is shown below.
  • a Koka type flow tester for example, product name: “CFT500 type” manufactured by Shimadzu Corporation.
  • the core particle (B) in the present embodiment contains the core resin (b).
  • the core particles (B) can be produced from the core resin (b) by a method similar to the method for producing the shell particles (A).
  • the toner particles (C) have a core-shell structure, and the shell particles (A) containing the shell resin (a) are the core particles (B) containing the core resin (b). It may be attached to the surface, or the shell particles (A) may be coated on the surfaces of the core particles (B).
  • the coating means that the shell particles (A) are continuously adhered to form a coating.
  • the particle diameter of the shell particles (A) is preferably smaller than the particle diameter of the core particles (B).
  • the particle size ratio [(volume average particle size of shell particles (A)) / (volume average particle size of core particles (B)]] is 0.001 or more and 0. It is preferable that it is within the range of .3 or less. More preferably, the lower limit of the particle size ratio is 0.003 and the upper limit is 0.25.
  • the particle size ratio is larger than 0.3, the shell particles (A) are difficult to be efficiently adsorbed on the surface of the core particles (B), and thus the distribution range in the particle size distribution of the obtained toner particles (C) is widened. Tend.
  • the particle size ratio is smaller than 0.001, it may be difficult to produce the shell particles (A).
  • the volume average particle size of the shell particles (A) is set to a particle size suitable for obtaining toner particles (C) having a desired particle size, and the particle size ratio is within the preferable range. Can be adjusted as appropriate.
  • the volume average particle diameter of the shell particles (A) is preferably 0.0005 ⁇ m or more and 30 ⁇ m or less.
  • the upper limit of the volume average particle diameter of the shell particles (A) is more preferably 20 ⁇ m, and even more preferably 10 ⁇ m.
  • the lower limit of the volume average particle diameter of the shell particles (A) is more preferably 0.01 ⁇ m, still more preferably 0.02 ⁇ m, and most preferably 0.04 ⁇ m.
  • the volume average particle diameter of the shell particles (A) is preferably 0.0005 ⁇ m or more and 0.3 ⁇ m or less, more preferably 0.00. It is 001 ⁇ m or more and 0.2 ⁇ m or less.
  • the volume average particle diameter of the shell particles (A) is preferably 0.005 ⁇ m or more and 3 ⁇ m or less, more preferably 0.05 ⁇ m or more. 2 ⁇ m or less.
  • the volume average particle size of the shell particles (A) is preferably 0.05 ⁇ m or more and 30 ⁇ m or less, more preferably 0.1 ⁇ m or more. 20 ⁇ m or less.
  • the volume average particle size of the core particles (B) is preferably 0.1 ⁇ m or more and 300 ⁇ m or less, more preferably 0.5 ⁇ m or more and 250 ⁇ m or less. More preferably, it is 1 ⁇ m or more and 200 ⁇ m or less.
  • the “volume average particle size” is a laser type particle size distribution measuring device (for example, product name: “LA-920”, manufactured by Horiba, Ltd., or product name “Multisizer III”, manufactured by Coulter, Inc. ); Measuring apparatus using laser Doppler method as optical system (product name: “ELS-800”, manufactured by Otsuka Electronics Co., Ltd.); Flow type particle image analyzer (for example, product name: “FPIA-3000S”, Sysmex Corporation) Etc.). If there is a difference in the measured values when the volume average particle diameter is measured with a different measuring device, the measured value of “ELS-800” is adopted.
  • a laser type particle size distribution measuring device for example, product name: “LA-920”, manufactured by Horiba, Ltd., or product name “Multisizer III”, manufactured by Coulter, Inc.
  • Measuring apparatus using laser Doppler method as optical system product name: “ELS-800”, manufactured by Otsuka Electronics Co., Ltd.
  • the mass ratio [(A) :( B)] of the shell particles (A) and the core particles (B) is preferably 1:99 to 70:30. From the viewpoint of the uniformity of the particle diameter of the toner particles (C) and the heat resistance stability of the liquid developer (X), the ratio [(A) :( B)] is more preferably 2:98 to 50:50. More preferably, it is 3:97 to 35:65. If the content (mass ratio) of the shell particles is too low, the blocking resistance of the toner particles may be lowered. On the other hand, if the content (mass ratio) of the core particles is too high, fixability at low temperatures may be deteriorated.
  • the shape of the toner particles (C) is preferably spherical from the viewpoint of the fluidity of the liquid developer (X) and its melt leveling property.
  • the average value of the circularity (average circularity) of the toner particles (C) is preferably 0.92 or more and 1.0 or less, more preferably 0.97 or more and 1.0 or less. More preferably, it is 0.98 or more and 1.0 or less. The closer the average circularity of the toner particles (C) is to 1.0, the closer the toner particles (C) have a spherical shape. If the core particles (B) are spherical, the toner particles (C) are likely to be spherical. Therefore, the core particles (B) are preferably spherical.
  • the average circularity is the circumference of a toner particle (C) in which the circumference of a circle having an area equal to the projected area of the toner particle (C) is detected optically. The value divided by the length. Specifically, the average circularity is measured using a flow particle image analyzer (for example, product name: “FPIA-3000”, manufactured by Sysmex Corporation).
  • a surfactant as a dispersant for example, product name: “Dry Well”, manufactured by Fuji Photo Film Co., Ltd.
  • a surfactant for example, product name: “Dry Well”, manufactured by Fuji Photo Film Co., Ltd.
  • a surfactant for example, product name: “Dry Well”, manufactured by Fuji Photo Film Co., Ltd.
  • an ultrasonic disperser for example, product name: “Ultrasonic Cleaner Model VS-150”, manufactured by Welbo Clear
  • the dispersion concentration is set to 3000 / ⁇ L or more and 10000 / ⁇ L or less.
  • the shape and particle size distribution of a measurement sample are measured using the sample solution after a dispersion process.
  • the volume average particle diameter of the toner particles (C) is preferably determined as appropriate depending on the application, but is generally preferably 0.01 ⁇ m or more and 100 ⁇ m or less.
  • the upper limit of the volume average particle diameter of the toner particles (C) is more preferably 40 ⁇ m, still more preferably 30 ⁇ m, and most preferably 20 ⁇ m.
  • the lower limit of the volume average particle diameter of the toner particles (C) is more preferably 0.3 ⁇ m, and further preferably 0.5 ⁇ m.
  • the coefficient of variation of the volume distribution of the toner particles (C) is preferably 1% or more and 100% or less, more preferably 1% or more and 50% or less. More preferably, it is 1% or more and 30% or less, and most preferably 1% or more and 25% or less.
  • the coefficient of variation of the volume distribution is measured using a particle size distribution measuring device such as a laser particle size distribution measuring device (for example, product name: “LA-920”, manufactured by Horiba, Ltd.).
  • the core particles (A) formed by the shell particles (A) in the toner particles (C) The surface coverage of B) is preferably 50% or more, more preferably 80% or more.
  • the surface coating of the core particles (B) with the shell particles (A) means that in the toner particles (C) having a core / shell structure, the shell particles (A) adhere to the outermost surface of the core particles (B).
  • the shell particles (A) are concentrated near the surface of the core particles (B).
  • the presence state of the shell particles (A) and the core particles (B) in the toner particles (C) varies depending on the composition of the shell resin (a) and the core resin (b) and the manufacturing method of the toner particles (C).
  • a part of the shell resin (a) may be present in the core resin (b)
  • a part of the shell resin (a) may be present on the surface of the core particle (B).
  • the surface coverage of the core particle (B) by the shell particle (A) can be obtained based on the following formula (4) from image analysis of an image obtained by a scanning electron microscope (SEM), for example.
  • SEM scanning electron microscope
  • the shape of the toner particles (C) can be controlled by changing the surface coverage obtained by the following formula (4).
  • S1 shows the area of the core particle (B) covered with the shell particle (A)
  • S2 is the area of the core particle (B) not attached or coated with the shell particle (A). Is shown.
  • the surface coverage is an average value of the results of measurement for 50 particles.
  • the surface average center line roughness (Ra) of the toner particles (C) is preferably 0.01 ⁇ m or more and 0.8 ⁇ m or less from the viewpoint of the fluidity of the liquid developer (X).
  • the surface average centerline roughness (Ra) is a value obtained by arithmetically averaging the absolute value of the deviation between the roughness curve and the centerline of the roughness curve, and is a scanning probe microscope system (for example, Toyo Technica). Etc.).
  • the core-shell structure of the toner particles (C) is 1% by mass or more with respect to the mass of the toner particles (C). 70% by mass or less (more preferably 5% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 35% by mass or less) of film-like shell particles (A), and 30% by mass or more and 99% by mass or less (more It is preferably composed of 50% by mass or more and 95% by mass or less, more preferably 65% by mass or more and 90% by mass or less) core particles (B).
  • the content of the toner particles (C) in the liquid developer (X) is preferably 10% by mass or more and 50% by mass. Or less, more preferably 15% by mass or more and 45% by mass or less, and further preferably 20% by mass or more and 40% by mass or less.
  • the toner particles (C) in the present embodiment preferably contain a colorant in at least one of the shell particles (A) and the core particles (B), and more preferably the core particles (B) are the core resin. (B) and a colorant.
  • the toner particles (C) may contain additives other than the colorant (for example, wax, filler, antistatic agent, release agent, charge control agent) on at least one of the shell particles (A) and the core particles (B). , UV absorbers, antioxidants, antiblocking agents, heat stabilizers, flame retardants, etc.).
  • colorant known pigments can be used without any particular limitation, but the following colorants are preferably used from the viewpoints of cost, light resistance and colorability.
  • the colorants shown below are usually classified into black pigments, yellow pigments, magenta pigments, and cyan pigments. Colors other than black (color images) are basically yellow pigments, magenta pigments, and cyan pigments. It is toned by subtractive color mixing.
  • the colorant those obtained by subjecting the following pigments to surface treatment using an acidic or basic solvent may be used. For example, an acidic or basic synergist is added to the following pigments: You may use together.
  • black pigment examples include carbon black.
  • yellow pigments examples include disazo yellow pigments such as CI (Color Index) Pigment Yellow 12, 13, 14, 17, 55, 81, 83, 180, and 185.
  • magenta pigment examples include azo lake magenta pigments such as CIPigment Red 48, 57 (Kermin 6B), 5, 23, 60, 114, 146 and 186; insoluble azo magenta pigments; CIPigment Examples include thioindigo magenta pigments such as Red 88 and CIPigment Violet 36 and 38; quinacridone magenta pigments such as CIPigment Red 122 and 209; naphthol magenta pigments such as CIPigment Red 269 and the like.
  • the magenta pigment preferably contains at least one of quinacridone pigments, carmine pigments and naphthol pigments, more preferably two or three of these three pigments. It is preferred that it is included.
  • cyan pigments examples include copper phthalocyanine blue cyan pigments such as C.I. Pigment Blue 15: 1 and 15: 3; and phthalocyanine green pigments.
  • the core particle (B) preferably contains at least one of a wax (c) and a modified wax (d) in which a vinyl polymer chain is graft-polymerized to the wax.
  • the shell particles (A) may contain at least one of wax (c) and modified wax (d).
  • At least one of the wax (c) and the modified wax (d) in which a vinyl polymer chain is graft-polymerized to the wax is used as an additive. It is preferably contained in (core layer).
  • the content of the wax (c) is preferably 20% by mass or less, more preferably 1% by mass or more and 15% by mass or less with respect to the mass of the core particle (B).
  • the content of the modified wax (d) is preferably 10% by mass or less, more preferably 0.5% by mass or more and 8% by mass or less with respect to the mass of the core particle (B).
  • the total content of the wax (c) and the modified wax (d) is preferably 25% by mass or less with respect to the mass of the core particles (B). More preferably, it is 1 mass% or more and 20 mass% or less.
  • wax (c) examples include synthetic wax (eg, polyolefin wax); natural wax (eg, paraffin wax, microcrystalline wax, carnauba wax, carbonyl group-containing wax, or a combination thereof). Of these, paraffin wax and carnauba wax are preferred as the wax (c).
  • the paraffin wax examples include petroleum-based wax mainly composed of linear saturated hydrocarbon having a melting point of 50 ° C. or more and 90 ° C. or less and having 20 to 36 carbon atoms.
  • carnauba wax include animal and plant waxes having a melting point of 50 to 90 ° C. and a carbon number of 16 to 36.
  • Mn of the wax (c) is preferably 400 or more and 5000 or less, more preferably 1000 or more and 3000 or less, and further preferably 1500 or more and 2000 or less from the viewpoint of releasability.
  • Mn of wax (c) is measured using GPC.
  • Mn of the wax (c) for example, o-dichlorobenzene can be used as the solvent, and polystyrene can be used as the reference substance.
  • the wax (c) and the modified wax (d) are used in combination, the wax (c), together with the modified wax (d), is a melt-kneading process in the absence of a solvent and a heat-dissolving mixing process in the presence of an organic solvent. It is preferable to disperse in the core resin (b) after at least one of the treatments. In this way, by allowing the modified wax (d) to coexist during the wax dispersion treatment, the wax base portion of the modified wax (d) is efficiently adsorbed on the surface of the wax (c), or the wax of the modified wax (d). Part of the base portion is efficiently entangled with the matrix structure of the wax (c).
  • Examples of the wax used in the modified wax (d) include the same as those listed as specific examples of the wax (c). Preferred wax materials used in the modified wax (d) are also the above waxes. The thing similar to what was enumerated as a preferable material of (c) is mentioned.
  • Examples of the monomer having a polymerizable double bond include those similar to the monomers (1) to (9) having a polymerizable double bond constituting the vinyl resin, and among these, preferred are The monomer (1), the monomer (2) and the monomer (6).
  • As the monomer having a polymerizable double bond any one of the monomers (1) to (9) may be used alone, or two or more kinds may be used in combination.
  • the amount of the wax component in the modified wax (d) (including the unreacted wax) is preferably 0.5% by mass or more and 99.5% by mass or less, more preferably 1% by mass or more and 80% by mass or less. More preferably, it is 5 mass% or more and 50 mass% or less, Most preferably, it is 10 mass% or more and 30 mass% or less.
  • the Tg of the modified wax (d) is preferably 40 ° C. or higher and 90 ° C. or lower, more preferably 50 ° C. or higher and 80 ° C. or lower.
  • the Mn of the modified wax (d) is preferably 1500 or more and 10,000 or less, more preferably 1800 or more and 9000 or less.
  • the mechanical strength of the toner particles (C) becomes good.
  • the method for producing such a modified wax (d) is not particularly limited.
  • the wax (c) is dissolved or dispersed in a solvent (for example, toluene or xylene) and heated to 100 ° C. or more and 200 ° C. or less, and then the monomer having a polymerizable double bond is polymerized, and then the solvent is distilled off.
  • a solvent for example, toluene or xylene
  • Examples of the method of mixing the wax (c) and the modified wax (d) include the methods described in the following [i] to [iii]. Of the following [i] to [iii], the following [ii] is preferably used.
  • [Iii] The wax (c) and the modified wax (d) are dissolved or suspended in an organic solvent (u) described later, and then mechanically wet pulverized using a disperser or the like.
  • Examples of the method for dispersing the wax (c) and / or the modified wax (d) in the core resin (b) include, for example, the wax (c) and / or the modified wax (d) and the core resin (b), respectively.
  • distributing to a solvent is mentioned.
  • insulating liquid (L) examples include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, polysiloxanes, and the like. Specific examples include hexane, octane, isooctane, decane, isodecane, decalin, nonane, dodecane, isododecane, cyclohexane, cyclooctane, cyclodecane, benzene, toluene, xylene, mesitylene, and the like.
  • Isopar E Isopar G
  • Isopar H Isopar L
  • Shellsol 70 Shellsol 71
  • Shellsol 71 Shellsol: trade name of Shell Oil
  • Amsco OMS Amsco 460
  • IP solvent 2028 trade name of Idemitsu Kosan
  • silicone oil liquid paraffin and the like.
  • the insulating liquid (L) is preferably a solvent having a boiling point of 100 ° C. or higher, and more preferably a hydrocarbon solvent having 10 or more carbon atoms (for example, dodecane, isododecane). And liquid oil paraffin) and silicone oil, and liquid paraffin is more preferable.
  • the dielectric constant of the insulating liquid (L) is preferably 1 or more and 4 or less at 20 ° C. Thereby, the charge maintenance property of the liquid developer can be improved.
  • the relative dielectric constant of the insulating liquid (L) is calculated using the dielectric constant of the insulating liquid (L) obtained by the bridge method (JIS C2101-1999). Specifically, the empty capacitance C 0 (pF) before filling with the insulating liquid (L) and the equivalent parallel capacitance C x (pF) filled with the insulating liquid (L). ) And is substituted into the following equation (5) to calculate the dielectric constant ⁇ of the insulating liquid (L).
  • the relative dielectric constant of the insulating liquid (L) is obtained by the ratio between the calculated ⁇ and the relative dielectric constant of the air 1.000585.
  • C x / C 0 (5)
  • the solvent contained in the liquid developer (X) according to the present embodiment is preferably substantially only the insulating liquid (L), but the liquid developer is preferably 1% by mass or less, more preferably. May contain other organic solvents in the range of 0.5 mass% or less.
  • the manufacturing method of the liquid developer (X) according to the present embodiment is not particularly limited, but when manufactured by the manufacturing method of the present embodiment, the toner particles (C) in the liquid developer (X) This is particularly preferable because the particle size distribution can be narrowed.
  • the manufacturing method of the present embodiment includes the following steps [I] to [IV].
  • Step [I] A dispersion liquid (W) of shell particles (A) in which the shell particles (A) containing the shell resin (a) are dispersed in the insulating liquid (L) is prepared.
  • Step [II] A solution for forming core particles (B) in which the core resin (b) or the precursor (b0) of the core resin (b) is dissolved in the organic solvent (M) is prepared.
  • Step [III] A core containing the core resin (b) in the dispersion (W) by dispersing the solution for forming the core particles (B) in the dispersion (W) of the shell particles (A).
  • the core resin (b) has an acidic group and has an acid dissociation constant of 2.90 or more and 8.00 or less.
  • the method for producing a liquid developer according to the present embodiment preferably includes the following step [V].
  • Step [V] A dispersion in which a colorant is dispersed (colorant dispersion) is prepared.
  • the core particle (B) prepared in the step [II] in advance is used instead of the step [I] and instead of dispersing the core particle (B) forming solution in the dispersion (W) in the step [III].
  • the mixed liquid obtained by adding the shell resin (a) to the forming solution is dispersed in the insulating liquid (L) to form the core particles (B) containing the core resin (b), and the shell particles Toner particles (C) having a core / shell structure in which (A) is attached to or coated on the surface of the core particles (B) can be obtained.
  • step [I] the dispersion (W) can be produced by producing the shell particles (A) and then dispersing the shell particles (A) in the insulating liquid (L).
  • the dispersion (W) can be produced by producing the shell particles (A) and then dispersing the shell particles (A) in the insulating liquid (L).
  • the shell particles (A) are dispersed in the insulating liquid (L) after the shell particles (A) are produced, it is preferable to use any one of the following methods [4] to [6]. It is more preferable to use [6]. Further, when the shell particles (A) are produced by polymerization reaction or the like in the insulating liquid (L), it is preferable to use any one of the following [1] to [3], and the following [1] More preferably, it is used. [1]: When the shell resin (a) is a vinyl resin, the monomer is polymerized by a dispersion polymerization method or the like in a solvent containing the insulating liquid (L).
  • the dispersion liquid (W1) of the shell particles (A) is directly produced.
  • a solvent other than the insulating liquid (L) is distilled off from the dispersion liquid (W) of the shell particles (A).
  • the low boiling point component of the insulating liquid (L) may be distilled off. This is the same in the process of distilling off solvents other than the insulating liquid (L) shown below.
  • the shell resin (a) is a polyaddition resin such as polyester resin or polyurethane resin or a condensation resin, a precursor (monomer or oligomer, etc.) or a solution of the precursor is appropriately dispersed if necessary.
  • the precursor is dispersed in the insulating liquid (L) in the presence of the agent, and then the precursor is cured by heating or addition of a curing agent. If necessary, a solvent other than the insulating liquid (L) is distilled off.
  • the shell resin (a) is a polyaddition resin such as a polyester resin or a polyurethane resin or a condensation resin, a precursor (monomer or oligomer, etc.) or a solution of the precursor (starting material is liquid) It is preferable, but it may be liquefied by heating), and after dissolving an appropriate emulsifier, an insulating liquid (L) serving as a poor solvent is added to reprecipitate the precursor.
  • the precursor is cured by adding a curing agent or the like, and a solvent other than the insulating liquid (L) is distilled off as necessary.
  • a polymerization reaction any polymerization reaction such as addition polymerization, ring-opening polymerization, polyaddition, addition condensation, condensation polymerization, etc. The same applies to [5] and [6] below).
  • the obtained shell resin (a) is pulverized using a mechanical pulverizer such as a mechanical rotary type or a jet type, and then classified. Thereby, shell particle
  • the obtained shell particles (A) are dispersed in the insulating liquid (L) in the presence of a suitable dispersant.
  • a poor solvent preferably an insulating liquid (L)
  • the resin solution obtained by preliminarily dissolving the shell resin (a) by heating is cooled, and further appropriate.
  • Shell particles (A) are precipitated by the presence of a dispersant. If necessary, a solvent other than the insulating liquid (L) is distilled off.
  • the manufacturing method of the shell particles (A) is not particularly limited, and is a dry process shown in [7] below.
  • a method of producing the shell particles (A) may be used, or a method of producing the shell particles (A) by the wet method shown in the following [8] to [13] may be used.
  • the manufacturing method of the shell particles (A) is preferably wet, more preferably [10], [12] or [13] below. The following [12] or [13] is more preferable.
  • the shell resin (a) is pulverized dry using a known dry pulverizer such as a jet mill.
  • the shell resin (a) powder is dispersed in an organic solvent, and is pulverized wet using a known wet disperser such as a bead mill or a roll mill.
  • a known wet disperser such as a bead mill or a roll mill.
  • the solution of shell resin (a) is sprayed using a spray dryer or the like and dried.
  • a poor solvent is added to the solution of the shell resin (a) or cooled to supersaturate the shell resin (a) to precipitate it.
  • the precursor of the shell resin (a) is polymerized in water by an emulsion polymerization method, a soap-free emulsion polymerization method, a seed polymerization method, a suspension polymerization method, or the like.
  • the precursor of the shell resin (a) is polymerized by dispersion polymerization or the like in an organic solvent.
  • Examples of the dispersant in the above [2] and [4] to [6] include known surfactant (s) and oil-soluble polymer (t). Further, as the dispersion aid, for example, an organic solvent (u) and a plasticizer (v) can be used in combination.
  • surfactant (s) examples include an anionic surfactant (s-1), a cationic surfactant (s-2), an amphoteric surfactant (s-3), and a nonionic surfactant ( s-4). In addition, you may use 2 or more types of surfactant together as surfactant (s).
  • anionic surfactant (s-1) examples include ether carboxylic acid (salt) having an alkyl group having 8 to 24 carbon atoms [for example, (poly) oxyethylene (having 1 to 100 repeating units) lauryl ether.
  • ether sulfate ester salt having an alkyl group having 8 to 24 carbon atoms [for example, (poly) oxyethylene (with 1 to 100 repeating units) sodium lauryl sulfate, etc.]; alkyl having 8 to 24 carbon atoms Sulfosuccinic acid ester salts having a group [for example, sodium mono or dialkyl sulfosuccinate, disodium mono or dialkyl sulfosuccinate, (poly) oxyethylene (with 1-100 repeat units) mono sodium or dialkyl sulfosuccinate, or , ( I) Oxyethylene (with 1 to 100 repeating units) mono- or dialkylsulfosuccinic acid ester disodium etc.]; (Poly) oxyethylene (with 1 to 100 repeating units) coconut oil fatty acid monoethanolamide sodium sulfate; Sulfonates having an alkyl group of 8 to 24 (for example, sodium do
  • Examples of the cationic surfactant (s-2) include quaternary ammonium salt type cationic surfactants and amine salt type cationic surfactants.
  • Examples of quaternary ammonium salt type cationic surfactants include tertiary amines and quaternizing agents (eg, alkyl halides such as methyl chloride, methyl bromide, ethyl chloride, and benzyl chloride, dimethyl sulfate, dimethyl carbonate, Or the compound etc. which are obtained by reaction with ethylene oxide etc. are mentioned.
  • quaternary ammonium salt type cationic surfactant examples include didecyldimethylammonium chloride, stearyltrimethylammonium bromide, lauryldimethylbenzylammonium chloride (benzalkonium chloride), polyoxyethylenetrimethylammonium chloride and stearamide. Examples thereof include ethyl diethylmethylammonium methosulfate.
  • amine salt type cationic surfactants include primary to tertiary amines such as inorganic acids (for example, hydrochloric acid, nitric acid, sulfuric acid or hydroiodic acid) or organic acids (for example, acetic acid, formic acid, oxalic acid, And compounds obtained by neutralization with lactic acid, gluconic acid, adipic acid or alkyl phosphoric acid).
  • inorganic acids for example, hydrochloric acid, nitric acid, sulfuric acid or hydroiodic acid
  • organic acids for example, acetic acid, formic acid, oxalic acid, And compounds obtained by neutralization with lactic acid, gluconic acid, adipic acid or alkyl phosphoric acid.
  • Examples of the primary amine salt type cationic surfactant include inorganic acid salts or organic acid salts of aliphatic higher amines (for example, higher amines such as laurylamine, stearylamine, hardened tallow amine or rosinamine); lower amines Higher fatty acid (for example, stearic acid or oleic acid) salts and the like.
  • Examples of secondary amine salt type cationic surfactants include inorganic acid salts of aliphatic amines such as ethylene oxide adducts of aliphatic amines or organic acid salts thereof.
  • amphoteric surfactant (s-3) examples include carboxybetaine type amphoteric surfactants [for example, fatty acid amidopropyldimethylaminoacetic acid betaines having 10 to 18 carbon atoms (for example, coconut oil fatty acid amidopropyl betaine), alkyls, etc.
  • carboxybetaine type amphoteric surfactants for example, fatty acid amidopropyldimethylaminoacetic acid betaines having 10 to 18 carbon atoms (for example, coconut oil fatty acid amidopropyl betaine), alkyls, etc.
  • C10-C18 dimethylaminoacetic acid betaine such as lauryldimethylaminoacetic acid betaine
  • imidazolinium type carboxybetaine such as 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine
  • Etc. 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine
  • sulfobetaine-type amphoteric surfactants for example, fatty acid amidopropyl hydroxyethyl sulfobetaines having 10 to 18 carbon atoms (eg, coconut oil fatty acid amidopropyldimethylhydroxyethyl sulfobetaine), or Dimethyl alkyl (carbon number of 10 to 18) dimethyl hydroxyethyl sulfobetaine (eg lauryl hydroxy sulfobetaine), etc.
  • amino acid type amphoteric surfactants e.g. ⁇ - lauryla
  • nonionic surfactant (s-4) examples include AO addition type nonionic surfactants and polyhydric alcohol type nonionic surfactants.
  • polyhydric alcohol type nonionic surfactant examples include polyhydric (2 to 8 or more valent) alcohols (having 2 to 8 carbon atoms) such as glycerin monooleate, sorbitan monolaurate and sorbitan monooleate. 30) fatty acid (carbon number: 8-24) ester; fatty acid (carbon number: 10-18) alkanolamide such as lauric acid monoethanolamide and lauric acid diethanolamide.
  • oil-soluble polymer (t) examples include a polymer having at least one of an alkyl group having 4 or more carbon atoms, a dimethylsiloxane group, and a functional group having a fluorine atom. More preferably, the oil-soluble polymer (t) has at least one group of an alkyl group having affinity for the insulating liquid (L), a dimethylsiloxane group, and a functional group having a fluorine atom, and the core resin (b). It has a chemical structure that has an affinity for.
  • the oil-soluble polymer (t) is a monomer having an alkyl group having 4 or more carbon atoms, a monomer having a dimethylsiloxane group (or a reactive oligomer) among the monomers (1) to (9) having the polymerizable double bond. And at least one monomer having a fluorine atom is more preferably polymerized or copolymerized.
  • the organic solvent (u) may be an insulating liquid (L) or an organic solvent other than the insulating liquid (L) (for example, an organic solvent (M) described later other than the insulating liquid (L)). Or other solvents). Since the solvent other than the insulating liquid (L) is distilled off after the preparation of the dispersion liquid (W) of the shell particles (A), it is preferable that the solvent is easily distilled off, for example, the insulating liquid (L It is preferable that the boiling point is lower than.
  • the plasticizer (v) may be added to the insulating liquid (L) as necessary when dispersing the shell particles (A), or may be added to a solvent containing the core resin (b) and the like. .
  • the plasticizer (v) is not particularly limited, and examples include the following plasticizers (v1) to (v6).
  • plasticizer (v1) examples include phthalate esters (for example, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate, or diisodecyl phthalate).
  • plasticizer (v2) examples include aliphatic dibasic acid esters (for example, di-2-ethylhexyl adipate or 2-ethylhexyl sebacate).
  • plasticizer (v3) examples include trimellitic acid esters (for example, tri-2-ethylhexyl trimellitic acid or trioctyl trimellitic acid).
  • plasticizer (v4) examples include phosphate esters (for example, triethyl phosphate, tri-2-ethylhexyl phosphate or tricresyl phosphate).
  • plasticizer (v5) examples include fatty acid esters (such as butyl oleate).
  • plasticizer (v6) examples include combinations of the materials listed in the plasticizers (v1) to (v5).
  • step [II] the core particle (B) forming solution is prepared by dissolving the core resin (b) or the precursor (b0) of the core resin (b) in the organic solvent (M).
  • any method may be used as a method for dissolving the core resin (b) or the precursor (b0) of the core resin (b) in the organic solvent (M), and a known method can be used.
  • the core resin (b) or the precursor (b0) of the core resin (b) is added to the organic solvent (M) and then stirred, and the core resin (b) or the core resin ( The method of heating after putting the precursor (b0) of b) is mentioned.
  • the organic solvent (M) is not particularly limited as long as it can dissolve the core resin (b) at room temperature or under heating, but the SP value of the organic solvent (M) is preferably 8.5 (cal / cm 3). ) 1/2 or more and 20 (cal / cm 3 ) 1/2 or less, more preferably 10 (cal / cm 3 ) 1/2 or more and 19 (cal / cm 3 ) 1/2 or less.
  • the weighted average value of the SP values calculated from the SP values of the respective solvents on the assumption that additivity is established may be within the above range. If the SP value of the organic solvent (M) is outside the above range, the solubility of the core resin (b) or the precursor (b0) of the core resin (b) may be insufficient.
  • the organic solvent (M) preferably has an SP value within the above range, and is preferably selected as appropriate depending on the material of the core resin (b) or the precursor of the core resin (b) (b0).
  • the organic solvent (M) include aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and tetralin; aliphatic or alicyclic hydrocarbon solvents such as n-hexane, n-heptane, mineral spirit and cyclohexane Halogenated solvents such as methyl chloride, methyl bromide, methyl iodide, methylene dichloride, carbon tetrachloride, trichloroethylene and perchloroethylene; esters such as ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate and ethyl cellosolve acetate Or ether ether solvents; ether solvents such as
  • the boiling point of the organic solvent (M) is preferably 100 ° C. or lower, more preferably 90 ° C. or lower.
  • preferable organic solvents include, for example, acetone, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and a mixed solvent of two or more thereof. It is done.
  • the viscosity of the core particle (B) forming solution (Y) is preferably 10 mPa ⁇ s to 50000 mPa ⁇ s, more preferably 100 mPa ⁇ s to 10000 mPa ⁇ s. It is as follows.
  • the viscosity of the core particle (B) forming solution (Y) is preferably measured using, for example, a B-type viscometer.
  • the organic solvent (M) is preferably selected so that the viscosity of the core particle (B) forming solution (Y) is within the above range.
  • the precursor (b0) of the core resin (b) is not particularly limited as long as it can become the core resin (b) by a chemical reaction.
  • the precursor (b0) of the core resin (b) is the monomer (1) to (9) having the polymerizable double bond (used alone). Or a mixture of two or more of them may be used.
  • the core resin (b) precursor (b0) is reacted to react with the core resin (b0).
  • a method of (b) for example, an oil phase containing an oil-soluble initiator and a monomer is dispersed and suspended in an organic solvent (M), and the resulting suspension is subjected to a radical polymerization reaction by heating. The method etc. are mentioned.
  • oil-soluble initiator examples include an oil-soluble peroxide-based polymerization initiator (I) and an oil-soluble azo-based polymerization initiator (II).
  • oil-soluble peroxide-based polymerization initiator (I) examples include an oil-soluble peroxide-based polymerization initiator (I) and an oil-soluble azo-based polymerization initiator (II).
  • two or more of the oil-soluble peroxide polymerization initiator (I), the oil-soluble azo polymerization initiator (II) and the redox polymerization initiator (III) may be used in combination.
  • oil-soluble peroxide-based polymerization initiator (I) examples include acetyl peroxide, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, parachlorobenzoyl peroxide, and cumene peroxide. .
  • oil-soluble azo polymerization initiator (II) examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis-2,4-dimethylvaleronitrile, dimethyl-2,2′-azobis. (2-methylpropionate) and 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile).
  • non-aqueous redox polymerization initiator (III) examples include oil-soluble peroxides such as hydroperoxides, dialkyl peroxides or diacyl peroxides, tertiary amines, naphthenates, mercaptans or organometallic compounds (for example, And those obtained by using an oil-soluble reducing agent such as triethylaluminum, triethylboron or diethylzinc).
  • oil-soluble peroxides such as hydroperoxides, dialkyl peroxides or diacyl peroxides, tertiary amines, naphthenates, mercaptans or organometallic compounds (for example, And those obtained by using an oil-soluble reducing agent such as triethylaluminum, triethylboron or diethylzinc).
  • the precursor (b0) of the core resin (b) is a prepolymer having a reactive group ( ⁇ ) (Hereinafter abbreviated as “prepolymer ( ⁇ )”) and a curing agent ( ⁇ ).
  • the “reactive group” possessed by the prepolymer ( ⁇ ) refers to a group capable of reacting with the curing agent ( ⁇ ).
  • the prepolymer ( ⁇ ) and the curing agent ( ⁇ ) are dispersed in the insulating liquid (L).
  • a method of reacting the prepolymer ( ⁇ ) and the curing agent ( ⁇ ) by heating For example, a method of reacting the prepolymer ( ⁇ ) and the curing agent ( ⁇ ) by heating.
  • Examples of the combination of the reactive group of the prepolymer ( ⁇ ) and the curing agent ( ⁇ ) include the following [14] to [15].
  • the reactive group of the prepolymer ( ⁇ ) is a functional group ( ⁇ 1) capable of reacting with an active hydrogen compound, and the curing agent ( ⁇ ) is an active hydrogen group-containing compound ( ⁇ 1).
  • the reactive group of the prepolymer ( ⁇ ) is an active hydrogen-containing group ( ⁇ 2), and the curing agent ( ⁇ ) is a compound ( ⁇ 2) that can react with the active hydrogen-containing group.
  • examples of the functional group ( ⁇ 1) capable of reacting with the active hydrogen compound include an isocyanate group ( ⁇ 1a), a blocked isocyanate group ( ⁇ 1b), an epoxy group ( ⁇ 1c), and an acid anhydride group ( and ⁇ 1d) and acid halide groups ( ⁇ 1e).
  • the isocyanate group ( ⁇ 1a), the blocked isocyanate group ( ⁇ 1b) and the epoxy group ( ⁇ 1c) are preferable as the functional group ( ⁇ 1), and among these, the isocyanate group ( ⁇ 1c) is more preferable as the functional group ( ⁇ 1).
  • Blocked isocyanate group refers to an isocyanate group blocked with a blocking agent.
  • the blocking agent include oximes (for example, acetooxime, methyl isobutyl ketoxime, diethyl ketoxime, cyclopentanone oxime, cyclohexanone oxime, methyl ethyl ketoxime, etc.); lactams (for example, ⁇ -butyrolactam, ⁇ -caprolactam, etc.) Or aliphatic alcohols having 1 to 20 carbon atoms (eg, ethanol, methanol or octanol); phenols (eg, phenol, m-cresol, xylenol or nonylphenol); active methylene compounds (Eg acetylacetone, ethyl malonate or ethyl acetoacetate); basic nitrogen-containing compounds (eg N, N-diethylhydroxylamine, 2-hydroxypi Jin, pyr
  • Examples of the structural unit of the prepolymer ( ⁇ ) having a reactive group include polyether ( ⁇ w), polyester ( ⁇ x), epoxy resin ( ⁇ y), and polyurethane ( ⁇ z). Of these, polyester ( ⁇ x), epoxy resin ( ⁇ y) and polyurethane ( ⁇ z) are preferable as the constituent unit of prepolymer ( ⁇ ), and polyester ( ⁇ x) and polyurethane ( ⁇ z) are more preferable. .
  • polyether ( ⁇ w) examples include polyethylene oxide, polypropylene oxide, polybutylene oxide, and polytetramethylene oxide.
  • polyester ( ⁇ x) examples include a polycondensate of the diol (11) and the dicarboxylic acid (13), and a polylactone (for example, a ring-opening polymer of ⁇ -caprolactone).
  • epoxy resin ( ⁇ y) examples include addition condensates of bisphenols (for example, bisphenol A, bisphenol F or bisphenol S) and epichlorohydrin.
  • Examples of the polyurethane ( ⁇ z) include a polyaddition product of the diol (11) and the polyisocyanate (15) and a polyaddition product of the polyester ( ⁇ x) and the polyisocyanate (15). .
  • Examples of the method for incorporating a reactive group into polyester ( ⁇ x), epoxy resin ( ⁇ y), polyurethane ( ⁇ z) and the like include the methods shown in the following [16] to [17].
  • a hydroxyl group-containing polyester prepolymer, a carboxyl group-containing polyester prepolymer, an acid halide group-containing polyester prepolymer, a hydroxyl group-containing epoxy resin prepolymer, an epoxy group-containing epoxy resin prepolymer, a hydroxyl group-containing polyurethane prepolymer, and An isocyanate group-containing polyurethane prepolymer or the like is obtained.
  • the equivalent ratio of hydroxyl group [OH] to carboxyl group [COOH] is preferably 2/1 to 1/1.
  • the ratio of the polyol component to the polycarboxylic acid component may be set so that it is preferably 1.5 / 1 to 1/1, and more preferably 1.3 / 1 to 1.02 / 1. . Even when the skeleton is changed or when a prepolymer having a terminal group is obtained, it is preferable that the ratio of the constituent components is the same as that described above only by changing the constituent components.
  • an isocyanate group-containing prepolymer is obtained by reacting the preprimer obtained in the method [16] with a polyisocyanate, and a blocked polyisocyanate is reacted to thereby contain a blocked isocyanate group.
  • a prepolymer is obtained, an epoxy group-containing prepolymer is obtained by reacting a polyepoxide, and an acid anhydride group-containing prepolymer is obtained by reacting a polyacid anhydride.
  • the equivalent ratio of the isocyanate group [NCO] and the hydroxyl group [OH] of the hydroxyl group-containing polyester ([NCO] / [OH])
  • it is preferably 5/1 to 1/1, more preferably 4/1 to 1.2 / 1, and even more preferably 2.5 / 1 to 1.5 / 1.
  • the ratio of the polyisocyanate to the hydroxyl group-containing polyester prepolymer may be set. Even when the skeleton is changed or when a prepolymer having a terminal group is obtained, it is preferable that the ratio of the constituent components is the same as that described above only by changing the constituent components.
  • the number of reactive groups contained in one molecule of the prepolymer ( ⁇ ) is preferably 1 or more, more preferably 1.5 to 3 on average, and still more preferably 1.8 on average. There are 2.5 or less. When the number of reactive groups contained in one molecule of the prepolymer ( ⁇ ) is within the above range, the molecular weight of the cured product obtained by reacting with the curing agent ( ⁇ ) increases.
  • Mn of the prepolymer ( ⁇ ) is preferably 500 or more and 30000 or less, more preferably 1000 or more and 20000 or less, and further preferably 2000 or more and 10,000 or less.
  • the Mw of the prepolymer ( ⁇ ) is preferably 1000 or more and 50000 or less, more preferably 2000 or more and 40000 or less, and further preferably 4000 or more and 20000 or less.
  • the viscosity of the prepolymer ( ⁇ ) is preferably 200 Pa ⁇ s or less, more preferably 100 Pa ⁇ s or less, at 100 ° C.
  • core particles (B) having a narrow distribution width in the particle size distribution can be obtained.
  • polyamine ( ⁇ 1a) which may be blocked with a detachable compound (hereinafter abbreviated as “polyamine ( ⁇ 1a)”);
  • examples include polyol ( ⁇ 1b); polymercaptan ( ⁇ 1c); water and the like.
  • the polyamine ( ⁇ 1a) and water are preferred as the active hydrogen group-containing compound ( ⁇ 1), and more preferred are blocked polyamines and water.
  • polyamine ( ⁇ 1a) examples include those listed as specific examples of the polyamine (15).
  • the polyamine ( ⁇ 1a) is preferably 4,4′-diaminodiphenylmethane, xylylenediamine, isophoronediamine, ethylenediamine, diethylenetriamine, triethylenetetramine or a mixture thereof.
  • examples of the polyamine include the polyamines and ketones having 3 to 8 carbon atoms (for example, acetone, methyl ethyl ketone, or methyl).
  • polyol ( ⁇ 1b) examples include the same as those listed as specific examples of the diol (10) and the polyol (11). Of these, preferred as the polyol ( ⁇ 1b) are the diol (10) alone and a mixture of the diol (10) and a small amount of polyol (11).
  • polymercaptan ( ⁇ 1c) examples include ethylenedithiol, 1,4-butanedithiol, 1,6-hexanedithiol, and the like.
  • a reaction terminator ( ⁇ s) can be used together with the active hydrogen group-containing compound ( ⁇ 1).
  • a reaction terminator ( ⁇ s) can be used together with the active hydrogen group-containing compound ( ⁇ 1) at a constant ratio, it is possible to adjust the molecular weight of the resin (b) to a predetermined value.
  • a reaction terminator ( ⁇ s) can be used together with the compound ( ⁇ 2) capable of reacting with the active hydrogen-containing group in the combination [15].
  • reaction terminator ( ⁇ s) examples include monoamines (eg, diethylamine, dibutylamine, butylamine, laurylamine, monoethanolamine or diethanolamine); monoamines blocked (eg, ketimine compounds); monools (eg, Such as methanol, ethanol, isopropanol, butanol or phenol); monomercaptan (eg, butyl mercaptan or lauryl mercaptan); monoisocyanate (eg, lauryl isocyanate or phenyl isocyanate); monoepoxide (eg, butyl glycidyl ether), etc. It is done.
  • monoamines eg, diethylamine, dibutylamine, butylamine, laurylamine, monoethanolamine or diethanolamine
  • monoamines blocked eg, ketimine compounds
  • monools eg, Such as methanol, ethanol, isopropanol, butano
  • Examples of the active hydrogen-containing group ( ⁇ 2) of the prepolymer ( ⁇ ) in the combination [15] include an amino group ( ⁇ 2a), a hydroxyl group (for example, an alcoholic hydroxyl group or a phenolic hydroxyl group) ( ⁇ 2b), mercapto And a group ( ⁇ 2c), a carboxyl group ( ⁇ 2d), and an organic group ( ⁇ 2e) blocked with a compound from which they can be removed.
  • an amino group ( ⁇ 2a), a hydroxyl group ( ⁇ 2b) and an organic group ( ⁇ 2e) are preferable, and a hydroxyl group ( ⁇ 2b) is more preferable.
  • Examples of the organic group ( ⁇ 2e) blocked with a compound capable of removing an amino group include the same as those listed as specific examples of the polyamine ( ⁇ 1a).
  • Examples of the compound ( ⁇ 2) capable of reacting with the active hydrogen-containing group in the combination [15] include, for example, polyisocyanate ( ⁇ 2a), polyepoxide ( ⁇ 2b), polycarboxylic acid ( ⁇ 2c), polyanhydride ( ⁇ 2d) and Examples include polyacid halide ( ⁇ 2e).
  • polyisocyanate ( ⁇ 2a) and polyepoxide ( ⁇ 2b) are preferable as the compound ( ⁇ 2), and polyisocyanate ( ⁇ 2a) is more preferable.
  • Examples of the polyisocyanate ( ⁇ 2a) include those listed as specific examples of the polyisocyanate (14).
  • Preferred examples of the polyisocyanate ( ⁇ 2a) include preferable specific examples of the polyisocyanate (14). As listed above.
  • Examples of the polyepoxide ( ⁇ 2b) include those listed as specific examples of the polyepoxide (18).
  • Preferred examples of the polyepoxide ( ⁇ 2b) include those listed as preferable specific examples of the polyepoxide (18). It is the same.
  • polycarboxylic acid ( ⁇ 2c) examples include dicarboxylic acid ( ⁇ 2c-1) and trivalent or higher polycarboxylic acid ( ⁇ 2c-2).
  • the polycarboxylic acid ( ⁇ 2c) is preferably Dicarboxylic acid ( ⁇ 2c-1) alone or a mixture of dicarboxylic acid ( ⁇ 2c-1) and a small amount of polycarboxylic acid ( ⁇ 2c-2).
  • Examples of the dicarboxylic acid ( ⁇ 2c-1) include those listed as specific examples of the dicarboxylic acid (12) and the polycarboxylic acid (13), and are preferable as the dicarboxylic acid ( ⁇ 2c-1). These are the same as those listed as preferred specific examples of the dicarboxylic acid (12) and the polycarboxylic acid (13).
  • polycarboxylic acid anhydride examples include pyromellitic acid anhydride.
  • polyacid halides ( ⁇ 2e) examples include acid halides of the polycarboxylic acid ( ⁇ 2c) (for example, acid chloride, acid bromide, or acid iodide).
  • the ratio of the curing agent ( ⁇ ) in the precursor (b0) of the core resin (b) is not particularly limited.
  • the ratio ([ ⁇ ] / [ ⁇ ]) of the equivalent [ ⁇ ] of reactive groups in the prepolymer ( ⁇ ) to the equivalent [ ⁇ ] of active hydrogen-containing groups in the curing agent ( ⁇ ) is preferably 1 /
  • the core resin so as to be 2 to 2/1, more preferably 1.5 / 1 to 1 / 1.5, and still more preferably 1.2 / 1 to 1 / 1.2. What is necessary is just to set the ratio of the hardening
  • curing agent ((beta)) is water, water is handled as a bivalent active hydrogen compound.
  • step [III] the core particle (B) -containing core particle (B) is contained in the insulating liquid (L) by dispersing the core particle (B) forming solution in the dispersion liquid (W) of the shell particles (A). B) is formed, and toner particles (C) having a core-shell structure in which the shell particles (A) are attached to or coated on the surfaces of the core particles (B) are formed.
  • a method for dispersing the core particle (B) forming solution in the dispersion liquid (W) of the shell particles (A) is not particularly limited, but the core particle (B) forming solution is added to the shell particle (A) using a dispersing device. It is preferable to disperse in the dispersion liquid (W).
  • any commercially available emulsifying machine or dispersing machine can be used without particular limitation.
  • the dispersing apparatus include batch type emulsifiers such as homogenizer (manufactured by IKA), polytron (product name, manufactured by Kinematica) and TK auto homomixer (product name, manufactured by Tokushu Kika Kogyo Co., Ltd.); Dar (product name, manufactured by Ebara Manufacturing Co., Ltd.), TK Philmix, TK Pipeline Homo Mixer (all product names, manufactured by Special Machine Industries Co., Ltd.), colloid mill (manufactured by Shinko Pantech Co., Ltd.), Continuous emulsifiers such as Thrasher, Trigonal wet milling machine (Mitsui Miike Chemical Co., Ltd.), Captron (Eurotech Co., Ltd.) and Fine Flow Mill (Pacific Kiko Co., Ltd.); Microfluidizer (Product name) , Mizuho Kogyo Co., Ltd.
  • the temperature when the core particle (B) forming solution is dispersed in the dispersion (W) of the shell particles (A) is not particularly limited, but is preferably 0 ° C. or higher and 150 ° C. or lower (under pressure), more preferably. Is 5 ° C. or higher and 98 ° C. or lower.
  • the preferable range of the viscosity of the solution for forming the core particle (B) is as described in the description of the above step [II], and is 10 mPa ⁇ s or more and 50000 mPa ⁇ s or less (viscosity measured with a B-type viscometer). It is.
  • the mixing ratio of the dispersion (W) of the shell particles (A) and the solution for forming the core particles (B) is not particularly limited.
  • the dispersion (W) of the shell particles (A) is 100 masses of the core resin (b) or the core resin (b) precursor (b0) dissolved in the core particle (B) forming solution (Y). 50 parts by mass or more and 2000 parts by mass or less are preferable, and 100 parts by mass or more and 1000 parts by mass or less are more preferable.
  • the resin particle dispersion (W) of the shell particles (A) is contained in 100 parts by mass of the core resin (b) or the precursor (b0) of the core resin (b), the resin particle dispersion ( The dispersion state of the core resin (b) or the precursor (b0) of the core resin (b) in X ′) is improved. It is economical if the dispersion (W) of the shell particles (A) is contained in an amount of 2000 parts by mass or less with respect to 100 parts by mass of the core resin (b) or the precursor (b0) of the core resin (b).
  • the core-shell structure is formed by dispersing the core particle (B) forming solution in the dispersion (W) of the shell particles (A).
  • the adsorption force of the shell particles (A) to the core particles (B) is It is preferably controlled according to the methods shown in the following [18] to [20]. [18]: The shell particles (A) and the core particles (B) are charged with opposite polarities. At this time, the larger the charge of each of the shell particles (A) and the core particles (B), the stronger the adsorption force of the shell particles (A) to the core particles (B). The coverage of the shell particles (A) with respect to the surface is increased.
  • the shell structure is formed depends on the physical properties of the organic solvent (M) contained in the core particle (B) forming solution (Y), specifically, the shell particles (A) and / or the core with respect to the organic solvent (M). It depends on the solubility of the resin (b).
  • the shell particles (A) are attached to the surface of the core particles (B). .
  • THF toluene
  • acetone methyl ethyl ketone
  • ethyl acetate organic solvent (M)
  • M organic solvent
  • the content of the organic solvent (M) in the resin particle dispersion (X ′) is preferably 10% by mass to 50% by mass, and more preferably 20% by mass to 40% by mass. It is. And when distilling off the organic solvent (M) after the film-forming treatment, the content of the organic solvent (M) in the resin particle dispersion (X ′) is preferably 1% by mass or less at a temperature of 40 ° C. or less. More preferably, the organic solvent (M) may be removed until the content becomes 0.5% by mass or less. Thereby, the shell layer consisting of the shell particles (A) dissolved in the organic solvent (M) is formed on the surface of the core layer composed of the core particles (B).
  • an organic solvent used in the coating treatment can be added to the resin particle dispersion (X ′).
  • the organic solvent (M) contained in the core particle (B) forming solution (Y) is preferable to use as a film-forming organic solvent without removing it after the formation of the core particles (B). Because the organic solvent (M) is contained in the core particle (B), the shell particle (A) can be easily dissolved in the organic solvent (M). It is because it becomes difficult to occur.
  • the concentration of the organic solvent (M) in the resin particle dispersion (X ′) is preferably 3% by mass or more and 50% by mass or less, more preferably It is 10 mass% or more and 40 mass% or less, More preferably, it is 15 mass% or more and 30 mass% or less.
  • the temperature at which the shell particles (A) are dissolved in the organic solvent (M) is preferably 15 ° C. or higher and 45 ° C. or lower, and more preferably 15 ° C. or higher and 30 ° C. or lower.
  • the solid content in the resin particle dispersion (X ′) (content of components other than the solvent) Is preferably 1% by mass or more and 50% by mass or less, and more preferably 5% by mass or more and 30% by mass or less.
  • the content of the organic solvent (M) at the time of molding the toner particles (C) is preferably 2% by mass or less, more preferably 1% by mass or less, and further preferably 0.5% by mass or less. is there.
  • the resin particle dispersion (X ′) When the solid content in the resin particle dispersion (X ′) is high and when the content of the organic solvent (M) at the time of molding the toner particles (C) exceeds 2% by mass, the resin particle dispersion When the temperature of the liquid (X ′) is raised to 60 ° C. or higher, aggregates may be generated.
  • the melting method of the shell particles (A) is not particularly limited, and for example, preferably 40 ° C. or higher and 100 ° C. or lower, more preferably 60 ° C. or higher and 90 ° C. or lower, and further preferably 60 ° C. or higher and 80 ° C. In the following, a method of heating preferably 1 minute to 300 minutes is mentioned.
  • the resin particles dispersion (X ′) having an organic solvent (M) content of 2% by mass or less at the time of molding the toner particles (C) is heated to change the shell particles (A) into core particles. It is preferable to melt on the surface of (B). Thereby, toner particles (C) having a smoother surface can be obtained.
  • the heating temperature at this time is preferably equal to or higher than Tg of the shell resin (a), and more preferably equal to or lower than 80 ° C. If the heating temperature is lower than the Tg of the shell resin, the effect obtained by heating (that is, the effect of further smoothing the surface of the toner particles) may not be obtained. On the other hand, when the heating temperature exceeds 80 ° C., the shell layer may be peeled off from the core layer.
  • a preferable method for coating treatment is a method of melting the shell particles (A), and a method of dissolving the shell particles (A) and a method of melting the shell particles (A).
  • the core particle (B) forming solution is added to the dispersion (W) in the step [III].
  • a solution of the shell resin (a) is added to the solution for forming the core particles (B) previously prepared in the step [II] to prepare a mixed solution, and then dispersed in the insulating liquid (L).
  • the core particles (B) containing the core resin (b) are formed by moving the shell resin (a) onto the surface of the core particles (B), whereby the shell particles (A) Toner particles (C) having a core-shell structure adhered or coated on the surface of B) can be obtained.
  • the SP value of the shell resin (a) is made smaller than that of the core resin (b), or the shell has a skeleton whose SP value is small enough to correspond to the SP value of the insulating liquid (L).
  • the composition of the resin (a) may be designed.
  • step [IV] the organic solvent (M) contained in the core particle (B) forming solution is distilled off from the resin particle dispersion (X ′).
  • the method for distilling off the organic solvent (M) from the resin particle dispersion (X ′) is not particularly limited.
  • the temperature of the organic solvent (M) is 20 ° C. or more.
  • the method of distilling off the said organic solvent (M) at the temperature below a boiling point etc. is mentioned.
  • the content of the organic solvent (M) in the dispersion after distilling off the organic solvent (M) is preferably 1% by mass or less, and more preferably 0.5% by mass or less.
  • a part of the insulating liquid (L) (for example, a low boiling point component in the insulating liquid (L)) may be distilled off together with the organic solvent (M).
  • the shape of the toner particles (C) contained in the liquid developer (X) thus obtained and the smoothness of the surface of the toner particles (C) are determined by the SP of the shell resin (a) and the core resin (b). It is controlled by controlling at least one of the value difference and the molecular weight of the core resin (a). If the SP value difference is too small, it is easy to obtain toner particles having a distorted shape but a smooth surface. Conversely, when the SP value difference is too large, toner particles having a spherical shape but having a rough surface are likely to be obtained.
  • the SP value difference is preferably 0.01 or more and 5.0 or less, more preferably 0.1 or more and 3.0 or less, and further preferably 0.2 or more and 2.0 or less. is there.
  • Mw of shell resin (a) becomes like this. Preferably it is 100 or more and 1 million or less, More preferably, it is 1000 or more and 500000 or less, More preferably, it is 2000 or more and 200000 or less, Most preferably, it is 3000 or more and 100000 or less.
  • the core particle (B) is manufactured after the core particle (B) is manufactured according to the manufacturing method of any one of [7] to [13] above.
  • Shell particles (A) may be attached to or coated on the surface of these.
  • additives other than the colorant for example, wax, filler, antistatic agent, release agent, charge control agent, ultraviolet absorber, oxidation agent
  • the additive is added to the dispersion (W) of the shell particles (A) by adding a solution in which an additive other than the colorant is dissolved or dispersed to the dispersion (W) of the shell particles (A).
  • toner particles (C) in which additives other than the colorant are also contained in at least one of the core layer and the shell layer can be obtained.
  • the core particles (B) in the present embodiment preferably contain a core resin (b) and a colorant.
  • the colorant may be obtained by dispersing the colorant in at least one of the dispersion (W) of the shell particles (A) and the solution for forming the core particles (B), or in a predetermined organic solvent.
  • the dispersion may be mixed with at least one of the dispersion (W) of the shell particles (A) and the solution for forming the core particles (B).
  • the colorant at least one of the pigments listed in the description of the colorant can be used.
  • an organic solvent such as acetone can be used.
  • the polyester resin thus obtained had a melting point of 68 ° C., Mn of 4900, and Mw of 10,000.
  • a copolymer solution of A2 was obtained. 400 parts by mass of the copolymer solution as the shell particles (A2) was dropped into 600 parts by mass of Isopar L (manufactured by ExxonMobil) with stirring, and THF was distilled off at 40 ° C. under a reduced pressure of 0.039 MPa. Thus, a dispersion liquid (W2) of shell particles (A2) was obtained. The volume average particle diameter of the shell particles (A2) contained in the dispersion liquid (W2) measured using “LA-920” was 0.13 ⁇ m.
  • ⁇ Production Example 2> [Production of Core Particle (B) Formation Solution for Core Resin (b)]
  • the types of the core resin (b) are described as, for example, the core resin (b1) and the core resin (b2).
  • the core particle containing core resin (b1) is described as a core particle (B1) etc., for example.
  • the core particle (B) formation solution in which the core resin (b1) or its precursor is dissolved is referred to as, for example, a core particle (B1) formation solution.
  • a core resin (b1) As a polyester resin.
  • the core resin (b1) thus obtained has a carboxyl group which is an acidic group at the terminal, pKa is 2.94, Tg is 72 ° C., Mn is 2400, hydroxyl value is 40, acid value.
  • pKa is 2.94
  • Tg is 72 ° C.
  • Mn is 2400
  • hydroxyl value is 40, acid value.
  • 1000 parts by mass of the core resin (b1) and 1000 parts by mass of acetone were put into a beaker and stirred to dissolve uniformly to obtain a solution for forming core particles (B1).
  • the reaction was allowed to proceed for 4 hours while distilling off PG and water under a nitrogen stream while gradually raising the temperature to 230 ° C. Furthermore, it was made to react under the reduced pressure of 0.007 MPa or more and 0.026 MPa or less, and it took out when the softening point became 150 degreeC, and obtained core resin (b2) which is a polyester resin.
  • the recovered PG was 316 parts by mass (8.5 mol parts).
  • the core resin (b2) thus obtained had no acidic group at the end, Tg was 64 ° C., Mn was 8800, the hydroxyl value was 13, and the acid value was 0.2.
  • 1000 parts by mass of the core resin (b2) and 1000 parts by mass of acetone were charged into a beaker, and the mixture was stirred and dissolved uniformly to obtain a solution for forming core particles (B2).
  • a core resin (b3) As a polyester resin.
  • the core resin (b3) thus obtained has a carboxyl group which is an acidic group at the end, pKa is 2.52, Tg is 72 ° C., Mn is 2400, hydroxyl value is 40, acid value.
  • pKa is 2.52
  • Tg is 72 ° C.
  • Mn is 2400
  • hydroxyl value is 40, acid value.
  • 1000 parts by mass of the core resin (b3) and 1000 parts by mass of acetone were put into a beaker and stirred to dissolve uniformly to obtain a solution for forming core particles (B3).
  • a core resin (b4) which is a polyester resin.
  • the core resin (b4) thus obtained has a carboxyl group which is an acidic group at the terminal, pKa is 2.52, Tg is 72 ° C., Mn is 2400, hydroxyl value is 40, acid value is It was 15.
  • 1000 parts by mass of the core resin (b4) and 1000 parts by mass of acetone were charged into a beaker, and stirred to dissolve uniformly to obtain a solution for forming core particles (B4).
  • a core resin (b5) As a polyester resin.
  • the core resin (b5) thus obtained has a carboxyl group which is an acidic group at the end, pKa is 5.61, Tg is 72 ° C., Mn is 2400, hydroxyl value is 51, acid value is 31.
  • 1000 parts by mass of the core resin (b5) and 1000 parts by mass of acetone were charged into a beaker, and stirred to dissolve uniformly to obtain a solution for forming core particles (B5).
  • a core resin (b6) As a polyester resin.
  • the core resin (b6) thus obtained has a carboxyl group which is an acidic group at the end, pKa is 9.50, Tg is 72 ° C., Mn is 2,400, hydroxyl value is 40, acid The value was 8.
  • 1000 parts by mass of the core resin (b6) and 1000 parts by mass of acetone were put into a beaker, and stirred to dissolve uniformly to obtain a solution for forming core particles (B6).
  • a core resin (b7) which is a urethane resin.
  • the core resin (b7) had an Mn of 25000 and a urethane group concentration of 2.00.
  • the core resin (b7) thus obtained had a carboxyl group which is an acidic group at the terminal, and the pKa was 6.20.
  • 1300 parts by mass of the core resin (b7) and 700 parts by mass of acetone were put into a beaker and stirred to dissolve uniformly to obtain a solution for forming core particles (B7).
  • the “urethane group concentration (% by mass)” means a value obtained by multiplying the value obtained by dividing the mass of the urethane group contained in the resin by the mass of the resin by 100.
  • the liquid developer of Example 1 is referred to as a liquid developer (X-1), and the liquid developer of Example 2 is referred to as a liquid developer (X-2).
  • the liquid developer of Comparative Example 1 is referred to as a liquid developer (Z-1).
  • Example 1 In a beaker, 45 parts by mass of the solution for forming the core particles (B1) obtained in Production Example 2-1 and 15 parts by mass of the colorant dispersion obtained in Production Example 4 were added, and the TK auto homomixer at 25 ° C. (Product name, manufactured by Tokushu Kika Kogyo Co., Ltd.) was stirred at 8000 rpm and dispersed uniformly to obtain a mixed solution of the core particle (B1) forming solution and the colorant dispersion.
  • the TK auto homomixer 25 ° C.
  • acetone was distilled off until the acetone concentration became 0.5% by mass or less to obtain a liquid developer (X-1).
  • the concentration of acetone in the liquid developer (X-1) is determined by gas chromatography using a flame ion detection method (hereinafter also referred to as “FID method”) (product name: “GC2010”, manufactured by Shimadzu Corporation). Quantified with.
  • the solubility of the shell resin (a) obtained in the above manner in the insulating liquid (L) at 25 ° C. in the liquid developer (X-1) was measured as follows.
  • Example 2 to 5 In the same manner as in Example 1, except that the core particle (B) forming solution, urethane prepolymer, curing agent, colorant dispersion, liquid paraffin, and dispersion shown in Table 1 are used. Liquid developers (X-2) to (X-5) were obtained.
  • the column for the dispersion (W) of the shell particles (A) indicates the type of the dispersion used.
  • W1 indicates that the dispersion liquid (W1) of the shell particles (A1) described in Production Example 1 is used.
  • the column of the type of core particle (B) forming solution indicates the type of core particle forming solution used.
  • “B1” indicates that the core particle (B1) forming solution described in Production Example 2 is used.
  • Example 6> In a beaker, 8 parts by mass of a copolymer solution as shell particles (A1) obtained in the process of producing a dispersion (W1) of shell particles (A1) in Production Example 1-1, and core particles (B1) 45 parts by mass of the forming solution and 15 parts by mass of the colorant dispersion obtained in Production Example 4 were added, and 8000 rpm using a TK auto homomixer (product name, manufactured by Tokushu Kika Kogyo Co., Ltd.) at 25 ° C. The mixture was uniformly dispersed to obtain a mixed solution of the copolymer solution, which is the shell particles (A1), the core particle (B1) forming solution, and the colorant dispersion.
  • TK auto homomixer product name, manufactured by Tokushu Kika Kogyo Co., Ltd.
  • Liquid developers (X-1) to (X-6) and (Z-1) to (Z-4) obtained in Examples 1 to 6 and Comparative Examples 1 to 4 were each converted into liquid paraffin. After dilution, the volume average particle size and the coefficient of variation of volume distribution of the toner particles (C) were measured using “LA-920”. Further, the state of the shell particles (A) in the toner particles (C) was observed by the following method. Then, the surface coverage of the core particles (B) with the shell particles (A) in the toner particles (C) was measured by the above method. Further, the fixability and heat resistance stability of the liquid developer were evaluated by the following methods. The results are shown in Table 1.
  • FIG. 1 is a schematic conceptual diagram of an electrophotographic image forming apparatus used for evaluating the fixability of a liquid developer according to this embodiment.
  • the liquid developer 2 is pumped up by the supply roller 3 and rubbed off by the regulating blade 4, so that a thin layer of the liquid developer 2 having a predetermined thickness is formed on the supply roller 3. .
  • the engraving of the roller is filled with a liquid developer, and the prescribed amount is measured by the regulating roller.
  • a thin layer of the liquid developer 2 moves from the supply roller 3 onto the developing roller 5, and a toner image is formed on the photosensitive member 6 with toner particles by the nip between the developing roller 5 and the photosensitive member 6.
  • the image forming apparatus 1 includes a developing roller cleaning blade 8 and a charging device 9.
  • Fixing strength A Image density remaining rate is 90% or more
  • Fixing strength B Image density remaining rate is 80% or more and less than 90%
  • Fixing strength C Image density remaining rate is less than 80%
  • fixing strength A is the most fixable.
  • the fixing strength B is excellent, and the fixing strength C indicates that the fixing property is inferior.
  • the liquid developer of the present embodiment is a liquid developer (X) in which toner particles (C) are dispersed in an insulating liquid (L), and the toner particles (C ) Has a core-shell structure in which the shell particles (A) containing the shell resin (a) are attached to or coated on the surfaces of the core particles (B) containing the core resin (b). ) Has an acidic group and has an acid dissociation constant of 2.90 or more and 8.00 or less, thereby exhibiting excellent fixability, capable of fixing in a wide temperature range, and after fixing It has been confirmed that it has an excellent effect that the storage deterioration of is extremely small.
  • the liquid developer (X) of the present invention is extremely useful in applications such as paints, electrophotographic liquid developers, electrostatic recording liquid developers, oil-based inks for ink jet printers, and inks for electronic paper. Further, as other applications, it has high utility value in applications such as cosmetics, spacers for manufacturing electronic components, and electrorheological fluids.
  • 1 image forming device 2 liquid developer, 3 supply roller, 4 regulating blade, 5 developing roller, 6 photoreceptor, 7, 8 cleaning blade, 9 charging device, 10 backup roller, 11 recording material, 12 heat roller.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Developers In Electrophotography (AREA)

Abstract

 トナー粒子が絶縁性液体に分散されてなる液体現像剤であって、トナー粒子は、シェル樹脂を含むシェル粒子がコア樹脂を含むコア粒子の表面に付着または被覆されてなるコア・シェル構造を有し、コア樹脂は、酸性基を有し、かつ酸解離定数が2.90以上8.00以下である液体現像剤およびその製造方法が提供される。このトナー粒子の体積平均粒径は0.01μm以上100μm以下とすることができ、体積分布の変動係数は、1%以上100%以下とすることができる。この液体現像剤は、各種記録材に適応し得る優れた定着性を有し、幅広い温度範囲において定着可能であり、かつ定着性の保存劣化が極めて少ない。

Description

液体現像剤およびその製造方法
 本発明は、液体現像剤およびその製造方法に関する。より詳細には、電子写真用液体現像剤、静電記録用液体現像剤、インクジェットプリンタ用油性インク、または電子ペーパー用インクなどの広範な用途に有用な液体現像剤およびその製造方法に関する。
 液体現像剤を、電子写真用液体現像剤、静電記録用液体現像剤、インクジェットプリンタ用油性インク、または電子ペーパー用インクなどに使用する場合、液体現像剤中に分散されているトナー粒子は、紙に定着させた後は、強固に紙と密着し、容易に剥離しないことが要求される。
 定着後の紙への密着性(以下、定着性とも記す)を向上させるため、従来からさまざまな試みがなされている。たとえば、特開2008-225442号公報(特許文献1)には、非水分散媒体中に脂肪酸モノエステルを添加させると共に樹脂粒子の構成主成分をポリエステル樹脂とする方法が提案されている。
特開2008-225442号公報
 トナー粒子を記録材に定着する方法としては、高速化、安全性の観点からヒートローラによって定着する方法が主流である。昨今、省エネルギー化の観点から、ヒートローラの温度制御機構を簡略化したり、温度制御する頻度を少なくしたりするなどの取り組みも行なわれている。そのため、従来に比べて、ヒートローラの温度変動は大きくなる傾向があり、それに伴い液体現像剤には、低温域から高温域まで幅広い温度範囲において定着可能であることが望まれるようになっている。そして、特に、高温オフセット(高温域で定着品質が低下する現象)の発生を防止することが課題となってきている。
 特許文献1の技術によって、定着性はある程度改善する。しかしながら、特に高い定着性が要求される上質紙などの各種記録材への適応を考慮すると、未だ定着性は十分ではない。また、高温オフセットの防止という観点からも、十分な解決手段を提供するものではなかった。
 さらに、特許文献1の技術は、脂肪酸モノエステルがポリエステル樹脂を可塑化することにより樹脂粒子の紙への定着性を向上させようとしたものであるが、トナー粒子が定着された後、記録材が高温多湿環境で保存されると、トナー粒子が脱落するなど、定着性が劣化することが判明した。
 本発明は、上記のような事情に鑑みなされたものであって、その目的とするところは、各種記録材に適応し得る優れた定着性を有し、幅広い温度範囲において定着可能であり、かつ定着性の保存劣化が極めて少ない液体現像剤およびその製造方法を提供することにある。
 本発明者らは、上記課題を解決すべく、液体現像剤に含まれるトナー粒子の構造および物性について鋭意研究を重ねたところ、トナー粒子が、特定の2種の樹脂からなるコア・シェル構造を有し、かつ該樹脂が酸性基を有するとともに酸解離定数が一定の範囲を占めるとき、定着性が飛躍的に改善し、定着後の保存特性も維持されることを見出し、本発明を完成した。
 すなわち、本発明の液体現像剤は、トナー粒子(C)が絶縁性液体(L)に分散されてなる液体現像剤(X)であって、該トナー粒子(C)は、シェル樹脂(a)を含むシェル粒子(A)がコア樹脂(b)を含むコア粒子(B)の表面に付着または被覆されてなるコア・シェル構造を有し、該コア樹脂(b)は、酸性基を有し、かつ酸解離定数が、2.90以上8.00以下であることを特徴とする。
 ここで、該トナー粒子(C)の体積平均粒径は、0.01μm以上100μm以下であり、該トナー粒子(C)の体積分布の変動係数は、1%以上100%以下であることが好ましい。
 また、該トナー粒子(C)の円形度の平均値は、0.92以上1.0以下であることが好ましい。
 また、該シェル樹脂(a)は、ビニル樹脂、ポリエステル樹脂、ポリウレタン樹脂およびエポキシ樹脂からなる群より選ばれる少なくとも一種であることが好ましい。
 また、該シェル樹脂(a)は、ビニル樹脂であって、重合性二重結合を有するモノマー由来の構成単位を含む単独重合体または共重合体であることが好ましい。
 また、重合性二重結合を有するモノマーは、分子鎖(k)を有するビニルモノマー(m)であることが好ましい。
 また、該ビニルモノマー(m)は、炭素数が12~27の直鎖状炭化水素鎖を有するビニルモノマー(m1)、炭素数が12~27の分岐状炭化水素鎖を有するビニルモノマー(m2)、炭素数が4~20のフルオロアルキル鎖を有するビニルモノマー(m3)およびポリジメチルシロキサン鎖を有するビニルモノマー(m4)からなる群より選ばれる少なくとも1種であることが好ましい。
 また、該コア樹脂(b)は、ビニル樹脂、ポリエステル樹脂、ポリウレタン樹脂およびエポキシ樹脂からなる群より選ばれる少なくとも一種であることが好ましい。
 また、該コア粒子(B)は、ワックス(c)およびビニルポリマー鎖がワックスにグラフト重合された変性ワックス(d)の少なくとも一方を含有することが好ましい。
 また、該トナー粒子(C)において、該シェル粒子(A)による該コア粒子(B)の表面被覆率は、50%以上であることが好ましい。
 該液体現像剤(X)は、塗料、電子写真用液体現像剤、静電記録用液体現像剤、インクジェットプリンタ用油性インクまたは電子ペーパー用インクであることが好ましい。
 該コア粒子(B)は、該コア樹脂(b)と着色剤とを含むことが好ましい。
 そして、本発明の液体現像剤の製造方法は、絶縁性液体(L)中にシェル樹脂(a)を含有するシェル粒子(A)が分散されてなるシェル粒子(A)の分散液(W)を調製する工程と、有機溶媒(M)中にコア樹脂(b)またはコア樹脂(b)の前駆体(b0)が溶解されてなるコア粒子(B)形成用溶液を調製する工程と、該シェル粒子(A)の分散液(W)に該コア粒子(B)形成用溶液を分散させることにより、該分散液(W)中に該コア樹脂(b)を含むコア粒子(B)を形成させるとともに、該シェル粒子(A)が該コア粒子(B)の表面に付着または被覆されてなるコア・シェル構造を有するトナー粒子(C)を得る工程と、該トナー粒子(C)を得る工程の後で該有機溶媒(M)を留去させることにより、液体現像剤(X)を得る工程と、を備え、該コア樹脂(b)は酸性基を有し、酸解離定数が、2.90以上8.00以下であることを特徴とする。
 ここで、該有機溶媒(M)の溶解度パラメータは、8.5~20(cal/cm31/2であることが好ましい。
 本発明の液体現像剤は、上記のような構成を有することにより、上質紙などにも適応し得る優れた定着性を示し、幅広い温度範囲において定着可能であり、かつ定着後の保存劣化が極めて少ないという優れた効果を有する。
電子写真方式の画像形成装置の概略概念図である。
 以下、本発明について実施の形態を挙げてさらに詳細に説明する。なお、本発明の液体現像剤は、以下に示す液体現像剤に限定されない。
 [液体現像剤の構成]
 本実施の形態に係る液体現像剤(X)は、複写機、プリンタ、デジタル印刷機、簡易印刷機などの電子写真方式の画像形成装置(後述)において用いられる電子写真用液体現像剤、塗料、静電記録用液体現像剤、インクジェットプリンタ用油性インクまたは電子ペーパー用インクとして有用であり、トナー粒子(C)が絶縁性液体(L)に分散されてなる。トナー粒子(C)は、シェル樹脂(a)を含むシェル粒子(A)がコア樹脂(b)を含むコア粒子(B)の表面に付着または被覆されてなるコア・シェル構造を有する。
 <シェル樹脂(a)>
 本実施の形態におけるシェル樹脂(a)は、熱可塑性樹脂であっても良いし、熱硬化性樹脂であっても良い。シェル樹脂(a)としては、たとえば、ビニル樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ケイ素樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、および、ポリカーボネート樹脂などが挙げられる。なお、シェル樹脂(a)として、上記列挙された樹脂の2種以上を併用してもよい。
 本実施の形態に係る液体現像剤(X)が得られやすいという観点では、シェル樹脂(a)として、好ましくは、ビニル樹脂、ポリエステル樹脂、ポリウレタン樹脂、およびエポキシ樹脂からなる群より選ばれる少なくとも1つを用いることができ、より好ましくは、ポリエステル樹脂およびポリウレタン樹脂の少なくとも1つを用いることができる。
 <ビニル樹脂>
 上記ビニル樹脂は、重合性二重結合を有するモノマー由来の構成単位を含む単独重合体であっても良いし、重合性二重結合を有する二種以上のモノマー由来の構成単位を含む共重合体であっても良い。重合性二重結合を有するモノマーとしては、たとえば、下記(1)~(9)が挙げられる。
 (1) 重合性二重結合を有する炭化水素
 重合性二重結合を有する炭化水素は、たとえば、下記(1-1)で示す重合性二重結合を有する脂肪族炭化水素、または、下記(1-2)で示す重合性二重結合を有する芳香族炭化水素などであることが好ましい。
 (1-1) 重合性二重結合を有する脂肪族炭化水素
 重合性二重結合を有する脂肪族炭化水素は、たとえば、下記(1-1-1)で示す重合性二重結合を有する鎖状炭化水素、または、下記(1-1-2)で示す重合性二重結合を有する環状炭化水素などであることが好ましい。
 (1-1-1) 重合性二重結合を有する鎖状炭化水素
 重合性二重結合を有する鎖状炭化水素としては、たとえば、炭素数が2~30のアルケン(たとえば、エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセンまたはオクタデセンなど);炭素数が4~30のアルカジエン(たとえば、ブタジエン、イソプレン、1,4-ペンタジエン、1,5-ヘキサジエンまたは1,7-オクタジエンなど)などが挙げられる。
 (1-1-2) 重合性二重結合を有する環状炭化水素
 重合性二重結合を有する環状炭化水素としては、たとえば、炭素数が6~30のモノまたはジシクロアルケン(たとえば、シクロヘキセン、ビニルシクロヘキセンまたはエチリデンビシクロヘプテンなど);炭素数が5~30のモノまたはジシクロアルカジエン(たとえば、シクロペンタジエンまたはジシクロペンタジエンなど)などが挙げられる。
 (1-2) 重合性二重結合を有する芳香族炭化水素
 重合性二重結合を有する芳香族炭化水素としては、たとえば、スチレン;スチレンのハイドロカーボン(たとえば、炭素数が1~30のアルキル、シクロアルキル、アラルキルおよび/またはアルケニル)置換体(たとえば、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン、ベンジルスチレン、クロチルベンゼン、ジビニルベンゼン、ジビニルトルエン、ジビニルキシレンまたはトリビニルベンゼンなど);ビニルナフタレンなどが挙げられる。
 (2)カルボキシル基と重合性二重結合を有するモノマーおよびそれらの塩
 カルボキシル基と重合性二重結合を有するモノマーとしては、たとえば、炭素数が3~15の不飽和モノカルボン酸[たとえば、(メタ)アクリル酸、クロトン酸、イソクロトン酸または桂皮酸など];炭素数が3~30の不飽和ジカルボン酸(無水物)[たとえば、(無水)マレイン酸、フマル酸、イタコン酸、(無水)シトラコン酸またはメサコン酸など];炭素数が3~10の不飽和ジカルボン酸のモノアルキル(炭素数が1~10)エステル(たとえば、マレイン酸モノメチルエステル、マレイン酸モノデシルエステル、フマル酸モノエチルエステル、イタコン酸モノブチルエステルまたはシトラコン酸モノデシルエステルなど)などが挙げられる。本明細書では、「(メタ)アクリル(酸)」は、アクリル(酸)および/またはメタクリル(酸)を意味する。また同様に、「(メタ)アクリレート」は「アクリレート」および/または「メタクリレート」を意味する。
 上記モノマーの塩としては、たとえば、アルカリ金属塩(たとえば、ナトリウム塩またはカリウム塩など)、アルカリ土類金属塩(たとえば、カルシウム塩またはマグネシウム塩など)、アンモニウム塩、アミン塩、および、4級アンモニウム塩などが挙げられる。
 アミン塩としては、アミン化合物であれば特に限定されず、たとえば、1級アミン塩(たとえば、エチルアミン塩、ブチルアミン塩またはオクチルアミン塩など);2級アミン塩(たとえば、ジエチルアミン塩またはジブチルアミン塩など);3級アミン塩(たとえば、トリエチルアミン塩またはトリブチルアミン塩など)などが挙げられる。
 4級アンモニウム塩としては、たとえば、テトラエチルアンモニウム塩、トリエチルラウリルアンモニウム塩、テトラブチルアンモニウム塩およびトリブチルラウリルアンモニウム塩などが挙げられる。
 カルボキシル基と重合性二重結合を有するモノマーの塩としては、たとえば、アクリル酸ナトリウム、メタクリル酸ナトリウム、マレイン酸モノナトリウム、マレイン酸ジナトリウム、アクリル酸カリウム、メタクリル酸カリウム、マレイン酸モノカリウム、アクリル酸リチウム、アクリル酸セシウム、アクリル酸アンモニウム、アクリル酸カルシウムおよびアクリル酸アルミニウムなどが挙げられる。
 (3) スルホ基と重合性二重結合を有するモノマーおよびそれらの塩
 スルホ基と重合性二重結合を有するモノマーとしては、たとえば、炭素数が2~14のアルケンスルホン酸[たとえば、ビニルスルホン酸、(メタ)アリルスルホン酸またはメチルビニルスルホン酸など];スチレンスルホン酸およびスチレンスルホン酸のアルキル(炭素数が2~24)誘導体(たとえば、α-メチルスチレンスルホン酸など);炭素数が5~18のスルホ(ヒドロキシ)アルキル-(メタ)アクリレート[たとえば、スルホプロピル(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロキシプロピルスルホン酸、2-(メタ)アクリロイルオキシエタンスルホン酸または3-(メタ)アクリロイルオキシ-2-ヒドロキシプロパンスルホン酸など];炭素数が5~18のスルホ(ヒドロキシ)アルキル(メタ)アクリルアミド[たとえば、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸または3-(メタ)アクリルアミド-2-ヒドロキシプロパンスルホン酸など];アルキル(炭素数が3~18)アリルスルホコハク酸(たとえば、プロピルアリルスルホコハク酸、ブチルアリルスルホコハク酸または2-エチルヘキシル-アリルスルホコハク酸など);ポリ[n(「n」は重合度を表わす。以下同様。)=2~30]オキシアルキレン(たとえば、オキシエチレン、オキシプロピレンまたはオキシブチレンなど。ポリオキシアルキレンは、オキシアルキレンの単独重合体であっても良いし、オキシアルキレンの共重合体であっても良い。ポリオキシアルキレンがオキシアルキレンの共重合体である場合には、ランダム重合体であっても良いしブロック重合体であっても良い。);モノ(メタ)アクリレートの硫酸エステル[たとえば、ポリ(n=5~15)オキシエチレンモノメタクリレート硫酸エステルまたはポリ(n=5~15)オキシプロピレンモノメタクリレート硫酸エステルなど];下記化学式(1)~(3)で表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 上記化学式(1)~(3)中、R1は炭素数が2~4のアルキレン基を表わす。化学式(1)が2以上のR1Oを含む場合、2以上のR1Oは、同一のアルキレン基を用いて構成されても良いし、二種以上のアルキレン基が併用されて構成されても良い。二種以上のアルキレン基が併用される場合、化学式(1)におけるR1の配列はランダム配列であっても良いしブロック配列であっても良い。R2およびR3は、それぞれ独立に炭素数が1~15のアルキル基を表わす。mおよびnは、それぞれ独立に1~50の整数である。Arはベンゼン環を表わす。R4は、フッ素原子で置換されていても良い炭素数が1~15のアルキル基を表わす。
 スルホ基と重合性二重結合を有するモノマーの塩としては、たとえば、上記「(2)カルボキシル基と重合性二重結合を有するモノマー」において「上記モノマーの塩」として列挙したものと同様に、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩、および4級アンモニウム塩などが挙げられる。
 (4) ホスホノ基と重合性二重結合を有するモノマーおよびその塩
 ホスホノ基と重合性二重結合を有するモノマーとしては、たとえば、(メタ)アクリロイルオキシアルキルリン酸モノエステル(アルキル基の炭素数が1~24)[たとえば、2-ヒドロキシエチル(メタ)アクリロイルホスフェートまたはフェニル-2-アクリロイロキシエチルホスフェートなど];(メタ)アクリロイルオキシアルキルホスホン酸(アルキル基の炭素数が1~24)(たとえば2-アクリロイルオキシエチルホスホン酸など)などが挙げられる。
 ホスホノ基と重合性二重結合を有するモノマーの塩としては、たとえば、上記「(2)カルボキシル基と重合性二重結合を有するモノマー」において「上記モノマーの塩」として列挙したものと同様に、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩、および4級アンモニウム塩などが挙げられる。
 (5) ヒドロキシル基と重合性二重結合を有するモノマー
 ヒドロキシル基と重合性二重結合を有するモノマーとしては、たとえば、ヒドロキシスチレン、N-メチロール(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、(メタ)アリルアルコール、クロチルアルコール、イソクロチルアルコール、1-ブテン-3-オール、2-ブテン-1-オール、2-ブテン-1,4-ジオール、プロパルギルアルコール、2-ヒドロキシエチルプロペニルエーテルおよび庶糖アリルエーテルなどが挙げられる。
 (6) 重合性二重結合を有する含窒素モノマー
 重合性二重結合を有する含窒素モノマーとしては、たとえば、下記(6-1)~(6-4)で示すモノマーが挙げられる。
 (6-1) アミノ基と重合性二重結合を有するモノマー
 アミノ基と重合性二重結合を有するモノマーとしては、たとえば、アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチルメタクリレート、N-アミノエチル(メタ)アクリルアミド、(メタ)アリルアミン、モルホリノエチル(メタ)アクリレート、4-ビニルピリジン、2-ビニルピリジン、クロチルアミン、N,N-ジメチルアミノスチレン、メチル-α-アセトアミノアクリレート、ビニルイミダゾール、N-ビニルピロール、N-ビニルチオピロリドン、N-アリールフェニレンジアミン、アミノカルバゾール、アミノチアゾール、アミノインドール、アミノピロール、アミノイミダゾールおよびアミノメルカプトチアゾールなどが挙げられる。
 アミノ基と重合性二重結合を有するモノマーは、上記列挙したモノマーの塩であっても良い。上記列挙したモノマーの塩としては、たとえば、上記「(2)カルボキシル基と重合性二重結合を有するモノマー」において「上記モノマーの塩」として列挙したものと同様に、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩、および4級アンモニウム塩などが挙げられる。
 (6-2) アミド基と重合性二重結合を有するモノマー
 アミド基と重合性二重結合を有するモノマーとしては、たとえば、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-ブチルアクリルアミド、ジアセトンアクリルアミド、N-メチロール(メタ)アクリルアミド、N,N’-メチレン-ビス(メタ)アクリルアミド、桂皮酸アミド、N,N-ジメチルアクリルアミド、N,N-ジベンジルアクリルアミド、メタクリルホルムアミド、N-メチル-N-ビニルアセトアミドおよびN-ビニルピロリドンなどが挙げられる。
 (6-3) ニトリル基と重合性二重結合を有する炭素数が3~10のモノマー
 ニトリル基と重合性二重結合を有する炭素数が3~10のモノマーとしては、たとえば、(メタ)アクリロニトリル、シアノスチレンおよびシアノアクリレートなどが挙げられる。
 (6-4) ニトロ基と重合性二重結合を有する炭素数が8~12のモノマー
 ニトロ基と重合性二重結合を有する炭素数が8~12のモノマーとしては、たとえば、ニトロスチレンなどが挙げられる。
 (7) エポキシ基と重合性二重結合を有する炭素数が6~18のモノマー
 エポキシ基と重合性二重結合を有する炭素数が6~18のモノマーとしては、たとえば、グリシジル(メタ)アクリレートなどが挙げられる。
 (8) ハロゲン元素と重合性二重結合を有する炭素数が2~16のモノマー
 ハロゲン元素と重合性二重結合を有する炭素数が2~16のモノマーとしては、たとえば、塩化ビニル、臭化ビニル、塩化ビニリデン、アリルクロライド、クロロスチレン、ブロムスチレン、ジクロロスチレン、クロロメチルスチレン、テトラフルオロスチレンおよびクロロプレンなどが挙げられる。
 (9) そのほか
 重合性二重結合を有するモノマーとしては、上記モノマー以外に、下記(9-1)~(9-4)で示すモノマーが挙げられる。
 (9-1) 重合性二重結合を有する炭素数が4~16のエステル
 重合性二重結合を有する炭素数が4~16のエステルとしては、たとえば、酢酸ビニル;プロピオン酸ビニル;酪酸ビニル;ジアリルフタレート;ジアリルアジペート;イソプロペニルアセテート;ビニルメタクリレート;メチル-4-ビニルベンゾエート;シクロヘキシルメタクリレート;ベンジルメタクリレート;フェニル(メタ)アクリレート;ビニルメトキシアセテート;ビニルベンゾエート;エチル-α-エトキシアクリレート;炭素数が1~11のアルキル基を有するアルキル(メタ)アクリレート[たとえば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートなど];ジアルキルフマレート(2個のアルキル基は、炭素数が2~8の直鎖アルキル基、分枝アルキル基または脂環式のアルキル基である);ジアルキルマレエート(2個のアルキル基は、炭素数が2~8の直鎖アルキル基、分枝アルキル基または脂環式のアルキル基である);ポリ(メタ)アリロキシアルカン類(たとえば、ジアリロキシエタン、トリアリロキシエタン、テトラアリロキシエタン、テトラアリロキシプロパン、テトラアリロキシブタンまたはテトラメタアリロキシエタンなど);ポリアルキレングリコール鎖と重合性二重結合を有するモノマー{たとえば、ポリエチレングリコール[数平均分子量(以下「Mn」とも記す)=300]モノ(メタ)アクリレート、ポリプロピレングリコール(Mn=500)モノアクリレート、メチルアルコールエチレンオキサイド(以下「エチレンオキサイド」を「EO」とも記す)10モル付加物(メタ)アクリレートまたはラウリルアルコールEO30モル付加物(メタ)アクリレートなど};ポリ(メタ)アクリレート類{たとえば、多価アルコール類のポリ(メタ)アクリレート[たとえば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートまたはポリエチレングリコールジ(メタ)アクリレートなど]}などが挙げられる。
 (9-2) 重合性二重結合を有する炭素数が3~16のエーテル
 重合性二重結合を有する炭素数が3~16のエーテルとしては、たとえば、ビニルメチルエーテル、ビニルエチルエーテル、ビニルプロピルエーテル、ビニルブチルエーテル、ビニル-2-エチルヘキシルエーテル、ビニルフェニルエーテル、ビニル-2-メトキシエチルエーテル、メトキシブタジエン、ビニル-2-ブトキシエチルエーテル、3,4-ジヒドロ-1,2-ピラン、2-ブトキシ-2’-ビニロキシジエチルエーテル、アセトキシスチレンおよびフェノキシスチレンなどが挙げられる。
 (9-3) 重合性二重結合を有する炭素数が4~12のケトン
 重合性二重結合を有する炭素数が4~12のケトンとしては、たとえば、ビニルメチルケトン、ビニルエチルケトンおよびビニルフェニルケトンなどが挙げられる。
 (9-4) 重合性二重結合を有する炭素数2~16の含硫黄化合物
 重合性二重結合を有する炭素数2~16の含硫黄化合物としては、たとえば、ジビニルサルファイド、p-ビニルジフェニルサルファイド、ビニルエチルサルファイド、ビニルエチルスルホン、ジビニルスルホンおよびジビニルスルホキサイドなどが挙げられる。
 上記ビニル樹脂のうち、共重合体の具体例としては、たとえば、スチレン-(メタ)アクリル酸エステル共重合体、スチレン-ブタジエン共重合体、(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体、スチレン-アクリロニトリル共重合体、スチレン-(無水)マレイン酸共重合体、スチレン-(メタ)アクリル酸共重合体、スチレン-(メタ)アクリル酸-ジビニルベンゼン共重合体およびスチレン-スチレンスルホン酸-(メタ)アクリル酸エステル共重合体などが挙げられる。
 上記シェル樹脂(a)は、上記(1)~(9)の重合性二重結合を有するモノマーの単独重合体または共重合体、すなわち、ビニルモノマー由来の構成単位を含む単独重合体または共重合体であっても良いし、上記(1)~(9)の重合性二重結合を有するモノマーと分子鎖(k)を有する、重合性二重結合を有するビニルモノマー(m)とが重合されたものであっても良い。分子鎖(k)としては、炭素数12~27の直鎖状または分枝状炭化水素鎖、炭素数4~20のフルオロアルキル鎖およびポリジメチルシロキサン鎖などが挙げられる。ビニルモノマー(m)中の分子鎖(k)と絶縁性液体(L)とのSP値の差は2以下であることが好ましい。本明細書では、「SP値」は、Fedorsによる方法[Polym.Eng.Sci.14(2)152,(1974)]により計算された数値である。
 分子鎖(k)を有する重合性二重結合を有するビニルモノマー(m)としては、特に限定されないが、たとえば、下記のビニルモノマー(m1)~(m4)などが挙げられる。ビニルモノマー(m)としては、ビニルモノマー(m1)~(m4)の2種以上を併用しても良い。
 炭素数が12~27(好ましくは16~25)の直鎖状炭化水素鎖とビニルモノマー(m1)
 このようなビニルモノマー(m1)としては、たとえば、不飽和モノカルボン酸のモノ直鎖状アルキル(アルキルの炭素数が12~27)エステルおよび不飽和ジカルボン酸のモノ直鎖状アルキル(アルキルの炭素数が12~27)エステルなどが挙げられる。上記不飽和モノカルボン酸および不飽和ジカルボン酸としては、たとえば、(メタ)アクリル酸、マレイン酸、フマル酸、クロトン酸、イタコン酸およびシトラコン酸などの炭素数が3~24のカルボキシル基含有ビニルモノマーなどが挙げられる。
 ビニルモノマー(m1)の具体例としては、たとえば、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ベヘニル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシルおよび(メタ)アクリル酸エイコシルなどが挙げられる。
 炭素数が12~27(好ましくは16~25)の分岐状炭化水素鎖と重合性二重結合を有するビニルモノマー(m2)
 このようなビニルモノマー(m2)としては、たとえば、不飽和モノカルボン酸のモノ分岐状アルキル(アルキルの炭素数が12~27)エステルおよび不飽和ジカルボン酸のモノ分岐状アルキル(アルキルの炭素数が12~27)エステルなどが挙げられる。上記不飽和モノカルボン酸および不飽和ジカルボン酸としては、たとえば、ビニルモノマー(m1)において不飽和モノカルボン酸および不飽和ジカルボン酸の具体例として列挙したものと同様のものが挙げられる。
 ビニルモノマー(m2)の具体例としては、たとえば、(メタ)アクリル酸2-デシルテトラデシルなどが挙げられる。
 炭素数が4~20のフルオロアルキル鎖と重合性二重結合を有するビニルモノマー(m3)
 このようなビニルモノマー(m3)としては、たとえば、下記化学式(4)で表されるパーフルオロアルキル(アルキル)(メタ)アクリル酸エステルなどが挙げられる。
 CH2=CR-COO-(CH2p-(CF3q-Z:化学式(4)
 上記化学式(4)中、Rは水素原子またはメチル基を表わし、pは0~3の整数であり、qは2、4、6、8、10または12のいずれかであり、Zは水素原子またはフッ素原子を表わす。
 ビニルモノマー(m3)の具体例としては、たとえば、[(2-パーフルオロエチル)エチル](メタ)アクリル酸エステル、[(2-パーフルオロブチル)エチル](メタ)アクリル酸エステル、[(2-パーフルオロヘキシル)エチル](メタ)アクリル酸エステル、[(2-パーフルオロオクチル)エチル](メタ)アクリル酸エステル、[(2-パーフルオロデシル)エチル](メタ)アクリル酸エステル、および、[(2-パーフルオロドデシル)エチル](メタ)アクリル酸エステルなどが挙げられる。
 ポリジメチルシロキサン鎖と重合性二重結合を有するビニルモノマー(m4)
 このようなビニルモノマー(m4)としては、たとえば、下記化学式(5)で表される(メタ)アクリル変性シリコーンなどが挙げられる
 CH2=CR-COO-((CH32SiO)m-Si(CH33:化学式(5)
 上記化学式(5)中、Rは水素原子またはメチル基を表わし、mは平均値で15~45である。
 ビニルモノマー(m4)の具体例としては、たとえば、変性シリコーンオイル(たとえば、製品名:「X-22-174DX」、「X-22-2426」、「X-22-2475」など、いずれも信越シリコーン(株)製)などが挙げられる。
 ビニルモノマー(m1)~(m4)のうち好ましいモノマーはビニルモノマー(m1)およびビニルモノマー(m2)であり、より好ましいモノマーはビニルモノマー(m2)である。
 ビニルモノマー(m)の含有率は、ビニル樹脂の質量に対して、好ましくは10質量%以上90質量%以下であり、より好ましくは15質量%以上80質量%以下であり、さらに好ましくは20質量%以上60質量%以下である。ビニルモノマー(m)の含有率が上記範囲内であれば、トナー粒子(C)同士が合一し難くなる。
 上記(1)~(9)の重合性二重結合を有するモノマーとビニルモノマー(m1)とビニルモノマー(m2)とが重合されてビニル樹脂を構成している場合、ビニルモノマー(m1)とビニルモノマー(m2)との質量比[(m1):(m2)]は、トナー粒子(C)の粒度分布とトナー粒子(C)の定着性との観点から、好ましくは90:10~10:90であり、より好ましくは80:20~20:80であり、さらに好ましくは70:30~30:70である。
 <ポリエステル樹脂>
 ポリエステル樹脂としては、たとえば、ポリオールと、ポリカルボン酸、ポリカルボン酸の酸無水物またはポリカルボン酸の低級アルキル(アルキル基の炭素数が1~4)エステルとの重縮合物などが挙げられる。重縮合反応には、公知の重縮合触媒などが使用できる。
 ポリオールとしては、たとえば、ジオール(10)、および、3~8価またはそれ以上の価数を有するポリオール(11)(以下では「ポリオール(11)」と略記する)などが挙げられる。
 ポリカルボン酸としては、たとえば、ジカルボン酸(12)、および、3~6価またはそれ以上の価数を有するポリカルボン酸(13)(以下では「ポリカルボン酸(13)」と略記する)などが挙げられる。ポリカルボン酸の酸無水物としては、たとえば、ジカルボン酸(12)の酸無水物およびポリカルボン酸(13)の酸無水物などが挙げられる。ポリカルボン酸の低級アルキルエステルとしては、たとえば、ジカルボン酸(12)の低級アルキルエステルおよびポリカルボン酸(13)の低級アルキルエステルなどが挙げられる。
 ポリオールとポリカルボン酸との比率は、特に限定されない。水酸基[OH]とカルボキシル基[COOH]との当量比([OH]/[COOH])が好ましくは2/1~1/5となるように、より好ましくは1.5/1~1/4となるように、さらに好ましくは1.3/1~1/3となるように、ポリオールとポリカルボン酸との比率を設定すれば良い。
 ジオール(10)としては、たとえば、炭素数が2~30のアルキレングリコール(たとえば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、オクタンジオール、デカンジオール、ドデカンジオール、テトラデカンジオール、ネオペンチルグリコールまたは2,2-ジエチル-1,3-プロパンジオールなど);Mn=106以上10000以下のアルキレンエーテルグリコール(たとえばジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコールまたはポリテトラメチレンエーテルグリコールなど);炭素数が6~24の脂環式ジオール(たとえば1,4-シクロヘキサンジメタノールまたは水素添加ビスフェノールAなど);Mn=100以上10000以下の上記脂環式ジオールのアルキレンオキサイド(以下「アルキレンオキサイド」を「AO」とも記す)付加物(付加モル数が2~100)(たとえば1,4-シクロヘキサンジメタノールEO10モル付加物など);炭素数が15~30のビスフェノール類(たとえば、ビスフェノールA、ビスフェノールFもしくはビスフェノールSなど)AO[たとえば、EO、プロピレンオキサイド(以下「PO」とも記す)もしくはブチレンオキサイドなど]付加物(付加モル数が2~100)または炭素数が12~24のポリフェノール(たとえばカテコール、ハイドロキノンもしくはレゾルシンなど)の上記AO付加物(たとえば、ビスフェノールAのEO2~4モル付加物またはビスフェノールAのPO2~4モル付加物など);重量平均分子量(以下「Mw」とも記す)=100以上5000以下のポリラクトンジオール(たとえばポリ-ε-カプロラクトンジオールなど);Mwが1000以上20000以下のポリブタジエンジオールなどが挙げられる。
 これらのうちジオール(10)として好ましいのはアルキレングリコールおよびビスフェノール類のAO付加物であり、より好ましいのはビスフェノール類のAO付加物単体およびビスフェノール類のAO付加物とアルキレングリコールとの混合物である。
 ポリオール(11)としては、たとえば、3~8価またはそれ以上の価数を有し且つ炭素数が3~10の脂肪族多価アルコール(たとえばグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビタンまたはソルビトールなど);炭素数が25~50のトリスフェノールのAO(炭素数が2~4)付加物(付加モル数が2~100)(たとえば、トリスフェノールEO2~4モル付加物またはトリスフェノールポリアミドPO2~4モル付加物など);n=3~50のノボラック樹脂(たとえばフェノールノボラックまたはクレゾールノボラックなど)のAO(炭素数が2~4)付加物(付加モル数が2~100)(たとえば、フェノールノボラックPO2モル付加物またはフェノールノボラックEO4モル付加物など);炭素数が6~30のポリフェノール(たとえばピロガロール、フロログルシノールまたは1,2,4-ベンゼントリオールなど)のAO(炭素数が2~4)付加物(付加モル数が2~100)(たとえば、ピロガロールEO4モル付加物など);n=20~2000のアクリルポリオール{たとえば、ヒドロキシエチル(メタ)アクリレートと他の重合性二重結合を有するモノマー[たとえば、スチレン、(メタ)アクリル酸または(メタ)アクリル酸エステルなど]との共重合物など}などが挙げられる。
 これらのうちポリオール(11)として好ましいのは脂肪族多価アルコールおよびノボラック樹脂のAO付加物であり、より好ましいのはノボラック樹脂のAO付加物である。
 ジカルボン酸(12)としては、たとえば、炭素数が4~32のアルカンジカルボン酸(たとえば、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジカルボン酸またはオクタデカンジカルボン酸など);炭素数が4~32のアルケンジカルボン酸(たとえばマレイン酸、フマル酸、シトラコン酸またはメサコン酸など);炭素数が8~40の分岐アルケンジカルボン酸[たとえば、ダイマー酸、または、アルケニルコハク酸(たとえば、ドデセニルコハク酸、ペンタデセニルコハク酸もしくはオクタデセニルコハク酸など)など];炭素数が12~40の分岐アルカンジカルボン酸[たとえば、アルキルコハク酸(たとえば、デシルコハク酸、ドデシルコハク酸またはオクタデシルコハク酸など)など];炭素数が8~20の芳香族ジカルボン酸(たとえば、フタル酸、イソフタル酸、テレフタル酸またはナフタレンジカルボン酸など)などが挙げられる。
 これらのうちジカルボン酸(12)として好ましいのはアルケンジカルボン酸および芳香族ジカルボン酸であり、より好ましいのは芳香族ジカルボン酸である。
 ポリカルボン酸(13)としては、たとえば、炭素数が9~20の芳香族ポリカルボン酸(たとえばトリメリット酸またはピロメリット酸など)などが挙げられる。
 なお、ジカルボン酸(12)およびポリカルボン酸(13)の酸無水物としては、たとえば、トリメリット酸無水物およびピロメリット酸無水物などが挙げられる。また、ジカルボン酸(12)およびポリカルボン酸(13)の低級アルキルエステルとしては、たとえば、メチルエステル、エチルエステルおよびイソプロピルエステルなどが挙げられる。
 <ポリウレタン樹脂>
 ポリウレタン樹脂としては、たとえば、ポリイソシアネート(14)と活性水素含有化合物{たとえば、水;ポリオール[たとえば、ジオール(10)(ヒドロキシル基以外の官能基を有するジオールを含む)またはポリオール(11)など];ポリカルボン酸[たとえば、ジカルボン酸(12)またはポリカルボン酸(13)など];ポリオールとポリカルボン酸との重縮合により得られるポリエステルポリオール;炭素数が6~12のラクトンの開環重合体;ポリアミン(15);ポリチオール(16);これらの併用など}との重付加物であっても良いし、ポリイソシアネート(14)と上記活性水素含有化合物とを反応させてなる末端イソシアネート基プレポリマーと、当該末端イソシアネート基プレポリマーのイソシアネート基に対して等量の1級および/または2級モノアミン(17)とを反応させて得られるアミノ基含有ポリウレタン樹脂であっても良い。
 ポリウレタン樹脂中のカルボキシル基の含有率は、好ましくは0.1質量%以上10質量%以下である。
 ポリイソシアネート(14)としては、たとえば、炭素数(NCO基中の炭素を除く。以下<ポリウレタン樹脂>においては同様。)が6~20の芳香族ポリイソシアネート;炭素数が2~18の脂肪族ポリイソシアネート;これらのポリイソシアネートの変性物(たとえば、ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシアヌレート基またはオキサゾリドン基などを含有する変性物);これら2種以上の併用などが挙げられる。
 芳香族ポリイソシアネートとしては、たとえば、1,3-または1,4-フェニレンジイソシアネート;2,4-または2,6-トリレンジイソシアネート(以下「TDI」とも記す);粗製TDI;m-またはp-キシリレンジイソシアネート;α,α,α’,α’-テトラメチルキシリレンジイソシアネート;2,4’-または4,4’-ジフェニルメタンジイソシアネート(以下「MDI」とも記す);粗製MDI{たとえば、粗製ジアミノフェニルメタン[たとえば、ホルムアルデヒドと芳香族アミン(1種であっても良いし2種以上を併用しても良い)との縮合生成物、もしくは、ジアミノジフェニルメタンと少量(たとえば5質量%以上20質量%以下)の3以上のアミン基を有するポリアミンとの混合物など]のホスゲン化物、または、ポリアリルポリイソシアネートなど};1,5-ナフチレンジイソシアネート;4,4’,4”-トリフェニルメタントリイソシアネート;m-またはp-イソシアナトフェニルスルホニルイソシアネート;これら2種以上の併用などが挙げられる。
 脂肪族ポリイソシアネートとしては、たとえば、鎖状脂肪族ポリイソシアネートおよび環状脂肪族ポリイソシアネートなどが挙げられる。
 鎖状脂肪族ポリイソシアネートとしては、たとえば、エチレンジイソシアネート;テトラメチレンジイソシアネート;ヘキサメチレンジイソシアネート(以下「HDI」とも記す);ドデカメチレンジイソシアネート;1,6,11-ウンデカントリイソシアネート;2,2,4-トリメチルヘキサメチレンジイソシアネート;リジンジイソシアネート;2,6-ジイソシアナトメチルカプロエート;ビス(2-イソシアナトエチル)フマレート;ビス(2-イソシアナトエチル)カーボネート;2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート;これら2種以上の併用などが挙げられる。
 環状脂肪族ポリイソシアネートとしては、たとえば、イソホロンジイソシアネート(以下「IPDI」とも記す);ジシクロヘキシルメタン-4,4’-ジイソシアネート(水添MDI);シクロヘキシレンジイソシアネート;メチルシクロヘキシレンジイソシアネート(水添TDI);ビス(2-イソシアナトエチル)-4-シクロヘキセン-1,2-ジカルボキシレート;2,5-または2,6-ノルボルナンジイソシアネート;これら2種以上の併用などが挙げられる。
 ポリイソシアネートの変性物には、ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシアヌレート基およびオキサゾリドン基の少なくとも1つを含有するポリイソシアネート化合物などが挙げられる。ポリイソシアネートの変性物としては、たとえば、変性MDI(たとえば、ウレタン変性MDI、カルボジイミド変性MDIまたはトリヒドロカルビルホスフェート変性MDIなど);ウレタン変性TDI;これら2種以上の併用[たとえば、変性MDIとウレタン変性TDI(たとえばイソシアネート含有プレポリマーなど)との併用など]などが挙げられる。
 これらのうちポリイソシアネート(14)として好ましいのは、炭素数が6~15の芳香族ポリイソシアネートおよび炭素数が4~15の脂肪族ポリイソシアネートであり、更に好ましいのは、TDI、MDI、HDI、水添MDIおよびIPDIである。
 ポリアミン(15)としては、たとえば、炭素数が2~18の脂肪族ポリアミン、および、芳香族ポリアミン(たとえば炭素数が6~20)などが挙げられる。
 炭素数が2~18の脂肪族ポリアミンとしては、たとえば、鎖状脂肪族ポリアミン;鎖状脂肪族ポリアミンのアルキル(炭素数が1~4)置換体;鎖状脂肪族ポリアミンのヒドロキシアルキル(炭素数が2~4)置換体;環状脂肪族ポリアミンなどが挙げられる。
 鎖状脂肪族ポリアミンとしては、たとえば、炭素数が2~12のアルキレンジアミン(たとえば、エチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミンまたはヘキサメチレンジアミンなど);ポリアルキレン(炭素数が2~6)ポリアミン[たとえば、ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミンまたはペンタエチレンヘキサミンなど]などが挙げられる。
 鎖状脂肪族ポリアミンのアルキル(炭素数が1~4)置換体および鎖状脂肪族ポリアミンのヒドロキシアルキル(炭素数が2~4)置換体としては、たとえば、ジアルキル(炭素数が1~3)アミノプロピルアミン;トリメチルヘキサメチレンジアミン;アミノエチルエタノールアミン;2,5-ジメチル-2,5-ヘキサメチレンジアミン;メチルイミノビスプロピルアミンなどが挙げられる。
 環状脂肪族ポリアミンとしては、たとえば、炭素数が4~15の脂環式ポリアミン[たとえば、1,3-ジアミノシクロヘキサン、イソホロンジアミン、メンセンジアミン、4,4’-メチレンジシクロヘキサンジアミン(水添メチレンジアニリン)または3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンなど];炭素数が4~15の複素環式ポリアミン[たとえば、ピペラジン、N-アミノエチルピペラジン、1,4-ジアミノエチルピペラジンまたは1,4-ビス(2-アミノ-2-メチルプロピル)ピペラジンなど]などが挙げられる。
 芳香族ポリアミン(炭素数が6~20)としては、たとえば、非置換芳香族ポリアミン;アルキル基(たとえば、メチル基、エチル基、n-またはイソプロピル基およびブチル基などの炭素数が1~4のアルキル基)を有する芳香族ポリアミン;電子吸引基(たとえば、Cl、Br、IおよびFなどのハロゲン原子、メトキシ基およびエトキシ基などのアルコキシ基、ならびにニトロ基など)を有する芳香族ポリアミン;2級アミノ基を有する芳香族ポリアミンなどが挙げられる。
 非置換芳香族ポリアミンとしては、たとえば、1,2-、1,3-または1,4-フェニレンジアミン;2,4’-または4,4’-ジフェニルメタンジアミン;クルードジフェニルメタンジアミン(たとえば、ポリフェニルポリメチレンポリアミン);ジアミノジフェニルスルホン;ベンジジン;チオジアニリン;ビス(3,4-ジアミノフェニル)スルホン;2,6-ジアミノピリジン;m-アミノベンジルアミン;トリフェニルメタン-4,4’,4”-トリアミン;ナフチレンジアミン;これら2種以上の併用などが挙げられる。
 アルキル基(たとえば、メチル基、エチル基、n-またはイソプロピル基およびブチル基などの炭素数が1~4のアルキル基)を有する芳香族ポリアミンとしては、たとえば、2,4-または2,6-トリレンジアミン、クルードトリレンジアミン、ジエチルトリレンジアミン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、4,4’-ビス(o-トルイジン)、ジアニシジン、ジアミノジトリルスルホン、1,3-ジメチル-2,4-ジアミノベンゼン、1,3-ジエチル-2,4-ジアミノベンゼン、1,3-ジメチル-2,6-ジアミノベンゼン、1,4-ジエチル-2,5-ジアミノベンゼン、1,4-ジイソプロピル-2,5-ジアミノベンゼン、1,4-ジブチル-2,5-ジアミノベンゼン、2,4-ジアミノメシチレン、1,3,5-トリエチル-2,4-ジアミノベンゼン、1,3,5-トリイソプロピル-2,4-ジアミノベンゼン、1-メチル-3,5-ジエチル-2,4-ジアミノベンゼン、1-メチル-3,5-ジエチル-2,6-ジアミノベンゼン、2,3-ジメチル-1,4-ジアミノナフタレン、2,6-ジメチル-1,5-ジアミノナフタレン、2,6-ジイソプロピル-1,5-ジアミノナフタレン、2,6-ジブチル-1,5-ジアミノナフタレン、3,3’,5,5’-テトラメチルベンジジン、3,3’,5,5’-テトライソプロピルベンジジン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラエチル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトライソプロピル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラブチル-4,4’-ジアミノジフェニルメタン、3,5-ジエチル-3’-メチル-2’,4-ジアミノジフェニルメタン、3,5-ジイソプロピル-3’-メチル-2’,4-ジアミノジフェニルメタン、3,3’-ジエチル-2,2’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、3,3’,5,5’-テトラエチル-4,4’-ジアミノベンゾフェノン、3,3’,5,5’-テトライソプロピル-4,4’-ジアミノベンゾフェノン、3,3’,5,5’-テトラエチル-4,4’-ジアミノジフェニルエーテル、3,3’,5,5’-テトライソプロピル-4,4’-ジアミノジフェニルスルホンおよびこれら2種以上の併用などが挙げられる。
 電子吸引基(たとえば、Cl、Br、IおよびFなどのハロゲン原子、メトキシ基およびエトキシ基などのアルコキシ基、ならびにニトロ基など)を有する芳香族ポリアミンとしては、たとえば、メチレンビス-o-クロロアニリン、4-クロロ-o-フェニレンジアミン、2-クロロ-1,4-フェニレンジアミン、3-アミノ-4-クロロアニリン、4-ブロモ-1,3-フェニレンジアミン、2,5-ジクロロ-1,4-フェニレンジアミン、5-ニトロ-1,3-フェニレンジアミン、3-ジメトキシ-4-アミノアニリン;4,4’-ジアミノ-3,3’-ジメチル-5,5’-ジブロモ-ジフェニルメタン、3,3’-ジクロロベンジジン、3,3’-ジメトキシベンジジン、ビス(4-アミノ-3-クロロフェニル)オキシド、ビス(4-アミノ-2-クロロフェニル)プロパン、ビス(4-アミノ-2-クロロフェニル)スルホン、ビス(4-アミノ-3-メトキシフェニル)デカン、ビス(4-アミノフェニル)スルフィド、ビス(4-アミノフェニル)テルリド、ビス(4-アミノフェニル)セレニド、ビス(4-アミノ-3-メトキシフェニル)ジスルフィド、4,4’-メチレンビス(2-ヨードアニリン)、4,4’-メチレンビス(2-ブロモアニリン)、4,4’-メチレンビス(2-フルオロアニリン)および4-アミノフェニル-2-クロロアニリンなどが挙げられる。
 2級アミノ基を有する芳香族ポリアミンとしては、たとえば、上記非置換芳香族ポリアミン、アルキル基を有する芳香族ポリアミンおよび電子吸引基を有する芳香族ポリアミンにおける-NH2の一部または全部が-NH-R’(R’はアルキル基であり、たとえば、メチル基およびエチル基などの炭素数が1~4の低級アルキル基)で置換されたもの[たとえば、4,4’-ジ(メチルアミノ)ジフェニルメタンまたは1-メチル-2-メチルアミノ-4-アミノベンゼンなど];ポリアミドポリアミン;ジカルボン酸(たとえばダイマー酸など)と過剰(酸1モル当り2モル以上)のポリアミン類(たとえば上記アルキレンジアミンまたはポリアルキレンポリアミンなど)との縮合により得られる低分子量ポリアミドポリアミン;ポリエーテルポリアミン;ポリエーテルポリオール(たとえばポリアルキレングリコールなど)のシアノエチル化物の水素化物などが挙げられる。
 ポリチオール(16)としては、たとえば、炭素数が2~36のアルカンジチオール(たとえば、エタンジチオール、1,4-ブタンジチオールおよび1,6-ヘキサンジチオールなど)などが挙げられる。
 1級および/または2級モノアミン(17)としては、たとえば、炭素数が2~24のアルキルアミン(たとえば、エチルアミン、n-ブチルアミン、イソブチルアミン、ジエチルアミンまたはn-ブチル-n-ドデシルアミンなど)などが挙げられる。
 <エポキシ樹脂>
 エポキシ樹脂としては、たとえば、ポリエポキシド(18)の開環重合物;ポリエポキシド(18)と活性水素含有化合物[たとえば、水、ジオール(10)、ジカルボン酸(12)、ポリアミン(15)またはポリチオール(16)など]との重付加物;ポリエポキシド(18)とジカルボン酸(12)の酸無水物との硬化物などが挙げられる。
 ポリエポキシド(18)は、分子中に2個以上のエポキシ基を有していれば、特に限定されない。硬化物の機械的性質の観点から、ポリエポキシド(18)として好ましいものは分子中にエポキシ基を2個有するものである。ポリエポキシド(18)のエポキシ当量(エポキシ基1個当たりの分子量)は、好ましくは65以上1000以下であり、より好ましくは90以上500以下である。エポキシ当量が1000以下であると、架橋構造が密になり、硬化物の耐水性、耐薬品性および機械的強度などの物性が向上する。一方、エポキシ当量が65未満であれば、ポリエポキシド(18)の合成が困難となることがある。
 ポリエポキシド(18)としては、たとえば、芳香族ポリエポキシ化合物および脂肪族ポリエポキシ化合物などが挙げられる。
 芳香族ポリエポキシ化合物としては、たとえば、多価フェノールのグリシジルエーテル体、芳香族多価カルボン酸のグリシジルエステル体、グリシジル芳香族ポリアミンおよびアミノフェノールのグリシジル化物などが挙げられる。
 多価フェノールのグリシジルエーテル体としては、たとえば、ビスフェノールFジグリシジルエーテル;ビスフェノールAジグリシジルエーテル;ビスフェノールBジグリシジルエーテル;ビスフェノールADジグリシジルエーテル;ビスフェノールSジグリシジルエーテル;ハロゲン化ビスフェノールAジグリシジル;テトラクロロビスフェノールAジグリシジルエーテル;カテキンジグリシジルエーテル;レゾルシノールジグリシジルエーテル;ハイドロキノンジグリシジルエーテル;ピロガロールトリグリシジルエーテル;1,5-ジヒドロキシナフタリンジグリシジルエーテル;ジヒドロキシビフェニルジグリシジルエーテル;オクタクロロ-4,4’-ジヒドロキシビフェニルジグリシジルエーテル;テトラメチルビフェニルジグリシジルエーテル;ジヒドロキシナフチルクレゾールトリグリシジルエーテル;トリス(ヒドロキシフェニル)メタントリグリシジルエーテル;ジナフチルトリオールトリグリシジルエーテル;テトラキス(4-ヒドロキシフェニル)エタンテトラグリシジルエーテル;p-グリシジルフェニルジメチルトリールビスフェノールAグリシジルエーテル;トリスメチル-t-ブチル-ブチルヒドロキシメタントリグリシジルエーテル;9,9’-ビス(4-ヒドキシフェニル)フロオレンジグリシジルエーテル;4,4’-オキシビス(1,4-フェニルエチル)テトラクレゾールグリシジルエーテル;4,4’-オキシビス(1,4-フェニルエチル)フェニルグリシジルエーテル、ビス(ジヒドロキシナフタレン)テトラグリシジルエーテル;フェノールまたはクレゾールノボラック樹脂のグリシジルエーテル体;リモネンフェノールノボラック樹脂のグリシジルエーテル体;ビスフェノールA2モルとエピクロロヒドリン3モルとの反応から得られるジグリシジルエーテル体;フェノールとグリオキザール、グルタールアルデヒド、またはホルムアルデヒドの縮合反応によって得られるポリフェノールのポリグリシジルエーテル体;レゾルシンとアセトンとの縮合反応により得られるポリフェノールのポリグリシジルエーテル体などが挙げられる。
 芳香族多価カルボン酸のグリシジルエステル体としては、たとえば、フタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステルおよびテレフタル酸ジグリシジルエステルなどが挙げられる。
 グリシジル芳香族ポリアミンとしては、たとえば、N,N-ジグリシジルアニリン、N,N,N’,N’-テトラグリシジルキシリレンジアミンおよびN,N,N’,N’-テトラグリシジルジフェニルメタンジアミンなどが挙げられる。
 芳香族ポリエポキシ化合物としては、上記列挙した化合物以外に、p-アミノフェノールのトリグリシジルエーテル(アミノフェノールのグリシジル化物の一例);トリレンジイソシアネートまたはジフェニルメタンジイソシアネートとグリシドールとを反応させて得られるジグリシジルウレタン化合物;トリレンジイソシアネートまたはジフェニルメタンジイソシアネートとグリシドールとポリオールとを反応させて得られるグリシジル基含有ポリウレタン(プレ)ポリマー;ビスフェノールAのAO付加物のジグリシジルエーテル体などが挙げられる。
 脂肪族ポリエポキシ化合物としては、たとえば、鎖状脂肪族ポリエポキシ化合物および環状脂肪族ポリエポキシ化合物などが挙げられる。
 脂肪族ポリエポキシ化合物は、ジグリシジルエーテルとグリシジル(メタ)アクリレートとの共重合体であっても良い。
 鎖状脂肪族ポリエポキシ化合物としては、たとえば、多価脂肪族アルコールのポリグリシジルエーテル体、多価脂肪酸のポリグリシジルエステル体およびグリシジル脂肪族アミンなどが挙げられる。
 多価脂肪族アルコールのポリグリシジルエーテル体としては、たとえば、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、テトラメチレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ソルビトールポリグリシジルエーテルおよびポリグリセロールポリグリシジルエーテルなどが挙げられる。
 多価脂肪酸のポリグリシジルエステル体としては、たとえば、ジグリシジルオキサレート、ジグリシジルマレート、ジグリシジルスクシネート、ジグリシジルグルタレート、ジグリシジルアジペートおよびジグリシジルピメレートなどが挙げられる。
 グリシジル脂肪族アミンとしては、たとえば、N,N,N’,N’-テトラグリシジルヘキサメチレンジアミンなどが挙げられる。
 環状脂肪族ポリエポキシ化合物としては、たとえば、トリスグリシジルメラミン、ビニルシクロヘキセンジオキサイド、リモネンジオキサイド、ジシクロペンタジエンジオキサイド、ビス(2,3-エポキシシクロペンチル)エーテル、エチレングリコールビスエポキシジシクロペンチルエーテル、3,4-エポキシ-6-メチルシクロヘキシルメチル-3’,4’-エポキシ-6’-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)ブチルアミンおよびダイマー酸ジグリシジルエステルなどが挙げられる。また、環状脂肪族ポリエポキシ化合物としては、上記芳香族ポリエポキシド化合物の水添化物も挙げられる。
 <ポリアミド樹脂>
 ポリアミド樹脂としては、たとえば、ラクタムの開環重合体、アミノカルボン酸の重縮合体およびポリカルボン酸とポリアミンとの重縮合体などが挙げられる。
 <ポリイミド樹脂>
 ポリイミド樹脂としては、たとえば、脂肪族ポリイミド樹脂(たとえば、脂肪族カルボン酸二無水物と脂肪族ジアミンとから得られる縮合重合体など)、および、芳香族ポリイミド樹脂(たとえば、芳香族カルボン酸二無水物と脂肪族ジアミンまたは芳香族ジアミンとから得られる縮合重合体など)などが挙げられる。
 <ケイ素樹脂>
 ケイ素樹脂としては、たとえば、分子鎖中に、ケイ素-ケイ素結合、ケイ素-炭素結合、シロキサン結合およびケイ素-窒素結合などの少なくとも1つを有する化合物(たとえば、ポリシロキサン、ポリカルボシランまたはポリシラザンなど)などが挙げられる。
 <フェノール樹脂>
 フェノール樹脂としては、たとえば、フェノール類(たとえば、フェノール、クレゾール、ノニルフェノール、リグニン、レゾルシンまたはカテコールなど)とアルデヒド類(たとえば、ホルムアルデヒド、アセトアルデヒドまたはフルフラールなど)とから得られる縮合重合体などが挙げられる。
 <メラミン樹脂>
 メラミン樹脂としては、たとえば、メラミンとホルムアルデヒドとから得られる重縮合体などが挙げられる。
 <ユリア樹脂>
 ユリア樹脂としては、たとえば、尿素とホルムアルデヒドとから得られる重縮合体などが挙げられる。
 <アニリン樹脂>
 アニリン樹脂としては、たとえば、アニリンとアルデヒド類とを酸性下で反応して得られたものなどが挙げられる。
 <アイオノマー樹脂>
 アイオノマー樹脂としては、たとえば、重合性二重結合を有するモノマー(たとえば、α-オレフィン系モノマーまたはスチレン系モノマーなど)とα,β-不飽和カルボン酸(たとえば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、マレイン酸モノメチルエステル、無水マレイン酸またはマレイン酸モノエチルエステルなど)との共重合体で当該共重合体中のカルボン酸の一部または全部がカルボン酸塩(たとえば、カリウム塩、ナトリウム塩、マグネシウム塩またはカルシウム塩など)であるものなどが挙げられる。
 <ポリカーボネート樹脂>
 ポリカーボネート樹脂としては、たとえば、ビスフェノール類(たとえば、ビスフェノールA、ビスフェノールFまたはビスフェノールSなど)と、ホスゲンまたは炭酸ジエステルなどとの縮合重合体などが挙げられる。
 <結晶性・非結晶性>
 シェル樹脂(a)は、結晶性樹脂(a1)であっても良いし、非結晶性樹脂(a2)であっても良いし、結晶性樹脂(a1)と非結晶性樹脂(a2)とが併用されたものであっても良い。トナー粒子(C)の定着性の観点から、シェル樹脂(a)は結晶性樹脂(a1)であることが好ましい。
 本明細書において、「結晶性」とは、樹脂の軟化点(以下「Tm」とも記す)と樹脂の融解熱の最大ピーク温度(以下「Ta」とも記す)との比(Tm/Ta)が0.8以上1.55以下であることを意味し、示差走査熱量計(以下DSCとも記す)により得られた結果は階段状の吸熱量変化を示すのではなく明確な吸熱ピークを有することを意味する。また、本明細書において、「非結晶性」とは、TmとTaとの比(Tm/Ta)が1.55より大きいことを意味する。TmおよびTaは以下の方法で測定することができる。
 高化式フローテスター(たとえば、製品名:「CFT-500D」、(株)島津製作所製)を用いて、Tmを測定することができる。具体的には、1gの測定試料を昇温速度6℃/分で加熱しながらプランジャーにより上記測定試料に1.96MPaの荷重を与え、直径1mmおよび長さ1mmのノズルから上記測定試料を押し出す。そして、「プランジャー降下量(流れ値)」と「温度」との関係をグラフに描く。プランジャーの降下量が当該降下量の最大値の1/2であるときの温度をグラフから読み取り、この値(測定試料の半分がノズルから押し出されたときの温度)をTmとする。
 示差走査熱量計(たとえば、製品名:「DSC210」、セイコーインスツル(株)製)を用いてTaを測定することができる。具体的には、まず、Taを測定するために用いる試料に対して前処理を行なう。試料を、130℃で溶融した後、130℃から70℃まで1.0℃/分の速度で降温させ、その後、70℃から10℃まで0.5℃/分の速度で降温させる。次に、DSC法により、試料を昇温速度20℃/分で昇温させて当該試料の吸発熱変化を測定し、「吸発熱量」と「温度」との関係をグラフに描く。このとき、20℃以上100℃以下に観測される吸熱ピークの温度をTa’とする。吸熱ピークが複数ある場合には最も吸熱量が大きいピークの温度をTa’とする。そして、試料を、(Ta’-10)℃で6時間保管した後、(Ta’-15)℃で6時間保管する。
 次に、DSC法により、上記前処理が施された試料を降温速度10℃/分で0℃まで冷却してから昇温速度20℃/分で昇温させて吸発熱変化を測定し、「吸発熱量」と「温度」との関係をグラフに描く。そして、吸熱量が最大値をとったときの温度を融解熱の最大ピーク温度(Ta)とする。
 <融解熱>
 シェル樹脂(a)は、当該シェル樹脂(a)のDSCによる融解熱が下記式(1)および(2)を満たす方が望ましい。
5≦H1≦70・・・(1)
0.2≦H2/H1≦1.0・・・(2)
 式(1)および(2)中、H1は、DSCによる初回昇温時の融解熱(J/g)を示し、H2はDSCによる2回目昇温時の融解熱(J/g)を示す。
 H1は、シェル樹脂(a)の溶融速度の指標である。一般に、融解熱を有する樹脂は、シャープメルト性を有するため、少ないエネルギーで溶融させることができる。よって、シェル樹脂(a)として融解熱を有する樹脂を選択すれば、定着時に要するエネルギーを低減させることができる。したがって、シェル樹脂(a)として融解熱を有する樹脂を選択することが好ましい。しかし、樹脂が有する融解熱が大きすぎる場合には、樹脂を充分に溶融させることが難しい場合がある。好ましくは6≦H1≦65であり、より好ましくは7≦H1≦65である。
 上記式(2)におけるH2/H1は、シェル樹脂(a)の結晶化速度の指標である。一般に、樹脂からなる粒子(樹脂粒子)を溶融させた後に冷却して使用する場合、当該樹脂粒子中の結晶成分が結晶化されていなければ、当該樹脂粒子の抵抗値が下がる、または、当該樹脂粒子が可塑化されるなどという不具合が生じる。このような不具合が発生すると、冷却により得られた樹脂粒子の性能が当初設計した性能と異なることがある。以上のことから、樹脂粒子中の結晶成分を速やかに結晶化させ、樹脂粒子の性能に影響を与えないようにする必要がある。H2/H1は、より好ましくは0.3以上であり、さらに好ましくは0.4以上である。また、シェル樹脂(a)の結晶化速度が速ければ、H2/H1は1.0に近づくため、H2/H1は、1.0に近い値を取ることが好ましい。
 なお、上記式(2)におけるH2/H1は、理論的には1.0を超えないが、DSCによる実測値では1.0を超えることがある。DSCによる実測値(H2/H1)が1.0を超えた場合も、上記式(2)を満たすものとする。
 H1およびH2は、JIS-K7122(1987)「プラスチックの転移熱測定方法」に準拠して測定することができる。具体的には、まず、シェル樹脂(a)を5mg採取して、アルミパンに入れる。示差走査熱量測定装置(たとえば、製品名:「RDC220」、エスアイアイナノテクノロジー(株)製、または製品名:「DSC20」、セイコーインスツル(株)など)を用いて、昇温速度を毎分10℃として、溶融によるシェル樹脂(a)の吸熱ピークにおける温度(融点)を測定し、吸熱ピークの面積S1を求める。そして、求められた吸熱ピークの面積S1から、H1を算出することができる。H1を算出してから、冷却速度を90℃/分として0℃まで冷却した後、昇温速度を毎分10℃として、溶融によるシェル樹脂(a)の吸熱ピークにおける温度(融点)を測定し、吸熱ピークの面積S2を求める。そして、求められた吸熱ピークの面積S2から、H2を算出することができる。
 <融点>
 シェル樹脂(a)の融点は、好ましくは0℃以上220℃以下であり、より好ましくは30℃以上200℃以下であり、さらに好ましくは40℃以上80℃以下である。トナー粒子(C)の粒度分布、ならびに、液体現像剤(X)の粉体流動性、耐熱保管安定性および耐ストレス性などの観点から、シェル樹脂(a)の融点は液体現像剤(X)を製造するときの温度以上であることが好ましい。シェル樹脂の融点が液体現像剤を製造するときの温度よりも低いと、トナー粒子同士が合一することを防止し難くなることがあり、トナー粒子が分裂することを防止し難くなることがある。それだけでなく、トナー粒子の粒度分布における分布幅が狭くなり難い、別の言い方をすると、トナー粒子の粒径のバラツキが大きくなるおそれがある。
 本明細書において、融点は、示差走査熱量測定装置(製品名:「DSC20」または「SSC/580」など、セイコーインスツル(株)製)を用いてASTM D3418-82に規定の方法に準拠して測定されたものである。
 <Mn(数平均分子量)およびMw(重量平均分子量)>
 シェル樹脂(a)のMn[ゲルパーミエーションクロマトグラフィー(以下「GPC」とも記す)で測定して得られたもの]は、好ましくは100以上5000000以下であり、好ましくは200以上5000000以下であり、より好ましくは500以上500000以下である。
 本明細書において、樹脂(ポリウレタン樹脂を除く)のMnおよびMwは、テトラヒドロフラン(以下「THF」とも記す)の可溶分について、GPCを用いて、以下の条件で測定されたものである。
 測定装置:「HLC-8120」(製品名、東ソー(株)製)
 カラム:「TSKgelGMHXL」(製品名、東ソー(株)製)(2本)と「TSKgelMultiporeHXL-M」(製品名、東ソー(株)製)(1本)
 試料溶液:0.25質量%のTHF溶液
 カラムへのTHF溶液の注入量:100μl
 流速:1ml/分
 測定温度:40℃
 検出装置:屈折率検出器
 基準物質:標準ポリスチレン(製品名:TSK standard PОLYSTYRENE、東ソー(株)製)12点(分子量:500、1050、2800、5970、9100、18100、37900、96400、190000、355000、1090000、2890000)。
 本明細書において、ポリウレタン樹脂のMnおよびMwは、GPCを用いて、以下の条件で測定されたものである。
 測定装置:「HLC-8220GPC」(製品名、東ソー(株)製)
 カラム:「Guardcоlumn α」(1本)と「TSKgel α―M」(1本)
 試料溶液:0.125質量%のジメチルホルムアミド溶液
 カラムへのジメチルホルムアミド溶液の注入量:100μl
 流速:1ml/分
 測定温度:40℃
 検出装置:屈折率検出器
 基準物質:標準ポリスチレン(製品名:TSK standard PОLYSTYRENE、東ソー(株)製)12点(分子量:500、1050、2800、5970、9100、18100、37900、96400、190000、355000、1090000、2890000)。
 <SP値>
 本明細書において、溶解度パラメータをSP値と記す。
 シェル樹脂(a)のSP値は、好ましくは7(cal/cm31/2以上18(cal/cm31/2以下であり、より好ましくは8(cal/cm31/2以上14(cal/cm31/2以下である。
 <シェル粒子(A)>
 本実施の形態におけるシェル粒子(A)は、シェル樹脂(a)を含む。シェル粒子(A)の製造方法は、公知のいかなる方法も採用することができ、特に限定されない。たとえば、以下の[1]~[7]のような方法を挙げることができる。
[1]:ジェットミルなどの公知の乾式粉砕機を用いて、シェル樹脂(a)を乾式で粉砕させる。
[2]:シェル樹脂(a)の粉末を有機溶剤中に分散させ、ビーズミルまたはロールミルなどの公知の湿式分散機を用いて湿式で粉砕させる。
[3]:スプレードライヤーなどを用いてシェル樹脂(a)の溶液を噴霧し、乾燥させる。
[4]:シェル樹脂(a)の溶液に対して貧溶媒の添加または冷却を行なって、シェル樹脂(a)を過飽和させて析出させる。
[5]:シェル樹脂(a)の溶液を水または有機溶剤中に分散させる。
[6]:シェル樹脂(a)の前駆体を水中で乳化重合法、ソープフリー乳化重合法、シード重合法、または、懸濁重合法などにより重合させる。
[7]:シェル樹脂(a)の前駆体を有機溶剤中で分散重合などにより重合させる。
 これらの方法のうち、シェル粒子(A)の製造のしやすさの観点から、[4]、[6]および[7]の方法が好ましく、より好ましくは、[6]および[7]の方法が好適である。
 <コア樹脂(b)>
 本実施の形態におけるコア樹脂(b)は、酸性基を有し、かつ酸解離定数(以下pKaとも記す)が、2.90以上8.00以下であることを要する。
 コア樹脂(b)の分子構造において、酸性基の位置は特に限定されないが、好ましくはコア樹脂(b)の末端である。ここで、本明細書において、コア樹脂(b)の末端とは、分子内の構成単位の繰り返し構造のうち、最も長い繰り返し構造(主鎖)の始端部および終端部を示す。
 コア樹脂(b)のpKaが2.90未満であると、シェル樹脂(a)またはコア樹脂(b)の加水分解が促進されることがあり、その場合はトナー粒子(C)の耐熱安定性が低下するため好ましくない。
 一方、コア樹脂(b)のpKaが8.00を超過すると、定着性が低下するため、電子写真などの用途への適応性を考慮すると好ましくない。
 したがって、本実施の形態における樹脂(b)のpKaは、2.90以上8.00以下であることを要し、好ましくは2.90以上6.00以下であり、より好ましくは2.92以上5.50以下であることが好適である。
 本実施の形態におけるコア樹脂(b)としては、上記でシェル樹脂(a)として例示したもののうち、酸性基を有するものを用いることができ、たとえば、ビニル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリイミド樹脂、フェノール樹脂およびポリカーボネート樹脂などを挙げることができる。そして、これらのうち、ポリエステル樹脂、ポリウレタン樹脂、もしくはポリエステル樹脂およびポリウレタン樹脂を併用したものを好適に用いることができる。
 (1) 酸性基を有するポリエステル樹脂
 酸性基を有するポリエステル樹脂としては、たとえば、ジオールとジカルボン酸との重縮合体に、後述の酸無水物でカルボン酸を導入したものなどが挙げられる。
 ここで、ジオールは、ジオール(10)として上記で例示したもののうち、たとえば、炭素数が2~30のアルキレングリコール(たとえば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、オクタンジオール、デカンジオール、ドデカンジオール、テトラデカンジオール、ネオペンチルグリコールまたは2,2-ジエチル-1,3-プロパンジオールなど)、炭素数が15~30のビスフェノール類(たとえば、ビスフェノールA、ビスフェノールFもしくはビスフェノールSなど)AO[たとえば、EO、プロピレンオキサイド(以下「PO」とも記す)もしくはブチレンオキサイドなど]付加物(付加モル数が2~100)、およびアルキレングリコールとビスフェノール類のAO付加物の混合物などが挙げられる。
 また、ジカルボン酸は、ジカルボン酸(12)として上記で例示したもののうち、たとえば、炭素数が4~32のアルカンジカルボン酸(たとえば、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジカルボン酸またはオクタデカンジカルボン酸など)、炭素数が8~20の芳香族ジカルボン酸(たとえば、フタル酸、イソフタル酸、テレフタル酸またはナフタレンジカルボン酸など)などが挙げられる。
 (2) 酸性基を有するポリウレタン樹脂
 酸性基を有するポリウレタン樹脂としては、ポリイソシアネート(14)と活性水素含有化合物{たとえば、水;ポリオール[たとえば、ジオール(10)(ヒドロキシル基以外の官能基を有するジオールを含む)、ならびに3~8価およびそれ以上のポリオール(11)など];ポリカルボン酸[たとえば、ジカルボン酸(12)、ならびに3~6価およびそれ以上のポリカルボン酸(13)など];ポリオールとポリカルボン酸との重縮合により得られるポリエステルポリオール;炭素数が6~12のラクトンの開環重合体;ポリアミン(15);ポリチオール(16);これらの併用など}との重付加物、ならびにポリイソシアネート(14)と上記活性水素含有化合物とを反応させてなる末端イソシアネート基プレポリマーと、当該末端イソシアネート基プレポリマーのイソシアネート基に対して等量の1級および/または2級モノアミン(17)とを反応させて得られるアミノ基含有ポリウレタン樹脂などが挙げられる。
 (3) 酸性基を有するビニル樹脂
 酸性基を有するビニル樹脂としては、下記に示すカルボキシル基と重合性二重結合を有するモノマー、スルホ基と重合性二重結合を有するモノマー、ホスホノ基と重合性二重結合を有するモノマーなどの単独重合体および共重合体などが挙げられる。
 (3-1) カルボキシル基と重合性二重結合を有するモノマー
 カルボキシル基と重合性二重結合を有するモノマーとしては、たとえば、炭素数が3~15の不飽和モノカルボン酸[たとえば、(メタ)アクリル酸、クロトン酸、イソクロトン酸または桂皮酸など];炭素数が3~30の不飽和ジカルボン酸(無水物)[たとえば、(無水)マレイン酸、フマル酸、イタコン酸、(無水)シトラコン酸またはメサコン酸など];炭素数が3~10の不飽和ジカルボン酸のモノアルキル(炭素数が1~10)エステル(たとえば、マレイン酸モノメチルエステル、マレイン酸モノデシルエステル、フマル酸モノエチルエステル、イタコン酸モノブチルエステルまたはシトラコン酸モノデシルエステルなど)などが挙げられる。
 (3-2) スルホ基と重合性二重結合を有するモノマー
 スルホ基と重合性二重結合を有するモノマーとしては、たとえば、炭素数が2~14のアルケンスルホン酸[たとえば、ビニルスルホン酸、(メタ)アリルスルホン酸またはメチルビニルスルホン酸など];スチレンスルホン酸およびスチレンスルホン酸のアルキル(炭素数が2~24)誘導体(たとえば、α-メチルスチレンスルホン酸など);炭素数が5~18のスルホ(ヒドロキシ)アルキル-(メタ)アクリレート[たとえば、スルホプロピル(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロキシプロピルスルホン酸、2-(メタ)アクリロイルオキシエタンスルホン酸または3-(メタ)アクリロイルオキシ-2-ヒドロキシプロパンスルホン酸など];炭素数が5~18のスルホ(ヒドロキシ)アルキル(メタ)アクリルアミド[たとえば、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸または3-(メタ)アクリルアミド-2-ヒドロキシプロパンスルホン酸など];アルキル(炭素数が3~18)アリルスルホコハク酸(たとえば、プロピルアリルスルホコハク酸、ブチルアリルスルホコハク酸または2-エチルヘキシル-アリルスルホコハク酸など);ポリ[n=2~30]オキシアルキレン(たとえば、オキシエチレン、オキシプロピレンまたはオキシブチレンなど。ポリオキシアルキレンは、オキシアルキレンの単独重合体であっても良いし、オキシアルキレンの共重合体であっても良い。ポリオキシアルキレンがオキシアルキレンの共重合体である場合には、ランダム重合体であっても良いしブロック重合体であっても良い。);モノ(メタ)アクリレートの硫酸エステル[たとえば、ポリ(n=5~15)オキシエチレンモノメタクリレート硫酸エステルまたはポリ(n=5~15)オキシプロピレンモノメタクリレート硫酸エステルなど];上記化学式(1)~(3)で表される化合物などが挙げられる。
 (3-3) ホスホノ基と重合性二重結合を有するモノマー
 ホスホノ基と重合性二重結合を有するモノマーとしては、たとえば、(メタ)アクリロイルオキシアルキルリン酸モノエステル(アルキル基の炭素数が1~24)[たとえば、2-ヒドロキシエチル(メタ)アクリロイルホスフェートまたはフェニル-2-アクリロイロキシエチルホスフェートなど];(メタ)アクリロイルオキシアルキルホスホン酸(アルキル基の炭素数が1~24)(たとえば2-アクリロイルオキシエチルホスホン酸など)などが挙げられる。
 (4) 酸性基を有するポリアミド樹脂
 酸性基を有するポリアミド樹脂としては、ラクタムの開環重合体、アミノカルボン酸の重縮合体およびポリカルボン酸とポリアミンの重縮合体などが挙げられる。
 (5) 酸性基を有するポリイミド樹脂
 酸性基を有するポリイミド樹脂としては、脂肪酸ポリイミド樹脂(脂肪酸カルボン酸二無水物と脂肪酸ジアミンとから得られる重合体など)および芳香族ポリイミド樹脂(芳香族カルボン酸二無水物と、脂肪族ジアミンまたは芳香族ジアミンと、から得られる重合体など)などが挙げられる。
 (6) 酸性基を有するフェノール樹脂
 酸性基を有するフェノール樹脂としては、フェノール類(フェノール、クレゾール、ノニルフェノール、リグニン、レゾルシンおよびカテコールなど)と、アルデヒド類(ホルムアルデヒド、アセトアルデヒドおよびフルフラールなど)との縮合によって得られる重合体などが挙げられる。
 (7) 酸性基を有するポリカーボネート樹脂
 酸性基を有するポリカーボネート樹脂としては、ビスフェノール類(ビスフェノールA、ビスフェノールFおよびビスフェノールSなど)と、ホスゲンまたは炭酸ジエステルなどとの縮合によって得られる重合体などが挙げられる。
 酸性基としては、カルボキシル基、スルホン酸基、スルフィン基、ホスホン酸基およびホスフィン基などを挙げることができる。コア樹脂(b)のpKaは、酸性基の種類を適宜選択することで調整可能である。また、酸価を付与する樹脂としては、Mnが2000以上10000以下であるものが好ましく、酸価は2以上35以下であることが好ましい。
 上記した酸性基のうち、酸無水物によって分子内への導入が容易であるとの観点から、カルボキシル基を好適に用いることができる。
 このような酸無水物としては、無水プロピオン酸、無水コハク酸、無水マレイン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、エチレングリコールビスアンヒドロトリメリテート、グリセリンビス(アンヒドロトリメリテート)モノアセテート、ドデセニル無水コハク酸、クロセンド酸無水物などをあげることができる。これらのうち、酸性基導入の反応速度が速いことから、無水プロピオン酸、無水コハク酸、無水マレイン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸を好適に用いることができ、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸であれば、さらに好適である。
 <コア樹脂(b)のpKa>
 コア樹脂(b)のpKaは、下記式(3)によって算出できる。
pKa=-log{[H3+][(b-)]/[(b)]}・・・(3)
 式(3)中、[H3+]はコア樹脂(b)を水中に分散したときの水素イオン濃度(mol/L)を示し、[(b-)]はコア樹脂(b)を水中に分散したときの共役塩基濃度(mol/L)を示し、[(b)]はコア樹脂(b)を水中に分散したときのコア樹脂(b)の濃度(mol/L)を示す。
 なお、本実施の形態において、コア樹脂(b)から酸が多段階に解離する場合は、pKaは第1段目の酸解離定数とする。
 コア樹脂(b)のMn、融点、ガラス転移温度(以下Tgとも記す)、およびSP値は、用途に応じて、好適な範囲に調整することができる。
 たとえば、本実施の形態の液体現像剤(X)を、電子写真用、静電記録用などに用いる場合は、Mnは、1000以上5000000以下であることが好ましく、より好ましくは2000以上500000以下であることが好適である。また、この場合、融点は、20℃以上300℃以下であることが好ましく、より好ましくは80℃以上250℃以下である。また、この場合、Tgは、20℃以上200℃以下であることが好ましく、より好ましくは40℃以上150℃以下である。さらに、この場合、SP値は、8(cal/cm31/2以上16(cal/cm31/2以下であることが好ましく、より好ましくは9(cal/cm31/2以上14(cal/cm31/2以下である。
 <Tgの測定方法>
 ここで、Tgは、DSC法により測定しても良いし、フローテスターを用いて測定しても良い。DSC法によりTgを測定する場合には、たとえば、示差走査熱量測定装置(製品名:「DSC20」または「SSC/580」など、いずれもセイコーインスツル(株)製)を用いてASTM D3418-82に規定の方法に準拠してTgを測定することが好ましい。
 フローテスターを用いてTgを測定する場合には、高化式フローテスター(たとえば、製品名:「CFT500型」など、(株)島津製作所製)を用いることが好ましい。この場合のTgの測定条件の一例を以下に示す。
 荷重:3MPa
 昇温速度:3.0℃/min
 ダイ口径:0.50mm
 ダイ長さ:10.0mm。
 <コア粒子(B)>
 本実施の形態におけるコア粒子(B)は、コア樹脂(b)を含む。コア粒子(B)は、上記コア樹脂(b)から、上記シェル粒子(A)の製造方法と同様な方法によって、製造することができる。
 <トナー粒子(C)>
 本実施の形態に係るトナー粒子(C)は、コア・シェル構造をとっており、シェル樹脂(a)を含有するシェル粒子(A)がコア樹脂(b)を含有するコア粒子(B)の表面に付着されていても良いし、シェル粒子(A)がコア粒子(B)の表面に被覆されていても良い。ここで、被覆とはシェル粒子(A)が連続して付着し、被膜のようになっているものをいう。
 シェル粒子(A)の粒径は、コア粒子(B)の粒径よりも小さいことが好ましい。トナー粒子(C)の粒径均一性の観点から、粒径比[(シェル粒子(A)の体積平均粒径)/(コア粒子(B)の体積平均粒径)]は0.001以上0.3以下の範囲内にあることが好ましい。より好ましくは、粒径比の下限は0.003であり、上限は0.25である。粒径比が0.3より大きいと、シェル粒子(A)がコア粒子(B)の表面に効率良く吸着し難くなり、よって、得られるトナー粒子(C)の粒度分布における分布幅が広くなる傾向がある。一方、粒径比が0.001より小さいと、シェル粒子(A)の製造が困難となることがある。
 シェル粒子(A)の体積平均粒径は、所望の粒径のトナー粒子(C)を得るのに適した粒径になるように、且つ、上記粒径比が上記好ましい範囲内に収まるように、適宜調整することができる。シェル粒子(A)の体積平均粒径は、好ましくは0.0005μm以上30μm以下である。シェル粒子(A)の体積平均粒径の上限は、より好ましくは20μmであり、さらに好ましくは10μmである。シェル粒子(A)の体積平均粒径の下限は、より好ましくは0.01μmであり、さらに好ましくは0.02μmであり、最も好ましくは0.04μmである。たとえば体積平均粒径が1μmのトナー粒子(C)を得たい場合には、シェル粒子(A)の体積平均粒径は、好ましくは0.0005μm以上0.3μm以下であり、より好ましくは0.001μm以上0.2μm以下である。たとえば体積平均粒径が10μmのトナー粒子(C)を得たい場合には、シェル粒子(A)の体積平均粒径は、好ましくは0.005μm以上3μm以下であり、より好ましくは0.05μm以上2μm以下である。たとえば体積平均粒径が100μmのトナー粒子(C)を得たい場合には、シェル粒子(A)の体積平均粒径は、好ましくは0.05μm以上30μm以下であり、より好ましくは0.1μm以上20μm以下である。
 上記粒径比を上記好ましい範囲内に制御し易いという観点から、コア粒子(B)の体積平均粒径は、好ましくは0.1μm以上300μm以下であり、より好ましくは0.5μm以上250μm以下であり、さらに好ましくは1μm以上200μm以下である。
 <体積平均粒径の測定方法>
 本明細書では、「体積平均粒径」は、レーザー式粒度分布測定装置(たとえば、製品名:「LA-920」、(株)堀場製作所製、または製品名「マルチサイザーIII」、コールター社製);光学系としてレーザードップラー法を用いる測定装置(製品名:「ELS-800」、大塚電子(株)製);フロー式粒子像分析装置(たとえば、製品名:「FPIA-3000S」、シスメックス社製)などを用いて測定可能である。異なる測定装置で体積平均粒径を測定したときにその測定値に差が生じた場合には、「ELS-800」での測定値を採用する。
 シェル粒子(A)とコア粒子(B)との質量比[(A):(B)]は、好ましくは1:99~70:30である。トナー粒子(C)の粒径の均一性および液体現像剤(X)の耐熱安定性などの観点から、上記比率[(A):(B)]は、より好ましくは2:98~50:50であり、さらに好ましくは3:97~35:65である。シェル粒子の含有率(質量比)が低すぎると、トナー粒子の耐ブロッキング性が低下することがある。また、コア粒子の含有率(質量比)が高すぎると、低温における定着性が悪化することがある。
 トナー粒子(C)の形状は、液体現像剤(X)の流動性およびその溶融レベリング性などの観点から、好ましくは球状である。具体的には、トナー粒子(C)の円形度の平均値(平均円形度)は、好ましくは0.92以上1.0以下であり、より好ましくは0.97以上1.0以下であり、さらに好ましくは0.98以上1.0以下である。なお、トナー粒子(C)の平均円形度が1.0に近ければ近いほど、トナー粒子(C)は球状に近い形状を有することとなる。コア粒子(B)が球状であればトナー粒子(C)が球状になりやすいため、コア粒子(B)は球状であることが好ましい。
 <平均円形度の測定方法>
 本明細書において、平均円形度は、トナー粒子(C)を光学的に検知し、トナー粒子(C)の投影面積と等しい面積を有する円の周囲長を検知されたトナー粒子(C)の周囲長さで除した値である。具体的には、フロー式粒子像分析装置(たとえば、製品名:「FPIA-3000」、シスメックス(株)製)を用いて平均円形度を測定する。詳細には、所定の容器に、あらかじめ不純固形物を除去した水100ml以上150ml以下を入れ、分散剤として界面活性剤(たとえば、製品名:「ドライウエル」、富士写真フイルム(株)製)0.1ml以上0.5ml以下を加え、測定試料0.1g以上9.5g以下程度をさらに加える。このようにして測定試料が分散された懸濁液に対して、超音波分散器(たとえば、製品名:「ウルトラソニッククリーナ モデル VS-150」、ウエルボクリア社製)を用いて、約1分間以上3分間以下、分散処理を行なう。これにより、分散濃度を3000個/μL以上10000個/μL以下にする。そして、分散処理後の試料溶液を用いて、測定試料の形状および粒度分布を測定する。
 トナー粒子(C)の体積平均粒径は、用途により適宜決定されることが好ましいが、一般的には0.01μm以上100μm以下であることが好ましい。トナー粒子(C)の体積平均粒径の上限は、より好ましくは40μmであり、さらに好ましくは30μmであり、最も好ましくは20μmである。トナー粒子(C)の体積平均粒径の下限は、より好ましくは0.3μmであり、さらに好ましくは0.5μmである。
 トナー粒子(C)の粒径均一性の観点から、トナー粒子(C)の体積分布の変動係数は、好ましくは1%以上100%以下であり、より好ましくは1%以上50%以下であり、さらに好ましくは1%以上30%以下であり、最も好ましくは1%以上25%以下である。本明細書では、体積分布の変動係数は、レーザー式粒度分布測定装置(たとえば、製品名:「LA-920」、(株)堀場製作所製)などの粒度分布測定装置を用いて測定される。
 <表面被覆率>
 トナー粒子(C)の粒径均一性、液体現像剤(X)の流動性および液体現像剤(X)の耐熱安定性の観点から、トナー粒子(C)においてシェル粒子(A)によるコア粒子(B)の表面被覆率は、好ましくは50%以上であり、より好ましくは80%以上である。なお、シェル粒子(A)によるコア粒子(B)の表面被覆とは、コア・シェル構造を有するトナー粒子(C)において、シェル粒子(A)がコア粒子(B)の最表面に付着している状態や、シェル粒子(A)がコア粒子(B)の表面近傍に濃縮されている状態を意味する。トナー粒子(C)におけるシェル粒子(A)およびコア粒子(B)の存在状態(在り方)については、シェル樹脂(a)およびコア樹脂(b)の組成やトナー粒子(C)の製造方法によって異なるが、シェル樹脂(a)の一部がコア樹脂(b)中に存在していてもよく、シェル樹脂(a)の一部がコア粒子(B)の表面に存在していてもよい。また、シェル粒子(A)によるコア粒子(B)の表面被覆率は、たとえば、走査型電子顕微鏡(SEM)で得られる像の画像解析から下記式(4)に基づいて求めることができる。そして、下記式(4)で求められる表面被覆率を変えることにより、トナー粒子(C)の形状を制御することができる。
表面被覆率(%)={S1/(S1+S2)}×100・・・(4)
(式(4)中、S1はシェル粒子(A)に覆われているコア粒子(B)の面積を示し、S2はシェル粒子(A)が付着または被覆していないコア粒子(B)の面積を示す。)
 なお、本明細書において、表面被覆率は、粒子50個について測定した結果の平均値とする。
 トナー粒子(C)の表面平均中心線粗さ(Ra)は、液体現像剤(X)の流動性の観点から、好ましくは0.01μm以上0.8μm以下である。表面平均中心線粗さ(Ra)は、粗さ曲線と当該粗さ曲線の中心線との偏差の絶対値を算術平均して得られた値であり、走査型プローブ顕微鏡システム(たとえば、東陽テクニカ(株)製)などを用いて測定される。
 トナー粒子(C)の粒度分布および液体現像剤(X)の耐熱安定性の観点から、トナー粒子(C)のコア・シェル構造は、トナー粒子(C)の質量に対して、1質量%以上70質量%以下(より好ましくは5質量%以上50質量%以下、さらに好ましくは10質量%以上35質量%以下)の膜状のシェル粒子(A)と、30質量%以上99質量%以下(より好ましくは50質量%以上95質量%以下、さらに好ましくは65質量%以上90質量%以下)のコア粒子(B)とで構成されることが好ましい。
 トナー粒子(C)の定着性と液体現像剤(X)の耐熱安定性との観点から、液体現像剤(X)におけるトナー粒子(C)の含有率は、好ましくは10質量%以上50質量%以下であり、より好ましくは15質量%以上45質量%以下であり、さらに好ましくは20質量%以上40質量%以下である。
 <添加剤>
 本実施の形態におけるトナー粒子(C)は、シェル粒子(A)およびコア粒子(B)の少なくとも一方に、着色剤を含んでいることが好ましく、さらに好ましくは、コア粒子(B)がコア樹脂(b)と着色剤とを含む。また、トナー粒子(C)は、シェル粒子(A)およびコア粒子(B)の少なくとも一方に、着色剤以外の添加剤(たとえば、ワックス、充填剤、帯電防止剤、離型剤、荷電制御剤、紫外線吸収剤、酸化防止剤、ブロッキング防止剤、耐熱安定剤および難燃剤など)をさらに含んでいても良い。
 <着色剤>
 着色剤としては、公知の顔料を特に限定することなく使用することができるが、コスト、耐光性および着色性などの観点から、以下に示す着色剤を使用することが好ましい。なお、色彩構成上、以下に示す着色剤は、通常、ブラック顔料、イエロー顔料、マゼンタ顔料およびシアン顔料に分類され、ブラック以外の色彩(カラー画像)は基本的にイエロー顔料、マゼンタ顔料およびシアン顔料の減法混色により調色される。また、着色剤としては、以下に示す顔料に対して酸性または塩基性などの溶剤を用いて表面処理を行なったものを使用しても良く、たとえば以下に示す顔料に酸性または塩基性のシナジストを併用しても良い。
 ブラック顔料としては、たとえば、カーボンブラックなどが挙げられる。
 イエロー顔料としては、たとえば、C.I.(カラーインデックス)Pigment Yellow12、同13、同14、同17、同55、同81、同83、同180および同185などのジスアゾ系イエロー顔料などが挙げられる。
 マゼンタ顔料としては、たとえば、C.I.Pigment Red48、同57(カーミン6B)、同5、同23、同60、同114、同146および同186などのアゾレーキ系マゼンタ顔料;不溶性アゾ系マゼンタ顔料;C.I.Pigment Red88、C.I.Pigment Violet36および同38などのチオインジゴ系マゼンタ顔料;C.I.Pigment Red122および同209などのキナクリドン系マゼンタ顔料;C.I.Pigment Red269などのナフトール系マゼンタ顔料などが挙げられる。なお、マゼンタ顔料としては、これらのうちキナクリドン系顔料、カーミン系顔料およびナフトール系顔料のうち少なくとも1つが含まれていることが好ましく、より好ましくはこれら3種の顔料のうち2種類または3種類が含まれていることが好適である。
 シアン顔料としては、たとえば、C.I.Pigment Blue15:1、同15:3などの銅フタロシアニンブルー系シアン顔料;フタロシアニングリーン系顔料などが挙げられる。
 <ワックス>
 上記コア粒子(B)は、ワックス(c)およびビニルポリマー鎖がワックスにグラフト重合された変性ワックス(d)の少なくとも一方を含有することが好ましい。ただし、上記シェル粒子(A)が、ワックス(c)および変性ワックス(d)の少なくとも一方を含んでいても良い。
 そして、液体現像剤(X)の耐熱安定性などの観点から、添加剤として、ワックス(c)およびビニルポリマー鎖がワックスにグラフト重合された変性ワックス(d)の少なくとも一方がコア粒子(B)(コア層)内に含まれていることが好ましい。
 ワックス(c)の含有率は、コア粒子(B)の質量に対して、好ましくは20質量%以下であり、より好ましくは1質量%以上15質量%以下である。変性ワックス(d)の含有率は、コア粒子(B)の質量に対して、好ましくは10質量%以下であり、より好ましくは0.5質量%以上8質量%以下である。ワックス(c)と変性ワックス(d)の両者を含む場合のワックス(c)と変性ワックス(d)との合計含有率は、コア粒子(B)の質量に対して、好ましくは25質量%以下であり、より好ましくは1質量%以上20質量%以下である。
 ワックス(c)としては、たとえば、合成ワックス(たとえばポリオレフィンワックスなど);天然ワックス(たとえばパラフィンワックス、マイクロクリスタリンワックス、カルナウバワックス、カルボニル基含有ワックスまたはこれらの併用など)などが挙げられる。これらのうちワックス(c)として好ましいのは、パラフィンワックスおよびカルナウバワックスである。パラフィンワックスとしては、たとえば、融点が50℃以上90℃以下で炭素数が20~36の直鎖飽和炭化水素を主成分とする石油系ワックスなどが挙げられる。カルナウバワックスとしては、たとえば、融点が50℃以上90℃以下で炭素数が16~36の動植物ワックスなどが挙げられる。
 ワックス(c)のMnは、離型性の観点から、好ましくは400以上5000以下であり、より好ましくは1000以上3000以下であり、さらに好ましくは1500以上2000以下である。本明細書において、ワックス(c)のMnは、GPCを用いて測定される。ワックス(c)のMnの測定時、溶媒としては、たとえばo-ジクロロベンゼンを用いることができ、基準物質としては、たとえばポリスチレンを用いることができる。
 ワックス(c)と変性ワックス(d)とを併用する場合には、ワックス(c)は、変性ワックス(d)と共に、無溶剤下での溶融混練処理および有機溶剤存在下での加熱溶解混合処理の少なくとも一方の処理の後に、コア樹脂(b)中に分散されることが好ましい。このようにワックスの分散処理時に変性ワックス(d)を共存させることにより、変性ワックス(d)のワックス基部分が効率良くワックス(c)の表面に吸着する、または、変性ワックス(d)のワックス基部分の一部が効率良くワックス(c)のマトリクス構造内に絡みあう。これにより、ワックス(c)の表面とコア樹脂(b)との親和性が良好になり、ワックス(c)をより均一にコア粒子(B)中に内包させることができる。よって、ワックス(c)の分散状態の制御が容易になる。
 変性ワックス(d)に用いられるワックスとしては、たとえば上記ワックス(c)の具体例として列挙したものと同様のものが挙げられ、変性ワックス(d)に用いられるワックスの好ましい材料についても、上記ワックス(c)の好ましい材料として列挙したものと同様のものが挙げられる。重合性二重結合を有するモノマーとしては、たとえば、上記のビニル樹脂を構成する重合性二重結合を有するモノマー(1)~(9)と同様のものが挙げられるが、これらのうち好ましいのは、上記モノマー(1)、上記モノマー(2)および上記モノマー(6)である。重合性二重結合を有するモノマーとしては、上記モノマー(1)~(9)のいずれかを単独で用いても良いし、二種以上を併用しても良い。
 変性ワックス(d)におけるワックス成分の量(未反応ワックスを含む)は、好ましくは0.5質量%以上99.5質量%以下であり、より好ましくは1質量%以上80質量%以下であり、さらに好ましくは5質量%以上50質量%以下であり、最も好ましくは10質量%以上30質量%以下である。
 液体現像剤(X)の耐熱安定性の観点から、変性ワックス(d)のTgは、好ましくは40℃以上90℃以下であり、より好ましくは50℃以上80℃以下である。
 変性ワックス(d)のMnは、好ましくは1500以上10000以下であり、より好ましくは1800以上9000以下である。変性ワックス(d)のMnが1500以上10000以下であれば、トナー粒子(C)の機械強度が良好となる。
 このような変性ワックス(d)の製造方法は特に限定されない。たとえば、ワックス(c)を溶剤(たとえばトルエンまたはキシレンなど)に溶解または分散させて100℃以上200℃以下に加熱した後、重合性二重結合を有するモノマーを重合させてから溶剤を留去することにより変性ワックス(d)を得ることができる。
 ワックス(c)と変性ワックス(d)とを混合する方法としては、たとえば、下記[i]~[iii]に記載の方法を挙げることができる。下記[i]~[iii]のうち下記[ii]を用いることが好ましい。
[i]:それぞれの融点以上の温度でワックス(c)と変性ワックス(d)とを溶融させて混練させる。
[ii]:ワックス(c)と変性ワックス(d)とを後述の有機溶剤(u)中に溶解または懸濁させた後、冷却晶析もしくは溶剤晶析などにより液中に析出させる、または、スプレードライなどにより気体中に析出させる。
[iii]:ワックス(c)と変性ワックス(d)とを後述の有機溶剤(u)中に溶解または懸濁させた後、分散機などを用いて機械的に湿式で粉砕させる。
 ワックス(c)および/または変性ワックス(d)をコア樹脂(b)中に分散させる方法としては、たとえば、ワックス(c)および/または変性ワックス(d)と、コア樹脂(b)とをそれぞれ溶剤に溶解または分散させてから、これらを混合する方法などが挙げられる。
 <絶縁性液体(L)>
 絶縁性液体(L)としては、たとえば脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、ハロゲン化炭化水素、ポリシロキサン等を挙げることができる。具体的には、たとえば、ヘキサン、オクタン、イソオクタン、デカン、イソデカン、デカリン、ノナン、ドデカン、イソドデカン、シクロヘキサン、シクロオクタン、シクロデカン、ベンゼン、トルエン、キシレン、メシチレンなどを挙げることができ、より具体的には、たとえば、アイソパーE、アイソパーG、アイソパーH、アイソパーL(アイソパー:エクソン社の商品名)、シェルゾール70、シェルゾール71(シェルゾール:シェルオイル社の商品名)、アムスコOMS、アムスコ460(アムスコ:スピリッツ社の商品名)、IPソルベント2028(出光興産の商品名)、シリコーンオイルおよび流動パラフィンなどが挙げられる。これらを単独で用いても良いし、2種以上を併用しても良い。
 臭気の観点から、これらのうち絶縁性液体(L)として好ましいのは、沸点が100℃以上の溶剤であり、より好ましいのは、炭素数が10以上の炭化水素系溶剤(たとえば、ドデカン、イソドデカンおよび流動パラフィンなど)およびシリコーンオイルであり、さらに好ましいのは、流動パラフィンである。
 絶縁性液体(L)の比誘電率は20℃において1以上4以下であることが好ましい。これにより、液体現像剤の帯電維持性を高めることができる。絶縁性液体(L)の比誘電率は、ブリッジ法(JIS C2101-1999)により求められた絶縁性液体(L)の誘電率を用いて算出される。具体的には、絶縁性液体(L)を充填する前の空の状態の静電容量C0(pF)と、絶縁性液体(L)を充填した状態の等価並列静電容量Cx(pF)とを測定し、下記式(5)に代入して絶縁性液体(L)の誘電率εを算出する。絶縁性液体(L)の比誘電率は、算出されたεと空気の比誘電率1.000585との比で求められる。
ε=Cx/C0・・・(5)
 本実施の形態に係る液体現像剤(X)に含まれる溶剤としては、実質的に絶縁性液体(L)のみであることが好ましいが、液体現像剤は、好ましくは1質量%以下、より好ましくは0.5質量%以下の範囲で他の有機溶剤を含有しても良い。
 <液体現像剤の製造方法>
 本実施の形態にかかる液体現像剤(X)の製造方法は、特に限定されないが、本実施の形態の製造方法によって、製造した場合は、液体現像剤(X)中のトナー粒子(C)の粒度分布を狭くできるため、特に好ましい。
 本実施の形態の製造方法は、以下の工程[I]~[IV]を備える。
工程[I]:絶縁性液体(L)中にシェル樹脂(a)を含有するシェル粒子(A)が分散されてなるシェル粒子(A)の分散液(W)を調製する。
工程[II]:有機溶媒(M)中にコア樹脂(b)またはコア樹脂(b)の前駆体(b0)が溶解されてなるコア粒子(B)形成用溶液を調製する。
工程[III]:該シェル粒子(A)の分散液(W)に該コア粒子(B)形成用溶液を分散させることにより、該分散液(W)中に該コア樹脂(b)を含むコア粒子(B)を形成させるとともに、該シェル粒子(A)が該コア粒子(B)の表面に付着または被覆されてなるコア・シェル構造を有するトナー粒子(C)を得る。
工程[IV]:該トナー粒子(C)を得る工程の後で該有機溶媒(M)を留去させることにより、液体現像剤(X)を得る。
 そして、該コア樹脂(b)は、酸性基を有し、酸解離定数が2.90以上8.00以下である。
 また、本実施の形態にかかる液体現像剤の製造方法は、好ましくは、以下の工程[V]を備える。
工程[V]:着色剤が分散された分散液(着色剤の分散液)を調製する。
 さらに、工程[I]を省略し、かつ工程[III]において分散液(W)に該コア粒子(B)形成用溶液を分散させる替りに、あらかじめ工程[II]で調整したコア粒子(B)形成用溶液中にシェル樹脂(a)を加えた混合液を、絶縁性液体(L)中で分散させることにより、コア樹脂(b)を含むコア粒子(B)を形成させるとともに、該シェル粒子(A)が該コア粒子(B)の表面に付着または被覆されてなるコア・シェル構造を有するトナー粒子(C)を得ることができる。
 以下、工程ごとに詳しく説明する。
 <工程[I]>
 工程[I]において、分散液(W)は、シェル粒子(A)を製造してから当該シェル粒子(A)を絶縁性液体(L)に分散させて製造することができるが、その方法は特に限定されない。
 シェル粒子(A)を製造してから当該シェル粒子(A)を絶縁性液体(L)に分散させる場合には、下記[4]~[6]のいずれかの方法を用いることが好ましく、下記[6]を用いることがより好ましい。また、絶縁性液体(L)中において重合反応などによりシェル粒子(A)を製造する場合には、下記[1]~[3]のいずれかの方法を用いることが好ましく、下記[1]を用いることがより好ましい。
[1]:シェル樹脂(a)がビニル樹脂である場合は、モノマーを、絶縁性液体(L)を含む溶剤中で分散重合法などにより重合させる。これにより、シェル粒子(A)の分散液(W1)が直接製造される。必要に応じて、絶縁性液体(L)以外の溶剤をシェル粒子(A)の分散液(W)から留去させる。なお、絶縁性液体(L)以外の溶剤を留去するとき、絶縁性液体(L)のうち低沸点成分が留去されても良い。このことは、以下に示す絶縁性液体(L)以外の溶剤を留去させる工程において同様である。
[2]:シェル樹脂(a)がポリエステル樹脂もしくはポリウレタン樹脂などの重付加樹脂または縮合系樹脂である場合は、前駆体(モノマーもしくはオリゴマーなど)または前駆体の溶液を必要であれば適当な分散剤の存在下で絶縁性液体(L)に分散させ、その後、加熱または硬化剤の添加などにより前駆体を硬化させる。必要に応じて、絶縁性液体(L)以外の溶剤を留去させる。
[3]:シェル樹脂(a)がポリエステル樹脂もしくはポリウレタン樹脂などの重付加樹脂または縮合系樹脂である場合は、前駆体(モノマーもしくはオリゴマーなど)または前駆体の溶液(出発物質は、液体であることが好ましいが、加熱により液状化するものであっても良い)中に適当な乳化剤を溶解させた後、貧溶媒となる絶縁性液体(L)を加えて前駆体を再沈殿させる。その後、硬化剤の添加などにより前駆体を硬化させ、必要に応じて絶縁性液体(L)以外の溶剤を留去させる。
[4]:あらかじめ重合反応(付加重合、開環重合、重付加、付加縮合および縮合重合などのいずれの重合反応であってもよい。下記[5]および[6]においても同様。)により得られたシェル樹脂(a)を機械回転式またはジェット式などの微粉砕機を用いて粉砕し、その後分級する。これにより、シェル粒子(A)が得られる。得られたシェル粒子(A)を適当な分散剤の存在下で絶縁性液体(L)に分散させる。
[5]:あらかじめ重合反応により得られたシェル樹脂(a)が溶解された樹脂溶液(この樹脂溶液は、シェル樹脂(a)を溶剤中で重合させることにより得られたものであっても良い)を霧状に噴霧する。これにより、シェル粒子(A)が得られる。得られたシェル粒子(A)を適当な分散剤の存在下で絶縁性液体(L)に分散させる。
[6]:あらかじめ重合反応により得られたシェル樹脂(a)が溶解された樹脂溶液(この樹脂溶液は、シェル樹脂(a)を溶剤中で重合させることにより得られたものであっても良い)に貧溶媒(絶縁性液体(L)であることが好ましい。)を添加する、または、あらかじめシェル樹脂(a)が加熱溶解されて得られた樹脂溶液を冷却することにより、さらには適当な分散剤を存在させることにより、シェル粒子(A)を析出させる。必要に応じて、絶縁性液体(L)以外の溶剤を留去させる。
 シェル粒子(A)を製造してから当該シェル粒子(A)を絶縁性液体(L)に分散させる場合、シェル粒子(A)の製造方法は特に限定されず、下記[7]に示す乾式でシェル粒子(A)を製造する方法であっても良いし、下記[8]~[13]で示す湿式でシェル粒子(A)を製造する方法であっても良い。シェル粒子(A)の製造し易さの観点から、シェル粒子(A)の製造方法は、好ましくは湿式であり、より好ましくは下記[10]、下記[12]または下記[13]であり、さらに好ましくは下記[12]または[13]である。
[7]:ジェットミルなどの公知の乾式粉砕機を用いて、シェル樹脂(a)を乾式で粉砕させる。
[8]:シェル樹脂(a)の粉末を有機溶剤中に分散させ、ビーズミルまたはロールミルなどの公知の湿式分散機を用いて湿式で粉砕させる。
[9]:スプレードライヤーなどを用いてシェル樹脂(a)の溶液を噴霧し、乾燥させる。
[10]:シェル樹脂(a)の溶液に対して貧溶媒の添加または冷却を行なって、シェル樹脂(a)を過飽和させて析出させる。
[11]:シェル樹脂(a)の溶液を水または有機溶剤中に分散させる。
[12]:シェル樹脂(a)の前駆体を水中で乳化重合法、ソープフリー乳化重合法、シード重合法、または、懸濁重合法などにより重合させる。
[13]:シェル樹脂(a)の前駆体を有機溶剤中で分散重合などにより重合させる。
 上記[2]および[4]~[6]における分散剤としては、たとえば、公知の界面活性剤(s)および油溶性ポリマー(t)などが挙げられる。また、分散助剤として、たとえば有機溶剤(u)および可塑剤(v)などを併用することができる。
 界面活性剤(s)としては、たとえば、アニオン性界面活性剤(s-1)、カチオン性界面活性剤(s-2)、両性界面活性剤(s-3)および非イオン性界面活性剤(s-4)などが挙げられる。なお、界面活性剤(s)として、2種以上の界面活性剤を併用しても良い。
 アニオン性界面活性剤(s-1)としては、たとえば、炭素数が8~24のアルキル基を有するエーテルカルボン酸(塩)[たとえば(ポリ)オキシエチレン(繰り返し単位数が1~100)ラウリルエーテル酢酸ナトリウムなど];炭素数が8~24のアルキル基を有するエーテル硫酸エステル塩[たとえば(ポリ)オキシエチレン(繰り返し単位数が1~100)ラウリル硫酸ナトリウムなど];炭素数が8~24のアルキル基を有するスルホコハク酸エステル塩[たとえば、モノもしくはジアルキルスルホコハク酸エステルナトリウム、モノもしくはジアルキルスルホコハク酸エステルジナトリウム、(ポリ)オキシエチレン(繰り返し単位数が1~100)モノもしくはジアルキルスルホコハク酸エステルナトリウム、または、(ポリ)オキシエチレン(繰り返し単位数が1~100)モノもしくはジアルキルスルホコハク酸エステルジナトリウムなど];(ポリ)オキシエチレン(繰り返し単位数が1~100)ヤシ油脂肪酸モノエタノールアミド硫酸ナトリウム;炭素数が8~24のアルキル基を有するスルホン酸塩(たとえばドデシルベンゼンスルホン酸ナトリウムなど);炭素数が8~24のアルキル基を有するリン酸エステル塩[たとえば、ラウリルリン酸ナトリウム、または、(ポリ)オキシエチレン(繰り返し単位数が1~100)ラウリルエーテルリン酸ナトリウムなど];脂肪酸塩(たとえば、ラウリン酸ナトリウムまたはラウリン酸トリエタノールアミンなど);アシル化アミノ酸塩(たとえばヤシ油脂肪酸メチルタウリンナトリウムなど)などが挙げられる。
 カチオン性界面活性剤(s-2)としては、たとえば、4級アンモニウム塩型のカチオン界面活性剤およびアミン塩型のカチオン界面活性剤などが挙げられる。4級アンモニウム塩型のカチオン界面活性剤としては、たとえば、3級アミン類と4級化剤(たとえば、メチルクロライド、メチルブロマイド、エチルクロライドおよびベンジルクロライド等のハロゲン化アルキル、ジメチル硫酸、ジメチルカーボネート、または、エチレンオキサイドなど)との反応で得られる化合物などが挙げられる。4級アンモニウム塩型のカチオン界面活性剤の具体例としては、たとえば、ジデシルジメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムブロマイド、ラウリルジメチルベンジルアンモニウムクロライド(塩化ベンザルコニウム)、ポリオキシエチレントリメチルアンモニウムクロライドおよびステアラミドエチルジエチルメチルアンモニウムメトサルフェートなどが挙げられる。
 アミン塩型のカチオン界面活性剤としては、たとえば、1~3級アミン類を無機酸(たとえば、塩酸、硝酸、硫酸もしくはヨウ化水素酸など)または有機酸(たとえば、酢酸、ギ酸、シュウ酸、乳酸、グルコン酸、アジピン酸もしくはアルキルリン酸など)で中和することにより得られる化合物などが挙げられる。1級アミン塩型のカチオン界面活性剤としては、たとえば、脂肪族高級アミン(たとえば、ラウリルアミン、ステアリルアミン、硬化牛脂アミンもしくはロジンアミンなどの高級アミン)の無機酸塩またはその有機酸塩;低級アミン類の高級脂肪酸(たとえば、ステアリン酸またはオレイン酸など)塩などが挙げられる。2級アミン塩型のカチオン界面活性剤としては、たとえば、脂肪族アミンのエチレンオキサイド付加物などの脂肪族アミンの無機酸塩またはその有機酸塩などが挙げられる。
 両性界面活性剤(s-3)としては、たとえば、カルボキシベタイン型両性界面活性剤[たとえば、炭素数が10~18の脂肪酸アミドプロピルジメチルアミノ酢酸ベタイン(たとえばヤシ油脂肪酸アミドプロピルベタインなど)、アルキル(炭素数が10~18)ジメチルアミノ酢酸ベタイン(たとえばラウリルジメチルアミノ酢酸ベタインなど)、または、イミダゾリニウム型カルボキシベタイン(たとえば2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタインなど)など];スルホベタイン型両性界面活性剤[たとえば、炭素数が10~18の脂肪酸アミドプロピルヒドロキシエチルスルホベタイン(たとえばヤシ油脂肪酸アミドプロピルジメチルヒドロキシエチルスルホベタインなど)、または、ジメチルアルキル(炭素数が10~18)ジメチルヒドロキシエチルスルホベタイン(たとえばラウリルヒドロキシスルホベタインなど)など];アミノ酸型両性界面活性剤(たとえばβ-ラウリルアミノプロピオン酸ナトリウムなど)などが挙げられる。
 非イオン性界面活性剤(s-4)としては、たとえば、AO付加型非イオン性界面活性剤および多価アルコール型非イオン性界面活性剤などが挙げられる。
 AO付加型非イオン性界面活性剤としては、たとえば、高級アルコール(炭素数が8~18)のAO(炭素数が2~4、好ましくは2)付加物(活性水素1個当たりの付加モル数が1~30);アルキル(炭素数が1~12)フェノールEO付加物(付加モル数が1~30);高級アミン(炭素数が8~22)AO(炭素数が2~4、好ましくは2)付加物(活性水素1個当たりの付加モル数が1~40);脂肪酸(炭素数が8~18)のEO付加物(活性水素1個当たりの付加モル数が1~60);ポリプロピレングリコール(Mn=200~4000)EO付加物(活性水素1個当たりの付加モル数が1~50);ポリオキシエチレン(繰り返し単位数が3~30)アルキル(炭素数が6~20)アリルエーテル;ソルビタンモノラウレートEO付加物(活性水素1個当たりの付加モル数が1~30)およびソルビタンモノオレートEO付加物(活性水素1個当たりの付加モル数が1~30)などの多価(2~8価またはそれ以上の価数)アルコール(炭素数が2~30)の脂肪酸(炭素数が8~24)エステルEO付加物(活性水素1個当たりの付加モル数が1~30)などが挙げられる。
 多価アルコール型非イオン性界面活性剤としては、たとえば、グリセリンモノオレート、ソルビタンモノラウレートおよびソルビタンモノオレートなどの多価(2~8価またはそれ以上の価数)アルコール(炭素数が2~30)の脂肪酸(炭素数が8~24)エステル;ラウリン酸モノエタノールアミドおよびラウリン酸ジエタノールアミドなどの脂肪酸(炭素数が10~18)アルカノールアミドなどが挙げられる。
 油溶性ポリマー(t)としては、たとえば、炭素数が4以上のアルキル基、ジメチルシロキサン基およびフッ素原子を有する官能基の少なくとも一つの基を有する重合体などが挙げられる。より好ましくは、油溶性ポリマー(t)は、絶縁性液体(L)に親和性を有するアルキル基、ジメチルシロキサン基およびフッ素原子を有する官能基の少なくとも一つの基を有すると共に、コア樹脂(b)に親和性を有する化学構造を有する。
 油溶性ポリマー(t)は、上記重合性二重結合を有するモノマー(1)~(9)のうち、炭素数が4以上のアルキル基を有するモノマー、ジメチルシロキサン基を有するモノマー(または反応性オリゴマー)およびフッ素原子を有するモノマーの少なくとも一つのモノマーが重合または共重合されたものであることがより好ましい。
 有機溶剤(u)としては、絶縁性液体(L)であっても良いし、絶縁性液体(L)以外の有機溶剤(たとえば、後述の有機溶媒(M)のうち絶縁性液体(L)以外の溶剤など)であっても良い。絶縁性液体(L)以外の溶剤は、シェル粒子(A)の分散液(W)の調製後に留去されるため、容易に留去されるものであることが好ましく、たとえば絶縁性液体(L)よりも低沸点であることが好ましい。
 可塑剤(v)は、シェル粒子(A)を分散させる際に必要に応じて絶縁性液体(L)に加えられても良いし、コア樹脂(b)などを含む溶剤に加えられても良い。
 可塑剤(v)としては、特に限定されず、下記可塑剤(v1)~(v6)に示すものが挙げられる。
 可塑剤(v1)としては、たとえば、フタル酸エステル(たとえば、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ブチルベンジルまたはフタル酸ジイソデシルなど)などが挙げられる。
 可塑剤(v2)としては、たとえば、脂肪族2塩基酸エステル(たとえば、アジピン酸ジ-2-エチルヘキシルまたはセバシン酸2-エチルヘキシルなど)などが挙げられる。
 可塑剤(v3)としては、たとえば、トリメリット酸エステル(たとえば、トリメリット酸トリ-2-エチルヘキシルまたはトリメリット酸トリオクチルなど)などが挙げられる。
 可塑剤(v4)としては、たとえば、リン酸エステル(たとえば、リン酸トリエチル、リン酸トリ-2-エチルヘキシルまたはリン酸トリクレジールなど)などが挙げられる。
 可塑剤(v5)としては、たとえば、脂肪酸エステル(たとえばオレイン酸ブチルなど)などが挙げられる。
 可塑剤(v6)としては、上記可塑剤(v1)~(v5)に列挙された材料の併用が挙げられる。
 <工程[II]>
 工程[II]において、コア粒子(B)形成用溶液は、コア樹脂(b)またはコア樹脂(b)の前駆体(b0)を有機溶媒(M)に溶解させることで調製される。
 コア樹脂(b)またはコア樹脂(b)の前駆体(b0)を有機溶媒(M)に溶解させる方法としては、いかなる方法でも良く、公知の方法を用いることができる。たとえば、有機溶媒(M)にコア樹脂(b)またはコア樹脂(b)の前駆体(b0)を入れてから撹拌する方法、および、有機溶媒(M)にコア樹脂(b)またはコア樹脂(b)の前駆体(b0)を入れてから加熱する方法などが挙げられる。
 有機溶媒(M)は、コア樹脂(b)を常温または加熱下で溶解し得る溶剤であれば特に限定されないが、有機溶媒(M)のSP値は、好ましくは8.5(cal/cm31/2以上20(cal/cm31/2以下であり、より好ましくは10(cal/cm31/2以上19(cal/cm31/2以下である。有機溶媒(M)として混合溶剤を使用する場合、加成性が成立すると仮定して各々の溶剤のSP値から計算したSP値の加重平均値が上記範囲内にあれば良い。有機溶媒(M)のSP値が上記範囲外であれば、コア樹脂(b)またはコア樹脂(b)の前駆体(b0)の溶解性が不足することがある。
 有機溶媒(M)は、上記範囲内のSP値を有することが好ましく、コア樹脂(b)の材料またはコア樹脂(b)の前駆体(b0)の材料に応じて適宜選択されることが好ましい。有機溶媒(M)としては、たとえば、トルエン、キシレン、エチルベンゼンおよびテトラリンなどの芳香族炭化水素系溶剤;n-ヘキサン、n-ヘプタン、ミネラルスピリットおよびシクロヘキサンなどの脂肪族または脂環式炭化水素系溶剤;塩化メチル、臭化メチル、ヨウ化メチル、メチレンジクロライド、四塩化炭素、トリクロロエチレンおよびパークロロエチレンなどのハロゲン系溶剤;酢酸エチル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテートおよびエチルセロソルブアセテートなどのエステル系またはエステルエーテル系溶剤;ジエチルエーテル、THF、ジオキサン、エチルセロソルブ、ブチルセロソルブおよびプロピレングリコールモノメチルエーテルなどのエーテル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトンおよびシクロヘキサノンなどのケトン系溶剤;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、2-エチルヘキシルアルコールおよびベンジルアルコールなどのアルコール系溶剤;ジメチルホルムアミドおよびジメチルアセトアミドなどのアミド系溶剤;ジメチルスルホキシドなどのスルホキシド系溶剤;N-メチルピロリドンなどの複素環式化合物系溶剤;上記溶剤のうちの2種以上が混合された混合溶剤などが挙げられる。
 臭気の観点および留去のし易さという観点から、有機溶媒(M)の沸点は、好ましくは100℃以下であり、より好ましくは90℃以下である。
 コア樹脂(b)としてポリエステル樹脂、ポリウレタン樹脂を選択した場合、好ましい有機溶媒(M)としては、たとえば、アセトン、ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンおよびこれら2種以上の混合溶剤などが挙げられる。
 トナー粒子(C)の粒度分布の観点から、コア粒子(B)形成用溶液(Y)の粘度は、好ましくは10mPa・s以上50000mPa・s以下であり、より好ましくは100mPa・s以上10000mPa・s以下である。ここで、コア粒子(B)形成用溶液(Y)の粘度は、たとえばB型粘度計を用いて測定されることが好ましい。コア粒子(B)形成用溶液(Y)の粘度が上記範囲内となるように有機溶媒(M)を選択することが好ましい。
 コア樹脂(b)の前駆体(b0)としては、化学反応によりコア樹脂(b)になり得るものであれば特に限定されない。たとえば、コア樹脂(b)がビニル樹脂である場合には、コア樹脂(b)の前駆体(b0)としては、上記重合性二重結合を有するモノマー(1)~(9)(単独で用いても良いし、2種以上を混合して用いても良い)が挙げられる。
 コア樹脂(b)の前駆体(b0)として上記重合性二重結合を有するモノマー(1)~(9)を用いた場合、コア樹脂(b)の前駆体(b0)を反応させてコア樹脂(b)にする方法としては、たとえば、油溶性開始剤およびモノマーを含有する油相を有機溶剤(M)中に分散且つ懸濁させ、得られた懸濁液を加熱によりラジカル重合反応させるという方法などが挙げられる。
 上記油溶性開始剤としては、たとえば、油溶性パーオキサイド系重合開始剤(I)、および、油溶性アゾ系重合開始剤(II)などが挙げられる。また、油溶性パーオキサイド系重合開始剤(I)に還元剤を併用して得られたレドックス系重合開始剤(III)を用いても良い。さらに、油溶性パーオキサイド系重合開始剤(I)、油溶性アゾ系重合開始剤(II)およびレドックス系重合開始剤(III)のうちの2種以上を併用しても良い。
 油溶性パーオキサイド系重合開始剤(I)としては、たとえば、アセチルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ベンゾイルパーオキサイド、パラクロロベンゾイルパーオキサイドおよびクメンパーオキサイドなどが挙げられる。
 油溶性アゾ系重合開始剤(II)としては、たとえば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-2,4-ジメチルバレロニトリル、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)および2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)などが挙げられる。
 非水系レドックス系重合開始剤(III)としては、たとえば、ヒドロペルオキシド、過酸化ジアルキルまたは過酸化ジアシルなどの油溶性過酸化物に、3級アミン、ナフテン酸塩、メルカプタン類または有機金属化合物(たとえばトリエチルアルミニウム、トリエチルホウ素またはジエチル亜鉛など)などの油溶性還元剤を併用して得られたものなどが挙げられる。
 コア樹脂(b)が縮合系樹脂(たとえば、ポリウレタン樹脂、エポキシ樹脂またはポリエステル樹脂など)である場合は、コア樹脂(b)の前駆体(b0)としては、反応性基を有するプレポリマー(α)(以下では「プレポリマー(α)」と略記する)と硬化剤(β)との組み合わせなどが挙げられる。
 プレポリマー(α)が有する「反応性基」とは、硬化剤(β)と反応可能な基のことをいう。この場合、コア樹脂(b)の前駆体(b0)を反応させてコア樹脂(b)を得る方法としては、プレポリマー(α)および硬化剤(β)を絶縁性液体(L)に分散させてから加熱することによりプレポリマー(α)と硬化剤(β)とを反応させるという方法などが挙げられる。
 プレポリマー(α)が有する反応性基と硬化剤(β)との組み合わせとしては、下記[14]~[15]などが挙げられる。
[14]:プレポリマー(α)が有する反応性基は、活性水素化合物と反応可能な官能基(α1)であり、硬化剤(β)は、活性水素基含有化合物(β1)である。
[15]:プレポリマー(α)が有する反応性基は、活性水素含有基(α2)であり、硬化剤(β)は、活性水素含有基と反応可能な化合物(β2)である。
 上記の組合せ[14]において、活性水素化合物と反応可能な官能基(α1)としては、たとえば、イソシアネート基(α1a)、ブロック化イソシアネート基(α1b)、エポキシ基(α1c)、酸無水物基(α1d)および酸ハライド基(α1e)などが挙げられる。これらのうち官能基(α1)として好ましいのは、イソシアネート基(α1a)、ブロック化イソシアネート基(α1b)およびエポキシ基(α1c)であり、これらのうち官能基(α1)としてより好ましいのは、イソシアネート基(α1a)およびブロック化イソシアネート基(α1b)である。
 ブロック化イソシアネート基(α1b)は、ブロック化剤によりブロックされたイソシアネート基のことをいう。ブロック化剤としては、たとえば、オキシム類(たとえば、アセトオキシム、メチルイソブチルケトオキシム、ジエチルケトオキシム、シクロペンタノンオキシム、シクロヘキサノンオキシムまたはメチルエチルケトオキシムなど);ラクタム類(たとえば、γ-ブチロラクタム、ε-カプロラクタムまたはγ-バレロラクタムなど);炭素数が1~20の脂肪族アルコール類(たとえば、エタノール、メタノールまたはオクタノールなど);フェノール類(たとえば、フェノール、m-クレゾール、キシレノールまたはノニルフェノールなど);活性メチレン化合物(たとえば、アセチルアセトン、マロン酸エチルまたはアセト酢酸エチルなど);塩基性窒素含有化合物(たとえば、N,N-ジエチルヒドロキシルアミン、2-ヒドロキシピリジン、ピリジンN-オキサイドまたは2-メルカプトピリジンなど);これらの併用などが挙げられる。これらのうちブロック化イソシアネート基(α1b)として好ましいのはオキシム類であり、より好ましいのはメチルエチルケトオキシムである。
 反応性基を有するプレポリマー(α)の構成単位としては、たとえば、ポリエーテル(αw)、ポリエステル(αx)、エポキシ樹脂(αy)およびポリウレタン(αz)などが挙げられる。これらのうちプレポリマー(α)の構成単位として好ましいのは、ポリエステル(αx)、エポキシ樹脂(αy)およびポリウレタン(αz)であり、より好ましいのは、ポリエステル(αx)およびポリウレタン(αz)である。
 ポリエーテル(αw)としては、たとえば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリブチレンオキサイドおよびポリテトラメチレンオキサイドなどが挙げられる。
 ポリエステル(αx)としては、たとえば、上記ジオール(11)と上記ジカルボン酸(13)との重縮合物、および、ポリラクトン(たとえばε-カプロラクトンの開環重合物など)などが挙げられる。
 エポキシ樹脂(αy)としては、たとえば、ビスフェノール類(たとえば、ビスフェノールA、ビスフェノールFまたはビスフェノールSなど)とエピクロルヒドリンとの付加縮合物などが挙げられる。
 ポリウレタン(αz)としては、たとえば、上記ジオール(11)と上記ポリイソシアネート(15)との重付加物、および、上記ポリエステル(αx)と上記ポリイソシアネート(15)との重付加物などが挙げられる。
 ポリエステル(αx)、エポキシ樹脂(αy)およびポリウレタン(αz)などに反応性基を含有させる方法としては、下記[16]~[17]に示す方法が挙げられる。
[16]:2以上の構成成分のうちの一つを過剰に用いることで、構成成分の官能基を末端に残存させる。
[17]:2以上の構成成分のうちの一つを過剰に用いることで構成成分の官能基を末端に残存させ(プレポリマーが得られる)、残存した官能基と当該官能基と反応可能な官能基とを反応させる、または、残存した官能基と当該官能基と反応可能な官能基含有する化合物とを反応させる。
 上記[16]の方法では、水酸基含有ポリエステルプレポリマー、カルボキシル基含有ポリエステルプレポリマー、酸ハライド基含有ポリエステルプレポリマー、水酸基含有エポキシ樹脂プレポリマー、エポキシ基含有エポキシ樹脂プレポリマー、水酸基含有ポリウレタンプレポリマーおよびイソシアネート基含有ポリウレタンプレポリマーなどが得られる。
 たとえば水酸基含有ポリエステルプレポリマーを得る場合、水酸基[OH]とカルボキシル基[COOH]との当量比([OH]/[COOH])が、好ましくは2/1~1/1となるように、より好ましくは1.5/1~1/1となるように、さらに好ましくは1.3/1~1.02/1となるように、ポリオール成分とポリカルボン酸成分との比率を設定すればよい。骨格が変わっても、または、末端基を有するプレポリマーを得る場合であっても、構成成分が変わるだけで構成成分の比率は上記記載と同様であることが好ましい。
 上記[17]の方法では、上記方法[16]で得られたプレプリマーに、ポリイソシアネートを反応させることでイソシアネート基含有プレポリマーが得られ、ブロック化ポリイソシアネートを反応させることでブロック化イソシアネート基含有プレポリマーが得られ、ポリエポキシドを反応させることでエポキシ基含有プレポリマーが得られ、ポリ酸無水物を反応させることで酸無水物基含有プレポリマーが得られる。
 たとえば水酸基含有ポリエステルプレポリマーにポリイソシアネートを反応させてイソシアネート基含有ポリエステルプレポリマーを得る場合、イソシアネート基[NCO]と水酸基含有ポリエステルの水酸基[OH]との当量比([NCO]/[OH])が、好ましくは5/1~1/1となるように、より好ましくは4/1~1.2/1となるように、さらに好ましくは2.5/1~1.5/1となるように、水酸基含有ポリエステルプレポリマーに対するポリイソシアネートの比率を設定すればよい。骨格が変わっても、または、末端基を有するプレポリマーを得る場合であっても、構成成分が変わるだけで構成成分の比率は上記記載と同様であることが好ましい。
 プレポリマー(α)の1分子当たりに含まれる反応性基の個数は、好ましくは1個以上であり、より好ましくは平均1.5個以上3個以下であり、さらに好ましくは平均1.8個以上2.5個以下ある。プレポリマー(α)の1分子当たりに含まれる反応性基の個数が上記範囲内であれば、硬化剤(β)と反応させて得られる硬化物の分子量が大きくなる。
 プレポリマー(α)のMnは、好ましくは500以上30000以下であり、より好ましくは1000以上20000以下であり、さらに好ましくは2000以上10000以下である。
 プレポリマー(α)のMwは、好ましくは1000以上50000以下であり、より好ましくは2000以上40000以下であり、さらに好ましくは4000以上20000以下である。
 プレポリマー(α)の粘度は、100℃において、好ましくは200Pa・s以下であり、より好ましくは100Pa・s以下である。プレポリマー(α)の粘度を200Pa・s以下にすることにより、粒度分布における分布幅の狭いコア粒子(B)が得られる。
 上記の組合せ[14]における活性水素基含有化合物(β1)としては、たとえば、脱離可能な化合物でブロック化されていてもよいポリアミン(β1a)(以下「ポリアミン(β1a)」と略記する);ポリオール(β1b);ポリメルカプタン(β1c);水などが挙げられる。これらのうち活性水素基含有化合物(β1)として好ましいのは、ポリアミン(β1a)および水であり、さらに好ましいのは、ブロック化されたポリアミン類および水である。
 ポリアミン(β1a)としては、たとえば、上記ポリアミン(15)の具体例として列挙したものと同様のものが挙げられる。ポリアミン(β1a)は、好ましくは、4,4’-ジアミノジフェニルメタン、キシリレンジアミン、イソホロンジアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミンまたはこれらの混合物などである。
 ポリアミン(β1a)が脱離可能な化合物でブロック化されたポリアミンである場合には、当該ポリアミンとしては、たとえば、上記ポリアミン類と炭素数が3~8のケトン類(たとえば、アセトン、メチルエチルケトンまたはメチルイソブチルケトンなど)とから得られるケチミン化合物;炭素数が2~8のアルデヒド化合物(たとえば、ホルムアルデヒドまたはアセトアルデヒドなど)から得られるアルジミン化合物;エナミン化合物;オキサゾリジン化合物などが挙げられる。
 ポリオール(β1b)としては、たとえば、上記ジオール(10)および上記ポリオール(11)の具体例として列挙したものと同様のものが挙げられる。これらのうちポリオール(β1b)として好ましいのは、上記ジオール(10)単体および上記ジオール(10)と少量のポリオール(11)との混合物である。
 ポリメルカプタン(β1c)としては、たとえば、エチレンジチオール、1,4-ブタンジチオールおよび1,6-ヘキサンジチオールなどが挙げられる。
 必要に応じて、活性水素基含有化合物(β1)と共に反応停止剤(βs)を用いることができる。一定の比率で反応停止剤(βs)を活性水素基含有化合物(β1)と併用することにより、樹脂(b)の分子量を所定の値に調整することが可能である。同様の理由から、上記の組合せ[15]における活性水素含有基と反応可能な化合物(β2)とともに反応停止剤(βs)を用いることもできる。
 反応停止剤(βs)としては、たとえば、モノアミン(たとえば、ジエチルアミン、ジブチルアミン、ブチルアミン、ラウリルアミン、モノエタノールアミンまたはジエタノールアミンなど);モノアミンをブロックしたもの(たとえばケチミン化合物など);モノオール(たとえば、メタノール、エタノール、イソプロパノール、ブタノールまたはフェノールなど);モノメルカプタン(たとえば、ブチルメルカプタンまたはラウリルメルカプタンなど);モノイソシアネート(たとえば、ラウリルイソシアネートまたはフェニルイソシアネートなど);モノエポキシド(たとえばブチルグリシジルエーテルなど)などが挙げられる。
 上記の組合せ[15]におけるプレポリマー(α)が有する活性水素含有基(α2)としては、たとえば、アミノ基(α2a)、水酸基(たとえば、アルコール性水酸基またはフェノール性水酸基など)(α2b)、メルカプト基(α2c)、カルボキシル基(α2d)、および、それらが脱離可能な化合物でブロック化された有機基(α2e)などが挙げられる。これらのうち好ましいのは、アミノ基(α2a)、水酸基(α2b)および有機基(α2e)であり、より好ましいのは、水酸基(α2b)である。
 アミノ基が脱離可能な化合物でブロック化された有機基(α2e)としては、上記ポリアミン(β1a)の具体例として列挙したものと同様のものが挙げられる。
 上記の組合せ[15]における活性水素含有基と反応可能な化合物(β2)としては、たとえば、ポリイソシアネート(β2a)、ポリエポキシド(β2b)、ポリカルボン酸(β2c)、ポリ酸無水物(β2d)およびポリ酸ハライド(β2e)などが挙げられる。これらのうち化合物(β2)として好ましいのは、ポリイソシアネート(β2a)およびポリエポキシド(β2b)であり、より好ましいのは、ポリイソシアネート(β2a)である。
 ポリイソシアネート(β2a)としては、たとえば、上記ポリイソシアネート(14)の具体例として列挙したものと同様のものが挙げられ、ポリイソシアネート(β2a)として好ましいものも上記ポリイソシアネート(14)の好ましい具体例として列挙したものと同様である。
 ポリエポキシド(β2b)としては、たとえば、上記ポリエポキシド(18)の具体例として列挙したものと同様のものが挙げられ、ポリエポキシド(β2b)として好ましいものも上記ポリエポキシド(18)の好ましい具体例として列挙したものと同様である。
 ポリカルボン酸(β2c)としては、たとえば、ジカルボン酸(β2c-1)および3価以上のポリカルボン酸(β2c-2)などが挙げられ、これらのうちポリカルボン酸(β2c)として好ましいのは、ジカルボン酸(β2c-1)単体およびジカルボン酸(β2c-1)と少量のポリカルボン酸(β2c-2)との混合物である。
 ジカルボン酸(β2c-1)としては、たとえば、上記ジカルボン酸(12)および上記ポリカルボン酸(13)の具体例として列挙したものと同様のものが挙げられ、ジカルボン酸(β2c-1)として好ましいものも上記ジカルボン酸(12)および上記ポリカルボン酸(13)の好ましい具体例として列挙したものと同様である。
 ポリカルボン酸無水物(β2d)としては、たとえばピロメリット酸無水物などが挙げられる。
 ポリ酸ハライド類(β2e)としては、たとえば、上記ポリカルボン酸(β2c)の酸ハライド(たとえば、酸クロライド、酸ブロマイドまたは酸アイオダイドなど)などが挙げられる。
 コア樹脂(b)の前駆体(b0)における硬化剤(β)の比率は、特に限定されない。プレポリマー(α)中の反応性基の当量[α]と硬化剤(β)中の活性水素含有基の当量[β]との比([α]/[β])が、好ましくは1/2~2/1となるように、より好ましくは1.5/1~1/1.5となるように、さらに好ましくは1.2/1~1/1.2となるように、コア樹脂(b)の前駆体(b0)における硬化剤(β)の比率を設定すればよい。なお、硬化剤(β)が水である場合には、水は2価の活性水素化合物として取り扱う。
 <工程[III]>
 工程[III]において、コア粒子(B)形成用溶液をシェル粒子(A)の分散液(W)に分散させることによって、絶縁性液体(L)中においてコア樹脂(b)を含むコア粒子(B)が形成されるとともに、該シェル粒子(A)が該コア粒子(B)の表面に付着または被覆されてなるコア・シェル構造を有するトナー粒子(C)が形成される。
 コア粒子(B)形成用溶液をシェル粒子(A)の分散液(W)に分散させる方法は特に限定されないが、分散装置を用いてコア粒子(B)形成用溶液をシェル粒子(A)の分散液(W)に分散させることが好ましい。
 分散装置としては、一般に、乳化機または分散機などとして市販されているものであれば特に限定されずに使用することができる。分散装置としては、たとえば、ホモジナイザー(IKA社製)、ポリトロン(製品名、キネマティカ社製)およびTKオートホモミキサー(製品名、特殊機化工業(株)製)などのバッチ式乳化機;エバラマイルダー(製品名、(株)荏原製作所製)、TKフィルミックス、TKパイプラインホモミキサー(いずれも製品名、特殊機化工業(株)製)、コロイドミル(神鋼パンテック(株)製)、スラッシャー、トリゴナル湿式微粉砕機(三井三池化工機(株)製)、キャピトロン(ユーロテック社製)およびファインフローミル(太平洋機工(株)製)などの連続式乳化機;マイクロフルイダイザー(製品名、みずほ工業(株)製)、ナノマイザー(製品名、ナノマイザー社製)およびAPVガウリン(製品名、ガウリン社製)などの高圧乳化機;膜乳化機(冷化工業(株)製)などの膜乳化機;バイブロミキサー(冷化工業(株)製)などの振動式乳化機;超音波ホモジナイザー(ブランソン社製)などの超音波乳化機などが挙げられる。これらの装置のうちトナー粒子の粒度分布の観点から好ましいのは、APVガウリン、ホモジナイザー、TKオートホモミキサー、エバラマイルダー、TKフィルミックスおよびTKパイプラインホモミキサーである。
 コア粒子(B)形成用溶液をシェル粒子(A)の分散液(W)に分散させるときの温度は、特に限定されないが、好ましくは0℃以上150℃以下(加圧下)であり、より好ましくは5℃以上98℃以下である。コア粒子(B)形成用溶液をシェル粒子(A)の分散液(W)に分散させて得られた溶液(以下、樹脂粒子分散液(X’)とも記す)の粘度が高い場合には、コア粒子(B)形成用溶液(Y)をシェル粒子(A)の分散液(W)に分散させるときの温度を上げることによりコア粒子(B)形成用溶液の粘度を好ましい範囲にまで低下させることが好ましい。コア粒子(B)形成用溶液の粘度の好ましい範囲とは、上記の工程[II]の説明で記載したとおりであり、10mPa・s以上50000mPa・s以下(B型粘度計で測定された粘度)である。
 シェル粒子(A)の分散液(W)とコア粒子(B)形成用溶液との混合比率については、特に限定されない。しかし、シェル粒子(A)の分散液(W)は、コア粒子(B)形成用溶液(Y)に溶解されているコア樹脂(b)またはコア樹脂(b)の前駆体(b0)100質量部に対して、50質量部以上2000質量部以下含まれていることが好ましく、100質量部以上1000質量部以下含まれていることがより好ましい。コア樹脂(b)またはコア樹脂(b)の前駆体(b0)100質量部に対してシェル粒子(A)の分散液(W)が50質量部以上含まれていれば、樹脂粒子分散液(X’)におけるコア樹脂(b)またはコア樹脂(b)の前駆体(b0)の分散状態が良好になる。コア樹脂(b)またはコア樹脂(b)の前駆体(b0)100質量部に対してシェル粒子(A)の分散液(W)が2000質量部以下含まれていれば、経済的である。
 コア粒子(B)形成用溶液をシェル粒子(A)の分散液(W)に分散させることによりコア・シェル構造が形成されるが、コア粒子(B)に対するシェル粒子(A)の吸着力は下記[18]~[20]に示す方法にしたがって制御されることが好ましい。
[18]:シェル粒子(A)とコア粒子(B)とに極性が逆の電荷を持たせる。このとき、シェル粒子(A)およびコア粒子(B)のそれぞれの電荷を大きくすればするほど、コア粒子(B)に対するシェル粒子(A)の吸着力が強くなり、よって、コア粒子(B)の表面に対するシェル粒子(A)の被覆率が高くなる。
[19]:シェル粒子(A)とコア粒子(B)とに同じ極の電荷を持たせると、コア粒子(B)の表面に対するシェル粒子(A)の被覆率は低くなる。このとき、上記界面活性剤(s)および上記油性ポリマー(t)の少なくとも一方(特にシェル粒子(A)とコア粒子(B)とで極性が逆となるもの)を使用すると、コア粒子(B)に対するシェル粒子(A)の吸着力が強くなり、よって、コア粒子(B)の表面に対するシェル粒子(A)の被覆率が高くなる。
[20]:シェル粒子(A)の分散液(W)とコア粒子(B)形成用溶液(Y)とでSP値差を小さくすると、コア粒子(B)に対するシェル粒子(A)の吸着力が強くなり、よって、コア粒子(B)の表面に対するシェル粒子(A)の被覆率が高くなる。
 シェル粒子(A)がコア粒子(B)の表面に付着されてなるコア・シェル構造が形成されるか、または、シェル粒子(A)がコア粒子(B)の表面に被覆されてなるコア・シェル構造が形成されるかは、コア粒子(B)形成用溶液(Y)に含まれる有機溶媒(M)の物性、具体的には有機溶媒(M)に対するシェル粒子(A)および/またはコア樹脂(b)の溶解性に依存する。
 詳細には、有機溶媒(M)としてコア樹脂(b)を溶解するがシェル粒子(A)を溶解しないものを選択すれば、シェル粒子(A)がコア粒子(B)の表面に付着される。
 一方、有機溶媒(M)としてシェル粒子(A)およびコア樹脂(b)の双方を溶解するものを選択すると、シェル粒子(A)は、有機溶媒(M)に溶融した状態でコア粒子(B)の表面に付着する。そのため、後の工程において有機溶媒(M)を留去すると、コア粒子(B)の表面に付着している有機溶媒(M)も留去され、よって、コア粒子(B)の表面にはシェル粒子(A)が膜状に形成される。以下では、コア粒子(B)の表面にシェル粒子(A)を膜状に形成することを「被膜化処理」と記す。
 被膜化処理を行なうためには、有機溶媒(M)として、THF、トルエン、アセトン、メチルエチルケトンまたは酢酸エチルなどを選択することが好ましく、アセトンまたは酢酸エチルなどを選択することがより好ましい。
 被膜化処理を行なうとき、樹脂粒子分散液(X’)における有機溶媒(M)の含有率は、好ましくは10質量%以上50質量%以下であり、より好ましくは20質量%以上40質量%以下である。そして、被膜化処理の後に有機溶媒(M)を留去するときには、40℃以下の温度において、樹脂粒子分散液(X’)における有機溶媒(M)の含有率が好ましくは1質量%以下、より好ましくは0.5質量%以下となるまで有機溶媒(M)を除去すれば良い。これにより、コア粒子(B)で構成されるコア層の表面に、有機溶媒(M)に溶解していたシェル粒子(A)からなるシェル層が形成される。
 被膜化処理が行なわれるときに、当該被膜化処理で使用される有機溶剤を樹脂粒子分散液(X’)に添加することができる。しかし、コア粒子(B)形成用溶液(Y)に含まれている有機溶媒(M)を、コア粒子(B)の形成後に除去せずに被膜化処理用有機溶剤として用いる方が好ましい。なぜならば、有機溶媒(M)がコア粒子(B)に含まれているため、シェル粒子(A)を有機溶媒(M)に容易に溶解させることができ、よって、コア粒子(B)の凝集が起こりにくくなるからである。
 シェル粒子(A)を有機溶媒(M)に溶解させるときには、樹脂粒子分散液(X’)における有機溶媒(M)の濃度は、好ましくは3質量%以上50質量%以下であり、より好ましくは10質量%以上40質量%以下であり、さらに好ましくは15質量%以上30質量%以下である。また、樹脂粒子分散液(X’)をたとえば1時間以上10時間以下で撹拌することが好ましい。さらには、シェル粒子(A)を有機溶媒(M)に溶解させるときの温度は、15℃以上45℃以下であることが好ましく、15℃以上30℃以下であることがより好ましい。
 シェル粒子(A)を有機溶媒(M)に溶解させてコア粒子(B)の表面に被膜させるとき、樹脂粒子分散液(X’)における固形分の含量率(溶剤以外の成分の含有率)は、好ましくは1質量%以上50質量%以下であり、より好ましくは5質量%以上30質量%以下である。また、トナー粒子(C)の成形時における有機溶媒(M)の含有率は、好ましくは2質量%以下であり、より好ましくは1質量%以下であり、さらに好ましくは0.5質量%以下である。樹脂粒子分散液(X’)における固形分の含量率が高い場合、および、トナー粒子(C)の成形時における有機溶媒(M)の含有率が2質量%を越える場合には、樹脂粒子分散液(X’)を60℃以上に昇温すると凝集物が発生することがある。また、シェル粒子(A)の溶融方法は、特に限定されず、たとえば、撹拌下において、好ましくは40℃以上100℃以下、より好ましくは60℃以上90℃以下、さらに好ましくは60℃以上80℃以下で、好ましくは1分間以上300分間以下で加熱する方法などが挙げられる。
 被膜化処理を行なうとき、トナー粒子(C)の成形時における有機溶媒(M)の含有率が2質量%以下の樹脂粒子分散液(X’)を加熱してシェル粒子(A)をコア粒子(B)の表面上で溶融させることが好ましい。これにより、表面がより平滑なトナー粒子(C)を得ることができる。このときの加熱温度は、シェル樹脂(a)のTg以上であることが好ましく、80℃以下であることがより好ましい。加熱温度がシェル樹脂のTg未満であれば、加熱により得られる効果(つまり、トナー粒子の表面がさらに平滑となるという効果)が得られないことがある。一方、加熱温度が80℃を越えると、シェル層がコア層から剥がれることがある。
 被膜化処理として好ましい方法は、シェル粒子(A)を溶融させる方法、および、シェル粒子(A)を溶解させる方法とシェル粒子(A)を溶融させる方法との併用である。
 さらに、工程[I]を経て分散液(W)を作製するのではなく、シェル樹脂(a)を作製した後、工程[III]において分散液(W)に該コア粒子(B)形成用溶液を分散させる代わりに、あらかじめ工程[II]で調整したコア粒子(B)形成用溶液中にシェル樹脂(a)の溶液を加えて混合液を作製した後、絶縁性液体(L)中で分散させることによりコア樹脂(b)を含むコア粒子(B)を形成させるとともに、シェル樹脂(a)をコア粒子(B)の表面に移動させることにより、該シェル粒子(A)が該コア粒子(B)の表面に付着または被覆されてなるコア・シェル構造を有するトナー粒子(C)を得ることができる。この場合、シェル樹脂(a)のSP値をコア樹脂(b)のそれよりも小さくするか、もしくは絶縁性液体(L)のSP値に相当するほどにSP値が小さい骨格を有するようにシェル樹脂(a)を組成設計するとよい。
 <工程[IV]>
 工程[IV]では、コア粒子(B)形成用溶液に含まれていた有機溶媒(M)を、樹脂粒子分散液(X’)から留去させる。
 樹脂粒子分散液(X’)から有機溶媒(M)を留去させる方法としては、特に限定されないが、たとえば0.02MPa以上0.066MPa以下の減圧下で、20℃以上有機溶媒(M)の沸点以下の温度で、当該有機溶媒(M)を留去させるという方法などが挙げられる。
 有機溶媒(M)の留去後の分散液における有機溶媒(M)の含有率は、好ましくは1質量%以下であり、より好ましくは0.5質量%以下である。なお、有機溶媒(M)と共に絶縁性液体(L)の一部(たとえば絶縁性液体(L)のうち低沸点成分)も留去されても良い。
 このようにして得られた液体現像剤(X)に含まれるトナー粒子(C)の形状およびトナー粒子(C)の表面の平滑性は、シェル樹脂(a)とコア樹脂(b)とのSP値差、および、コア樹脂(a)の分子量の少なくとも一方を制御することにより、制御される。上記SP値差が小さすぎると、形状は歪だが表面は平滑なトナー粒子が得られやすい。逆に、上記SP値差が大きすぎると、形状は球形だが表面にザラつきのあるトナー粒子が得られやすい。シェル樹脂(a)の分子量が大きすぎると、表面にザラつきのあるトナー粒子が得られやすく、シェル樹脂(a)の分子量が小さすぎると、表面が平滑なトナー粒子が得られやすい。また、上記SP値差が小さすぎても大きすぎても、造粒困難を招く。また、シェル樹脂(a)の分子量が小さすぎても、造粒困難を招く。以上のことから、上記SP値差は、好ましくは0.01以上5.0以下であり、より好ましくは0.1以上3.0以下であり、さらに好ましくは0.2以上2.0以下である。また、シェル樹脂(a)のMwは、好ましくは100以上1000000以下であり、より好ましくは1000以上500000以下であり、さらに好ましくは2000以上200000以下であり、最も好ましくは3000以上100000以下である。
 なお、本実施の形態におけるコア・シェル構造を製造するとき、上記[7]~[13]のいずれかの製造方法に倣ってコア粒子(B)を製造してから、当該コア粒子(B)の表面にシェル粒子(A)を付着または被覆させても良い。
 また、本実施の形態に係る液体現像剤(X)の製造方法では、着色剤以外の添加剤(たとえば、ワックス、充填剤、帯電防止剤、離型剤、荷電制御剤、紫外線吸収剤、酸化防止剤、ブロッキング防止剤、耐熱安定剤および難燃剤など)を添加してシェル粒子(A)の分散液(W)、コア粒子(B)形成用溶液(Y)および着色剤の分散液の少なくとも一つを調製しても良い。この場合も、着色剤以外の添加剤が溶解または分散された溶液をシェル粒子(A)の分散液(W)などに添加することにより当該添加剤をシェル粒子(A)の分散液(W)などに添加することができる。これにより、着色剤以外の添加剤もコア層およびシェル層の少なくとも一方の層に含まれたトナー粒子(C)を得ることができる。
 <工程[V]>
 本実施の形態におけるコア粒子(B)は、コア樹脂(b)と着色剤とを含むことが好ましい。該着色剤は、シェル粒子(A)の分散液(W)およびコア粒子(B)形成用溶液のうちの少なくとも一方に着色剤を分散させておいても良いし、所定の有機溶媒に着色剤を分散させてから当該分散液をシェル粒子(A)の分散液(W)およびコア粒子(B)形成用溶液のうちの少なくとも一方に混合させておいても良い。
 着色剤としては、上記の着色剤の説明で列挙した顔料の少なくとも一つを用いることができる。着色剤を溶解または分散する溶液としては、たとえば、アセトンなどの有機溶媒を用いることができる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 <製造例1>
 [シェル粒子(A)の分散液(W)の製造]
 以下の製造例および実施例において、シェル粒子(A)の種類を、たとえば、シェル粒子(A1)、シェル粒子(A2)などと記す。また、シェル粒子(A1)が分散されてなる分散液を、たとえば、分散液(W1)などと記す。
 <製造例1-1>
 [シェル粒子(A1)の分散液(W1)の製造]
 撹拌装置と、加熱冷却装置と、温度計と、滴下ロートと、脱溶剤装置と、窒素導入管と、を備えた反応容器に、THF195質量部を投入した。ガラス製ビーカーに、アクリル酸2-デシルテトラデシル100質量部と、メタクリル酸30質量部と、メタクリル酸ヒドロキシエチルとフェニルイソシアネートの等モル反応物70質量部と、アゾビスメトキシジメチルバレロニトリル0.5質量部と、からなる混合液を投入し、20℃で撹拌、混合してモノマー溶液を調整し、滴下ロートに投入した。上記反応容器の気相部の窒素置換を行なった後、密閉下70℃で1時間かけてモノマー溶液を滴下した。滴下終了から3時間後、アゾビスメトキシジメチルバレロニトリル0.05質量部と、THF5質量部と、を混合したものを添加し、70℃で3時間反応した後室温まで冷却して、シェル粒子(A1)である共重合体の溶液を得た。このシェル粒子(A1)である共重合体の溶液400質量部を撹拌しながらアイソパーL(エクソンモービル社製)600質量部に滴下し、0.039MPaの減圧下に40℃でTHFを留去して、シェル粒子(A1)の分散液(W1)を得た。「LA-920」を用いて測定した分散液(W1)に含まれるシェル粒子(A1)の体積平均粒径は0.12μmであった。
 <製造例1-2>
 [ポリエステル樹脂の製造]
 撹拌装置と、加熱冷却装置と、温度計と、冷却管と、窒素導入管と、を備えた反応容器に、ドデカン二酸286質量部、1、6-ヘキサンジオール190質量部と、縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)1質量部と、を投入し、180℃で窒素気流下において、生成する水を留去しながら8時間反応させた。次いで220℃まで徐々に昇温しながら、窒素気流下に、生成する水を留去しながら4時間反応させ、さらに0.007MPa以上0.026MPa以下の減圧下に1時間反応させ、ポリエステル樹脂を得た。このようにして得たポリエステル樹脂の融点は68℃、Mnは4900、Mwは10000であった。
 [シェル粒子(A2)の分散液(W2)の製造]
 撹拌装置と、加熱冷却装置と、温度計と、滴下ロートと、脱溶剤装置と、窒素導入管と、を備えた反応容器に、THF195質量部を投入した。ガラス製ビーカーに、アクリル酸2-デシルテトラデシル80質量部、メタクリル酸メチル10質量部、メタクリル酸10質量部、イソシアネート基含有モノマー(製品名:カレンズMOI、昭和電工(株)製)と上記で得られたポリエステル樹脂の等モル反応物10質量部と、アゾビスメトキシジメチルバレロニトリル0.5質量部と、からなる混合液を投入し、20℃で撹拌、混合してモノマー溶液を調整し、滴下ロートに投入した。上記反応容器の気相部の窒素置換を行なった後、密閉下70℃で1時間かけてモノマー溶液を滴下した。滴下終了から3時間後、アゾビスメトキシジメチルバレロニトリル0.05質量部と、THF5質量部と、を混合したものを添加し、70℃で3時間反応した後室温まで冷却して、シェル粒子(A2)である共重合体の溶液を得た。このシェル粒子(A2)である共重合体の溶液400質量部を、撹拌しながらアイソパーL(エクソンモービル社製)600質量部に滴下し、0.039MPaの減圧下に40℃でTHFを留去して、シェル粒子(A2)の分散液(W2)を得た。「LA-920」を用いて測定した分散液(W2)に含まれるシェル粒子(A2)の体積平均粒径は0.13μmであった。
 <製造例2>
 [コア樹脂(b)のコア粒子(B)形成用溶液の製造]
 以下の製造例および実施例において、コア樹脂(b)の種類を、たとえば、コア樹脂(b1)、コア樹脂(b2)などと記す。そして、コア樹脂(b1)を含むコア粒子を、たとえば、コア粒子(B1)などと記す。また、コア樹脂(b1)またはその前駆体が溶解されてなるコア粒子(B)形成用溶液を、たとえば、コア粒子(B1)形成用溶液などと記す。
 <製造例2-1>
[コア樹脂(b1)のコア粒子(B1)形成用溶液の製造]
 撹拌装置と、加熱冷却装置と、温度計と、窒素導入管と、を備えた反応容器に、エチレングリコール746質量部(6.3モル部)と、セバシン酸288質量部(1.7モル部)と、縮合触媒としてテトラブトキシチタネート3質量部と、を投入した。常圧下、230℃で6時間重縮合した後、系内を減圧して、酸価が1.0になった時点で常圧に戻し、180℃に冷却した。180℃で無水フタル酸28質量部(0.1モル部)を投入し、同温度で1時間反応させて、ポリエステル樹脂であるコア樹脂(b1)を得た。このようにして得られたコア樹脂(b1)は、末端に酸性基であるカルボキシル基を有しており、pKaは2.94、Tgは72℃、Mnは2400、水酸基価は40、酸価は15であった。次いで、ビーカーにコア樹脂(b1)1000質量部と、アセトン1000質量部と、を投入し、撹拌して均一に溶解させ、コア粒子(B1)形成用溶液を得た。
 <製造例2-2>
 [コア樹脂(b2)のコア粒子(B2)形成用溶液の製造]
 撹拌装置と、加熱冷却装置と、温度計と、脱溶剤装置と、窒素導入管と、を備えた反応容器に、1,2-プロピレングリコール(以下PGとも記す)701質量部(18.8モル部)と、テレフタル酸ジメチルエステル716質量部(7.5モル部)と、アジピン酸180質量部(2.5モル部)と、縮合触媒としてテトラブトキシチタネート3質量部と、を投入した。180℃、窒素気流下において、メタノールを留去しながら8時間反応させた後、230℃まで徐々に昇温しながら、窒素気流下において、PGおよび水を留去しながら4時間反応させた。さらに0.007MPa以上0.026MPa以下の減圧下で反応させて、軟化点が150℃になった時点で取り出し、ポリエステル樹脂であるコア樹脂(b2)を得た。このとき、回収されたPGは316質量部(8.5モル部)であった。このようにして得られたコア樹脂(b2)は、末端に酸性基を有しておらず、Tgは64℃、Mnは8800、水酸基価は13、酸価は0.2であった。次いで、ビーカーにコア樹脂(b2)1000質量部と、アセトン1000質量部と、を投入し、撹拌して均一に溶解させ、コア粒子(B2)形成用溶液を得た。
 <製造例2-3>
 [コア樹脂(b3)のコア粒子(B3)形成用溶液の製造]
 撹拌装置と、加熱冷却装置と、温度計と、窒素導入管と、を備えた反応容器に、エチレングリコール746質量部(6.3モル部)と、セバシン酸288質量部(1.7モル部)と、縮合触媒としてテトラブトキシチタネート3質量部と、を投入した。常圧下、230℃で6時間重縮合した後、系内を減圧して、酸価が1.0になった時点で常圧に戻し、180℃に冷却した。180℃で無水トリメリット酸28質量部(0.1モル部)を投入し、同温度で1時間反応させて、ポリエステル樹脂であるコア樹脂(b3)を得た。このようにして得られたコア樹脂(b3)は、末端に酸性基であるカルボキシル基を有しており、pKaは2.52、Tgは72℃、Mnは2400、水酸基価は40、酸価は15であった。次いで、ビーカーにコア樹脂(b3)1000質量部と、アセトン1000質量部と、を投入し、撹拌して均一に溶解させ、コア粒子(B3)形成用溶液を得た。
 <製造例2-4>
 [コア樹脂(b4)のコア粒子(B4)形成用溶液の製造]
 撹拌装置と、加熱冷却装置と、温度計と、窒素導入管と、を備えた反応容器に、ビスフェノールAのPO2モル付加物746質量部(2.1モル部)と、テレフタル酸288質量部(1.7モル部)と、縮合触媒としてテトラブトキシチタネート3質量部と、を投入した。常圧下、230℃で6時間重縮合した後、系内を減圧して、酸価が1.0になった時点で常圧に戻し、180℃に冷却した。180℃で無水トリメリット酸28質量部(0.1モル部)を投入し、同温度で1時間反応させて、ポリエステル樹脂であるコア樹脂(b4)を得た。このようにして得たコア樹脂(b4)は、末端に酸性基であるカルボキシル基を有しており、pKaは2.52、Tgは72℃、Mnは2400、水酸基価は40、酸価は15であった。次いで、ビーカーにコア樹脂(b4)1000質量部と、アセトン1000質量部と、を投入し、撹拌して均一に溶解させ、コア粒子(B4)形成用溶液を得た。
 <製造例2-5>
[コア樹脂(b5)のコア粒子(B5)形成用溶液の製造]
 撹拌装置と、加熱冷却装置と、温度計と、窒素導入管と、を備えた反応容器に、ビスフェノールAのPO2モル付加物746質量部(2.1モル部)と、テレフタル酸288質量部(1.7モル部)と、縮合触媒としてテトラブトキシチタネート3質量部と、を投入した。常圧下、230℃で6時間重縮合した後、系内を減圧して、酸価が1.0になった時点で常圧に戻し、180℃に冷却した。180℃でメチルヘキサヒドロ無水フタル酸60質量部(0.1モル部)を投入し、同温度で1時間反応させて、ポリエステル樹脂であるコア樹脂(b5)を得た。このようにして得たコア樹脂(b5)は、末端に酸性基であるカルボキシル基を有しており、pKaは5.61、Tgは72℃、Mnは2400、水酸基価は51、酸価は31であった。次いで、ビーカーにコア樹脂(b5)1000質量部と、アセトン1000質量部と、を投入し、撹拌して均一に溶解させ、コア粒子(B5)形成用溶液を得た。
 <製造例2-6>
[コア樹脂(b6)のコア粒子(B6)形成用溶液の製造]
 撹拌装置と、加熱冷却装置と、温度計と、窒素導入管と、を備えた反応容器に、エチレングリコール746質量部(6.3モル部)と、セバシン酸288質量部(1.7モル部)と、縮合触媒としてテトラブトキシチタネート3質量部と、を投入した。常圧下、230℃で6時間重縮合した後、系内を減圧して、酸価が1.0になった時点で常圧に戻し、180℃に冷却した。180℃でカテコール28質量部(0.1モル部)を投入し、同温度で1時間反応させて、ポリエステル樹脂であるコア樹脂(b6)を得た。このようにして得たコア樹脂(b6)は、末端に酸性基であるカルボキシル基を有しており、pKaは9.50、Tgは72℃、Mnは2,400、水酸基価は40、酸価は8であった。次いで、ビーカーにコア樹脂(b6)1000質量部と、アセトン1000質量部と、を投入し、撹拌して均一に溶解させ、コア粒子(B6)形成用溶液を得た。
 <製造例3>
 [ウレタンプレポリマーの製造]
 撹拌装置と、加熱冷却装置と、脱水装置と、温度計と、を備えた反応容器に、水酸基価が56のポリカプロラクトンジオール(製品名:「プラクセルL220AL」、ダイセル化学工業(株)製)2000質量部を投入し、110℃に加熱して0.026MPaの減圧下で1時間脱水を行なった。次いでIPDI457質量部を投入し、110℃で10時間反応を行ない、末端にイソシアネート基を有するウレタンプレポリマーを得た。ウレタンプレポリマーのNCO含量は3.6質量%であった。
 <製造例4>
 [硬化剤の製造]
 撹拌装置と、加熱冷却装置と、温度計と、を備えた反応容器に、エチレンジアミン50質量部と、メチルイソブチルケトン300質量部と、を投入し、50℃で5時間反応を行ない、ケチミン化合物である硬化剤を得た。
 <製造例5>
 [着色剤分散液の製造]
 ビーカーに、銅フタロシアニン25質量部、着色剤分散剤(製品名:「アジスパーPB-821」、味の素ファインテクノ(株)製)4質量部と、アセトン75質量部と、を投入し、撹拌して均一に分散させた後、ビーズミルによって銅フタロシアニンを微分散して、着色剤分散液を得た。着色剤分散液に含まれる着色剤の体積平均粒径は0.2μmであった。
 <製造例6>
 [コア樹脂(b7)のコア粒子(B7)形成用溶液の製造]
 撹拌装置、加熱冷却装置および温度計を備えた反応容器に、セバシン酸、アジピン酸およびエチレングリコール(モル比0.8:0.2:1)から得られたポリエステル(Mn:5000)937質量部およびアセトン300質量部を投入し、撹拌して均一に溶解した。この溶液にイソホロンジイソシアネート(IPDI)63質量部を投入し、80℃で6時間反応させた。NCO価が0になったところで、無水トリメリット酸28質量部(0.1モル部)を投入し、180℃で1時間反応させて、ウレタン樹脂であるコア樹脂(b7)を得た。コア樹脂(b7)は、Mnが25000であり、ウレタン基濃度が2.00であった。このようにして得たコア樹脂(b7)は、末端に酸性基であるカルボキシル基を有しており、pKaは6.20であった。次いで、ビーカーにコア樹脂(b7)1300質量部と、アセトン700質量部を投入し、撹拌して均一に溶解させ、コア粒子(B7)形成用溶液を得た。なお、「ウレタン基濃度(質量%)」とは、樹脂に含まれるウレタン基の質量を、同樹脂の質量で除した値に100を乗じた値を意味している。
 以下の実施例の説明において、たとえば、実施例1の液体現像剤を液体現像剤(X-1)、実施例2の液体現像剤を液体現像剤(X-2)などと記す。同様に、比較例においては、たとえば、比較例1の液体現像剤を液体現像剤(Z-1)などと記す。
 <実施例1>
 ビーカーに、製造例2-1で得たコア粒子(B1)形成用溶液45質量部と、製造例4で得た着色剤分散液15質量部と、を投入し、25℃でTKオートホモミキサー(製品名、特殊機化工業(株)製)を用いて8000rpmで撹拌し、均一に分散させてコア粒子(B1)形成用溶液と着色剤分散液との混合溶液を得た。
 別のビーカーに、流動パラフィン67質量部と、製造例1-1で得た分散液(W1)6質量部と、を投入して均一に分散した。次いで、25℃でTKオートホモミキサーを用いて10000rpmで撹拌しながら、コア粒子(B1)形成用溶液と着色剤分散液との混合溶液60質量部を投入して2分間撹拌した。次いでこの混合液を、撹拌装置と、加熱冷却装置と、温度計と、脱溶剤装置と、を備えた反応容器に投入し、35℃に昇温後、同温度で0.039MPaの減圧下で、アセトン濃度が0.5質量%以下になるまでアセトンを留去し、液体現像剤(X-1)を得た。なお、液体現像剤(X-1)中のアセトンの濃度は、水素炎イオン検出方式(以下「FID方式」とも記す)のガスクロマトグラフィー(製品名:「GC2010」、(株)島津製作所製)で定量した。
 上記のようにして得られた、液体現像剤(X-1)中のシェル樹脂(a)の25℃における絶縁性液体(L)への溶解度を以下のようにして測定した。
 液体現像剤(X-1)10gを、25℃、10000rpmで30分間遠心分離し、上澄み液を全量回収した。残った固形分に10mlの絶縁性液体(L)を加え、トナー粒子(C)を再度分散させた。その後、25℃、10000ppmで30分間遠心分離し、上澄み液を全量回収した。この操作をさらに繰り返し、計3回上澄み液を回収した。上澄み液を、減圧乾燥機で、20mmHgの減圧下、絶縁性液体(L)の沸点と同じ温度で、1時間乾燥させ、残渣の質量を秤量した。このときの残渣の質量Y[単位:g]と液体現像剤10g中のシェル樹脂(a)の質量y[単位:g]とを下記式(6)へ代入して、液体現像剤(X-1)における絶縁性液体(L)へのシェル樹脂(a)の溶解度(25℃)を算出した。
溶解度(質量%)=(Y/y)×100・・・(6)
 上記のようにして測定した結果、液体現像剤(X-1)中のシェル樹脂(a)の25℃における(L)への溶解度は3質量%であった。結果を表1に示す。
 <実施例2~5>
 表1に示したコア粒子(B)形成用溶液、ウレタンプレポリマー、硬化剤、着色剤分散液、流動パラフィン、および分散液を使用する以外は実施例1と同様にして、本実施の形態の液体現像剤(X-2)~(X-5)を得た。
 なお、表1中、シェル粒子(A)の分散液(W)の欄は、使用した分散液の種類を示す。たとえば、「W1」とは、上記の製造例1で説明したシェル粒子(A1)の分散液(W1)を使用したことを示す。
 コア粒子(B)形成用溶液の種類の欄は、使用したコア粒子形成用溶液の種類を示す。たとえば、「B1」とは、上記の製造例2で説明したコア粒子(B1)形成用溶液を使用したことを示す。
 また、ウレタンプレポリマー、硬化剤、着色剤分散液、流動パラフィンの欄の数値はいずれも使用量(質量部)を示す。
 <実施例6>
 ビーカーに、製造例1-1でシェル粒子(A1)の分散液(W1)を製造する過程で得られたシェル粒子(A1)である共重合体の溶液8質量部と、コア粒子(B1)形成用溶液45質量部と、製造例4で得た着色剤分散液15質量部とを投入し、25℃でTKオートホモミキサー(製品名、特殊機化工業(株)製)を用いて8000rpmで撹拌し、均一に分散させてシェル粒子(A1)である共重合体の溶液とコア粒子(B1)形成用溶液と着色剤分散液との混合溶液を得た。
 別のビーカーに、流動パラフィン67質量部を投入し、次いで、25℃でTKオートホモミキサーを用いて10000rpmで撹拌しながら、シェル粒子(A1)である共重合体の溶液とコア粒子(B1)形成用溶液と着色剤分散液との混合溶液60質量部を投入して2分間撹拌した。次いでこの混合液を、撹拌装置と、加熱冷却装置と、温度計と、脱溶剤装置と、を備えた反応容器に投入し、35℃に昇温後、同温度で0.039MPaの減圧下で、アセトン濃度が0.5質量%以下になるまでアセトンを留去し、液体現像剤(X-6)を得た。
 <比較例1~4>
 表1に示したコア粒子(B)形成用溶液、着色剤分散液、流動パラフィン、および分散液を使用する以外は実施例1と同様にして、比較例の液体現像剤(Z-1)~(Z-4)を得た。
 <評価>
 実施例1~6、および比較例1~4で得られた液体現像剤(X-1)~(X-6)、および(Z-1)~(Z-4)を、それぞれを流動パラフィンに希釈して、「LA-920」を用いてトナー粒子(C)の体積平均粒径および体積分布の変動係数を測定した。また、トナー粒子(C)におけるシェル粒子(A)の状態を以下の方法で観察した。そして、トナー粒子(C)におけるコア粒子(B)のシェル粒子(A)による表面被覆率を上記の方法で測定した。さらに、液体現像剤について以下の方法で定着性、耐熱安定性を評価した。結果を表1に示す。
 <トナー粒子(C)におけるシェル粒子(A)の状態評価>
 トナー粒子(C)50個の表面を走査型電子顕微鏡(SEM)で観察し、シェル粒子(A)がコア粒子(B)の表面に付着しているか、または被膜化しているかを判定した。
 <画像形成装置>
 図1に、本実施の形態の液体現像剤の定着性評価に用いる電子写真方式の画像形成装置の概略概念図を示す。画像形成装置1において、液体現像剤2は、供給ローラ3により、汲み上げられ、規制ブレード4によって、擦りきられて、供給ローラ3上で、所定厚みの液体現像剤2の薄層が形成される。なお、アニロックスローラの場合は、ローラの彫り込みに液体現像剤が充填されており、規制ローラによって規定量が計量される。次いで、供給ローラ3から現像ローラ5上に液体現像剤2の薄層が移動し、現像ローラ5と感光体6とのニップによって、トナー粒子により感光体6上にトナー画像が形成される。その後、感光体6とバックアップローラ10とのニップによって記録材11上にトナー画像が転写され、ヒートローラ12によって画像が定着される。なお、画像形成装置1は、上記した以外にも、現像ローラクリーニングブレード8、荷電装置9を備えている。
 <定着強度評価>
 図1に示した画像形成装置を用いて、実施例および比較例の各液体現像剤のベタパターン(10cm×10cm、付着量:2mg/m2)を128g/cm2のコート紙(製品名:「OKトップコートプラス」、王子製紙社製)上に形成し、ヒートローラで定着させた(180℃×ニップ時間30msec)。
 その後、消しゴム(商品名:砂消し「LION 26111」、ライオン事務器社製)を押圧荷重1kgfで2回擦り、画像濃度の残存率を反射濃度計(製品名:「X-Rite model 404」、X-Rite社製)を用いて測定し、以下の3段階のランク評価を行なった。結果を表1の保存前定着強度の欄に示す。
 定着強度A:画像濃度残存率が90%以上
 定着強度B:画像濃度残存率が80%以上90%未満
 定着強度C:画像濃度残存率が80%未満
 表1中、定着強度Aが最も定着性に優れ、次いで定着強度Bが優れ、定着強度Cは定着性が最も劣ることを示している。
 <高温オフセット評価>
 また、同時にローラ汚れ(高温オフセット)を測定した。高温オフセットは、画像形成装置にコート紙を通紙して、コート紙上に画像を形成した直後に、白紙を通し、白紙の汚れを目視で評価した。白紙にトナー汚れが確認されたものを「B」、確認されなかったものを「A」とした。結果を表1の保存前オフセットの欄に示す。
 表1中、「A」のものは、高温オフセット性能が良好である。
 <保存特性評価>
 さらに、実施例および比較例の各液体現像剤を、温度50℃/湿度50%環境下で7日間静置保存した後、上記と同様にして、定着強度および高温オフセットの評価を行なった。結果を表1の保存後定着強度および保存後オフセットの欄にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000004
 表1から明らかなように、本実施の形態の液体現像剤は、トナー粒子(C)が絶縁性液体(L)に分散されてなる液体現像剤(X)であって、該トナー粒子(C)は、シェル樹脂(a)を含むシェル粒子(A)がコア樹脂(b)を含むコア粒子(B)の表面に付着または被覆されてなるコア・シェル構造を有し、該コア樹脂(b)は、酸性基を有し、かつ酸解離定数が、2.90以上8.00以下であることを以って、優れた定着性を示し、幅広い温度範囲において定着可能であり、かつ定着後の保存劣化が極めて少ないという優れた効果を有することが確認できた。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明の液体現像剤(X)は、塗料、電子写真用液体現像剤、静電記録用液体現像剤、インクジェットプリンタ用油性インクまたは電子ペーパー用インクなどの用途において極めて有用である。また、その他の用途として、化粧品用、電子部品製造用スペーサー、電気粘性流体用などの用途においても高い利用価値を有する。
 1 画像形成装置、2 液体現像剤、3 供給ローラ、4 規制ブレード、5 現像ローラ、6 感光体、7,8 クリーニングブレード、9 荷電装置、10 バックアップローラ、11 記録材、12 ヒートローラ。

Claims (14)

  1.  トナー粒子が絶縁性液体に分散されてなる液体現像剤であって、
     前記トナー粒子は、シェル樹脂を含むシェル粒子がコア樹脂を含むコア粒子の表面に付着または被覆されてなるコア・シェル構造を有し、
     前記コア樹脂は、酸性基を有し、かつ酸解離定数が2.90以上8.00以下である、液体現像剤。
  2.  前記トナー粒子の体積平均粒径は、0.01μm以上100μm以下であり、
     前記トナー粒子の体積分布の変動係数は、1%以上100%以下である、請求項1に記載の液体現像剤。
  3.  前記トナー粒子の円形度の平均値は、0.92以上1.0以下である、請求項1または2に記載の液体現像剤。
  4.  前記シェル樹脂は、ビニル樹脂、ポリエステル樹脂、ポリウレタン樹脂およびエポキシ樹脂からなる群より選ばれる少なくとも一種である、請求項1~3のいずれか1項に記載の液体現像剤。
  5.  前記シェル樹脂は、ビニル樹脂を含み、重合性二重結合を有するモノマー由来の構成単位を含む単独重合体または共重合体である、請求項1~4のいずれか1項に記載の液体現像剤。
  6.  前記重合性二重結合を有するモノマーは、分子鎖を有するビニルモノマーである、請求項5に記載の液体現像剤(X)。
  7.  前記ビニルモノマーは、炭素数が12~27の直鎖状炭化水素鎖を有するビニルモノマー、炭素数が12~27の分岐状炭化水素鎖を有するビニルモノマー、炭素数が4~20のフルオロアルキル鎖を有するビニルモノマーおよびポリジメチルシロキサン鎖を有するビニルモノマーからなる群より選ばれる少なくとも1種である、請求項6に記載の液体現像剤。
  8.  前記コア樹脂は、ビニル樹脂、ポリエステル樹脂、ポリウレタン樹脂およびエポキシ樹脂からなる群より選ばれる少なくとも一種である、請求項1~7のいずれか1項に記載の液体現像剤。
  9.  前記コア粒子は、ワックスおよびビニルポリマー鎖がワックスにグラフト重合された変性ワックスの少なくとも一方を含有する、請求項1~8のいずれか1項に記載の液体現像剤。
  10.  前記トナー粒子において、前記シェル粒子による前記コア粒子の表面被覆率は、50%以上である、請求項1~9のいずれか1項に記載の液体現像剤。
  11.  前記液体現像剤は、塗料、電子写真用液体現像剤、静電記録用液体現像剤、インクジェットプリンタ用油性インクまたは電子ペーパー用インクである、請求項1~10のいずれか1項に記載の液体現像剤。
  12.  前記コア粒子は、前記コア樹脂と着色剤とを含む、請求項1~11のいずれか1項に記載の液体現像剤。
  13.  絶縁性液体中にシェル樹脂を含有するシェル粒子が分散されてなる前記シェル粒子の分散液を調製する工程と、
     有機溶媒中にコア樹脂または前記コア樹脂の前駆体が溶解されてなるコア粒子形成用溶液を調製する工程と、
     前記シェル粒子の前記分散液に前記コア粒子形成用溶液を分散させることにより、前記分散液中に前記コア樹脂を含むコア粒子を形成させるとともに、前記シェル粒子が前記コア粒子の表面に付着または被覆されてなるコア・シェル構造を有するトナー粒子を得る工程と、
     前記トナー粒子を得る工程の後で前記有機溶媒を留去させることにより、液体現像剤を得る工程と、を備え、
     前記コア樹脂は酸性基を有し、かつ酸解離定数が2.90以上8.00以下である、液体現像剤の製造方法。
  14.  前記有機溶媒の溶解度パラメータは、8.5~20(cal/cm31/2である、請求項13に記載の液体現像剤の製造方法。
PCT/JP2013/074529 2012-09-26 2013-09-11 液体現像剤およびその製造方法 WO2014050559A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/431,004 US10007207B2 (en) 2012-09-26 2013-09-11 Liquid developer and method for manufacturing the same
JP2014538364A JPWO2014050559A1 (ja) 2012-09-26 2013-09-11 液体現像剤およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-212411 2012-09-26
JP2012212411 2012-09-26

Publications (1)

Publication Number Publication Date
WO2014050559A1 true WO2014050559A1 (ja) 2014-04-03

Family

ID=50387966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074529 WO2014050559A1 (ja) 2012-09-26 2013-09-11 液体現像剤およびその製造方法

Country Status (3)

Country Link
US (1) US10007207B2 (ja)
JP (1) JPWO2014050559A1 (ja)
WO (1) WO2014050559A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151745A (ja) * 2015-02-19 2016-08-22 コニカミノルタ株式会社 液体現像剤
JP2016161631A (ja) * 2015-02-27 2016-09-05 三洋化成工業株式会社 液体現像剤
JP2019066815A (ja) * 2017-09-28 2019-04-25 キヤノン株式会社 液体現像剤及び該液体現像剤の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3098659A1 (en) * 2015-05-27 2016-11-30 Canon Kabushiki Kaisha Curable liquid developer and image-forming method using curable liquid developer
CN110651230A (zh) * 2017-06-28 2020-01-03 惠普印迪戈股份公司 液体静电墨水显影器组装件
JP2021165835A (ja) * 2020-04-06 2021-10-14 キヤノン株式会社 トナー及びトナーの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213428A (ja) * 1983-05-17 1984-12-03 Ricoh Co Ltd 非水溶媒系分散液
JPH01285955A (ja) * 1988-05-13 1989-11-16 Fuji Photo Film Co Ltd 電子写真用液体現像剤
JPH08220813A (ja) * 1995-02-16 1996-08-30 Minolta Co Ltd 電子写真用液体現像剤
JPH09218540A (ja) * 1996-02-09 1997-08-19 Nippon Paint Co Ltd 液体現像剤
JP2009096994A (ja) * 2007-09-28 2009-05-07 Sanyo Chem Ind Ltd 非水系樹脂分散液
JP2009175670A (ja) * 2007-12-27 2009-08-06 Konica Minolta Business Technologies Inc 湿式現像剤
WO2011129058A1 (ja) * 2010-04-16 2011-10-20 三洋化成工業株式会社 非水系樹脂粒子分散液

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752311B2 (ja) * 1985-05-13 1995-06-05 株式会社リコー 静電写真用液体現像剤
JPH0895297A (ja) 1993-12-24 1996-04-12 Mitsui Toatsu Chem Inc 電子写真トナー用樹脂組成物
US5843613A (en) 1995-02-16 1998-12-01 Minolta Co., Ltd. Liquid developer
JP2002244335A (ja) 2001-02-21 2002-08-30 Ricoh Co Ltd 電子写真用現像剤及び画像形成方法
EP1959306A1 (en) 2007-02-16 2008-08-20 Seiko Epson Corporation Liquid developer and image forming apparatus
JP2008225442A (ja) 2007-02-16 2008-09-25 Seiko Epson Corp 液体現像剤および画像形成装置
JP2008203568A (ja) * 2007-02-20 2008-09-04 Seiko Epson Corp 液体現像剤および画像形成装置
JP5168035B2 (ja) * 2008-04-02 2013-03-21 コニカミノルタビジネステクノロジーズ株式会社 湿式現像剤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213428A (ja) * 1983-05-17 1984-12-03 Ricoh Co Ltd 非水溶媒系分散液
JPH01285955A (ja) * 1988-05-13 1989-11-16 Fuji Photo Film Co Ltd 電子写真用液体現像剤
JPH08220813A (ja) * 1995-02-16 1996-08-30 Minolta Co Ltd 電子写真用液体現像剤
JPH09218540A (ja) * 1996-02-09 1997-08-19 Nippon Paint Co Ltd 液体現像剤
JP2009096994A (ja) * 2007-09-28 2009-05-07 Sanyo Chem Ind Ltd 非水系樹脂分散液
JP2009175670A (ja) * 2007-12-27 2009-08-06 Konica Minolta Business Technologies Inc 湿式現像剤
WO2011129058A1 (ja) * 2010-04-16 2011-10-20 三洋化成工業株式会社 非水系樹脂粒子分散液

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151745A (ja) * 2015-02-19 2016-08-22 コニカミノルタ株式会社 液体現像剤
JP2016161631A (ja) * 2015-02-27 2016-09-05 三洋化成工業株式会社 液体現像剤
JP2019066815A (ja) * 2017-09-28 2019-04-25 キヤノン株式会社 液体現像剤及び該液体現像剤の製造方法
JP7146406B2 (ja) 2017-09-28 2022-10-04 キヤノン株式会社 液体現像剤及び該液体現像剤の製造方法

Also Published As

Publication number Publication date
US20150277257A1 (en) 2015-10-01
JPWO2014050559A1 (ja) 2016-08-22
US10007207B2 (en) 2018-06-26

Similar Documents

Publication Publication Date Title
JP6291708B2 (ja) 液体現像剤およびその製造方法
JP5663007B2 (ja) 非水系樹脂粒子分散液
JP6085929B2 (ja) 液体現像剤およびその製造方法
JP5048619B2 (ja) 非水系樹脂分散液
JP2012107229A (ja) 樹脂粒子分散液の製造方法
WO2014050559A1 (ja) 液体現像剤およびその製造方法
JP6121855B2 (ja) 樹脂粒子の製造方法
JP6268694B2 (ja) 液体現像剤およびその製造方法
JP2014163985A (ja) 液体現像剤
JP5101208B2 (ja) 樹脂粒子および樹脂粒子の製造方法
JP4964834B2 (ja) 樹脂粒子
JP2014066885A (ja) 液体現像剤
JP2013155210A (ja) コアシェル型樹脂粒子及びその製造方法
JP2014066888A (ja) 液体現像剤およびその製造方法
JP2012140564A (ja) 樹脂粒子分散液
JP6359795B2 (ja) 液体現像剤
JP2014066891A (ja) 液体現像剤の製造方法
JP2014167541A (ja) 液体現像剤
JP2016173473A (ja) 液体現像剤の製造方法および液体現像剤
JP2014163986A (ja) 液体現像剤
JP2012113167A (ja) 電子写真用液体現像液
JP2013151588A (ja) 樹脂粒子の製造方法
JP2012123217A (ja) 電子写真用液体現像液
JP2016176991A (ja) 液体現像剤
JP2014167540A (ja) 液体現像剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538364

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431004

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842688

Country of ref document: EP

Kind code of ref document: A1