WO2014050559A1 - 液体現像剤およびその製造方法 - Google Patents
液体現像剤およびその製造方法 Download PDFInfo
- Publication number
- WO2014050559A1 WO2014050559A1 PCT/JP2013/074529 JP2013074529W WO2014050559A1 WO 2014050559 A1 WO2014050559 A1 WO 2014050559A1 JP 2013074529 W JP2013074529 W JP 2013074529W WO 2014050559 A1 WO2014050559 A1 WO 2014050559A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- core
- acid
- shell
- particles
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/12—Developers with toner particles in liquid developer mixtures
- G03G9/13—Developers with toner particles in liquid developer mixtures characterised by polymer components
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/0802—Preparation methods
- G03G9/0804—Preparation methods whereby the components are brought together in a liquid dispersing medium
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/093—Encapsulated toner particles
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/12—Developers with toner particles in liquid developer mixtures
Definitions
- the present invention relates to a liquid developer and a method for producing the same. More specifically, the present invention relates to a liquid developer useful for a wide range of applications such as an electrophotographic liquid developer, an electrostatic recording liquid developer, an oil-based ink for an inkjet printer, or an electronic paper ink, and a method for producing the same.
- the toner particles dispersed in the liquid developer are: After fixing on the paper, it is required to firmly adhere to the paper and not easily peel off.
- Patent Document 1 proposes a method in which a fatty acid monoester is added to a non-aqueous dispersion medium and a constituent resin resin particle is a polyester resin.
- the fatty acid monoester plasticizes the polyester resin to improve the fixing property of the resin particles to the paper. After the toner particles are fixed, the recording material is used. It has been found that when the toner is stored in a high temperature and high humidity environment, the fixing properties deteriorate, such as toner particles falling off.
- the present invention has been made in view of the circumstances as described above, and its object is to have excellent fixability that can be applied to various recording materials, and can be fixed in a wide temperature range. It is an object of the present invention to provide a liquid developer and a method for producing the same that have extremely low fixing deterioration.
- the present inventors have conducted extensive research on the structure and physical properties of toner particles contained in a liquid developer.
- the toner particles have a core-shell structure composed of two specific types of resins.
- the resin has an acidic group and the acid dissociation constant occupies a certain range, the fixability is dramatically improved, and the storage characteristics after fixing are also found, and the present invention has been completed. .
- the liquid developer of the present invention is a liquid developer (X) in which toner particles (C) are dispersed in an insulating liquid (L), and the toner particles (C) are shell resin (a).
- the core particle (A) has a core-shell structure in which the surface of the core particle (B) containing the core resin (b) is attached or coated, and the core resin (b) has an acidic group And an acid dissociation constant is 2.90 or more and 8.00 or less.
- the volume average particle diameter of the toner particles (C) is 0.01 ⁇ m or more and 100 ⁇ m or less, and the coefficient of variation of the volume distribution of the toner particles (C) is preferably 1% or more and 100% or less. .
- the average value of the circularity of the toner particles (C) is preferably 0.92 or more and 1.0 or less.
- the shell resin (a) is preferably at least one selected from the group consisting of vinyl resins, polyester resins, polyurethane resins and epoxy resins.
- the shell resin (a) is a vinyl resin and is preferably a homopolymer or a copolymer containing a structural unit derived from a monomer having a polymerizable double bond.
- the monomer having a polymerizable double bond is preferably a vinyl monomer (m) having a molecular chain (k).
- the vinyl monomer (m) includes a vinyl monomer (m1) having a linear hydrocarbon chain having 12 to 27 carbon atoms, and a vinyl monomer (m2) having a branched hydrocarbon chain having 12 to 27 carbon atoms.
- the vinyl monomer (m3) having a fluoroalkyl chain having 4 to 20 carbon atoms and at least one selected from the group consisting of a vinyl monomer (m4) having a polydimethylsiloxane chain are preferable.
- the core resin (b) is preferably at least one selected from the group consisting of vinyl resins, polyester resins, polyurethane resins and epoxy resins.
- the core particle (B) preferably contains at least one of a wax (c) and a modified wax (d) in which a vinyl polymer chain is graft-polymerized to the wax.
- the surface coverage of the core particles (B) by the shell particles (A) is preferably 50% or more.
- the liquid developer (X) is preferably a paint, an electrophotographic liquid developer, an electrostatic recording liquid developer, an oil-based ink for an ink jet printer, or an ink for electronic paper.
- the core particle (B) preferably contains the core resin (b) and a colorant.
- the manufacturing method of the liquid developer of this invention is the dispersion liquid (W) of the shell particle (A) in which the shell particle (A) containing shell resin (a) is disperse
- the core particle (B) containing the core resin (b) is formed in the dispersion (W) by dispersing the core particle (B) forming solution in the dispersion (W) of the shell particles (A).
- the toner particles (C) having a core-shell structure in which the shell particles (A) are attached or coated on the surfaces of the core particles (B), and obtaining the toner particles (C).
- the organic solvent (M) is distilled off, the liquid developer (X) is removed. That includes a step of, the core resin (b) has an acidic group, the acid dissociation constant, characterized in that at 2.90 or more 8.00 or less.
- the solubility parameter of the organic solvent (M) is preferably 8.5 to 20 (cal / cm 3 ) 1/2 .
- the liquid developer of the present invention has the above-described configuration, it exhibits excellent fixability that can be applied to high-quality paper and the like, can be fixed in a wide temperature range, and has extremely low storage deterioration after fixing. It has an excellent effect of being less.
- FIG. 1 is a schematic conceptual diagram of an electrophotographic image forming apparatus.
- liquid developer of the present invention is not limited to the liquid developer shown below.
- the liquid developer (X) includes an electrophotographic liquid developer, a paint, and the like used in an electrophotographic image forming apparatus (described later) such as a copying machine, a printer, a digital printing machine, and a simple printing machine. It is useful as a liquid developer for electrostatic recording, an oil-based ink for ink-jet printers, or an ink for electronic paper.
- Toner particles (C) are dispersed in an insulating liquid (L).
- the toner particles (C) have a core / shell structure in which the shell particles (A) containing the shell resin (a) are attached to or coated on the surfaces of the core particles (B) containing the core resin (b).
- the shell resin (a) in the present embodiment may be a thermoplastic resin or a thermosetting resin.
- the shell resin (a) include vinyl resin, polyester resin, polyurethane resin, epoxy resin, polyamide resin, polyimide resin, silicon resin, phenol resin, melamine resin, urea resin, aniline resin, ionomer resin, and polycarbonate resin. Etc.
- the shell resin (a) two or more of the above listed resins may be used in combination.
- the shell resin (a) is preferably at least one selected from the group consisting of vinyl resins, polyester resins, polyurethane resins, and epoxy resins. More preferably, at least one of a polyester resin and a polyurethane resin can be used.
- the vinyl resin may be a homopolymer containing a structural unit derived from a monomer having a polymerizable double bond, or a copolymer containing structural units derived from two or more monomers having a polymerizable double bond. It may be.
- Examples of the monomer having a polymerizable double bond include the following (1) to (9).
- Hydrocarbon having a polymerizable double bond is, for example, an aliphatic hydrocarbon having a polymerizable double bond represented by the following (1-1), or the following (1 -2) is preferably an aromatic hydrocarbon having a polymerizable double bond.
- Aliphatic hydrocarbon having a polymerizable double bond is, for example, a chain having a polymerizable double bond represented by the following (1-1-1): It is preferably a hydrocarbon or a cyclic hydrocarbon having a polymerizable double bond represented by the following (1-1-2).
- Chain hydrocarbon having a polymerizable double bond examples include alkenes having 2 to 30 carbon atoms (for example, ethylene, propylene, butene). , Isobutylene, pentene, heptene, diisobutylene, octene, dodecene or octadecene); alkadienes having 4 to 30 carbon atoms (for example, butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene or 1,7-octadiene) Etc.).
- alkenes having 2 to 30 carbon atoms for example, ethylene, propylene, butene.
- Isobutylene pentene, heptene, diisobutylene, octene, dodecene or octadecene
- alkadienes having 4 to 30 carbon atoms for example, butadiene, isoprene, 1,4-pent
- Cyclic hydrocarbon having a polymerizable double bond examples include mono- or dicycloalkenes having 6 to 30 carbon atoms (for example, cyclohexene, vinyl, etc.). Cyclohexene or ethylidenebicycloheptene); mono- or dicycloalkadienes having 5 to 30 carbon atoms (for example, cyclopentadiene or dicyclopentadiene).
- Aromatic hydrocarbon having a polymerizable double bond examples include styrene; styrene hydrocarbon (for example, alkyl having 1 to 30 carbon atoms, Cycloalkyl, aralkyl and / or alkenyl) substituted (eg, ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene, cyclohexylstyrene, benzylstyrene, crotylbenzene , Divinylbenzene, divinyltoluene, divinylxylene or trivinylbenzene); and vinylnaphthalene.
- styrene for example, alkyl having 1 to 30 carbon atoms, Cycloalkyl, aralkyl and / or al
- Monomers having a carboxyl group and a polymerizable double bond and salts thereof examples include unsaturated monocarboxylic acids having 3 to 15 carbon atoms [for example, ( (Meth) acrylic acid, crotonic acid, isocrotonic acid, cinnamic acid, etc.]; unsaturated dicarboxylic acid (anhydride) having 3 to 30 carbon atoms [for example, (anhydrous) maleic acid, fumaric acid, itaconic acid, (anhydrous) citracone Acid or mesaconic acid, etc.]; monoalkyl (1-10 carbon atoms) ester of unsaturated dicarboxylic acid having 3 to 10 carbon atoms (for example, maleic acid monomethyl ester, maleic acid monodecyl ester, fumaric acid monoethyl ester, Itaconic acid monobutyl ester or citraconic acid monodecyl ester
- Examples of the salt of the monomer include alkali metal salts (for example, sodium salt or potassium salt), alkaline earth metal salts (for example, calcium salt or magnesium salt), ammonium salts, amine salts, and quaternary ammonium. Examples include salt.
- the amine salt is not particularly limited as long as it is an amine compound.
- primary amine salt for example, ethylamine salt, butylamine salt or octylamine salt
- secondary amine salt for example, diethylamine salt or dibutylamine salt
- Tertiary amine salts for example, triethylamine salt or tributylamine salt
- Examples of the quaternary ammonium salt include tetraethylammonium salt, triethyllaurylammonium salt, tetrabutylammonium salt and tributyllaurylammonium salt.
- Examples of the salt of the monomer having a carboxyl group and a polymerizable double bond include sodium acrylate, sodium methacrylate, monosodium maleate, disodium maleate, potassium acrylate, potassium methacrylate, monopotassium maleate, acrylic Examples include lithium acid, cesium acrylate, ammonium acrylate, calcium acrylate, and aluminum acrylate.
- Monomers having a sulfo group and a polymerizable double bond and salts thereof examples include alkene sulfonic acids having 2 to 14 carbon atoms [for example, vinyl sulfonic acid , (Meth) allyl sulfonic acid or methyl vinyl sulfonic acid etc.]; styrene sulfonic acid and alkyl derivatives (2 to 24 carbon atoms) of styrene sulfonic acid (for example, ⁇ -methyl styrene sulfonic acid etc.); 18 sulfo (hydroxy) alkyl- (meth) acrylates [eg, sulfopropyl (meth) acrylate, 2-hydroxy-3- (meth) acryloxypropyl sulfonic acid, 2- (meth) acryloyloxyethane sulfonic acid or 3- (Meth)
- polystyrene resin It may be a polymer
- R 1 represents an alkylene group having 2 to 4 carbon atoms. If the formula (1) contains two or more R 1 O, 2 or more R 1 O may be constructed using the same alkylene groups, two or more alkylene groups is constructed by combination Also good. When two or more kinds of alkylene groups are used in combination, the sequence of R 1 in the chemical formula (1) may be a random sequence or a block sequence.
- R 2 and R 3 each independently represents an alkyl group having 1 to 15 carbon atoms.
- m and n are each independently an integer of 1 to 50.
- Ar represents a benzene ring.
- R 4 represents an alkyl group having 1 to 15 carbon atoms which may be substituted with a fluorine atom.
- Examples of the salt of the monomer having a sulfo group and a polymerizable double bond include, for example, the same as those listed as “the salt of the monomer” in “(2) Monomer having a carboxyl group and a polymerizable double bond” above.
- Examples thereof include alkali metal salts, alkaline earth metal salts, ammonium salts, amine salts, and quaternary ammonium salts.
- Monomer having phosphono group and polymerizable double bond and salt thereof examples include (meth) acryloyloxyalkyl phosphoric acid monoester (wherein the carbon number of the alkyl group is 1-24) [for example, 2-hydroxyethyl (meth) acryloyl phosphate or phenyl-2-acryloyloxyethyl phosphate, etc.]; (meth) acryloyloxyalkylphosphonic acid (the alkyl group has 1 to 24 carbon atoms) (for example, 2-acryloyloxyethylphosphonic acid and the like.
- Examples of the salt of the monomer having a phosphono group and a polymerizable double bond include, for example, the same as those listed as “the salt of the monomer” in “(2) Monomer having a carboxyl group and a polymerizable double bond” above.
- Examples thereof include alkali metal salts, alkaline earth metal salts, ammonium salts, amine salts, and quaternary ammonium salts.
- Monomer having a hydroxyl group and a polymerizable double bond examples include hydroxystyrene, N-methylol (meth) acrylamide, hydroxyethyl (meth) acrylate, and hydroxypropyl.
- Nitrogen-containing monomer having polymerizable double bond examples include monomers shown in the following (6-1) to (6-4).
- Monomer having amino group and polymerizable double bond examples include aminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl ( (Meth) acrylate, t-butylaminoethyl methacrylate, N-aminoethyl (meth) acrylamide, (meth) allylamine, morpholinoethyl (meth) acrylate, 4-vinylpyridine, 2-vinylpyridine, crotylamine, N, N-dimethylamino Styrene, methyl- ⁇ -acetaminoacrylate, vinylimidazole, N-vinylpyrrole, N-vinylthiopyrrolidone, N-arylphenylenediamine, aminocarbazole, aminothiazole, aminoindole, aminopyrrole, amino Examples include noimid
- the monomer having an amino group and a polymerizable double bond may be a salt of the monomers listed above.
- the salt of the above-listed monomer include, for example, alkali metal salts and alkaline earth metals similar to those listed as “salt of the above monomer” in “(2) monomer having a carboxyl group and a polymerizable double bond”. Examples thereof include metal salts, ammonium salts, amine salts, and quaternary ammonium salts.
- (6-2) Monomer having an amide group and a polymerizable double bond examples include (meth) acrylamide, N-methyl (meth) acrylamide, N-butylacrylamide, Diacetone acrylamide, N-methylol (meth) acrylamide, N, N′-methylene-bis (meth) acrylamide, cinnamic amide, N, N-dimethylacrylamide, N, N-dibenzylacrylamide, methacrylformamide, N-methyl -N-vinylacetamide and N-vinylpyrrolidone.
- (6-3) Monomer having 3 to 10 carbon atoms having a nitrile group and a polymerizable double bond for example, (meth) acrylonitrile , Cyanostyrene and cyanoacrylate.
- Monomers having 6 to 18 carbon atoms having an epoxy group and a polymerizable double bond examples include glycidyl (meth) acrylate, etc. Is mentioned.
- Monomers having 2 to 16 carbon atoms having a halogen element and a polymerizable double bond examples include vinyl chloride and vinyl bromide. , Vinylidene chloride, allyl chloride, chlorostyrene, bromostyrene, dichlorostyrene, chloromethylstyrene, tetrafluorostyrene and chloroprene.
- ester having 4 to 16 carbon atoms having a polymerizable double bond examples include vinyl acetate; vinyl propionate; vinyl butyrate; Diallyl phthalate; diallyl adipate; isopropenyl acetate; vinyl methacrylate; methyl-4-vinyl benzoate; cyclohexyl methacrylate; benzyl methacrylate; phenyl (meth) acrylate; vinyl methoxyacetate; vinyl benzoate; ethyl- ⁇ -ethoxy acrylate; Alkyl (meth) acrylates having an alkyl group of ⁇ 11 [for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) Diacrylate fumarate (two alkyl
- poly (meth) acrylates of polyhydric alcohols e.g. ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate or Polyethylene glycol di (meth) acrylate and the like] ⁇ and the like.
- Ether having 3 to 16 carbon atoms having a polymerizable double bond examples include vinyl methyl ether, vinyl ethyl ether, and vinyl propyl.
- Ketone having 4 to 12 carbon atoms having a polymerizable double bond examples include vinyl methyl ketone, vinyl ethyl ketone and vinyl phenyl. Examples include ketones.
- Sulfur-containing compound having 2 to 16 carbon atoms having a polymerizable double bond examples include divinyl sulfide and p-vinyl diphenyl sulfide. , Vinyl ethyl sulfide, vinyl ethyl sulfone, divinyl sulfone and divinyl sulfoxide.
- the copolymer include, for example, a styrene- (meth) acrylic acid ester copolymer, a styrene-butadiene copolymer, and a (meth) acrylic acid- (meth) acrylic acid ester copolymer.
- Polymer Polymer, styrene-acrylonitrile copolymer, styrene- (anhydride) maleic acid copolymer, styrene- (meth) acrylic acid copolymer, styrene- (meth) acrylic acid-divinylbenzene copolymer, and styrene-styrenesulfonic acid -(Meth) acrylic acid ester copolymer.
- the shell resin (a) is a homopolymer or copolymer of a monomer having a polymerizable double bond of the above (1) to (9), that is, a homopolymer or copolymer containing a constitutional unit derived from a vinyl monomer.
- the monomer having a polymerizable double bond (1) to (9) and the vinyl monomer (m) having a molecular chain (k) and having a polymerizable double bond may be polymerized. It may be.
- the molecular chain (k) include linear or branched hydrocarbon chains having 12 to 27 carbon atoms, fluoroalkyl chains having 4 to 20 carbon atoms, and polydimethylsiloxane chains.
- the difference in SP value between the molecular chain (k) in the vinyl monomer (m) and the insulating liquid (L) is preferably 2 or less.
- the “SP value” is a method by Fedors [Polym. Eng. Sci. 14 (2) 152, (1974)].
- the vinyl monomer (m) having a polymerizable double bond having a molecular chain (k) is not particularly limited, and examples thereof include the following vinyl monomers (m1) to (m4).
- the vinyl monomer (m) two or more kinds of vinyl monomers (m1) to (m4) may be used in combination.
- vinyl monomer (m1) examples include mono-linear alkyls of unsaturated monocarboxylic acid (alkyl having 12 to 27 carbon atoms) esters and mono-linear alkyls of unsaturated dicarboxylic acid (carbon of alkyl). Examples thereof include esters having a number of 12 to 27).
- unsaturated monocarboxylic acid and unsaturated dicarboxylic acid include (meth) acrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid and other carboxyl group-containing vinyl monomers having 3 to 24 carbon atoms. Etc.
- vinyl monomer (m1) examples include, for example, dodecyl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate and (meta) ) Eicosyl acrylate.
- vinyl monomers (m2) include mono-branched alkyls of unsaturated monocarboxylic acids (alkyl having 12 to 27 carbon atoms) esters and mono-branched alkyls of unsaturated dicarboxylic acids (of which carbon number of alkyl is 12-27) esters and the like.
- Examples of the unsaturated monocarboxylic acid and unsaturated dicarboxylic acid include those similar to those listed as specific examples of the unsaturated monocarboxylic acid and unsaturated dicarboxylic acid in the vinyl monomer (m1).
- vinyl monomer (m2) examples include 2-decyltetradecyl (meth) acrylate.
- Vinyl monomer having a fluoroalkyl chain having 4 to 20 carbon atoms and a polymerizable double bond examples include perfluoroalkyl (alkyl) (meth) acrylic acid ester represented by the following chemical formula (4).
- R represents a hydrogen atom or a methyl group
- p is an integer of 0 to 3
- q is any one of 2, 4, 6, 8, 10 or 12
- Z is a hydrogen atom.
- Or represents a fluorine atom.
- vinyl monomer (m3) examples include, for example, [(2-perfluoroethyl) ethyl] (meth) acrylic acid ester, [(2-perfluorobutyl) ethyl] (meth) acrylic acid ester, [(2 -Perfluorohexyl) ethyl] (meth) acrylic acid ester, [(2-perfluorooctyl) ethyl] (meth) acrylic acid ester, [(2-perfluorodecyl) ethyl] (meth) acrylic acid ester, and And [(2-perfluorododecyl) ethyl] (meth) acrylic acid ester.
- Vinyl monomer having polydimethylsiloxane chain and polymerizable double bond examples include (meth) acryl-modified silicone represented by the following chemical formula (5).
- Chemical formula (5) In the above chemical formula (5), R represents a hydrogen atom or a methyl group, and m is an average value of 15 to 45.
- vinyl monomer (m4) examples include, for example, modified silicone oil (eg, product names: “X-22-174DX”, “X-22-2426”, “X-22-2475”, etc.) Silicone Co., Ltd.).
- preferable monomers are the vinyl monomer (m1) and the vinyl monomer (m2), and more preferable monomers are the vinyl monomer (m2).
- the content of the vinyl monomer (m) is preferably 10% by mass or more and 90% by mass or less, more preferably 15% by mass or more and 80% by mass or less, and further preferably 20% by mass with respect to the mass of the vinyl resin. % To 60% by mass.
- the content of the vinyl monomer (m) is within the above range, the toner particles (C) are difficult to unite with each other.
- the vinyl monomer (m1), and the vinyl monomer (m2) are polymerized to form a vinyl resin
- the vinyl monomer (m1) and the vinyl monomer (m2) are polymerized to form a vinyl resin
- the mass ratio [(m1) :( m2)] with respect to the monomer (m2) is preferably 90:10 to 10:90 from the viewpoint of the particle size distribution of the toner particles (C) and the fixability of the toner particles (C). More preferably, it is 80:20 to 20:80, and more preferably 70:30 to 30:70.
- polyester resin examples include polycondensates of polyols with polycarboxylic acids, polycarboxylic acid anhydrides or lower alkyl esters of polycarboxylic acids (alkyl group having 1 to 4 carbon atoms).
- a known polycondensation catalyst or the like can be used for the polycondensation reaction.
- polyol (11) examples include diol (10) and polyol (11) having a valence of 3 to 8 or more (hereinafter abbreviated as “polyol (11)”).
- polycarboxylic acid examples include dicarboxylic acid (12) and polycarboxylic acid (13) having a valence of 3 to 6 or more (hereinafter abbreviated as “polycarboxylic acid (13)”).
- acid anhydride of polycarboxylic acid examples include an acid anhydride of dicarboxylic acid (12) and an acid anhydride of polycarboxylic acid (13).
- lower alkyl ester of polycarboxylic acid include a lower alkyl ester of dicarboxylic acid (12) and a lower alkyl ester of polycarboxylic acid (13).
- the ratio of polyol and polycarboxylic acid is not particularly limited.
- the equivalent ratio of hydroxyl group [OH] to carboxyl group [COOH] ([OH] / [COOH]) is preferably 2/1 to 1/5, more preferably 1.5 / 1 to 1/4.
- the ratio of the polyol and the polycarboxylic acid may be set so that the ratio is more preferably 1.3 / 1 to 1/3.
- diol (10) examples include alkylene glycols having 2 to 30 carbon atoms (for example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexane).
- the diol (10) is preferably an alkylene glycol and an AO adduct of bisphenols, more preferably an AO adduct of bisphenols or a mixture of an AO adduct of bisphenols and an alkylene glycol.
- the polyol (11) is preferably an AO adduct of an aliphatic polyhydric alcohol and a novolac resin, and more preferably an AO adduct of a novolac resin.
- Examples of the dicarboxylic acid (12) include alkanedicarboxylic acids having 4 to 32 carbon atoms (for example, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid or octadecanedicarboxylic acid); 32 alkene dicarboxylic acids (eg maleic acid, fumaric acid, citraconic acid or mesaconic acid); branched alkene dicarboxylic acids having 8 to 40 carbon atoms [eg dimer acid or alkenyl succinic acid (eg dodecenyl succinic acid, penta Decenyl succinic acid or octadecenyl succinic acid etc.)]; branched alkanedicarboxylic acids having 12 to 40 carbon atoms [eg alkyl succinic acid (eg decyl succinic acid, dodecyl succinic acid or octade
- alkene dicarboxylic acid and aromatic dicarboxylic acid are preferred as dicarboxylic acid (12), and aromatic dicarboxylic acid is more preferred.
- polycarboxylic acid (13) examples include aromatic polycarboxylic acids having 9 to 20 carbon atoms (for example, trimellitic acid or pyromellitic acid).
- the acid anhydrides of dicarboxylic acid (12) and polycarboxylic acid (13) include, for example, trimellitic acid anhydride and pyromellitic acid anhydride.
- Examples of lower alkyl esters of dicarboxylic acid (12) and polycarboxylic acid (13) include methyl ester, ethyl ester, and isopropyl ester.
- polyurethane resin examples include polyisocyanate (14) and active hydrogen-containing compound ⁇ for example, water; polyol [for example, diol (10) (including diol having a functional group other than hydroxyl group) or polyol (11), etc.]
- a polycarboxylic acid for example, dicarboxylic acid (12) or polycarboxylic acid (13)]; a polyester polyol obtained by polycondensation of a polyol and a polycarboxylic acid; a ring-opening polymer of a lactone having 6 to 12 carbon atoms; Polyamine (15); polythiol (16); a combination of these and the like ⁇ , or a terminal isocyanate group prepolymer obtained by reacting polyisocyanate (14) with the active hydrogen-containing compound.
- the isocyanate group of the terminal isocyanate group prepolymer To be a primary and / or secondary monoamine (17) and the amino group-containing polyurethane resin
- the content of carboxyl groups in the polyurethane resin is preferably 0.1% by mass or more and 10% by mass or less.
- polyisocyanate (14) examples include aromatic polyisocyanates having 6 to 20 carbon atoms (excluding carbon in the NCO group; hereinafter the same applies to ⁇ polyurethane resin>); aliphatic having 2 to 18 carbon atoms.
- Polyisocyanates; modified products of these polyisocyanates for example, modified products containing urethane groups, carbodiimide groups, allophanate groups, urea groups, burette groups, uretdione groups, uretoimine groups, isocyanurate groups or oxazolidone groups); A combination of two or more types can be mentioned.
- aromatic polyisocyanate examples include 1,3- or 1,4-phenylene diisocyanate; 2,4- or 2,6-tolylene diisocyanate (hereinafter also referred to as “TDI”); crude TDI; m- or p- ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate; 2,4′- or 4,4′-diphenylmethane diisocyanate (hereinafter also referred to as “MDI”); crude MDI ⁇ eg, crude diaminophenyl Methane [For example, a condensation product of formaldehyde and an aromatic amine (one or two or more may be used in combination), or diaminodiphenylmethane and a small amount (for example, 5% by mass to 20% by mass) ), And a mixture of a polyamine having three or more amine groups] Or polyallyl polyisocyanate, etc .; 1,5-naphthylene diis
- aliphatic polyisocyanate examples include a chain aliphatic polyisocyanate and a cyclic aliphatic polyisocyanate.
- chain aliphatic polyisocyanate examples include ethylene diisocyanate; tetramethylene diisocyanate; hexamethylene diisocyanate (hereinafter also referred to as “HDI”); dodecamethylene diisocyanate; 1,6,11-undecane triisocyanate; Lysine diisocyanate; 2,6-diisocyanatomethyl caproate; bis (2-isocyanatoethyl) fumarate; bis (2-isocyanatoethyl) carbonate; 2-isocyanatoethyl-2,6-di Isocyanatohexanoate; a combination of two or more of these may be used.
- HDI hexamethylene diisocyanate
- dodecamethylene diisocyanate 1,6,11-undecane triisocyanate
- Lysine diisocyanate 2,6-diisocyanatomethyl caproate
- cycloaliphatic polyisocyanate examples include isophorone diisocyanate (hereinafter also referred to as “IPDI”); dicyclohexylmethane-4,4′-diisocyanate (hydrogenated MDI); cyclohexylene diisocyanate; methylcyclohexylene diisocyanate (hydrogenated TDI); Examples thereof include bis (2-isocyanatoethyl) -4-cyclohexene-1,2-dicarboxylate; 2,5- or 2,6-norbornane diisocyanate; a combination of two or more of these.
- IPDI isophorone diisocyanate
- MDI dicyclohexylmethane-4,4′-diisocyanate
- TDI methylcyclohexylene diisocyanate
- Examples thereof include bis (2-isocyanatoethyl) -4-cyclohexene-1,2-dicarboxylate;
- modified polyisocyanate examples include a polyisocyanate compound containing at least one of a urethane group, a carbodiimide group, an allophanate group, a urea group, a burette group, a uretdione group, a uretoimine group, an isocyanurate group, and an oxazolidone group.
- modified polyisocyanates include, for example, modified MDI (for example, urethane-modified MDI, carbodiimide-modified MDI, or trihydrocarbyl phosphate-modified MDI); urethane-modified TDI; a combination of two or more of these [for example, modified MDI and urethane-modified TDI (For example, combined use with an isocyanate-containing prepolymer, etc.).
- modified MDI for example, urethane-modified MDI, carbodiimide-modified MDI, or trihydrocarbyl phosphate-modified MDI
- urethane-modified TDI a combination of two or more of these [for example, modified MDI and urethane-modified TDI (For example, combined use with an isocyanate-containing prepolymer, etc.).
- the polyisocyanate (14) is preferably an aromatic polyisocyanate having 6 to 15 carbon atoms and an aliphatic polyisocyanate having 4 to 15 carbon atoms, and more preferably TDI, MDI, HDI, Hydrogenated MDI and IPDI.
- polyamine (15) examples include an aliphatic polyamine having 2 to 18 carbon atoms and an aromatic polyamine (for example, having 6 to 20 carbon atoms).
- Examples of the aliphatic polyamine having 2 to 18 carbon atoms include chain aliphatic polyamines; alkyls of chain aliphatic polyamines (1 to 4 carbon atoms); hydroxyalkyls of chain aliphatic polyamines (carbon number) 2-4) Substituents; cycloaliphatic polyamines and the like.
- chain aliphatic polyamines examples include alkylene diamines having 2 to 12 carbon atoms (eg, ethylene diamine, propylene diamine, trimethylene diamine, tetramethylene diamine or hexamethylene diamine); polyalkylenes (having 2 to 6 carbon atoms). ) Polyamines [for example, diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine or pentaethylenehexamine] and the like.
- alkylene diamines having 2 to 12 carbon atoms eg, ethylene diamine, propylene diamine, trimethylene diamine, tetramethylene diamine or hexamethylene diamine
- polyalkylenes having 2 to 6 carbon atoms.
- Polyamines for example, diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine or
- alkyl-substituted (chains having 1 to 4 carbon atoms) of chain aliphatic polyamines and hydroxyalkyl (chain of 2 to 4 carbons) substitutions of chain aliphatic polyamines include dialkyl (having 1 to 3 carbon atoms). Examples include aminopropylamine; trimethylhexamethylenediamine; aminoethylethanolamine; 2,5-dimethyl-2,5-hexamethylenediamine; methyliminobispropylamine.
- Cycloaliphatic polyamines include, for example, alicyclic polyamines having 4 to 15 carbon atoms [for example, 1,3-diaminocyclohexane, isophoronediamine, mensendiamine, 4,4′-methylenedicyclohexanediamine (hydrogenated methylene).
- aromatic polyamine having 6 to 20 carbon atoms
- aromatic polyamine having 6 to 20 carbon atoms
- aromatic polyamine having 6 to 20 carbon atoms
- an alkyl group for example, a methyl group, an ethyl group, an n- or isopropyl group, and a butyl group having 1 to 4 carbon atoms.
- Aromatic polyamines having an alkyl group aromatic polyamines having electron-withdrawing groups (for example, halogen atoms such as Cl, Br, I and F, alkoxy groups such as methoxy and ethoxy groups, and nitro groups); secondary An aromatic polyamine having an amino group is exemplified.
- Unsubstituted aromatic polyamines include, for example, 1,2-, 1,3- or 1,4-phenylenediamine; 2,4′- or 4,4′-diphenylmethanediamine; crude diphenylmethanediamine (for example, polyphenylpolyamine).
- aromatic polyamine having an alkyl group examples include 2,4- or 2,6- Tolylenediamine, crude tolylenediamine, diethyltolylenediamine, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 4,4'-bis (o-toluidine), dianisidine, diaminoditolyl sulfone, 1, 3-dimethyl-2,4-diaminobenzene, 1,3-diethyl-2,4-diaminobenzene, 1,3-dimethyl-2,6-diaminobenzene, 1,4-diethyl-2,5-diaminobenzene, 1,4-diisopropyl-2,5-diaminobenzene, 1,4-diiisopropyl-2,5-diaminobenzene, 1,4-dii
- Aromatic polyamines having electron-withdrawing groups include, for example, methylene bis-o-chloroaniline, 4-chloro-o-phenylenediamine, 2-chloro-1,4-phenylenediamine, 3-amino-4-chloroaniline, 4-bromo-1,3-phenylenediamine, 2,5-dichloro-1,4- Phenylenediamine, 5-nitro-1,3-phenylenediamine, 3-dimethoxy-4-aminoaniline; 4,4′-diamino-3,3′-dimethyl-5,5′-dibromo-diphenylmethane, 3,3 ′ -Dichlorobenzidine, 3,3'-dimethoxybenzidine, bis (4-amino-3-chlorophenyl) oxy Bis (4-amino
- aromatic polyamine having a secondary amino group for example, a part or all of —NH 2 in the above-mentioned unsubstituted aromatic polyamine, aromatic polyamine having an alkyl group, and aromatic polyamine having an electron withdrawing group is —NH—.
- R ′ is an alkyl group, for example, a lower alkyl group having 1 to 4 carbon atoms such as a methyl group and an ethyl group
- R ′ is an alkyl group, for example, a lower alkyl group having 1 to 4 carbon atoms such as a methyl group and an ethyl group
- polyamide polyamine dicarboxylic acid (eg, dimer acid) and excess (more than 2 moles per mole of acid) polyamines (eg, alkylene diamine or polyalkylene described above)
- Polyamines hydrides of cyanoethylation products of polyether polyols (such as polyalkylene glycol, etc.).
- Examples of the polythiol (16) include alkanedithiols having 2 to 36 carbon atoms (for example, ethanedithiol, 1,4-butanedithiol, 1,6-hexanedithiol, etc.).
- Examples of the primary and / or secondary monoamine (17) include alkylamines having 2 to 24 carbon atoms (eg, ethylamine, n-butylamine, isobutylamine, diethylamine or n-butyl-n-dodecylamine). Is mentioned.
- epoxy resin examples include a ring-opening polymer of polyepoxide (18); polyepoxide (18) and an active hydrogen-containing compound [for example, water, diol (10), dicarboxylic acid (12), polyamine (15) or polythiol (16 And the like; and a cured product of polyepoxide (18) and an acid anhydride of dicarboxylic acid (12).
- the polyepoxide (18) is not particularly limited as long as it has two or more epoxy groups in the molecule. From the viewpoint of the mechanical properties of the cured product, preferred as the polyepoxide (18) is one having two epoxy groups in the molecule.
- the epoxy equivalent (molecular weight per epoxy group) of the polyepoxide (18) is preferably 65 or more and 1000 or less, and more preferably 90 or more and 500 or less. When the epoxy equivalent is 1000 or less, the crosslinked structure becomes dense, and physical properties such as water resistance, chemical resistance and mechanical strength of the cured product are improved. On the other hand, if the epoxy equivalent is less than 65, synthesis of the polyepoxide (18) may be difficult.
- polyepoxide (18) examples include aromatic polyepoxy compounds and aliphatic polyepoxy compounds.
- aromatic polyepoxy compounds include glycidyl ethers of polyhydric phenols, glycidyl esters of aromatic polycarboxylic acids, glycidyl aromatic polyamines, and glycidylates of aminophenols.
- polyglycol glycidyl ether examples include bisphenol F diglycidyl ether; bisphenol A diglycidyl ether; bisphenol B diglycidyl ether; bisphenol AD diglycidyl ether; bisphenol S diglycidyl ether; halogenated bisphenol A diglycidyl; Bisphenol A diglycidyl ether; catechin diglycidyl ether; resorcinol diglycidyl ether; hydroquinone diglycidyl ether; pyrogallol triglycidyl ether; 1,5-dihydroxynaphthalene diglycidyl ether; dihydroxybiphenyl diglycidyl ether; octachloro-4,4'-dihydroxy Biphenyl diglycidyl ether; tetramethylbiphenyl di Dihydroxynaphthylcresol triglycidyl ether; tris (hydroxyphenyl) methane triglycid
- aromatic carboxylic acid glycidyl ester examples include phthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, and terephthalic acid diglycidyl ester.
- Examples of the glycidyl aromatic polyamine include N, N-diglycidylaniline, N, N, N ′, N′-tetraglycidylxylylenediamine and N, N, N ′, N′-tetraglycidyldiphenylmethanediamine. It is done.
- p-aminophenol triglycidyl ether an example of a glycidylated product of aminophenol
- diglycidyl obtained by reacting tolylene diisocyanate or diphenylmethane diisocyanate with glycidol
- examples thereof include urethane compounds; glycidyl group-containing polyurethane (pre) polymers obtained by reacting tolylene diisocyanate or diphenylmethane diisocyanate, glycidol and polyol
- diglycidyl ethers of AO adducts of bisphenol A and the like.
- Examples of the aliphatic polyepoxy compound include a chain aliphatic polyepoxy compound and a cyclic aliphatic polyepoxy compound.
- the aliphatic polyepoxy compound may be a copolymer of diglycidyl ether and glycidyl (meth) acrylate.
- chain aliphatic polyepoxy compound examples include polyglycidyl ethers of polyhydric aliphatic alcohols, polyglycidyl esters of polyhydric fatty acids, and glycidyl aliphatic amines.
- polyglycidyl ethers of polyhydric aliphatic alcohols include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tetramethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, polyethylene glycol diglycidyl ether, Polypropylene glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, trimethylolpropane polyglycidyl ether, glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, sorbitol polyglycidyl ether and polyglycerol polyglycidyl ether Is mentioned.
- polyglycidyl ester of polyvalent fatty acid examples include diglycidyl oxalate, diglycidyl malate, diglycidyl succinate, diglycidyl glutarate, diglycidyl adipate and diglycidyl pimelate.
- Examples of the glycidyl aliphatic amine include N, N, N ′, N′-tetraglycidylhexamethylenediamine.
- Examples of the cycloaliphatic polyepoxy compound include trisglycidyl melamine, vinylcyclohexene dioxide, limonene dioxide, dicyclopentadiene dioxide, bis (2,3-epoxycyclopentyl) ether, ethylene glycol bisepoxy dicyclopentyl ether, 3 , 4-epoxy-6-methylcyclohexylmethyl-3 ′, 4′-epoxy-6′-methylcyclohexanecarboxylate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, bis (3,4-epoxy And -6-methylcyclohexylmethyl) butylamine and dimer acid diglycidyl ester.
- Examples of the cycloaliphatic polyepoxy compound include hydrogenated products of the above aromatic polyepoxide compounds.
- polyamide resin examples include a ring-opening polymer of lactam, a polycondensate of aminocarboxylic acid, a polycondensate of polycarboxylic acid and polyamine, and the like.
- polyimide resin examples include aliphatic polyimide resins (for example, condensation polymers obtained from aliphatic carboxylic dianhydrides and aliphatic diamines), and aromatic polyimide resins (for example, aromatic carboxylic dianhydrides). And condensation polymers obtained from aliphatic diamines or aromatic diamines).
- silicon resin examples include compounds having at least one of silicon-silicon bond, silicon-carbon bond, siloxane bond and silicon-nitrogen bond in the molecular chain (for example, polysiloxane, polycarbosilane or polysilazane). Etc.
- phenol resin examples include condensation polymers obtained from phenols (for example, phenol, cresol, nonylphenol, lignin, resorcin, or catechol) and aldehydes (for example, formaldehyde, acetaldehyde, or furfural).
- phenols for example, phenol, cresol, nonylphenol, lignin, resorcin, or catechol
- aldehydes for example, formaldehyde, acetaldehyde, or furfural.
- melamine resin examples include a polycondensate obtained from melamine and formaldehyde.
- urea resins include polycondensates obtained from urea and formaldehyde.
- aniline resins include those obtained by reacting aniline and aldehydes under acidic conditions.
- ionomer resin examples include a monomer having a polymerizable double bond (for example, ⁇ -olefin monomer or styrene monomer) and an ⁇ , ⁇ -unsaturated carboxylic acid (for example, acrylic acid, methacrylic acid, maleic acid, A copolymer with itaconic acid, maleic acid monomethyl ester, maleic anhydride or maleic acid monoethyl ester, etc., and a part or all of the carboxylic acid in the copolymer is a carboxylate (eg, potassium salt, sodium salt) , Magnesium salt or calcium salt).
- a carboxylate eg, potassium salt, sodium salt
- polycarbonate resin examples include condensation polymers of bisphenols (for example, bisphenol A, bisphenol F, or bisphenol S) and phosgene or carbonic acid diester.
- the shell resin (a) may be a crystalline resin (a1), an amorphous resin (a2), or a crystalline resin (a1) and an amorphous resin (a2). It may be used in combination. From the viewpoint of fixability of the toner particles (C), the shell resin (a) is preferably a crystalline resin (a1).
- crystallity means a ratio (Tm / Ta) between a softening point of a resin (hereinafter also referred to as “Tm”) and a maximum melting temperature of the resin (hereinafter also referred to as “Ta”). It means that it is 0.8 or more and 1.55 or less, and the result obtained by the differential scanning calorimeter (hereinafter also referred to as DSC) does not show a stepwise endothermic change but has a clear endothermic peak. means.
- non-crystalline means that the ratio of Tm to Ta (Tm / Ta) is larger than 1.55. Tm and Ta can be measured by the following method.
- Tm can be measured using a Koka flow tester (for example, product name: “CFT-500D”, manufactured by Shimadzu Corporation). Specifically, while a 1 g measurement sample is heated at a heating rate of 6 ° C./min, a load of 1.96 MPa is applied to the measurement sample by a plunger, and the measurement sample is pushed out from a nozzle having a diameter of 1 mm and a length of 1 mm. . Then, the relationship between “plunger descent amount (flow value)” and “temperature” is drawn on a graph. The temperature at which the plunger descending amount is 1 ⁇ 2 of the maximum value of the descending amount is read from the graph, and this value (temperature when half of the measurement sample is pushed out of the nozzle) is defined as Tm.
- a Koka flow tester for example, product name: “CFT-500D”, manufactured by Shimadzu Corporation.
- Ta can be measured using a differential scanning calorimeter (for example, product name: “DSC210”, manufactured by Seiko Instruments Inc.). Specifically, first, a sample used for measuring Ta is pretreated. After the sample is melted at 130 ° C., the temperature is lowered from 130 ° C. to 70 ° C. at a rate of 1.0 ° C./min, and then lowered from 70 ° C. to 10 ° C. at a rate of 0.5 ° C./min. Next, the sample is heated at a heating rate of 20 ° C./min by DSC method to measure the endothermic change of the sample, and the relationship between the “endothermic amount” and “temperature” is plotted on a graph.
- a differential scanning calorimeter for example, product name: “DSC210”, manufactured by Seiko Instruments Inc.
- the temperature of the endothermic peak observed between 20 ° C. and 100 ° C. is Ta ′.
- the temperature of the peak with the largest endothermic amount is defined as Ta '.
- the sample is stored at (Ta′-10) ° C. for 6 hours, and then stored at (Ta′-15) ° C. for 6 hours.
- the sample subjected to the pretreatment was cooled to 0 ° C. at a temperature decrease rate of 10 ° C./min, and then the temperature was increased at a temperature increase rate of 20 ° C./min to measure the endothermic change.
- the relationship between the "heat absorption and heat generation” and "temperature” is plotted on a graph.
- the temperature at which the endotherm takes the maximum value is taken as the maximum peak temperature (Ta) of heat of fusion.
- H1 is an index of the melting rate of the shell resin (a).
- a resin having heat of fusion has a sharp melt property and can be melted with a small amount of energy. Therefore, if a resin having heat of fusion is selected as the shell resin (a), the energy required for fixing can be reduced. Therefore, it is preferable to select a resin having heat of fusion as the shell resin (a). However, if the heat of fusion of the resin is too large, it may be difficult to sufficiently melt the resin.
- H2 / H1 in the above formula (2) is an index of the crystallization speed of the shell resin (a).
- H2 / H1 is more preferably 0.3 or more, and further preferably 0.4 or more. Further, if the crystallization speed of the shell resin (a) is high, H2 / H1 approaches 1.0. Therefore, H2 / H1 preferably takes a value close to 1.0.
- H2 / H1 in the above formula (2) does not theoretically exceed 1.0, but it may exceed 1.0 in the actual measurement value by DSC. Even when the actual measurement value (H2 / H1) by DSC exceeds 1.0, the above equation (2) is satisfied.
- H1 and H2 can be measured in accordance with JIS-K7122 (1987) “Method for measuring the heat of transition of plastics”. Specifically, first, 5 mg of shell resin (a) is sampled and placed in an aluminum pan. Using a differential scanning calorimeter (for example, product name: “RDC220”, manufactured by SII Nano Technology Inc., or product name: “DSC20”, Seiko Instruments Inc., etc.) The temperature (melting point) at the endothermic peak of the shell resin (a) due to melting is measured at 10 ° C., and the area S1 of the endothermic peak is obtained. And H1 is computable from the area
- RDC220 differential scanning calorimeter
- the melting point of the shell resin (a) is preferably 0 ° C. or higher and 220 ° C. or lower, more preferably 30 ° C. or higher and 200 ° C. or lower, and further preferably 40 ° C. or higher and 80 ° C. or lower.
- the melting point of the shell resin (a) is the liquid developer (X). It is preferable that it is more than the temperature when manufacturing.
- the melting point of the shell resin is lower than the temperature at which the liquid developer is produced, it may be difficult to prevent the toner particles from uniting with each other, and it may be difficult to prevent the toner particles from splitting. .
- the distribution width in the particle size distribution of the toner particles is difficult to be narrowed. In other words, there is a possibility that the variation in the particle size of the toner particles becomes large.
- the melting point conforms to the method prescribed in ASTM D3418-82 using a differential scanning calorimeter (product name: “DSC20” or “SSC / 580”, manufactured by Seiko Instruments Inc.). Measured.
- the Mn of the shell resin (a) [obtained by measurement by gel permeation chromatography (hereinafter also referred to as “GPC”)] is preferably 100 or more and 5000000 or less, preferably 200 or more and 5000000 or less, More preferably, it is 500 or more and 500,000 or less.
- Mn and Mw of resins are measured for the soluble content of tetrahydrofuran (hereinafter also referred to as “THF”) using GPC under the following conditions.
- Measuring device “HLC-8120” (product name, manufactured by Tosoh Corporation) Column: “TSKgelGMHXL” (product name, manufactured by Tosoh Corporation) (2) and “TSKgelMultiporeHXL-M” (product name, manufactured by Tosoh Corporation) (1) Sample solution: 0.25 mass% THF solution Injection amount of THF solution into the column: 100 ⁇ l Flow rate: 1 ml / min Measurement temperature: 40 ° C Detector: Refractive index detector Reference material: Standard polystyrene (Product name: TSK standard POLYSYRENE, manufactured by Tosoh Corporation) 12 points (Molecular weight: 500, 1050, 2800, 5970, 9100, 18100, 37900, 96400, 190000, 355000) 1090000, 2890000).
- Mn and Mw of the polyurethane resin are measured using GPC under the following conditions.
- Measuring device “HLC-8220GPC” (product name, manufactured by Tosoh Corporation) Column: “Guardcolum ⁇ ” (1) and “TSKgel ⁇ -M” (1) Sample solution: 0.125 mass% dimethylformamide solution Injection amount of dimethylformamide solution to the column: 100 ⁇ l Flow rate: 1 ml / min Measurement temperature: 40 ° C Detector: Refractive index detector Reference material: Standard polystyrene (Product name: TSK standard POLYSYRENE, manufactured by Tosoh Corporation) 12 points (Molecular weight: 500, 1050, 2800, 5970, 9100, 18100, 37900, 96400, 190000, 355000) 1090000, 2890000).
- SP value the solubility parameter
- the SP value of the shell resin (a) is preferably 7 (cal / cm 3 ) 1/2 or more and 18 (cal / cm 3 ) 1/2 or less, more preferably 8 (cal / cm 3 ) 1/2. It is 14 (cal / cm 3 ) 1/2 or less.
- Shell particles (A) in the present embodiment include shell resin (a). Any known method can be adopted as the method for producing the shell particles (A), and the method is not particularly limited. For example, the following methods [1] to [7] can be mentioned.
- the shell resin (a) is pulverized dry using a known dry pulverizer such as a jet mill.
- a known wet disperser such as a bead mill or a roll mill.
- the solution of the shell resin (a) is sprayed using a spray dryer or the like and dried.
- the precursor of the shell resin (a) is polymerized in water by an emulsion polymerization method, a soap-free emulsion polymerization method, a seed polymerization method, a suspension polymerization method, or the like.
- the shell resin (a) precursor is polymerized by dispersion polymerization or the like in an organic solvent.
- the methods [4], [6] and [7] are preferable from the viewpoint of ease of production of the shell particles (A), and more preferably the methods [6] and [7]. Is preferred.
- the core resin (b) in the present embodiment needs to have an acidic group and have an acid dissociation constant (hereinafter also referred to as pKa) of 2.90 or more and 8.00 or less.
- pKa acid dissociation constant
- the position of the acidic group is not particularly limited, but is preferably the terminal of the core resin (b).
- the terminal of core resin (b) shows the start part and terminal part of the longest repeating structure (main chain) among the repeating structures of the structural unit in a molecule.
- the pKa of the core resin (b) is less than 2.90, hydrolysis of the shell resin (a) or the core resin (b) may be promoted. In that case, the heat resistance stability of the toner particles (C) Is unfavorable because of lowering.
- the fixability is deteriorated, which is not preferable in consideration of adaptability to uses such as electrophotography.
- the pKa of the resin (b) in the present embodiment needs to be 2.90 or more and 8.00 or less, preferably 2.90 or more and 6.00 or less, more preferably 2.92 or more. It is preferable that it is 5.50 or less.
- core resin (b) in this Embodiment what has an acidic group among what was illustrated as shell resin (a) above can be used, for example, vinyl resin, polyester resin, polyurethane resin, polyamide resin , Polyimide resin, phenol resin, polycarbonate resin and the like.
- vinyl resin vinyl resin
- polyester resin polyurethane resin
- polyamide resin polyamide resin
- Polyimide resin polyimide resin
- phenol resin polycarbonate resin
- a polyester resin, a polyurethane resin, or a combination of a polyester resin and a polyurethane resin can be suitably used.
- polyester resin having an acidic group examples include those obtained by introducing a carboxylic acid into a polycondensate of a diol and a dicarboxylic acid with an acid anhydride described later.
- the diol is, for example, an alkylene glycol having 2 to 30 carbon atoms (for example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1 , 4-butanediol, 1,6-hexanediol, octanediol, decanediol, dodecanediol, tetradecanediol, neopentyl glycol or 2,2-diethyl-1,3-propanediol), and a carbon number of 15-30 Bisphenols (for example, bisphenol A, bisphenol F, bisphenol S, etc.) AO [for example, EO, propylene oxide (hereinafter also referred to as “PO”) or butylene oxide, etc.] adducts (addition mole number is 2 to 100), and Al Such as a mixture of AO adducts of glycol, 1,2-propylene glycol, 1,3-propylene
- dicarboxylic acid examples include those exemplified above as the dicarboxylic acid (12), such as alkane dicarboxylic acids having 4 to 32 carbon atoms (for example, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid or Octadecanedicarboxylic acid, etc.) and aromatic dicarboxylic acids having 8 to 20 carbon atoms (eg, phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, etc.).
- alkane dicarboxylic acids having 4 to 32 carbon atoms for example, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid or Octadecanedicarboxylic acid, etc.
- aromatic dicarboxylic acids having 8 to 20 carbon atoms eg, phthalic acid, isophthalic acid, ter
- Polyurethane resin having acidic group includes polyisocyanate (14) and active hydrogen-containing compound ⁇ for example, water; polyol [for example, diol (10) (having a functional group other than hydroxyl group) Diols, and the like, and tri- to 8-valent and higher polyols (11), etc.]; polycarboxylic acids [for example, dicarboxylic acids (12) and 3- to 6-valent and higher polycarboxylic acids (13), etc.] Polyester polyol obtained by polycondensation of polyol and polycarboxylic acid; ring-opening polymer of lactone having 6 to 12 carbon atoms; polyadduct with polyamine (15); polythiol (16); And powder obtained by reacting polyisocyanate (14) with the active hydrogen-containing compound. And isocyanate prepolymers, such as the terminal primary of equivalents to isocyanate prepolymers isocyanate group and / or secondary monoamine (17) and the amino group
- Vinyl resin having acidic group As vinyl resin having acidic group, the following monomer having carboxyl group and polymerizable double bond, monomer having sulfo group and polymerizable double bond, phosphono group and polymerizable Examples include homopolymers and copolymers such as monomers having a double bond.
- the monomer having a carboxyl group and a polymerizable double bond include unsaturated monocarboxylic acids having 3 to 15 carbon atoms [for example, (meth) Acrylic acid, crotonic acid, isocrotonic acid, cinnamic acid, etc.]; unsaturated dicarboxylic acids having 3 to 30 carbon atoms (anhydrides) [for example, (anhydrous) maleic acid, fumaric acid, itaconic acid, (anhydrous) citraconic acid or Mesaconic acid etc.]; monoalkyl (1-10 carbon atoms) ester of unsaturated dicarboxylic acid having 3 to 10 carbon atoms (for example, maleic acid monomethyl ester, maleic acid monodecyl ester, fumaric acid monoethyl ester, itaconic acid Monobutyl ester or citraconic acid monodecyl ester, etc.).
- the monomer having a sulfo group and a polymerizable double bond include alkene sulfonic acids having 2 to 14 carbon atoms [for example, vinyl sulfonic acid, ( Meth) allyl sulfonic acid or methyl vinyl sulfonic acid]; styrene sulfonic acid and alkyl derivatives (2 to 24 carbon atoms) of styrene sulfonic acid (for example, ⁇ -methyl styrene sulfonic acid etc.); Sulfo (hydroxy) alkyl- (meth) acrylate [eg, sulfopropyl (meth) acrylate, 2-hydroxy-3- (meth) acryloxypropyl sulfonic acid, 2- (meth) acryloyloxyethane sulfonic acid or 3- (meta ) Acryloyloxy
- a monomer having a phosphono group and a polymerizable double bond for example, a (meth) acryloyloxyalkyl phosphate monoester (wherein the alkyl group has 1 carbon atom) To 24) [for example, 2-hydroxyethyl (meth) acryloyl phosphate or phenyl-2-acryloyloxyethyl phosphate]; (meth) acryloyloxyalkylphosphonic acid (the alkyl group has 1 to 24 carbon atoms) (for example, 2 -Acryloyloxyethylphosphonic acid, etc.).
- a (meth) acryloyloxyalkyl phosphate monoester wherein the alkyl group has 1 carbon atom
- To 24) for example, 2-hydroxyethyl (meth) acryloyl phosphate or phenyl-2-acryloyloxyethyl phosphate
- Polyamide resin having an acidic group examples include lactam ring-opening polymers, polycondensates of aminocarboxylic acids, and polycondensates of polycarboxylic acids and polyamines.
- Polyimide resins having an acidic group include fatty acid polyimide resins (polymers obtained from fatty acid carboxylic dianhydrides and fatty acid diamines) and aromatic polyimide resins (aromatic carboxylic acid dicarboxylic acids). A polymer obtained from an anhydride and an aliphatic diamine or an aromatic diamine).
- Phenol resins having acidic groups are obtained by condensation of phenols (phenol, cresol, nonylphenol, lignin, resorcin, catechol, etc.) and aldehydes (formaldehyde, acetaldehyde, furfural, etc.). Examples thereof include polymers obtained.
- Polycarbonate resin having an acidic group examples include polymers obtained by condensation of bisphenols (such as bisphenol A, bisphenol F, and bisphenol S) with phosgene or carbonic acid diester. .
- the acidic group examples include a carboxyl group, a sulfonic acid group, a sulfine group, a phosphonic acid group, and a phosphine group.
- the pKa of the core resin (b) can be adjusted by appropriately selecting the type of acidic group.
- resin which provides an acid value that whose Mn is 2000 or more and 10,000 or less is preferable, and it is preferable that an acid value is 2 or more and 35 or less.
- a carboxyl group can be suitably used from the viewpoint that it can be easily introduced into the molecule by an acid anhydride.
- Such acid anhydrides include propionic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl nadic Acid anhydride, hydrogenated methyl nadic acid anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexene tetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, ethylene glycol bisanhydro trimellitate, glycerin bis (anhydro) Trimellitate) monoacetate, dodecenyl succinic anhydride, crocendic anhydride and the like.
- propionic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydro Phthalic anhydride can be preferably used, and phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and methylhexahydrophthalic anhydride are more preferred.
- pKa of core resin (b) The pKa of the core resin (b) can be calculated by the following formula (3).
- pKa ⁇ log ⁇ [H 3 O + ] [(b ⁇ )] / [(b)] ⁇ (3)
- [H 3 O + ] represents the hydrogen ion concentration (mol / L) when the core resin (b) is dispersed in water
- [(b ⁇ )] represents the core resin (b) in water.
- [(b)] shows the concentration (mol / L) of the core resin (b) when the core resin (b) is dispersed in water.
- pKa is the acid dissociation constant of the first stage.
- the Mn, melting point, glass transition temperature (hereinafter also referred to as Tg), and SP value of the core resin (b) can be adjusted to a suitable range depending on the application.
- Mn is preferably 1000 or more and 5000000 or less, more preferably 2000 or more and 500000 or less.
- the melting point is preferably 20 ° C. or higher and 300 ° C. or lower, more preferably 80 ° C. or higher and 250 ° C. or lower.
- Tg is preferably 20 ° C. or higher and 200 ° C. or lower, more preferably 40 ° C. or higher and 150 ° C. or lower.
- the SP value is preferably 8 (cal / cm 3 ) 1/2 or more and 16 (cal / cm 3 ) 1/2 or less, more preferably 9 (cal / cm 3 ) 1/2. It is 14 (cal / cm 3 ) 1/2 or less.
- Tg may be measured by the DSC method or may be measured using a flow tester.
- a differential scanning calorimeter product name: “DSC20” or “SSC / 580” or the like, both manufactured by Seiko Instruments Inc.
- ASTM D3418-82 ASTM D3418-82. It is preferable to measure Tg according to the method specified in 1.
- Tg measurement conditions When measuring Tg using a flow tester, it is preferable to use a Koka type flow tester (for example, product name: “CFT500 type” manufactured by Shimadzu Corporation). An example of Tg measurement conditions in this case is shown below.
- a Koka type flow tester for example, product name: “CFT500 type” manufactured by Shimadzu Corporation.
- the core particle (B) in the present embodiment contains the core resin (b).
- the core particles (B) can be produced from the core resin (b) by a method similar to the method for producing the shell particles (A).
- the toner particles (C) have a core-shell structure, and the shell particles (A) containing the shell resin (a) are the core particles (B) containing the core resin (b). It may be attached to the surface, or the shell particles (A) may be coated on the surfaces of the core particles (B).
- the coating means that the shell particles (A) are continuously adhered to form a coating.
- the particle diameter of the shell particles (A) is preferably smaller than the particle diameter of the core particles (B).
- the particle size ratio [(volume average particle size of shell particles (A)) / (volume average particle size of core particles (B)]] is 0.001 or more and 0. It is preferable that it is within the range of .3 or less. More preferably, the lower limit of the particle size ratio is 0.003 and the upper limit is 0.25.
- the particle size ratio is larger than 0.3, the shell particles (A) are difficult to be efficiently adsorbed on the surface of the core particles (B), and thus the distribution range in the particle size distribution of the obtained toner particles (C) is widened. Tend.
- the particle size ratio is smaller than 0.001, it may be difficult to produce the shell particles (A).
- the volume average particle size of the shell particles (A) is set to a particle size suitable for obtaining toner particles (C) having a desired particle size, and the particle size ratio is within the preferable range. Can be adjusted as appropriate.
- the volume average particle diameter of the shell particles (A) is preferably 0.0005 ⁇ m or more and 30 ⁇ m or less.
- the upper limit of the volume average particle diameter of the shell particles (A) is more preferably 20 ⁇ m, and even more preferably 10 ⁇ m.
- the lower limit of the volume average particle diameter of the shell particles (A) is more preferably 0.01 ⁇ m, still more preferably 0.02 ⁇ m, and most preferably 0.04 ⁇ m.
- the volume average particle diameter of the shell particles (A) is preferably 0.0005 ⁇ m or more and 0.3 ⁇ m or less, more preferably 0.00. It is 001 ⁇ m or more and 0.2 ⁇ m or less.
- the volume average particle diameter of the shell particles (A) is preferably 0.005 ⁇ m or more and 3 ⁇ m or less, more preferably 0.05 ⁇ m or more. 2 ⁇ m or less.
- the volume average particle size of the shell particles (A) is preferably 0.05 ⁇ m or more and 30 ⁇ m or less, more preferably 0.1 ⁇ m or more. 20 ⁇ m or less.
- the volume average particle size of the core particles (B) is preferably 0.1 ⁇ m or more and 300 ⁇ m or less, more preferably 0.5 ⁇ m or more and 250 ⁇ m or less. More preferably, it is 1 ⁇ m or more and 200 ⁇ m or less.
- the “volume average particle size” is a laser type particle size distribution measuring device (for example, product name: “LA-920”, manufactured by Horiba, Ltd., or product name “Multisizer III”, manufactured by Coulter, Inc. ); Measuring apparatus using laser Doppler method as optical system (product name: “ELS-800”, manufactured by Otsuka Electronics Co., Ltd.); Flow type particle image analyzer (for example, product name: “FPIA-3000S”, Sysmex Corporation) Etc.). If there is a difference in the measured values when the volume average particle diameter is measured with a different measuring device, the measured value of “ELS-800” is adopted.
- a laser type particle size distribution measuring device for example, product name: “LA-920”, manufactured by Horiba, Ltd., or product name “Multisizer III”, manufactured by Coulter, Inc.
- Measuring apparatus using laser Doppler method as optical system product name: “ELS-800”, manufactured by Otsuka Electronics Co., Ltd.
- the mass ratio [(A) :( B)] of the shell particles (A) and the core particles (B) is preferably 1:99 to 70:30. From the viewpoint of the uniformity of the particle diameter of the toner particles (C) and the heat resistance stability of the liquid developer (X), the ratio [(A) :( B)] is more preferably 2:98 to 50:50. More preferably, it is 3:97 to 35:65. If the content (mass ratio) of the shell particles is too low, the blocking resistance of the toner particles may be lowered. On the other hand, if the content (mass ratio) of the core particles is too high, fixability at low temperatures may be deteriorated.
- the shape of the toner particles (C) is preferably spherical from the viewpoint of the fluidity of the liquid developer (X) and its melt leveling property.
- the average value of the circularity (average circularity) of the toner particles (C) is preferably 0.92 or more and 1.0 or less, more preferably 0.97 or more and 1.0 or less. More preferably, it is 0.98 or more and 1.0 or less. The closer the average circularity of the toner particles (C) is to 1.0, the closer the toner particles (C) have a spherical shape. If the core particles (B) are spherical, the toner particles (C) are likely to be spherical. Therefore, the core particles (B) are preferably spherical.
- the average circularity is the circumference of a toner particle (C) in which the circumference of a circle having an area equal to the projected area of the toner particle (C) is detected optically. The value divided by the length. Specifically, the average circularity is measured using a flow particle image analyzer (for example, product name: “FPIA-3000”, manufactured by Sysmex Corporation).
- a surfactant as a dispersant for example, product name: “Dry Well”, manufactured by Fuji Photo Film Co., Ltd.
- a surfactant for example, product name: “Dry Well”, manufactured by Fuji Photo Film Co., Ltd.
- a surfactant for example, product name: “Dry Well”, manufactured by Fuji Photo Film Co., Ltd.
- an ultrasonic disperser for example, product name: “Ultrasonic Cleaner Model VS-150”, manufactured by Welbo Clear
- the dispersion concentration is set to 3000 / ⁇ L or more and 10000 / ⁇ L or less.
- the shape and particle size distribution of a measurement sample are measured using the sample solution after a dispersion process.
- the volume average particle diameter of the toner particles (C) is preferably determined as appropriate depending on the application, but is generally preferably 0.01 ⁇ m or more and 100 ⁇ m or less.
- the upper limit of the volume average particle diameter of the toner particles (C) is more preferably 40 ⁇ m, still more preferably 30 ⁇ m, and most preferably 20 ⁇ m.
- the lower limit of the volume average particle diameter of the toner particles (C) is more preferably 0.3 ⁇ m, and further preferably 0.5 ⁇ m.
- the coefficient of variation of the volume distribution of the toner particles (C) is preferably 1% or more and 100% or less, more preferably 1% or more and 50% or less. More preferably, it is 1% or more and 30% or less, and most preferably 1% or more and 25% or less.
- the coefficient of variation of the volume distribution is measured using a particle size distribution measuring device such as a laser particle size distribution measuring device (for example, product name: “LA-920”, manufactured by Horiba, Ltd.).
- the core particles (A) formed by the shell particles (A) in the toner particles (C) The surface coverage of B) is preferably 50% or more, more preferably 80% or more.
- the surface coating of the core particles (B) with the shell particles (A) means that in the toner particles (C) having a core / shell structure, the shell particles (A) adhere to the outermost surface of the core particles (B).
- the shell particles (A) are concentrated near the surface of the core particles (B).
- the presence state of the shell particles (A) and the core particles (B) in the toner particles (C) varies depending on the composition of the shell resin (a) and the core resin (b) and the manufacturing method of the toner particles (C).
- a part of the shell resin (a) may be present in the core resin (b)
- a part of the shell resin (a) may be present on the surface of the core particle (B).
- the surface coverage of the core particle (B) by the shell particle (A) can be obtained based on the following formula (4) from image analysis of an image obtained by a scanning electron microscope (SEM), for example.
- SEM scanning electron microscope
- the shape of the toner particles (C) can be controlled by changing the surface coverage obtained by the following formula (4).
- S1 shows the area of the core particle (B) covered with the shell particle (A)
- S2 is the area of the core particle (B) not attached or coated with the shell particle (A). Is shown.
- the surface coverage is an average value of the results of measurement for 50 particles.
- the surface average center line roughness (Ra) of the toner particles (C) is preferably 0.01 ⁇ m or more and 0.8 ⁇ m or less from the viewpoint of the fluidity of the liquid developer (X).
- the surface average centerline roughness (Ra) is a value obtained by arithmetically averaging the absolute value of the deviation between the roughness curve and the centerline of the roughness curve, and is a scanning probe microscope system (for example, Toyo Technica). Etc.).
- the core-shell structure of the toner particles (C) is 1% by mass or more with respect to the mass of the toner particles (C). 70% by mass or less (more preferably 5% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 35% by mass or less) of film-like shell particles (A), and 30% by mass or more and 99% by mass or less (more It is preferably composed of 50% by mass or more and 95% by mass or less, more preferably 65% by mass or more and 90% by mass or less) core particles (B).
- the content of the toner particles (C) in the liquid developer (X) is preferably 10% by mass or more and 50% by mass. Or less, more preferably 15% by mass or more and 45% by mass or less, and further preferably 20% by mass or more and 40% by mass or less.
- the toner particles (C) in the present embodiment preferably contain a colorant in at least one of the shell particles (A) and the core particles (B), and more preferably the core particles (B) are the core resin. (B) and a colorant.
- the toner particles (C) may contain additives other than the colorant (for example, wax, filler, antistatic agent, release agent, charge control agent) on at least one of the shell particles (A) and the core particles (B). , UV absorbers, antioxidants, antiblocking agents, heat stabilizers, flame retardants, etc.).
- colorant known pigments can be used without any particular limitation, but the following colorants are preferably used from the viewpoints of cost, light resistance and colorability.
- the colorants shown below are usually classified into black pigments, yellow pigments, magenta pigments, and cyan pigments. Colors other than black (color images) are basically yellow pigments, magenta pigments, and cyan pigments. It is toned by subtractive color mixing.
- the colorant those obtained by subjecting the following pigments to surface treatment using an acidic or basic solvent may be used. For example, an acidic or basic synergist is added to the following pigments: You may use together.
- black pigment examples include carbon black.
- yellow pigments examples include disazo yellow pigments such as CI (Color Index) Pigment Yellow 12, 13, 14, 17, 55, 81, 83, 180, and 185.
- magenta pigment examples include azo lake magenta pigments such as CIPigment Red 48, 57 (Kermin 6B), 5, 23, 60, 114, 146 and 186; insoluble azo magenta pigments; CIPigment Examples include thioindigo magenta pigments such as Red 88 and CIPigment Violet 36 and 38; quinacridone magenta pigments such as CIPigment Red 122 and 209; naphthol magenta pigments such as CIPigment Red 269 and the like.
- the magenta pigment preferably contains at least one of quinacridone pigments, carmine pigments and naphthol pigments, more preferably two or three of these three pigments. It is preferred that it is included.
- cyan pigments examples include copper phthalocyanine blue cyan pigments such as C.I. Pigment Blue 15: 1 and 15: 3; and phthalocyanine green pigments.
- the core particle (B) preferably contains at least one of a wax (c) and a modified wax (d) in which a vinyl polymer chain is graft-polymerized to the wax.
- the shell particles (A) may contain at least one of wax (c) and modified wax (d).
- At least one of the wax (c) and the modified wax (d) in which a vinyl polymer chain is graft-polymerized to the wax is used as an additive. It is preferably contained in (core layer).
- the content of the wax (c) is preferably 20% by mass or less, more preferably 1% by mass or more and 15% by mass or less with respect to the mass of the core particle (B).
- the content of the modified wax (d) is preferably 10% by mass or less, more preferably 0.5% by mass or more and 8% by mass or less with respect to the mass of the core particle (B).
- the total content of the wax (c) and the modified wax (d) is preferably 25% by mass or less with respect to the mass of the core particles (B). More preferably, it is 1 mass% or more and 20 mass% or less.
- wax (c) examples include synthetic wax (eg, polyolefin wax); natural wax (eg, paraffin wax, microcrystalline wax, carnauba wax, carbonyl group-containing wax, or a combination thereof). Of these, paraffin wax and carnauba wax are preferred as the wax (c).
- the paraffin wax examples include petroleum-based wax mainly composed of linear saturated hydrocarbon having a melting point of 50 ° C. or more and 90 ° C. or less and having 20 to 36 carbon atoms.
- carnauba wax include animal and plant waxes having a melting point of 50 to 90 ° C. and a carbon number of 16 to 36.
- Mn of the wax (c) is preferably 400 or more and 5000 or less, more preferably 1000 or more and 3000 or less, and further preferably 1500 or more and 2000 or less from the viewpoint of releasability.
- Mn of wax (c) is measured using GPC.
- Mn of the wax (c) for example, o-dichlorobenzene can be used as the solvent, and polystyrene can be used as the reference substance.
- the wax (c) and the modified wax (d) are used in combination, the wax (c), together with the modified wax (d), is a melt-kneading process in the absence of a solvent and a heat-dissolving mixing process in the presence of an organic solvent. It is preferable to disperse in the core resin (b) after at least one of the treatments. In this way, by allowing the modified wax (d) to coexist during the wax dispersion treatment, the wax base portion of the modified wax (d) is efficiently adsorbed on the surface of the wax (c), or the wax of the modified wax (d). Part of the base portion is efficiently entangled with the matrix structure of the wax (c).
- Examples of the wax used in the modified wax (d) include the same as those listed as specific examples of the wax (c). Preferred wax materials used in the modified wax (d) are also the above waxes. The thing similar to what was enumerated as a preferable material of (c) is mentioned.
- Examples of the monomer having a polymerizable double bond include those similar to the monomers (1) to (9) having a polymerizable double bond constituting the vinyl resin, and among these, preferred are The monomer (1), the monomer (2) and the monomer (6).
- As the monomer having a polymerizable double bond any one of the monomers (1) to (9) may be used alone, or two or more kinds may be used in combination.
- the amount of the wax component in the modified wax (d) (including the unreacted wax) is preferably 0.5% by mass or more and 99.5% by mass or less, more preferably 1% by mass or more and 80% by mass or less. More preferably, it is 5 mass% or more and 50 mass% or less, Most preferably, it is 10 mass% or more and 30 mass% or less.
- the Tg of the modified wax (d) is preferably 40 ° C. or higher and 90 ° C. or lower, more preferably 50 ° C. or higher and 80 ° C. or lower.
- the Mn of the modified wax (d) is preferably 1500 or more and 10,000 or less, more preferably 1800 or more and 9000 or less.
- the mechanical strength of the toner particles (C) becomes good.
- the method for producing such a modified wax (d) is not particularly limited.
- the wax (c) is dissolved or dispersed in a solvent (for example, toluene or xylene) and heated to 100 ° C. or more and 200 ° C. or less, and then the monomer having a polymerizable double bond is polymerized, and then the solvent is distilled off.
- a solvent for example, toluene or xylene
- Examples of the method of mixing the wax (c) and the modified wax (d) include the methods described in the following [i] to [iii]. Of the following [i] to [iii], the following [ii] is preferably used.
- [Iii] The wax (c) and the modified wax (d) are dissolved or suspended in an organic solvent (u) described later, and then mechanically wet pulverized using a disperser or the like.
- Examples of the method for dispersing the wax (c) and / or the modified wax (d) in the core resin (b) include, for example, the wax (c) and / or the modified wax (d) and the core resin (b), respectively.
- distributing to a solvent is mentioned.
- insulating liquid (L) examples include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, polysiloxanes, and the like. Specific examples include hexane, octane, isooctane, decane, isodecane, decalin, nonane, dodecane, isododecane, cyclohexane, cyclooctane, cyclodecane, benzene, toluene, xylene, mesitylene, and the like.
- Isopar E Isopar G
- Isopar H Isopar L
- Shellsol 70 Shellsol 71
- Shellsol 71 Shellsol: trade name of Shell Oil
- Amsco OMS Amsco 460
- IP solvent 2028 trade name of Idemitsu Kosan
- silicone oil liquid paraffin and the like.
- the insulating liquid (L) is preferably a solvent having a boiling point of 100 ° C. or higher, and more preferably a hydrocarbon solvent having 10 or more carbon atoms (for example, dodecane, isododecane). And liquid oil paraffin) and silicone oil, and liquid paraffin is more preferable.
- the dielectric constant of the insulating liquid (L) is preferably 1 or more and 4 or less at 20 ° C. Thereby, the charge maintenance property of the liquid developer can be improved.
- the relative dielectric constant of the insulating liquid (L) is calculated using the dielectric constant of the insulating liquid (L) obtained by the bridge method (JIS C2101-1999). Specifically, the empty capacitance C 0 (pF) before filling with the insulating liquid (L) and the equivalent parallel capacitance C x (pF) filled with the insulating liquid (L). ) And is substituted into the following equation (5) to calculate the dielectric constant ⁇ of the insulating liquid (L).
- the relative dielectric constant of the insulating liquid (L) is obtained by the ratio between the calculated ⁇ and the relative dielectric constant of the air 1.000585.
- ⁇ C x / C 0 (5)
- the solvent contained in the liquid developer (X) according to the present embodiment is preferably substantially only the insulating liquid (L), but the liquid developer is preferably 1% by mass or less, more preferably. May contain other organic solvents in the range of 0.5 mass% or less.
- the manufacturing method of the liquid developer (X) according to the present embodiment is not particularly limited, but when manufactured by the manufacturing method of the present embodiment, the toner particles (C) in the liquid developer (X) This is particularly preferable because the particle size distribution can be narrowed.
- the manufacturing method of the present embodiment includes the following steps [I] to [IV].
- Step [I] A dispersion liquid (W) of shell particles (A) in which the shell particles (A) containing the shell resin (a) are dispersed in the insulating liquid (L) is prepared.
- Step [II] A solution for forming core particles (B) in which the core resin (b) or the precursor (b0) of the core resin (b) is dissolved in the organic solvent (M) is prepared.
- Step [III] A core containing the core resin (b) in the dispersion (W) by dispersing the solution for forming the core particles (B) in the dispersion (W) of the shell particles (A).
- the core resin (b) has an acidic group and has an acid dissociation constant of 2.90 or more and 8.00 or less.
- the method for producing a liquid developer according to the present embodiment preferably includes the following step [V].
- Step [V] A dispersion in which a colorant is dispersed (colorant dispersion) is prepared.
- the core particle (B) prepared in the step [II] in advance is used instead of the step [I] and instead of dispersing the core particle (B) forming solution in the dispersion (W) in the step [III].
- the mixed liquid obtained by adding the shell resin (a) to the forming solution is dispersed in the insulating liquid (L) to form the core particles (B) containing the core resin (b), and the shell particles Toner particles (C) having a core / shell structure in which (A) is attached to or coated on the surface of the core particles (B) can be obtained.
- step [I] the dispersion (W) can be produced by producing the shell particles (A) and then dispersing the shell particles (A) in the insulating liquid (L).
- the dispersion (W) can be produced by producing the shell particles (A) and then dispersing the shell particles (A) in the insulating liquid (L).
- the shell particles (A) are dispersed in the insulating liquid (L) after the shell particles (A) are produced, it is preferable to use any one of the following methods [4] to [6]. It is more preferable to use [6]. Further, when the shell particles (A) are produced by polymerization reaction or the like in the insulating liquid (L), it is preferable to use any one of the following [1] to [3], and the following [1] More preferably, it is used. [1]: When the shell resin (a) is a vinyl resin, the monomer is polymerized by a dispersion polymerization method or the like in a solvent containing the insulating liquid (L).
- the dispersion liquid (W1) of the shell particles (A) is directly produced.
- a solvent other than the insulating liquid (L) is distilled off from the dispersion liquid (W) of the shell particles (A).
- the low boiling point component of the insulating liquid (L) may be distilled off. This is the same in the process of distilling off solvents other than the insulating liquid (L) shown below.
- the shell resin (a) is a polyaddition resin such as polyester resin or polyurethane resin or a condensation resin, a precursor (monomer or oligomer, etc.) or a solution of the precursor is appropriately dispersed if necessary.
- the precursor is dispersed in the insulating liquid (L) in the presence of the agent, and then the precursor is cured by heating or addition of a curing agent. If necessary, a solvent other than the insulating liquid (L) is distilled off.
- the shell resin (a) is a polyaddition resin such as a polyester resin or a polyurethane resin or a condensation resin, a precursor (monomer or oligomer, etc.) or a solution of the precursor (starting material is liquid) It is preferable, but it may be liquefied by heating), and after dissolving an appropriate emulsifier, an insulating liquid (L) serving as a poor solvent is added to reprecipitate the precursor.
- the precursor is cured by adding a curing agent or the like, and a solvent other than the insulating liquid (L) is distilled off as necessary.
- a polymerization reaction any polymerization reaction such as addition polymerization, ring-opening polymerization, polyaddition, addition condensation, condensation polymerization, etc. The same applies to [5] and [6] below).
- the obtained shell resin (a) is pulverized using a mechanical pulverizer such as a mechanical rotary type or a jet type, and then classified. Thereby, shell particle
- the obtained shell particles (A) are dispersed in the insulating liquid (L) in the presence of a suitable dispersant.
- a poor solvent preferably an insulating liquid (L)
- the resin solution obtained by preliminarily dissolving the shell resin (a) by heating is cooled, and further appropriate.
- Shell particles (A) are precipitated by the presence of a dispersant. If necessary, a solvent other than the insulating liquid (L) is distilled off.
- the manufacturing method of the shell particles (A) is not particularly limited, and is a dry process shown in [7] below.
- a method of producing the shell particles (A) may be used, or a method of producing the shell particles (A) by the wet method shown in the following [8] to [13] may be used.
- the manufacturing method of the shell particles (A) is preferably wet, more preferably [10], [12] or [13] below. The following [12] or [13] is more preferable.
- the shell resin (a) is pulverized dry using a known dry pulverizer such as a jet mill.
- the shell resin (a) powder is dispersed in an organic solvent, and is pulverized wet using a known wet disperser such as a bead mill or a roll mill.
- a known wet disperser such as a bead mill or a roll mill.
- the solution of shell resin (a) is sprayed using a spray dryer or the like and dried.
- a poor solvent is added to the solution of the shell resin (a) or cooled to supersaturate the shell resin (a) to precipitate it.
- the precursor of the shell resin (a) is polymerized in water by an emulsion polymerization method, a soap-free emulsion polymerization method, a seed polymerization method, a suspension polymerization method, or the like.
- the precursor of the shell resin (a) is polymerized by dispersion polymerization or the like in an organic solvent.
- Examples of the dispersant in the above [2] and [4] to [6] include known surfactant (s) and oil-soluble polymer (t). Further, as the dispersion aid, for example, an organic solvent (u) and a plasticizer (v) can be used in combination.
- surfactant (s) examples include an anionic surfactant (s-1), a cationic surfactant (s-2), an amphoteric surfactant (s-3), and a nonionic surfactant ( s-4). In addition, you may use 2 or more types of surfactant together as surfactant (s).
- anionic surfactant (s-1) examples include ether carboxylic acid (salt) having an alkyl group having 8 to 24 carbon atoms [for example, (poly) oxyethylene (having 1 to 100 repeating units) lauryl ether.
- ether sulfate ester salt having an alkyl group having 8 to 24 carbon atoms [for example, (poly) oxyethylene (with 1 to 100 repeating units) sodium lauryl sulfate, etc.]; alkyl having 8 to 24 carbon atoms Sulfosuccinic acid ester salts having a group [for example, sodium mono or dialkyl sulfosuccinate, disodium mono or dialkyl sulfosuccinate, (poly) oxyethylene (with 1-100 repeat units) mono sodium or dialkyl sulfosuccinate, or , ( I) Oxyethylene (with 1 to 100 repeating units) mono- or dialkylsulfosuccinic acid ester disodium etc.]; (Poly) oxyethylene (with 1 to 100 repeating units) coconut oil fatty acid monoethanolamide sodium sulfate; Sulfonates having an alkyl group of 8 to 24 (for example, sodium do
- Examples of the cationic surfactant (s-2) include quaternary ammonium salt type cationic surfactants and amine salt type cationic surfactants.
- Examples of quaternary ammonium salt type cationic surfactants include tertiary amines and quaternizing agents (eg, alkyl halides such as methyl chloride, methyl bromide, ethyl chloride, and benzyl chloride, dimethyl sulfate, dimethyl carbonate, Or the compound etc. which are obtained by reaction with ethylene oxide etc. are mentioned.
- quaternary ammonium salt type cationic surfactant examples include didecyldimethylammonium chloride, stearyltrimethylammonium bromide, lauryldimethylbenzylammonium chloride (benzalkonium chloride), polyoxyethylenetrimethylammonium chloride and stearamide. Examples thereof include ethyl diethylmethylammonium methosulfate.
- amine salt type cationic surfactants include primary to tertiary amines such as inorganic acids (for example, hydrochloric acid, nitric acid, sulfuric acid or hydroiodic acid) or organic acids (for example, acetic acid, formic acid, oxalic acid, And compounds obtained by neutralization with lactic acid, gluconic acid, adipic acid or alkyl phosphoric acid).
- inorganic acids for example, hydrochloric acid, nitric acid, sulfuric acid or hydroiodic acid
- organic acids for example, acetic acid, formic acid, oxalic acid, And compounds obtained by neutralization with lactic acid, gluconic acid, adipic acid or alkyl phosphoric acid.
- Examples of the primary amine salt type cationic surfactant include inorganic acid salts or organic acid salts of aliphatic higher amines (for example, higher amines such as laurylamine, stearylamine, hardened tallow amine or rosinamine); lower amines Higher fatty acid (for example, stearic acid or oleic acid) salts and the like.
- Examples of secondary amine salt type cationic surfactants include inorganic acid salts of aliphatic amines such as ethylene oxide adducts of aliphatic amines or organic acid salts thereof.
- amphoteric surfactant (s-3) examples include carboxybetaine type amphoteric surfactants [for example, fatty acid amidopropyldimethylaminoacetic acid betaines having 10 to 18 carbon atoms (for example, coconut oil fatty acid amidopropyl betaine), alkyls, etc.
- carboxybetaine type amphoteric surfactants for example, fatty acid amidopropyldimethylaminoacetic acid betaines having 10 to 18 carbon atoms (for example, coconut oil fatty acid amidopropyl betaine), alkyls, etc.
- C10-C18 dimethylaminoacetic acid betaine such as lauryldimethylaminoacetic acid betaine
- imidazolinium type carboxybetaine such as 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine
- Etc. 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine
- sulfobetaine-type amphoteric surfactants for example, fatty acid amidopropyl hydroxyethyl sulfobetaines having 10 to 18 carbon atoms (eg, coconut oil fatty acid amidopropyldimethylhydroxyethyl sulfobetaine), or Dimethyl alkyl (carbon number of 10 to 18) dimethyl hydroxyethyl sulfobetaine (eg lauryl hydroxy sulfobetaine), etc.
- amino acid type amphoteric surfactants e.g. ⁇ - lauryla
- nonionic surfactant (s-4) examples include AO addition type nonionic surfactants and polyhydric alcohol type nonionic surfactants.
- polyhydric alcohol type nonionic surfactant examples include polyhydric (2 to 8 or more valent) alcohols (having 2 to 8 carbon atoms) such as glycerin monooleate, sorbitan monolaurate and sorbitan monooleate. 30) fatty acid (carbon number: 8-24) ester; fatty acid (carbon number: 10-18) alkanolamide such as lauric acid monoethanolamide and lauric acid diethanolamide.
- oil-soluble polymer (t) examples include a polymer having at least one of an alkyl group having 4 or more carbon atoms, a dimethylsiloxane group, and a functional group having a fluorine atom. More preferably, the oil-soluble polymer (t) has at least one group of an alkyl group having affinity for the insulating liquid (L), a dimethylsiloxane group, and a functional group having a fluorine atom, and the core resin (b). It has a chemical structure that has an affinity for.
- the oil-soluble polymer (t) is a monomer having an alkyl group having 4 or more carbon atoms, a monomer having a dimethylsiloxane group (or a reactive oligomer) among the monomers (1) to (9) having the polymerizable double bond. And at least one monomer having a fluorine atom is more preferably polymerized or copolymerized.
- the organic solvent (u) may be an insulating liquid (L) or an organic solvent other than the insulating liquid (L) (for example, an organic solvent (M) described later other than the insulating liquid (L)). Or other solvents). Since the solvent other than the insulating liquid (L) is distilled off after the preparation of the dispersion liquid (W) of the shell particles (A), it is preferable that the solvent is easily distilled off, for example, the insulating liquid (L It is preferable that the boiling point is lower than.
- the plasticizer (v) may be added to the insulating liquid (L) as necessary when dispersing the shell particles (A), or may be added to a solvent containing the core resin (b) and the like. .
- the plasticizer (v) is not particularly limited, and examples include the following plasticizers (v1) to (v6).
- plasticizer (v1) examples include phthalate esters (for example, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate, or diisodecyl phthalate).
- plasticizer (v2) examples include aliphatic dibasic acid esters (for example, di-2-ethylhexyl adipate or 2-ethylhexyl sebacate).
- plasticizer (v3) examples include trimellitic acid esters (for example, tri-2-ethylhexyl trimellitic acid or trioctyl trimellitic acid).
- plasticizer (v4) examples include phosphate esters (for example, triethyl phosphate, tri-2-ethylhexyl phosphate or tricresyl phosphate).
- plasticizer (v5) examples include fatty acid esters (such as butyl oleate).
- plasticizer (v6) examples include combinations of the materials listed in the plasticizers (v1) to (v5).
- step [II] the core particle (B) forming solution is prepared by dissolving the core resin (b) or the precursor (b0) of the core resin (b) in the organic solvent (M).
- any method may be used as a method for dissolving the core resin (b) or the precursor (b0) of the core resin (b) in the organic solvent (M), and a known method can be used.
- the core resin (b) or the precursor (b0) of the core resin (b) is added to the organic solvent (M) and then stirred, and the core resin (b) or the core resin ( The method of heating after putting the precursor (b0) of b) is mentioned.
- the organic solvent (M) is not particularly limited as long as it can dissolve the core resin (b) at room temperature or under heating, but the SP value of the organic solvent (M) is preferably 8.5 (cal / cm 3). ) 1/2 or more and 20 (cal / cm 3 ) 1/2 or less, more preferably 10 (cal / cm 3 ) 1/2 or more and 19 (cal / cm 3 ) 1/2 or less.
- the weighted average value of the SP values calculated from the SP values of the respective solvents on the assumption that additivity is established may be within the above range. If the SP value of the organic solvent (M) is outside the above range, the solubility of the core resin (b) or the precursor (b0) of the core resin (b) may be insufficient.
- the organic solvent (M) preferably has an SP value within the above range, and is preferably selected as appropriate depending on the material of the core resin (b) or the precursor of the core resin (b) (b0).
- the organic solvent (M) include aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and tetralin; aliphatic or alicyclic hydrocarbon solvents such as n-hexane, n-heptane, mineral spirit and cyclohexane Halogenated solvents such as methyl chloride, methyl bromide, methyl iodide, methylene dichloride, carbon tetrachloride, trichloroethylene and perchloroethylene; esters such as ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate and ethyl cellosolve acetate Or ether ether solvents; ether solvents such as
- the boiling point of the organic solvent (M) is preferably 100 ° C. or lower, more preferably 90 ° C. or lower.
- preferable organic solvents include, for example, acetone, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and a mixed solvent of two or more thereof. It is done.
- the viscosity of the core particle (B) forming solution (Y) is preferably 10 mPa ⁇ s to 50000 mPa ⁇ s, more preferably 100 mPa ⁇ s to 10000 mPa ⁇ s. It is as follows.
- the viscosity of the core particle (B) forming solution (Y) is preferably measured using, for example, a B-type viscometer.
- the organic solvent (M) is preferably selected so that the viscosity of the core particle (B) forming solution (Y) is within the above range.
- the precursor (b0) of the core resin (b) is not particularly limited as long as it can become the core resin (b) by a chemical reaction.
- the precursor (b0) of the core resin (b) is the monomer (1) to (9) having the polymerizable double bond (used alone). Or a mixture of two or more of them may be used.
- the core resin (b) precursor (b0) is reacted to react with the core resin (b0).
- a method of (b) for example, an oil phase containing an oil-soluble initiator and a monomer is dispersed and suspended in an organic solvent (M), and the resulting suspension is subjected to a radical polymerization reaction by heating. The method etc. are mentioned.
- oil-soluble initiator examples include an oil-soluble peroxide-based polymerization initiator (I) and an oil-soluble azo-based polymerization initiator (II).
- oil-soluble peroxide-based polymerization initiator (I) examples include an oil-soluble peroxide-based polymerization initiator (I) and an oil-soluble azo-based polymerization initiator (II).
- two or more of the oil-soluble peroxide polymerization initiator (I), the oil-soluble azo polymerization initiator (II) and the redox polymerization initiator (III) may be used in combination.
- oil-soluble peroxide-based polymerization initiator (I) examples include acetyl peroxide, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, parachlorobenzoyl peroxide, and cumene peroxide. .
- oil-soluble azo polymerization initiator (II) examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis-2,4-dimethylvaleronitrile, dimethyl-2,2′-azobis. (2-methylpropionate) and 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile).
- non-aqueous redox polymerization initiator (III) examples include oil-soluble peroxides such as hydroperoxides, dialkyl peroxides or diacyl peroxides, tertiary amines, naphthenates, mercaptans or organometallic compounds (for example, And those obtained by using an oil-soluble reducing agent such as triethylaluminum, triethylboron or diethylzinc).
- oil-soluble peroxides such as hydroperoxides, dialkyl peroxides or diacyl peroxides, tertiary amines, naphthenates, mercaptans or organometallic compounds (for example, And those obtained by using an oil-soluble reducing agent such as triethylaluminum, triethylboron or diethylzinc).
- the precursor (b0) of the core resin (b) is a prepolymer having a reactive group ( ⁇ ) (Hereinafter abbreviated as “prepolymer ( ⁇ )”) and a curing agent ( ⁇ ).
- the “reactive group” possessed by the prepolymer ( ⁇ ) refers to a group capable of reacting with the curing agent ( ⁇ ).
- the prepolymer ( ⁇ ) and the curing agent ( ⁇ ) are dispersed in the insulating liquid (L).
- a method of reacting the prepolymer ( ⁇ ) and the curing agent ( ⁇ ) by heating For example, a method of reacting the prepolymer ( ⁇ ) and the curing agent ( ⁇ ) by heating.
- Examples of the combination of the reactive group of the prepolymer ( ⁇ ) and the curing agent ( ⁇ ) include the following [14] to [15].
- the reactive group of the prepolymer ( ⁇ ) is a functional group ( ⁇ 1) capable of reacting with an active hydrogen compound, and the curing agent ( ⁇ ) is an active hydrogen group-containing compound ( ⁇ 1).
- the reactive group of the prepolymer ( ⁇ ) is an active hydrogen-containing group ( ⁇ 2), and the curing agent ( ⁇ ) is a compound ( ⁇ 2) that can react with the active hydrogen-containing group.
- examples of the functional group ( ⁇ 1) capable of reacting with the active hydrogen compound include an isocyanate group ( ⁇ 1a), a blocked isocyanate group ( ⁇ 1b), an epoxy group ( ⁇ 1c), and an acid anhydride group ( and ⁇ 1d) and acid halide groups ( ⁇ 1e).
- the isocyanate group ( ⁇ 1a), the blocked isocyanate group ( ⁇ 1b) and the epoxy group ( ⁇ 1c) are preferable as the functional group ( ⁇ 1), and among these, the isocyanate group ( ⁇ 1c) is more preferable as the functional group ( ⁇ 1).
- Blocked isocyanate group refers to an isocyanate group blocked with a blocking agent.
- the blocking agent include oximes (for example, acetooxime, methyl isobutyl ketoxime, diethyl ketoxime, cyclopentanone oxime, cyclohexanone oxime, methyl ethyl ketoxime, etc.); lactams (for example, ⁇ -butyrolactam, ⁇ -caprolactam, etc.) Or aliphatic alcohols having 1 to 20 carbon atoms (eg, ethanol, methanol or octanol); phenols (eg, phenol, m-cresol, xylenol or nonylphenol); active methylene compounds (Eg acetylacetone, ethyl malonate or ethyl acetoacetate); basic nitrogen-containing compounds (eg N, N-diethylhydroxylamine, 2-hydroxypi Jin, pyr
- Examples of the structural unit of the prepolymer ( ⁇ ) having a reactive group include polyether ( ⁇ w), polyester ( ⁇ x), epoxy resin ( ⁇ y), and polyurethane ( ⁇ z). Of these, polyester ( ⁇ x), epoxy resin ( ⁇ y) and polyurethane ( ⁇ z) are preferable as the constituent unit of prepolymer ( ⁇ ), and polyester ( ⁇ x) and polyurethane ( ⁇ z) are more preferable. .
- polyether ( ⁇ w) examples include polyethylene oxide, polypropylene oxide, polybutylene oxide, and polytetramethylene oxide.
- polyester ( ⁇ x) examples include a polycondensate of the diol (11) and the dicarboxylic acid (13), and a polylactone (for example, a ring-opening polymer of ⁇ -caprolactone).
- epoxy resin ( ⁇ y) examples include addition condensates of bisphenols (for example, bisphenol A, bisphenol F or bisphenol S) and epichlorohydrin.
- Examples of the polyurethane ( ⁇ z) include a polyaddition product of the diol (11) and the polyisocyanate (15) and a polyaddition product of the polyester ( ⁇ x) and the polyisocyanate (15). .
- Examples of the method for incorporating a reactive group into polyester ( ⁇ x), epoxy resin ( ⁇ y), polyurethane ( ⁇ z) and the like include the methods shown in the following [16] to [17].
- a hydroxyl group-containing polyester prepolymer, a carboxyl group-containing polyester prepolymer, an acid halide group-containing polyester prepolymer, a hydroxyl group-containing epoxy resin prepolymer, an epoxy group-containing epoxy resin prepolymer, a hydroxyl group-containing polyurethane prepolymer, and An isocyanate group-containing polyurethane prepolymer or the like is obtained.
- the equivalent ratio of hydroxyl group [OH] to carboxyl group [COOH] is preferably 2/1 to 1/1.
- the ratio of the polyol component to the polycarboxylic acid component may be set so that it is preferably 1.5 / 1 to 1/1, and more preferably 1.3 / 1 to 1.02 / 1. . Even when the skeleton is changed or when a prepolymer having a terminal group is obtained, it is preferable that the ratio of the constituent components is the same as that described above only by changing the constituent components.
- an isocyanate group-containing prepolymer is obtained by reacting the preprimer obtained in the method [16] with a polyisocyanate, and a blocked polyisocyanate is reacted to thereby contain a blocked isocyanate group.
- a prepolymer is obtained, an epoxy group-containing prepolymer is obtained by reacting a polyepoxide, and an acid anhydride group-containing prepolymer is obtained by reacting a polyacid anhydride.
- the equivalent ratio of the isocyanate group [NCO] and the hydroxyl group [OH] of the hydroxyl group-containing polyester ([NCO] / [OH])
- it is preferably 5/1 to 1/1, more preferably 4/1 to 1.2 / 1, and even more preferably 2.5 / 1 to 1.5 / 1.
- the ratio of the polyisocyanate to the hydroxyl group-containing polyester prepolymer may be set. Even when the skeleton is changed or when a prepolymer having a terminal group is obtained, it is preferable that the ratio of the constituent components is the same as that described above only by changing the constituent components.
- the number of reactive groups contained in one molecule of the prepolymer ( ⁇ ) is preferably 1 or more, more preferably 1.5 to 3 on average, and still more preferably 1.8 on average. There are 2.5 or less. When the number of reactive groups contained in one molecule of the prepolymer ( ⁇ ) is within the above range, the molecular weight of the cured product obtained by reacting with the curing agent ( ⁇ ) increases.
- Mn of the prepolymer ( ⁇ ) is preferably 500 or more and 30000 or less, more preferably 1000 or more and 20000 or less, and further preferably 2000 or more and 10,000 or less.
- the Mw of the prepolymer ( ⁇ ) is preferably 1000 or more and 50000 or less, more preferably 2000 or more and 40000 or less, and further preferably 4000 or more and 20000 or less.
- the viscosity of the prepolymer ( ⁇ ) is preferably 200 Pa ⁇ s or less, more preferably 100 Pa ⁇ s or less, at 100 ° C.
- core particles (B) having a narrow distribution width in the particle size distribution can be obtained.
- polyamine ( ⁇ 1a) which may be blocked with a detachable compound (hereinafter abbreviated as “polyamine ( ⁇ 1a)”);
- examples include polyol ( ⁇ 1b); polymercaptan ( ⁇ 1c); water and the like.
- the polyamine ( ⁇ 1a) and water are preferred as the active hydrogen group-containing compound ( ⁇ 1), and more preferred are blocked polyamines and water.
- polyamine ( ⁇ 1a) examples include those listed as specific examples of the polyamine (15).
- the polyamine ( ⁇ 1a) is preferably 4,4′-diaminodiphenylmethane, xylylenediamine, isophoronediamine, ethylenediamine, diethylenetriamine, triethylenetetramine or a mixture thereof.
- examples of the polyamine include the polyamines and ketones having 3 to 8 carbon atoms (for example, acetone, methyl ethyl ketone, or methyl).
- polyol ( ⁇ 1b) examples include the same as those listed as specific examples of the diol (10) and the polyol (11). Of these, preferred as the polyol ( ⁇ 1b) are the diol (10) alone and a mixture of the diol (10) and a small amount of polyol (11).
- polymercaptan ( ⁇ 1c) examples include ethylenedithiol, 1,4-butanedithiol, 1,6-hexanedithiol, and the like.
- a reaction terminator ( ⁇ s) can be used together with the active hydrogen group-containing compound ( ⁇ 1).
- a reaction terminator ( ⁇ s) can be used together with the active hydrogen group-containing compound ( ⁇ 1) at a constant ratio, it is possible to adjust the molecular weight of the resin (b) to a predetermined value.
- a reaction terminator ( ⁇ s) can be used together with the compound ( ⁇ 2) capable of reacting with the active hydrogen-containing group in the combination [15].
- reaction terminator ( ⁇ s) examples include monoamines (eg, diethylamine, dibutylamine, butylamine, laurylamine, monoethanolamine or diethanolamine); monoamines blocked (eg, ketimine compounds); monools (eg, Such as methanol, ethanol, isopropanol, butanol or phenol); monomercaptan (eg, butyl mercaptan or lauryl mercaptan); monoisocyanate (eg, lauryl isocyanate or phenyl isocyanate); monoepoxide (eg, butyl glycidyl ether), etc. It is done.
- monoamines eg, diethylamine, dibutylamine, butylamine, laurylamine, monoethanolamine or diethanolamine
- monoamines blocked eg, ketimine compounds
- monools eg, Such as methanol, ethanol, isopropanol, butano
- Examples of the active hydrogen-containing group ( ⁇ 2) of the prepolymer ( ⁇ ) in the combination [15] include an amino group ( ⁇ 2a), a hydroxyl group (for example, an alcoholic hydroxyl group or a phenolic hydroxyl group) ( ⁇ 2b), mercapto And a group ( ⁇ 2c), a carboxyl group ( ⁇ 2d), and an organic group ( ⁇ 2e) blocked with a compound from which they can be removed.
- an amino group ( ⁇ 2a), a hydroxyl group ( ⁇ 2b) and an organic group ( ⁇ 2e) are preferable, and a hydroxyl group ( ⁇ 2b) is more preferable.
- Examples of the organic group ( ⁇ 2e) blocked with a compound capable of removing an amino group include the same as those listed as specific examples of the polyamine ( ⁇ 1a).
- Examples of the compound ( ⁇ 2) capable of reacting with the active hydrogen-containing group in the combination [15] include, for example, polyisocyanate ( ⁇ 2a), polyepoxide ( ⁇ 2b), polycarboxylic acid ( ⁇ 2c), polyanhydride ( ⁇ 2d) and Examples include polyacid halide ( ⁇ 2e).
- polyisocyanate ( ⁇ 2a) and polyepoxide ( ⁇ 2b) are preferable as the compound ( ⁇ 2), and polyisocyanate ( ⁇ 2a) is more preferable.
- Examples of the polyisocyanate ( ⁇ 2a) include those listed as specific examples of the polyisocyanate (14).
- Preferred examples of the polyisocyanate ( ⁇ 2a) include preferable specific examples of the polyisocyanate (14). As listed above.
- Examples of the polyepoxide ( ⁇ 2b) include those listed as specific examples of the polyepoxide (18).
- Preferred examples of the polyepoxide ( ⁇ 2b) include those listed as preferable specific examples of the polyepoxide (18). It is the same.
- polycarboxylic acid ( ⁇ 2c) examples include dicarboxylic acid ( ⁇ 2c-1) and trivalent or higher polycarboxylic acid ( ⁇ 2c-2).
- the polycarboxylic acid ( ⁇ 2c) is preferably Dicarboxylic acid ( ⁇ 2c-1) alone or a mixture of dicarboxylic acid ( ⁇ 2c-1) and a small amount of polycarboxylic acid ( ⁇ 2c-2).
- Examples of the dicarboxylic acid ( ⁇ 2c-1) include those listed as specific examples of the dicarboxylic acid (12) and the polycarboxylic acid (13), and are preferable as the dicarboxylic acid ( ⁇ 2c-1). These are the same as those listed as preferred specific examples of the dicarboxylic acid (12) and the polycarboxylic acid (13).
- polycarboxylic acid anhydride examples include pyromellitic acid anhydride.
- polyacid halides ( ⁇ 2e) examples include acid halides of the polycarboxylic acid ( ⁇ 2c) (for example, acid chloride, acid bromide, or acid iodide).
- the ratio of the curing agent ( ⁇ ) in the precursor (b0) of the core resin (b) is not particularly limited.
- the ratio ([ ⁇ ] / [ ⁇ ]) of the equivalent [ ⁇ ] of reactive groups in the prepolymer ( ⁇ ) to the equivalent [ ⁇ ] of active hydrogen-containing groups in the curing agent ( ⁇ ) is preferably 1 /
- the core resin so as to be 2 to 2/1, more preferably 1.5 / 1 to 1 / 1.5, and still more preferably 1.2 / 1 to 1 / 1.2. What is necessary is just to set the ratio of the hardening
- curing agent ((beta)) is water, water is handled as a bivalent active hydrogen compound.
- step [III] the core particle (B) -containing core particle (B) is contained in the insulating liquid (L) by dispersing the core particle (B) forming solution in the dispersion liquid (W) of the shell particles (A). B) is formed, and toner particles (C) having a core-shell structure in which the shell particles (A) are attached to or coated on the surfaces of the core particles (B) are formed.
- a method for dispersing the core particle (B) forming solution in the dispersion liquid (W) of the shell particles (A) is not particularly limited, but the core particle (B) forming solution is added to the shell particle (A) using a dispersing device. It is preferable to disperse in the dispersion liquid (W).
- any commercially available emulsifying machine or dispersing machine can be used without particular limitation.
- the dispersing apparatus include batch type emulsifiers such as homogenizer (manufactured by IKA), polytron (product name, manufactured by Kinematica) and TK auto homomixer (product name, manufactured by Tokushu Kika Kogyo Co., Ltd.); Dar (product name, manufactured by Ebara Manufacturing Co., Ltd.), TK Philmix, TK Pipeline Homo Mixer (all product names, manufactured by Special Machine Industries Co., Ltd.), colloid mill (manufactured by Shinko Pantech Co., Ltd.), Continuous emulsifiers such as Thrasher, Trigonal wet milling machine (Mitsui Miike Chemical Co., Ltd.), Captron (Eurotech Co., Ltd.) and Fine Flow Mill (Pacific Kiko Co., Ltd.); Microfluidizer (Product name) , Mizuho Kogyo Co., Ltd.
- the temperature when the core particle (B) forming solution is dispersed in the dispersion (W) of the shell particles (A) is not particularly limited, but is preferably 0 ° C. or higher and 150 ° C. or lower (under pressure), more preferably. Is 5 ° C. or higher and 98 ° C. or lower.
- the preferable range of the viscosity of the solution for forming the core particle (B) is as described in the description of the above step [II], and is 10 mPa ⁇ s or more and 50000 mPa ⁇ s or less (viscosity measured with a B-type viscometer). It is.
- the mixing ratio of the dispersion (W) of the shell particles (A) and the solution for forming the core particles (B) is not particularly limited.
- the dispersion (W) of the shell particles (A) is 100 masses of the core resin (b) or the core resin (b) precursor (b0) dissolved in the core particle (B) forming solution (Y). 50 parts by mass or more and 2000 parts by mass or less are preferable, and 100 parts by mass or more and 1000 parts by mass or less are more preferable.
- the resin particle dispersion (W) of the shell particles (A) is contained in 100 parts by mass of the core resin (b) or the precursor (b0) of the core resin (b), the resin particle dispersion ( The dispersion state of the core resin (b) or the precursor (b0) of the core resin (b) in X ′) is improved. It is economical if the dispersion (W) of the shell particles (A) is contained in an amount of 2000 parts by mass or less with respect to 100 parts by mass of the core resin (b) or the precursor (b0) of the core resin (b).
- the core-shell structure is formed by dispersing the core particle (B) forming solution in the dispersion (W) of the shell particles (A).
- the adsorption force of the shell particles (A) to the core particles (B) is It is preferably controlled according to the methods shown in the following [18] to [20]. [18]: The shell particles (A) and the core particles (B) are charged with opposite polarities. At this time, the larger the charge of each of the shell particles (A) and the core particles (B), the stronger the adsorption force of the shell particles (A) to the core particles (B). The coverage of the shell particles (A) with respect to the surface is increased.
- the shell structure is formed depends on the physical properties of the organic solvent (M) contained in the core particle (B) forming solution (Y), specifically, the shell particles (A) and / or the core with respect to the organic solvent (M). It depends on the solubility of the resin (b).
- the shell particles (A) are attached to the surface of the core particles (B). .
- THF toluene
- acetone methyl ethyl ketone
- ethyl acetate organic solvent (M)
- M organic solvent
- the content of the organic solvent (M) in the resin particle dispersion (X ′) is preferably 10% by mass to 50% by mass, and more preferably 20% by mass to 40% by mass. It is. And when distilling off the organic solvent (M) after the film-forming treatment, the content of the organic solvent (M) in the resin particle dispersion (X ′) is preferably 1% by mass or less at a temperature of 40 ° C. or less. More preferably, the organic solvent (M) may be removed until the content becomes 0.5% by mass or less. Thereby, the shell layer consisting of the shell particles (A) dissolved in the organic solvent (M) is formed on the surface of the core layer composed of the core particles (B).
- an organic solvent used in the coating treatment can be added to the resin particle dispersion (X ′).
- the organic solvent (M) contained in the core particle (B) forming solution (Y) is preferable to use as a film-forming organic solvent without removing it after the formation of the core particles (B). Because the organic solvent (M) is contained in the core particle (B), the shell particle (A) can be easily dissolved in the organic solvent (M). It is because it becomes difficult to occur.
- the concentration of the organic solvent (M) in the resin particle dispersion (X ′) is preferably 3% by mass or more and 50% by mass or less, more preferably It is 10 mass% or more and 40 mass% or less, More preferably, it is 15 mass% or more and 30 mass% or less.
- the temperature at which the shell particles (A) are dissolved in the organic solvent (M) is preferably 15 ° C. or higher and 45 ° C. or lower, and more preferably 15 ° C. or higher and 30 ° C. or lower.
- the solid content in the resin particle dispersion (X ′) (content of components other than the solvent) Is preferably 1% by mass or more and 50% by mass or less, and more preferably 5% by mass or more and 30% by mass or less.
- the content of the organic solvent (M) at the time of molding the toner particles (C) is preferably 2% by mass or less, more preferably 1% by mass or less, and further preferably 0.5% by mass or less. is there.
- the resin particle dispersion (X ′) When the solid content in the resin particle dispersion (X ′) is high and when the content of the organic solvent (M) at the time of molding the toner particles (C) exceeds 2% by mass, the resin particle dispersion When the temperature of the liquid (X ′) is raised to 60 ° C. or higher, aggregates may be generated.
- the melting method of the shell particles (A) is not particularly limited, and for example, preferably 40 ° C. or higher and 100 ° C. or lower, more preferably 60 ° C. or higher and 90 ° C. or lower, and further preferably 60 ° C. or higher and 80 ° C. In the following, a method of heating preferably 1 minute to 300 minutes is mentioned.
- the resin particles dispersion (X ′) having an organic solvent (M) content of 2% by mass or less at the time of molding the toner particles (C) is heated to change the shell particles (A) into core particles. It is preferable to melt on the surface of (B). Thereby, toner particles (C) having a smoother surface can be obtained.
- the heating temperature at this time is preferably equal to or higher than Tg of the shell resin (a), and more preferably equal to or lower than 80 ° C. If the heating temperature is lower than the Tg of the shell resin, the effect obtained by heating (that is, the effect of further smoothing the surface of the toner particles) may not be obtained. On the other hand, when the heating temperature exceeds 80 ° C., the shell layer may be peeled off from the core layer.
- a preferable method for coating treatment is a method of melting the shell particles (A), and a method of dissolving the shell particles (A) and a method of melting the shell particles (A).
- the core particle (B) forming solution is added to the dispersion (W) in the step [III].
- a solution of the shell resin (a) is added to the solution for forming the core particles (B) previously prepared in the step [II] to prepare a mixed solution, and then dispersed in the insulating liquid (L).
- the core particles (B) containing the core resin (b) are formed by moving the shell resin (a) onto the surface of the core particles (B), whereby the shell particles (A) Toner particles (C) having a core-shell structure adhered or coated on the surface of B) can be obtained.
- the SP value of the shell resin (a) is made smaller than that of the core resin (b), or the shell has a skeleton whose SP value is small enough to correspond to the SP value of the insulating liquid (L).
- the composition of the resin (a) may be designed.
- step [IV] the organic solvent (M) contained in the core particle (B) forming solution is distilled off from the resin particle dispersion (X ′).
- the method for distilling off the organic solvent (M) from the resin particle dispersion (X ′) is not particularly limited.
- the temperature of the organic solvent (M) is 20 ° C. or more.
- the method of distilling off the said organic solvent (M) at the temperature below a boiling point etc. is mentioned.
- the content of the organic solvent (M) in the dispersion after distilling off the organic solvent (M) is preferably 1% by mass or less, and more preferably 0.5% by mass or less.
- a part of the insulating liquid (L) (for example, a low boiling point component in the insulating liquid (L)) may be distilled off together with the organic solvent (M).
- the shape of the toner particles (C) contained in the liquid developer (X) thus obtained and the smoothness of the surface of the toner particles (C) are determined by the SP of the shell resin (a) and the core resin (b). It is controlled by controlling at least one of the value difference and the molecular weight of the core resin (a). If the SP value difference is too small, it is easy to obtain toner particles having a distorted shape but a smooth surface. Conversely, when the SP value difference is too large, toner particles having a spherical shape but having a rough surface are likely to be obtained.
- the SP value difference is preferably 0.01 or more and 5.0 or less, more preferably 0.1 or more and 3.0 or less, and further preferably 0.2 or more and 2.0 or less. is there.
- Mw of shell resin (a) becomes like this. Preferably it is 100 or more and 1 million or less, More preferably, it is 1000 or more and 500000 or less, More preferably, it is 2000 or more and 200000 or less, Most preferably, it is 3000 or more and 100000 or less.
- the core particle (B) is manufactured after the core particle (B) is manufactured according to the manufacturing method of any one of [7] to [13] above.
- Shell particles (A) may be attached to or coated on the surface of these.
- additives other than the colorant for example, wax, filler, antistatic agent, release agent, charge control agent, ultraviolet absorber, oxidation agent
- the additive is added to the dispersion (W) of the shell particles (A) by adding a solution in which an additive other than the colorant is dissolved or dispersed to the dispersion (W) of the shell particles (A).
- toner particles (C) in which additives other than the colorant are also contained in at least one of the core layer and the shell layer can be obtained.
- the core particles (B) in the present embodiment preferably contain a core resin (b) and a colorant.
- the colorant may be obtained by dispersing the colorant in at least one of the dispersion (W) of the shell particles (A) and the solution for forming the core particles (B), or in a predetermined organic solvent.
- the dispersion may be mixed with at least one of the dispersion (W) of the shell particles (A) and the solution for forming the core particles (B).
- the colorant at least one of the pigments listed in the description of the colorant can be used.
- an organic solvent such as acetone can be used.
- the polyester resin thus obtained had a melting point of 68 ° C., Mn of 4900, and Mw of 10,000.
- a copolymer solution of A2 was obtained. 400 parts by mass of the copolymer solution as the shell particles (A2) was dropped into 600 parts by mass of Isopar L (manufactured by ExxonMobil) with stirring, and THF was distilled off at 40 ° C. under a reduced pressure of 0.039 MPa. Thus, a dispersion liquid (W2) of shell particles (A2) was obtained. The volume average particle diameter of the shell particles (A2) contained in the dispersion liquid (W2) measured using “LA-920” was 0.13 ⁇ m.
- ⁇ Production Example 2> [Production of Core Particle (B) Formation Solution for Core Resin (b)]
- the types of the core resin (b) are described as, for example, the core resin (b1) and the core resin (b2).
- the core particle containing core resin (b1) is described as a core particle (B1) etc., for example.
- the core particle (B) formation solution in which the core resin (b1) or its precursor is dissolved is referred to as, for example, a core particle (B1) formation solution.
- a core resin (b1) As a polyester resin.
- the core resin (b1) thus obtained has a carboxyl group which is an acidic group at the terminal, pKa is 2.94, Tg is 72 ° C., Mn is 2400, hydroxyl value is 40, acid value.
- pKa is 2.94
- Tg is 72 ° C.
- Mn is 2400
- hydroxyl value is 40, acid value.
- 1000 parts by mass of the core resin (b1) and 1000 parts by mass of acetone were put into a beaker and stirred to dissolve uniformly to obtain a solution for forming core particles (B1).
- the reaction was allowed to proceed for 4 hours while distilling off PG and water under a nitrogen stream while gradually raising the temperature to 230 ° C. Furthermore, it was made to react under the reduced pressure of 0.007 MPa or more and 0.026 MPa or less, and it took out when the softening point became 150 degreeC, and obtained core resin (b2) which is a polyester resin.
- the recovered PG was 316 parts by mass (8.5 mol parts).
- the core resin (b2) thus obtained had no acidic group at the end, Tg was 64 ° C., Mn was 8800, the hydroxyl value was 13, and the acid value was 0.2.
- 1000 parts by mass of the core resin (b2) and 1000 parts by mass of acetone were charged into a beaker, and the mixture was stirred and dissolved uniformly to obtain a solution for forming core particles (B2).
- a core resin (b3) As a polyester resin.
- the core resin (b3) thus obtained has a carboxyl group which is an acidic group at the end, pKa is 2.52, Tg is 72 ° C., Mn is 2400, hydroxyl value is 40, acid value.
- pKa is 2.52
- Tg is 72 ° C.
- Mn is 2400
- hydroxyl value is 40, acid value.
- 1000 parts by mass of the core resin (b3) and 1000 parts by mass of acetone were put into a beaker and stirred to dissolve uniformly to obtain a solution for forming core particles (B3).
- a core resin (b4) which is a polyester resin.
- the core resin (b4) thus obtained has a carboxyl group which is an acidic group at the terminal, pKa is 2.52, Tg is 72 ° C., Mn is 2400, hydroxyl value is 40, acid value is It was 15.
- 1000 parts by mass of the core resin (b4) and 1000 parts by mass of acetone were charged into a beaker, and stirred to dissolve uniformly to obtain a solution for forming core particles (B4).
- a core resin (b5) As a polyester resin.
- the core resin (b5) thus obtained has a carboxyl group which is an acidic group at the end, pKa is 5.61, Tg is 72 ° C., Mn is 2400, hydroxyl value is 51, acid value is 31.
- 1000 parts by mass of the core resin (b5) and 1000 parts by mass of acetone were charged into a beaker, and stirred to dissolve uniformly to obtain a solution for forming core particles (B5).
- a core resin (b6) As a polyester resin.
- the core resin (b6) thus obtained has a carboxyl group which is an acidic group at the end, pKa is 9.50, Tg is 72 ° C., Mn is 2,400, hydroxyl value is 40, acid The value was 8.
- 1000 parts by mass of the core resin (b6) and 1000 parts by mass of acetone were put into a beaker, and stirred to dissolve uniformly to obtain a solution for forming core particles (B6).
- a core resin (b7) which is a urethane resin.
- the core resin (b7) had an Mn of 25000 and a urethane group concentration of 2.00.
- the core resin (b7) thus obtained had a carboxyl group which is an acidic group at the terminal, and the pKa was 6.20.
- 1300 parts by mass of the core resin (b7) and 700 parts by mass of acetone were put into a beaker and stirred to dissolve uniformly to obtain a solution for forming core particles (B7).
- the “urethane group concentration (% by mass)” means a value obtained by multiplying the value obtained by dividing the mass of the urethane group contained in the resin by the mass of the resin by 100.
- the liquid developer of Example 1 is referred to as a liquid developer (X-1), and the liquid developer of Example 2 is referred to as a liquid developer (X-2).
- the liquid developer of Comparative Example 1 is referred to as a liquid developer (Z-1).
- Example 1 In a beaker, 45 parts by mass of the solution for forming the core particles (B1) obtained in Production Example 2-1 and 15 parts by mass of the colorant dispersion obtained in Production Example 4 were added, and the TK auto homomixer at 25 ° C. (Product name, manufactured by Tokushu Kika Kogyo Co., Ltd.) was stirred at 8000 rpm and dispersed uniformly to obtain a mixed solution of the core particle (B1) forming solution and the colorant dispersion.
- the TK auto homomixer 25 ° C.
- acetone was distilled off until the acetone concentration became 0.5% by mass or less to obtain a liquid developer (X-1).
- the concentration of acetone in the liquid developer (X-1) is determined by gas chromatography using a flame ion detection method (hereinafter also referred to as “FID method”) (product name: “GC2010”, manufactured by Shimadzu Corporation). Quantified with.
- the solubility of the shell resin (a) obtained in the above manner in the insulating liquid (L) at 25 ° C. in the liquid developer (X-1) was measured as follows.
- Example 2 to 5 In the same manner as in Example 1, except that the core particle (B) forming solution, urethane prepolymer, curing agent, colorant dispersion, liquid paraffin, and dispersion shown in Table 1 are used. Liquid developers (X-2) to (X-5) were obtained.
- the column for the dispersion (W) of the shell particles (A) indicates the type of the dispersion used.
- W1 indicates that the dispersion liquid (W1) of the shell particles (A1) described in Production Example 1 is used.
- the column of the type of core particle (B) forming solution indicates the type of core particle forming solution used.
- “B1” indicates that the core particle (B1) forming solution described in Production Example 2 is used.
- Example 6> In a beaker, 8 parts by mass of a copolymer solution as shell particles (A1) obtained in the process of producing a dispersion (W1) of shell particles (A1) in Production Example 1-1, and core particles (B1) 45 parts by mass of the forming solution and 15 parts by mass of the colorant dispersion obtained in Production Example 4 were added, and 8000 rpm using a TK auto homomixer (product name, manufactured by Tokushu Kika Kogyo Co., Ltd.) at 25 ° C. The mixture was uniformly dispersed to obtain a mixed solution of the copolymer solution, which is the shell particles (A1), the core particle (B1) forming solution, and the colorant dispersion.
- TK auto homomixer product name, manufactured by Tokushu Kika Kogyo Co., Ltd.
- Liquid developers (X-1) to (X-6) and (Z-1) to (Z-4) obtained in Examples 1 to 6 and Comparative Examples 1 to 4 were each converted into liquid paraffin. After dilution, the volume average particle size and the coefficient of variation of volume distribution of the toner particles (C) were measured using “LA-920”. Further, the state of the shell particles (A) in the toner particles (C) was observed by the following method. Then, the surface coverage of the core particles (B) with the shell particles (A) in the toner particles (C) was measured by the above method. Further, the fixability and heat resistance stability of the liquid developer were evaluated by the following methods. The results are shown in Table 1.
- FIG. 1 is a schematic conceptual diagram of an electrophotographic image forming apparatus used for evaluating the fixability of a liquid developer according to this embodiment.
- the liquid developer 2 is pumped up by the supply roller 3 and rubbed off by the regulating blade 4, so that a thin layer of the liquid developer 2 having a predetermined thickness is formed on the supply roller 3. .
- the engraving of the roller is filled with a liquid developer, and the prescribed amount is measured by the regulating roller.
- a thin layer of the liquid developer 2 moves from the supply roller 3 onto the developing roller 5, and a toner image is formed on the photosensitive member 6 with toner particles by the nip between the developing roller 5 and the photosensitive member 6.
- the image forming apparatus 1 includes a developing roller cleaning blade 8 and a charging device 9.
- Fixing strength A Image density remaining rate is 90% or more
- Fixing strength B Image density remaining rate is 80% or more and less than 90%
- Fixing strength C Image density remaining rate is less than 80%
- fixing strength A is the most fixable.
- the fixing strength B is excellent, and the fixing strength C indicates that the fixing property is inferior.
- the liquid developer of the present embodiment is a liquid developer (X) in which toner particles (C) are dispersed in an insulating liquid (L), and the toner particles (C ) Has a core-shell structure in which the shell particles (A) containing the shell resin (a) are attached to or coated on the surfaces of the core particles (B) containing the core resin (b). ) Has an acidic group and has an acid dissociation constant of 2.90 or more and 8.00 or less, thereby exhibiting excellent fixability, capable of fixing in a wide temperature range, and after fixing It has been confirmed that it has an excellent effect that the storage deterioration of is extremely small.
- the liquid developer (X) of the present invention is extremely useful in applications such as paints, electrophotographic liquid developers, electrostatic recording liquid developers, oil-based inks for ink jet printers, and inks for electronic paper. Further, as other applications, it has high utility value in applications such as cosmetics, spacers for manufacturing electronic components, and electrorheological fluids.
- 1 image forming device 2 liquid developer, 3 supply roller, 4 regulating blade, 5 developing roller, 6 photoreceptor, 7, 8 cleaning blade, 9 charging device, 10 backup roller, 11 recording material, 12 heat roller.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Liquid Developers In Electrophotography (AREA)
Abstract
Description
そして、本発明の液体現像剤の製造方法は、絶縁性液体(L)中にシェル樹脂(a)を含有するシェル粒子(A)が分散されてなるシェル粒子(A)の分散液(W)を調製する工程と、有機溶媒(M)中にコア樹脂(b)またはコア樹脂(b)の前駆体(b0)が溶解されてなるコア粒子(B)形成用溶液を調製する工程と、該シェル粒子(A)の分散液(W)に該コア粒子(B)形成用溶液を分散させることにより、該分散液(W)中に該コア樹脂(b)を含むコア粒子(B)を形成させるとともに、該シェル粒子(A)が該コア粒子(B)の表面に付着または被覆されてなるコア・シェル構造を有するトナー粒子(C)を得る工程と、該トナー粒子(C)を得る工程の後で該有機溶媒(M)を留去させることにより、液体現像剤(X)を得る工程と、を備え、該コア樹脂(b)は酸性基を有し、酸解離定数が、2.90以上8.00以下であることを特徴とする。
本実施の形態に係る液体現像剤(X)は、複写機、プリンタ、デジタル印刷機、簡易印刷機などの電子写真方式の画像形成装置(後述)において用いられる電子写真用液体現像剤、塗料、静電記録用液体現像剤、インクジェットプリンタ用油性インクまたは電子ペーパー用インクとして有用であり、トナー粒子(C)が絶縁性液体(L)に分散されてなる。トナー粒子(C)は、シェル樹脂(a)を含むシェル粒子(A)がコア樹脂(b)を含むコア粒子(B)の表面に付着または被覆されてなるコア・シェル構造を有する。
本実施の形態におけるシェル樹脂(a)は、熱可塑性樹脂であっても良いし、熱硬化性樹脂であっても良い。シェル樹脂(a)としては、たとえば、ビニル樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ケイ素樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、および、ポリカーボネート樹脂などが挙げられる。なお、シェル樹脂(a)として、上記列挙された樹脂の2種以上を併用してもよい。
上記ビニル樹脂は、重合性二重結合を有するモノマー由来の構成単位を含む単独重合体であっても良いし、重合性二重結合を有する二種以上のモノマー由来の構成単位を含む共重合体であっても良い。重合性二重結合を有するモノマーとしては、たとえば、下記(1)~(9)が挙げられる。
重合性二重結合を有する炭化水素は、たとえば、下記(1-1)で示す重合性二重結合を有する脂肪族炭化水素、または、下記(1-2)で示す重合性二重結合を有する芳香族炭化水素などであることが好ましい。
重合性二重結合を有する脂肪族炭化水素は、たとえば、下記(1-1-1)で示す重合性二重結合を有する鎖状炭化水素、または、下記(1-1-2)で示す重合性二重結合を有する環状炭化水素などであることが好ましい。
重合性二重結合を有する鎖状炭化水素としては、たとえば、炭素数が2~30のアルケン(たとえば、エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセンまたはオクタデセンなど);炭素数が4~30のアルカジエン(たとえば、ブタジエン、イソプレン、1,4-ペンタジエン、1,5-ヘキサジエンまたは1,7-オクタジエンなど)などが挙げられる。
重合性二重結合を有する環状炭化水素としては、たとえば、炭素数が6~30のモノまたはジシクロアルケン(たとえば、シクロヘキセン、ビニルシクロヘキセンまたはエチリデンビシクロヘプテンなど);炭素数が5~30のモノまたはジシクロアルカジエン(たとえば、シクロペンタジエンまたはジシクロペンタジエンなど)などが挙げられる。
重合性二重結合を有する芳香族炭化水素としては、たとえば、スチレン;スチレンのハイドロカーボン(たとえば、炭素数が1~30のアルキル、シクロアルキル、アラルキルおよび/またはアルケニル)置換体(たとえば、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン、ベンジルスチレン、クロチルベンゼン、ジビニルベンゼン、ジビニルトルエン、ジビニルキシレンまたはトリビニルベンゼンなど);ビニルナフタレンなどが挙げられる。
カルボキシル基と重合性二重結合を有するモノマーとしては、たとえば、炭素数が3~15の不飽和モノカルボン酸[たとえば、(メタ)アクリル酸、クロトン酸、イソクロトン酸または桂皮酸など];炭素数が3~30の不飽和ジカルボン酸(無水物)[たとえば、(無水)マレイン酸、フマル酸、イタコン酸、(無水)シトラコン酸またはメサコン酸など];炭素数が3~10の不飽和ジカルボン酸のモノアルキル(炭素数が1~10)エステル(たとえば、マレイン酸モノメチルエステル、マレイン酸モノデシルエステル、フマル酸モノエチルエステル、イタコン酸モノブチルエステルまたはシトラコン酸モノデシルエステルなど)などが挙げられる。本明細書では、「(メタ)アクリル(酸)」は、アクリル(酸)および/またはメタクリル(酸)を意味する。また同様に、「(メタ)アクリレート」は「アクリレート」および/または「メタクリレート」を意味する。
スルホ基と重合性二重結合を有するモノマーとしては、たとえば、炭素数が2~14のアルケンスルホン酸[たとえば、ビニルスルホン酸、(メタ)アリルスルホン酸またはメチルビニルスルホン酸など];スチレンスルホン酸およびスチレンスルホン酸のアルキル(炭素数が2~24)誘導体(たとえば、α-メチルスチレンスルホン酸など);炭素数が5~18のスルホ(ヒドロキシ)アルキル-(メタ)アクリレート[たとえば、スルホプロピル(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロキシプロピルスルホン酸、2-(メタ)アクリロイルオキシエタンスルホン酸または3-(メタ)アクリロイルオキシ-2-ヒドロキシプロパンスルホン酸など];炭素数が5~18のスルホ(ヒドロキシ)アルキル(メタ)アクリルアミド[たとえば、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸または3-(メタ)アクリルアミド-2-ヒドロキシプロパンスルホン酸など];アルキル(炭素数が3~18)アリルスルホコハク酸(たとえば、プロピルアリルスルホコハク酸、ブチルアリルスルホコハク酸または2-エチルヘキシル-アリルスルホコハク酸など);ポリ[n(「n」は重合度を表わす。以下同様。)=2~30]オキシアルキレン(たとえば、オキシエチレン、オキシプロピレンまたはオキシブチレンなど。ポリオキシアルキレンは、オキシアルキレンの単独重合体であっても良いし、オキシアルキレンの共重合体であっても良い。ポリオキシアルキレンがオキシアルキレンの共重合体である場合には、ランダム重合体であっても良いしブロック重合体であっても良い。);モノ(メタ)アクリレートの硫酸エステル[たとえば、ポリ(n=5~15)オキシエチレンモノメタクリレート硫酸エステルまたはポリ(n=5~15)オキシプロピレンモノメタクリレート硫酸エステルなど];下記化学式(1)~(3)で表される化合物などが挙げられる。
ホスホノ基と重合性二重結合を有するモノマーとしては、たとえば、(メタ)アクリロイルオキシアルキルリン酸モノエステル(アルキル基の炭素数が1~24)[たとえば、2-ヒドロキシエチル(メタ)アクリロイルホスフェートまたはフェニル-2-アクリロイロキシエチルホスフェートなど];(メタ)アクリロイルオキシアルキルホスホン酸(アルキル基の炭素数が1~24)(たとえば2-アクリロイルオキシエチルホスホン酸など)などが挙げられる。
ヒドロキシル基と重合性二重結合を有するモノマーとしては、たとえば、ヒドロキシスチレン、N-メチロール(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、(メタ)アリルアルコール、クロチルアルコール、イソクロチルアルコール、1-ブテン-3-オール、2-ブテン-1-オール、2-ブテン-1,4-ジオール、プロパルギルアルコール、2-ヒドロキシエチルプロペニルエーテルおよび庶糖アリルエーテルなどが挙げられる。
重合性二重結合を有する含窒素モノマーとしては、たとえば、下記(6-1)~(6-4)で示すモノマーが挙げられる。
アミノ基と重合性二重結合を有するモノマーとしては、たとえば、アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチルメタクリレート、N-アミノエチル(メタ)アクリルアミド、(メタ)アリルアミン、モルホリノエチル(メタ)アクリレート、4-ビニルピリジン、2-ビニルピリジン、クロチルアミン、N,N-ジメチルアミノスチレン、メチル-α-アセトアミノアクリレート、ビニルイミダゾール、N-ビニルピロール、N-ビニルチオピロリドン、N-アリールフェニレンジアミン、アミノカルバゾール、アミノチアゾール、アミノインドール、アミノピロール、アミノイミダゾールおよびアミノメルカプトチアゾールなどが挙げられる。
アミド基と重合性二重結合を有するモノマーとしては、たとえば、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-ブチルアクリルアミド、ジアセトンアクリルアミド、N-メチロール(メタ)アクリルアミド、N,N’-メチレン-ビス(メタ)アクリルアミド、桂皮酸アミド、N,N-ジメチルアクリルアミド、N,N-ジベンジルアクリルアミド、メタクリルホルムアミド、N-メチル-N-ビニルアセトアミドおよびN-ビニルピロリドンなどが挙げられる。
ニトリル基と重合性二重結合を有する炭素数が3~10のモノマーとしては、たとえば、(メタ)アクリロニトリル、シアノスチレンおよびシアノアクリレートなどが挙げられる。
ニトロ基と重合性二重結合を有する炭素数が8~12のモノマーとしては、たとえば、ニトロスチレンなどが挙げられる。
エポキシ基と重合性二重結合を有する炭素数が6~18のモノマーとしては、たとえば、グリシジル(メタ)アクリレートなどが挙げられる。
ハロゲン元素と重合性二重結合を有する炭素数が2~16のモノマーとしては、たとえば、塩化ビニル、臭化ビニル、塩化ビニリデン、アリルクロライド、クロロスチレン、ブロムスチレン、ジクロロスチレン、クロロメチルスチレン、テトラフルオロスチレンおよびクロロプレンなどが挙げられる。
重合性二重結合を有するモノマーとしては、上記モノマー以外に、下記(9-1)~(9-4)で示すモノマーが挙げられる。
重合性二重結合を有する炭素数が4~16のエステルとしては、たとえば、酢酸ビニル;プロピオン酸ビニル;酪酸ビニル;ジアリルフタレート;ジアリルアジペート;イソプロペニルアセテート;ビニルメタクリレート;メチル-4-ビニルベンゾエート;シクロヘキシルメタクリレート;ベンジルメタクリレート;フェニル(メタ)アクリレート;ビニルメトキシアセテート;ビニルベンゾエート;エチル-α-エトキシアクリレート;炭素数が1~11のアルキル基を有するアルキル(メタ)アクリレート[たとえば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートなど];ジアルキルフマレート(2個のアルキル基は、炭素数が2~8の直鎖アルキル基、分枝アルキル基または脂環式のアルキル基である);ジアルキルマレエート(2個のアルキル基は、炭素数が2~8の直鎖アルキル基、分枝アルキル基または脂環式のアルキル基である);ポリ(メタ)アリロキシアルカン類(たとえば、ジアリロキシエタン、トリアリロキシエタン、テトラアリロキシエタン、テトラアリロキシプロパン、テトラアリロキシブタンまたはテトラメタアリロキシエタンなど);ポリアルキレングリコール鎖と重合性二重結合を有するモノマー{たとえば、ポリエチレングリコール[数平均分子量(以下「Mn」とも記す)=300]モノ(メタ)アクリレート、ポリプロピレングリコール(Mn=500)モノアクリレート、メチルアルコールエチレンオキサイド(以下「エチレンオキサイド」を「EO」とも記す)10モル付加物(メタ)アクリレートまたはラウリルアルコールEO30モル付加物(メタ)アクリレートなど};ポリ(メタ)アクリレート類{たとえば、多価アルコール類のポリ(メタ)アクリレート[たとえば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートまたはポリエチレングリコールジ(メタ)アクリレートなど]}などが挙げられる。
重合性二重結合を有する炭素数が3~16のエーテルとしては、たとえば、ビニルメチルエーテル、ビニルエチルエーテル、ビニルプロピルエーテル、ビニルブチルエーテル、ビニル-2-エチルヘキシルエーテル、ビニルフェニルエーテル、ビニル-2-メトキシエチルエーテル、メトキシブタジエン、ビニル-2-ブトキシエチルエーテル、3,4-ジヒドロ-1,2-ピラン、2-ブトキシ-2’-ビニロキシジエチルエーテル、アセトキシスチレンおよびフェノキシスチレンなどが挙げられる。
重合性二重結合を有する炭素数が4~12のケトンとしては、たとえば、ビニルメチルケトン、ビニルエチルケトンおよびビニルフェニルケトンなどが挙げられる。
重合性二重結合を有する炭素数2~16の含硫黄化合物としては、たとえば、ジビニルサルファイド、p-ビニルジフェニルサルファイド、ビニルエチルサルファイド、ビニルエチルスルホン、ジビニルスルホンおよびジビニルスルホキサイドなどが挙げられる。
このようなビニルモノマー(m1)としては、たとえば、不飽和モノカルボン酸のモノ直鎖状アルキル(アルキルの炭素数が12~27)エステルおよび不飽和ジカルボン酸のモノ直鎖状アルキル(アルキルの炭素数が12~27)エステルなどが挙げられる。上記不飽和モノカルボン酸および不飽和ジカルボン酸としては、たとえば、(メタ)アクリル酸、マレイン酸、フマル酸、クロトン酸、イタコン酸およびシトラコン酸などの炭素数が3~24のカルボキシル基含有ビニルモノマーなどが挙げられる。
このようなビニルモノマー(m2)としては、たとえば、不飽和モノカルボン酸のモノ分岐状アルキル(アルキルの炭素数が12~27)エステルおよび不飽和ジカルボン酸のモノ分岐状アルキル(アルキルの炭素数が12~27)エステルなどが挙げられる。上記不飽和モノカルボン酸および不飽和ジカルボン酸としては、たとえば、ビニルモノマー(m1)において不飽和モノカルボン酸および不飽和ジカルボン酸の具体例として列挙したものと同様のものが挙げられる。
このようなビニルモノマー(m3)としては、たとえば、下記化学式(4)で表されるパーフルオロアルキル(アルキル)(メタ)アクリル酸エステルなどが挙げられる。
上記化学式(4)中、Rは水素原子またはメチル基を表わし、pは0~3の整数であり、qは2、4、6、8、10または12のいずれかであり、Zは水素原子またはフッ素原子を表わす。
このようなビニルモノマー(m4)としては、たとえば、下記化学式(5)で表される(メタ)アクリル変性シリコーンなどが挙げられる
CH2=CR-COO-((CH3)2SiO)m-Si(CH3)3:化学式(5)
上記化学式(5)中、Rは水素原子またはメチル基を表わし、mは平均値で15~45である。
ポリエステル樹脂としては、たとえば、ポリオールと、ポリカルボン酸、ポリカルボン酸の酸無水物またはポリカルボン酸の低級アルキル(アルキル基の炭素数が1~4)エステルとの重縮合物などが挙げられる。重縮合反応には、公知の重縮合触媒などが使用できる。
ポリウレタン樹脂としては、たとえば、ポリイソシアネート(14)と活性水素含有化合物{たとえば、水;ポリオール[たとえば、ジオール(10)(ヒドロキシル基以外の官能基を有するジオールを含む)またはポリオール(11)など];ポリカルボン酸[たとえば、ジカルボン酸(12)またはポリカルボン酸(13)など];ポリオールとポリカルボン酸との重縮合により得られるポリエステルポリオール;炭素数が6~12のラクトンの開環重合体;ポリアミン(15);ポリチオール(16);これらの併用など}との重付加物であっても良いし、ポリイソシアネート(14)と上記活性水素含有化合物とを反応させてなる末端イソシアネート基プレポリマーと、当該末端イソシアネート基プレポリマーのイソシアネート基に対して等量の1級および/または2級モノアミン(17)とを反応させて得られるアミノ基含有ポリウレタン樹脂であっても良い。
エポキシ樹脂としては、たとえば、ポリエポキシド(18)の開環重合物;ポリエポキシド(18)と活性水素含有化合物[たとえば、水、ジオール(10)、ジカルボン酸(12)、ポリアミン(15)またはポリチオール(16)など]との重付加物;ポリエポキシド(18)とジカルボン酸(12)の酸無水物との硬化物などが挙げられる。
ポリアミド樹脂としては、たとえば、ラクタムの開環重合体、アミノカルボン酸の重縮合体およびポリカルボン酸とポリアミンとの重縮合体などが挙げられる。
ポリイミド樹脂としては、たとえば、脂肪族ポリイミド樹脂(たとえば、脂肪族カルボン酸二無水物と脂肪族ジアミンとから得られる縮合重合体など)、および、芳香族ポリイミド樹脂(たとえば、芳香族カルボン酸二無水物と脂肪族ジアミンまたは芳香族ジアミンとから得られる縮合重合体など)などが挙げられる。
ケイ素樹脂としては、たとえば、分子鎖中に、ケイ素-ケイ素結合、ケイ素-炭素結合、シロキサン結合およびケイ素-窒素結合などの少なくとも1つを有する化合物(たとえば、ポリシロキサン、ポリカルボシランまたはポリシラザンなど)などが挙げられる。
フェノール樹脂としては、たとえば、フェノール類(たとえば、フェノール、クレゾール、ノニルフェノール、リグニン、レゾルシンまたはカテコールなど)とアルデヒド類(たとえば、ホルムアルデヒド、アセトアルデヒドまたはフルフラールなど)とから得られる縮合重合体などが挙げられる。
メラミン樹脂としては、たとえば、メラミンとホルムアルデヒドとから得られる重縮合体などが挙げられる。
ユリア樹脂としては、たとえば、尿素とホルムアルデヒドとから得られる重縮合体などが挙げられる。
アニリン樹脂としては、たとえば、アニリンとアルデヒド類とを酸性下で反応して得られたものなどが挙げられる。
アイオノマー樹脂としては、たとえば、重合性二重結合を有するモノマー(たとえば、α-オレフィン系モノマーまたはスチレン系モノマーなど)とα,β-不飽和カルボン酸(たとえば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、マレイン酸モノメチルエステル、無水マレイン酸またはマレイン酸モノエチルエステルなど)との共重合体で当該共重合体中のカルボン酸の一部または全部がカルボン酸塩(たとえば、カリウム塩、ナトリウム塩、マグネシウム塩またはカルシウム塩など)であるものなどが挙げられる。
ポリカーボネート樹脂としては、たとえば、ビスフェノール類(たとえば、ビスフェノールA、ビスフェノールFまたはビスフェノールSなど)と、ホスゲンまたは炭酸ジエステルなどとの縮合重合体などが挙げられる。
シェル樹脂(a)は、結晶性樹脂(a1)であっても良いし、非結晶性樹脂(a2)であっても良いし、結晶性樹脂(a1)と非結晶性樹脂(a2)とが併用されたものであっても良い。トナー粒子(C)の定着性の観点から、シェル樹脂(a)は結晶性樹脂(a1)であることが好ましい。
シェル樹脂(a)は、当該シェル樹脂(a)のDSCによる融解熱が下記式(1)および(2)を満たす方が望ましい。
5≦H1≦70・・・(1)
0.2≦H2/H1≦1.0・・・(2)
式(1)および(2)中、H1は、DSCによる初回昇温時の融解熱(J/g)を示し、H2はDSCによる2回目昇温時の融解熱(J/g)を示す。
シェル樹脂(a)の融点は、好ましくは0℃以上220℃以下であり、より好ましくは30℃以上200℃以下であり、さらに好ましくは40℃以上80℃以下である。トナー粒子(C)の粒度分布、ならびに、液体現像剤(X)の粉体流動性、耐熱保管安定性および耐ストレス性などの観点から、シェル樹脂(a)の融点は液体現像剤(X)を製造するときの温度以上であることが好ましい。シェル樹脂の融点が液体現像剤を製造するときの温度よりも低いと、トナー粒子同士が合一することを防止し難くなることがあり、トナー粒子が分裂することを防止し難くなることがある。それだけでなく、トナー粒子の粒度分布における分布幅が狭くなり難い、別の言い方をすると、トナー粒子の粒径のバラツキが大きくなるおそれがある。
シェル樹脂(a)のMn[ゲルパーミエーションクロマトグラフィー(以下「GPC」とも記す)で測定して得られたもの]は、好ましくは100以上5000000以下であり、好ましくは200以上5000000以下であり、より好ましくは500以上500000以下である。
カラム:「TSKgelGMHXL」(製品名、東ソー(株)製)(2本)と「TSKgelMultiporeHXL-M」(製品名、東ソー(株)製)(1本)
試料溶液:0.25質量%のTHF溶液
カラムへのTHF溶液の注入量:100μl
流速:1ml/分
測定温度:40℃
検出装置:屈折率検出器
基準物質:標準ポリスチレン(製品名:TSK standard PОLYSTYRENE、東ソー(株)製)12点(分子量:500、1050、2800、5970、9100、18100、37900、96400、190000、355000、1090000、2890000)。
カラム:「Guardcоlumn α」(1本)と「TSKgel α―M」(1本)
試料溶液:0.125質量%のジメチルホルムアミド溶液
カラムへのジメチルホルムアミド溶液の注入量:100μl
流速:1ml/分
測定温度:40℃
検出装置:屈折率検出器
基準物質:標準ポリスチレン(製品名:TSK standard PОLYSTYRENE、東ソー(株)製)12点(分子量:500、1050、2800、5970、9100、18100、37900、96400、190000、355000、1090000、2890000)。
本明細書において、溶解度パラメータをSP値と記す。
本実施の形態におけるシェル粒子(A)は、シェル樹脂(a)を含む。シェル粒子(A)の製造方法は、公知のいかなる方法も採用することができ、特に限定されない。たとえば、以下の[1]~[7]のような方法を挙げることができる。
[1]:ジェットミルなどの公知の乾式粉砕機を用いて、シェル樹脂(a)を乾式で粉砕させる。
[2]:シェル樹脂(a)の粉末を有機溶剤中に分散させ、ビーズミルまたはロールミルなどの公知の湿式分散機を用いて湿式で粉砕させる。
[3]:スプレードライヤーなどを用いてシェル樹脂(a)の溶液を噴霧し、乾燥させる。
[4]:シェル樹脂(a)の溶液に対して貧溶媒の添加または冷却を行なって、シェル樹脂(a)を過飽和させて析出させる。
[5]:シェル樹脂(a)の溶液を水または有機溶剤中に分散させる。
[6]:シェル樹脂(a)の前駆体を水中で乳化重合法、ソープフリー乳化重合法、シード重合法、または、懸濁重合法などにより重合させる。
[7]:シェル樹脂(a)の前駆体を有機溶剤中で分散重合などにより重合させる。
本実施の形態におけるコア樹脂(b)は、酸性基を有し、かつ酸解離定数(以下pKaとも記す)が、2.90以上8.00以下であることを要する。
酸性基を有するポリエステル樹脂としては、たとえば、ジオールとジカルボン酸との重縮合体に、後述の酸無水物でカルボン酸を導入したものなどが挙げられる。
酸性基を有するポリウレタン樹脂としては、ポリイソシアネート(14)と活性水素含有化合物{たとえば、水;ポリオール[たとえば、ジオール(10)(ヒドロキシル基以外の官能基を有するジオールを含む)、ならびに3~8価およびそれ以上のポリオール(11)など];ポリカルボン酸[たとえば、ジカルボン酸(12)、ならびに3~6価およびそれ以上のポリカルボン酸(13)など];ポリオールとポリカルボン酸との重縮合により得られるポリエステルポリオール;炭素数が6~12のラクトンの開環重合体;ポリアミン(15);ポリチオール(16);これらの併用など}との重付加物、ならびにポリイソシアネート(14)と上記活性水素含有化合物とを反応させてなる末端イソシアネート基プレポリマーと、当該末端イソシアネート基プレポリマーのイソシアネート基に対して等量の1級および/または2級モノアミン(17)とを反応させて得られるアミノ基含有ポリウレタン樹脂などが挙げられる。
酸性基を有するビニル樹脂としては、下記に示すカルボキシル基と重合性二重結合を有するモノマー、スルホ基と重合性二重結合を有するモノマー、ホスホノ基と重合性二重結合を有するモノマーなどの単独重合体および共重合体などが挙げられる。
カルボキシル基と重合性二重結合を有するモノマーとしては、たとえば、炭素数が3~15の不飽和モノカルボン酸[たとえば、(メタ)アクリル酸、クロトン酸、イソクロトン酸または桂皮酸など];炭素数が3~30の不飽和ジカルボン酸(無水物)[たとえば、(無水)マレイン酸、フマル酸、イタコン酸、(無水)シトラコン酸またはメサコン酸など];炭素数が3~10の不飽和ジカルボン酸のモノアルキル(炭素数が1~10)エステル(たとえば、マレイン酸モノメチルエステル、マレイン酸モノデシルエステル、フマル酸モノエチルエステル、イタコン酸モノブチルエステルまたはシトラコン酸モノデシルエステルなど)などが挙げられる。
スルホ基と重合性二重結合を有するモノマーとしては、たとえば、炭素数が2~14のアルケンスルホン酸[たとえば、ビニルスルホン酸、(メタ)アリルスルホン酸またはメチルビニルスルホン酸など];スチレンスルホン酸およびスチレンスルホン酸のアルキル(炭素数が2~24)誘導体(たとえば、α-メチルスチレンスルホン酸など);炭素数が5~18のスルホ(ヒドロキシ)アルキル-(メタ)アクリレート[たとえば、スルホプロピル(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロキシプロピルスルホン酸、2-(メタ)アクリロイルオキシエタンスルホン酸または3-(メタ)アクリロイルオキシ-2-ヒドロキシプロパンスルホン酸など];炭素数が5~18のスルホ(ヒドロキシ)アルキル(メタ)アクリルアミド[たとえば、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸または3-(メタ)アクリルアミド-2-ヒドロキシプロパンスルホン酸など];アルキル(炭素数が3~18)アリルスルホコハク酸(たとえば、プロピルアリルスルホコハク酸、ブチルアリルスルホコハク酸または2-エチルヘキシル-アリルスルホコハク酸など);ポリ[n=2~30]オキシアルキレン(たとえば、オキシエチレン、オキシプロピレンまたはオキシブチレンなど。ポリオキシアルキレンは、オキシアルキレンの単独重合体であっても良いし、オキシアルキレンの共重合体であっても良い。ポリオキシアルキレンがオキシアルキレンの共重合体である場合には、ランダム重合体であっても良いしブロック重合体であっても良い。);モノ(メタ)アクリレートの硫酸エステル[たとえば、ポリ(n=5~15)オキシエチレンモノメタクリレート硫酸エステルまたはポリ(n=5~15)オキシプロピレンモノメタクリレート硫酸エステルなど];上記化学式(1)~(3)で表される化合物などが挙げられる。
ホスホノ基と重合性二重結合を有するモノマーとしては、たとえば、(メタ)アクリロイルオキシアルキルリン酸モノエステル(アルキル基の炭素数が1~24)[たとえば、2-ヒドロキシエチル(メタ)アクリロイルホスフェートまたはフェニル-2-アクリロイロキシエチルホスフェートなど];(メタ)アクリロイルオキシアルキルホスホン酸(アルキル基の炭素数が1~24)(たとえば2-アクリロイルオキシエチルホスホン酸など)などが挙げられる。
酸性基を有するポリアミド樹脂としては、ラクタムの開環重合体、アミノカルボン酸の重縮合体およびポリカルボン酸とポリアミンの重縮合体などが挙げられる。
酸性基を有するポリイミド樹脂としては、脂肪酸ポリイミド樹脂(脂肪酸カルボン酸二無水物と脂肪酸ジアミンとから得られる重合体など)および芳香族ポリイミド樹脂(芳香族カルボン酸二無水物と、脂肪族ジアミンまたは芳香族ジアミンと、から得られる重合体など)などが挙げられる。
酸性基を有するフェノール樹脂としては、フェノール類(フェノール、クレゾール、ノニルフェノール、リグニン、レゾルシンおよびカテコールなど)と、アルデヒド類(ホルムアルデヒド、アセトアルデヒドおよびフルフラールなど)との縮合によって得られる重合体などが挙げられる。
酸性基を有するポリカーボネート樹脂としては、ビスフェノール類(ビスフェノールA、ビスフェノールFおよびビスフェノールSなど)と、ホスゲンまたは炭酸ジエステルなどとの縮合によって得られる重合体などが挙げられる。
コア樹脂(b)のpKaは、下記式(3)によって算出できる。
pKa=-log{[H3O+][(b-)]/[(b)]}・・・(3)
式(3)中、[H3O+]はコア樹脂(b)を水中に分散したときの水素イオン濃度(mol/L)を示し、[(b-)]はコア樹脂(b)を水中に分散したときの共役塩基濃度(mol/L)を示し、[(b)]はコア樹脂(b)を水中に分散したときのコア樹脂(b)の濃度(mol/L)を示す。
ここで、Tgは、DSC法により測定しても良いし、フローテスターを用いて測定しても良い。DSC法によりTgを測定する場合には、たとえば、示差走査熱量測定装置(製品名:「DSC20」または「SSC/580」など、いずれもセイコーインスツル(株)製)を用いてASTM D3418-82に規定の方法に準拠してTgを測定することが好ましい。
昇温速度:3.0℃/min
ダイ口径:0.50mm
ダイ長さ:10.0mm。
本実施の形態におけるコア粒子(B)は、コア樹脂(b)を含む。コア粒子(B)は、上記コア樹脂(b)から、上記シェル粒子(A)の製造方法と同様な方法によって、製造することができる。
本実施の形態に係るトナー粒子(C)は、コア・シェル構造をとっており、シェル樹脂(a)を含有するシェル粒子(A)がコア樹脂(b)を含有するコア粒子(B)の表面に付着されていても良いし、シェル粒子(A)がコア粒子(B)の表面に被覆されていても良い。ここで、被覆とはシェル粒子(A)が連続して付着し、被膜のようになっているものをいう。
本明細書では、「体積平均粒径」は、レーザー式粒度分布測定装置(たとえば、製品名:「LA-920」、(株)堀場製作所製、または製品名「マルチサイザーIII」、コールター社製);光学系としてレーザードップラー法を用いる測定装置(製品名:「ELS-800」、大塚電子(株)製);フロー式粒子像分析装置(たとえば、製品名:「FPIA-3000S」、シスメックス社製)などを用いて測定可能である。異なる測定装置で体積平均粒径を測定したときにその測定値に差が生じた場合には、「ELS-800」での測定値を採用する。
本明細書において、平均円形度は、トナー粒子(C)を光学的に検知し、トナー粒子(C)の投影面積と等しい面積を有する円の周囲長を検知されたトナー粒子(C)の周囲長さで除した値である。具体的には、フロー式粒子像分析装置(たとえば、製品名:「FPIA-3000」、シスメックス(株)製)を用いて平均円形度を測定する。詳細には、所定の容器に、あらかじめ不純固形物を除去した水100ml以上150ml以下を入れ、分散剤として界面活性剤(たとえば、製品名:「ドライウエル」、富士写真フイルム(株)製)0.1ml以上0.5ml以下を加え、測定試料0.1g以上9.5g以下程度をさらに加える。このようにして測定試料が分散された懸濁液に対して、超音波分散器(たとえば、製品名:「ウルトラソニッククリーナ モデル VS-150」、ウエルボクリア社製)を用いて、約1分間以上3分間以下、分散処理を行なう。これにより、分散濃度を3000個/μL以上10000個/μL以下にする。そして、分散処理後の試料溶液を用いて、測定試料の形状および粒度分布を測定する。
トナー粒子(C)の粒径均一性、液体現像剤(X)の流動性および液体現像剤(X)の耐熱安定性の観点から、トナー粒子(C)においてシェル粒子(A)によるコア粒子(B)の表面被覆率は、好ましくは50%以上であり、より好ましくは80%以上である。なお、シェル粒子(A)によるコア粒子(B)の表面被覆とは、コア・シェル構造を有するトナー粒子(C)において、シェル粒子(A)がコア粒子(B)の最表面に付着している状態や、シェル粒子(A)がコア粒子(B)の表面近傍に濃縮されている状態を意味する。トナー粒子(C)におけるシェル粒子(A)およびコア粒子(B)の存在状態(在り方)については、シェル樹脂(a)およびコア樹脂(b)の組成やトナー粒子(C)の製造方法によって異なるが、シェル樹脂(a)の一部がコア樹脂(b)中に存在していてもよく、シェル樹脂(a)の一部がコア粒子(B)の表面に存在していてもよい。また、シェル粒子(A)によるコア粒子(B)の表面被覆率は、たとえば、走査型電子顕微鏡(SEM)で得られる像の画像解析から下記式(4)に基づいて求めることができる。そして、下記式(4)で求められる表面被覆率を変えることにより、トナー粒子(C)の形状を制御することができる。
表面被覆率(%)={S1/(S1+S2)}×100・・・(4)
(式(4)中、S1はシェル粒子(A)に覆われているコア粒子(B)の面積を示し、S2はシェル粒子(A)が付着または被覆していないコア粒子(B)の面積を示す。)
なお、本明細書において、表面被覆率は、粒子50個について測定した結果の平均値とする。
本実施の形態におけるトナー粒子(C)は、シェル粒子(A)およびコア粒子(B)の少なくとも一方に、着色剤を含んでいることが好ましく、さらに好ましくは、コア粒子(B)がコア樹脂(b)と着色剤とを含む。また、トナー粒子(C)は、シェル粒子(A)およびコア粒子(B)の少なくとも一方に、着色剤以外の添加剤(たとえば、ワックス、充填剤、帯電防止剤、離型剤、荷電制御剤、紫外線吸収剤、酸化防止剤、ブロッキング防止剤、耐熱安定剤および難燃剤など)をさらに含んでいても良い。
着色剤としては、公知の顔料を特に限定することなく使用することができるが、コスト、耐光性および着色性などの観点から、以下に示す着色剤を使用することが好ましい。なお、色彩構成上、以下に示す着色剤は、通常、ブラック顔料、イエロー顔料、マゼンタ顔料およびシアン顔料に分類され、ブラック以外の色彩(カラー画像)は基本的にイエロー顔料、マゼンタ顔料およびシアン顔料の減法混色により調色される。また、着色剤としては、以下に示す顔料に対して酸性または塩基性などの溶剤を用いて表面処理を行なったものを使用しても良く、たとえば以下に示す顔料に酸性または塩基性のシナジストを併用しても良い。
イエロー顔料としては、たとえば、C.I.(カラーインデックス)Pigment Yellow12、同13、同14、同17、同55、同81、同83、同180および同185などのジスアゾ系イエロー顔料などが挙げられる。
上記コア粒子(B)は、ワックス(c)およびビニルポリマー鎖がワックスにグラフト重合された変性ワックス(d)の少なくとも一方を含有することが好ましい。ただし、上記シェル粒子(A)が、ワックス(c)および変性ワックス(d)の少なくとも一方を含んでいても良い。
[i]:それぞれの融点以上の温度でワックス(c)と変性ワックス(d)とを溶融させて混練させる。
[ii]:ワックス(c)と変性ワックス(d)とを後述の有機溶剤(u)中に溶解または懸濁させた後、冷却晶析もしくは溶剤晶析などにより液中に析出させる、または、スプレードライなどにより気体中に析出させる。
[iii]:ワックス(c)と変性ワックス(d)とを後述の有機溶剤(u)中に溶解または懸濁させた後、分散機などを用いて機械的に湿式で粉砕させる。
絶縁性液体(L)としては、たとえば脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、ハロゲン化炭化水素、ポリシロキサン等を挙げることができる。具体的には、たとえば、ヘキサン、オクタン、イソオクタン、デカン、イソデカン、デカリン、ノナン、ドデカン、イソドデカン、シクロヘキサン、シクロオクタン、シクロデカン、ベンゼン、トルエン、キシレン、メシチレンなどを挙げることができ、より具体的には、たとえば、アイソパーE、アイソパーG、アイソパーH、アイソパーL(アイソパー:エクソン社の商品名)、シェルゾール70、シェルゾール71(シェルゾール:シェルオイル社の商品名)、アムスコOMS、アムスコ460(アムスコ:スピリッツ社の商品名)、IPソルベント2028(出光興産の商品名)、シリコーンオイルおよび流動パラフィンなどが挙げられる。これらを単独で用いても良いし、2種以上を併用しても良い。
ε=Cx/C0・・・(5)
本実施の形態に係る液体現像剤(X)に含まれる溶剤としては、実質的に絶縁性液体(L)のみであることが好ましいが、液体現像剤は、好ましくは1質量%以下、より好ましくは0.5質量%以下の範囲で他の有機溶剤を含有しても良い。
本実施の形態にかかる液体現像剤(X)の製造方法は、特に限定されないが、本実施の形態の製造方法によって、製造した場合は、液体現像剤(X)中のトナー粒子(C)の粒度分布を狭くできるため、特に好ましい。
工程[I]:絶縁性液体(L)中にシェル樹脂(a)を含有するシェル粒子(A)が分散されてなるシェル粒子(A)の分散液(W)を調製する。
工程[II]:有機溶媒(M)中にコア樹脂(b)またはコア樹脂(b)の前駆体(b0)が溶解されてなるコア粒子(B)形成用溶液を調製する。
工程[III]:該シェル粒子(A)の分散液(W)に該コア粒子(B)形成用溶液を分散させることにより、該分散液(W)中に該コア樹脂(b)を含むコア粒子(B)を形成させるとともに、該シェル粒子(A)が該コア粒子(B)の表面に付着または被覆されてなるコア・シェル構造を有するトナー粒子(C)を得る。
工程[IV]:該トナー粒子(C)を得る工程の後で該有機溶媒(M)を留去させることにより、液体現像剤(X)を得る。
工程[V]:着色剤が分散された分散液(着色剤の分散液)を調製する。
<工程[I]>
工程[I]において、分散液(W)は、シェル粒子(A)を製造してから当該シェル粒子(A)を絶縁性液体(L)に分散させて製造することができるが、その方法は特に限定されない。
[1]:シェル樹脂(a)がビニル樹脂である場合は、モノマーを、絶縁性液体(L)を含む溶剤中で分散重合法などにより重合させる。これにより、シェル粒子(A)の分散液(W1)が直接製造される。必要に応じて、絶縁性液体(L)以外の溶剤をシェル粒子(A)の分散液(W)から留去させる。なお、絶縁性液体(L)以外の溶剤を留去するとき、絶縁性液体(L)のうち低沸点成分が留去されても良い。このことは、以下に示す絶縁性液体(L)以外の溶剤を留去させる工程において同様である。
[2]:シェル樹脂(a)がポリエステル樹脂もしくはポリウレタン樹脂などの重付加樹脂または縮合系樹脂である場合は、前駆体(モノマーもしくはオリゴマーなど)または前駆体の溶液を必要であれば適当な分散剤の存在下で絶縁性液体(L)に分散させ、その後、加熱または硬化剤の添加などにより前駆体を硬化させる。必要に応じて、絶縁性液体(L)以外の溶剤を留去させる。
[3]:シェル樹脂(a)がポリエステル樹脂もしくはポリウレタン樹脂などの重付加樹脂または縮合系樹脂である場合は、前駆体(モノマーもしくはオリゴマーなど)または前駆体の溶液(出発物質は、液体であることが好ましいが、加熱により液状化するものであっても良い)中に適当な乳化剤を溶解させた後、貧溶媒となる絶縁性液体(L)を加えて前駆体を再沈殿させる。その後、硬化剤の添加などにより前駆体を硬化させ、必要に応じて絶縁性液体(L)以外の溶剤を留去させる。
[4]:あらかじめ重合反応(付加重合、開環重合、重付加、付加縮合および縮合重合などのいずれの重合反応であってもよい。下記[5]および[6]においても同様。)により得られたシェル樹脂(a)を機械回転式またはジェット式などの微粉砕機を用いて粉砕し、その後分級する。これにより、シェル粒子(A)が得られる。得られたシェル粒子(A)を適当な分散剤の存在下で絶縁性液体(L)に分散させる。
[5]:あらかじめ重合反応により得られたシェル樹脂(a)が溶解された樹脂溶液(この樹脂溶液は、シェル樹脂(a)を溶剤中で重合させることにより得られたものであっても良い)を霧状に噴霧する。これにより、シェル粒子(A)が得られる。得られたシェル粒子(A)を適当な分散剤の存在下で絶縁性液体(L)に分散させる。
[6]:あらかじめ重合反応により得られたシェル樹脂(a)が溶解された樹脂溶液(この樹脂溶液は、シェル樹脂(a)を溶剤中で重合させることにより得られたものであっても良い)に貧溶媒(絶縁性液体(L)であることが好ましい。)を添加する、または、あらかじめシェル樹脂(a)が加熱溶解されて得られた樹脂溶液を冷却することにより、さらには適当な分散剤を存在させることにより、シェル粒子(A)を析出させる。必要に応じて、絶縁性液体(L)以外の溶剤を留去させる。
[7]:ジェットミルなどの公知の乾式粉砕機を用いて、シェル樹脂(a)を乾式で粉砕させる。
[8]:シェル樹脂(a)の粉末を有機溶剤中に分散させ、ビーズミルまたはロールミルなどの公知の湿式分散機を用いて湿式で粉砕させる。
[9]:スプレードライヤーなどを用いてシェル樹脂(a)の溶液を噴霧し、乾燥させる。
[10]:シェル樹脂(a)の溶液に対して貧溶媒の添加または冷却を行なって、シェル樹脂(a)を過飽和させて析出させる。
[11]:シェル樹脂(a)の溶液を水または有機溶剤中に分散させる。
[12]:シェル樹脂(a)の前駆体を水中で乳化重合法、ソープフリー乳化重合法、シード重合法、または、懸濁重合法などにより重合させる。
[13]:シェル樹脂(a)の前駆体を有機溶剤中で分散重合などにより重合させる。
工程[II]において、コア粒子(B)形成用溶液は、コア樹脂(b)またはコア樹脂(b)の前駆体(b0)を有機溶媒(M)に溶解させることで調製される。
[14]:プレポリマー(α)が有する反応性基は、活性水素化合物と反応可能な官能基(α1)であり、硬化剤(β)は、活性水素基含有化合物(β1)である。
[15]:プレポリマー(α)が有する反応性基は、活性水素含有基(α2)であり、硬化剤(β)は、活性水素含有基と反応可能な化合物(β2)である。
[16]:2以上の構成成分のうちの一つを過剰に用いることで、構成成分の官能基を末端に残存させる。
[17]:2以上の構成成分のうちの一つを過剰に用いることで構成成分の官能基を末端に残存させ(プレポリマーが得られる)、残存した官能基と当該官能基と反応可能な官能基とを反応させる、または、残存した官能基と当該官能基と反応可能な官能基含有する化合物とを反応させる。
工程[III]において、コア粒子(B)形成用溶液をシェル粒子(A)の分散液(W)に分散させることによって、絶縁性液体(L)中においてコア樹脂(b)を含むコア粒子(B)が形成されるとともに、該シェル粒子(A)が該コア粒子(B)の表面に付着または被覆されてなるコア・シェル構造を有するトナー粒子(C)が形成される。
[18]:シェル粒子(A)とコア粒子(B)とに極性が逆の電荷を持たせる。このとき、シェル粒子(A)およびコア粒子(B)のそれぞれの電荷を大きくすればするほど、コア粒子(B)に対するシェル粒子(A)の吸着力が強くなり、よって、コア粒子(B)の表面に対するシェル粒子(A)の被覆率が高くなる。
[19]:シェル粒子(A)とコア粒子(B)とに同じ極の電荷を持たせると、コア粒子(B)の表面に対するシェル粒子(A)の被覆率は低くなる。このとき、上記界面活性剤(s)および上記油性ポリマー(t)の少なくとも一方(特にシェル粒子(A)とコア粒子(B)とで極性が逆となるもの)を使用すると、コア粒子(B)に対するシェル粒子(A)の吸着力が強くなり、よって、コア粒子(B)の表面に対するシェル粒子(A)の被覆率が高くなる。
[20]:シェル粒子(A)の分散液(W)とコア粒子(B)形成用溶液(Y)とでSP値差を小さくすると、コア粒子(B)に対するシェル粒子(A)の吸着力が強くなり、よって、コア粒子(B)の表面に対するシェル粒子(A)の被覆率が高くなる。
工程[IV]では、コア粒子(B)形成用溶液に含まれていた有機溶媒(M)を、樹脂粒子分散液(X’)から留去させる。
本実施の形態におけるコア粒子(B)は、コア樹脂(b)と着色剤とを含むことが好ましい。該着色剤は、シェル粒子(A)の分散液(W)およびコア粒子(B)形成用溶液のうちの少なくとも一方に着色剤を分散させておいても良いし、所定の有機溶媒に着色剤を分散させてから当該分散液をシェル粒子(A)の分散液(W)およびコア粒子(B)形成用溶液のうちの少なくとも一方に混合させておいても良い。
[シェル粒子(A)の分散液(W)の製造]
以下の製造例および実施例において、シェル粒子(A)の種類を、たとえば、シェル粒子(A1)、シェル粒子(A2)などと記す。また、シェル粒子(A1)が分散されてなる分散液を、たとえば、分散液(W1)などと記す。
[シェル粒子(A1)の分散液(W1)の製造]
撹拌装置と、加熱冷却装置と、温度計と、滴下ロートと、脱溶剤装置と、窒素導入管と、を備えた反応容器に、THF195質量部を投入した。ガラス製ビーカーに、アクリル酸2-デシルテトラデシル100質量部と、メタクリル酸30質量部と、メタクリル酸ヒドロキシエチルとフェニルイソシアネートの等モル反応物70質量部と、アゾビスメトキシジメチルバレロニトリル0.5質量部と、からなる混合液を投入し、20℃で撹拌、混合してモノマー溶液を調整し、滴下ロートに投入した。上記反応容器の気相部の窒素置換を行なった後、密閉下70℃で1時間かけてモノマー溶液を滴下した。滴下終了から3時間後、アゾビスメトキシジメチルバレロニトリル0.05質量部と、THF5質量部と、を混合したものを添加し、70℃で3時間反応した後室温まで冷却して、シェル粒子(A1)である共重合体の溶液を得た。このシェル粒子(A1)である共重合体の溶液400質量部を撹拌しながらアイソパーL(エクソンモービル社製)600質量部に滴下し、0.039MPaの減圧下に40℃でTHFを留去して、シェル粒子(A1)の分散液(W1)を得た。「LA-920」を用いて測定した分散液(W1)に含まれるシェル粒子(A1)の体積平均粒径は0.12μmであった。
[ポリエステル樹脂の製造]
撹拌装置と、加熱冷却装置と、温度計と、冷却管と、窒素導入管と、を備えた反応容器に、ドデカン二酸286質量部、1、6-ヘキサンジオール190質量部と、縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)1質量部と、を投入し、180℃で窒素気流下において、生成する水を留去しながら8時間反応させた。次いで220℃まで徐々に昇温しながら、窒素気流下に、生成する水を留去しながら4時間反応させ、さらに0.007MPa以上0.026MPa以下の減圧下に1時間反応させ、ポリエステル樹脂を得た。このようにして得たポリエステル樹脂の融点は68℃、Mnは4900、Mwは10000であった。
撹拌装置と、加熱冷却装置と、温度計と、滴下ロートと、脱溶剤装置と、窒素導入管と、を備えた反応容器に、THF195質量部を投入した。ガラス製ビーカーに、アクリル酸2-デシルテトラデシル80質量部、メタクリル酸メチル10質量部、メタクリル酸10質量部、イソシアネート基含有モノマー(製品名:カレンズMOI、昭和電工(株)製)と上記で得られたポリエステル樹脂の等モル反応物10質量部と、アゾビスメトキシジメチルバレロニトリル0.5質量部と、からなる混合液を投入し、20℃で撹拌、混合してモノマー溶液を調整し、滴下ロートに投入した。上記反応容器の気相部の窒素置換を行なった後、密閉下70℃で1時間かけてモノマー溶液を滴下した。滴下終了から3時間後、アゾビスメトキシジメチルバレロニトリル0.05質量部と、THF5質量部と、を混合したものを添加し、70℃で3時間反応した後室温まで冷却して、シェル粒子(A2)である共重合体の溶液を得た。このシェル粒子(A2)である共重合体の溶液400質量部を、撹拌しながらアイソパーL(エクソンモービル社製)600質量部に滴下し、0.039MPaの減圧下に40℃でTHFを留去して、シェル粒子(A2)の分散液(W2)を得た。「LA-920」を用いて測定した分散液(W2)に含まれるシェル粒子(A2)の体積平均粒径は0.13μmであった。
[コア樹脂(b)のコア粒子(B)形成用溶液の製造]
以下の製造例および実施例において、コア樹脂(b)の種類を、たとえば、コア樹脂(b1)、コア樹脂(b2)などと記す。そして、コア樹脂(b1)を含むコア粒子を、たとえば、コア粒子(B1)などと記す。また、コア樹脂(b1)またはその前駆体が溶解されてなるコア粒子(B)形成用溶液を、たとえば、コア粒子(B1)形成用溶液などと記す。
[コア樹脂(b1)のコア粒子(B1)形成用溶液の製造]
撹拌装置と、加熱冷却装置と、温度計と、窒素導入管と、を備えた反応容器に、エチレングリコール746質量部(6.3モル部)と、セバシン酸288質量部(1.7モル部)と、縮合触媒としてテトラブトキシチタネート3質量部と、を投入した。常圧下、230℃で6時間重縮合した後、系内を減圧して、酸価が1.0になった時点で常圧に戻し、180℃に冷却した。180℃で無水フタル酸28質量部(0.1モル部)を投入し、同温度で1時間反応させて、ポリエステル樹脂であるコア樹脂(b1)を得た。このようにして得られたコア樹脂(b1)は、末端に酸性基であるカルボキシル基を有しており、pKaは2.94、Tgは72℃、Mnは2400、水酸基価は40、酸価は15であった。次いで、ビーカーにコア樹脂(b1)1000質量部と、アセトン1000質量部と、を投入し、撹拌して均一に溶解させ、コア粒子(B1)形成用溶液を得た。
[コア樹脂(b2)のコア粒子(B2)形成用溶液の製造]
撹拌装置と、加熱冷却装置と、温度計と、脱溶剤装置と、窒素導入管と、を備えた反応容器に、1,2-プロピレングリコール(以下PGとも記す)701質量部(18.8モル部)と、テレフタル酸ジメチルエステル716質量部(7.5モル部)と、アジピン酸180質量部(2.5モル部)と、縮合触媒としてテトラブトキシチタネート3質量部と、を投入した。180℃、窒素気流下において、メタノールを留去しながら8時間反応させた後、230℃まで徐々に昇温しながら、窒素気流下において、PGおよび水を留去しながら4時間反応させた。さらに0.007MPa以上0.026MPa以下の減圧下で反応させて、軟化点が150℃になった時点で取り出し、ポリエステル樹脂であるコア樹脂(b2)を得た。このとき、回収されたPGは316質量部(8.5モル部)であった。このようにして得られたコア樹脂(b2)は、末端に酸性基を有しておらず、Tgは64℃、Mnは8800、水酸基価は13、酸価は0.2であった。次いで、ビーカーにコア樹脂(b2)1000質量部と、アセトン1000質量部と、を投入し、撹拌して均一に溶解させ、コア粒子(B2)形成用溶液を得た。
[コア樹脂(b3)のコア粒子(B3)形成用溶液の製造]
撹拌装置と、加熱冷却装置と、温度計と、窒素導入管と、を備えた反応容器に、エチレングリコール746質量部(6.3モル部)と、セバシン酸288質量部(1.7モル部)と、縮合触媒としてテトラブトキシチタネート3質量部と、を投入した。常圧下、230℃で6時間重縮合した後、系内を減圧して、酸価が1.0になった時点で常圧に戻し、180℃に冷却した。180℃で無水トリメリット酸28質量部(0.1モル部)を投入し、同温度で1時間反応させて、ポリエステル樹脂であるコア樹脂(b3)を得た。このようにして得られたコア樹脂(b3)は、末端に酸性基であるカルボキシル基を有しており、pKaは2.52、Tgは72℃、Mnは2400、水酸基価は40、酸価は15であった。次いで、ビーカーにコア樹脂(b3)1000質量部と、アセトン1000質量部と、を投入し、撹拌して均一に溶解させ、コア粒子(B3)形成用溶液を得た。
[コア樹脂(b4)のコア粒子(B4)形成用溶液の製造]
撹拌装置と、加熱冷却装置と、温度計と、窒素導入管と、を備えた反応容器に、ビスフェノールAのPO2モル付加物746質量部(2.1モル部)と、テレフタル酸288質量部(1.7モル部)と、縮合触媒としてテトラブトキシチタネート3質量部と、を投入した。常圧下、230℃で6時間重縮合した後、系内を減圧して、酸価が1.0になった時点で常圧に戻し、180℃に冷却した。180℃で無水トリメリット酸28質量部(0.1モル部)を投入し、同温度で1時間反応させて、ポリエステル樹脂であるコア樹脂(b4)を得た。このようにして得たコア樹脂(b4)は、末端に酸性基であるカルボキシル基を有しており、pKaは2.52、Tgは72℃、Mnは2400、水酸基価は40、酸価は15であった。次いで、ビーカーにコア樹脂(b4)1000質量部と、アセトン1000質量部と、を投入し、撹拌して均一に溶解させ、コア粒子(B4)形成用溶液を得た。
[コア樹脂(b5)のコア粒子(B5)形成用溶液の製造]
撹拌装置と、加熱冷却装置と、温度計と、窒素導入管と、を備えた反応容器に、ビスフェノールAのPO2モル付加物746質量部(2.1モル部)と、テレフタル酸288質量部(1.7モル部)と、縮合触媒としてテトラブトキシチタネート3質量部と、を投入した。常圧下、230℃で6時間重縮合した後、系内を減圧して、酸価が1.0になった時点で常圧に戻し、180℃に冷却した。180℃でメチルヘキサヒドロ無水フタル酸60質量部(0.1モル部)を投入し、同温度で1時間反応させて、ポリエステル樹脂であるコア樹脂(b5)を得た。このようにして得たコア樹脂(b5)は、末端に酸性基であるカルボキシル基を有しており、pKaは5.61、Tgは72℃、Mnは2400、水酸基価は51、酸価は31であった。次いで、ビーカーにコア樹脂(b5)1000質量部と、アセトン1000質量部と、を投入し、撹拌して均一に溶解させ、コア粒子(B5)形成用溶液を得た。
[コア樹脂(b6)のコア粒子(B6)形成用溶液の製造]
撹拌装置と、加熱冷却装置と、温度計と、窒素導入管と、を備えた反応容器に、エチレングリコール746質量部(6.3モル部)と、セバシン酸288質量部(1.7モル部)と、縮合触媒としてテトラブトキシチタネート3質量部と、を投入した。常圧下、230℃で6時間重縮合した後、系内を減圧して、酸価が1.0になった時点で常圧に戻し、180℃に冷却した。180℃でカテコール28質量部(0.1モル部)を投入し、同温度で1時間反応させて、ポリエステル樹脂であるコア樹脂(b6)を得た。このようにして得たコア樹脂(b6)は、末端に酸性基であるカルボキシル基を有しており、pKaは9.50、Tgは72℃、Mnは2,400、水酸基価は40、酸価は8であった。次いで、ビーカーにコア樹脂(b6)1000質量部と、アセトン1000質量部と、を投入し、撹拌して均一に溶解させ、コア粒子(B6)形成用溶液を得た。
[ウレタンプレポリマーの製造]
撹拌装置と、加熱冷却装置と、脱水装置と、温度計と、を備えた反応容器に、水酸基価が56のポリカプロラクトンジオール(製品名:「プラクセルL220AL」、ダイセル化学工業(株)製)2000質量部を投入し、110℃に加熱して0.026MPaの減圧下で1時間脱水を行なった。次いでIPDI457質量部を投入し、110℃で10時間反応を行ない、末端にイソシアネート基を有するウレタンプレポリマーを得た。ウレタンプレポリマーのNCO含量は3.6質量%であった。
[硬化剤の製造]
撹拌装置と、加熱冷却装置と、温度計と、を備えた反応容器に、エチレンジアミン50質量部と、メチルイソブチルケトン300質量部と、を投入し、50℃で5時間反応を行ない、ケチミン化合物である硬化剤を得た。
[着色剤分散液の製造]
ビーカーに、銅フタロシアニン25質量部、着色剤分散剤(製品名:「アジスパーPB-821」、味の素ファインテクノ(株)製)4質量部と、アセトン75質量部と、を投入し、撹拌して均一に分散させた後、ビーズミルによって銅フタロシアニンを微分散して、着色剤分散液を得た。着色剤分散液に含まれる着色剤の体積平均粒径は0.2μmであった。
[コア樹脂(b7)のコア粒子(B7)形成用溶液の製造]
撹拌装置、加熱冷却装置および温度計を備えた反応容器に、セバシン酸、アジピン酸およびエチレングリコール(モル比0.8:0.2:1)から得られたポリエステル(Mn:5000)937質量部およびアセトン300質量部を投入し、撹拌して均一に溶解した。この溶液にイソホロンジイソシアネート(IPDI)63質量部を投入し、80℃で6時間反応させた。NCO価が0になったところで、無水トリメリット酸28質量部(0.1モル部)を投入し、180℃で1時間反応させて、ウレタン樹脂であるコア樹脂(b7)を得た。コア樹脂(b7)は、Mnが25000であり、ウレタン基濃度が2.00であった。このようにして得たコア樹脂(b7)は、末端に酸性基であるカルボキシル基を有しており、pKaは6.20であった。次いで、ビーカーにコア樹脂(b7)1300質量部と、アセトン700質量部を投入し、撹拌して均一に溶解させ、コア粒子(B7)形成用溶液を得た。なお、「ウレタン基濃度(質量%)」とは、樹脂に含まれるウレタン基の質量を、同樹脂の質量で除した値に100を乗じた値を意味している。
ビーカーに、製造例2-1で得たコア粒子(B1)形成用溶液45質量部と、製造例4で得た着色剤分散液15質量部と、を投入し、25℃でTKオートホモミキサー(製品名、特殊機化工業(株)製)を用いて8000rpmで撹拌し、均一に分散させてコア粒子(B1)形成用溶液と着色剤分散液との混合溶液を得た。
溶解度(質量%)=(Y/y)×100・・・(6)
上記のようにして測定した結果、液体現像剤(X-1)中のシェル樹脂(a)の25℃における(L)への溶解度は3質量%であった。結果を表1に示す。
表1に示したコア粒子(B)形成用溶液、ウレタンプレポリマー、硬化剤、着色剤分散液、流動パラフィン、および分散液を使用する以外は実施例1と同様にして、本実施の形態の液体現像剤(X-2)~(X-5)を得た。
ビーカーに、製造例1-1でシェル粒子(A1)の分散液(W1)を製造する過程で得られたシェル粒子(A1)である共重合体の溶液8質量部と、コア粒子(B1)形成用溶液45質量部と、製造例4で得た着色剤分散液15質量部とを投入し、25℃でTKオートホモミキサー(製品名、特殊機化工業(株)製)を用いて8000rpmで撹拌し、均一に分散させてシェル粒子(A1)である共重合体の溶液とコア粒子(B1)形成用溶液と着色剤分散液との混合溶液を得た。
表1に示したコア粒子(B)形成用溶液、着色剤分散液、流動パラフィン、および分散液を使用する以外は実施例1と同様にして、比較例の液体現像剤(Z-1)~(Z-4)を得た。
実施例1~6、および比較例1~4で得られた液体現像剤(X-1)~(X-6)、および(Z-1)~(Z-4)を、それぞれを流動パラフィンに希釈して、「LA-920」を用いてトナー粒子(C)の体積平均粒径および体積分布の変動係数を測定した。また、トナー粒子(C)におけるシェル粒子(A)の状態を以下の方法で観察した。そして、トナー粒子(C)におけるコア粒子(B)のシェル粒子(A)による表面被覆率を上記の方法で測定した。さらに、液体現像剤について以下の方法で定着性、耐熱安定性を評価した。結果を表1に示す。
トナー粒子(C)50個の表面を走査型電子顕微鏡(SEM)で観察し、シェル粒子(A)がコア粒子(B)の表面に付着しているか、または被膜化しているかを判定した。
図1に、本実施の形態の液体現像剤の定着性評価に用いる電子写真方式の画像形成装置の概略概念図を示す。画像形成装置1において、液体現像剤2は、供給ローラ3により、汲み上げられ、規制ブレード4によって、擦りきられて、供給ローラ3上で、所定厚みの液体現像剤2の薄層が形成される。なお、アニロックスローラの場合は、ローラの彫り込みに液体現像剤が充填されており、規制ローラによって規定量が計量される。次いで、供給ローラ3から現像ローラ5上に液体現像剤2の薄層が移動し、現像ローラ5と感光体6とのニップによって、トナー粒子により感光体6上にトナー画像が形成される。その後、感光体6とバックアップローラ10とのニップによって記録材11上にトナー画像が転写され、ヒートローラ12によって画像が定着される。なお、画像形成装置1は、上記した以外にも、現像ローラクリーニングブレード8、荷電装置9を備えている。
図1に示した画像形成装置を用いて、実施例および比較例の各液体現像剤のベタパターン(10cm×10cm、付着量:2mg/m2)を128g/cm2のコート紙(製品名:「OKトップコートプラス」、王子製紙社製)上に形成し、ヒートローラで定着させた(180℃×ニップ時間30msec)。
定着強度B:画像濃度残存率が80%以上90%未満
定着強度C:画像濃度残存率が80%未満
表1中、定着強度Aが最も定着性に優れ、次いで定着強度Bが優れ、定着強度Cは定着性が最も劣ることを示している。
また、同時にローラ汚れ(高温オフセット)を測定した。高温オフセットは、画像形成装置にコート紙を通紙して、コート紙上に画像を形成した直後に、白紙を通し、白紙の汚れを目視で評価した。白紙にトナー汚れが確認されたものを「B」、確認されなかったものを「A」とした。結果を表1の保存前オフセットの欄に示す。
<保存特性評価>
さらに、実施例および比較例の各液体現像剤を、温度50℃/湿度50%環境下で7日間静置保存した後、上記と同様にして、定着強度および高温オフセットの評価を行なった。結果を表1の保存後定着強度および保存後オフセットの欄にそれぞれ示す。
Claims (14)
- トナー粒子が絶縁性液体に分散されてなる液体現像剤であって、
前記トナー粒子は、シェル樹脂を含むシェル粒子がコア樹脂を含むコア粒子の表面に付着または被覆されてなるコア・シェル構造を有し、
前記コア樹脂は、酸性基を有し、かつ酸解離定数が2.90以上8.00以下である、液体現像剤。 - 前記トナー粒子の体積平均粒径は、0.01μm以上100μm以下であり、
前記トナー粒子の体積分布の変動係数は、1%以上100%以下である、請求項1に記載の液体現像剤。 - 前記トナー粒子の円形度の平均値は、0.92以上1.0以下である、請求項1または2に記載の液体現像剤。
- 前記シェル樹脂は、ビニル樹脂、ポリエステル樹脂、ポリウレタン樹脂およびエポキシ樹脂からなる群より選ばれる少なくとも一種である、請求項1~3のいずれか1項に記載の液体現像剤。
- 前記シェル樹脂は、ビニル樹脂を含み、重合性二重結合を有するモノマー由来の構成単位を含む単独重合体または共重合体である、請求項1~4のいずれか1項に記載の液体現像剤。
- 前記重合性二重結合を有するモノマーは、分子鎖を有するビニルモノマーである、請求項5に記載の液体現像剤(X)。
- 前記ビニルモノマーは、炭素数が12~27の直鎖状炭化水素鎖を有するビニルモノマー、炭素数が12~27の分岐状炭化水素鎖を有するビニルモノマー、炭素数が4~20のフルオロアルキル鎖を有するビニルモノマーおよびポリジメチルシロキサン鎖を有するビニルモノマーからなる群より選ばれる少なくとも1種である、請求項6に記載の液体現像剤。
- 前記コア樹脂は、ビニル樹脂、ポリエステル樹脂、ポリウレタン樹脂およびエポキシ樹脂からなる群より選ばれる少なくとも一種である、請求項1~7のいずれか1項に記載の液体現像剤。
- 前記コア粒子は、ワックスおよびビニルポリマー鎖がワックスにグラフト重合された変性ワックスの少なくとも一方を含有する、請求項1~8のいずれか1項に記載の液体現像剤。
- 前記トナー粒子において、前記シェル粒子による前記コア粒子の表面被覆率は、50%以上である、請求項1~9のいずれか1項に記載の液体現像剤。
- 前記液体現像剤は、塗料、電子写真用液体現像剤、静電記録用液体現像剤、インクジェットプリンタ用油性インクまたは電子ペーパー用インクである、請求項1~10のいずれか1項に記載の液体現像剤。
- 前記コア粒子は、前記コア樹脂と着色剤とを含む、請求項1~11のいずれか1項に記載の液体現像剤。
- 絶縁性液体中にシェル樹脂を含有するシェル粒子が分散されてなる前記シェル粒子の分散液を調製する工程と、
有機溶媒中にコア樹脂または前記コア樹脂の前駆体が溶解されてなるコア粒子形成用溶液を調製する工程と、
前記シェル粒子の前記分散液に前記コア粒子形成用溶液を分散させることにより、前記分散液中に前記コア樹脂を含むコア粒子を形成させるとともに、前記シェル粒子が前記コア粒子の表面に付着または被覆されてなるコア・シェル構造を有するトナー粒子を得る工程と、
前記トナー粒子を得る工程の後で前記有機溶媒を留去させることにより、液体現像剤を得る工程と、を備え、
前記コア樹脂は酸性基を有し、かつ酸解離定数が2.90以上8.00以下である、液体現像剤の製造方法。 - 前記有機溶媒の溶解度パラメータは、8.5~20(cal/cm3)1/2である、請求項13に記載の液体現像剤の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/431,004 US10007207B2 (en) | 2012-09-26 | 2013-09-11 | Liquid developer and method for manufacturing the same |
JP2014538364A JPWO2014050559A1 (ja) | 2012-09-26 | 2013-09-11 | 液体現像剤およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-212411 | 2012-09-26 | ||
JP2012212411 | 2012-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014050559A1 true WO2014050559A1 (ja) | 2014-04-03 |
Family
ID=50387966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/074529 WO2014050559A1 (ja) | 2012-09-26 | 2013-09-11 | 液体現像剤およびその製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10007207B2 (ja) |
JP (1) | JPWO2014050559A1 (ja) |
WO (1) | WO2014050559A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016151745A (ja) * | 2015-02-19 | 2016-08-22 | コニカミノルタ株式会社 | 液体現像剤 |
JP2016161631A (ja) * | 2015-02-27 | 2016-09-05 | 三洋化成工業株式会社 | 液体現像剤 |
JP2019066815A (ja) * | 2017-09-28 | 2019-04-25 | キヤノン株式会社 | 液体現像剤及び該液体現像剤の製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3098659A1 (en) * | 2015-05-27 | 2016-11-30 | Canon Kabushiki Kaisha | Curable liquid developer and image-forming method using curable liquid developer |
CN110651230A (zh) * | 2017-06-28 | 2020-01-03 | 惠普印迪戈股份公司 | 液体静电墨水显影器组装件 |
JP2021165835A (ja) * | 2020-04-06 | 2021-10-14 | キヤノン株式会社 | トナー及びトナーの製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59213428A (ja) * | 1983-05-17 | 1984-12-03 | Ricoh Co Ltd | 非水溶媒系分散液 |
JPH01285955A (ja) * | 1988-05-13 | 1989-11-16 | Fuji Photo Film Co Ltd | 電子写真用液体現像剤 |
JPH08220813A (ja) * | 1995-02-16 | 1996-08-30 | Minolta Co Ltd | 電子写真用液体現像剤 |
JPH09218540A (ja) * | 1996-02-09 | 1997-08-19 | Nippon Paint Co Ltd | 液体現像剤 |
JP2009096994A (ja) * | 2007-09-28 | 2009-05-07 | Sanyo Chem Ind Ltd | 非水系樹脂分散液 |
JP2009175670A (ja) * | 2007-12-27 | 2009-08-06 | Konica Minolta Business Technologies Inc | 湿式現像剤 |
WO2011129058A1 (ja) * | 2010-04-16 | 2011-10-20 | 三洋化成工業株式会社 | 非水系樹脂粒子分散液 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0752311B2 (ja) * | 1985-05-13 | 1995-06-05 | 株式会社リコー | 静電写真用液体現像剤 |
JPH0895297A (ja) | 1993-12-24 | 1996-04-12 | Mitsui Toatsu Chem Inc | 電子写真トナー用樹脂組成物 |
US5843613A (en) | 1995-02-16 | 1998-12-01 | Minolta Co., Ltd. | Liquid developer |
JP2002244335A (ja) | 2001-02-21 | 2002-08-30 | Ricoh Co Ltd | 電子写真用現像剤及び画像形成方法 |
EP1959306A1 (en) | 2007-02-16 | 2008-08-20 | Seiko Epson Corporation | Liquid developer and image forming apparatus |
JP2008225442A (ja) | 2007-02-16 | 2008-09-25 | Seiko Epson Corp | 液体現像剤および画像形成装置 |
JP2008203568A (ja) * | 2007-02-20 | 2008-09-04 | Seiko Epson Corp | 液体現像剤および画像形成装置 |
JP5168035B2 (ja) * | 2008-04-02 | 2013-03-21 | コニカミノルタビジネステクノロジーズ株式会社 | 湿式現像剤 |
-
2013
- 2013-09-11 US US14/431,004 patent/US10007207B2/en active Active
- 2013-09-11 JP JP2014538364A patent/JPWO2014050559A1/ja active Pending
- 2013-09-11 WO PCT/JP2013/074529 patent/WO2014050559A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59213428A (ja) * | 1983-05-17 | 1984-12-03 | Ricoh Co Ltd | 非水溶媒系分散液 |
JPH01285955A (ja) * | 1988-05-13 | 1989-11-16 | Fuji Photo Film Co Ltd | 電子写真用液体現像剤 |
JPH08220813A (ja) * | 1995-02-16 | 1996-08-30 | Minolta Co Ltd | 電子写真用液体現像剤 |
JPH09218540A (ja) * | 1996-02-09 | 1997-08-19 | Nippon Paint Co Ltd | 液体現像剤 |
JP2009096994A (ja) * | 2007-09-28 | 2009-05-07 | Sanyo Chem Ind Ltd | 非水系樹脂分散液 |
JP2009175670A (ja) * | 2007-12-27 | 2009-08-06 | Konica Minolta Business Technologies Inc | 湿式現像剤 |
WO2011129058A1 (ja) * | 2010-04-16 | 2011-10-20 | 三洋化成工業株式会社 | 非水系樹脂粒子分散液 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016151745A (ja) * | 2015-02-19 | 2016-08-22 | コニカミノルタ株式会社 | 液体現像剤 |
JP2016161631A (ja) * | 2015-02-27 | 2016-09-05 | 三洋化成工業株式会社 | 液体現像剤 |
JP2019066815A (ja) * | 2017-09-28 | 2019-04-25 | キヤノン株式会社 | 液体現像剤及び該液体現像剤の製造方法 |
JP7146406B2 (ja) | 2017-09-28 | 2022-10-04 | キヤノン株式会社 | 液体現像剤及び該液体現像剤の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20150277257A1 (en) | 2015-10-01 |
JPWO2014050559A1 (ja) | 2016-08-22 |
US10007207B2 (en) | 2018-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6291708B2 (ja) | 液体現像剤およびその製造方法 | |
JP5663007B2 (ja) | 非水系樹脂粒子分散液 | |
JP6085929B2 (ja) | 液体現像剤およびその製造方法 | |
JP5048619B2 (ja) | 非水系樹脂分散液 | |
JP2012107229A (ja) | 樹脂粒子分散液の製造方法 | |
WO2014050559A1 (ja) | 液体現像剤およびその製造方法 | |
JP6121855B2 (ja) | 樹脂粒子の製造方法 | |
JP6268694B2 (ja) | 液体現像剤およびその製造方法 | |
JP2014163985A (ja) | 液体現像剤 | |
JP5101208B2 (ja) | 樹脂粒子および樹脂粒子の製造方法 | |
JP4964834B2 (ja) | 樹脂粒子 | |
JP2014066885A (ja) | 液体現像剤 | |
JP2013155210A (ja) | コアシェル型樹脂粒子及びその製造方法 | |
JP2014066888A (ja) | 液体現像剤およびその製造方法 | |
JP2012140564A (ja) | 樹脂粒子分散液 | |
JP6359795B2 (ja) | 液体現像剤 | |
JP2014066891A (ja) | 液体現像剤の製造方法 | |
JP2014167541A (ja) | 液体現像剤 | |
JP2016173473A (ja) | 液体現像剤の製造方法および液体現像剤 | |
JP2014163986A (ja) | 液体現像剤 | |
JP2012113167A (ja) | 電子写真用液体現像液 | |
JP2013151588A (ja) | 樹脂粒子の製造方法 | |
JP2012123217A (ja) | 電子写真用液体現像液 | |
JP2016176991A (ja) | 液体現像剤 | |
JP2014167540A (ja) | 液体現像剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13842688 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014538364 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14431004 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13842688 Country of ref document: EP Kind code of ref document: A1 |