WO2009104497A1 - 車両の後輪操舵装置 - Google Patents
車両の後輪操舵装置 Download PDFInfo
- Publication number
- WO2009104497A1 WO2009104497A1 PCT/JP2009/052207 JP2009052207W WO2009104497A1 WO 2009104497 A1 WO2009104497 A1 WO 2009104497A1 JP 2009052207 W JP2009052207 W JP 2009052207W WO 2009104497 A1 WO2009104497 A1 WO 2009104497A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steering
- angle
- toe
- vehicle
- wheel
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D7/00—Steering linkage; Stub axles or their mountings
- B62D7/06—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
- B62D7/14—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
- B62D7/15—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
- B62D7/159—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G7/00—Pivoted suspension arms; Accessories thereof
- B60G7/006—Attaching arms to sprung or unsprung part of vehicle, characterised by comprising attachment means controlled by an external actuator, e.g. a fluid or electrical motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D7/00—Steering linkage; Stub axles or their mountings
- B62D7/06—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
- B62D7/14—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
- B62D7/146—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by comprising means for steering by acting on the suspension system, e.g. on the mountings of the suspension arms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2200/00—Indexing codes relating to suspension types
- B60G2200/40—Indexing codes relating to the wheels in the suspensions
- B60G2200/44—Indexing codes relating to the wheels in the suspensions steerable
Definitions
- the present invention relates to a vehicle rear wheel steering apparatus that controls a toe angle of a rear wheel of a vehicle according to a steering angle, a steering angular velocity, and the like of a steering wheel.
- the rear (rear wheel) is directed outward (toe-out) or inward (toe-in) with respect to the vehicle traveling direction in a top view depending on the driving state.
- the vehicle's motion characteristics are improved by controlling and following the driving operation. For example, in order to eliminate the camber angle, both rears are toe-in to improve straightness, and both rears are toe-in at the time of braking to promote vehicle stability. In such rear toe control, it is possible to improve vehicle motion characteristics by steering the rear steering angle in accordance with the steering angle and steering angular speed of the steering wheel operated by the driver.
- Patent Document 1 describes a 4WS (Wheels Steering) technique in which a dead zone is provided.
- 4WS Wind Steering
- the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a rear wheel steering device for a vehicle that is not affected by a dead zone near the steering angle of the steering wheel and that does not cause a sense of incongruity when driving straight or when turning a steering wheel. To do.
- the vehicle rear wheel steering device is a vehicle rear wheel steering device that can steer the rear wheel according to the steering angle of the steering wheel, and in a region where the steering angle is small.
- the reduction control is performed even when the steering angle is in the region where the steering angle is small. This is not performed, or the reduction range of the rear wheel steering control amount by the reduction control is reduced.
- the vehicle rear wheel steering apparatus according to claim 2 of the present invention is the vehicle rear wheel steering apparatus according to claim 1, in which the steering of the rear wheel is reduced as the steering angle becomes smaller in the reduction control. Control is performed so as to limit the rate of change in which the control amount decreases.
- a vehicle rear wheel steering apparatus according to claim 3 of the present invention is the vehicle rear wheel steering apparatus according to claim 1 or 2, wherein the left and right rear wheels are independent of each other. It can be controlled.
- the vehicle rear wheel steering apparatus according to claim 4 of the present invention is the vehicle rear wheel steering apparatus according to claim 3, wherein the left and right rear wheels each have an actuator.
- the reduction control is performed to control the steering control amount of the rear wheel to be smaller than the other regions of the steering angle.
- the reduction control is not performed, or the reduction range of the rear wheel steering control amount by the reduction control is reduced.
- the vehicle rear wheel steering apparatus related to claim 2 of the present invention, in the vehicle rear wheel steering apparatus according to claim 1, in the reduction control, as the steering angle becomes smaller, the rear wheel Since the control is performed so as to limit the rate of change in which the steering control amount decreases, a large change in the steering control amount of the rear wheels is prevented, and it is possible to prevent a sense of incongruity caused by a sudden change in the steering control amount of the rear wheels.
- the left and right rear wheels can be controlled independently, and therefore, the first and second claims are described above. Control of the rear wheel during cornering, etc., and control of the rear wheel can be performed flexibly and diversely.
- the left and right rear wheels each have an actuator. Therefore, the left and right rear wheels can be controlled independently via each actuator.
- FIG. 1 is an overall conceptual view of a vehicle provided with a steering system according to an embodiment of the present invention as viewed from above. It is a lineblock diagram of the electric power steering device concerning an embodiment. It is a top view including a partial cross section of the toe angle changing device on the left rear wheel side according to the embodiment. It is a schematic longitudinal cross-sectional view which shows the structure of the actuator of the toe angle change apparatus which concerns on embodiment. It is a schematic control function block diagram of steering control ECU and toe angle change control ECU of a steering system concerning an embodiment.
- FIG. It is a block block diagram of the control function of the toe angle change control of the toe angle change device according to the embodiment.
- FIG. 1 is an overall conceptual view of a top view of an automobile 1 that is a four-wheeled vehicle including a steering system 100 according to an embodiment of the present invention
- FIG. 2 is an electric power steering device 110 provided in the automobile 1 of the embodiment.
- the vehicle 1 including the steering system 100 according to the embodiment has the toe angles ⁇ TL and ⁇ TR of the rear wheels 2R and 2L for the purpose of improving stability during driving, driving performance, and the like. It has a function to control.
- the rear wheels 2R, 2L are toe-in to improve the straight running stability of the vehicle, and when the vehicle is accelerated, the rear wheels 2R, 2L are straight with respect to the traveling direction without controlling toe-in or toe-out. Acceleration is improved. Further, at the time of low speed cornering, any one of the rear wheels 2R, 2L on the inside of the cornering is toe-out, and any one of the rear wheels 2R, 2L on the outside of the cornering is toe-in to enhance the cornering performance of the vehicle.
- the steering system 100 of the automobile 1 controls the steering of the front wheels 1R, 1L and the rear wheels 2R, 2L, and the electric power steering device 110 (see FIG. 2) having a function of assisting the driver's operation of the steering handle 3.
- a steering control device hereinafter referred to as a steering control ECU (Electronic Control Unit) 130 and a change control device (hereinafter referred to as a toe angle changing control ECU) for changing and controlling the toe angles ⁇ TR and ⁇ TL of the rear wheels 2R and 2L.
- the rear wheels 2R by controlling the toe angle change control ECU 37, the toe angle changers 120L to the toe angle change each 2L, 120R and the vehicle speed sensor S V of various detecting the speed of the vehicle (vehicle speed) And a sensor.
- the electric power steering device 110 assists the driver's operation of the steering handle 3 for steering the front wheels 1 ⁇ / b> L and 1 ⁇ / b> R using the driving force of the electric motor 4.
- the steering control ECU 130 controls the electric power steering device 110 to control the steering of the front wheels 1R, 1L.
- the steering control ECU 130 controls the toe angle changing devices 120L and 120R according to the vehicle speed including braking and acceleration, the steering angle ⁇ H of the steering handle 3, the steering angular velocity ⁇ H, etc. 2R and 2L toe angles ⁇ TR and ⁇ TL are controlled.
- the toe angle changing devices 120L and 120R are used to independently change the toe angles ⁇ TR and ⁇ TL of the rear wheels 2L and 2R according to the vehicle speed, the steering angle ⁇ H of the steering handle 3, the steering angular velocity ⁇ H, etc. 30 to change.
- the steering system 100 includes wheel speed sensors 141a and 141b that detect the rotational speeds of the front wheels 1R and 1L, and wheel speed sensors 141c and 141d that detect the rotational speeds of the rear wheels 2R and 2L, respectively, and the left and right wheels 1L and 2L.
- a road surface state difference detection unit 142 that detects a road surface state difference in contact with each of 1R and 2R, and a toe angle correction that corrects and controls the toe angles ⁇ TR and ⁇ TL of the rear wheels 2R and 2L according to the road surface state difference And a control unit 143.
- the wheel speed sensors 141a, 141b, 141c, 141d detect the respective rotational speeds of the front wheels 1R, 1L and the rear wheels 2R, 2L, generate wheel speed signals, and provide them to the road surface state difference detection unit 142.
- the road surface state difference detection unit 142 generates a road surface state difference signal to the toe angle correction control unit 143 when the difference in road surface state (road surface mu) between the left and right wheels 1L, 2L, 1R, 2R is equal to or greater than a predetermined value.
- the toe angle correction control unit 143 generates a toe angle correction signal based on the road surface state difference signal and gives it to the toe angle change control ECU 37 that controls the toe angle changing devices 120L and 120R.
- the toe angle correction control unit 143 generates a toe angle correction control signal in which the rear wheel having the larger friction coefficient on the road surface is toe-in when the road surface state difference detection unit 142 detects a difference in road surface state. Then, it is given to any target current calculation unit 81a (see FIG. 8) of the toe angle change control ECU 37. Then, when receiving the toe angle correction control signal from the toe angle correction control unit 143, the target current calculation unit 81a calculates the rear wheel having the larger road surface friction coefficient as the toe-in. Based on the calculated value of the target current calculation unit 81a, the toe angle change control ECU 37 (see FIG. 1) controls the rear wheels 2R and 2L having a larger road surface friction coefficient to be toe-in.
- a road surface state difference detection unit 142, a yaw rate sensor S Y and a transverse direction to detect the yaw rate of the speed of rotation motion of the center of gravity around the car 1 (the plane of the vertical direction in FIG. 1) receives a signal from the lateral acceleration sensor S GS for detecting the acceleration, the difference between the wheel 1L, 2L, 1R, road surface condition of 2R of the left and right by turning the outside or the inside of the turn of the determination by the direction of the yaw rate and the lateral acceleration (the road surface mu) May be detected.
- the toe angle correction control unit 143 determines that the side determined to be outside the turn is the one with the larger friction coefficient of the road surface, and the rear wheels 2R, 2L with the larger friction coefficient of the road surface are toe-in.
- a toe angle correction control signal to be generated is generated and applied to the target current calculation unit 81a of any toe angle change control ECU 37.
- the vehicle speed sensor SV (see FIG. 1) detects the rotational speed of the output shaft of the transmission (not shown) of the automobile 1 as the number of pulses per unit time and converts it into a vehicle speed (body speed). Is output.
- a main steering shaft 3a provided with a steering handle 3, a shaft 3c, and a pinion shaft 7 are connected via two universal joints (free joints) 3b. ing.
- the pinion shaft 7 is supported by the steering gear box 6 at its upper, middle, and lower portions via bearings 3d, 3e, and 3f, respectively.
- the pinion gear 7a provided at the lower end of the pinion shaft 7 meshes with the rack teeth 8a of the rack shaft 8 configured to be reciprocally movable in the vehicle width direction.
- Left and right front wheels 1L, 1R are connected to both ends via tie rods 9, 9.
- the rack shaft 8 with the rack teeth 8a, the tie rods 9, 9 and the like constitute a steering mechanism for the front wheels 1L, 1R.
- the electric power steering device 110 rotates the tie rods 9 and 9 by reciprocating the rack shaft 8 in the vehicle width direction by rotating the steering handle 3 (see the arrow in FIG. 1).
- it is possible to change the traveling direction of the four-wheeled vehicle 1 by changing the angle of the neutral position of the front wheels 1L, 1R with respect to the straight traveling direction.
- the electric power steering apparatus 110 includes an electric motor 4 for supplying an auxiliary steering force that reduces the steering force of the driver by the steering handle 3.
- the worm gear 5a provided on the output shaft of the electric motor 4 meshes with the worm wheel gear 5b provided on the pinion shaft 7, and the worm gear 5a and the worm wheel gear 5b constitute a speed reduction mechanism.
- the electric motor 4 is, for example, a three-phase brushless motor, which converts electric energy into mechanical energy by electromagnetic induction and applies an auxiliary steering force that assists the operation of the steering handle 3.
- the electric power steering apparatus 110 includes a motor drive circuit 23 for driving the electric motor 4, a resolver 25 for detecting a rotation angle of the electric motor 4, a torque sensor S T for detecting the pinion torque applied to the pinion shaft 7, the main a steering angle sensor S H for detecting a steering angle theta H and the steering angular velocity omega H of the steering wheel 3 from rotating in slot disc attached to the steering shaft 3a (not shown), amplifies the output of the torque sensor S T And a differential amplifier circuit 21.
- the electric power steering device 110 is not an essential configuration.
- FIG. 5 is a schematic control functional configuration diagram of the steering control ECU 130 of the steering system 100 according to the embodiment and the toe angle change control ECU 37 which is a toe angle left / right independent control device.
- the electric motor drive circuit 23 shown in FIGS. 1 and 2 includes a plurality of switching elements such as a three-phase EFT bridge circuit, for example, and DUTY (DU, DV, etc.) from the electric power steering control unit 130a (see FIG. 5).
- DW DUTY
- the motor drive circuit 23 has a function of detecting a three-phase motor current using a hall element (not shown).
- the control of the electric power steering device 110 and the control of the toe angle changing devices 120L and 120R will be described later.
- FIG. 3 is a plan view including a partial cross section of the toe angle changing device on the left rear wheel 2L side according to the embodiment
- FIG. 4 is a schematic diagram illustrating the structure of the actuator 30 of the toe angle changing device 120L according to the embodiment. It is a longitudinal cross-sectional view.
- the toe angle changing devices 120L and 120R are respectively attached to the left and right rear wheels 2L and 2R of the vehicle to change the toe angles ⁇ TR and ⁇ TL .
- a toe angle changing device 120L for changing the toe angle ⁇ TL of the rear wheel 2L is shown.
- the toe angle changing device 120 ⁇ / b> L includes an actuator 30 and a toe angle changing control device (hereinafter referred to as a toe angle changing control ECU) 37.
- FIG. 3 shows only the left rear wheel 2L, but the toe angle changing device 120R is attached to the right rear wheel 2R similarly (symmetrically).
- the vehicle width direction end portion of the cross member 12 extending substantially in the vehicle width direction (left and right direction in FIG. 3) is elastically supported by the rear side frame 11 of the vehicle body.
- the front end of the trailing arm 13 extending substantially in the longitudinal direction of the vehicle body (the vertical direction of the plane of FIG. 3) is supported in the vicinity of the end of the cross member 12 in the vehicle width direction.
- the rear wheel 2L is rotatably fixed so as to be able to travel via a bearing.
- the trailing arm 13 is configured such that a vehicle body side arm 13a attached to the cross member 12 and a wheel side arm 13b fixed to the rear wheel 2L rotate with each other via a rotating shaft 13c disposed in a substantially vertical direction. It is connected freely. With this configuration, in the trailing arm 13, the wheel side arm 13b can be displaced in the vehicle width direction by rotating with respect to the vehicle body side arm 13a around the rotating shaft 13c. With the displacement of 13 in the vehicle width direction, the toe-in and toe-out toe angles ⁇ TL (see FIG. 1) of the rear wheel 2L can be changed. As shown in FIG. 3, the actuator 30 has one end attached to a front end portion on the front side of the connecting portion of the rotating shaft 13c in the wheel side arm 13b via a bush 16, and the other end is a cross member. 12 is attached via a bush 17.
- the actuator 30 includes an electric motor 31, a speed reduction mechanism 33, a feed screw portion 35, and the like.
- the electric motor 31 is configured by a brush motor, a brushless motor, or the like that can rotate in both forward and reverse directions.
- the electric motor 31 has a temperature sensor 31a that detects the winding temperature of the coil in order to detect the abnormality. From the temperature sensor 31a, a self-diagnosis unit 81d (see FIG. 8) described later on the toe angle change control ECU 37. ) Is given a detection signal.
- the speed reduction mechanism 33 is configured by combining, for example, a two-stage planetary gear (not shown).
- the feed screw portion 35 includes a rod 35a formed in a cylindrical shape, a nut 35c that is inserted into the rod 35a, has a cylindrical shape, and has a screw groove 35b formed on the inner peripheral surface side, a screw groove 35b, A screw shaft 35d that meshes and supports the rod 35a so as to be movable in the axial direction.
- the feed screw portion 35 is housed inside the elongated cylindrical case body 34 together with the speed reduction mechanism 33 and the electric motor 31.
- An elastic rubber boot 36 is attached to the side of the feed screw 35 in the case body 34 so as to cover between the end of the case body 34 and the end of the exposed rod 35a. It is configured so that dust and foreign matter do not adhere to the outer surface of the rod 35 a exposed from the end of the case body 34, and dust and foreign matter do not enter the case body 34 from the outside.
- One end of the speed reduction mechanism 33 is connected to the output shaft of the electric motor 31, and the other end of the speed reduction mechanism 33 is connected to the screw shaft 35d.
- the power from the electric motor 31 is transmitted to the screw shaft 35d via the speed reduction mechanism 33 and the screw shaft 35d rotates, so that the rod 35a is axially moved with respect to the case body 34 (left and right in FIG. 4).
- the actuator 30 moves in a telescopic manner. Further, the toe angles ⁇ TL and ⁇ TR of the rear wheels 2L and 2R are held constant by the static frictional force of meshing between the screw shaft 35d and the screw groove 35b of the nut 35c even when the electric motor 31 is not driven.
- the actuator 30 is provided with a stroke sensor 38 for detecting the amount of expansion / contraction, that is, the position of the rod 35a with respect to the case body 34.
- the stroke sensor 38 includes, for example, a magnet and changes in the magnetic field. Is detected to detect the position of the rod 35a. As described above, by detecting the position of the rod 35a using the stroke sensor 38, the toe angles ⁇ TL and ⁇ TR (see FIG. 1) of the rear wheels 2L and 2R can be individually detected with high accuracy. It has become.
- the actuator 30 configured in this way has a bush 16 provided at the tip of a rod 35 a rotatably connected to a wheel-side arm 13 b of the trailing arm 13, A bush 17 provided at an end (the right end in FIG. 4) is rotatably connected to the cross member 12.
- the location where the bush 16 of the actuator 30 is attached is not limited to the wheel side arm 13b as long as the toe angle ⁇ TL of the rear wheel 2L can be changed, such as a knuckle.
- the toe angle changing devices 120L and 120R are shown as examples applied to a semi-trailing arm type independent suspension type suspension.
- the present invention is not limited to this, and other suspension types may be used. It can also be applied to suspension systems. For example, it can also be realized by incorporating the actuator 30 into a side rod of a double wishbone suspension or a side rod of a strut suspension.
- a toe angle change control ECU 37 is integrally attached to the actuator 30.
- the toe angle change control ECU 37 is fixed to the case main body 34 of the actuator 30, and a stroke sensor 38 and a temperature sensor 31a are connected to each other via a connector or the like.
- the left and right toe angle change control ECUs 37, 37 and the toe angle change control ECUs 37, 37 and the steering control ECU 130 are electrically connected to each other.
- Electric power is supplied to the toe angle changing control ECU 37 from a power source such as a battery (not shown) mounted on the vehicle, and the steering control ECU 130 and the electric motor drive circuit 23 (see FIGS. 1 and 5) are different from the above. Power is supplied from a power source such as a battery in the system.
- the steering control ECU 130 includes a microcomputer (not shown), a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and peripheral circuits. As shown in FIG. 5, the steering control ECU 130 and an electric power steering control unit 130a for controlling the electric power steering device 110 and a toe for calculating toe angles ⁇ TL and ⁇ TR (see FIG. 1) of the rear wheels 2L and 2R. An angle calculation unit 71 is provided.
- the electric power steering control unit 130a sets a target current signal for driving and controlling the electric motor 4 as described in FIG. 2 of JP-A-2002-59855, corrects the inertia of the signal, and further corrects the damping. Then, the output current of the motor drive circuit 23 is feedback controlled with the corrected target current, and a DUTY (DU, DV, DW) signal is output to the motor drive circuit 23.
- ⁇ Toe angle calculation unit 71 For calculating toe angles ⁇ TL and ⁇ TR which are rear control angles will be described. As shown in FIG. 5, the toe angle calculation unit 71 determines the rear control angles of the left and right rear wheels 2L, 2R from the vehicle speed signal VS indicating the vehicle speed, the steering angle ⁇ H of the steering handle 3, the steering angular velocity ⁇ H, and the like. Toe angles ⁇ TL , ⁇ TR are generated, and the toe angles ⁇ TL , ⁇ TR are input to the toe angle change control ECUs 37, 37 that control the change of the toe angles of the left and right rear wheels 2 L, 2 R.
- the toe angle ⁇ T ( ⁇ TL , ⁇ TR ) is generated by using the toe angle table 71a set in advance for each of the left and right rear wheels 2L, 2R, the steering angle ⁇ H , the steering angular velocity ⁇ H ,
- the target toe angle ⁇ T0 is obtained by referring to the vehicle speed represented by the vehicle speed signal VS and the target toe angle ⁇ T0 is multiplied by the gain G as described later (see FIG. 7).
- Figure 6 is a diagram showing a steering angle theta H and the rear wheel 2R of the steering wheel 3, 2L toe, a rear control angle of the toe toe angle ⁇ T ( ⁇ TL, ⁇ TR ) the relationship between, The elapsed time is shown on the horizontal axis.
- the upper graph in Figure 6, placed vertically steering angle theta H of the steering wheel 3 shows the change in the steering angle theta H of the steering wheel 3 with respect to the elapsed time
- the lower graph in FIG. 6 after wheel 2R, a toe angle alpha T of 2L placed vertically shows the change of the toe angle alpha T with respect to the elapsed time.
- the toe angle alpha T of 2L also greatly controlled.
- the toe angle ⁇ T on the inner wheel side of the rear wheels 2R, 2L is greatly toeed out and the toe angle ⁇ on the outer wheel side of the rear wheels 2R, 2L in cornering is set. T is toe-in greatly to improve cornering.
- wheels 2R, toe angle alpha T almost zero 2L after shown in thick solid line in the graph below the figure 6 And is controlled small.
- the rear control angle ⁇ of the rear wheels 2R and 2L is controlled to be substantially zero (indicated by a thick solid line in the lower graph of FIG. 6).
- Figure 7 is actually the rear wheels 2L, a toe angle alpha T given to 2R, the gain G used for determining the toe angle alpha T, the relationship between the target toe angle alpha T0 determined from the toe angle table 71a
- a gain map M representing the relationship of the magnitude of the gain G to the steering angle ⁇ H and the steering angular velocity ⁇ H of the steering handle 3 is shown conceptually.
- ⁇ T actual toe angle: steering control amount of rear wheel
- ⁇ T0 (target toe angle) ⁇ G (gain) Are in a relationship.
- FIG. 8 is a block configuration diagram of a control function of the toe angle changing control ECU 37 of the toe angle changing devices 120L and 120R according to the embodiment.
- the toe angle change control ECU 37 has a function of driving and controlling the motor 31 that operates the actuator 30 (see FIGS. 1 and 3), and includes a control unit 81 and a motor drive circuit 83. It is configured.
- the left and right toe angle change control ECUs 37 are connected to the steering control ECU 130 via a communication line, and are also connected to the other toe angle change control ECU 37 via a communication line. .
- the control unit 81 includes a microcomputer including a CPU, a RAM, a ROM, and peripheral circuits, and includes a target current calculation unit 81a, an electric motor control signal generation unit 81c, and a self-diagnosis unit 81d.
- the target current calculation unit 81a of the toe angle change control ECU 37 on the right rear wheel 2R side, the vehicle speed signal VS indicating the vehicle speed input via the communication line from the steering control ECU 130, and the steering angle of the steering handle 3 Based on ⁇ H , the toe angle ⁇ TR of the rear wheel 2R, and the current toe angle ⁇ R of the rear wheel 2R obtained from the stroke sensor 38, a target current signal is calculated, and the motor control signal generation unit 81c receives the target current signal. Output.
- the target current calculation unit 81a of the toe angle change control ECU 37 on the side of the other left rear wheel 2L receives the vehicle speed signal VS input via the communication line from the steering control ECU 130, the steering angle ⁇ H of the steering handle 3, and Based on the toe angle ⁇ TL of the rear wheel 2L and the current toe angle ⁇ L of the rear wheel 2L obtained from the stroke sensor 38, a target current signal is calculated and output to the motor control signal generator 81c.
- the target current signal is a current signal necessary to set the actuator 30 to a desired operation amount at a desired speed, that is, an expansion / contraction amount that makes the rear wheels 2L and 2R have desired toe angles ⁇ TL and ⁇ TR. It is.
- the target current calculation unit 81a feeds back the current toe angles ⁇ R and ⁇ L to the desired toe angles ⁇ TL and ⁇ TR and corrects the target current signal, thereby rear wheels 2L, 2R.
- the current value required for turning the vehicle is fed back according to the vehicle speed, road surface environment, vehicle motion state, tire wear state, etc., and the desired toe angles ⁇ TL , ⁇ TR are set at the desired toe angle change rate. Settings can be controlled.
- the motor control signal generator 81 c receives the target current from the target current calculator 81 a and outputs a motor control signal to the motor drive circuit 83.
- This electric motor control signal is a signal including the current value supplied to the electric motor 31 and the direction in which the electric current flows.
- the motor drive circuit 83 is configured by a bridge circuit of FET (Field Effect Transistor) or the like, and supplies a motor current to the motor 31 based on a motor control signal.
- the self-diagnosis unit 81d has a position signal of the stroke sensor 38 (see FIGS. 4 and 5) of the toe angle changing device 120L or 120R to which it belongs and a Hall element of the motor drive circuit 83. Based on the detection signal from, the temperature signal from the temperature sensor 31a (see FIG. 4), and the state monitoring of the target current calculation unit 81a, it is determined whether an abnormal state has been detected and fed back to the target current calculation unit 81a.
- FIG. 9 a steering angle theta H of the steering wheel 3, wheel 2R after in accordance with the steering angular velocity omega H, a flow diagram illustrating the flow of processing of the toe angle alpha T of 2L, the broken line in FIG.
- the predetermined value A corresponds to, for example, a threshold value such as turning a curve from straight running, and for example, about 30 degrees is set.
- S1 of FIG. 9 if the steering angle theta H of the steering wheel 3 is determined to greater than the predetermined value A (Yes in S1 of FIG. 9) sets a "1" in the gain candidate determination flag (Fig. 9 S2).
- the steering of the steering wheel 3 It is determined whether or not the angle ⁇ H is smaller than a predetermined value B.
- the predetermined value B corresponds to a threshold value when, for example, the steering handle 3 is slightly opened during straight running, and is set to about 10 to 15 degrees, for example.
- the process proceeds to S6 in FIG.
- the predetermined value C is, for example, when the toe angle ⁇ T of the rear wheels 2R and 2L is lost in the vicinity of the neutral position of the steering handle 3 when the steering handle 3 is greatly moved from right to left. This is a threshold value for determining whether or not the driver feels uncomfortable, and is set as appropriate depending on driving conditions and the like.
- the gain candidate determination flag is set to “0” (FIG. 9). S5).
- the gain candidate determination flag is set to the previous value in S6 of FIG. Keep state. For example, when the previously set gain candidate determination flag is “1”, “1” is held in the gain candidate determination flag, and when the previously set gain candidate determination flag is “0”, “0” is held in the gain candidate determination flag.
- the previously set gain candidate determination flag is “1”, “1” is held in the gain candidate determination flag, and when the previously set gain candidate determination flag is “0”, “0” is held in the gain candidate determination flag.
- the driver greatly turns the steering handle 3, and once the gain candidate determination flag “1” is set (see S1 and S2 in FIG. 9), the steering handle 3, and the gain candidate determination flag “1” remains set (see S ⁇ b> 2 and S ⁇ b> 6 in FIG. 9) unless it stops at that position (see S ⁇ b> 1 to S ⁇ b> 5 in FIG. 9).
- 1 is set to the gain candidate G0, and as a result, 1 is set to the gain G (see S8, S10, and S11 in FIG. 9 described later).
- the process proceeds from S2 in FIG. 9, S5 in FIG. 9, and S6 in FIG. 9 to S7 in FIG. 9, and it is determined whether or not the gain candidate determination flag is “1”. If it is determined in S7 of FIG. 9 that the gain candidate determination flag is “1” (Yes in S7 of FIG. 9), that is, the steering handle 3 is largely turned and the steering angle ⁇ H of the steering handle 3 is 1 is set to the gain candidate G0 when the steering wheel 3 is large (see S1 and S2 in FIG. 9) or when the steering speed of the steering handle 3 is large and the steering angular velocity ⁇ H is large (see S4 and S6 in FIG. 9). (S8 in FIG. 9).
- FIG. 10 is a diagram showing a gain map Mg representing the relationship between the steering angle theta H and gain candidate G0 of the steering wheel 3 used when the steering angular velocity omega H of the steering wheel 3 is small, the horizontal axis taking a steering angle theta H of the steering wheel 3 takes the gain candidate G0 on the vertical axis.
- the processing shifts from S10 to S13 (indicated by a broken line in FIG. 9) for preventing a rapid change in the gain G.
- S10 of FIG. 9 it is determined whether or not the gain candidate G0 is equal to or greater than the previous gain value that is a previously set gain.
- the value of the gain candidate G0 is set as the gain G in S11 of FIG. It is set (S11 in FIG. 9).
- the predetermined value D the threshold for whether the change of the gain G changes in the toe angle alpha T during traveling according to (see FIG. 7) does not give the driver a sense of discomfort as a criterion is set appropriately .
- the gain candidate is set as the gain G in S11 of FIG.
- the value set in G0 is set.
- the gain G obtained in S11 of FIG. 9 or S13 of FIG. 9 is multiplied by the target toe angle ⁇ T0 obtained by referring to the toe angle table 71a, and the toe-in of the rear wheels 2R, 2L is multiplied.
- the toe angle ⁇ T ( ⁇ TL , ⁇ TR ), which is the rear control angle of the toe-out, is calculated.
- the toe angles ⁇ TL and ⁇ TR of the rear wheels 2L and 2R are changed to the gain G for control that changes in accordance with the steering angle ⁇ H and the steering angular velocity ⁇ H of the steering handle 3. Is provided. Therefore, the rear wheels 2L and 2R are not steered even if the steering handle 3 is slightly swung from side to side during straight travel, and the steering wheel 3 is not affected by the dead zone when the steering handle 3 is turned back quickly without being affected by the dead zone.
- the toe angles ⁇ TL and ⁇ TR of the wheels 2L and 2R can be controlled. Therefore, regardless of the driving state, in the control of the toe angles ⁇ TL and ⁇ TR of the rear wheels 2L and 2R, a comfortable driving is possible without causing a sense of incongruity during driving.
- the left and right rear wheels 2R and 2L can be controlled independently, in addition to the above control, the rear wheels 2R and 2L can be controlled during cornering, and the control of the rear wheels 2R and 2L is flexible and diverse. It can be done.
- the left and right rear wheels 2R and 2L have the actuators 30 respectively, the left and right rear wheels 2R and 2L can be controlled independently via the actuators 30.
- the steering angle ⁇ H of the steering handle 3 may be determined from the position of the rack shaft 8, and the steering angular speed ⁇ H may be determined from the moving speed of the rack shaft 8.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Power Steering Mechanism (AREA)
- Vehicle Body Suspensions (AREA)
- Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
Abstract
直進時、ハンドルの切り返し時においても、ハンドル舵角ゼロ付近の不惑帯の影響を蒙ることがなく、運転に違和感が生じない車両の後輪操舵装置を提供する。 本発明に関わる車両の後輪操舵装置は、ハンドル3の操舵角θHに応じて後輪2R、2Lを操舵可能とする車両1の後輪操舵装置130、120L、120Rであって、操舵角θHが小さい領域においては、後輪2R、2Lの操舵制御量αTR、αTLを操舵角θHの他の領域より小さく制御する低減制御を行なう一方、操舵角θHの角速度ωHが大きい状態においては、操舵角θHが操舵角θHの小さい領域にあっても、低減制御を行なわないか、または、低減制御による後輪2R、2Lの操舵制御量αTR、αTLの低減幅を小さくする構成としている。
Description
本発明は、車両の後輪をハンドルの操舵角、操舵角速度等に応じてトー角の制御を行う車両の後輪操舵装置に関する。
従来、四輪車等の車両においては、運転状態に応じて、リア(後輪)を上面視で車両進行方向に対して外方に向けたり(トーアウト)、或いは、内方に向けたり(トーイン)制御し、運転操作に従った車両の運動特性の向上が図られている。
例えば、キャンバ角をうち消すために両リアを共にトーインにし直進性を高めたり、制動時にも両リアを共にトーインにすることにより、車両の安定性を促進している。
このようなリアトーの制御において、運転者が操作するハンドルの操舵角や操舵角速度に応じて、リアの操舵角を操舵することで車両の運動特性を改善することが可能である。
特開平5-330444号公報
例えば、キャンバ角をうち消すために両リアを共にトーインにし直進性を高めたり、制動時にも両リアを共にトーインにすることにより、車両の安定性を促進している。
このようなリアトーの制御において、運転者が操作するハンドルの操舵角や操舵角速度に応じて、リアの操舵角を操舵することで車両の運動特性を改善することが可能である。
ところで、運転者が操作するハンドルの操舵角や操舵角速度に応じてリアの操舵角を操舵する場合、制御のゲインを上げていくと、直進中にハンドルを左右に小さく揺すっただけで、リアが操舵されてしまうため、車両が過敏に動いてしまい、運転者が違和感を生じる場合がある。
この現象に対して、ハンドルの操舵角の中立位置、すなわちハンドルの操舵角ゼロ、すなわち中立位置付近に不感帯を設けると、直進中にリアが操舵されなくなり、違和感が解消するが、ハンドルを大きく廻す切り返し時にハンドルの操舵角が中立位置を通過するときに、リアの動きが急に止まってしまうため、違和感が生じてしまう。
なお、特許文献1には、不感帯を設けた4WS(Wheels Steering)の技術が記載されている。
本発明は上記実状に鑑み、直進時、ハンドルの切り返し時においても、ハンドル舵角ゼロ付近の不感帯の影響を蒙ることがなく、運転に違和感が生じない車両の後輪操舵装置の提供を目的とする。
本発明は上記実状に鑑み、直進時、ハンドルの切り返し時においても、ハンドル舵角ゼロ付近の不感帯の影響を蒙ることがなく、運転に違和感が生じない車両の後輪操舵装置の提供を目的とする。
本発明の請求の範囲第1項に関わる車両の後輪操舵装置は、ハンドルの操舵角に応じて後輪を操舵可能とする車両の後輪操舵装置であって、操舵角が小さい領域においては、後輪の操舵制御量を操舵角の他の領域より小さく制御する低減制御を行なう一方、操舵角の角速度が大きい状態においては、操舵角が操舵角の小さい領域にあっても、低減制御を行なわないか、または、低減制御による後輪の操舵制御量の低減幅を小さくする構成としている。
本発明の請求の範囲第2項に関わる車両の後輪操舵装置は、請求の範囲第1項に記載の車両の後輪操舵装置において、低減制御において、操舵角が小さくなるに従って後輪の操舵制御量が低下する変化率を制限するよう制御している。
本発明の請求の範囲第3項に関わる車両の後輪操舵装置は、請求の範囲第1項または第2項に記載の車両の後輪操舵装置において、左右の後輪は、各々独立して制御可能である。
本発明の請求の範囲第4項に関わる車両の後輪操舵装置は、請求の範囲第3項に記載の車両の後輪操舵装置において、左右の後輪は、各々アクチュエータを有している。
本発明の請求の範囲第1項に関わる車両の後輪操舵装置によれば、操舵角が小さい領域においては、後輪の操舵制御量を操舵角の他の領域より小さく制御する低減制御を行なう一方、操舵角の角速度が大きい状態においては、操舵角が操舵角の小さい領域にあっても、低減制御を行なわないか、または、低減制御による後輪の操舵制御量の低減幅を小さくするので、直進中にハンドルを左右に揺すっても後輪が操舵されず、また、ハンドルの切り返し時には不感帯の影響を受けることがなく、運転中の違和感の発生を防止できる。
本発明の請求の範囲第2項に関わる車両の後輪操舵装置によれば、請求の範囲第1項に記載の車両の後輪操舵装置において、低減制御において、操舵角が小さくなるに従って後輪の操舵制御量が低下する変化率を制限するよう制御するので、後輪の操舵制御量の大きな変化が防止され、後輪の操舵制御量の急変に伴う違和感の発生を防止できる。
本発明の請求の範囲第3項に関わる車両の後輪操舵装置によれば、左右の後輪は、各々独立して制御可能であるので、上記請求の範囲第1項、第2項に記載の制御、コーナリング時の後輪の制御等を行なえ、後輪の制御が柔軟かつ多様に行える。
本発明の請求の範囲第4項に関わる車両の後輪操舵装置によれば、請求の範囲第3項に記載の車両の後輪操舵装置において、左右の後輪は、各々アクチュエータを有しているので、左右の後輪を、各アクチュエータを介して各々独立して制御できる。
1 自動車(車両)
2R、2L 後輪
3 操向ハンドル(ハンドル)
120L、120R トー角変更装置(後輪操舵装置)
130 操舵制御ECU(後輪操舵装置)
αTR、αTL 後輪のトー角(後輪の操舵制御量)
θH 操舵角
ωH 操舵角速度(操舵角の角速度)
2R、2L 後輪
3 操向ハンドル(ハンドル)
120L、120R トー角変更装置(後輪操舵装置)
130 操舵制御ECU(後輪操舵装置)
αTR、αTL 後輪のトー角(後輪の操舵制御量)
θH 操舵角
ωH 操舵角速度(操舵角の角速度)
以下、本発明の実施形態について添付図面を参照して説明する。
<<自動車1の操舵システム100>>
図1は、本発明の実施形態に係る操舵システム100を備えた4輪車両である自動車1の上面視の全体概念図であり、図2は、実施形態の自動車1が備える電動パワーステアリング装置110の構成図である。
図1に示すように、実施形態に係る操舵システム100を備えた自動車1は、走行時の安定性、運転性能等を高めることを目的に、後輪2R、2Lのトー角αTL、αTRを制御する機能を有している。
<<自動車1の操舵システム100>>
図1は、本発明の実施形態に係る操舵システム100を備えた4輪車両である自動車1の上面視の全体概念図であり、図2は、実施形態の自動車1が備える電動パワーステアリング装置110の構成図である。
図1に示すように、実施形態に係る操舵システム100を備えた自動車1は、走行時の安定性、運転性能等を高めることを目的に、後輪2R、2Lのトー角αTL、αTRを制御する機能を有している。
例えば、車両の制動時には、後輪2R、2Lをトーインとし車両の直進安定性を高め、車両の加速時には、トーインまたはトーアウトの制御を行うことなく後輪2R、2Lを進行方向に対して真直ぐとし加速性を向上している。また、低速コーナリング時には、コーナリング内側となる後輪2R、2Lの何れかをトーアウトにするとともにコーナリング外側となる後輪2R、2Lの何れかをトーインとし車両のコーナリング性を高めている。
自動車1の操舵システム100は、運転者の操向ハンドル3の操作をアシストする機能を有する電動パワーステアリング装置110(図2参照)と、前輪1R、1Lおよび後輪2R、2Lの操舵を制御する操舵制御装置(以下、操舵制御ECU(Electronic Control Unit)と称する)130と、後輪2R、2Lのトー角αTR、αTLをそれぞれ変更制御する変更制御装置(以下、トー角変更制御ECUと称する)37と、トー角変更制御ECU37の制御によって後輪2R、2Lのトー角をそれぞれ変更するトー角変更装置120L、120Rと、車両の速度(車速)を検出する車速センサSV等の各種センサとを具備している。
図2に示すように、電動パワーステアリング装置110は、前輪1L、1Rを操舵させるための運転者の操向ハンドル3の操作を、電動機4の駆動力を用いて補助している。
操舵制御ECU130は、電動パワーステアリング装置110を制御し前輪1R、1Lの操舵を制御する。
図1に示すように、操舵制御ECU130は、制動・加速を含む車速、操向ハンドル3の操舵角θH、操舵角速度ωH等に応じてトー角変更装置120L、120Rを制御し、後輪2R、2Lのトー角αTR、αTLを制御する。
操舵制御ECU130は、電動パワーステアリング装置110を制御し前輪1R、1Lの操舵を制御する。
図1に示すように、操舵制御ECU130は、制動・加速を含む車速、操向ハンドル3の操舵角θH、操舵角速度ωH等に応じてトー角変更装置120L、120Rを制御し、後輪2R、2Lのトー角αTR、αTLを制御する。
トー角変更装置120L、120Rは、車速、操向ハンドル3の操舵角θH、操舵角速度ωH等に応じて、後輪2L、2Rのトー角αTR、αTLをそれぞれ独立に後記のアクチュエータ30によって変更させる。
また、操舵システム100は、前輪1R、1Lの回転速をそれぞれ検出する車輪速センサ141a、141bおよび後輪2R、2Lの回転速をそれぞれ検出する車輪速センサ141c、141dと、左右輪1L、2L、1R、2Rが各々接触する路面状態差を検出する路面状態差検出部142と、該路面状態差に応じて後輪2R、2Lのトー角αTR、αTLを修正し制御するトー角修正制御部143とを備えている。
また、操舵システム100は、前輪1R、1Lの回転速をそれぞれ検出する車輪速センサ141a、141bおよび後輪2R、2Lの回転速をそれぞれ検出する車輪速センサ141c、141dと、左右輪1L、2L、1R、2Rが各々接触する路面状態差を検出する路面状態差検出部142と、該路面状態差に応じて後輪2R、2Lのトー角αTR、αTLを修正し制御するトー角修正制御部143とを備えている。
車輪速センサ141a、141b、141c、141dは、前輪1R、1Lおよび後輪2R、2Lのそれぞれの回転速を検出して車輪速信号を生成して路面状態差検出部142に与える。路面状態差検出部142は、左右の車輪1L、2L、1R、2Rの路面状態(路面ミュー)の差が所定値以上である場合、路面状態差信号を生成してトー角修正制御部143に与え、トー角修正制御部143は、この路面状態差信号に基づいてトー角修正信号を生成してトー角変更装置120L、120Rを制御するトー角変更制御ECU37に付与する。
この場合、トー角修正制御部143は、路面状態差検出部142により路面状態の差が検出されたときに、路面の摩擦係数が大きい方の後輪をトーインとするトー角修正制御信号を生成して、トー角変更制御ECU37のいずれかの目標電流算出部81a(図8参照)に与える。そして、目標電流算出部81aは、トー角修正制御部143からのトー角修正制御信号を受けたときに路面の摩擦係数が大きい方の後輪をトーインとするように算出する。この目標電流算出部81aの算出値に基づき、トー角変更制御ECU37(図1参照)は、路面の摩擦係数が大きい方の後輪2R、2Lをトーインとするように制御する。
なお、図1に示すように、路面状態差検出部142は、自動車1の重心廻りの自転運動の速さのヨーレートを検出するヨーレートセンサSYおよび横方向(図1の紙面の上下方向)の加速度を検出する横加速度センサSGSからの信号を受けて、ヨーレートおよび横加速度の向きにより旋回外側または旋回内側の判断により左右の車輪1L、2L、1R、2Rの路面状態(路面ミュー)の差を検出するようにしてもよい。
この場合には、トー角修正制御部143は、旋回外側であると判定した側を路面の摩擦係数が大きい方と判定して、路面の摩擦係数が大きい方の後輪2R、2Lをトーインとするトー角修正制御信号を生成して、何れかのトー角変更制御ECU37の目標電流算出部81aに与える。
車速センサSV(図1参照)は、自動車1の図示しない変速機の出力軸の回転速を単位時間当りのパルス数として検出して車速(車体速)に変換するものであり、車速信号VSを出力する。
車速センサSV(図1参照)は、自動車1の図示しない変速機の出力軸の回転速を単位時間当りのパルス数として検出して車速(車体速)に変換するものであり、車速信号VSを出力する。
<電動パワーステアリング装置110>
図2に示すように、電動パワーステアリング装置110は、操向ハンドル3が設けられたメインステアリングシャフト3aとシャフト3cとピニオン軸7とが、2つのユニバーサルジョイント(自由継手)3bを介して連結されている。なお、ピニオン軸7は、その上部、中間部、下部がそれぞれ軸受3d、3e、3fを介してステアリングギアボックス6に支持されている。
図2に示すように、電動パワーステアリング装置110は、操向ハンドル3が設けられたメインステアリングシャフト3aとシャフト3cとピニオン軸7とが、2つのユニバーサルジョイント(自由継手)3bを介して連結されている。なお、ピニオン軸7は、その上部、中間部、下部がそれぞれ軸受3d、3e、3fを介してステアリングギアボックス6に支持されている。
また、電動パワーステアリング装置110は、ピニオン軸7の下端部に設けられたピニオンギア7aが、車幅方向に往復移動可能に構成されるラック軸8のラック歯8aに噛合し、ラック軸8の両端部にはタイロッド9、9を介して左右の前輪1L、1Rが連結されている。こうして、ラック歯8aを備えたラック軸8、タイロッド9、9等は、前輪1L、1Rの転舵機構を構成している。
図1に示すように、電動パワーステアリング装置110は、操向ハンドル3の回動操作(図1の矢印参照)によってラック軸8が車幅方向に往復動することでタイロッド9、9を回動させて、前輪1L、1Rの中立位置の直進方向に対する角度を変更し、四輪自動車1の進行方向を変えることが可能となっている。
図1に示すように、電動パワーステアリング装置110は、操向ハンドル3の回動操作(図1の矢印参照)によってラック軸8が車幅方向に往復動することでタイロッド9、9を回動させて、前輪1L、1Rの中立位置の直進方向に対する角度を変更し、四輪自動車1の進行方向を変えることが可能となっている。
図2に示すように、電動パワーステアリング装置110は、操向ハンドル3による運転者の操舵力を軽減する補助操舵力を供給するための電動機4を備えている。この電動機4の出力軸に設けられたウォームギア5aは、ピニオン軸7に設けられたウォームホイールギア5bに噛合しており、ウォームギア5aとウォームホイールギア5bとは、減速機構を構成している。
こうして、電動機4の回転子と電動機4の回転子に連結されているウォームギア5aおよびウォームホイールギア5b、ピニオン軸7およびラック歯8aを有するラック軸8、タイロッド9、9等は、ステアリング系を構成している。なお、電動機4は、例えば、3相ブラシレスモータであり、電気エネルギを電磁誘導により機械的エネルギに変換し、操向ハンドル3の操作を補助する補助操舵力を付与している。
また、電動パワーステアリング装置110は、電動機4を駆動する電動機駆動回路23と、電動機4の回転角を検出するレゾルバ25と、ピニオン軸7に加えられるピニオントルクを検出するトルクセンサSTと、メインステアリングシャフト3aに取り付けられるスロットディスク(図示せず)の回転から操向ハンドル3の操舵角θHおよび操舵角速度ωHを検出するステアリング舵角センサSHと、トルクセンサSTの出力を増幅する差動増幅回路21とを備えている。
なお、電動パワーステアリング装置110は、必須の構成ではない。
なお、電動パワーステアリング装置110は、必須の構成ではない。
<操舵制御ECU130>
図1に示す操舵システム100の操舵制御ECU130は、電動パワーステアリング装置110の駆動源である電動機4を駆動制御する後記の電動パワーステアリング制御部130a(図5参照)を有している。なお、図5は、実施形態に係る操舵システム100の操舵制御ECU130とトー角左右独立制御装置であるトー角変更制御ECU37の概略制御機能構成図である。
図1に示す操舵システム100の操舵制御ECU130は、電動パワーステアリング装置110の駆動源である電動機4を駆動制御する後記の電動パワーステアリング制御部130a(図5参照)を有している。なお、図5は、実施形態に係る操舵システム100の操舵制御ECU130とトー角左右独立制御装置であるトー角変更制御ECU37の概略制御機能構成図である。
図1、図2に示す電動機駆動回路23は、例えば、3相のEFTブリッジ回路のような複数のスイッチング素子を備え、電動パワーステアリング制御部130a(図5参照)からのDUTY(DU、DV、DW)信号を用いて、矩形波電圧を生成し、電動機4を駆動するものである。また、電動機駆動回路23は、図示しないホール素子を用いて3相の電動機電流を検出する機能を備えている。
操舵制御ECU130の機能構成については、電動パワーステアリング装置110の制御と、トー角変更装置120L、120Rの制御とをまとめて後記する。
操舵制御ECU130の機能構成については、電動パワーステアリング装置110の制御と、トー角変更装置120L、120Rの制御とをまとめて後記する。
<トー角変更装置120L、120R>
次に、図3および図4を参照し、トー角変更装置120L、120Rの構成を説明する。
図3は、実施形態に係る左後輪2L側のトー角変更装置の一部断面を含む平面図であり、図4は、実施形態に係るトー角変更装置120Lのアクチュエータ30の構造を示す概略縦断面図である。
次に、図3および図4を参照し、トー角変更装置120L、120Rの構成を説明する。
図3は、実施形態に係る左後輪2L側のトー角変更装置の一部断面を含む平面図であり、図4は、実施形態に係るトー角変更装置120Lのアクチュエータ30の構造を示す概略縦断面図である。
図1に示すように、トー角変更装置120L、120Rは、車両の左右の後輪2L、2Rにそれぞれ取り付けられトー角αTR、αTLを変更するものであり、図3においては、左後輪2Lを例にとり、後輪2Lのトー角αTLを変更するトー角変更装置120Lを示している。
図3に示すように、トー角変更装置120Lは、アクチュエータ30と、トー角変更制御装置(以下、トー角変更制御ECUと称する)37とを備えている。
なお、図3は、左側の後輪2Lのみを示しているが、右側の後輪2Rについても同様(対称)にトー角変更装置120Rが取り付けられている。
図3に示すように、トー角変更装置120Lは、アクチュエータ30と、トー角変更制御装置(以下、トー角変更制御ECUと称する)37とを備えている。
なお、図3は、左側の後輪2Lのみを示しているが、右側の後輪2Rについても同様(対称)にトー角変更装置120Rが取り付けられている。
図3に示すように、ほぼ車幅方向(図3の紙面の左右方向)に延びるクロスメンバ12の車幅方向端部が、車体のリアサイドフレーム11に弾性支持されている。そして、ほぼ車体前後方向(図3の紙面の上下方向)に延在するトレーリングアーム13の前端がクロスメンバ12の車幅方向端部近傍で支持されており、トレーリングアーム13の後端には、後輪2Lが、軸受けを介して走行可能なように回動自在に固定されている。
トレーリングアーム13は、クロスメンバ12に装着される車体側アーム13aと、後輪2Lに固定される車輪側アーム13bとが、ほぼ鉛直方向に配設される回動軸13cを介して互いに回動自在に連結されている。この構成により、トレーリングアーム13において、車輪側アーム13bが、回動軸13c廻りに車体側アーム13aに対して回動することにより車幅方向へ変位することが可能であり、このトレーリングアーム13の車幅方向への変位により、後輪2Lのトーイン、トーアウトのトー角αTL(図1参照)の変更が可能となっている。
図3に示すように、アクチュエータ30は、その一方端が車輪側アーム13bにおける回動軸13cの連結部より前方側にある前端部に、ブッシュ16を介して取り付けられ、その他方端がクロスメンバ12にブッシュ17を介して取り付けられている。
図3に示すように、アクチュエータ30は、その一方端が車輪側アーム13bにおける回動軸13cの連結部より前方側にある前端部に、ブッシュ16を介して取り付けられ、その他方端がクロスメンバ12にブッシュ17を介して取り付けられている。
<トー角変更装置120Lのアクチュエータ30>
図4に示すように、アクチュエータ30は、電動機31、減速機構33、送りねじ部35等を備えて構成されている。
電動機31は、正逆両方向に回転可能なブラシモータ、ブラシレスモータ等で構成されている。電動機31は、その異常を検知するためにコイルの巻線温度を検出する温度センサ31aを有しており、該温度センサ31aから、トー角変更制御ECU37の後記する自己診断部81d(図8参照)に検出信号を与える。
減速機構33は、例えば、2段のプラネタリギア(図示せず)等が組み合わされて構成されている。
図4に示すように、アクチュエータ30は、電動機31、減速機構33、送りねじ部35等を備えて構成されている。
電動機31は、正逆両方向に回転可能なブラシモータ、ブラシレスモータ等で構成されている。電動機31は、その異常を検知するためにコイルの巻線温度を検出する温度センサ31aを有しており、該温度センサ31aから、トー角変更制御ECU37の後記する自己診断部81d(図8参照)に検出信号を与える。
減速機構33は、例えば、2段のプラネタリギア(図示せず)等が組み合わされて構成されている。
送りねじ部35は、円筒形状に形成されたロッド35aと、このロッド35aの内部に挿入されて円筒形状を有し内周面側にスクリュー溝35bが形成されたナット35cと、スクリュー溝35bと噛合してロッド35aを軸方向に移動可能に支持するスクリュー軸35dと、を備えて構成されている。
送りねじ部35は、減速機構33および電動機31とともに細長形状のほぼ円筒形状のケ-ス本体34の内部に収容されている。また、ケース本体34における送りねじ部35の側には伸縮自在のゴム製のブーツ36がケース本体34の端部と露出するロッド35aの端部との間を蓋うように取り付けられており、ケース本体34の端部から露出したロッド35aの外表面に埃および異物が付着したり、ケース本体34の内部に外部から埃および異物が侵入しないように構成されている。
減速機構33の一方端が電動機31の出力軸と連結されるとともに、減速機構33の他方端がスクリュー軸35dと連結されている。
この構成により、電動機31からの動力が、減速機構33を介してスクリュー軸35dに伝達されてスクリュー軸35dが回転することで、ロッド35aがケース本体34に対して軸方向(図4の紙面左右方向)に移動し、アクチュエータ30が、伸縮自在に動作するようになっている。また、スクリュー軸35dとナット35cのスクリュー溝35bとの噛合の静止摩擦力により、電動機31が駆動されていない状態においても、後輪2L、2Rのトー角αTL、αTRが一定に保持される。
この構成により、電動機31からの動力が、減速機構33を介してスクリュー軸35dに伝達されてスクリュー軸35dが回転することで、ロッド35aがケース本体34に対して軸方向(図4の紙面左右方向)に移動し、アクチュエータ30が、伸縮自在に動作するようになっている。また、スクリュー軸35dとナット35cのスクリュー溝35bとの噛合の静止摩擦力により、電動機31が駆動されていない状態においても、後輪2L、2Rのトー角αTL、αTRが一定に保持される。
また、アクチュエータ30には、その伸縮量、すなわちロッド35aのケ-ス本体34に対する位置を検出するストロークセンサ38が設けられており、このストロークセンサ38は、例えば、マグネットが内蔵され、磁界の変化を検知してロッド35aの位置を検出している。
このように、ストロークセンサ38を用いて、ロッド35aの位置を検出することにより、後輪2L、2Rのトー角αTL、αTR(図1参照)をそれぞれ個別に高精度に検出できるようになっている。
このように、ストロークセンサ38を用いて、ロッド35aの位置を検出することにより、後輪2L、2Rのトー角αTL、αTR(図1参照)をそれぞれ個別に高精度に検出できるようになっている。
このように構成されたアクチュエータ30は、図3に示すように、ロッド35aの先端に設けられたブッシュ16がトレーリングアーム13の車輪側アーム13bに回動自在に連結され、ケース本体34の基端(図4において右側の端)に設けられたブッシュ17がクロスメンバ12に回動自在に連結されている。
電動機31の動力によってスクリュー軸35dが回転してロッド35aが図4の左方向へ伸びると、図3に示すように、車輪側アーム13bが車幅方向外側(図3の左方向)に押圧されて、後輪2Lが左方向(反時計廻りの向き)に旋回し、後輪2Lをトーアウトできる。一方、ロッド35aが図4の右方向へ縮むと、図3に示すように、車輪側アーム13bが車幅方向内側(図3の右方向)に引かれて、後輪2Lが右方向(時計廻りの向き)に旋回し、後輪2Lをトーインできる。
なお、アクチュエータ30のブッシュ16が取り付けられる場所は、ナックルなど後輪2Lのトー角αTLを変更できる位置であれば、車輪側アーム13bに限定されるものではない。また、本実施形態において、トー角変更装置120L、120Rは、セミトレーリングアーム型の独立懸架方式のサスペンションに対して適用した例で示したが、これに限定されるものでなく、他の懸架方式のサスペンションにも適用できる。
例えば、ダブルウイッシュボーン式のサスペンションのサイドロッドや、ストラット式サスペンションのサイドロッドにアクチュエータ30を組み込むことによっても実現できる。
例えば、ダブルウイッシュボーン式のサスペンションのサイドロッドや、ストラット式サスペンションのサイドロッドにアクチュエータ30を組み込むことによっても実現できる。
図4に示すように、アクチュエータ30には、トー角変更制御ECU37が一体に取り付けられている。トー角変更制御ECU37は、アクチュエータ30のケース本体34に固定され、ストロークセンサ38、温度センサ31aが、コネクタ等を介して接続されている。
また、図1に示すように、左右のトー角変更制御ECU37、37同士の間と、トー角変更制御ECU37、37と操舵制御ECU130(図3参照)との間とは、それぞれ電気的に接続されている。
トー角変更制御ECU37には、車両に搭載された図示しないバッテリ等の電源から電力が供給され、また、操舵制御ECU130、電動機駆動回路23(図1、図5参照)にも、前記とは別系統でバッテリ等の電源から電力が供給されている。
また、図1に示すように、左右のトー角変更制御ECU37、37同士の間と、トー角変更制御ECU37、37と操舵制御ECU130(図3参照)との間とは、それぞれ電気的に接続されている。
トー角変更制御ECU37には、車両に搭載された図示しないバッテリ等の電源から電力が供給され、また、操舵制御ECU130、電動機駆動回路23(図1、図5参照)にも、前記とは別系統でバッテリ等の電源から電力が供給されている。
<<操舵制御ECU130の機能>>
次に、図5を参照し、操舵制御ECU130の機能を説明する。
操舵制御ECU130は、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有するマイクロコンピュータおよび周辺回路等から構成されている。
図5に示すように、操舵制御ECU130は、電動パワーステアリング装置110を制御する電動パワーステアリング制御部130aと、後輪2L、2Rのトー角αTL、αTR(図1参照)を演算するトー角演算部71を備えている。
次に、図5を参照し、操舵制御ECU130の機能を説明する。
操舵制御ECU130は、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有するマイクロコンピュータおよび周辺回路等から構成されている。
図5に示すように、操舵制御ECU130は、電動パワーステアリング装置110を制御する電動パワーステアリング制御部130aと、後輪2L、2Rのトー角αTL、αTR(図1参照)を演算するトー角演算部71を備えている。
<電動パワーステアリング制御部130a>
電動パワーステアリング制御部130aは、特開2002-59855号公報の図2に記載されているような電動機4を駆動制御するための目標電流信号を設定し、その信号をイナーシャ補正し、さらにダンピング補正し、補正された目標電流で電動機駆動回路23の出力電流をフィードバック制御して、電動機駆動回路23にDUTY(DU、DV、DW)信号を出力する。
電動パワーステアリング制御部130aは、特開2002-59855号公報の図2に記載されているような電動機4を駆動制御するための目標電流信号を設定し、その信号をイナーシャ補正し、さらにダンピング補正し、補正された目標電流で電動機駆動回路23の出力電流をフィードバック制御して、電動機駆動回路23にDUTY(DU、DV、DW)信号を出力する。
<トー角演算部71>
次に、図5を参照し、リア制御角であるトー角αTL、αTRを演算するトー角演算部71について説明する。
図5に示すように、トー角演算部71は、車速を表す車速信号VS、操向ハンドル3の操舵角θH、操舵角速度ωH等から左右の後輪2L、2Rのそれぞれのリア制御角であるトー角αTL、αTRを生成し、左右の後輪2L、2Rのそれぞれのトー角変更を制御するトー角変更制御ECU37、37にトー角αTL、αTRを入力する。
次に、図5を参照し、リア制御角であるトー角αTL、αTRを演算するトー角演算部71について説明する。
図5に示すように、トー角演算部71は、車速を表す車速信号VS、操向ハンドル3の操舵角θH、操舵角速度ωH等から左右の後輪2L、2Rのそれぞれのリア制御角であるトー角αTL、αTRを生成し、左右の後輪2L、2Rのそれぞれのトー角変更を制御するトー角変更制御ECU37、37にトー角αTL、αTRを入力する。
このトー角αT(αTL、αTR)の生成は、予め左右の後輪2L、2Rごとに設定されたトー角テーブル71aを、操向ハンドル3の操舵角θH、操舵角速度ωH、車速信号VSで表される車速等に基づいて参照し目標トー角αT0を求め、後記するように、目標トー角αT0にゲインGを乗算することにより、行われる(図7参照)。
図6は、操向ハンドル3の操舵角θHと後輪2R、2Lのトーイン、トーアウトのリア制御角であるトー角αT(αTL、αTR)との関係を示した図であり、横軸に経過時間をとっている。図6の上のグラフは、操向ハンドル3の操舵角θHを縦軸にとり、経過時間に対する操向ハンドル3の操舵角θHの変化を示しており、図6の下のグラフは、後輪2R、2Lのトー角αTを縦軸にとり、経過時間に対するトー角αTの変化を示している。
図6は、操向ハンドル3の操舵角θHと後輪2R、2Lのトーイン、トーアウトのリア制御角であるトー角αT(αTL、αTR)との関係を示した図であり、横軸に経過時間をとっている。図6の上のグラフは、操向ハンドル3の操舵角θHを縦軸にとり、経過時間に対する操向ハンドル3の操舵角θHの変化を示しており、図6の下のグラフは、後輪2R、2Lのトー角αTを縦軸にとり、経過時間に対するトー角αTの変化を示している。
図6の上のグラフの破線で示す操向ハンドル3の操舵角θHが大きい場合、図6の下のグラフの破線に示す後輪2R、2Lのトー角αTも大きく制御される。
これにより、例えば、低速でコーナリングを行なっている場合等に、後輪2R、2Lのうち内輪側のトー角αTを大きくトーアウトするとともにコーナリングにおける後輪2R、2Lのうち外輪側のトー角αTを大きくトーインして、コーナリング性を高めている。
一方、図6の上のグラフの太実線に示す操向ハンドル3の操舵角θHが小さい場合、図6の下のグラフの太実線に示す後輪2R、2Lのトー角αTがほぼゼロと小さく制御される。
これにより、例えば、低速でコーナリングを行なっている場合等に、後輪2R、2Lのうち内輪側のトー角αTを大きくトーアウトするとともにコーナリングにおける後輪2R、2Lのうち外輪側のトー角αTを大きくトーインして、コーナリング性を高めている。
一方、図6の上のグラフの太実線に示す操向ハンドル3の操舵角θHが小さい場合、図6の下のグラフの太実線に示す後輪2R、2Lのトー角αTがほぼゼロと小さく制御される。
これは、例えば、操向ハンドル3の操舵角θHが小さく四輪自動車1が直進している場合(図6の上のグラフの太実線で示す)には、車両のフラツキを防止するために後輪2R、2Lのリア制御角βをほぼゼロに制御している(図6の下のグラフの太実線で示す)。
図7は、実際に後輪2L、2Rに与えるトー角αTと、このトー角αTを求めるために用いられるゲインGと、トー角テーブル71aから求めた目標トー角αT0との関係を示すとともに、操向ハンドル3の操舵角θHと操舵角速度ωHとに対するゲインGの大きさの関係を表すゲインマップMを概念的に図示したものである。ここで、
αT(実際に与えるトー角:後輪の操舵制御量)=αT0(目標トー角)×G(ゲイン)
の関係にある。
図7は、実際に後輪2L、2Rに与えるトー角αTと、このトー角αTを求めるために用いられるゲインGと、トー角テーブル71aから求めた目標トー角αT0との関係を示すとともに、操向ハンドル3の操舵角θHと操舵角速度ωHとに対するゲインGの大きさの関係を表すゲインマップMを概念的に図示したものである。ここで、
αT(実際に与えるトー角:後輪の操舵制御量)=αT0(目標トー角)×G(ゲイン)
の関係にある。
図7のゲインマップM中の実線で示すように、操向ハンドル3の操舵角速度ωHが大きい場合、すなわち運転者が操向ハンドル3を素早く切った場合には、破線で示すように、ゲインGは1とする。これにより、運転者が操向ハンドル3を素早く切った場合、後輪2R、2Lのリア制御角であるトー角αTは、
αT=αT0×G=αT0×1=αT0
となり、操向ハンドル3の操舵角θHが中立位置に至ってもゼロとならず操舵角θHに拘らず大きく変化しないため(図7参照)、運転者が操向ハンドル3を素早くきった際に操向ハンドル3の中立位置においても後輪2R、2Lのトー角αTを有した制御が行なわれ、トー角αTの連続性が保たれ、運転中に運転者が違和感を生じることがない。
αT=αT0×G=αT0×1=αT0
となり、操向ハンドル3の操舵角θHが中立位置に至ってもゼロとならず操舵角θHに拘らず大きく変化しないため(図7参照)、運転者が操向ハンドル3を素早くきった際に操向ハンドル3の中立位置においても後輪2R、2Lのトー角αTを有した制御が行なわれ、トー角αTの連続性が保たれ、運転中に運転者が違和感を生じることがない。
これに対して、図7のゲインマップM中の実線で示す操向ハンドル3の操舵角速度ωHが小さい場合、すなわち運転者が操向ハンドル3をゆっくり切った場合には、実線で示すように、操向ハンドル3の操舵角θHが中立位置付近では、ゲインGをゼロとする。そして、操向ハンドル3の操舵角θHが中立位置(ゼロ)のから離れ操舵角θHが大きくなる、すなわち運転者が操向ハンドル3を右または左に大きく回動するに従って、1とする。
このとき、αT=αT0×G の関係にあるので、操向ハンドル3の操舵角θHが中立位置(ゼロ)付近では、リア制御角のトー角αTは、αT=αT0×0=0 となり、後輪2R、2Lがトー角αTを有しない。そして、図7のゲインマップMに示すように、操向ハンドル3の操舵角θHがゼロの中立位置付近から離れるに従って、
αT=αT0×G=αT0×1=αT0
の後輪2L、2Rのトー角αTを有する制御が行われる。
この場合、運転者が操向ハンドル3をゆっくり廻していることから、後輪2R、2Lのトー角αTの有無を敏感に感じ取ることが無く、運転に違和感を生じることがない。
αT=αT0×G=αT0×1=αT0
の後輪2L、2Rのトー角αTを有する制御が行われる。
この場合、運転者が操向ハンドル3をゆっくり廻していることから、後輪2R、2Lのトー角αTの有無を敏感に感じ取ることが無く、運転に違和感を生じることがない。
<トー角変更制御ECU37>
次に、図8を参照し、トー角変更制御ECU37の詳細な構成を説明する。なお、図8は、実施形態に係るトー角変更装置120L、120Rのトー角変更制御ECU37の制御機能のブロック構成図である。
図8に示すように、トー角変更制御ECU37は、アクチュエータ30(図1、図3参照)を稼動させる電動機31を駆動制御する機能を有し、制御部81と電動機駆動回路83とを有し構成されている。
また、図1に示すように、左右の各トー角変更制御ECU37は、操舵制御ECU130と通信線を介して接続されるとともに、他方のトー角変更制御ECU37とも通信線を介して接続されている。
次に、図8を参照し、トー角変更制御ECU37の詳細な構成を説明する。なお、図8は、実施形態に係るトー角変更装置120L、120Rのトー角変更制御ECU37の制御機能のブロック構成図である。
図8に示すように、トー角変更制御ECU37は、アクチュエータ30(図1、図3参照)を稼動させる電動機31を駆動制御する機能を有し、制御部81と電動機駆動回路83とを有し構成されている。
また、図1に示すように、左右の各トー角変更制御ECU37は、操舵制御ECU130と通信線を介して接続されるとともに、他方のトー角変更制御ECU37とも通信線を介して接続されている。
制御部81は、CPU、RAM、ROM等を備えるマイクロコンピュータおよび周辺回路等から構成されており、目標電流算出部81a、電動機制御信号生成部81c、自己診断部81dを有している。
一方の右後輪2Rの側のトー角変更制御ECU37の目標電流算出部81aは、操舵制御ECU130からの通信線を介して入力される車速を示す車速信号VSと、操向ハンドル3の操舵角θHと、後輪2Rのトー角αTRと、ストロークセンサ38から得られる現在の後輪2Rのトー角αRとに基づいて、目標電流信号を算出して、電動機制御信号生成部81cに出力する。
一方の右後輪2Rの側のトー角変更制御ECU37の目標電流算出部81aは、操舵制御ECU130からの通信線を介して入力される車速を示す車速信号VSと、操向ハンドル3の操舵角θHと、後輪2Rのトー角αTRと、ストロークセンサ38から得られる現在の後輪2Rのトー角αRとに基づいて、目標電流信号を算出して、電動機制御信号生成部81cに出力する。
他方の左後輪2Lの側のトー角変更制御ECU37の目標電流算出部81aは、操舵制御ECU130からの通信線を介して入力される車速信号VSと、操向ハンドル3の操舵角θHと、後輪2Lのトー角αTLと、ストロークセンサ38から得られる現在の後輪2Lのトー角αLとに基づいて、目標電流信号を算出して、電動機制御信号生成部81cに出力する。
ここで、目標電流信号とは、アクチュエータ30を所望の速度で所望の作動量、すなわち後輪2L、2Rを所望のトー角αTL、αTRにする伸縮量に設定するのに必要な電流信号である。
このように、目標電流算出部81aにおいて所望のトー角αTL、αTRに対して現在のトー角αR、αLをフィードバックして、目標電流信号を補正することにより、後輪2L、2Rの転舵に要する電流値が、車速、路面環境、車両の運動状態、タイヤの摩耗状態等によって変化するのをフィードバックして、所望のトー角αTL、αTRを所望のトー角変化速度で設定制御することができる。
このように、目標電流算出部81aにおいて所望のトー角αTL、αTRに対して現在のトー角αR、αLをフィードバックして、目標電流信号を補正することにより、後輪2L、2Rの転舵に要する電流値が、車速、路面環境、車両の運動状態、タイヤの摩耗状態等によって変化するのをフィードバックして、所望のトー角αTL、αTRを所望のトー角変化速度で設定制御することができる。
電動機制御信号生成部81cは、目標電流算出部81aから目標電流が入力され、電動機駆動回路83に電動機制御信号を出力する。この電動機制御信号は、電動機31に供給する電流値と電流を流す方向を含む信号である。電動機駆動回路83は、FET(Field Effect Transistor)のブリッジ回路等で構成され、電動機制御信号に基づいて電動機31に電動機電流を供給する。
また、図8に示すように、自己診断部81dは、自身が属する側のトー角変更装置120Lまたは120Rのストロークセンサ38(図4、図5参照)の位置信号や電動機駆動回路83のホール素子からの検出信号、温度センサ31a(図4参照)からの温度信号、目標電流算出部81aの状態監視に基づき、異常状態を検出したか否かを判定し、目標電流算出部81aにフィードバックする。
<<操舵角θH、操舵角速度ωHに応じた後輪2R、2Lのトー角αTの演算>>
次に、図7を用いて概要を説明した操向ハンドル3の操舵角θH、操舵角速度ωHに応じた後輪2R、2Lのトー角αTの演算処理の流れについて、図9に従って説明する。
なお、図9は、操向ハンドル3の操舵角θH、操舵角速度ωHに応じた後輪2R、2Lのトー角αTの演算処理の流れを示す流れ図であり、図9中の破線内の処理は、トー角αTに影響するゲインG(図7参照)の急激な変化を防止するための処理である。
このトー角αTの演算処理は、操舵制御ECU130におけるトー角演算部71において行なわれるものであり、トー角テーブル71aから求めた目標トー角αT0に乗算するゲインGを、操向ハンドル3の操舵角θH、操舵角速度ωHに応じて求めることが主体となる。
次に、図7を用いて概要を説明した操向ハンドル3の操舵角θH、操舵角速度ωHに応じた後輪2R、2Lのトー角αTの演算処理の流れについて、図9に従って説明する。
なお、図9は、操向ハンドル3の操舵角θH、操舵角速度ωHに応じた後輪2R、2Lのトー角αTの演算処理の流れを示す流れ図であり、図9中の破線内の処理は、トー角αTに影響するゲインG(図7参照)の急激な変化を防止するための処理である。
このトー角αTの演算処理は、操舵制御ECU130におけるトー角演算部71において行なわれるものであり、トー角テーブル71aから求めた目標トー角αT0に乗算するゲインGを、操向ハンドル3の操舵角θH、操舵角速度ωHに応じて求めることが主体となる。
図9に示すように、まず、操向ハンドル3の操舵角θHが所定値Aより大きいか否か判断される(図9のS1)。ここで、所定値Aとは、例えば、直進走行からカーブを切る等の閾値が相当し、例えば、30度程度が設定される。
図9のS1において、操向ハンドル3の操舵角θHが所定値Aより大きいと判断された場合(図9のS1でYes)には、ゲイン候補判別フラグに“1”を立てる(図9のS2)。
図9のS1において、操向ハンドル3の操舵角θHが所定値Aより大きいと判断された場合(図9のS1でYes)には、ゲイン候補判別フラグに“1”を立てる(図9のS2)。
一方、図9のS1において、操向ハンドル3の操舵角θHが所定値A以下と判断された場合(図9のS1でNo)には、図9のS3において、操向ハンドル3の操舵角θHが所定値Bより小さいか否か判断される。ここで、所定値Bとは、例えば、直進走行時に少し操向ハンドル3をきる場合等の閾値が相当し、例えば、10~15度程度が設定される。
図9のS3において、操向ハンドル3の操舵角θHが所定値B以上であると判断された場合(図9のS3でNo)、図9のS6に移行する。
図9のS3において、操向ハンドル3の操舵角θHが所定値B以上であると判断された場合(図9のS3でNo)、図9のS6に移行する。
一方、図9のS3において、操向ハンドル3の操舵角θHが所定値Bより小さいと判断された場合(図9のS3でYes)、図9のS4において、操向ハンドル3を操舵する操舵角速度ωHが所定値Cより小さいか否か判断される。ここで、所定値Cとは、例えば、操向ハンドル3を大きく右から左にきった場合等において操向ハンドル3の中立位置近傍で後輪2R、2Lのトー角αTを無くしたとき、運転者が違和感を感ずるか否かの閾値であり、走行条件などにより適宜設定される。
図9のS4において、操向ハンドル3の操舵角速度ωHが所定値Cより小さいと判断された場合(図9のS4でYes)、ゲイン候補判別フラグに“0”を設定する(図9のS5)。
図9のS4において、操向ハンドル3の操舵角速度ωHが所定値Cより小さいと判断された場合(図9のS4でYes)、ゲイン候補判別フラグに“0”を設定する(図9のS5)。
一方、図9のS4において、操向ハンドル3の操舵角速度ωHが所定値C以上と判断された場合(図9のS4でNo)、図9のS6において、ゲイン候補判別フラグに、前回の状態を保持する。例えば、前回設定されたゲイン候補判別フラグが“1”である場合には、ゲイン候補判別フラグに“1”を保持し、前回設定されたゲイン候補判別フラグが“0”である場合には、ゲイン候補判別フラグに“0”を保持する。これによって、前回設定されたトー角αTとの継続性が維持されるので、トー角αTの急な変化を抑制できる。
図9のS1~S6までの処理により、運転者が操向ハンドル3を大きく切って、一旦、ゲイン候補判別フラグ“1”が設定される(図9のS1、S2参照)と、操向ハンドル3を中心に戻して、しかも、その位置で止めない限り(図9のS1からS5参照)、ゲイン候補判別フラグ“1”が設定されたままとなり(図9のS2、S6参照)、後記するように、ゲイン候補G0に1が設定され、その結果、ゲインGに1が設定される(後記の図9のS8、S10、S11参照)。
続いて、前記の図9のS2、図9のS5、および図9のS6から、図9のS7に移行し、ゲイン候補判別フラグが“1”か否かが判断される。
図9のS7において、ゲイン候補判別フラグが“1”であると判断された場合(図9のS7でYes)、すなわち、操向ハンドル3が大きく切られ操向ハンドル3の操舵角θHが大きい(図9のS1、S2参照)か、或いは、操向ハンドル3の操舵のスピードが大きく操舵角速度ωHが大きい場合等(図9のS4、S6参照)に、ゲイン候補G0に1が設定される(図9のS8)。
図9のS7において、ゲイン候補判別フラグが“1”であると判断された場合(図9のS7でYes)、すなわち、操向ハンドル3が大きく切られ操向ハンドル3の操舵角θHが大きい(図9のS1、S2参照)か、或いは、操向ハンドル3の操舵のスピードが大きく操舵角速度ωHが大きい場合等(図9のS4、S6参照)に、ゲイン候補G0に1が設定される(図9のS8)。
一方、図9のS7において、ゲイン候補判別フラグが“1”でないと判断された場合(図9のS7でNo)、すなわち、操向ハンドル3が中立位置近くで操向ハンドル3の操舵角θHが小さい(図9のS1、S3)とともに、操向ハンドル3の操舵のスピードが小さく操舵角速度ωHが小さいとき(図9のS4)、ゲイン候補G0として、図10に示す操向ハンドル3の操舵角速度ωHが小さい場合に予め定められるゲインマップMgにより検索されるマップ検索値が設定される。図10に示すように、操向ハンドル3の中立点付近では、ゲイン候補G0を操向ハンドル3の操舵角θHに応じて小さく絞る(図9のS9)。なお、図10は、操向ハンドル3の操舵角速度ωHが小さい場合に用いられる操向ハンドル3の操舵角θHとゲイン候補G0の関係を表すゲインマップMgを示す図であり、横軸に操向ハンドル3の操舵角θHをとり、縦軸にゲイン候補G0をとっている。
続いて、ゲインGの急激な変化を防止するためのS10からS13までの処理(図9中、破線で囲んで示す)に移行する。
図9のS10において、ゲイン候補G0が前回設定されたゲインであるゲイン前回値以上か否か判断される。
図9のS10において、ゲイン候補G0が前回設定されたゲイン前回値以上であると判断された場合(図9のS10でYes)、図9のS11において、ゲインGとして、ゲイン候補G0の値が設定される(図9のS11)。
図9のS10において、ゲイン候補G0が前回設定されたゲインであるゲイン前回値以上か否か判断される。
図9のS10において、ゲイン候補G0が前回設定されたゲイン前回値以上であると判断された場合(図9のS10でYes)、図9のS11において、ゲインGとして、ゲイン候補G0の値が設定される(図9のS11)。
一方、図9のS10において、ゲイン候補G0が前回ゲインに設定されたゲイン前回値より小であると判断された場合(図9のS10でNo)、図9のS12において、(ゲイン前回値-ゲイン候補G0)の値が、所定値Dより小さいか否か判断される(図9のS12)。
この図9のS12においては、ゲインGが急減しゲインGを掛けて求められるトー角αTの急な減少を防止することを目的に、ゲイン前回値とゲイン候補G0との差分である(ゲイン前回値-ゲイン候補G0)の値が、所定値Dより小さいか否かを判別している。
この図9のS12においては、ゲインGが急減しゲインGを掛けて求められるトー角αTの急な減少を防止することを目的に、ゲイン前回値とゲイン候補G0との差分である(ゲイン前回値-ゲイン候補G0)の値が、所定値Dより小さいか否かを判別している。
ここで、所定値Dは、ゲインGの変化(図7参照)に係わる走行時のトー角αTの変化が運転者に違和感を与えないか否かを判断基準とする閾値が適宜設定される。
図9のS12において、(ゲイン前回値-ゲイン候補G0)の値が、所定値Dより小さいと判断される場合(図9のS12でYes)、図9のS11において、ゲインGとして、ゲイン候補G0に設定された値が設定される。
図9のS12において、(ゲイン前回値-ゲイン候補G0)の値が、所定値Dより小さいと判断される場合(図9のS12でYes)、図9のS11において、ゲインGとして、ゲイン候補G0に設定された値が設定される。
一方、図9のS12において、(ゲイン前回値-ゲイン候補G0)の値が、所定値D以上であると判断される場合(図9のS12でNo)、図9のS13において、ゲインGとして、(ゲイン前回値-D)の値が設定される。これにより、操向ハンドル3を急激に中立位置に戻して止めた場合にも、ゲインGのゲイン前回値からの低下が所定値Dに限定されるので、ゲインGの急減少を防ぎトー角αTの急減が抑制され、運転中に違和感が生じることを防止できる。
続いて、図9のS14において、図9のS11または図9のS13で求めたゲインGを、トー角テーブル71aを参照し求めた目標トー角αT0に乗算し、後輪2R、2Lのトーイン、トーアウトのリア制御角であるトー角αT(αTL、αTR)を算出する。
以上が、操向ハンドル3の操舵角θHおよび操舵角速度ωHに応じた後輪2R、2Lのトー角αTの演算処理の流れである。
以上が、操向ハンドル3の操舵角θHおよび操舵角速度ωHに応じた後輪2R、2Lのトー角αTの演算処理の流れである。
上記構成によれば、後輪2L、2Rのトー角αTL、αTRに、操向ハンドル3の操舵角θHと操舵角速度ωHとに応じて変化する制御のためのゲインGに可変不感帯を設けている。
そのため、直進中に操向ハンドル3を左右に多少揺すっても後輪2L、2Rが操舵されないとともに、操向ハンドル3を大きく速く廻す切り返し時には不感帯の影響を受けることなく、運転状態に応じた後輪2L、2Rのトー角αTL、αTRの制御が行える。
そのため、運転状態に拘わらず、後輪2L、2Rのトー角αTL、αTRの制御において、運転中に違和感が生じることなく、快適な運転が可能となる。
そのため、直進中に操向ハンドル3を左右に多少揺すっても後輪2L、2Rが操舵されないとともに、操向ハンドル3を大きく速く廻す切り返し時には不感帯の影響を受けることなく、運転状態に応じた後輪2L、2Rのトー角αTL、αTRの制御が行える。
そのため、運転状態に拘わらず、後輪2L、2Rのトー角αTL、αTRの制御において、運転中に違和感が生じることなく、快適な運転が可能となる。
また、左右の後輪2R、2Lが各々独立して制御可能であるので、上記制御に加え、コーナリング時の後輪2R、2Lの制御等も行え、後輪2R、2Lの制御が柔軟かつ多様に行える。
また、左右の後輪2R、2Lは、各々アクチュエータ30を有しているので、左右の後輪2R、2Lを、各アクチュエータ30を介して独立して制御できる。
なお、操向ハンドル3の操舵角θHは、ラック軸8の位置から決定してもよいし、操舵角速度ωHは、ラック軸8の移動速度から決定してもよい。
また、左右の後輪2R、2Lは、各々アクチュエータ30を有しているので、左右の後輪2R、2Lを、各アクチュエータ30を介して独立して制御できる。
なお、操向ハンドル3の操舵角θHは、ラック軸8の位置から決定してもよいし、操舵角速度ωHは、ラック軸8の移動速度から決定してもよい。
Claims (4)
- ハンドルの操舵角に応じて後輪を操舵可能とする車両の後輪操舵装置であって、
前記操舵角が小さい領域においては、前記後輪の操舵制御量を前記操舵角の他の領域より小さく制御する低減制御を行なう一方、
前記操舵角の角速度が大きい状態においては、前記操舵角が前記操舵角の小さい領域に
あっても、前記低減制御を行なわないか、または、前記低減制御による前記後輪の操舵制御量の低減幅を小さくする構成とした
ことを特徴とする車両の後輪操舵装置。 - 前記低減制御において、前記操舵角が小さくなるに従って前記後輪の操舵制御量が低下する変化率を制限するよう制御する
ことを特徴とする請求の範囲第1項に記載の車両の後輪操舵装置。 - 左右の前記後輪は、各々独立して制御可能である
ことを特徴とする請求の範囲第1項または第2項に記載の車両の後輪操舵装置。 - 前記左右の後輪は、各々アクチュエータを有する
ことを特徴とする請求の範囲第3項に記載の車両の後輪操舵装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09712371A EP2251246B1 (en) | 2008-02-22 | 2009-02-10 | Steering system for rear wheels of a vehicle |
US12/918,515 US8364350B2 (en) | 2008-02-22 | 2009-02-10 | Steering system for rear wheels of vehicle |
AT09712371T ATE539944T1 (de) | 2008-02-22 | 2009-02-10 | Hinterradlenkvorrichtung für ein fahrzeug |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-041094 | 2008-02-22 | ||
JP2008041094A JP5144304B2 (ja) | 2008-02-22 | 2008-02-22 | 車両の後輪操舵装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009104497A1 true WO2009104497A1 (ja) | 2009-08-27 |
Family
ID=40985380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/052207 WO2009104497A1 (ja) | 2008-02-22 | 2009-02-10 | 車両の後輪操舵装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8364350B2 (ja) |
EP (1) | EP2251246B1 (ja) |
JP (1) | JP5144304B2 (ja) |
AT (1) | ATE539944T1 (ja) |
WO (1) | WO2009104497A1 (ja) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5314670B2 (ja) * | 2008-03-12 | 2013-10-16 | 本田技研工業株式会社 | 車両のトー角制御装置 |
JP4977152B2 (ja) * | 2009-02-10 | 2012-07-18 | 本田技研工業株式会社 | 後輪操舵制御装置 |
EP2707269A4 (en) | 2011-05-12 | 2015-07-22 | Carlos A Saez | METHOD AND DEVICE FOR VARIABLE STEERING IN ELECTRIC STEERING SYSTEMS WITH REDUCED EFFORT |
CN102303490B (zh) * | 2011-06-28 | 2013-04-24 | 广西工学院 | 基于电动转向的汽车防爆胎控制器 |
CN105073556B (zh) * | 2013-03-27 | 2017-08-15 | 丰田自动车株式会社 | 车辆的转向控制装置 |
US8825303B1 (en) * | 2013-03-28 | 2014-09-02 | Snap-On Incorporated | Wheel alignment apparatus and method for vehicles having electro-mechanical power steering |
US9969425B2 (en) * | 2013-05-20 | 2018-05-15 | Robert Bosch Gmbh | Rear wheel steering control |
KR102159555B1 (ko) * | 2014-05-07 | 2020-09-24 | 주식회사 만도 | 후륜 조향각 판단방법 |
JP6909071B2 (ja) * | 2017-06-23 | 2021-07-28 | Ntn株式会社 | 補助転舵機能付ハブユニットおよび車両 |
FR3071472B1 (fr) * | 2017-09-27 | 2019-10-11 | Grv | Vehicule agricole avec correction de glissement par les roues arriere |
JP7077738B2 (ja) * | 2018-04-11 | 2022-05-31 | 株式会社ジェイテクト | 四輪操舵装置 |
KR20190119295A (ko) * | 2018-04-12 | 2019-10-22 | 현대모비스 주식회사 | 분리형 후륜 조향 제어 장치 및 방법 |
WO2020130479A1 (ko) * | 2018-12-19 | 2020-06-25 | 주식회사 만도 | 조향 제어 장치와 조향 제어 방법, 및 조향 장치 |
JPWO2020194667A1 (ja) * | 2019-03-28 | 2021-04-08 | 株式会社ショーワ | 操舵制御装置、電動パワーステアリング装置 |
US11685434B2 (en) | 2021-01-11 | 2023-06-27 | Hyundai Mobis Co., Ltd. | Method for rear steering control of a vehicle |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62120274A (ja) * | 1985-11-19 | 1987-06-01 | Toyota Motor Corp | 後輪操舵装置 |
JPH02204175A (ja) * | 1989-01-31 | 1990-08-14 | Kayaba Ind Co Ltd | 後輸操舵装置 |
JPH02241880A (ja) * | 1989-03-16 | 1990-09-26 | Kayaba Ind Co Ltd | 後輪操舵装置 |
JPH02246874A (ja) * | 1989-03-20 | 1990-10-02 | Kayaba Ind Co Ltd | 後輪操舵装置 |
JPH02246873A (ja) * | 1989-03-17 | 1990-10-02 | Kayaba Ind Co Ltd | 後輪操舵装置 |
JPH0357771A (ja) * | 1989-07-25 | 1991-03-13 | Kayaba Ind Co Ltd | 電動式独立型後輪転舵装置 |
JPH04310468A (ja) * | 1991-04-08 | 1992-11-02 | Mazda Motor Corp | 車両の後輪操舵装置 |
JPH05330444A (ja) | 1991-08-30 | 1993-12-14 | Mazda Motor Corp | 車両の4輪操舵装置 |
JP2000118429A (ja) * | 1998-10-12 | 2000-04-25 | Honda Motor Co Ltd | 後輪駆動車の後輪操舵装置 |
JP2002059855A (ja) | 2000-08-23 | 2002-02-26 | Honda Motor Co Ltd | 電動パワーステアリング装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0215352B1 (en) * | 1985-08-30 | 1990-01-31 | Mazda Motor Corporation | Torque control system for vehicles |
JPH0195978A (ja) * | 1987-10-09 | 1989-04-14 | Fuji Heavy Ind Ltd | 自動車の後輪操舵装置 |
JP2505238B2 (ja) * | 1987-11-30 | 1996-06-05 | 日産自動車株式会社 | 4輪操舵制御装置 |
JP2742696B2 (ja) * | 1988-11-02 | 1998-04-22 | 富士重工業株式会社 | 自動車の後輪操舵装置 |
JP2661342B2 (ja) * | 1990-07-27 | 1997-10-08 | トヨタ自動車株式会社 | 四輪操舵車の後輪操舵制御装置 |
US5386365A (en) * | 1991-03-22 | 1995-01-31 | Mazda Motor Corporation | Rear wheel steering system for vehicle |
JPH09226559A (ja) * | 1996-02-23 | 1997-09-02 | Toyota Motor Corp | 制駆動力制御用基準車輪速度演算装置 |
US6962356B2 (en) * | 2002-05-08 | 2005-11-08 | Mando Corporation | Active toe angle adjustment mechanism |
-
2008
- 2008-02-22 JP JP2008041094A patent/JP5144304B2/ja not_active Expired - Fee Related
-
2009
- 2009-02-10 US US12/918,515 patent/US8364350B2/en active Active
- 2009-02-10 EP EP09712371A patent/EP2251246B1/en not_active Not-in-force
- 2009-02-10 WO PCT/JP2009/052207 patent/WO2009104497A1/ja active Application Filing
- 2009-02-10 AT AT09712371T patent/ATE539944T1/de active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62120274A (ja) * | 1985-11-19 | 1987-06-01 | Toyota Motor Corp | 後輪操舵装置 |
JPH02204175A (ja) * | 1989-01-31 | 1990-08-14 | Kayaba Ind Co Ltd | 後輸操舵装置 |
JPH02241880A (ja) * | 1989-03-16 | 1990-09-26 | Kayaba Ind Co Ltd | 後輪操舵装置 |
JPH02246873A (ja) * | 1989-03-17 | 1990-10-02 | Kayaba Ind Co Ltd | 後輪操舵装置 |
JPH02246874A (ja) * | 1989-03-20 | 1990-10-02 | Kayaba Ind Co Ltd | 後輪操舵装置 |
JPH0357771A (ja) * | 1989-07-25 | 1991-03-13 | Kayaba Ind Co Ltd | 電動式独立型後輪転舵装置 |
JPH04310468A (ja) * | 1991-04-08 | 1992-11-02 | Mazda Motor Corp | 車両の後輪操舵装置 |
JPH05330444A (ja) | 1991-08-30 | 1993-12-14 | Mazda Motor Corp | 車両の4輪操舵装置 |
JP2000118429A (ja) * | 1998-10-12 | 2000-04-25 | Honda Motor Co Ltd | 後輪駆動車の後輪操舵装置 |
JP2002059855A (ja) | 2000-08-23 | 2002-02-26 | Honda Motor Co Ltd | 電動パワーステアリング装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2251246A1 (en) | 2010-11-17 |
EP2251246B1 (en) | 2012-01-04 |
US8364350B2 (en) | 2013-01-29 |
EP2251246A4 (en) | 2011-03-30 |
US20100332083A1 (en) | 2010-12-30 |
ATE539944T1 (de) | 2012-01-15 |
JP5144304B2 (ja) | 2013-02-13 |
JP2009196520A (ja) | 2009-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5144304B2 (ja) | 車両の後輪操舵装置 | |
JP4528327B2 (ja) | 操舵システム | |
JP5314670B2 (ja) | 車両のトー角制御装置 | |
JP3493568B2 (ja) | 自動車の舵取装置 | |
JP5433023B2 (ja) | 車両の後輪トー角制御装置 | |
JP5351517B2 (ja) | 車両制御システム | |
JP5432990B2 (ja) | 後輪トー角制御装置および後輪トー角制御装置における電動アクチュエータの基準位置較正方法 | |
JP4505508B2 (ja) | 後輪トー角可変車両 | |
JP5189780B2 (ja) | 操舵システム | |
JP4996280B2 (ja) | トー角変更装置 | |
JP4359315B2 (ja) | 車両の全輪操舵装置 | |
JP5038997B2 (ja) | 車両用操舵装置 | |
JP4956477B2 (ja) | 後輪トー角制御装置 | |
JP5313714B2 (ja) | 電動パワーステアリング装置 | |
JP2009161099A (ja) | 後輪トー角可変車両 | |
JP2007253647A (ja) | 車両の走行制御装置 | |
JP2009126467A (ja) | 車両の後輪トー角左右独立制御装置 | |
JP5326019B2 (ja) | 後輪トー角制御装置 | |
JP4504991B2 (ja) | 操舵システム | |
JP2010058588A (ja) | 操舵装置 | |
JP2023028001A (ja) | ステアリングシステム | |
JP2009214774A (ja) | 後輪転舵制御装置 | |
JP2006062454A (ja) | 車両用サスペンション装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09712371 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12918515 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009712371 Country of ref document: EP |