[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2001011667A1 - Procede de transfert d'une couche mince comportant une etape de surfragilisation - Google Patents

Procede de transfert d'une couche mince comportant une etape de surfragilisation Download PDF

Info

Publication number
WO2001011667A1
WO2001011667A1 PCT/FR2000/002239 FR0002239W WO0111667A1 WO 2001011667 A1 WO2001011667 A1 WO 2001011667A1 FR 0002239 W FR0002239 W FR 0002239W WO 0111667 A1 WO0111667 A1 WO 0111667A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin layer
source substrate
separation
thickness
substrate
Prior art date
Application number
PCT/FR2000/002239
Other languages
English (en)
Inventor
Chrystelle Lagahe
Alain Soubie
Michel Bruel
Bernard Aspar
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to JP2001516228A priority Critical patent/JP2003506892A/ja
Priority to EP00956612A priority patent/EP1203403A1/fr
Publication of WO2001011667A1 publication Critical patent/WO2001011667A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present invention relates to a method of transferring a thin layer from a substrate, called source substrate, to a support called target support.
  • the invention finds applications in particular in the fields of microelectronics, micro-mechanics, integrated optics and integrated electronics.
  • the thin layer which is made of a material selected for its physical properties
  • a support in order to form a stack with several layers.
  • the transfer of a layer makes it possible in particular to associate in the same structure parts which a priori exhibit incompatibilities such as a significant difference in coefficients of thermal expansion.
  • the "Smart-cut” process is essentially based on the implantation of hydrogen or another gas in neutral or ionic form in a substrate so as to form there a weakened cleavage zone.
  • the cleavage zone extends, substantially parallel to its surface and is located in the substrate at a depth fixed by the implantation energy.
  • the cleavage zone thus delimits in the substrate a thin surface layer which extends in thickness from the cleavage zone to the surface of the substrate.
  • a second step comprises the adhesion of the source substrate with a target support so that the thin layer is integral with the target support.
  • the fixing of the thin layer on the target support can take place by means of an adhesive and / or by means of a bonding layer. I t may also take place by direct molecular bonding between the substrate surface and the surface o f the target medium.
  • a final step in the process consists in fracturing the substrate according to the cleavage zone in order to separate the thin layer therefrom. This then remains solid with the target support.
  • the fracture (or cleavage) of the substrate is caused by supplying energy in the form of a heat treatment.
  • the implantation conditions define the cleavage zone and condition the separation of the thin layer from the substrate.
  • document (2) which proposes a process derived from that of document (1).
  • Document (2) provides a method for obtaining the separation of its original substrate from a thin film which is self-supporting. For this, it is necessary that the implanted gaseous species are at a sufficient depth and / or that a layer of a material is deposited, after the implantation step, making it possible to stiffen the structure to obtain separation at of the implanted area without having blisters.
  • the document (4) which also describes a process based on the principle established by the document (1), shows that the thermal budget used to cause the fracture of the source substrate depends on the thermal budgets of all the heat treatments imposed on the source substrate from implantation to fracture.
  • thermal budget is meant the couple of heat treatment time / heat treatment temperature.
  • a solution to this problem then consists in modifying the implantation conditions by carrying out an overdose of the implanted species. Such an overdose in fact makes it possible to reduce the thermal budget of the separation fracture (cleavage).
  • a dose of implanted hydrogen ions of 1.10 17 / cm 2 instead of 6.10 16 / cm 2 , allows for a heat treatment duration of a few hours to lower the temperature from 400 ° C to 280 ° C.
  • the solution of overdosing the implantation is not always satisfactory because of the difference in coefficient of thermal expansion that may exist between the substrate and the support.
  • the thermal budget necessary for the separation can be such that it causes the separation of the substrate and the support and / or the breaking of the substrate and / or the support in their volume.
  • Disclosure of the invention aims to provide a method of transferring a thin layer, not presenting the difficulties and limitations of the methods indicated above.
  • One goal is in particular to propose such a process which implements a reduced thermal budget see null to obtain a separation fracture of the thin layer.
  • Another object is to propose a method suitable for the transfer of a thin layer onto a target support, in which the materials of the thin layer and of the target support have different coefficients of thermal expansion.
  • Yet another object is to propose a transfer process in which an excellent surface condition of the source substrate (without blisters) can be preserved so as to allow good adhesion with the target support, with or without the addition of a binder (glue), and by allowing a very weakened cleavage zone.
  • an object of the invention is to propose a transfer method making it possible to obtain, after transfer, a thin layer on the target support, which has a free surface with low roughness.
  • the invention more specifically relates to a process for transferring a thin layer from a source substrate to a target support comprising, in order, the following steps: a) implantation of ions or gaseous species in the source substrate so as to form there a zone, called a cleavage zone, which delimits said thin layer in the source substrate, b) the transfer of the source substrate to the target support and the joining of the thin layer with the target support, c) separation of the thin layer from the source substrate according to the cleavage zone.
  • the process comprises, before step b),
  • the step of forming a film thickness consists in performing step a) of implantation so as to obtain the cleavage zone at said thickness, the film then being formed by the thin layer.
  • the step of forming a film thickness consists in carrying out a step of forming a so-called thickener layer on the thin layer, the thin layer and the layer of thickness then forming the film.
  • the limiting thickness of the film is the thickness making it possible to stiffen the structure in order to obtain the separation of the film at the level of the cleavage zone without the appearance of blisters on the surface. It is this limiting thickness which makes it possible to obtain self-supporting films. This thickness depends in particular on the mechanical properties of the materials, but also on the separation conditions of step c) such as for example the rise in temperature of the heat treatment.
  • the invention also comprises the production, before step b), of all or part of microelectric and / or micromechanical and / or optoelectronic components.
  • the separation of the thin layer from the source substrate, carried out in step c) can take place under the effect of a heat treatment, under the effect of mechanical forces or under the effect of these actions. combined.
  • the thermal budget and / or the mechanical forces used during step c) for the separation fracture can be particularly reduced. This has the advantage of not causing a break in adhesion between the thin film and the target support, even in the event of a difference in the coefficients of thermal expansion of the materials brought into contact.
  • Another advantage of the invention is to eliminate or reduce the mechanical forces exerted on the parts in contact and thus avoid damaging them. This facilitates separation.
  • step of over-embrittlement is not limited by the effects of differential expansion constraints insofar as this step is carried out before the transfer of the source substrate to the target support (step b).
  • the over-embrittlement comprises a heat treatment implemented with a thermal budget greater than or equal to 50%, and preferably greater than 60%, of an overall thermal budget allowing the separation.
  • the overall thermal budget considered here takes into account not only the heat treatments carried out within the strict framework of the process of the invention, but also includes any heat treatments used, for example, for the production of components or for the deposition of materials on the thin layer between steps a) and b).
  • steps c) and the over-embrittlement step may include an exercise of mechanical forces.
  • thermal separation treatment can also be chosen sufficient to cause during step c) a separation of the thin layer, by simple separation of the source substrate and the target support or a total separation only by this thermal treatment.
  • the implantation step a) makes it possible to form cavities located in the cleavage zone in the source substrate.
  • the cavities can be in different forms. They can be spherical and / or flattened with a thickness of only a few inter-atomic distances. Furthermore, the cavities may contain a free gas phase and / or gas atoms from the implanted ions, fixed on the atoms of the material forming the walls of the cavities or contain little or even no gas.
  • This phenomenon also makes it possible to obtain, after the transfer and the separation fracture, a free surface of the thin layer with low roughness.
  • the thickener layer for example made of Si, Si0 2 , Si 3 N 4 or even Sic, covers the thin layer in whole or in part.
  • the thickness of the thickener layer to obtain a film thickness is chosen for example from a range from 3 to 10 ⁇ m for a Si0 2 thickener.
  • a layer used as a thickener layer may be a layer which is also used in whole or in part for producing electronic, optoelectronic, or mechanical components on the surface of the thin layer.
  • the invention also relates to a method of transferring a thin layer from a source substrate comprising the following steps: a) implantation of ions or gaseous species in the source substrate so as to form a zone therein, known as cleavage, which delimits said thin layer in the source substrate, b) separation of the thin layer from the source substrate according to the cleavage zone, in accordance with the invention, the method further comprises, prior to step b):
  • the invention makes it possible to obtain very significant overgreenings, which can range up to 80 to 90% of the complete separation thanks to the presence of a thickener.
  • This thickener is deposited on the surface with the aim of increasing the overgreening.
  • FIG. 1 is a schematic section of a source substrate and illustrates an ion implantation operation.
  • - Figure 2 is a schematic section of the source substrate of Figure 1 and illustrates the formation of a thick layer.
  • - Figure 3 is a schematic section of the source substrate of Figure 2 and illustrates a weakening step.
  • FIG. 4 is a schematic section of a structure formed from the source substrate of Figure 3, transferred to a target support.
  • Figure 5 is a schematic section of the structure of Figure 4 after separation fracture of the source substrate.
  • the following description relates to a transfer of a thin layer of silicon onto a target support of molten silica (incorrectly called quartz).
  • the invention can however be implemented for other solid materials, whether they are crystalline or not. These materials can be dielectric, conductive, semi-insulating or semi-conducting.
  • the target support can be a final or intermediate support, such as a handle, a solid substrate or a multilayer substrate.
  • the process can in particular be used for the transfer of layers of non-semiconductor, ferroelectric, piezoelectric materials such as for example LiNb0 3 or III-V semiconductors such as AsGa, InP on silicon or SiC.
  • non-semiconductor, ferroelectric, piezoelectric materials such as for example LiNb0 3 or III-V semiconductors such as AsGa, InP on silicon or SiC.
  • FIG. 1 shows an initial silicon substrate 10. This undergoes ion implantation hydrogen indicated with arrows 12. This layout corresponds to step a ⁇ ) of the process.
  • the implantation carried out for example with a dose of 6.10 16 / cm 2 and an energy of 70 keV, makes it possible to form microcavities 14 in the substrate 10 at a depth of the order of 7000 A.
  • This depth also corresponds to the thickness of a thin layer 18. This is delimited on the surface of the substrate by an area 16, called a cleavage area, comprising the microcavities 14.
  • the thin surface layer 18 may be subjected to other treatments, known per se, for the formation in this layer of electronic, optical, or mechanical components. These components are not shown in the figure for reasons of clarity. In this case, these stages are taken into account for the overgreening.
  • FIG. 2 which corresponds to the step of using a thickness of the process, shows the deposition of a layer of silicon oxide 20 with a thickness of the order of, or greater than 5 ⁇ m, on the thin layer 18.
  • the silicon oxide layer is for example deposited by a chemical gas deposition process assisted by plasma at a temperature of 300 ° C. Thermal budgets are chosen in such a way so that they avoid the appearance of blisters during the thicknessing stage.
  • the silicon oxide layer 20 acts as a thickener for the thin layer 18. In other words, its function is to prevent deformation of the thin layer under the effect of subsequent heat treatments.
  • FIG. 3 corresponds to the process of over-embrittlement of the process. During this step, the substrate is subjected to treatments aimed at further weakening the cleavage zone 16.
  • a heat treatment is carried out at a temperature of the order of 450 ° C for a period of the order of 12 minutes.
  • This thermal budget is preferably greater than 60% of the thermal budget necessary to obtain separation only by annealing. Such over-embrittlement is possible with a sufficient thickness of film.
  • the layer of thickness 20 which covers the thin layer 18, prevents its deformation and in particular prevents the formation of blisters.
  • the heat treatment can be followed by a step of polishing the free face of the thickener layer 20 just to improve the surface roughness so as to prepare it for molecular bonding.
  • Figure 4 shows the transfer of the source substrate 10 on a target support 30 which, in this case, is a quartz plate.
  • the transfer is carried out so as to bring a flat face of the target support into contact with the free flat face of the thickener layer 20.
  • the transfer can take place by means of a binder or an adhesive.
  • the molecular adhesion forces can be reinforced for example by a heat treatment and / or by surface preparations.
  • the heat treatment is carried out at a relatively low temperature, of the order of 200 ° C. for a period of 20 hours. This heat treatment can contribute to inducing stresses such that the fracture of the substrate can be obtained according to this zone.
  • FIG. 5 illustrates step c) of the method which corresponds to a fracture of the source substrate.
  • the fracture takes place according to the cleavage zone and separates the thin layer 18 from the remaining part of the substrate 10. This last part can then be reused for example for a new transfer of thin layer.
  • the thin layer 18 remains integral with the support
  • the thickener layer can be omitted.
  • the thin layer is then directly in contact with the target support.
  • the fracture of the source substrate can be caused by the exercise of mechanical force and / or by heat treatment.
  • a razor blade In the example shown, a razor blade
  • the invention applies particularly well to the production of a thin layer of silicon on molten silica, the main advantage of which is to have a transparent support with a semiconductor layer which may include components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

Procédé de transfert d'une couche mince (18) d'un substrat source (10) vers un support cible (30) comportant les étapes suivantes: a) une implantation d'ions ou d'espèces gazeuses dans le substrat source de façon à y former une zone (16), dite de clivage, qui délimite ladite couche mince (18) dans le substrat source, b) le report du substrat source sur le support cible et la solidarisation de la couche mince avec le support cible, c) la séparation de la couche mince (18) d'avec le substrat source (10) selon la zone de clivage, conformément à l'invention le procédé comporte préalablement à l'étape b): une surfragilisation de la zone de clivage (16) provoquée par un traitement thermique et/ou par l'exercice d'efforts mécaniques sur le substrat source.

Description

PROCEDE DE TRANSFERT D'UNE COUCHE MINCE COMPORTANT UNE ETAPE DE SURFRAGILISATION
Domaine technique
La présente invention concerne un procédé de transfert d'une couche mince d'un substrat, dit substrat source, vers un support appelé support cible.
L'invention trouve des applications en particulier dans les domaines de la micro-électronique, de la micro-mécanique, de l'optique intégrée et de l'électronique intégrée.
Elle permet, par exemple de réaliser des structures dans lesquelles la couche mince, qui est en un matériau sélectionné pour ses propriétés physiques, est reportée sur un support afin de former un empilement à plusieurs couches. Ainsi, on peut combiner les avantages des matériaux de la couche mince et du support. Le report d'une couche permet notamment d'associer dans une même structure des parties qui présentent a priori des incompatibilités telles qu'une différence importante de coefficients de dilatation thermique.
Etat de la technique antérieure
Le texte qui suit se réfère à un certain nombre de documents dont les références complètes sont précisées à la fin de la description.
Parmi les procédés généralement mis en oeuvre pour la formation de couches minces, on peut citer en particulier un procédé de clivage, bien connu sous la dénomination "Smart-cut", et illustré par le document
U)- Le procédé "Smart-cut" est basé essentiellement sur l'implantation d'hydrogène ou d'un autre gaz sous forme neutre ou ionique dans un substrat de façon à y former une zone de clivage fragilisée. Dans le cas d'un substrat plan, la zone de clivage s'étend, de façon sensiblement parallèle a sa surface et est située dans le substrat à une profondeur fixée par l'énergie d'implantation. La zone de clivage délimite ainsi dans le substrat une couche superficielle mince qui s'étend en épaisseur depuis la zone de clivage jusqu'à la surface du substrat.
Une deuxième étape comprend la mise en adhérence du substrat source avec un support cible de telle façon que la couche mince soit solidaire du support cible. La fixation de la couche mince sur le support cible peut avoir lieu au moyen d'une colle et/ou par l'intermédiaire d'une couche de liaison. Elle peut avoir lieu également par adhérence moléculaire directe entre la surface du substrat et la surface du support cible.
Dans ce dernier cas, il est cependant nécessaire que les faces que l'on souhaite faire adhérer présentent certaines propriétés comme une bonne planéité et une faible rugosité. Une dernière étape du procédé consiste à fracturer le substrat selon la zone de clivage pour en séparer la couche mince. Celle-ci reste alors solidaire du support cible.
Dans le cas du procédé décrit par le document (1), la fracture (ou clivage) du substrat est provoquée par apport d'énergie sous forme d'un traitement thermique .
Les conditions d'implantation définissent la zone de clivage et conditionnent la séparation de la couche mince d'avec le substrat.
Or, on a observé qu'une trop grande fragilisation de la zone de clivage après l'implantation, bien que favorable pour la séparation, provoque des déformations de la surface de la couche mince. Les déformations se présentent sous la forme de cloques et constituent un obstacle pour la fixation.de la couche mince sur le support cible.
Cette trop grande fragilisation, peut être liée à une implantation ionique à forte dose ou à une implantation ionique à plus faible dose associée à un recuit. La trop grande fragilisation peut donc induire l'apparition de cloques en surface d'autant plus facilement que la zone fragilisée est proche de la surface. Dans certaines applications on souhaite obtenir des films minces autoportés, c'est-à-dire qui peuvent être séparée du substrat source sans être préalablement fixés sur un support.
Ces films minces peuvent alors être reportés ultérieurement sur différents supports cibles et, en particulier, sur des supports avec lesquels le substrat source ne peut pas être mis en adhérence avant la séparation de la couche mince, par exemple, pour des raisons de compatibilité des coefficients de dilatation thermique. On peut à ce sujet se reporter au document (2) qui propose un procédé dérivé de celui du document ( 1 ) . Le document (2) propose un procédé permettant d'obtenir la séparation de son substrat d'origine, d'un film mince qui est autoporté. Pour cela, il faut que les espèces gazeuses implantées se trouvent à une profondeur suffisante et/ou que l'on dépose, après l'étape d'implantation, une couche d'un matériau permettant de rigidifier la structure pour obtenir la séparation au niveau de la zone implantée sans avoir de cloques.
L'illustration de la technique de formation d'une couche mince par clivage d'un substrat, peut être complétée par le document ( 3 ) qui suggère de compléter le traitement thermique de fracture (clivage) du substrat par l'exercice de forces mécaniques de flexion, de traction et/ou de cisaillement.
Le document (4) qui décrit également un procédé basé sur le principe établi par le document ( 1 ) , montre que le budget thermique mis en oeuvre pour provoquer la fracture du substrat source dépend des budgets thermiques de tous les traitements thermiques imposés au substrat source depuis l'implantation jusqu'à la fracture. On entend par budget thermique le couple durée de traitement thermique/température de traitement thermique.
Dans un certain nombre d'applications il est nécessaire d'assembler une couche mince d'un substrat source avec un support cible qui présente un coefficient de dilatation thermique différent de celui du substrat source.
Dans ces applications, il est généralement délicat de soumettre la structure obtenue après assemblage du substrat source et du support cible, à un traitement thermique avec un budget thermique suffisant pour garantir la séparation de la couche mince d'avec le substrat source.
Une solution à ce problème consiste alors à modifier les conditions d'implantation en effectuant un surdosage des espèces implantées. Un tel surdosage permet en effet de réduire le budget thermique de la fracture de séparation (clivage).
A titre d'exemple, lorsque le substrat source est une plaque de silicium, une dose d'ions d'hydrogène implantés, de 1.1017/cm2 au lieu de 6.1016/cm2, permet pour une durée de traitement thermique de quelques heures d'en abaisser la température de 400 °C à 280 °C.
La solution consistant à surdoser l'implantation n'est cependant pas toujours satisfaisante en raison de la différence de coefficient de dilatation thermique pouvant exister entre le substrat et le support. En effet, le budget thermique nécessaire à la séparation peut être tel qu'il provoque le décollement du substrat et du support et/ou la cassure du substrat et/ou du support dans leur volume.
Une solution alternative pour éviter un décollement entre la couche mince et le support cible sous l'effet d'une dilatation différentielle, consiste à amincir le substrat source avant l'étape de fracture (clivage) . Cette solution, suggérée par le document (5), présente toutefois l'inconvénient d'une opération supplémentaire d'amincissement et celui d'une consommation de matière importante . La mise en oeuvre de forces mécaniques pour séparer le substrat source de la couche mince, telle qu'évoquée ci-dessus en référence au document (3), permet également de réduire le budget thermique de fracture, notamment dans le cas où les matériaux en contact présentent des coefficients de dilatation différents. L'exercice d'efforts mécaniques sur le substrat source et/ou le support cible n'est toutefois pas toujours possible, notamment lorsque les matériaux mis en oeuvre sont fragiles, ou lorsque la zone de clivage n'est pas assez fragilisée par l'implantation ionique.
Finalement, les techniques de séparation et de transfert de couche mince, décrites ci-dessus, impliquent un certain nombre de contraintes et de compromis. Ces contraintes sont imposées en particulier par le type de matériaux utilisés pour constituer le substrat source, la couche mince et le support cible.
Exposé de 1 ' invention La présente invention a pour but de proposer un procédé de transfert d'une couche mince, ne présentant pas les difficultés et limitations des procédés indiquées ci-dessus.
Un but est en particulier de proposer un tel procédé qui mette en oeuvre un budget thermique réduit voir nul pour obtenir une fracture de séparation de la couche mince.
Un autre but est de proposer un procédé adapté au transfert d'une couche mince sur un support cible, dans lequel les matériaux de la couche mince et du support cible présentent des coefficients de dilatation thermique différents.
Encore un autre but est de proposer un procédé de transfert dans lequel un excellent état de surface du substrat source (sans cloques) peut être préservé de façon à autoriser une bonne adhérence avec le support cible, avec ou sans apport de liant (colle), et en permettant d'avoir une zone de clivage très fragilisée.
Enfin, un but de l'invention est de proposer un procédé de transfert permettant d'obtenir, après transfert, une couche mince sur le support cible, qui présente une surface libre avec une faible rugosité.
Pour atteindre ces buts, l'invention a plus précisément pour objet un procédé de transfert d'une couche mince d'un substrat source vers un support cible comportant, dans l'ordre, les étapes suivantes : a) une implantation d'ions ou d'espèces gazeuses dans le substrat source de façon à y former une zone, dite de clivage, qui délimite ladite couche mince dans le substrat source, b) le report du substrat source sur le support cible et la solidarisation de la couche mince avec le support cible, c) la séparation de la couche mince d'avec le substrat source selon la zone de clivage. Conformément à l'invention, le procédé comporte préalablement à l'étape b),
- une formation d'une épaisseur de film de matériau entre la zone de clivage et la surface du substrat, telle, que cette épaisseur soit supérieure, égale ou voisine d'une épaisseur limite pour laquelle le film est autoporté, et
- une surfragilisation de la zone de clivage provoquée par un traitement thermique et/ou par l'exercice d'efforts mécaniques sur le substrat source.
Selon un premier mode de réalisation de l'invention, l'étape de formation d'une épaisseur de film consiste à réaliser l'étape a) d'implantation de façon à obtenir la zone de clivage à ladite épaisseur, le film étant alors constitué par la couche mince.
Selon un deuxième mode de réalisation de l'invention, l'étape de formation d'une épaisseur de film consiste à réaliser une étape de formation d'une couche dite d'épaississeur sur la couche mince, la couche mince et la couche d'épaisseur formant alors le film.
L'épaisseur limite du film est l'épaisseur permettant de rigidifier la structure pour obtenir la séparation du film au niveau de la zone de clivage sans apparition en surface de cloques. C'est cette épaisseur limite qui permet d'obtenir des films autoportés. Cette épaisseur dépend en particulier des propriétés mécaniques des matériaux, mais aussi des conditions de séparation de l'étape c) telle que par exemple la montée en température du traitement thermique. Selon un mode avantageux, l'invention comporte également la réalisation, avant l'étape b), de tout ou partie de composants micro-électriques et/ou micromécaniques et/ou optoélectroniques . La séparation de la couche mince d'avec le substrat source, opérée à l'étape c), peut avoir lieu sous l'effet d'un traitement thermique, sous l'effet d'efforts mécaniques ou sous l'effet de ces actions combinées . Or, grâce à l'étape de surfragilisation, le budget thermique et/ou les efforts mécaniques mis -en oeuvre lors de l'étape c) pour la fracture de séparation peuvent être particulièrement réduits. Ceci a pour avantage de ne pas provoquer de rupture d'adhérence entre le film mince et le support cible, même en cas d'une différence des coefficients de dilatation thermique des matériaux mis en contact.
Un autre avantage de 1 ' invention est de supprimer ou réduire les efforts mécaniques exercés sur les parties en contact et éviter ainsi de les détériorer. On facilite ainsi la séparation.
Il convient de noter que l'étape de surfragilisation n'est pas limitée par des effets de contraintes de dilatation différentielle dans la mesure où cette étape est effectuée avant le report du substrat source sur le support cible (étape b).
Selon un aspect avantageux, la surfragilisation comporte un traitement thermique mis en oeuvre avec un budget thermique supérieur ou égal à 50%, et de préférence supérieur à 60%, d'un budget thermique global permettant la séparation. Le budget thermique global considéré ici prend en compte non seulement les traitements thermiques opérés dans le strict cadre du procédé de l'invention, mais comprend également d'éventuels traitements thermiques mis en oeuvre, par exemple, pour la réalisation de composants ou pour le dépôt de matériaux sur la couche mince entre les étapes a) et b) .
Comme évoqué précédemment, les étapes c) et l'étape de surfragilisation peuvent comporter un exercice d'efforts mécaniques.
Ces efforts mécaniques comprennent, par exemple, l'application de forces sous la forme d'une pression mécanique et/ou d'une tension mécanique et/ou des forces sous la forme d'une pression de gaz. Le traitement thermique de séparation peut aussi être choisi suffisant pour provoquer lors de l'étape c) une séparation de la couche mince, par simple écartement du substrat source et du support cible ou une séparation totale uniquement par ce traitement thermique.
L'étape d'implantation a) permet de former dans le substrat source des cavités situées dans la zone de clivage .
Les cavités (ou micro-cavités ou platelets ou microbulles) peuvent se présenter sous différentes formes. Elles peuvent être sphériques et/ou aplaties avec une épaisseur de seulement quelques distances inter-atomiques . Par ailleurs, les cavités peuvent contenir une phase gazeuse libre et/ou des atomes de gaz issus des ions implantés, fixés sur les atomes du matériau formant les parois des cavités ou ne contenir que peu de gaz ou même pas de gaz .
Les traitements thermiques subis par le support source, et en particulier un traitement thermique de surfragilisation du procédé, conduisent à la coalescence de tout ou partie des cavités. La coalescence provoque ainsi la surfragilisation du substrat dans la zone de clivage.
Ce phénomène permet en outre d'obtenir, après le report et la fracture de séparation, une surface libre de la couche mince avec une faible rugosité.
La couche d'épaississeur, par exemple en Si, Si02, Si3N4 ou encore Sic, recouvre la couche mince en tout ou partie. L'épaisseur de la couche d'épaississeur pour obtenir une épaisseur de film est choisie par exemple dans une gamme allant de 3 à 10 μm pour un épaississeur Si02.
Il convient de préciser qu'une couche utilisée comme couche d'épaississeur peut être une couche qui sert également en tout ou partie à la réalisation de composants électroniques, optoélectroniques, ou mécaniques à la surface de la couche mince.
L'invention concerne également un procédé de transfert d'une couche mince d'un substrat source comportant les étapes suivantes : a) une implantation d'ions ou d'espèces gazeuses dans le substrat source de façon à y former une zone, dite de clivage, qui délimite ladite couche mince dans le substrat source, b) la séparation de la couche mince d'avec le substrat source selon la zone de clivage, conformément à l'invention, le procédé comporte en outre, préalablement à l'étape b) :
- une formation d'une épaisseur de film de matériau entre la zone de clivage et la surface du substrat telle que cette épaisseur soit supérieure, égale ou voisine d'une épaisseur limite pour que le film soit autoporté, et
- une surfragilisation de la zone de clivage provoquée par un traitement thermique et/ou par l'exercice d'efforts mécaniques sur le substrat source.
L'invention permet d'obtenir des surfragilisations très importantes, pouvant aller jusqu'à 80 à 90% de la séparation complète grâce à la présence d'un épaississeur. Cet épaississeur est déposé en surface avec pour objectif d'augmenter la surfragilisation.
D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre, en référence aux figures des dessins annexés. Cette description est donnée à titre purement illustratif et non limitatif.
Brève description des figures
- La figure 1 est une coupe schématique d'un substrat source et illustre une opération d'implantation d'ions.
- La figure 2 est une coupe schématique du substrat source de la figure 1 et illustre la formation d'une couche d'épaisseur. - La figure 3 est une coupe schématique du substrat source de la figure 2 et illustre une étape de fragilisation.
- La figure 4 est une coupe schématique d'une structure formée du substrat source de la figure 3, reporté sur un support cible.
- La figure 5 est une coupe schématique de la structure de la figure 4 après fracture de séparation du substrat source.
Description détaillée d'un mode de mise en oeuyre de 1 ' invention
La description qui suit se rapporte à un transfert d'une couche mince de silicium sur un support cible de silice fondue (appelée abusivement quartz).
L ' invention peut cependant être mise en oeuvre pour d'autres matériaux solides, qu'ils soient cristallins ou non. Ces matériaux peuvent être diélectriques, conducteurs, semi-isolants ou semi- conducteurs.
De même, le support cible peut être un support final ou intermédiaire, tel qu'une poignée, un substrat massif ou un substrat multicouche.
Le procédé peut en particulier être mis à profit pour le report de couches de matériaux non semiconducteurs, ferroélectriques, piézo-électriques comme par exemple LiNb03 ou de semi-conducteurs III-V tel que AsGa, InP sur du silicium ou du SiC.
La figure 1 montre un substrat initial 10 en silicium. Celui-ci subit une implantation d'ions hydrogène indiquée avec des flèches 12. Cette implantation correspond à l'étape aλ ) du procédé.
L'implantation, effectuée par exemple avec une dose de 6.1016/cm2 et une énergie de 70 keV, permet de former des microcavités 14 dans le substrat 10 à une profondeur de l'ordre de 7000 A.
Cette profondeur correspond également à l'épaisseur d'une couche mince 18. Celle-ci est délimitée à la surface du substrat par une zone 16, dite de clivage, comprenant les microcavités 14.
Antérieurement ou de préférence postérieurement à cette implantation, la couche mince superficielle 18 peut être soumise à d'autres traitements, connus en soi, pour la formation dans cette couche de composants électroniques, optiques, ou mécaniques. Ces composants ne sont pas représentés sur la figure pour des raisons de clarté. Dans ce cas, on tient compte de ces étapes pour la surfragilisation.
De même, pour une meilleure lisibilité des figures, les différentes couches ou caractéristiques représentées, ne le sont pas selon une échelle uniforme. En particulier, les couches très minces sont représentées avec une épaisseur exagérée.
La figure 2 qui correspond à l'étape d'utilisation d'un épaisseur du procédé, montre le dépôt d'une couche d'oxyde de silicium 20 d'une épaisseur de l'ordre de, ou supérieure à 5 μm, sur la couche mince 18. La couche d'oxyde de silicium est par exemple déposée par un procédé de dépôt chimique en phase gazeuse assisté par plasma à une température de 300 °C. Les budgets thermiques sont choisis de telle façon qu'ils évitent l'apparition de cloques pendant l'étape de réalisation de l'épaisseur.
La couche d'oxyde de silicium 20 a un rôle d'épaississeur de la couche mince 18. En d'autres termes, elle a pour fonction de prévenir une déformation de la couche mince sous l'effet de traitements thermiques ultérieurs.
La figure 3 correspond à l'étape de surfragilisation du procédé. Lors de cette étape, le substrat subit des traitements visant à fragiliser davantage encore la zone de clivage 16.
Dans l'exemple illustré, on procède à un traitement thermique effectué à une température de l'ordre de 450 °C pendant une durée de l'ordre de 12 minutes.
Ce budget thermique est de préférence supérieur à 60% du budget thermique nécessaire pour obtenir une séparation uniquement par recuit. Une telle surfragilisation est possible avec une épaisseur suffisante de film.
On observe que le traitement thermique provoque une coalescence partielle des microcavités 14 de la zone de clivage 16.
Lors de cette opération, la couche de d'épaisseur 20 qui recouvre la couche mince 18, prévient sa déformation et en particulier prévient la formation de cloques.
En l'absence de cette couche, des cloques seraient susceptibles d'apparaître avec un traitement thermique à 450 °C après une durée de l'ordre de 2 minutes ce qui correspond uniquement à un traitement thermique de 10% du traitement thermique nécessaire à la séparation.
Le traitement thermique peut être suivi par une étape de polissage de la face libre de la couche d'épaississeur 20 juste pour améliorer la rugosité de surface de façon à la préparer pour un collage moléculaire.
La figure 4 montre le report du substrat source 10 sur un support cible 30 qui, en l'occurrence, est une plaque de quartz.
Le report est effectué de façon à mettre "en contact une face plane du support cible avec la face plane libre de la couche d'épaississeur 20.
Des forces d'adhérence moléculaire s ' exerçant au niveau des faces mises en contact assurent la solidarisation (fixation) entre le substrat source et le support cible.
Lorsqu'une telle adhérence moléculaire n'est pas possible pour des raisons de nature des matériaux ou de qualité des surfaces, le report peut avoir lieu par l'intermédiaire d'un liant ou d'une colle.
Les forces d'adhérence moléculaire peuvent être renforcées par exemple par un traitement thermique et/ou par des préparations de surface. Dans l'exemple illustré, et en raison des fortes différences de coefficients de dilatation thermique entre le silicium et le quartz, le traitement thermique est effectué à une température relativement basse, de l'ordre de 200 °C pendant une durée de 20 heures. Ce traitement thermique peut contribuer à induire des contraintes telles que la fracture du substrat peut être obtenue selon cette zone.
La figure 5 illustre l'étape c) du procédé qui correspond à une fracture du substrat source. La fracture a lieu selon la zone de clivage et sépare la couche mince 18 de la partie restante du substrat 10. Cette dernière partie peut alors être réutilisée par exemple pour un nouveau transfert de couche mince. La couche mince 18 reste solidaire du support
30 par l'intermédiaire de la couche d'épaississeur 20.
Dans un autre exemple, non représenté, où l'épaisseur de la couche mince est assez importante pour éviter des déformations, la couche d'épaississeur peut être omise. La couche mince est alors directement en contact avec le support cible.
A titre d'exemple, on peut citer l'utilisation d'un substrat en SiC, qui est implanté à environ
200 KeV de façon à obtenir un film sans épaississeur, d'environ 1,5 μm. Dans cet exemple, la surfragilisation peut être obtenue sans épaississeur.
La fracture du substrat source peut être provoquée par l'exercice d'une force mécanique et/ou par un traitement thermique. Dans l'exemple illustré, une lame de rasoir
(non représentée) peut être insérée à la main au niveau de la zone fragilisée.
L'invention s'applique particulièrement bien à la réalisation d'une couche mince de silicium sur de la silice fondue dont l'intérêt principal est d'avoir un support transparent avec une couche de semi-conducteur pouvant comporter des composants.
DOCUMENTS CITES
(1) FR-A-2 681 472 (US-A-5 374 564)
(2) FR-A2 738 671 (US-A-5 714 395)
(3) FR-A-2 748 851
(4) FR-A-2 767 416
(5) FR-A-2 755 537

Claims

REVENDICATIONS
1. Procédé de transfert d'une couche mince (18) d'un substrat source (10) vers un support cible (30) comportant les étapes suivantes : a) une implantation d'ions ou d'espèces gazeuses dans le substrat source de façon à y former une zone
(16), dite de clivage, qui délimite ladite couche mince (18) dans le substrat source, b) le report du substrat source sur le support cible et la solidarisation de la couche mince avec le support cible, c) la séparation de la couche mince (18) d'avec le substrat source (10) selon la zone de clivage, caractérisé en ce qu'il comporte préalablement à l'étape b) :
- la formation d'une épaisseur de film de matériau entre la zone de clivage et la surface du substrat telle que cette épaisseur soit supérieure, égale ou voisine d'une épaisseur limite pour que le film soit autoporté, et
- une surfragilisation de la zone de clivage (16) provoquée par un traitement thermique et/ou par l'exercice d'efforts mécaniques sur le substrat source.
2. Procédé selon la revendication 1, dans lequel la séparation de la couche mince (18) d'avec le substrat source (10) est provoquée par un traitement thermique et/ou par l'exercice de forces mécaniques.
3. Procédé selon la revendication 1 ou 2 , dans lequel la surfragilisation comporte un traitement thermique mis en oeuvre avec un budget thermique permettant la séparation.
4. Procédé selon la revendication 2, dans lequel le traitement thermique de séparation est choisi suffisant pour provoquer, lors de l'étape c), une séparation de la couche mince (18), par simple écartement du substrat source et du support cible ou une séparation totale uniquement par ce traitement thermique.
5. Procédé selon la revendication 1, dans lequel l'étape c) et l'étape de surfragilisation comportent l'exercice de forces sous la forme d'une pression mécanique et/ou une tension mécanique et/ou des forces sous la forme d'une pression de gaz.
6. Procédé de transfert d'une couche mince (18) d'un substrat source (10) comportant les étapes suivantes : a) une implantation d'ions ou d'espèces gazeuses dans le substrat source de façon à y former une zone (16)^ dite de clivage, qui délimite ladite couche mince (18) dans le substrat source, b) la séparation de la couche mince (18) d'avec le substrat source (10) selon la zone de clivage, caractérisé en ce qu ' il comporte préalablement à l'étape b) :
- une formation d'une épaisseur de film de matériau entre la zone de clivage et la surface du substrat telle que cette épaisseur soit supérieure, égale ou voisine d'une épaisseur limite pour que le film soit autoporté, et - une surfragilisation de la zone de clivage (16) provoquée par un traitement thermique et/ou par l'exercice d'efforts mécaniques sur le substrat source.
7. Procédé selon la revendication 1, caractérisé en ce que l'étape de formation d'une épaisseur de film consiste à réaliser l'étape a) d'implantation de façon à obtenir la zone de clivage à ladite épaisseur, le film étant alors constitué par la couche mince.
8. Procédé selon la revendication 1, dans lequel l'étape de formation d'une épaisseur de film comprend la réalisation d'une couche dite d'épaississeur (20) sur la couche mince, la couche mince et la couche d'épaississeur formant alors le film.
9. Procédé selon la revendication 1, comprenant en outre la réalisation, avant l'étape b), de tout ou partie de composants micro-électroniques et/ou micro- mécaniques et/ou opto-électroniques .
PCT/FR2000/002239 1999-08-04 2000-08-03 Procede de transfert d'une couche mince comportant une etape de surfragilisation WO2001011667A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001516228A JP2003506892A (ja) 1999-08-04 2000-08-03 過度の脆弱化ステップを有した薄層の移送方法
EP00956612A EP1203403A1 (fr) 1999-08-04 2000-08-03 Procede de transfert d'une couche mince comportant une etape de surfragilisation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9910121A FR2797347B1 (fr) 1999-08-04 1999-08-04 Procede de transfert d'une couche mince comportant une etape de surfragililisation
FR99/10121 1999-08-04

Publications (1)

Publication Number Publication Date
WO2001011667A1 true WO2001011667A1 (fr) 2001-02-15

Family

ID=9548879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002239 WO2001011667A1 (fr) 1999-08-04 2000-08-03 Procede de transfert d'une couche mince comportant une etape de surfragilisation

Country Status (7)

Country Link
EP (1) EP1203403A1 (fr)
JP (1) JP2003506892A (fr)
KR (1) KR100742240B1 (fr)
FR (1) FR2797347B1 (fr)
MY (1) MY137329A (fr)
TW (1) TW457565B (fr)
WO (1) WO2001011667A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505122A (ja) * 2002-10-30 2006-02-09 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ 分離可能基板の製造方法
JP2006505941A (ja) * 2002-11-07 2006-02-16 コミサリヤ・ア・レネルジ・アトミク 同時注入により基板内に脆性領域を生成する方法
US7256103B2 (en) 2004-06-10 2007-08-14 S.O.I.Tec Silicon On Insulator Technologies Method for manufacturing a compound material wafer
WO2008132895A1 (fr) * 2007-04-20 2008-11-06 Semiconductor Energy Laboratory Co., Ltd. Procédé de fabrication d'un substrat soi et dispositif semi-conducteur
WO2009147778A1 (fr) * 2008-06-03 2009-12-10 信越半導体株式会社 Procédé de fabrication d’une plaquette liée
US7951689B2 (en) 2007-09-14 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and method for manufacturing semiconductor device
US8211780B2 (en) 2007-12-03 2012-07-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
US20210305097A1 (en) * 2020-03-31 2021-09-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Low-temperature method for transfer and healing of a semiconductor layer

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2773261B1 (fr) 1997-12-30 2000-01-28 Commissariat Energie Atomique Procede pour le transfert d'un film mince comportant une etape de creation d'inclusions
FR2823599B1 (fr) 2001-04-13 2004-12-17 Commissariat Energie Atomique Substrat demomtable a tenue mecanique controlee et procede de realisation
FR2830983B1 (fr) * 2001-10-11 2004-05-14 Commissariat Energie Atomique Procede de fabrication de couches minces contenant des microcomposants
JP4277481B2 (ja) * 2002-05-08 2009-06-10 日本電気株式会社 半導体基板の製造方法、半導体装置の製造方法
FR2845518B1 (fr) * 2002-10-07 2005-10-14 Commissariat Energie Atomique Realisation d'un substrat semiconducteur demontable et obtention d'un element semiconducteur
FR2845517B1 (fr) * 2002-10-07 2005-05-06 Commissariat Energie Atomique Realisation d'un substrat semiconducteur demontable et obtention d'un element semiconducteur
US7176108B2 (en) 2002-11-07 2007-02-13 Soitec Silicon On Insulator Method of detaching a thin film at moderate temperature after co-implantation
FR2848336B1 (fr) 2002-12-09 2005-10-28 Commissariat Energie Atomique Procede de realisation d'une structure contrainte destinee a etre dissociee
FR2856844B1 (fr) 2003-06-24 2006-02-17 Commissariat Energie Atomique Circuit integre sur puce de hautes performances
FR2857953B1 (fr) * 2003-07-21 2006-01-13 Commissariat Energie Atomique Structure empilee, et procede pour la fabriquer
FR2861497B1 (fr) 2003-10-28 2006-02-10 Soitec Silicon On Insulator Procede de transfert catastrophique d'une couche fine apres co-implantation
US7772087B2 (en) 2003-12-19 2010-08-10 Commissariat A L'energie Atomique Method of catastrophic transfer of a thin film after co-implantation
JP4879737B2 (ja) * 2004-01-29 2012-02-22 ソワテク 半導体層の分離方法
FR2886051B1 (fr) 2005-05-20 2007-08-10 Commissariat Energie Atomique Procede de detachement d'un film mince
FR2889887B1 (fr) 2005-08-16 2007-11-09 Commissariat Energie Atomique Procede de report d'une couche mince sur un support
FR2891281B1 (fr) 2005-09-28 2007-12-28 Commissariat Energie Atomique Procede de fabrication d'un element en couches minces.
FR2899378B1 (fr) 2006-03-29 2008-06-27 Commissariat Energie Atomique Procede de detachement d'un film mince par fusion de precipites
JP5284576B2 (ja) * 2006-11-10 2013-09-11 信越化学工業株式会社 半導体基板の製造方法
FR2910179B1 (fr) 2006-12-19 2009-03-13 Commissariat Energie Atomique PROCEDE DE FABRICATION DE COUCHES MINCES DE GaN PAR IMPLANTATION ET RECYCLAGE D'UN SUBSTRAT DE DEPART
KR101440930B1 (ko) * 2007-04-20 2014-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Soi 기판의 제작방법
FR2925221B1 (fr) 2007-12-17 2010-02-19 Commissariat Energie Atomique Procede de transfert d'une couche mince
FR2947098A1 (fr) 2009-06-18 2010-12-24 Commissariat Energie Atomique Procede de transfert d'une couche mince sur un substrat cible ayant un coefficient de dilatation thermique different de celui de la couche mince
US8524572B2 (en) * 2011-10-06 2013-09-03 Micron Technology, Inc. Methods of processing units comprising crystalline materials, and methods of forming semiconductor-on-insulator constructions
US9281233B2 (en) * 2012-12-28 2016-03-08 Sunedison Semiconductor Limited Method for low temperature layer transfer in the preparation of multilayer semiconductor devices
FR3055063B1 (fr) * 2016-08-11 2018-08-31 Soitec Procede de transfert d'une couche utile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0763849A1 (fr) * 1995-09-13 1997-03-19 Commissariat A L'energie Atomique Procédé de fabrication de films minces à matériau semi-conducteur
EP0807970A1 (fr) * 1996-05-15 1997-11-19 Commissariat A L'energie Atomique Procédé de réalisation d'une couche mince de matériau semiconducteur
WO1998052216A1 (fr) * 1997-05-12 1998-11-19 Silicon Genesis Corporation Procede de clivage controle
US5877070A (en) * 1997-05-31 1999-03-02 Max-Planck Society Method for the transfer of thin layers of monocrystalline material to a desirable substrate
US5909627A (en) * 1998-05-18 1999-06-01 Philips Electronics North America Corporation Process for production of thin layers of semiconductor material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0763849A1 (fr) * 1995-09-13 1997-03-19 Commissariat A L'energie Atomique Procédé de fabrication de films minces à matériau semi-conducteur
EP0807970A1 (fr) * 1996-05-15 1997-11-19 Commissariat A L'energie Atomique Procédé de réalisation d'une couche mince de matériau semiconducteur
WO1998052216A1 (fr) * 1997-05-12 1998-11-19 Silicon Genesis Corporation Procede de clivage controle
US5877070A (en) * 1997-05-31 1999-03-02 Max-Planck Society Method for the transfer of thin layers of monocrystalline material to a desirable substrate
US5909627A (en) * 1998-05-18 1999-06-01 Philips Electronics North America Corporation Process for production of thin layers of semiconductor material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EN W G ET AL: "THE GENESIS PROCESSTM: A NEW SOI WAFER FABRICATION METHOD", ANNUAL IEEE INTERNATIONAL SILICON-ON-INSULATOR CONFERENCE,US,NEW YORK, NY: IEEE, vol. CONF. 24, 1998, pages 163 - 164, XP000830696, ISBN: 0-7803-4501-0 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505122A (ja) * 2002-10-30 2006-02-09 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ 分離可能基板の製造方法
JP2006505941A (ja) * 2002-11-07 2006-02-16 コミサリヤ・ア・レネルジ・アトミク 同時注入により基板内に脆性領域を生成する方法
US7256103B2 (en) 2004-06-10 2007-08-14 S.O.I.Tec Silicon On Insulator Technologies Method for manufacturing a compound material wafer
US8629031B2 (en) 2007-04-20 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and semiconductor device
US8399329B2 (en) 2007-04-20 2013-03-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and semiconductor device
WO2008132895A1 (fr) * 2007-04-20 2008-11-06 Semiconductor Energy Laboratory Co., Ltd. Procédé de fabrication d'un substrat soi et dispositif semi-conducteur
US8951878B2 (en) 2007-04-20 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and semiconductor device
US7951689B2 (en) 2007-09-14 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and method for manufacturing semiconductor device
US8399337B2 (en) 2007-09-14 2013-03-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and method for manufacturing semiconductor device
US8211780B2 (en) 2007-12-03 2012-07-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
WO2009147778A1 (fr) * 2008-06-03 2009-12-10 信越半導体株式会社 Procédé de fabrication d’une plaquette liée
US20210305097A1 (en) * 2020-03-31 2021-09-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Low-temperature method for transfer and healing of a semiconductor layer
US12027421B2 (en) * 2020-03-31 2024-07-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Low-temperature method for transfer and healing of a semiconductor layer

Also Published As

Publication number Publication date
KR20020085868A (ko) 2002-11-16
JP2003506892A (ja) 2003-02-18
TW457565B (en) 2001-10-01
MY137329A (en) 2009-01-30
FR2797347A1 (fr) 2001-02-09
FR2797347B1 (fr) 2001-11-23
EP1203403A1 (fr) 2002-05-08
KR100742240B1 (ko) 2007-07-24

Similar Documents

Publication Publication Date Title
WO2001011667A1 (fr) Procede de transfert d'une couche mince comportant une etape de surfragilisation
EP1299905B1 (fr) Procede de decoupage d'un bloc de materiau et de formation d'un film mince
EP0950257B1 (fr) Procede de fabrication d'un film mince sur un support
EP1155442B1 (fr) Procede de realisation d'une structure multicouche a contraintes internes controlees
EP1285461B1 (fr) Procede de fabrication d'une couche mince
EP1922752B1 (fr) Procede de report d'une couche mince sur un support
EP0898307B1 (fr) Procédé de traitement pour le collage moléculaire et le décollage de deux structures
EP1354346B1 (fr) Procede de realisation d'une couche mince impliquant l'implantation d'especes gazeuses
EP3646374B1 (fr) Procédé de transfert d'une couche mince sur un substrat support présentant des coefficients de dilatation thermique différents
WO2004044976A1 (fr) Procede de formation d'une zone fragile dans un substrat par co-implantation
EP2342745B1 (fr) Procede d'elaboration d'un substrat hybride ayant une couche continue electriquement isolante enterree
EP2195835A1 (fr) Procédé de fabrication d'une structure micro-électronique impliquant un collage moléculaire
WO2008031980A1 (fr) Procede de transfert d'une couche a haute temperature
EP2842155B1 (fr) Procede de collage dans une atmosphere de gaz presentant un coefficient de joule-thomson negatif
WO2011161122A1 (fr) Procede de transfert d'une couche mince de silicium monocristallin
EP2065906B1 (fr) Procédé de modération de déformation
EP1631982B1 (fr) Procede d'obtention d'une couche tres mince par amincissement par auto-portage provoque
EP2263251B1 (fr) Procede de transfert a l'aide d'un substrat ferroelectrique
EP2023380A1 (fr) Procédé et installation pour la fracture d'un substrat composite selon un plan de fragilisation
WO2006100301A1 (fr) Procede de fabrication d'une hetero-structure comportant au moins une couche epaisse de materiau semi-conducteur
EP3939078A1 (fr) Procede de transfert d'une couche utile sur une substrat support
WO2024184336A1 (fr) Procede de fabrication d'une structure comprenant une pluralite de cavites enterrees
WO2020188168A1 (fr) Procede de transfert d'une couche utile sur un substrat support
FR3059149A1 (fr) Procede de fabrication d'un film mince a base d'inp ou de gaas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000956612

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027001366

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10048337

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000956612

Country of ref document: EP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWP Wipo information: published in national office

Ref document number: 1020027001366

Country of ref document: KR