WO2001011667A1 - Procede de transfert d'une couche mince comportant une etape de surfragilisation - Google Patents
Procede de transfert d'une couche mince comportant une etape de surfragilisation Download PDFInfo
- Publication number
- WO2001011667A1 WO2001011667A1 PCT/FR2000/002239 FR0002239W WO0111667A1 WO 2001011667 A1 WO2001011667 A1 WO 2001011667A1 FR 0002239 W FR0002239 W FR 0002239W WO 0111667 A1 WO0111667 A1 WO 0111667A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin layer
- source substrate
- separation
- thickness
- substrate
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 89
- 238000003776 cleavage reaction Methods 0.000 claims abstract description 43
- 230000007017 scission Effects 0.000 claims abstract description 43
- 238000010438 heat treatment Methods 0.000 claims abstract description 30
- 150000002500 ions Chemical class 0.000 claims abstract description 6
- 238000000926 separation method Methods 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 19
- 238000002513 implantation Methods 0.000 claims description 17
- 239000002562 thickening agent Substances 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000011282 treatment Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 230000005693 optoelectronics Effects 0.000 claims description 3
- 238000004377 microelectronic Methods 0.000 claims description 2
- 238000007711 solidification Methods 0.000 claims 1
- 230000008023 solidification Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 75
- 208000010392 Bone Fractures Diseases 0.000 description 15
- 206010017076 Fracture Diseases 0.000 description 15
- 239000010408 film Substances 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000010409 thin film Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000005468 ion implantation Methods 0.000 description 5
- 238000004581 coalescence Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000010070 molecular adhesion Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000007669 thermal treatment Methods 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910017214 AsGa Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
Definitions
- the present invention relates to a method of transferring a thin layer from a substrate, called source substrate, to a support called target support.
- the invention finds applications in particular in the fields of microelectronics, micro-mechanics, integrated optics and integrated electronics.
- the thin layer which is made of a material selected for its physical properties
- a support in order to form a stack with several layers.
- the transfer of a layer makes it possible in particular to associate in the same structure parts which a priori exhibit incompatibilities such as a significant difference in coefficients of thermal expansion.
- the "Smart-cut” process is essentially based on the implantation of hydrogen or another gas in neutral or ionic form in a substrate so as to form there a weakened cleavage zone.
- the cleavage zone extends, substantially parallel to its surface and is located in the substrate at a depth fixed by the implantation energy.
- the cleavage zone thus delimits in the substrate a thin surface layer which extends in thickness from the cleavage zone to the surface of the substrate.
- a second step comprises the adhesion of the source substrate with a target support so that the thin layer is integral with the target support.
- the fixing of the thin layer on the target support can take place by means of an adhesive and / or by means of a bonding layer. I t may also take place by direct molecular bonding between the substrate surface and the surface o f the target medium.
- a final step in the process consists in fracturing the substrate according to the cleavage zone in order to separate the thin layer therefrom. This then remains solid with the target support.
- the fracture (or cleavage) of the substrate is caused by supplying energy in the form of a heat treatment.
- the implantation conditions define the cleavage zone and condition the separation of the thin layer from the substrate.
- document (2) which proposes a process derived from that of document (1).
- Document (2) provides a method for obtaining the separation of its original substrate from a thin film which is self-supporting. For this, it is necessary that the implanted gaseous species are at a sufficient depth and / or that a layer of a material is deposited, after the implantation step, making it possible to stiffen the structure to obtain separation at of the implanted area without having blisters.
- the document (4) which also describes a process based on the principle established by the document (1), shows that the thermal budget used to cause the fracture of the source substrate depends on the thermal budgets of all the heat treatments imposed on the source substrate from implantation to fracture.
- thermal budget is meant the couple of heat treatment time / heat treatment temperature.
- a solution to this problem then consists in modifying the implantation conditions by carrying out an overdose of the implanted species. Such an overdose in fact makes it possible to reduce the thermal budget of the separation fracture (cleavage).
- a dose of implanted hydrogen ions of 1.10 17 / cm 2 instead of 6.10 16 / cm 2 , allows for a heat treatment duration of a few hours to lower the temperature from 400 ° C to 280 ° C.
- the solution of overdosing the implantation is not always satisfactory because of the difference in coefficient of thermal expansion that may exist between the substrate and the support.
- the thermal budget necessary for the separation can be such that it causes the separation of the substrate and the support and / or the breaking of the substrate and / or the support in their volume.
- Disclosure of the invention aims to provide a method of transferring a thin layer, not presenting the difficulties and limitations of the methods indicated above.
- One goal is in particular to propose such a process which implements a reduced thermal budget see null to obtain a separation fracture of the thin layer.
- Another object is to propose a method suitable for the transfer of a thin layer onto a target support, in which the materials of the thin layer and of the target support have different coefficients of thermal expansion.
- Yet another object is to propose a transfer process in which an excellent surface condition of the source substrate (without blisters) can be preserved so as to allow good adhesion with the target support, with or without the addition of a binder (glue), and by allowing a very weakened cleavage zone.
- an object of the invention is to propose a transfer method making it possible to obtain, after transfer, a thin layer on the target support, which has a free surface with low roughness.
- the invention more specifically relates to a process for transferring a thin layer from a source substrate to a target support comprising, in order, the following steps: a) implantation of ions or gaseous species in the source substrate so as to form there a zone, called a cleavage zone, which delimits said thin layer in the source substrate, b) the transfer of the source substrate to the target support and the joining of the thin layer with the target support, c) separation of the thin layer from the source substrate according to the cleavage zone.
- the process comprises, before step b),
- the step of forming a film thickness consists in performing step a) of implantation so as to obtain the cleavage zone at said thickness, the film then being formed by the thin layer.
- the step of forming a film thickness consists in carrying out a step of forming a so-called thickener layer on the thin layer, the thin layer and the layer of thickness then forming the film.
- the limiting thickness of the film is the thickness making it possible to stiffen the structure in order to obtain the separation of the film at the level of the cleavage zone without the appearance of blisters on the surface. It is this limiting thickness which makes it possible to obtain self-supporting films. This thickness depends in particular on the mechanical properties of the materials, but also on the separation conditions of step c) such as for example the rise in temperature of the heat treatment.
- the invention also comprises the production, before step b), of all or part of microelectric and / or micromechanical and / or optoelectronic components.
- the separation of the thin layer from the source substrate, carried out in step c) can take place under the effect of a heat treatment, under the effect of mechanical forces or under the effect of these actions. combined.
- the thermal budget and / or the mechanical forces used during step c) for the separation fracture can be particularly reduced. This has the advantage of not causing a break in adhesion between the thin film and the target support, even in the event of a difference in the coefficients of thermal expansion of the materials brought into contact.
- Another advantage of the invention is to eliminate or reduce the mechanical forces exerted on the parts in contact and thus avoid damaging them. This facilitates separation.
- step of over-embrittlement is not limited by the effects of differential expansion constraints insofar as this step is carried out before the transfer of the source substrate to the target support (step b).
- the over-embrittlement comprises a heat treatment implemented with a thermal budget greater than or equal to 50%, and preferably greater than 60%, of an overall thermal budget allowing the separation.
- the overall thermal budget considered here takes into account not only the heat treatments carried out within the strict framework of the process of the invention, but also includes any heat treatments used, for example, for the production of components or for the deposition of materials on the thin layer between steps a) and b).
- steps c) and the over-embrittlement step may include an exercise of mechanical forces.
- thermal separation treatment can also be chosen sufficient to cause during step c) a separation of the thin layer, by simple separation of the source substrate and the target support or a total separation only by this thermal treatment.
- the implantation step a) makes it possible to form cavities located in the cleavage zone in the source substrate.
- the cavities can be in different forms. They can be spherical and / or flattened with a thickness of only a few inter-atomic distances. Furthermore, the cavities may contain a free gas phase and / or gas atoms from the implanted ions, fixed on the atoms of the material forming the walls of the cavities or contain little or even no gas.
- This phenomenon also makes it possible to obtain, after the transfer and the separation fracture, a free surface of the thin layer with low roughness.
- the thickener layer for example made of Si, Si0 2 , Si 3 N 4 or even Sic, covers the thin layer in whole or in part.
- the thickness of the thickener layer to obtain a film thickness is chosen for example from a range from 3 to 10 ⁇ m for a Si0 2 thickener.
- a layer used as a thickener layer may be a layer which is also used in whole or in part for producing electronic, optoelectronic, or mechanical components on the surface of the thin layer.
- the invention also relates to a method of transferring a thin layer from a source substrate comprising the following steps: a) implantation of ions or gaseous species in the source substrate so as to form a zone therein, known as cleavage, which delimits said thin layer in the source substrate, b) separation of the thin layer from the source substrate according to the cleavage zone, in accordance with the invention, the method further comprises, prior to step b):
- the invention makes it possible to obtain very significant overgreenings, which can range up to 80 to 90% of the complete separation thanks to the presence of a thickener.
- This thickener is deposited on the surface with the aim of increasing the overgreening.
- FIG. 1 is a schematic section of a source substrate and illustrates an ion implantation operation.
- - Figure 2 is a schematic section of the source substrate of Figure 1 and illustrates the formation of a thick layer.
- - Figure 3 is a schematic section of the source substrate of Figure 2 and illustrates a weakening step.
- FIG. 4 is a schematic section of a structure formed from the source substrate of Figure 3, transferred to a target support.
- Figure 5 is a schematic section of the structure of Figure 4 after separation fracture of the source substrate.
- the following description relates to a transfer of a thin layer of silicon onto a target support of molten silica (incorrectly called quartz).
- the invention can however be implemented for other solid materials, whether they are crystalline or not. These materials can be dielectric, conductive, semi-insulating or semi-conducting.
- the target support can be a final or intermediate support, such as a handle, a solid substrate or a multilayer substrate.
- the process can in particular be used for the transfer of layers of non-semiconductor, ferroelectric, piezoelectric materials such as for example LiNb0 3 or III-V semiconductors such as AsGa, InP on silicon or SiC.
- non-semiconductor, ferroelectric, piezoelectric materials such as for example LiNb0 3 or III-V semiconductors such as AsGa, InP on silicon or SiC.
- FIG. 1 shows an initial silicon substrate 10. This undergoes ion implantation hydrogen indicated with arrows 12. This layout corresponds to step a ⁇ ) of the process.
- the implantation carried out for example with a dose of 6.10 16 / cm 2 and an energy of 70 keV, makes it possible to form microcavities 14 in the substrate 10 at a depth of the order of 7000 A.
- This depth also corresponds to the thickness of a thin layer 18. This is delimited on the surface of the substrate by an area 16, called a cleavage area, comprising the microcavities 14.
- the thin surface layer 18 may be subjected to other treatments, known per se, for the formation in this layer of electronic, optical, or mechanical components. These components are not shown in the figure for reasons of clarity. In this case, these stages are taken into account for the overgreening.
- FIG. 2 which corresponds to the step of using a thickness of the process, shows the deposition of a layer of silicon oxide 20 with a thickness of the order of, or greater than 5 ⁇ m, on the thin layer 18.
- the silicon oxide layer is for example deposited by a chemical gas deposition process assisted by plasma at a temperature of 300 ° C. Thermal budgets are chosen in such a way so that they avoid the appearance of blisters during the thicknessing stage.
- the silicon oxide layer 20 acts as a thickener for the thin layer 18. In other words, its function is to prevent deformation of the thin layer under the effect of subsequent heat treatments.
- FIG. 3 corresponds to the process of over-embrittlement of the process. During this step, the substrate is subjected to treatments aimed at further weakening the cleavage zone 16.
- a heat treatment is carried out at a temperature of the order of 450 ° C for a period of the order of 12 minutes.
- This thermal budget is preferably greater than 60% of the thermal budget necessary to obtain separation only by annealing. Such over-embrittlement is possible with a sufficient thickness of film.
- the layer of thickness 20 which covers the thin layer 18, prevents its deformation and in particular prevents the formation of blisters.
- the heat treatment can be followed by a step of polishing the free face of the thickener layer 20 just to improve the surface roughness so as to prepare it for molecular bonding.
- Figure 4 shows the transfer of the source substrate 10 on a target support 30 which, in this case, is a quartz plate.
- the transfer is carried out so as to bring a flat face of the target support into contact with the free flat face of the thickener layer 20.
- the transfer can take place by means of a binder or an adhesive.
- the molecular adhesion forces can be reinforced for example by a heat treatment and / or by surface preparations.
- the heat treatment is carried out at a relatively low temperature, of the order of 200 ° C. for a period of 20 hours. This heat treatment can contribute to inducing stresses such that the fracture of the substrate can be obtained according to this zone.
- FIG. 5 illustrates step c) of the method which corresponds to a fracture of the source substrate.
- the fracture takes place according to the cleavage zone and separates the thin layer 18 from the remaining part of the substrate 10. This last part can then be reused for example for a new transfer of thin layer.
- the thin layer 18 remains integral with the support
- the thickener layer can be omitted.
- the thin layer is then directly in contact with the target support.
- the fracture of the source substrate can be caused by the exercise of mechanical force and / or by heat treatment.
- a razor blade In the example shown, a razor blade
- the invention applies particularly well to the production of a thin layer of silicon on molten silica, the main advantage of which is to have a transparent support with a semiconductor layer which may include components.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001516228A JP2003506892A (ja) | 1999-08-04 | 2000-08-03 | 過度の脆弱化ステップを有した薄層の移送方法 |
EP00956612A EP1203403A1 (fr) | 1999-08-04 | 2000-08-03 | Procede de transfert d'une couche mince comportant une etape de surfragilisation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9910121A FR2797347B1 (fr) | 1999-08-04 | 1999-08-04 | Procede de transfert d'une couche mince comportant une etape de surfragililisation |
FR99/10121 | 1999-08-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001011667A1 true WO2001011667A1 (fr) | 2001-02-15 |
Family
ID=9548879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2000/002239 WO2001011667A1 (fr) | 1999-08-04 | 2000-08-03 | Procede de transfert d'une couche mince comportant une etape de surfragilisation |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1203403A1 (fr) |
JP (1) | JP2003506892A (fr) |
KR (1) | KR100742240B1 (fr) |
FR (1) | FR2797347B1 (fr) |
MY (1) | MY137329A (fr) |
TW (1) | TW457565B (fr) |
WO (1) | WO2001011667A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006505122A (ja) * | 2002-10-30 | 2006-02-09 | エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ | 分離可能基板の製造方法 |
JP2006505941A (ja) * | 2002-11-07 | 2006-02-16 | コミサリヤ・ア・レネルジ・アトミク | 同時注入により基板内に脆性領域を生成する方法 |
US7256103B2 (en) | 2004-06-10 | 2007-08-14 | S.O.I.Tec Silicon On Insulator Technologies | Method for manufacturing a compound material wafer |
WO2008132895A1 (fr) * | 2007-04-20 | 2008-11-06 | Semiconductor Energy Laboratory Co., Ltd. | Procédé de fabrication d'un substrat soi et dispositif semi-conducteur |
WO2009147778A1 (fr) * | 2008-06-03 | 2009-12-10 | 信越半導体株式会社 | Procédé de fabrication d’une plaquette liée |
US7951689B2 (en) | 2007-09-14 | 2011-05-31 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing SOI substrate and method for manufacturing semiconductor device |
US8211780B2 (en) | 2007-12-03 | 2012-07-03 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing SOI substrate |
US20210305097A1 (en) * | 2020-03-31 | 2021-09-30 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Low-temperature method for transfer and healing of a semiconductor layer |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2773261B1 (fr) | 1997-12-30 | 2000-01-28 | Commissariat Energie Atomique | Procede pour le transfert d'un film mince comportant une etape de creation d'inclusions |
FR2823599B1 (fr) | 2001-04-13 | 2004-12-17 | Commissariat Energie Atomique | Substrat demomtable a tenue mecanique controlee et procede de realisation |
FR2830983B1 (fr) * | 2001-10-11 | 2004-05-14 | Commissariat Energie Atomique | Procede de fabrication de couches minces contenant des microcomposants |
JP4277481B2 (ja) * | 2002-05-08 | 2009-06-10 | 日本電気株式会社 | 半導体基板の製造方法、半導体装置の製造方法 |
FR2845518B1 (fr) * | 2002-10-07 | 2005-10-14 | Commissariat Energie Atomique | Realisation d'un substrat semiconducteur demontable et obtention d'un element semiconducteur |
FR2845517B1 (fr) * | 2002-10-07 | 2005-05-06 | Commissariat Energie Atomique | Realisation d'un substrat semiconducteur demontable et obtention d'un element semiconducteur |
US7176108B2 (en) | 2002-11-07 | 2007-02-13 | Soitec Silicon On Insulator | Method of detaching a thin film at moderate temperature after co-implantation |
FR2848336B1 (fr) | 2002-12-09 | 2005-10-28 | Commissariat Energie Atomique | Procede de realisation d'une structure contrainte destinee a etre dissociee |
FR2856844B1 (fr) | 2003-06-24 | 2006-02-17 | Commissariat Energie Atomique | Circuit integre sur puce de hautes performances |
FR2857953B1 (fr) * | 2003-07-21 | 2006-01-13 | Commissariat Energie Atomique | Structure empilee, et procede pour la fabriquer |
FR2861497B1 (fr) | 2003-10-28 | 2006-02-10 | Soitec Silicon On Insulator | Procede de transfert catastrophique d'une couche fine apres co-implantation |
US7772087B2 (en) | 2003-12-19 | 2010-08-10 | Commissariat A L'energie Atomique | Method of catastrophic transfer of a thin film after co-implantation |
JP4879737B2 (ja) * | 2004-01-29 | 2012-02-22 | ソワテク | 半導体層の分離方法 |
FR2886051B1 (fr) | 2005-05-20 | 2007-08-10 | Commissariat Energie Atomique | Procede de detachement d'un film mince |
FR2889887B1 (fr) | 2005-08-16 | 2007-11-09 | Commissariat Energie Atomique | Procede de report d'une couche mince sur un support |
FR2891281B1 (fr) | 2005-09-28 | 2007-12-28 | Commissariat Energie Atomique | Procede de fabrication d'un element en couches minces. |
FR2899378B1 (fr) | 2006-03-29 | 2008-06-27 | Commissariat Energie Atomique | Procede de detachement d'un film mince par fusion de precipites |
JP5284576B2 (ja) * | 2006-11-10 | 2013-09-11 | 信越化学工業株式会社 | 半導体基板の製造方法 |
FR2910179B1 (fr) | 2006-12-19 | 2009-03-13 | Commissariat Energie Atomique | PROCEDE DE FABRICATION DE COUCHES MINCES DE GaN PAR IMPLANTATION ET RECYCLAGE D'UN SUBSTRAT DE DEPART |
KR101440930B1 (ko) * | 2007-04-20 | 2014-09-15 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Soi 기판의 제작방법 |
FR2925221B1 (fr) | 2007-12-17 | 2010-02-19 | Commissariat Energie Atomique | Procede de transfert d'une couche mince |
FR2947098A1 (fr) | 2009-06-18 | 2010-12-24 | Commissariat Energie Atomique | Procede de transfert d'une couche mince sur un substrat cible ayant un coefficient de dilatation thermique different de celui de la couche mince |
US8524572B2 (en) * | 2011-10-06 | 2013-09-03 | Micron Technology, Inc. | Methods of processing units comprising crystalline materials, and methods of forming semiconductor-on-insulator constructions |
US9281233B2 (en) * | 2012-12-28 | 2016-03-08 | Sunedison Semiconductor Limited | Method for low temperature layer transfer in the preparation of multilayer semiconductor devices |
FR3055063B1 (fr) * | 2016-08-11 | 2018-08-31 | Soitec | Procede de transfert d'une couche utile |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0763849A1 (fr) * | 1995-09-13 | 1997-03-19 | Commissariat A L'energie Atomique | Procédé de fabrication de films minces à matériau semi-conducteur |
EP0807970A1 (fr) * | 1996-05-15 | 1997-11-19 | Commissariat A L'energie Atomique | Procédé de réalisation d'une couche mince de matériau semiconducteur |
WO1998052216A1 (fr) * | 1997-05-12 | 1998-11-19 | Silicon Genesis Corporation | Procede de clivage controle |
US5877070A (en) * | 1997-05-31 | 1999-03-02 | Max-Planck Society | Method for the transfer of thin layers of monocrystalline material to a desirable substrate |
US5909627A (en) * | 1998-05-18 | 1999-06-01 | Philips Electronics North America Corporation | Process for production of thin layers of semiconductor material |
-
1999
- 1999-08-04 FR FR9910121A patent/FR2797347B1/fr not_active Expired - Fee Related
-
2000
- 2000-08-03 EP EP00956612A patent/EP1203403A1/fr not_active Withdrawn
- 2000-08-03 WO PCT/FR2000/002239 patent/WO2001011667A1/fr active Search and Examination
- 2000-08-03 JP JP2001516228A patent/JP2003506892A/ja active Pending
- 2000-08-03 KR KR1020027001366A patent/KR100742240B1/ko not_active IP Right Cessation
- 2000-08-04 MY MYPI20003580A patent/MY137329A/en unknown
- 2000-09-05 TW TW089115613A patent/TW457565B/zh not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0763849A1 (fr) * | 1995-09-13 | 1997-03-19 | Commissariat A L'energie Atomique | Procédé de fabrication de films minces à matériau semi-conducteur |
EP0807970A1 (fr) * | 1996-05-15 | 1997-11-19 | Commissariat A L'energie Atomique | Procédé de réalisation d'une couche mince de matériau semiconducteur |
WO1998052216A1 (fr) * | 1997-05-12 | 1998-11-19 | Silicon Genesis Corporation | Procede de clivage controle |
US5877070A (en) * | 1997-05-31 | 1999-03-02 | Max-Planck Society | Method for the transfer of thin layers of monocrystalline material to a desirable substrate |
US5909627A (en) * | 1998-05-18 | 1999-06-01 | Philips Electronics North America Corporation | Process for production of thin layers of semiconductor material |
Non-Patent Citations (1)
Title |
---|
EN W G ET AL: "THE GENESIS PROCESSTM: A NEW SOI WAFER FABRICATION METHOD", ANNUAL IEEE INTERNATIONAL SILICON-ON-INSULATOR CONFERENCE,US,NEW YORK, NY: IEEE, vol. CONF. 24, 1998, pages 163 - 164, XP000830696, ISBN: 0-7803-4501-0 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006505122A (ja) * | 2002-10-30 | 2006-02-09 | エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ | 分離可能基板の製造方法 |
JP2006505941A (ja) * | 2002-11-07 | 2006-02-16 | コミサリヤ・ア・レネルジ・アトミク | 同時注入により基板内に脆性領域を生成する方法 |
US7256103B2 (en) | 2004-06-10 | 2007-08-14 | S.O.I.Tec Silicon On Insulator Technologies | Method for manufacturing a compound material wafer |
US8629031B2 (en) | 2007-04-20 | 2014-01-14 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing SOI substrate and semiconductor device |
US8399329B2 (en) | 2007-04-20 | 2013-03-19 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing SOI substrate and semiconductor device |
WO2008132895A1 (fr) * | 2007-04-20 | 2008-11-06 | Semiconductor Energy Laboratory Co., Ltd. | Procédé de fabrication d'un substrat soi et dispositif semi-conducteur |
US8951878B2 (en) | 2007-04-20 | 2015-02-10 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing SOI substrate and semiconductor device |
US7951689B2 (en) | 2007-09-14 | 2011-05-31 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing SOI substrate and method for manufacturing semiconductor device |
US8399337B2 (en) | 2007-09-14 | 2013-03-19 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing SOI substrate and method for manufacturing semiconductor device |
US8211780B2 (en) | 2007-12-03 | 2012-07-03 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing SOI substrate |
WO2009147778A1 (fr) * | 2008-06-03 | 2009-12-10 | 信越半導体株式会社 | Procédé de fabrication d’une plaquette liée |
US20210305097A1 (en) * | 2020-03-31 | 2021-09-30 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Low-temperature method for transfer and healing of a semiconductor layer |
US12027421B2 (en) * | 2020-03-31 | 2024-07-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Low-temperature method for transfer and healing of a semiconductor layer |
Also Published As
Publication number | Publication date |
---|---|
KR20020085868A (ko) | 2002-11-16 |
JP2003506892A (ja) | 2003-02-18 |
TW457565B (en) | 2001-10-01 |
MY137329A (en) | 2009-01-30 |
FR2797347A1 (fr) | 2001-02-09 |
FR2797347B1 (fr) | 2001-11-23 |
EP1203403A1 (fr) | 2002-05-08 |
KR100742240B1 (ko) | 2007-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001011667A1 (fr) | Procede de transfert d'une couche mince comportant une etape de surfragilisation | |
EP1299905B1 (fr) | Procede de decoupage d'un bloc de materiau et de formation d'un film mince | |
EP0950257B1 (fr) | Procede de fabrication d'un film mince sur un support | |
EP1155442B1 (fr) | Procede de realisation d'une structure multicouche a contraintes internes controlees | |
EP1285461B1 (fr) | Procede de fabrication d'une couche mince | |
EP1922752B1 (fr) | Procede de report d'une couche mince sur un support | |
EP0898307B1 (fr) | Procédé de traitement pour le collage moléculaire et le décollage de deux structures | |
EP1354346B1 (fr) | Procede de realisation d'une couche mince impliquant l'implantation d'especes gazeuses | |
EP3646374B1 (fr) | Procédé de transfert d'une couche mince sur un substrat support présentant des coefficients de dilatation thermique différents | |
WO2004044976A1 (fr) | Procede de formation d'une zone fragile dans un substrat par co-implantation | |
EP2342745B1 (fr) | Procede d'elaboration d'un substrat hybride ayant une couche continue electriquement isolante enterree | |
EP2195835A1 (fr) | Procédé de fabrication d'une structure micro-électronique impliquant un collage moléculaire | |
WO2008031980A1 (fr) | Procede de transfert d'une couche a haute temperature | |
EP2842155B1 (fr) | Procede de collage dans une atmosphere de gaz presentant un coefficient de joule-thomson negatif | |
WO2011161122A1 (fr) | Procede de transfert d'une couche mince de silicium monocristallin | |
EP2065906B1 (fr) | Procédé de modération de déformation | |
EP1631982B1 (fr) | Procede d'obtention d'une couche tres mince par amincissement par auto-portage provoque | |
EP2263251B1 (fr) | Procede de transfert a l'aide d'un substrat ferroelectrique | |
EP2023380A1 (fr) | Procédé et installation pour la fracture d'un substrat composite selon un plan de fragilisation | |
WO2006100301A1 (fr) | Procede de fabrication d'une hetero-structure comportant au moins une couche epaisse de materiau semi-conducteur | |
EP3939078A1 (fr) | Procede de transfert d'une couche utile sur une substrat support | |
WO2024184336A1 (fr) | Procede de fabrication d'une structure comprenant une pluralite de cavites enterrees | |
WO2020188168A1 (fr) | Procede de transfert d'une couche utile sur un substrat support | |
FR3059149A1 (fr) | Procede de fabrication d'un film mince a base d'inp ou de gaas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR SG US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2000956612 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020027001366 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10048337 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2000956612 Country of ref document: EP |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWP | Wipo information: published in national office |
Ref document number: 1020027001366 Country of ref document: KR |