[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0436893A1 - Verfahren und Vorrichtung zum gleichmässigen Aufbringen eines Fluids auf eine bewegte Materialbahn - Google Patents

Verfahren und Vorrichtung zum gleichmässigen Aufbringen eines Fluids auf eine bewegte Materialbahn Download PDF

Info

Publication number
EP0436893A1
EP0436893A1 EP90124816A EP90124816A EP0436893A1 EP 0436893 A1 EP0436893 A1 EP 0436893A1 EP 90124816 A EP90124816 A EP 90124816A EP 90124816 A EP90124816 A EP 90124816A EP 0436893 A1 EP0436893 A1 EP 0436893A1
Authority
EP
European Patent Office
Prior art keywords
distributor
flow channels
individual
individual flow
material web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90124816A
Other languages
English (en)
French (fr)
Other versions
EP0436893B1 (de
Inventor
Raimund Dr. Dipl.-Ing. Haas
Hans Heist
Peter Dr. Dipl.-Chem. Lehmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0436893A1 publication Critical patent/EP0436893A1/de
Application granted granted Critical
Publication of EP0436893B1 publication Critical patent/EP0436893B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • B05C5/0266Coating heads with slot-shaped outlet adjustable in length, e.g. for coating webs of different width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/027Coating heads with several outlets, e.g. aligned transversally to the moving direction of a web to be coated
    • B05C5/0275Coating heads with several outlets, e.g. aligned transversally to the moving direction of a web to be coated flow controlled, e.g. by a valve
    • B05C5/0279Coating heads with several outlets, e.g. aligned transversally to the moving direction of a web to be coated flow controlled, e.g. by a valve independently, e.g. individually, flow controlled

Definitions

  • the invention relates to a method for applying a fluid to a moving material web and a device for this method with a distributor for the fluid.
  • the fluid can be a liquid or a gas.
  • the method enables uniform wetting or rinsing of rapidly moving material webs by means of liquids of all kinds, such as water, acids, alkalis or even solutions, the contents of which are brought into interaction with the material web surface.
  • the material web is generally a carrier tape, for example an aluminum tape.
  • the aluminum carrier material for the production of offset printing plates after degreasing which is carried out with pickling solution, must be rinsed very uniformly with water in order to avoid pickling stains.
  • the carrier material is rinsed with surface-active solutions in further process steps, surface-active ingredients being applied to the material web surface by the wetting.
  • the pretreated Support material coated with light-sensitive substances which are applied to the support surface in the form of a solvent-containing wet film and then the solvents are evaporated, so that the light-sensitive substances remain alone. Uniform wetting is also important in the development of exposed offset printing plates, which are brought into contact with developer solution in developing devices.
  • Rinsing or wetting processes can be carried out in a variety of ways, e.g. by means of spray bars arranged transversely to the material web, which are equipped with specially designed spray nozzles to distribute the rinsing liquid.
  • the number and shape of the spray nozzles per unit width depends on the size of the spray volume flow to be applied, the spray liquid being atomized for fine distribution by the nozzle pressure or fanned out across the width of the material web by special design of the nozzles. This is intended to achieve a continuous wetting of the material web over the width and at the same time a rinsing effect.
  • the disadvantage here is that atomization produces aerosols, which are particularly undesirable when rinsing acid or alkali-treated webs.
  • a further disadvantage of spray bars is that the desired uniform distribution over the width of the material web can only be achieved in a narrowly limited volume flow range of the rinsing liquid supplied. With variable Material web speeds are therefore often not guaranteed to ensure uniform rinsing.
  • the superimposition of the spray cones of the adjacent nozzles leads to undesirable fluctuations in the thickness of the applied liquid film, which can cause non-uniform chemical reactions.
  • the object of the invention is to provide a method and a device for uniformly applying a fluid, in particular a liquid, to a moving material web, which in each case ensure splash-free coating, wetting or rinsing of the material web surface while avoiding aerosol formation.
  • volume flow of the fluid to be applied is guided transversely to the direction of travel of the material web and into a plurality of materials flowing side by side onto the material web
  • Individual volume flows are divided, each of which wets a predetermined web width when it hits the material web, the distance between the individual volume flows being selected so that fluid bridges form between the predetermined web widths, which converge to form a uniformly thick fluid film, which covers the material web in its entire coating width covered.
  • the friction pressure loss of the fluid flow transverse to the direction of travel of the material web is selected so that it is substantially less than the friction pressure loss in the individual volume flows.
  • the loss of frictional pressure along the individual volume flows is expediently greater than the maximum hydrostatic pressure difference between the volume flow transverse to the direction of flow and the outflow cross section of the individual volume flows.
  • turbulent flow conditions are set in the individual volume flows, which, when they strike the moving material web, cause a flushing in addition to the uniform coverage with the fluid.
  • the volume flow of the fluid is guided into a distributor arranged transversely to the direction of travel of the material web, and then a fine distribution of the individual volume flows is arranged by a plurality along the distributor axis Single flow channels enforced.
  • the total volume flow over the web width is divided into a large number of individual volume flows, each of which supplies a certain web width with liquid.
  • a device for applying a fluid to a moving material web, with a distributor for the fluid is characterized in that a multi-jet nozzle consists of the distributor and a multiplicity of individual flow channels and that the single flow channels along a surface line or a slot parallel to the distributor axis and in right angles to the distributor axis, at the same distance from each other, are arranged.
  • the multi-jet nozzle consists of a tubular distributor and a wide slot nozzle, which is connected to the distributor via a plane-parallel channel, and the individual flow channels in the form of capillary tubes protrude into the channel of the wide slot nozzle through a perforated outflow bar which leads into the Bottom of the slot die closes.
  • the multi-jet nozzle consists of a hollow cuboid-shaped distributor and a square-shaped discharge body made of solid material, in which perforations parallel to one another are present as individual flow channels, and connects the discharge body to a side wall of the distributor which has wall bores with which the individual flow channels swear.
  • the multi-jet nozzle can also consist of a tubular distributor alone, in the lateral surface of which individual flow channels are arranged along a surface line as a row of holes in the form of parallel bores.
  • the multi-jet nozzle consists of a hollow tubular distributor with movable pistons as end faces, the pistons carrying sealing rings in circumferential annular grooves, which bear against the inner wall of the distributor, and the pistons are also laterally adjustable in the distributor by means of spindles .
  • a further embodiment of the device is characterized in that a multi-jet nozzle consists of a two-part distributor, that the two halves of the distributor are held together by a screw connection and that one half has a smooth edge surface, while the other half has an edge surface equipped with groove grooves , wherein the groove grooves form individual flow channels for the individual volume flows.
  • the simplest version of a single flow channel is a capillary tube with a circular cross section.
  • any other cross section can also be selected, the tubes with their outlet openings advantageously forming a comb-like configuration when the laminar channel flow is set, and the tubes out of the distribution tube by a certain amount of length stick out. This ensures that the individual volume flows in the form of free-falling liquid jets do not partially contract, even at larger distances from the multi-jet nozzle to the material web, and flow instability cause.
  • the advantage of the invention is that the liquid can be applied very evenly and aerosol-free, especially with large safety distances between the application device and the moving material web.
  • the individual volume flows or the liquid exit jets can be applied to the moving material web in a completely splash-free manner, the liquid jets converging on the moving material web by a suitable choice of the channel division across the width and forming a closed liquid film. This process corresponds to a uniform wetting or a homogeneous coating of the moving material web surface.
  • a further advantage of the invention is given by the fact that, by choosing a defined distribution of the length of the individual flow channels over the width of the material web, a variable exit speed and thus can also achieve variable, but predetermined film thicknesses or a certain rinsing effect.
  • a multi-jet nozzle 1 is shown schematically in a perspective view, the tubular distributor 2 of which is supplied with liquid flowing in in the direction of arrow A via an inlet connection 3.
  • the horizontal inlet connection 3 is aligned, for example, with the distributor axis 9 and is attached to one of the end faces 10 of the distributor 2.
  • the inlet connector can also be aligned perpendicular to the distributor axis 9 and in the center of the run at right angles to a surface line of the circumferential surface of the distributor or be arranged elsewhere along the surface line.
  • the friction pressure loss of the volume flow or the fluid flow along the distributor is substantially lower than the friction pressure loss of the individual flow volumes along the individual flow channels.
  • the frictional pressure loss along the individual flow channels is greater than the maximum hydrostatic pressure difference between the chamber of the distributor and the individual outlet openings or outlet cross sections of the individual flow channels, there is a uniform flow in the individual volume flows and self-filling of the distributor chamber.
  • FIG. 2 shows a perspective view, partially broken away, of the multi-jet nozzle 1 according to FIG. 1.
  • the tubular distributor 2 has an inner diameter D and a width B.
  • the individual flow channels 4 i or capillary tubes projecting into the interior of the tubular distributor 2 have a length 1 and protrude from the peripheral surface 11 of the distributor by an amount z.
  • Figure 3 shows in axial section II of Figure 2 the basic arrangement of the capillary tubes.
  • the two outer capillary tubes 4 1 and 4 n protrude by an amount x between 6 and 12 mm further into the interior of the distributor than the other capillary tubes, so that automatic venting of the multi-jet nozzle 1 is achieved at these points, since the upper openings of the two outer capillary tubes protrude from the resulting liquid level a in the distributor 2.
  • Section II-II shows in detail the arrangement of the capillary tubes in the peripheral surface 11 of the distributor 2, for example by an interference fit.
  • the distance y of the outflow openings of the two outer single flow channels 4 1 and 4 n from the material web in the form of a carrier tape 5 is, for example, 9 to 17 mm, while the distance y of the outflow openings of the other equally long single flow channels from the carrier tape 5 is only 3 to 5 mm.
  • the division t of the individual flow channels 4 i is in the range from 1.5 to 7 mm.
  • FIG. 4 shows a perspective view of a partially broken-open second embodiment of the multi-jet nozzle 1, with a slot die 23 and single flow channels 4 i embedded therein in the form of capillary tubes, the index i meaning any capillary tube between 1 and the total number n.
  • the capillary tubes are sealed on the underside of the slot die 23 by a perforated outflow bar 14 against a plane-parallel channel 15 of the slot die 23.
  • the slot die 23 has a cuboid shape and extends on the underside over the width B of the tubular distributor 2.
  • FIG. 5 shows a section III-III transverse to the axis of the multi-jet nozzle in FIG. 4.
  • the capillary tubes protrude from the underside of the outflow bar 14 and extend in the slot 15 of the slot nozzle 23 to close to the connection opening of the distributor 2.
  • one slot half of the slot nozzle can also be equipped with flow channels on one side in such a way that grooves or grooves are milled with a certain pitch t and a channel system of single flow channels is created when the two slot halves are joined without an additional gap.
  • This embodiment is shown in the drawing in FIG. 10.
  • the individual flow channels 4 i protrude like a comb from the outflow bar 14. If the distance between the outflow openings of the individual flow channels 4 i and the carrier tape (not shown) is kept small, for example in the order of magnitude of 1 to 5 mm, the individual volume flows emerging are preferably to be set in a laminar manner. Instead of the capillary tubes, perforations can also be made in the outflow bar 14, in which case the outflow bar 14 must have a corresponding wall thickness. In such an embodiment, turbulent flow conditions preferably occur in the individual volume flows, which are used at larger distances between the outflow opening of the individual flow channels and the carrier tape.
  • FIG. 6 shows a perspective view of a third embodiment of the multi-jet nozzle 1 with a hollow, cuboid-shaped distributor 16, the side wall 24 of which contains wall bores 18 along a surface line 26.
  • a square-shaped discharge body attached to the side wall 24 17 made of solid material is perforated and has perforations or individual flow channels 19 which are aligned with the wall bores 18.
  • the wall bores 18 together with the individual flow channels 19 of the outflow body form the flow channels for wide, constant metering of the liquid.
  • the arrangement of the outflow tubes can also be aligned parallel to the direction of travel of the carrier material, so that the outflow jets strike the material web in the form of a parabola.
  • Figure 7 shows the section along the line IV-IV in the third embodiment and clearly shows that the distributor is cuboid and hollow, while the discharge body is made of solid material, in which the single flow channels 19 are arranged, which with the wall holes 18 in the side wall 24 of the distributor 16 are aligned.
  • FIG. 1 A fourth embodiment of the multi-jet nozzle 1 in section is shown in FIG.
  • This embodiment consists of a tubular distributor 2, in the lateral surface 20 of which there are individual flow channels 21 along a surface line, which are configured, for example, as a row of holes made of mutually parallel bores.
  • This embodiment is preferably used for homogeneous coatings with very small distances between the multi-jet nozzle 1 and the moving material web 5.
  • the outflowing liquid jets immediately form contiguous in the wetting gap Liquid bridges and a closed film curtain, as indicated in Figure 8.
  • the closed film curtain leads to a uniform, coherent film covering on the carrier tape 5.
  • FIG. 9 shows in longitudinal section a fifth embodiment of a multi-jet nozzle 1 with a continuously adjustable coating or rinsing width B.
  • the liquid flows in the middle of a tubular distributor 22 via an inlet nozzle 38 into the distributor chamber and through individual flow channels 4 i in the form of capillary tubes, on the carrier tape 5 to be acted upon.
  • the distributor 22 is designed, for example, as a circularly symmetrical tube with honed and tempered inner wall 29 and is closed on both sides by displaceable pistons 25, 25, which carry sealing rings 27 in circumferential grooves 28.
  • the annular grooves 28 are located opposite the inner wall 29 against which the sealing rings 27, for example O-rings, bear.
  • the pistons 25 are laterally displaceable via spindles 30. By positioning the pistons 25, any coating width B can be set on the carrier tape 5.
  • the capillary tubes are flush with the inner wall 29 of the distributor 22 and protrude on the outside of the distributor wall.
  • FIG. 10 shows a view of a sixth embodiment of a multi-jet nozzle 31, which consists of a two-part distributor 37 exists.
  • the two halves 33, 34 of the distributor of the multi-jet nozzle 31 are held together without a gap by a screw connection 32.
  • the liquid flows through an inlet nozzle 36 in the direction of arrow A into the interior of the multi-jet nozzle 31.
  • one half 33 has a smooth edge surface
  • the other half 34 has a groove surface which is provided with groove grooves and which has a multiplicity of individual flow channels 35 for the exit of the liquid from the multi-jet nozzle 31 onto the carrier tape 5 form.
  • the inlet connector 36 is attached at right angles to the distributor axis and laterally on the grooved half 34.

Landscapes

  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

Eine Vorrichtung zum Aufbringen eines Fluids auf ein bewegtes Trägerband 5 besteht aus einem rohrförmigen Verteiler 2 und einer Anzahl von Einzelströmungskanälen 4i, die zusammen eine Multistrahldüse 1 bilden. Die Einzelströmungskanäle in Form von Kapillarröhrchen sind entlang einer Mantellinie 13 parallel zur Verteilerachse und im rechten Winkel zur Verteilerachse angeordnet und haben untereinander gleichen Abstand t. Die Einzelströmungskanäle ragen in das Innere des rohrförmigen Verteilers 2 hinein, wobei die beiden außenliegenden Einzelströmungskanäle 41 und 4n weiter in das Verteilerinnere hineinragen als die übrigen Einzelströmungskanäle.

Description

  • Die Erfindung betrifft ein Verfahren zum Aufbringen eines Fluids auf eine bewegte Materialbahn und eine Vorrichtung für dieses Verfahren mit einem Verteiler für das Fluid.
  • Bei dem Fluid kann es sich um eine Flüssigkeit oder um ein Gas handeln. Insbesondere ermöglicht das Verfahren neben homogenen Beschichtungen das gleichmäßige Benetzen oder Spülen schnell bewegter Materialbahnen mittels Flüssigkeiten aller Art, wie beispielsweise Wasser, Säuren, Laugen oder auch Lösungen, deren Inhaltsstoffe mit der Materialbahnoberfläche in Wechselwirkung gebracht werden. Bei der Materialbahn handelt es sich im allgemeinen um ein Trägerband, beispielsweise um ein Aluminiumband.
  • Nachfolgend wird vor allem die Anwendung des Verfahrens bei der Herstellung und Weiterverarbeitung von Offsetdruckplatten beschrieben. So muß beispielsweise das Aluminiumträgermaterial zur Herstellung von Offsetdruckplatten nach der Entfettung, die mit Beizlauge erfolgt, zur Vermeidung von Beizflecken sehr gleichmäßig mit Wasser gespült werden. Weiterhin wird das Trägermaterial in weiteren Verfahrensschritten mit oberflächenaktiven Lösungen gespült, wobei durch die Benetzung oberflächenaktive Inhaltsstoffe auf die Materialbahnoberfläche aufgebracht werden. Desweiteren wird das vorbehandelte Trägermaterial mit lichtempfindlichen Substanzen beschichtet, die in Form eines lösungsmittelhaltigen Naßfilms auf die Trägeroberfläche aufgebracht und anschließend die Lösungsmittel verdampft werden, so daß die lichtempfindlichen Substanzen allein zurückbleiben. Eine gleichmäßige Benetzung ist auch wichtig bei der Entwicklung belichteter Offsetdruckplatten, die in Entwicklungsgeräten mit Entwicklerlösung in Kontakt gebracht werden.
  • Spül- bzw. Benetzungsvorgänge können auf vielfache Weise durchgeführt werden, z.B. durch quer zur Materialbahn angeordnete Sprühstäbe, die zur Verteilung der Spülflüssigkeit mit speziell ausgebildeten Sprühdüsen ausgerüstet sind. Die Anzahl und Form der Sprühdüsen pro Breiteneinheit richtet sich hierbei nach der Größe des zu applizierenden Sprühvolumenstromes, wobei die Sprühflüssigkeit zur Feinverteilung durch den Düsendruck zerstäubt bzw. durch spezielle Ausbildung der Düsen über die Breite der Materialbahn aufgefächert wird. Dadurch sollen eine über die Breite kontinuierliche Benetzung der Materialbahn und gleichzeitig eine Spülwirkung erzielt werden.
  • Nachteilig hierbei ist, daß bei der Zerstäubung Aerosole entstehen, die besonders beim Spülen von säure- oder laugenbehandelten Bahnen unerwünscht sind. Desweiteren ist bei Sprühstäben nachteilig, daß die erwünschte gleichmäßige Verteilung über die Materialbahnbreite nur in einem engbegrenzten Volumenstrombereich der zugeführten Spülflüssigkeit erzielt werden kann. Bei variablen Materialbahngeschwindigkeiten ist daher oftmals eine gleichmäßige Spülung nicht gewährleistet. Zudem führt die Überlagerung der Sprühkegel der nebeneinanderliegenden Düsen zu unerwünschten Dickenschwankungen des aufgebrachten Flüssigkeitsfilms, die ungleichförmige chemische Raktionen hervorrufen können.
  • In der Beschichtungstechnologie werden Verfahren angewandt, bei denen Breitschlitzdüsen oder Filmgießer einen Flüssigkeitsfilm über eine kurze Flüssigkeitsbrücke oder einen freifallenden Vorhang erzeugen, der die bewegte Materialbahn berührungsfrei beschichtet bzw. benetzt. Bei Flüssigkeiten mit geringen Filmdicken oder mit hohen Oberflächenspannungen besteht jedoch oft die Schwierigkeit, daß der Filmvorhang zu Strömungsinstabilitäten neigt und durch Einschnürung und Tropfenbildung über die Breite aufreißt. Die Folge hiervon sind unbenetzte Stellen auf der bewegten Materialbahn.
  • Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung zum gleichmäßigen Auftragen eines Fluids, insbesondere einer Flüssigkeit, auf eine bewegte Materialbahn zu schaffen, die jeweils ein spritzfreies Beschichten, Benetzen oder Spülen der Materialbahnoberfläche unter Vermeidung einer Aerosolbildung gewährleisten.
  • Diese Aufgabe wird verfahrensgemäß in der Weise gelöst, daß der zu applizierende Volumenstrom des Fluids quer zur Laufrichtung der Materialbahn geführt und in eine Vielzahl von nebeneinander auf die Materialbahn fließenden Einzelvolumenströmen aufgeteilt wird, die beim Auftreffen auf die Materialbahn jeweils eine vorgegebene Bahnbreite benetzen, wobei der Abstand zwischen den Einzelvolumenströmen so gewählt wird, daß sich zwischen den vorgegebenen Bahnbreiten Fluidbrücken ausbilden, die zu einem gleichmäßig dicken Fluidfilm zusammenlaufen, der die Materialbahn in ihrer gesamten Beschichtungsbreite überdeckt.
  • In Weiterführung des Verfahrens wird der Reibungsdruckverlust der Fluidströmung quer zur Laufrichtung der Materialbahn so gewählt, daß er wesentlich geringer als der Reibungsdruckverlust in den Einzelvolumenströmen ist. Dabei ist zweckmäßigerweise der Reibungsdruckverlust längs der Einzelvolumenströme größer als die sich maximal einstellende hydrostatische Druckdifferenz zwischen dem Volumenstrom quer zur Laufrichtung und dem Ausflußquerschnitt der Einzelvolumenströme.
  • In Ausgestaltung des Verfahrens werden in den Einzelvolumenströmen turbulente Strömungsverhältnisse eingestellt, die beim Auftreffen auf die bewegte Materialbahn eine Spülung zusätzlich zur gleichmäßigen Überdeckung mit dem Fluid herbeiführen.
  • Bei dem Verfahren nach der Erfindung wird der Volumenstrom des Fluids in einen quer zur Laufrichtung der Materialbahn angeordneten Verteiler geführt, und anschließend wird eine Feinverteilung der Einzelvolumenströme durch eine Vielzahl längs zur Verteilerachse angeordneten Einzelströmungskanäle erzwungen. Dabei wird der Gesamtvolumenstrom über die Materialbahnbreite in eine Vielzahl von Einzelvolumenströmen aufgeteilt, die jeweils eine bestimmte Bahnbreite mit Flüssigkeit versorgen.
  • Eine Vorrichtung zum Aufbringen eines Fluids auf eine bewegte Materialbahn, mit einem Verteiler für das Fluid, zeichnet sich dadurch aus, daß eine Multistrahldüse aus dem Verteiler und einer Vielzahl von Einzelströmungskanälen besteht und daß die Einzelströmungskanäle entlang einer Mantellinie oder eines Schlitzes parallel zur Verteilerachse und im rechten Winkel zur Verteilerachse, im gleichen Abstand zueinander, angeordnet sind.
  • In Ausgestaltung der Vorrichtung bestehen die Einzelströmungskanäle aus Kapillarröhrchen der Länge 1, mit einem Innendurchmesser Di = 0,2 bis 3,0 mm, einem Außendurchmesser Da = 1,0 bis 5,0 mm, die in Bohrungen der Verteilerwand entlang der Mantellinie im Preßsitz eingepaßt, eingelötet oder eingeklebt sind.
  • Bei einer weiteren Ausführungsform der Vorrichtung besteht die Multistrahldüse aus einem rohrförmigen Verteiler und einer Breitschlitzdüse, die über einen planparallelen Kanal mit dem Verteiler verbunden ist, und ragen die Einzelströmungskanäle in Gestalt von Kapillarröhrchen in den Kanal der Breitschlitzdüse durch eine perforierte Ausflußleiste hindurch hinein, die die Unterseite der Breitschlitzdüse abschließt.
  • Bei einer weiteren Ausführungsform der Vorrichtung besteht die Multistrahldüse aus einem hohlen quaderförmigen Verteiler und einem vierkantförmigen Ausflußkörper aus Vollmaterial, in dem zueinander parallele Perforationen als Einzelströmungskanäle vorhanden sind, und schließt der Ausflußkörper an eine Seitenwand des Verteilers an, die Wandbohrungen aufweist, mit denen die Einzelströmungskanäle fluchten.
  • Die Multistrahldüse kann auch aus einem rohrförmigen Verteiler allein bestehen, in dessen Mantelfläche entlang einer Mantellinie als Lochreihe Einzelströmungskanäle in Gestalt von zueinander paralellen Bohrungen angeordnet sind.
  • Bei einer weiteren Ausführungsform besteht die Multistrahldüse aus einem hohlen rohrförmigen Verteiler mit beweglichen Kolben als Stirnflächen, wobei die Kolben in umlaufenden ringförmigen Nuten Dichtringe tragen, die gegen die Innenwandung des Verteilers dichtend anliegen, und darüber hinaus die Kolben mittels Spindeln seitlich in dem Verteiler verstellbar sind.
  • Eine weitere Ausführungsform der Vorrichtung zeichnet sich dadurch aus,daß eine Multistrahldüse aus einem zweiteiligen Verteiler besteht, daß die beiden Hälften des Verteilers durch eine Schraubverbindung zusammengehalten sind und daß die eine Hälfte eine glatte Berandungsfläche aufweist, während die andere Hälfte eine mit Rillennuten ausgestattete Berandungsfläche besitzt, wobei die Rillennuten Einzelströmungskanäle für die Einzelvolumenströme bilden.
  • Bei Einstellung turbulenter Strömungsverhältnisse in den Einzelströmungskanälen wird beim Auftreffen der einzelnen Flüssigkeitsstrahlen auf die bewegte Materialbahnoberfläche dort zusätzlich eine Spülwirkung erzielt.
  • Bei Einstellung eines sehr geringen Abstandes zwischen Materialbahn und Ausflußöffnung der Einzelströmungskanäle und laminaren Strömungsverhältnissen in den Einzelströmungskanälen läßt sich sofort ein geschlossener laminarer Filmvorhang erzielen, da durch die Wirkung der Oberflächenspannung der Flüssigkeit die flüssigkeitsstrahlen unmittelbar nach dem Austritt aus benachbarten Einzelströmungskanälen Brücken zwischen den Kanälen bilden.
  • Die einfachste Ausführung eines Einzelströmungskanals stellt ein Kapillarrohr mit kreisförmigem Querschnitt dar. Es kann jedoch auch jeder andere Querschnitt gewählt werden, wobei vorteilhafterweise bei Einstellung einer laminaren Kanalströmung die Röhrchen mit ihren Ausflußöffnungen eine kammartige Konfiguration bilden, und die Röhrchen um einen bestimmten Längenbetrag aus dem Verteilerrohr herausragen. Dadurch ist gewährleistet, daß sich die Einzelvolumenströme in Form von freifallenden Flüssigkeitsstrahlen auch bei größeren Abständen der Multistrahldüse zur Materialbahn nicht partiell zusammenziehen und eine Strömungsinstabilität verursachen. Zum Erzielen einer turbulenten Ausflußströmung lassen sich hingegen eine einfach gebohrte Lochreihe im Mantelmaterial des Verteilers oder eine zusätzlich aufgesetzte, perforierte Ausflußleiste als Anordnung für Einzelströmungskanäle verwenden, wobei die Perforationen in den Wandungen des Verteilers bzw. in der Ausflußleiste eine ausreichende Länge haben müssen.
  • Mit der Erfindung wird der Vorteil erzielt, daß sich, besonders bei großen Sicherheitsabständen zwischen der Auftragungsvorrichtung und der bewegten Materialbahn, die Flüssigkeit sehr gleichmäßig und aerosolfrei antragen läßt. Bei Einstellung laminarer Strömungsverhältnisse in den Einzelströmungskanälen lassen sich die Einzelvolumenströme bzw. die Flüssigkeitsaustrittsstrahlen vollkommen spritzfrei auf die bewegte Materialbahn aufbringen, wobei durch geeignete Wahl der Kanalteilung über die Breite, die Flüssigkeitsstrahlen auf der bewegten Materialbahn zusammenlaufen und einen geschlossenen Flüssigkeitsfilm bilden. Dieser Vorgang entspricht einem gleichmäßigen Benetzen bzw. einer homogenen Beschichtung der bewegten Materialbahnoberfläche.
  • Ein weiterer Vorteil der Erfindung ist dadurch gegeben, daß sich durch Wahl einer definierten Verteilung der Länge der Einzelströmungskanäle über die Materialbahnbreite eine variable Austrittsgeschwindigkeit und damit auch variable, jedoch vorgegebene Filmdicken bzw. eine bestimmte Spülwirkung erzielen lassen.
  • Die Erfindung wird im folgenden anhand von zeichnerisch dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
  • Figur 1
    perspektivisch eine erste Ausführungsform einer Multistrahldüse aus einem rohrförmigen Verteiler mit eingelassenen Kapillarröhrchen, nach der Erfindung,
    Figur 2
    eine perspektivische Ansicht, teilweise aufgebrochen, der ersten Ausführungsform der Multistrahldüse mit kreissymmetrischen, rohrförmigem Verteiler und darin eingelassenen Kapillarröhrchen,
    Figur 3
    Schnittansichten längs der Linen I-I und II-II der ersten Ausführungsform nach Figur 2,
    Figur 4
    eine perspektivische Ansicht einer zweiten, teilweise aufgebrochenen Ausführungsform einer Multistrahldüse mit einer Breitschlitzdüse und darin eingelassenen Kapillarröhrchen,
    Figur 5
    eine Schnittansicht längs der Linie III-III der zweiten Ausführungsform nach Figur 4,
    Figur 6
    eine perspektivische Ansicht einer dritten Ausführungsform der Multistrahldüse, mit quaderförmigem Verteiler und einem parallel zu der Verteilerachse, seitlich am Verteiler angeordneten, perforierten Ausflußkörper,
    Figur 7
    eine Schnittansicht längs der Linie IV-IV in Figur 6 der dritten Ausführungsform,
    Figur 8
    eine Ansicht im Längsschnitt einer vierten Ausführungsform einer Multistrahldüse, mit einer Lochreihe längs einer Mantellinie des Verteilers,
    Figur 9
    eine Ansicht im Längsschnitt, einer fünften Ausführungsform einer Multistrahldüse, mit einstellbarer Beschichtungsbreite der Multistrahldüse, und
    Figur 10
    eine Ansicht und einen Schnitt einer sechsten Ausführungsform einer zweigeteilten Multistrahldüse mit einseitig genuteter Schlitzhälfte.
  • In Figur 1 ist schematisch in perspektivischer Ansicht eine Multistrahldüse 1 dargestellt, deren rohrförmiger Verteiler 2 über einen Einlaufstutzen 3 mit Flüssigkeit, die in Richtung des Pfeils A einströmt, versorgt wird. Der horizontale Einlaufstutzen 3 fluchtet beispielsweise mit der Verteilerachse 9 und ist an einer der Stirnflächen 10 des Verteilers 2 angebracht. Selbstverständlich kann der Einlaufstutzen auch senkrecht auf die Verteilerachse 9 ausgerichtet sein und mittig im rechten Winkel zu einer Mantellinie der Verteilerumfangsfläche verlaufen oder an sonstiger Stelle längs der Mantellinie angeordnet sein.
  • In Einzelströmungskanälen 4i in Gestalt von Kapillarröhrchen, die in die Umfangsfläche des Verteilers 2 eingelassen und entlang einer Mantellinie des Verteilers 2 angeordnet sind, strömt die Flüssigkeit senkrecht nach unten auf ein im Abstand y von den Austrittsöffnungen bzw. den Austrittsquerschnitten der Einzelströmungskanäle durch Strömungsumlenkung, waagerecht in Richtung des Pfeils C vorbeibewegtes Trägerband 5. Von den Austrittsöffnungen der Einzelströmungskanäle 4i strömen die Einzelstromvolumina bzw. Flüssigkeitsstrahlen 6 auf die Oberfläche des Trägerbandes 5. Zwischen den Flüssigkeitsstrahlen 6 bilden sich unmittelbar nach dem Auftreffen auf die bewegte Materialbahn Flüssigkeitsbrücken 7 aus, die einen geschlossenen Flüssigkeitsfilm 8 auf dem Trägerband 5 formen.
  • Der Reibungsdruckverlust des Volumenstroms bzw. der Fluidströmung längs des Verteilers ist wesentlich niedriger als der Reibungsdruckverlust der Einzelströmungsvolumina längs der Einzelströmungskanäle. Da zudem der Reibungsdruckverlust längs der Einzelströmungskanäle größer ist als die sich maximal einstellende hydrostatische Druckdifferenz zwischen der Kammer des Verteilers und den einzelnen Ausflußöffnungen bzw. Ausflußquerschnitten der Einzelströmungskanäle ergibt sich eine gleichmäßige Strömung in den Einzelvolumenströmen und ein Selbstbefüllen der Verteilerkammer.
  • Figur 2 zeigt eine perspektivische Ansicht, teilweise aufgebrochen, der Multistrahldüse 1 nach Figur 1. Der rohrförmige Verteiler 2 hat einen Innendurchmesser D und eine Breite B. Die in das Innere des rohrförmigen Verteilers 2 hineinragenden Einzelströmungskanäle 4i bzw. Kapillarröhren weisen eine Länge 1 auf und stehen um einen Betrag z von der Umfangsfläche 11 des Verteilers vor. Die Umfangsfläche 11 des Verteilers 2 ist entlang einer gestrichelt eingezeichneten Mantellinie 13 mit einer Teilung t perforiert, und in die so entstandenen Bohrungen 12 des Verteilers, mit einer Wandstärke s, werden die Kapillarröhren mit einem Außendurchmesser Da = 1,0 bis 5,0 mm und einem Innendurchmesser Di = 0,2 bis 3,0 mm im Preßsitz eingepaßt, eingelötet oder eingeklebt.
  • Figur 3 zeigt in axialem Schnitt I-I von Figur 2 die prinzipielle Anordnung der Kapillarröhren. Hierbei ragen die beiden außen liegenden Kapillarröhrchen 4₁ und 4n um einen Betrag x zwischen 6 und 12 mm weiter in das Innere des Verteilers hinein als die übrigen Kapillarröhren, so daß an diesen Stellen eine automatische Entlüftung der Multistrahldüse 1 erzielt wird, da die oberen Öffnungen der beiden außen liegenden Kapillarröhrchen aus dem sich einstellenden Flüssigkeitspegel a im Verteiler 2 herausragen.
  • Der Schnitt II-II zeigt im Detail die Anordnung der Kapillarröhrchen in der Umfangsfläche 11 des Verteilers 2, beispielsweise durch eine Preßpassung.
  • Der Abstand y der Ausflußöffnungen der beiden außen liegenden Einzelströmungskanäle 4₁ und 4n von der Materialbahn in Gestalt eines Trägerbandes 5 beträgt beispielsweise 9 bis 17 mm, während der Abstand y der Ausflußöffnungen der übrigen gleichlangen Einzelströmungskanäle von dem Trägerband 5 nur 3 bis 5 mm beträgt.
  • Die Teilung t der Einzelströmungskanäle 4i liegt im Bereich von 1,5 bis 7 mm.
  • Figur 4 zeigt eine perspektivische Ansicht einer teilweise aufgebrochenen zweiten Ausführungsform der Multistrahldüse 1, mit einer Breitschlitzdüse 23 und darin eingelassenen Einzelströmungskanälen 4i in Gestalt von Kapillarröhrchen, wobei der Index i ein beliebiges Kapillarröhrchen zwischen 1 und der Gesamtanzahl n bedeutet. Die Kapillarröhrchen sind hierbei an der Unterseite der Breitschlitzdüse 23 durch eine perforierte Ausflußleiste 14 gegen einen planparallelen Kanal 15 der Breitschlitzdüse 23 abgedichtet.
  • Die Breitschlitzdüse 23 hat eine quaderförmige Gestalt und erstreckt sich an der Unterseite über die Breite B des rohrförmigen Verteilers 2.
  • Figur 5 zeigt einen Schnitt III-III quer zur Achse der Multistrahldüse in Figur 4. Die Kapillarröhrchen stehen von der Unterseite der Ausflußleiste 14 vor und erstrecken sich im Schlitz 15 der Breitschlitzdüse 23 bis nahe an die Anschlußöffnung des Verteilers 2.
  • Anstelle der in die Breitschlitzdüse 23 eingelassenen Kapillarröhrchen kann auch eine Schlitzhälfte der Breitschlitzdüse einseitig mit Strömungskanälen ausgestattet werden, derart, daß mit einer bestimmten Teilung t Nuten oder Rillen eingefräst sind und beim Zusammenfügen der beiden Schlitzhälften ohne zusätzlichen Spalt ein Kanalsystem von Einzelströmungskanälen entsteht. Diese Ausführung ist zeichnerisch in Figur 10 dargestellt.
  • Die Einzelströmungskanäle 4i stehen kammartig aus der Ausflußleiste 14 vor. Wird der Abstand der Ausflußöffnungen der Einzelströmungskanäle 4i zu dem nicht gezeigten Trägerband kleingehalten, beispielsweise in der Größenordnung von 1 bis 5 mm, so sind die austretenden Einzelvolumenströme bevorzugt laminar einzustellen. Anstelle der Kapillarröhrchen können auch Perforationen in der Ausflußleiste 14 angebracht werden, wobei dann die Ausflußleiste 14 eine entsprechende Wandstärke haben muß. Bei einer derartigen Ausführungsform treten bevorzugt turbulente Strömungsverhältnisse in den Einzelvolumenströmen auf, die bei größeren Abständen Zwischen der Ausflußöffnung der Einzelströmungskanäle und dem Trägerband Anwendung finden.
  • Figur 6 zeigt eine perspektivische Ansicht einer dritten Ausführungsform der Multistrahldüse 1 mit hohlem, quaderförmigem Verteiler 16, dessen Seitenwand 24 Wandbohrungen 18 entlang einer Mantellinie 26 enthält. Ein an die Seitenwand 24 angesetzter vierkantförmiger Ausflußkörper 17 aus vollem Material ist perforiert und weist Perforationen bzw. Einzelströmungskanäle 19 auf, die mit den Wandbohrungen 18 fluchten. Die Wandbohrungen 18 zusammen mit den Einzelströmungskanälen 19 des Ausflußkörpers bilden die Strömungskanäle zur breiten konstanten Dosierung der Flüssigkeit. In diesem Fall kann die Anordnung der Ausflußröhrchen auch parallel zur Laufrichtung des Trägermaterials ausgerichtet sein, so daß die Ausflußstrahlen in Form einer Parabel auf die Materialbahn auftreffen.
  • Figur 7 zeigt den Schnitt entlang der Linie IV-IV in der dritten Ausführungsform und läßt deutlich erkennen, daß der Verteiler quaderförmig und hohl ist, während der Ausflußkörper aus vollem Material besteht, in welchem die Einzelströmungskanäle 19 angeordnet sind, die mit den Wandbohrungen 18 in der Seitenwand 24 des Verteilers 16 fluchten.
  • Eine vierte Ausführungsform der Multistrahldüse 1 im Schnitt ist in Figur 8 dargestellt. Diese Ausführungsform besteht aus einem rohrförmigen Verteiler 2, in dessen Mantelfläche 20 entlang einer Mantellinie Einzelströmungskanäle 21 vorhanden sind, die beispielsweise als Lochreihe aus zueinander parallelen Bohrungen ausgestaltet sind. Diese Ausführungsform wird bevorzugt für homogene Beschichtungen bei sehr geringen Abständen zwischen der Multistrahldüse 1 und der bewegten Materialbahn 5 eingesetzt. Die ausfließenden Flüssigkeitsstrahlen bilden dabei im Benetzungsspalt sofort zusammenhängende Flüssigkeitsbrücken und einen geschlossenen Filmvorhang, wie dies in Figur 8 angedeutet ist. Der geschlossene Filmvorhang führt zu einem gleichmäßigen, zusammenhängenden Filmüberzug auf dem Trägerband 5.
  • Figur 9 zeigt im Längsschnitt eine fünfte Ausführungsform einer Multistrahldüse 1 mit kontinuierlich einstellbarer Beschichtungs- bzw. Spülbreite B. Die Flüssigkeit strömt dabei in der Mitte eines rohrförmigen Verteilers 22 über einen Einlaufstutzen 38 in die Verteilerkammer ein und durch Einzelströmungskanäle 4i in Gestalt von Kapillarröhrchen, die dem Einlaufstutzen gegenüberliegen, auf das zu beaufschlagende Trägerband 5. Der Verteiler 22 ist beispielsweise als kreissymmetrisches Rohr mit gehonter und vergüteter Innenwandung 29 ausgebildet und ist beidseitig durch verschiebbare Kolben 25, 25 verschlossen, die Dichtringe 27 in umlaufenden Nuten 28 tragen. Die ringförmigen Nuten 28 befinden sich gegenüber der Innenwandung 29, gegen welche die Dichtringe 27, zum Beispiel O-Ringe, anliegen.
  • Die Kolben 25 sind über Spindeln 30 seitenverschiebbar. Durch Positionierung der Kolben 25 läßt sich jede beliebige Beschichtungsbreite B auf dem Trägerband 5 einstellen. Die Kapillarröhrchen schließen mit der Innenwandung 29 des Verteilers 22 bündig ab und stehen auf der Außenseite der Verteilerwandung vor.
  • In Figur 10 ist eine Ansicht einer sechsten Ausführungsform einer Multistrahldüse 31 gezeigt, die aus einem zweiteiligen Verteiler 37 besteht. Die beiden Hälften 33, 34 des Verteilers der Multistrahldüse 31 werden durch eine Schraubverbindung 32 spaltlos zusammengehalten. Die Flüssigkeit strömt durch einen Einlaufstutzen 36 in Richtung des Pfeils A in das Innere der Multistrahldüse 31 ein. Aus dem Schnitt V-V in Figur 10 ist ersichtlich, daß die eine Hälfte 33 eine glatte Berandungsfläche aufweist, während die andere Hälfte 34 eine mit Rillennuten ausgestattete Berandungsfläche besitzt, die eine Vielzahl von Einzelströmungskanälen 35 für den Austritt der Flüssigkeit aus der Multistrahldüse 31 auf das Trägerband 5 bilden. Der Einlaufstutzen 36 ist rechtwinklig zur Verteilerachse und seitlich an der genuteten Hälfte 34 angebracht.

Claims (21)

  1. Verfahren zum Aufbringen eines Fluids auf eine bewegte Materialbahn, dadurch gekennzeichnet, daß der zu applizierende Volumenstrom des Fluids quer zur Laufrichtung der Materialbahn geführt und in eine Vielzahl von nebeneinander auf die Materialbahn fließenden Einzelvolumenströmen aufgeteilt wird, die beim Auftreffen auf die Materialbahn jeweils eine vorgegebene Bahnbreite benetzen, wobei der Abstand zwischen den Einzelvolumenströmen so gewählt wird, daß sich zwischen den vorgegebenen Bahnbreiten Fluidbrücken ausbilden, die zu einem gleichmäßig dicken Fluidfilm zusammenlaufen, der die Materialbahn in ihrer gesamten Beschichtungsbreite überdeckt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Reibungsdruckverlust der Fluidströmung quer zur Laufrichtung der Materialbahn geringer als der Reibungsdruckverlust in den Einzelvolumenströmen ist.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Reibungsdruckverlust längs der Einzelvolumenströme größer als die sich maximal einstellende hydrostatische Druckdifferenz zwischen dem Volumenstrom quer zur Laufrichtung und dem Ausflußquerschnitt der Einzelvolumenströme ist.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in den Einzelvolumenströmen turbulente Strömungsverhältnisse eingestellt werden, die beim Auftreffen auf die bewegte Materialbahn eine Spülung zusätzlich zur gleichmäßigen Überdeckung mit dem Fluid herbeiführen.
  5. Vorrichtung zum Aufbringen eines Fluids auf eine bewegte Materialbahn, mit einem Verteiler für das Fluid, dadurch gekennzeichnet, daß eine Multistrahldüse (1; 31) aus dem Verteiler (2; 16; 22; 37) und einer Vielzahl von Einzelströmungskanälen (4i; 19; 21; 35), mit i gleich einer ganzen Zahl von 1 bis n, besteht und daß die Einzelströmungskanäle entlang einer Mantellinie (13; 26) oder eines Schlitzes (15) parallel zur Verteilerachse und im rechten Winkel zur Verteilerachse im gleichen Abstand (t) zueinander angeordnet sind.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Einzelströmungskanäle (4i) aus Kapillarröhrchen der Länge 1, mit einem Innendurchmesser Di gleich 0,2 bis 3,0 mm, einem Außendurchmesser Da gleich 1 ,0 bis 5,0 mm bestehen, die in Bohrungen (12) der Verteilerwand entlang der Mantellinie (13) im Preßsitz eingepaßt, eingelötet oder eingeklebt sind.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Abstand y der Ausflußöffnungen der Einzelströmungskanäle (4i) von der Materialbahn in Gestalt eines Trägerbandes (5) 3 bis 5 mm beträgt.
  8. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Einzelströmungskanäle in das Innere des rohrförmigen Verteilers (2) hineinragen und daß die beiden außenliegenden Einzelströmungskanäle (4₁, 4n) um einen Betrag x zwischen 6 und 12 mm weiter in das Verteilerinnere hineinragen als die übrigen Einzelströmungskanäle.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Abstand y der Ausflußöffnungen der beiden außenliegenden Einzelströmungskanäle (4₁, 4n) von der Materialbahn in Gestalt des Trägerbandes (5) 9 bis 17 mm beträgt.
  10. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Einzelströmungskanäle (4i) voneinander gleichgroßen Abstand t von 5 bis 7 mm aufweisen.
  11. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Multistrahldüse (1) aus einem rohrörmigen Verteiler (2) und einer Breitschlitzdüse (23) besteht, die über einen planparallelen Kanal (15) mit dem Verteiler (2) verbunden ist und daß die Einzelströmungskanäle (4i) in Gestalt von Kapillarröhrchen in den Kanal (15) der Breitschlitzdüse (23) durch eine perforierte Ausflußleiste (14) hindurch hineinragen, die die Unterseite der Breitschlitzdüse (23) abschließt.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die Einzelströmungskanäle (4i) kammartig aus der Ausflußleiste (14) vorstehen.
  13. Vorrichtung nach Anspruch 11 , dadurch gekennzeichnet, daß die Einzelströmungskanäle (4i) mit ihren oberen Eintrittsöffnungen in einem Abstand von 6 bis 8 mm unterhalb des Verteilers (2) in dem Kanal (15) angeordnet sind und spaltfrei an der Innenwandung des Kanals (15) anliegen.
  14. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Multistrahldüse (1) aus einem hohlen quaderförmigen Verteiler (16) und einem vierkantförmigen Ausflußkörper (17) aus Vollmaterial, in dem zueinander parallel Perforationen als Einzelströmungskanäle (19) vorhanden sind, besteht, und daß der Ausflußkörper (17) an eine Seitenwand (24) des Verteilers (16) anschließt, die Wandbohrungen (18) aufweist, mit denen die Einzelströmungskanäle (19) fluchten.
  15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß die Wandbohrungen (18) entlang einer Mantellinie (26) der Seitenwand (24) angeordnet sind.
  16. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Multistrahldüse (1) aus dem rohrförmigen Verteiler (2) besteht, in dessen Mantelfläche (20) entlang einer Mantellinie als Lochreihe Einzelströmungskanäle (21) in Gestalt von zueinander parallelen Bohrungen angeordnet sind.
  17. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Multistrahldüse (1) aus einem hohlen rohrförmigen Verteiler (22) mit beweglichen Kolben (25) als Stirnflächen besteht, daß die Kolben (25) in umlaufenden ringförmigen Nuten (28) Dichtringe (27) tragen, die gegen die Innenwandung (29) des Verteilers (22) dichtend anliegen und daß die Kolben (25) mittels Spindeln (30) seitlich in dem Verteiler (22) verstellbar sind.
  18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß der Verteiler (22) einen auf der Mantelfläche mittig in bezug auf die Länge des Verteilers angeordneten Einlaufstutzen (38) aufweist und daß auf der dem Einlaufstutzen gegenüberliegenden Seite Einzelströmungskanäle (4i) in Form von Kapillarröhrchen die Wandung des Verteilers (22) durchsetzen.
  19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, daß die Einzelströmungskanäle (4i) mit der Innenwandung (29) bündig abschließen und auf der Außenseite der verteilerwandung vorstehen.
  20. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß eine Multistrahldüse (31) aus einem zweiteiligen Verteiler (37) besteht, daß die beiden Hälften (33, 34) des Verteilers (37) durch eine Schraubverbindung (32) zusammengehalten sind, und daß die eine Hälfte (33) eine glatte Berandungsfläche aufweist, während die andere Hälfte (34) eine mit Rillennuten ausgestattete Berandungsfläche besitzt, wobei die Rillennuten Einzelströmungskanäle (35) für die Einzelvolumenströme bilden.
  21. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, daß der Volumenstrom durch einen Einlaufstutzen (36), der mit der genuteten Hälfte (34) des Verteilers (37) in Verbindung steht, in die Multistrahldüse (31) einströmt und daß der Einlaufstutzen (36) rechtwinklig zur Verteilerachse und seitlich an der Hälfte (34) angebracht ist.
EP90124816A 1990-01-09 1990-12-19 Verfahren und Vorrichtung zum gleichmässigen Aufbringen eines Fluids auf eine bewegte Materialbahn Expired - Lifetime EP0436893B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4000405 1990-01-09
DE4000405A DE4000405A1 (de) 1990-01-09 1990-01-09 Verfahren und vorrichtung zum gleichmaessigen aufbringen eines fluids auf eine bewegte materialbahn

Publications (2)

Publication Number Publication Date
EP0436893A1 true EP0436893A1 (de) 1991-07-17
EP0436893B1 EP0436893B1 (de) 1995-04-12

Family

ID=6397765

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90124816A Expired - Lifetime EP0436893B1 (de) 1990-01-09 1990-12-19 Verfahren und Vorrichtung zum gleichmässigen Aufbringen eines Fluids auf eine bewegte Materialbahn

Country Status (8)

Country Link
US (1) US5264036A (de)
EP (1) EP0436893B1 (de)
JP (1) JPH04313363A (de)
KR (1) KR0179025B1 (de)
BR (1) BR9100052A (de)
CA (1) CA2033539A1 (de)
DE (2) DE4000405A1 (de)
ES (1) ES2070989T3 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4212548C1 (en) * 1992-04-15 1993-09-23 Licentia Patent-Verwaltungs-Gmbh, 60596 Frankfurt, De Application of hot melting adhesive on carrier - uses broad slot nozzle comprising several adjacent feed channels which can be timely cut off one after the other
FR2692818A1 (fr) * 1992-06-30 1993-12-31 Chemicals M Dispositif enducteur et/ou imprégnateur d'un produit liquide ou pâteux sur une nappe de matériau en défilement continu.
FR2692819A1 (fr) * 1992-06-30 1993-12-31 Chemicals M Perfectionnements au dispositif enducteur et/ou imprégnateur d'un produit liquide ou pâteux sur une nappe de matériau en défilement continu.
EP0605080A1 (de) * 1992-12-28 1994-07-06 Yasui Seiki Co., Ltd. Beschichtungsvorrichtung
DE4313880A1 (de) * 1993-04-28 1994-11-03 Koch Marmorit Gmbh Verfahren und Vorrichtung zum gesteuerten Auftragen von Klebern
DE10012344A1 (de) * 2000-03-14 2001-09-20 Voith Paper Patent Gmbh Vorhang-Auftragsverfahren
EP1253241A3 (de) * 2001-04-27 2004-02-04 Giesecke & Devrient GmbH Verfahren und Vorrichtung zum Einbringen von Merkmalsstoffen in eine Papierbahn
WO2013090575A1 (en) * 2011-12-13 2013-06-20 3M Innovative Properties Company Contact coating by use of a manifold provided with capillary tubes
CN104279672A (zh) * 2014-10-17 2015-01-14 中山市蓝水能源科技发展有限公司 一种水蓄冷中的布水箱
WO2015149864A1 (en) * 2014-04-04 2015-10-08 Hewlett-Packard Indigo B.V. Fluid application
US9981285B2 (en) 2011-12-05 2018-05-29 Akzo Nobel Chemicals International B.V. Device for dosing an additive solution

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4130432C2 (de) * 1991-09-13 1995-04-06 Kuesters Eduard Maschf Auftragselement für flüssiges, schaumförmiges oder pastenförmiges Auftragsmedium
US5334352A (en) * 1992-09-23 1994-08-02 Icn Biomedicals, Inc. Manifold construction
US5942278A (en) * 1993-03-31 1999-08-24 Nycomed Arzneimittel Gmbh Process for the production of a material for sealing and healing wounds
US6177126B1 (en) 1993-03-31 2001-01-23 Nycomed Arzneimittel Gmbh Process for the production of a material for sealing and healing wounds
AT502891B1 (de) * 1993-03-31 2008-04-15 Nycomed Austria Gmbh Verfahren und vorrichtung zum gleichmässigen auftragen einer suspension auf einen kollagenträger
DE4313724C2 (de) * 1993-04-27 2003-12-11 Nycomed Austria Gmbh Linz Vorrichtung zum gleichmäßigen Auftragen einer Suspension auf einen Kollagenträger
TW293039B (de) * 1994-07-29 1996-12-11 Tozen Kk
US5564448A (en) * 1994-12-14 1996-10-15 Eagle-Picher Industries, Inc. Container washing apparatus and system
US5626673A (en) * 1995-04-12 1997-05-06 Nordson Corporation Static agitator for adjustable slot coater die in a rotary coater
EP0761877A3 (de) * 1995-09-06 1997-06-25 Voith Sulzer Papiermasch Gmbh Auftragswerk zum direkten oder indirekten Auftragen eines flüssigen oder pastösen Mediums auf eine laufende Materialbahn
US5750159A (en) * 1996-06-24 1998-05-12 Minnesota Mining & Manufacturing Company Die for extruding one or more fluid streams
EP0878136B1 (de) * 1997-04-23 2004-11-03 Krones Ag Vorrichtung zur Flüssigkeitsbeaufschlagung von Gefässen
DE19722159A1 (de) 1997-05-27 1998-12-03 Voith Sulzer Papiermasch Gmbh Verfahren und Vorrichtung zum direkten oder indirekten Auftragen eines flüssigen oder pastösen Auftragsmediums auf eine laufende Oberfläche
US5954907A (en) * 1997-10-07 1999-09-21 Avery Dennison Corporation Process using electrostatic spraying for coating substrates with release coating compositions, pressure sensitive adhesives, and combinations thereof
DE29908150U1 (de) 1999-05-10 1999-08-05 Nordson Corporation, Westlake, Ohio Vorrichtung zum Auftragen von Fluid
US6405399B1 (en) * 1999-06-25 2002-06-18 Lam Research Corporation Method and system of cleaning a wafer after chemical mechanical polishing or plasma processing
US6479216B1 (en) 1999-09-15 2002-11-12 Agfa-Gevaert Method for obtaining a heat sensitive element by spray-coating
EP1084862B1 (de) * 1999-09-15 2003-11-12 Agfa-Gevaert Verfahren zur Sprühbeschichtung eines wärmeempfindlichen Aufzeichnungselements
DE29918424U1 (de) 1999-10-19 2000-01-13 Nordson Corporation, Westlake, Ohio Vorrichtung zum Auftragen von Fluid auf ein Substrat
KR100479461B1 (ko) * 2001-09-27 2005-03-30 주식회사 에이스랩 정압 유지장치
DE102004018597B3 (de) * 2004-04-16 2005-12-01 Dürr Systems GmbH Applikationskopf zur Erzeugung einer Flüssigfolie
JP4551117B2 (ja) * 2004-04-28 2010-09-22 株式会社アトマックス 微粒子噴霧装置
KR100628275B1 (ko) * 2004-11-04 2006-09-27 엘지.필립스 엘시디 주식회사 인쇄노즐
US20060283987A1 (en) * 2005-06-21 2006-12-21 Anderson Steven R Multi-port fluid application system and method
DE102006020780A1 (de) * 2006-05-03 2007-11-15 Fleissner Gmbh Vorrichtung zum Aufbringen mindestens eines in einem Sammelbehälter aufgenommenen Farbstoffs aus Textilgut
JP4920365B2 (ja) * 2006-10-13 2012-04-18 日本エンバイロ工業株式会社 処理槽
ES2526918T3 (es) * 2007-02-14 2015-01-16 Robatech Ag Dispositivo para la distribución sincronizada de porciones de una masa pastosa
HUE028109T2 (en) * 2007-02-28 2016-11-28 Basf Se A method of producing composite elements based on isocyanate-based foam materials
PL2735375T3 (pl) * 2007-12-17 2020-12-14 Basf Se Zastosowanie rur do nanoszenia ciekłych materiałów wyjściowych dla sztywnego tworzywa piankowego na bazie izocyjanianów przy wytwarzaniu elementów kompozytowych w oparciu o tworzywa piankowe na bazie izocyjanianów
USD594348S1 (en) 2008-06-24 2009-06-16 Colgate-Palmolive Company Multiple product package
JP4825256B2 (ja) * 2008-10-31 2011-11-30 日本碍子株式会社 スラリー吐出装置及びスラリーの吐出方法
JP5607326B2 (ja) * 2009-08-06 2014-10-15 ノードソン コーポレーション 塗工ノズル、塗工方法、及び内容積制御弁
TWI401189B (zh) 2009-09-18 2013-07-11 Colgate Palmolive Co 用於產品之展示包裝盒
CN102947011B (zh) * 2010-06-15 2015-01-28 3M创新有限公司 带有多个分配针的分配歧管
CN102580888A (zh) * 2012-03-13 2012-07-18 南京瀚宇彩欣科技有限责任公司 涂布头
US9175845B2 (en) * 2012-07-10 2015-11-03 Westinghouse Electric Company Llc Axial flow steam generator feedwater dispersion apparatus
WO2014081051A1 (ko) * 2012-11-21 2014-05-30 엔젯 주식회사 이송형 멀티노즐 시스템 및 이를 이용하는 투명전극 제조방법
US20140263759A1 (en) * 2013-03-14 2014-09-18 Millport Associates S.A. Nozzle system and method for manufacturing composite sandwich panels
JP6142268B2 (ja) * 2013-05-28 2017-06-07 兵神装備株式会社 吐出幅可変装置、及び吐出装置
WO2017034879A1 (en) * 2015-08-26 2017-03-02 3M Innovative Properties Company Method and apparatus for forming articles with non-uniform discontinuous patterned coatings
CN107921463B (zh) * 2015-08-26 2021-01-15 3M创新有限公司 用于形成具有不均一图案化涂层的制品的方法和设备
IT202100008606A1 (it) * 2021-04-07 2022-10-07 Alfa Impianti Srl Dispositivo per la smaltatura di manufatti e relativo impianto

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3431889A (en) * 1965-09-27 1969-03-11 Shell Oil Co Fluid distribution bar
US3526535A (en) * 1966-08-01 1970-09-01 Glaverbel Method for producing surface coatings
US4550681A (en) * 1982-10-07 1985-11-05 Johannes Zimmer Applicator for uniformly distributing a flowable material over a receiving surface
DE3622798A1 (de) * 1985-08-27 1987-03-12 Armstrong World Ind Inc Verfahren und vorrichtung zum beschichten eines substrats mit hilfe eines giessvorhangs
EP0279323A1 (de) * 1987-02-20 1988-08-24 Bayer Ag Vorrichtung zum Auftragen eines Schaumstoff bildenden, fliessfähigen Reaktionsgemisches auf eine Unterlage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733171A (en) * 1956-01-31 ransburg
US3237872A (en) * 1965-04-02 1966-03-01 James M Mincy Lubricant and coolant applicator
CH431192A (de) * 1965-08-31 1967-02-28 Merkurium Ag Einrichtung für die Zufuhr von Zusatzluft zum Brennstoff-Luftgemisch bei Ottomotoren
US4656063A (en) * 1985-08-27 1987-04-07 Long Harry F Curtain coating method
US4747541A (en) * 1986-08-21 1988-05-31 Morine Richard L Dispensing apparatus
US4748043A (en) * 1986-08-29 1988-05-31 Minnesota Mining And Manufacturing Company Electrospray coating process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3431889A (en) * 1965-09-27 1969-03-11 Shell Oil Co Fluid distribution bar
US3526535A (en) * 1966-08-01 1970-09-01 Glaverbel Method for producing surface coatings
US4550681A (en) * 1982-10-07 1985-11-05 Johannes Zimmer Applicator for uniformly distributing a flowable material over a receiving surface
DE3622798A1 (de) * 1985-08-27 1987-03-12 Armstrong World Ind Inc Verfahren und vorrichtung zum beschichten eines substrats mit hilfe eines giessvorhangs
EP0279323A1 (de) * 1987-02-20 1988-08-24 Bayer Ag Vorrichtung zum Auftragen eines Schaumstoff bildenden, fliessfähigen Reaktionsgemisches auf eine Unterlage

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4212548C1 (en) * 1992-04-15 1993-09-23 Licentia Patent-Verwaltungs-Gmbh, 60596 Frankfurt, De Application of hot melting adhesive on carrier - uses broad slot nozzle comprising several adjacent feed channels which can be timely cut off one after the other
FR2692818A1 (fr) * 1992-06-30 1993-12-31 Chemicals M Dispositif enducteur et/ou imprégnateur d'un produit liquide ou pâteux sur une nappe de matériau en défilement continu.
FR2692819A1 (fr) * 1992-06-30 1993-12-31 Chemicals M Perfectionnements au dispositif enducteur et/ou imprégnateur d'un produit liquide ou pâteux sur une nappe de matériau en défilement continu.
EP0577539A1 (de) * 1992-06-30 1994-01-05 Société Anonyme : M. CHEMICALS Vorrichtung zur Beschichtung und/oder Imprägnierung einer sich kontinuierlich bewegenden Bahn mit einer Flüssigkeit oder einem pastösen Medium
EP0605080A1 (de) * 1992-12-28 1994-07-06 Yasui Seiki Co., Ltd. Beschichtungsvorrichtung
DE4313880A1 (de) * 1993-04-28 1994-11-03 Koch Marmorit Gmbh Verfahren und Vorrichtung zum gesteuerten Auftragen von Klebern
DE10012344A1 (de) * 2000-03-14 2001-09-20 Voith Paper Patent Gmbh Vorhang-Auftragsverfahren
EP1253241A3 (de) * 2001-04-27 2004-02-04 Giesecke & Devrient GmbH Verfahren und Vorrichtung zum Einbringen von Merkmalsstoffen in eine Papierbahn
US9981285B2 (en) 2011-12-05 2018-05-29 Akzo Nobel Chemicals International B.V. Device for dosing an additive solution
WO2013090575A1 (en) * 2011-12-13 2013-06-20 3M Innovative Properties Company Contact coating by use of a manifold provided with capillary tubes
US9192960B2 (en) 2011-12-13 2015-11-24 3M Innovative Properties Company Contact coating by use of a manifold provided with capillary tubes
WO2015149864A1 (en) * 2014-04-04 2015-10-08 Hewlett-Packard Indigo B.V. Fluid application
CN106573267A (zh) * 2014-04-04 2017-04-19 惠普印迪戈股份公司 流体施加
US9937515B2 (en) 2014-04-04 2018-04-10 Hp Indigo B.V. Fluid application
US10464097B2 (en) 2014-04-04 2019-11-05 Hp Indigo B.V. Fluid application
CN106573267B (zh) * 2014-04-04 2020-02-14 惠普印迪戈股份公司 流体施加
CN104279672A (zh) * 2014-10-17 2015-01-14 中山市蓝水能源科技发展有限公司 一种水蓄冷中的布水箱

Also Published As

Publication number Publication date
KR0179025B1 (ko) 1999-03-20
KR910014152A (ko) 1991-08-31
ES2070989T3 (es) 1995-06-16
BR9100052A (pt) 1991-10-22
JPH04313363A (ja) 1992-11-05
DE4000405A1 (de) 1991-07-11
EP0436893B1 (de) 1995-04-12
CA2033539A1 (en) 1991-07-10
US5264036A (en) 1993-11-23
DE59008895D1 (de) 1995-05-18

Similar Documents

Publication Publication Date Title
EP0436893B1 (de) Verfahren und Vorrichtung zum gleichmässigen Aufbringen eines Fluids auf eine bewegte Materialbahn
DE69312172T2 (de) Vorrichtung und Verfahren zum gleichzeitigen Strangpressen von dünnen Schichten
DE69215223T2 (de) Düsen
AT392807B (de) Stoffauflauf fuer eine papiermaschine od.dgl.
DE3686488T3 (de) Verfahren und vorrichtung zum anbringen monomolekularer schichten auf ein substrat.
DE3927627A1 (de) Verfahren und vorrichtung zum trocknen einer auf einem bewegten traegermaterial aufgebrachten fluessigkeitsschicht
DE2836714A1 (de) Vorrichtung zur mehrfachstreifenbeschichtung
DE4012541A1 (de) Vorrichtung zum einbringen von fluessigkeitsstrahlen mit hoher geschwindigkeit in eine faserfoermige bahn zur strahlverflechtung
DE69601080T2 (de) Düse mit begrenztem Durchfluss
DE3046960C2 (de) Strömungsverteiler zur Erzeugung eines Flüssigkeitsfilms
DE69014066T2 (de) Feuchtwalze in einer Druckmaschine.
EP0759328A2 (de) Vorrichtung zum Auftragen einer Beschichtungslösung
EP1565268B1 (de) Düsenanordnung
DE2238133A1 (de) Kaskadengiesser
EP0239835A1 (de) Verfahren und Vorrichtung zum beidseitigen Auftragen von flüssigen, pastösen oder schaumigen Massen auf Materialbahnen
DE2927137B2 (de) Vorrichtung zum Abstreifen von Flüssigkeit von einem laufenden Filmstreifen mittels Druckluft
EP0399325A1 (de) Anordnung zur Behandlung und/oder Reinigung von Gut, insbesondere von mit Bohrungen versehenen Leiterplatten (Fall A)
DE19519211A1 (de) Verfahren zur Behandlung von Gegenständen, insbesondere von elektronischen Leiterplatten, sowie Vorrichtung zur Durchführung dieses Verfahrens
EP0906789B1 (de) Verfahren und Vorrichtung zur Vorhangbeschichtung eines bewegten Trägers
EP0584674A2 (de) Vorrichtung zum Erzeugen eines Unterdrucks
DE68924321T2 (de) Beschichtungsvorrichtung für Gewebe.
EP0753357B1 (de) Vorrichtung zum Aufbringen eines über die Arbeitsbreite gleichmässig dünnen Flüssigkeitsfilmes auf eine Warenbahn
CH597928A5 (en) Cascade distributor head for coating substances
DE2622654C3 (de)
DE3110821A1 (de) Beschichtungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19911118

17Q First examination report despatched

Effective date: 19930125

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 59008895

Country of ref document: DE

Date of ref document: 19950518

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2070989

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950712

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990919

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991015

Year of fee payment: 10

Ref country code: FR

Payment date: 19991015

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991118

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19991203

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011220

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051219