[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0321819B2 - Méthode d'analyse d'un mélange de gaz par spectrométrie de masse et spectromètre de masse utilisé dans ce but - Google Patents

Méthode d'analyse d'un mélange de gaz par spectrométrie de masse et spectromètre de masse utilisé dans ce but Download PDF

Info

Publication number
EP0321819B2
EP0321819B2 EP88120710A EP88120710A EP0321819B2 EP 0321819 B2 EP0321819 B2 EP 0321819B2 EP 88120710 A EP88120710 A EP 88120710A EP 88120710 A EP88120710 A EP 88120710A EP 0321819 B2 EP0321819 B2 EP 0321819B2
Authority
EP
European Patent Office
Prior art keywords
quistor
annular electrode
distance
apex
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88120710A
Other languages
German (de)
English (en)
Other versions
EP0321819A3 (en
EP0321819A2 (fr
EP0321819B1 (fr
Inventor
Jochen Dr. Franzen
Reemt-Holger Dr. Gabling
Gerhard Heinen
Gerhard Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Daltonics GmbH and Co KG
Original Assignee
Bruker Daltonik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6343365&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0321819(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bruker Daltonik GmbH filed Critical Bruker Daltonik GmbH
Publication of EP0321819A2 publication Critical patent/EP0321819A2/fr
Publication of EP0321819A3 publication Critical patent/EP0321819A3/de
Application granted granted Critical
Publication of EP0321819B1 publication Critical patent/EP0321819B1/fr
Publication of EP0321819B2 publication Critical patent/EP0321819B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/424Three-dimensional ion traps, i.e. comprising end-cap and ring electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/426Methods for controlling ions
    • H01J49/427Ejection and selection methods
    • H01J49/429Scanning an electric parameter, e.g. voltage amplitude or frequency

Definitions

  • the invention relates to a method after the preamble of claim 1.
  • the invention also relates to a mass spectrometer.
  • a special property of the quistor is that the ions are in the center of the RF field are not exposed to any field strength that gives them a component of motion to leave the ion trap could issue.
  • a collision gas is admitted into the ion trap Pressure is set so that the ions are sufficiently far from the center of the center by collisions Ion trap are driven to leave the ion trap. Because this gas passes through a Damping the ion movement transverse to the direction of expulsion causes an increase in the yield, it will also called "damping gas".
  • the line shape is also affected by space charge effects if there are too many ions in the Quistor are located.
  • space charge effects leads increasingly to scientific Misinterpretations.
  • the invention has for its object in the method of the type mentioned in to develop in such a way that an improvement in the line shape and thus also an improvement of the resolving power in the mass spectroscopic analysis of gas mixtures using of such a mass spectrometer is achieved.
  • the measure according to the invention not only shortens the time it takes for the ions to leave the trap need, but it also improves the line shape, sensitivity and that Detection ability increased by improving the signal / noise ratio and the influence of Space charge reduced.
  • the reduction in the time it takes for the ions to leave the ion trap allows an increase in the number of spectra recordings per unit of time, which again increases the sensitivity can be achieved.
  • the invention also relates to a mass spectrometer according to claim 2, which is used to examine a gas mixture is suitable by the method according to the invention.
  • the distance r o of the apex of the ring electrode from the center of the quistor has a value which ensures that the greatest mass of interest is the amplitude of the RF voltage applied to the ring electrode is still captured by means of the memory field
  • the values r o and Q which are particularly important for the behavior of the quistor, are preselected and the other values are determined in accordance with the specified rules, with the choice of R e and R r being free to take into account allow other influencing factors, especially in terms of manufacturing technology.
  • the quistor shown in Fig. 1 has a ring electrode 4 and two, each on one side of the End electrodes 3, 5 arranged on the ring electrode, which define the chamber delimited by the ring electrode 4 seal on both sides of the ring electrode.
  • the end electrodes 3 and 5 are on the ring electrode 4 each supported by annular insulators 7, 8.
  • the ring-shaped insulators 7, 8 also form one tight connection between the outer sections of the ring electrode 4 and the end electrodes 3, 5.
  • In one ring electrode 8 opens an inlet line 11, which allows a damping gas into the ion trap initiate.
  • FIG. 1 has a central opening 10, which at the Outside of the end electrode 3, a hot cathode 1 for generating an electron beam and one for Control of the electron beam serving blocking lens 2 is opposite.
  • the lower end electrode in FIG. 1 5 has a perforation 9 in the area of its center, through which ions can leave the quistor.
  • a secondary electron multiplier 6 is arranged on the outside of the lower end electrode 5 and it makes it possible to detect the ions leaving the quistor through the perforation 9.
  • Both the ring electrode 4 and the end electrodes 3 and 5 have strictly hyperbolic surfaces, which means that their contours are hyperbolas in the cross section shown in FIG. 1.
  • the asymptotic angle of both the ring electrode 4 and the hyperbola producing the end electrodes 3, 5 is 1: 1.360.
  • the end electrodes 3, 5 are at ground potential, an RF voltage with a frequency of 1.0 MHz is applied to the ring electrode 4, which can be varied in the range from 0 V to 7.5 kV.
  • the range of the charge / mass ratio of the ions captured and stored by the quistor includes ions with mass numbers 1 to 500 ⁇ for simple ionization, where u is the atomic mass unit. Accordingly, by changing the RF voltage in the range from 0 V to 7.5 kV, a mass range from 1u to 500u can be covered in one scan.
  • the device provided for the quistor of FIG. 1 for generating an electron beam allows the ions to be generated in the quistor itself by using their duration in the ionization phase of the blocking lens 2, an electron beam from the hot cathode 1 through the opening 10 is focused in the quistor.
  • Typical ionization times for an electron beam of 100 ⁇ A strength are in the range from 10 ⁇ s to 100 ms, depending on the concentration of the substance to be examined.
  • FIG. 3 illustrates the time it takes for ions to exit the quistor need and which is expressed as a line width, as a function of the distance-related circle ratio Q.
  • the three curves of the diagram in FIG. 3 correspond to different scanning speeds, which are indicated at the bottom of Fig. 3. Damping gas was under each optimal printing conditions. It is readily apparent that for Q ⁇ 4,000 the triggering ability increases significantly.
  • the quistors used had the dimensions shown in the following table (in cm): Q 3.6 4.0 4.4 r o 1 1 1 z o .7260 0.7071 .6905 R r .5269 0.5000 .4768 R e 1.3776 1.4142 1.4482
  • Another advantage is that the influence of the space charge for values of Q ⁇ 4,000 is significantly reduced. Even if the signal strengths were reduced by a factor of 100, none could significant changes in line shape and line width can be observed.
  • the reason for the observable improvements is the occurrence of a resonance of the secular movement of ions exactly at the instability limit, which is the increase in amplitude of the secular movement accelerates and thus increases the speed of ion ejection.
  • the ejection therefore takes place only at Partly due to the instability of the railways and partly due to the additional energy consumption the ions from the storing RF field, which is made possible by the resonance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Claims (2)

  1. Procédé d'examen par spectroscopie de masse d'un mélange de gaz, en utilisant un spectromètre de masse avec un piège à ions, réalisé sous forme de quistor, avec une électrode annulaire et deux électrodes d'extrémité, fermant les chambres délimitées par l'électrode annulaire, les électrodes étant formées par des hyperboloides de rotation et des électrodes d'extrémité dont au moins l'une est pourvue d'une perforation disposée dans le prolongement de l'axe de rotation de l'électrode annulaire, procédé dans lequel sont effectuées les étapes suivantes :
    application à l'électrode annulaire d'une tension H.F. d'une amplitude et d'une fréquence telles, ainsi que, le cas échéant d'une tension continue telle, qu'un champ de quadripôlaire H.F. tridimensionnel est produit à 1' intérieur du piège à ions et convient pour capter les ions dont le rapport charge/masse est situé dans une plage déterminée et les stocker dans le piège à ions,
    introduction ou production d'ions du mélange de gaz dans, respectivement à l'intérieur du piège à ions et stockage des ions dans le piège à ions dont le rapport charge/masse est situé dans la plage déterminée,
    modification d'au moins un paramètre de champ formé par l'amplitude, la fréquence et, le cas échéant, la tension continue, de manière telle que des ions ayant un rapport charge/masse variant de façon monotone deviennent les uns après les autres instables et quittent le piège à ions en direction de l'axe de rotation de leur électrode annulaire, à travers ladite perforation ménagée dans l'électrode d'extrémité, et
    mesure et enregistrement de l'intensité du courant ionique quittant le piège à ions, à titre de fonction de la modification des paramètres de champ, caractérisé en ce que
       pour mettre en oeuvre le procédé est utilisé un quistor, pour lequel le rapport Q, lié aux espacements, entre les rayons des cercles inscrits passant par les sommets des électrodes satisfait à la condition Q ≤ 3,990, où Q = Re zo × ro Rr , avec
    Re =
    rayon de cercle de la section transversale passant par le sommet de chaque électrode d'extrémité,
    Rr =
    rayon de cercle de la section transversale passant par le sommet de l'électrode annulaire,
    zo =
    distance entre les sommets des électrodes d'extrémité et le centre du quistor,
    ro =
    distance entre les sommets de l'électrode annulaire et le centre du quistor,
    en ce qu'à partir des dimensions, déterminant le rapport Q lié aux espacements, du quistor, la distance ro entre le sommet de l'électrode annulaire et le centre du quistor a une valeur pour laquelle il est assuré que, pour l'amplitude de la tension H.F. appliquée à l'électrode annulaire, on a encore capté au moyen du champ de stockage la plus grande masse intéressante, pour une valeur prédéterminée du rapport Q entre la distance zo du sommet des électrodes d'extrémité et le centre du quistor zo = ro/4 Q et, enfin, les rayons Re et Rr des sections transversales de sommet sont choisis telles que l'on a Re x Rr = ro x zo.
  2. Spectromètre de masse avec un piège à ion, réalisé sous forme de quistor, avec une électrode annulaire et deux électrodes d'extrémité, délimitant les chambres délimitées par l'électrode annulaire, les électrodes étant formées par des hyperboloides de rotation et des électrodes d'extrémité dont au moins l'une est pourvue d'une perforation disposée dans le prolongement de l'axe de rotation de l'électrode annulaire, destiné à l'examen d'un mélange de gaz suivant le procédé selon la revendication 1, caractérisé en ce que le rapport Q, lié aux espacements, entre les rayons des cercles inscrits passant par les sommets des électrodes satisfait à la condition Q ≤ 3,990, où Q = Re zo × ro Rr , avec
    Re =
    rayon de cercle de la section transversale passant par le sommet de chaque électrode d'extrémité,
    Rr =
    rayon de cercle de la section transversale passant par le sommet de l'électrode annulaire,
    zo =
    distance entre les sommets des électrodes d'extrémité et le centre du quistor,
    ro =
    distance entre les sommets de l'électrode annulaire et
    le centre du quistor, et en ce qu'à partir des dimensions, déterminant le rapport Q lié aux espacements, du quistor, la distance ro entre le sommet de l'électrode annulaire et le centre du quistor a une valeur pour laquelle il est assuré que, pour l'amplitude de la tension H.F. appliquée à l'électrode annulaire, on a encore capté au moyen du champ de stockage la plus qrande masse intéressante, pour une valeur prédéterminée du rapport Q entre la distance zo du sommet des électrodes d'extrémité et le centre du quistor zo = ro/4 Q et, enfin, les rayons Re et Rr des sections transversales de sommet sont choisis telles que l'on a Re x Rr = ro x zo.
EP88120710A 1987-12-23 1988-12-12 Méthode d'analyse d'un mélange de gaz par spectrométrie de masse et spectromètre de masse utilisé dans ce but Expired - Lifetime EP0321819B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3743718 1987-12-23
DE3743718 1987-12-23

Publications (4)

Publication Number Publication Date
EP0321819A2 EP0321819A2 (fr) 1989-06-28
EP0321819A3 EP0321819A3 (en) 1989-08-23
EP0321819B1 EP0321819B1 (fr) 1993-04-21
EP0321819B2 true EP0321819B2 (fr) 2002-06-19

Family

ID=6343365

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88120710A Expired - Lifetime EP0321819B2 (fr) 1987-12-23 1988-12-12 Méthode d'analyse d'un mélange de gaz par spectrométrie de masse et spectromètre de masse utilisé dans ce but

Country Status (3)

Country Link
US (1) US5028777A (fr)
EP (1) EP0321819B2 (fr)
DE (1) DE3880456D1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225141A (en) * 1988-07-11 1993-07-06 Milad Limited Partnership Process for injection molding a hollow plastic article
US5206506A (en) * 1991-02-12 1993-04-27 Kirchner Nicholas J Ion processing: control and analysis
US5182451A (en) * 1991-04-30 1993-01-26 Finnigan Corporation Method of operating an ion trap mass spectrometer in a high resolution mode
DE4142871C1 (fr) * 1991-12-23 1993-05-19 Bruker - Franzen Analytik Gmbh, 2800 Bremen, De
DE4142870C2 (de) * 1991-12-23 1995-03-16 Bruker Franzen Analytik Gmbh Verfahren für phasenrichtiges Messen der Ionen aus Ionenfallen-Massenspektrometern
DE4316738C2 (de) * 1993-05-19 1996-10-17 Bruker Franzen Analytik Gmbh Auswurf von Ionen aus Ionenfallen durch kombinierte elektrische Dipol- und Quadrupolfelder
DE4324224C1 (de) * 1993-07-20 1994-10-06 Bruker Franzen Analytik Gmbh Quadrupol-Ionenfallen mit schaltbaren Multipol-Anteilen
US5420425A (en) * 1994-05-27 1995-05-30 Finnigan Corporation Ion trap mass spectrometer system and method
US5572025A (en) * 1995-05-25 1996-11-05 The Johns Hopkins University, School Of Medicine Method and apparatus for scanning an ion trap mass spectrometer in the resonance ejection mode
JP3648906B2 (ja) * 1997-02-14 2005-05-18 株式会社日立製作所 イオントラップ質量分析計を用いた分析装置
DE19733834C1 (de) * 1997-08-05 1999-03-04 Bruker Franzen Analytik Gmbh Axialsymmetrische Ionenfalle für massenspektrometrische Messungen
DE19751401B4 (de) * 1997-11-20 2007-03-01 Bruker Daltonik Gmbh Quadrupol-Hochfrequenz-Ionenfallen für Massenspektrometer
US6124592A (en) * 1998-03-18 2000-09-26 Technispan Llc Ion mobility storage trap and method
US6239429B1 (en) 1998-10-26 2001-05-29 Mks Instruments, Inc. Quadrupole mass spectrometer assembly
US6469298B1 (en) * 1999-09-20 2002-10-22 Ut-Battelle, Llc Microscale ion trap mass spectrometer
DE10028914C1 (de) * 2000-06-10 2002-01-17 Bruker Daltonik Gmbh Interne Detektion von Ionen in Quadrupol-Ionenfallen
US7019289B2 (en) * 2003-01-31 2006-03-28 Yang Wang Ion trap mass spectrometry
US7034293B2 (en) * 2004-05-26 2006-04-25 Varian, Inc. Linear ion trap apparatus and method utilizing an asymmetrical trapping field
US8334506B2 (en) 2007-12-10 2012-12-18 1St Detect Corporation End cap voltage control of ion traps
US7973277B2 (en) 2008-05-27 2011-07-05 1St Detect Corporation Driving a mass spectrometer ion trap or mass filter
US9171706B1 (en) * 2014-11-06 2015-10-27 Shimadzu Corporation Mass analysis device and mass analysis method
CN110783165A (zh) * 2019-11-01 2020-02-11 上海裕达实业有限公司 线性离子阱离子引入侧的端盖电极结构
CN115047259B (zh) * 2022-04-15 2022-12-06 安徽省太微量子科技有限公司 基于频率可调二维线性离子阱的颗粒荷质比测量方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527939A (en) * 1968-08-29 1970-09-08 Gen Electric Three-dimensional quadrupole mass spectrometer and gauge
US4540884A (en) * 1982-12-29 1985-09-10 Finnigan Corporation Method of mass analyzing a sample by use of a quadrupole ion trap
US4650999A (en) * 1984-10-22 1987-03-17 Finnigan Corporation Method of mass analyzing a sample over a wide mass range by use of a quadrupole ion trap
DE3688215T3 (de) * 1985-05-24 2005-08-25 Thermo Finnigan Llc, San Jose Steuerungsverfahren für eine Ionenfalle.
DE3886922T2 (de) * 1988-04-13 1994-04-28 Bruker Franzen Analytik Gmbh Methode zur Massenanalyse einer Probe mittels eines Quistors und zur Durchführung dieses Verfahrens entwickelter Quistor.

Also Published As

Publication number Publication date
DE3880456D1 (de) 1993-05-27
EP0321819A3 (en) 1989-08-23
US5028777A (en) 1991-07-02
EP0321819A2 (fr) 1989-06-28
EP0321819B1 (fr) 1993-04-21

Similar Documents

Publication Publication Date Title
EP0321819B2 (fr) Méthode d'analyse d'un mélange de gaz par spectrométrie de masse et spectromètre de masse utilisé dans ce but
DE3886922T2 (de) Methode zur Massenanalyse einer Probe mittels eines Quistors und zur Durchführung dieses Verfahrens entwickelter Quistor.
EP0459602B1 (fr) Cage quadrupolaire haute fréquence pour spectrométrie de masse avec champs multipolaires superposés
DE68929392T2 (de) Massenspektrometer und Verfahren mit verbesserter Ionenübertragung
DE68913290T2 (de) Verfahren und Gerät zur Massenbestimmung von Proben mittels eines Quistors.
DE60209132T2 (de) Quadrupolionenfalle, verfahren zur verwendung derselben und ein eine solche ionenfalle enthaltendes massenspektrometer
DE102012008250B4 (de) Ionenmobilitätsseparator für Massenspektrometer
DE112011103930T5 (de) Verfahren zum Massenselektieren von Ionen und Massenselektor
DE69419014T2 (de) Ionenquelle und messenspektrometer mit einer solchen ionenquelle
DE3914838A1 (de) Ionen-zyklotron-resonanz-spektrometer
DE102007034232A1 (de) Dreidimensionale Hochfrequenz-Ionenfallen hoher Einfangeffizienz
DE112014006538T5 (de) Verfahren der gezielten massenspektrometrischen Analyse
DE10296794B4 (de) Ionenfalle
DE3238474C2 (de) Hybrid-Massenspektrometer
DE10010902A1 (de) Tandem-Massenspektrometer aus zwei Quadrupolfiltern
DE4134905A1 (de) Tandem-massenspektrometer basierend auf flugzeitanalyse
DE2934408A1 (de) Ionenquelle mit kaltkathode und damit ausgeruestetes massenspektrometer
DE102008063233A1 (de) Hohe Massenauflösung mit ICR-Messzellen
DE69725600T2 (de) Radiofrequenz-massenspektrometer
DE102018009119B4 (de) Massenspektrometer
DE19635645C2 (de) Verfahren für die hochauflösende Spektrenaufnahme von Analytionen in einem linearen Flugzeitmassenspektrometer
DE102007049640B3 (de) Messung von Tochterionenspektren aus einer MALDI-Ionisierung
EP0290712B1 (fr) Spectromètre de masse
DE60126048T2 (de) Massenspektrometer und massenspektrometrisches Verfahren
EP0378648B1 (fr) Piege a ions icr

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19890722

17Q First examination report despatched

Effective date: 19911205

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BRUKER-FRANZEN ANALYTIK GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930421

REF Corresponds to:

Ref document number: 3880456

Country of ref document: DE

Date of ref document: 19930527

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930521

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19931231

Ref country code: LI

Effective date: 19931231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: FINNIGAN CORPORATION

Effective date: 19940119

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAA Information modified related to event that no opposition was filed

Free format text: ORIGINAL CODE: 0009299DELT

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BRUKER DALTONIK GMBH

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

27A Patent maintained in amended form

Effective date: 20020619

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): CH DE FR GB LI SE

27O Opposition rejected

Effective date: 20000820

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
ET3 Fr: translation filed ** decision concerning opposition
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071217

Year of fee payment: 20

Ref country code: GB

Payment date: 20071220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071215

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20081211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081211