[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A102769
Decimal expansion of the volume of a dodecahedron with each edge of unit length.
16
7, 6, 6, 3, 1, 1, 8, 9, 6, 0, 6, 2, 4, 6, 3, 1, 9, 6, 8, 7, 1, 6, 0, 5, 3, 9, 2, 0, 2, 7, 9, 7, 3, 3, 4, 1, 2, 0, 2, 1, 0, 8, 2, 1, 2, 9, 3, 2, 0, 1, 7, 0, 0, 1, 7, 4, 7, 4, 0, 7, 0, 1, 7, 9, 4, 6, 8, 4, 1, 1, 6, 1, 9, 8, 6, 6, 1, 5, 8, 5, 7, 3, 9, 7, 5, 2, 2, 5, 2, 1, 4, 6, 6, 2, 8, 6, 8, 9, 8, 1
OFFSET
1,1
COMMENTS
Equals 5*phi^3/(2*xi^2), phi being the golden ratio (A001622) and xi its associate (A182007). - Stanislav Sykora, Nov 23 2013
REFERENCES
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง12.4 Theorems and Formulas (Solid Geometry), p. 451.
LINKS
Eric Weisstein's World of Mathematics, Dodecahedron.
Wikipedia, Platonic solid.
FORMULA
Equals (15 + 7 sqrt(5)) / 4.
Equals (sqrt(5)/2)*(phi)^4, where phi is the golden ratio. - G. C. Greubel, Jul 06 2017
EXAMPLE
7.663118960624631968716053920...
MAPLE
evalf((15+7*sqrt(5))/4, 100); # Wesley Ivan Hurt, Jan 29 2017
MATHEMATICA
RealDigits[(Sqrt[5]/2)*(GoldenRatio)^4, 10, 50][[1]] (* G. C. Greubel, Jul 06 2017 *)
PROG
(PARI) (7*sqrt(5)+15)/4 \\ Charles R Greathouse IV, Apr 25 2016
CROSSREFS
Cf. A001622 (phi), A182007 (phi associate), A020829 (regular tetrahedron volume), A131594 (regular octahedron volume), A102208 (regular icosahedron volume).
Sequence in context: A019859 A188736 A265304 * A031348 A247674 A109696
KEYWORD
nonn,cons,easy,changed
AUTHOR
Bryan Jacobs (bryanjj(AT)gmail.com), Feb 10 2005
STATUS
approved