# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a010527
Showing 1-1 of 1
%I A010527 #155 Feb 16 2025 08:32:32
%S A010527 8,6,6,0,2,5,4,0,3,7,8,4,4,3,8,6,4,6,7,6,3,7,2,3,1,7,0,7,5,2,9,3,6,1,
%T A010527 8,3,4,7,1,4,0,2,6,2,6,9,0,5,1,9,0,3,1,4,0,2,7,9,0,3,4,8,9,7,2,5,9,6,
%U A010527 6,5,0,8,4,5,4,4,0,0,0,1,8,5,4,0,5,7,3,0,9,3,3,7,8,6,2,4,2,8,7,8,3,7,8,1,3
%N A010527 Decimal expansion of sqrt(3)/2.
%C A010527 This is the ratio of the height of an equilateral triangle to its base.
%C A010527 Essentially the same sequence arises from decimal expansion of square root of 75, which is 8.6602540378443864676372317...
%C A010527 Also the real part of i^(1/3), the cubic root of i. - _Stanislav Sykora_, Apr 25 2012
%C A010527 Gilbert & Pollak conjectured that this is the Steiner ratio rho_2, the least upper bound of the ratio of the length of the Steiner minimal tree to the length of the minimal tree in dimension 2. (See Ivanov & Tuzhilin for the status of this conjecture as of 2012.) - _Charles R Greathouse IV_, Dec 11 2012
%C A010527 Surface area of a regular icosahedron with unit edge is 5*sqrt(3), i.e., 10 times this constant. - _Stanislav Sykora_, Nov 29 2013
%C A010527 Circumscribed sphere radius for a cube with unit edges. - _Stanislav Sykora_, Feb 10 2014
%C A010527 Also the ratio between the height and the pitch, used in the Unified Thread Standard (UTS). - _Enrique Pérez Herrero_, Nov 13 2014
%C A010527 Area of a 30-60-90 triangle with shortest side equal to 1. - _Wesley Ivan Hurt_, Apr 09 2016
%C A010527 If a, b, c are the sides of a triangle ABC and h_a, h_b, h_c the corresponding altitudes, then (h_a+h_b+h_c) / (a+b+c) <= sqrt(3)/2; equality is obtained only when the triangle is equilateral (see Mitrinovic reference). - _Bernard Schott_, Sep 26 2022
%D A010527 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 8.2, 8.3 and 8.6, pp. 484, 489, and 504.
%D A010527 Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), pp. 450-451.
%D A010527 D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, and J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.8, page 114.
%H A010527 Harry J. Smith, Table of n, a(n) for n = 0..20000
%H A010527 E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM J. Appl. Math. 16, (1968), pp. 1-29.
%H A010527 A. O. Ivanov and A. A. Tuzhilin, The Steiner ratio Gilbert-Pollak conjecture is still open, Algorithmica 62:1-2 (2012), pp. 630-632.
%H A010527 Matt Parker, The mystery of 0.866025403784438646763723170752936183471402626905190314027903489, Stand-up Maths, YouTube video, Feb 14 2024.
%H A010527 Simon Plouffe, Plouffe's Inverter, sqrt(3)/2 to 10000 digits.
%H A010527 Simon Plouffe, Sqrt(3)/2 to 5000 digits.
%H A010527 Eric Weisstein's World of Mathematics, Lebesgue Minimal Problem.
%H A010527 Wikipedia, Icosahedron.
%H A010527 Wikipedia, Platonic solid.
%H A010527 Wikipedia, Unified Thread Standard.
%H A010527 Index entries for algebraic numbers, degree 2.
%F A010527 Equals cos(30 degrees). - _Kausthub Gudipati_, Aug 15 2011
%F A010527 Equals A002194/2. - _Stanislav Sykora_, Nov 30 2013
%F A010527 From _Amiram Eldar_, Jun 29 2020: (Start)
%F A010527 Equals sin(Pi/3) = cos(Pi/6).
%F A010527 Equals Integral_{x=0..Pi/3} cos(x) dx. (End)
%F A010527 Equals 1/(10*A020832). - _Bernard Schott_, Sep 29 2022
%F A010527 Equals x^(x^(x^...)) where x = (3/4)^(1/sqrt(3)) (infinite power tower). - _Michal Paulovic_, Jun 25 2023
%e A010527 0.86602540378443864676372317...
%p A010527 Digits:=100: evalf(sqrt(3)/2); # _Wesley Ivan Hurt_, Apr 09 2016
%t A010527 RealDigits[Sqrt[3]/2, 10, 200][[1]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 21 2011 *)
%o A010527 (PARI) default(realprecision, 20080); x=10*(sqrt(3)/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010527.txt", n, " ", d)); \\ _Harry J. Smith_, Jun 02 2009
%o A010527 (PARI) sqrt(3)/2 \\ _Michel Marcus_, Apr 10 2016
%o A010527 (Magma) SetDefaultRealField(RealField(100)); Sqrt(3)/2; // _G. C. Greubel_, Nov 02 2018
%Y A010527 Cf. A010153.
%Y A010527 Cf. Platonic solids surfaces: A002194 (tetrahedron), A010469 (octahedron), A131595 (dodecahedron).
%Y A010527 Cf. Platonic solids circumradii: A010503 (octahedron), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
%Y A010527 Cf. A126664 (continued fraction), A144535/A144536 (convergents).
%Y A010527 Cf. A002194, A010502, A020821, A104956, A152623 (other geometric inequalities).
%K A010527 nonn,cons,easy,changed
%O A010527 0,1
%A A010527 _N. J. A. Sloane_
%E A010527 Last term corrected and more terms added by _Harry J. Smith_, Jun 02 2009
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE