Train a computer to recognize your own images, sounds, & poses. A fast, easy way to create machine learning models for your sites, apps, and more – no expertise or coding required.
機械学習とif文が地続きであることを解説しました。 ver.2 質問への回答を追加し、顧客価値の小問に図を追加してわかりやすくかみ砕きました。Read less
記事要約 機械学習によるアイドル顔識別のLINE BOTを作りました。アイドル分かる人は是非 友だち追加して アイドル画像を送りつけて遊んだりしてみてください。 むしろ識別対象のアイドルさん御本人にも使ってもらえたら最高 BOT概要 TensorFlowによるアイドル顔識別器の話 - 2016.9.28 TensorFlow勉強会 - Qiita にまとめている、自作のアイドル顔識別器の 「入力した画像に対し、写っているのが『どのアイドル(人物)か』を機械学習により自動判定する」 という機能を実際に試すためのインタフェース。 トーク(1:1、Room, Group、いずれでも可)で画像を投稿されると、その画像に写っている人物の顔を識別してCarouselメッセージで結果を返す。 11月末現在の時点で、識別対象のアイドルは851人となっています。 顔識別API 元々 実際に学習結果を試すため
#1.はじめに OpenCVには,様々な処理が用意されています。画像処理,映像解析,カメラキャリブレーション,特徴点抽出,物体検出,機械学習,コンピュテーショナルフォトグラフィ,3D可視化などが基本モジュールで用意されています。さらに,エクストラモジュールを追加することで,より豊富うな処理が利用できます。[1] OpenCV 3.x系を中心に話をします。 今回は,OpenCVの局所特徴量がどの程度簡単に使えるのか興味があり,局所特徴量を利用した物体検出を作成しました。 最近世間では,ディープな物体認識で盛り上がっていますが。 特徴点抽出に関する詳しい説明は,検索すれば多数ありますので,ここでは割愛します。 藤吉先生 (中部大学)のスライド「画像局所特徴量SIFTとそれ以降のアプローチ」は,とてもわかり易く説明されています。 #2.特徴点検出と特徴量記述 特徴点検出と特徴量記述は,featu
「いつか勉強しよう」と人工知能/機械学習/ディープラーニング(Deep Learning)といったトピックの記事の見つけてはアーカイブしてきたものの、結局2015年は何一つやらずに終わってしまったので、とにかく一歩でも足を踏み出すべく、本質的な理解等はさておき、とにかく試してみるということをやってみました。 試したのは、TensorFlow、Chainer、Caffe といった機械学習およびディープラーニングの代表的なライブラリ/フレームワーク3種と、2015年に話題になったディープラーニングを利用したアプリケーション2種(DeepDream、chainer-gogh)。 (DeepDreamで試した結果画像) タイトルに半日と書きましたが、たとえばTensorFlowは環境構築だけなら10分もあれば終わるでしょうし、Chainerなんてコマンド一発なので5秒くらいです。Caffeは僕はハ
IoTをゼロベースで考えるの第20回は「機械学習」と「ディープラーニング」についてだ。 この言葉、IoTや人工知能の話題ではよく出てくる言葉だが、きちんと説明するのはとても難しい。私も以前聞かれた時とても曖昧な答えしかできなかったので、整理してみる。前後半にわけて解説し、第一回は機械学習についてだ。 機械学習と切っても切り離せないのがインターネットの普及だ。Googleができたのが、1998年、データマイニングの研究が盛んになったのも1998年ということで、このあたりから機械学習の研究は大きく発展したということだ。 機械学習の概念を簡単にいうと、「意味は特に考えず、単に機械的に、正解の確率の高いものを当てはめていく」やり方だ。例えば、翻訳の世界でいうと、「英語でこういう単語の場合は、日本語ではこの単語で訳される場合が多い」「英語でこういうフレーズの時は、日本語ではこういうフレーズで訳される
記事のタイトル通り、競馬で回収率100%を超える方法を見つけたので、その報告をする。 ちなみに、この記事では核心部分はぼかして書いてあるため、読み進めたとしても「競馬で回収率100%を超える方法」が具体的に何なのかを知ることはできない。(私は本当に有効な手法を何もメリットが無いのに公開するほどお人好しではないので) 本当に有効な手法を見つけたいのであれば、あなた自身がデータと向き合う以外の道は無い。 ただし、大まかな仕組み(あと多少のヒントも)だけは書いておくので、もしあなたが独力でデータ解析を行おうという気概のある人物なのであれば、この記事はあなたの助けとなるだろう。 ちなみに、これは前回の記事の続きなので、読んでない方はこちらからどうぞ。 stockedge.hatenablog.com オッズの歪みを探す さて、前回からの続きである。 前回の記事のブコメで「回収率を上げたいならオッズ
この記事は第2のドワンゴ Advent Calendar 2015の24日目の記事です。 ドワンゴエンジニアの@ixixiです。 niconicoのデータをDeep Learningなアプローチで解析してみた話です。 nico-opendata niconicoの学術目的用データ公開サイト https://nico-opendata.jp が最近オープンしました。 これまでも、国立情報学研究所にて、ニコニコ動画コメントデータや大百科データが公開されていましたが、 nico-opendataでは、ニコニコ静画のイラストデータの約40万枚のイラストとメタデータが研究者向けにデータ提供されています。 今回は、ニコニコ動画コメントデータ(誰でも取得可能)を用いたDeep Learningによるコメント解析例を紹介します。 超自然言語 ニコニコのコメントデータに限らず、twitterでのtweetや
PythonでTwitterのAPIを触りたい PythonでTwitterのAPIを操作し、検索の自動化による情報収集・解析とか、自動でつぶやくbotの作成を可能にしたい。 そこでTweepyというライブラリを使うと、とても簡単に態勢が整いました。10行以内のコードで準備が終わります。 Tweepy ちなみにTwitterのAPIは「REST API」と「Streaming API」の2種類があって、今回使うのはREST APIのほうです。REST APIは(RESTというものの説明はREST - Wikipediaでもみてください)、HTTPリクエストを投げるとそれに対応した情報がjsonで送られてくるってやつで、特定のツイートやユーザの情報を取得したり、検索をしたり、つぶやいたりするのに使うものです。Streaming APIはTwitter上に流れる情報がリアルタイムに流れ込んでく
(訳注:2016/1/5、いただいた翻訳フィードバックを元に記事を修正いたしました。) よくある主観的で痛烈な意見を題名に付けたクリックベイト(クリック誘導)記事だろうと思われた方、そのとおりです。以前指導してくれた教授から教わったある洞察/処世術は、些細でありながら私の人生を変えるマントラとなったのですが、私がこの記事を書いたのはそれによるものです。「同じタスクを3回以上繰り返す必要があるなら、スクリプトを書いて自動化せよ」 そろそろ、このブログはなんだろうと思い始めているのではないでしょうか。半年振りに記事を書いたのですから。ツイッターで書いた Musings on social network platforms(ソーシャル・ネットワークプラットフォームについてじっくり考える) はさておき、この半年の間書き物をしていないというのはうそです。正確には、400ページの 本 を書きました。
ディープラーニング(深層学習)というのが流行っているそうです。すべての人類はディープラーニングによって実現されたAIに隷属する未来なんですってよ!!! こわーい。 そんなバラ色の技術、いっちょかみしておきたいですよね。 さて、オフィスで社長とダベっていたところ、「将棋プログラム面白そうだよね」という話になりました。お互将棋プログラムを作って闘わせようぜ、いぇー、と盛り上がり、勢いでコンピュータ将棋選手権に申し込みまでしてしまいました。 そんな経緯で、ディープラーニングをミリしら(=1ミリも知らない)な僕が、試しにディープラーニングを使って将棋のAIを書いてみたらいいやん、と思いついたのでした。将棋も、ハム将棋でハム8枚落ちで負けるレベルくらい。ダメじゃん。 ミリしらなので、「チェスで何かやってるヤツがいるだろう」とアタリをつけてググった結果、Erik Bernhardssonさんによる d
2015.07.08 スキル 大企業からスタートアップまで。BtoBサービスからエンターテインメントまで。日々取材をしていて、いまや人工知能という言葉を聞かない日はない。過去2度のブームと冬の時代を繰り返してきた人工知能研究に、3度目の春が訪れている。 その主役は「ディープラーニング」と呼ばれる新しい機械学習の手法だ。 2012年に行われた画像認識技術を競う世界的なコンペティション「ILSVRC」で、トロント大学の研究チームがこの技術を用いて、それまでの常識を覆す圧勝を記録。同じ年に発表された有名な「Googleのネコ認識」と呼ばれる研究も、ディープラーニングを用いたものだった。 東京大学大学院工学系研究科・准教授の松尾豊氏も、まだ「ディープラーニング」という名前がなかったころからこの技術に注目し、研究を続けてきていた。松尾氏は著書『人工知能は人間を超えるか』の中で、ディープラーニングを「
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く