WO2024098503A1 - 一种智能监测型桥梁摩擦阻尼器 - Google Patents
一种智能监测型桥梁摩擦阻尼器 Download PDFInfo
- Publication number
- WO2024098503A1 WO2024098503A1 PCT/CN2022/138790 CN2022138790W WO2024098503A1 WO 2024098503 A1 WO2024098503 A1 WO 2024098503A1 CN 2022138790 W CN2022138790 W CN 2022138790W WO 2024098503 A1 WO2024098503 A1 WO 2024098503A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- friction
- plate
- friction plate
- bridge
- intelligent monitoring
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 claims abstract description 31
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 14
- 239000010935 stainless steel Substances 0.000 claims abstract description 14
- 230000000007 visual effect Effects 0.000 claims abstract description 4
- 238000006073 displacement reaction Methods 0.000 claims description 32
- 230000036316 preload Effects 0.000 claims description 16
- 239000002131 composite material Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 3
- 229920001568 phenolic resin Polymers 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- -1 polytetrafluoroethylene Polymers 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 229920001169 thermoplastic Polymers 0.000 claims description 3
- 239000004416 thermosoftening plastic Substances 0.000 claims description 3
- 238000012800 visualization Methods 0.000 claims description 3
- 239000002783 friction material Substances 0.000 abstract description 15
- 229910000831 Steel Inorganic materials 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 239000010959 steel Substances 0.000 abstract description 3
- 238000005299 abrasion Methods 0.000 abstract 3
- 238000010586 diagram Methods 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D19/00—Structural or constructional details of bridges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/30—Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways
Definitions
- the invention relates to the technical field of bridge detection, and in particular to an intelligent monitoring bridge friction damper.
- the main beam end of the large-span bridge structure Under the action of vehicle live load and pulsating wind, the main beam end of the large-span bridge structure will produce obvious longitudinal displacement. As long as there are vehicles running on the bridge, the main beam will vibrate longitudinally back and forth continuously. This vibration is characterized by low speed and large cumulative displacement, with daily cumulative displacement reaching tens of meters and annual cumulative displacement reaching tens of kilometers.
- Friction dampers have the advantages of high initial stiffness, simple structure, low cost, easy manufacturing materials, strong energy consumption capacity, and the performance of the damper is less affected by structure, speed, and frequency. They have a good control effect on low-speed vibrations. Therefore, friction dampers can be used to control the longitudinal vibration of the beam ends of large-span bridges under vehicle live loads and pulsating wind.
- Friction dampers are mainly used for shock absorption in building structures. During daily service, friction dampers do not move. When the external load exceeds the sliding friction force under earthquake action, the friction dampers will slide to consume external energy, that is, the sliding displacement of the friction dampers during service is small. Therefore, the following problems exist when conventional friction dampers are used for vibration reduction of long-span bridges:
- the present invention provides an intelligent monitoring bridge friction damper.
- An intelligent monitoring bridge friction damper comprising a bridge friction damper body and an intelligent monitoring system
- the bridge friction damper body comprises a sliding plate, a friction plate, a first connecting seat and a second connecting seat; the sliding plate and the friction plate are respectively provided with a stainless steel mirror surface and a friction plate on the contact surface with each other to form a friction pair; the connecting end of the sliding plate is connected to the first connecting seat through a first ear plate, and the connecting end of the friction plate is connected to the second connecting seat through a second ear plate;
- the intelligent monitoring system includes a data acquisition module and a visual analysis module;
- the data acquisition module includes a preload sensor assembly for real-time monitoring of the preload applied to the sliding plate and the friction plate, a load sensor assembly for real-time monitoring of the friction force of the bridge friction damper, and a displacement sensor assembly for real-time monitoring of the relative axial displacement of the friction plate and the first ear plate;
- the visualization analysis module is used to display the operating dynamics of the damper in real time based on the collected preload, friction and displacement data, and to calibrate and grade its operating status according to reasonable status standards through data processing and analysis functions, and to provide real-time feedback on the error and adjustment value compared to the reasonable status.
- the friction plate includes a first friction plate, a second friction plate and a third friction plate that are arranged at intervals, wherein the relative surfaces of the first friction plate and the second friction plate, and the relative surfaces of the second friction plate and the third friction plate are evenly spaced with a plurality of circular grooves, each of which is filled with a friction plate, and the thickness of the friction plate is greater than the depth of the circular groove.
- a detachable matching clamping structure is provided between the friction plate and the circular clamping groove.
- the friction plate is a wear-resistant composite material, which is any one of a high-performance polytetrafluoroethylene material, a polyimide material, a thermoplastic polyester-based composite material, or a phenolic resin-based composite material.
- the sliding plate includes a first sliding plate arranged between the first friction plate and the second friction plate, and a second sliding plate arranged between the second friction plate and the third friction plate.
- the mutual contact surfaces of the first sliding plate, the first friction plate and the second friction plate are provided with a stainless steel mirror surface
- the mutual contact surfaces of the second sliding plate, the second friction plate and the third friction plate are provided with a stainless steel mirror surface.
- the friction plate includes a plurality of pre-tightening bolts arranged in an array, and the plurality of pre-tightening bolts arranged in an array respectively penetrate the first friction plate, the first sliding plate, the second friction plate, the second sliding plate and the third friction plate in sequence, a first buffer spring is arranged between the rod of the pre-tightening bolt and the third friction plate and is fixed by a first spring pressure plate, a second buffer spring is arranged between the head of the pre-tightening bolt and the first friction plate and a second spring pressure plate is arranged between the head of the pre-tightening bolt and the second buffer spring, and a pre-tightening force sensor is arranged between the second spring pressure plates.
- guide plates are respectively arranged on the upper and lower sides of the friction plate, and bolt holes are arranged on the guide plates, and the second friction plate is fixed by passing bolts through threaded holes penetrating up and down on the second friction plate.
- the displacement sensor assembly comprises:
- a telescopic rod top seat is fixed on the top guide plate;
- a telescopic rod base is fixed to the ear plate and the displacement sensor body is arranged on the telescopic rod base, and a displacement acquisition interface is also arranged on the displacement sensor body;
- a telescopic rod one end of which is fixed to the telescopic rod top seat, and the other end of which is fixed to the telescopic rod base.
- first ear plate is connected to the end of the sliding plate through a pin
- second ear plate is connected to the end of the friction plate through a pin
- first ear plate is connected to the first base through a force measuring shaft
- second ear plate is connected to the second base through a force measuring shaft
- first base and the second base are respectively fixed to the bridge tower and the main beam in the bridge structure.
- the present invention can reduce the wear of the friction material during the service of the friction damper to the greatest extent by adopting a friction material with a low linear wear rate and arranging a stainless steel plate on the surface of the steel plate that rubs against the friction material, thereby meeting its long-distance wear requirements; and the two extreme positions of the first connecting seat and the second connecting seat within the rotation range can meet the conversion of the friction damper under different usage requirements, effectively improving practicality.
- FIG1 is a schematic structural diagram of an intelligent monitoring bridge friction damper according to the present invention.
- FIG2 is a front view of the bridge friction damper body of the present invention.
- Fig. 3 is a cross-sectional view taken along line A-A in Fig. 1;
- FIG4 is a top view of the bridge friction damper of the present invention.
- FIG5 is a schematic diagram of the structure of a sliding plate in an embodiment of the present invention.
- FIG6 is a schematic diagram of a friction plate in an embodiment of the present invention.
- FIG. 7 is a schematic diagram of the structure of a preload force sensor in an embodiment of the present invention.
- an intelligent monitoring bridge friction damper includes a bridge friction damper body and an intelligent monitoring system
- the bridge friction damper body comprises a sliding plate 2, a friction plate 3, a first connecting seat 121 and a second connecting seat 122; the sliding plate 2 and the friction plate 3 are respectively provided with a stainless steel mirror surface 22 and a friction plate 8 on their contact surfaces to form a friction pair; the connecting end of the sliding plate 2 is connected to the first connecting seat 121 through the first ear plate 1, and the connecting end of the friction plate 3 is connected to the second connecting seat 122 through the second ear plate;
- the intelligent monitoring system includes a data acquisition module and a visual analysis module;
- the data acquisition module includes a preload sensor assembly for real-time monitoring of the preload applied to the sliding plate 2 and the friction plate 3, a load sensor assembly for real-time monitoring of the friction force of the bridge friction damper, and a displacement sensor assembly for real-time monitoring of the relative axial displacement of the friction plate and the first ear plate 1;
- the visualization analysis module is used to display the damper operation dynamics in real time based on the collected preload, friction and displacement data, and to calibrate and grade its operation status according to reasonable status standards through data processing and analysis functions, and to provide real-time feedback on the error and adjustment value from the reasonable status.
- the friction plate 3 includes a first friction plate 3a, a second friction plate 3b and a third friction plate 3c that are arranged at intervals, wherein the relative surfaces of the first friction plate 3a and the second friction plate 3b, and the relative surfaces of the second friction plate 3b and the third friction plate 3c are evenly spaced with a plurality of circular grooves 32, each of which is filled with a friction plate 8, and the thickness of the friction plate 8 is greater than the depth of the circular groove 32.
- the friction plate 8 will be worn out during long-term use, so the present invention adopts a detachable matching clamping structure between the friction plate 8 and the circular clamping groove 32 to facilitate the removal and replacement of the friction plate 8 during equipment maintenance.
- the friction plate 8 is a wear-resistant composite material.
- the friction material 8 is required to have a low linear wear rate. Under non-lubricated conditions, its linear wear rate is ⁇ 30 ⁇ m/km, and the friction coefficient is stable, which can meet the needs of long-distance wear.
- the wear-resistant composite material is any one of a high-performance polytetrafluoroethylene material, a polyimide material, a thermoplastic polyester-based composite material, or a phenolic resin-based composite material.
- the present invention can reduce the wear of the friction plate 8 during the service of the friction damper to the greatest extent by adopting a friction plate 8 with a low linear wear rate and arranging a stainless steel mirror surface 22 on the surface of the sliding plate 2 opposite to the friction plate 8, thereby meeting the requirement of long-distance wear; and the two extreme positions of the first connecting seat 121 and the second connecting seat 122 within the rotation range can meet the conversion of the friction damper under different usage requirements, effectively improving practicality.
- the sliding plate 2 includes a first sliding plate 2a arranged between the first friction plate 3a and the second friction plate 3b, and a second sliding plate 2b arranged between the second friction plate 3b and the third friction plate 3c.
- the mutual contact surfaces of the first sliding plate 2a, the first friction plate 3a and the second friction plate 3b are provided with a stainless steel mirror surface 22, and the mutual contact surfaces of the second sliding plate 2b, the second friction plate 3b and the third friction plate 3c are provided with a stainless steel mirror surface 22.
- the number of friction plates 3 and sliding plates 2 is only a set of embodiments provided by the present invention. Those skilled in the art can set the number and setting form of friction plates 3 and sliding plates 2 in combination with the actual situation and the present invention. However, it should be noted that the number of friction plates 3 is 1 more than the number of sliding plates 2, that is, when the number of friction plates 3 is n, the number of sliding plates 2 is n-1.
- the friction plate 3 includes a plurality of pre-tightening bolts arranged in an array, and the plurality of pre-tightening bolts arranged in an array respectively penetrate the first friction plate 3a, the first sliding plate 2a, the second friction plate 3b, the second sliding plate 2b and the third friction plate 3c in sequence, a first buffer spring 7a is arranged between the rod of the pre-tightening bolt 5 and the third friction plate 3c and is fixed by a first spring pressure plate 6a, a second buffer spring 7b is arranged between the head of the pre-tightening bolt 5 and the first friction plate 3a, and a second spring pressure plate 6b is arranged between the head of the pre-tightening bolt 5 and the second buffer spring 7b, and a pre-tightening force sensor 9 is arranged between the second spring pressure plates 6b.
- the buffer spring of the present invention can be a disc spring, a coil spring, a rubber elastic body, etc.
- the buffer spring has good deformation ability to prevent the preload force from changing suddenly due to the wear of the friction material.
- a preload force sensor 9 is also provided between the head of the preload bolt 5 and the second spring pressure plate 6b. In this way, the operator can apply the preload force by tightening the nut, and the preload force sensor 9 can monitor the change of the preload force.
- guide plates 4 are respectively provided on the upper and lower sides of the friction plate 3, and bolt holes are provided on the guide plates 4, which are fixed by bolts passing through threaded holes passing through the upper and lower sides of the second friction plate 3b. After the bolts are tightened, the guide plates 4 can clamp the upper and lower sides of the friction plate 3, and can prevent the friction plate 3 and the sliding plate 2 from rotating relative to each other.
- the friction plate 8 is tightly fitted with the stainless steel mirror surface 22 on the sliding plate 2 to form four sets of friction pairs, which can consume external energy after sliding.
- the displacement sensor assembly 11 includes:
- Displacement sensor body 111 Displacement sensor body 111
- a telescopic rod top seat 113 wherein the telescopic rod top seat 113 is fixed on the top guide plate 4a;
- a telescopic rod base 115 wherein the telescopic rod base 115 is fixed on the ear plate 1 and the displacement sensor body 111 is disposed on the telescopic rod base 115, and a displacement acquisition interface 114 is also disposed on the displacement sensor body 111;
- the telescopic rod 112 has one end fixed to the telescopic rod top seat 113 and the other end fixed to the telescopic rod base 115 .
- the first ear plate 1 is connected to the end of the sliding plate 2 via a pin, and the second ear plate is connected to the end of the friction plate 3 via a pin; the first ear plate 1 is connected to the first connecting seat 121 via a force measuring shaft, and the second ear plate is connected to the second base via a force measuring shaft 10, and the first connecting seat 121 and the first connecting seat 122 are respectively fixed to the bridge tower and the main beam in the bridge structure.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Vibration Dampers (AREA)
Abstract
本发明公开了一种智能监测型桥梁摩擦阻尼器,包括桥梁摩擦阻尼器本体和智能监测系统;所述桥梁摩擦阻尼器本体包括滑动板、摩擦板、第一连接座和第二连接座;所述智能监测系统包括数据采集模块和可视化分析模块。本发明能够通过采用线磨耗率低的摩擦材料,且在与摩擦材料对磨的钢板表面设置不锈钢板,以最大程度的降低摩擦阻尼器服役过程中摩擦材料的磨损,满足其长距离磨耗的需求;且第一连接座和第二连接座在转动范围内的两个极限位置能够满足摩擦阻尼器在不同使用需求时的转换,有效提高实用性。
Description
本发明涉及桥梁检测技术领域,具体涉及一种智能监测型桥梁摩擦阻尼器。
大跨度桥梁结构在车辆活载、脉动风作用下,主梁梁端产生明显的纵向位移,只要桥上有车辆行驶,主梁将不间断地纵向往复振动,这种振动具有速度低、累计位移大的特点,日累计位移达数十米,年累计位移达数十公里。
摩擦阻尼器具有初始刚度高、结构构造简单,造价低廉、制作材料容易、耗能能力强,且阻尼器的性能受到结构、速度、频率影响较小等优点,对低速度的振动具有较好的控制效果,因此可采用摩擦阻尼器控制大跨度桥梁在车辆活载、脉动风作用下的梁端纵向振动。
摩擦阻尼器主要用于建筑结构减震,日常服役过程中摩擦阻尼器不运动,地震作用下外部荷载超过起滑摩擦力后,摩擦阻尼器才滑动消耗外部能量,即摩擦阻尼器服役期间的滑动位移较小。因此将常规的摩擦阻尼器用于大跨度桥梁减振,存在以下问题:
(1)常规摩擦阻尼器采用金属类摩擦材料、复合摩擦材料、聚合物类摩擦材料等,摩擦材料本身的耐磨性能较差;与摩擦材料对磨的钢板通常喷丸处理,以增大表面粗糙度,这进一步加快了摩擦材料的磨损,因此常规摩擦阻尼器难以满足大跨度桥梁长距离磨耗的需求。
(2)常规摩擦阻尼器服役期间,由于摩擦材料的氧化、磨耗、锈蚀等原因,其工作性能无法准确评估,给结构的安全和耐久带来较大的不确定性。
发明内容
针对现有技术中的上述不足,本发明提供了一种智能监测型桥梁摩擦阻尼器。
为了达到上述发明目的,本发明采用的技术方案为:
一种智能监测型桥梁摩擦阻尼器,包括桥梁摩擦阻尼器本体和智能监测系统;
所述桥梁摩擦阻尼器本体包括滑动板、摩擦板、第一连接座和第二连接座;所述滑动板和摩擦板分别在相互接触面设置不锈钢镜面和摩擦片形成摩擦副;所述滑动板的连接端通过第一耳板与第一连接座连接,所述摩擦板的连接端通过第二耳板与第二连接座连接;
所述智能监测系统包括数据采集模块和可视化分析模块;
所述数据采集模块包括用于实时监测施加在滑动板和摩擦板上的预紧力的预紧力传感器组件、用于实时监测桥梁摩擦阻尼器的摩擦力的荷载传感器组件、以及用于实时监测摩擦板和第一耳板的相对轴向位移的位移传感器组件;
所述可视化分析模块用于根据采集的预紧力、摩擦力和位移数据实时显示阻尼器运行动 态,并通过数据处理和分析功能按照合理状态标准对其运行状态进行标定和分级,并实时反馈与合理状态的误差及调整值。
进一步地,所述摩擦板包括间隔设置的第一摩擦板、第二摩擦板和第三摩擦板,其中第一摩擦板与第二摩擦板的相对表面、第二摩擦板与第三摩擦板的相对表面均等间距设置有多个圆形卡槽,各个圆形卡槽中均填充有摩擦片,所述摩擦片的厚度大于所述圆形卡槽的深度。
进一步地,所述摩擦片与圆形卡槽之间为可拆卸式的匹配装卡结构。
进一步地,所述摩擦片为耐磨的复合材料,为高性能聚四氟乙烯类材料或聚酰亚胺类材料或热塑性聚酯基复合材料或酚醛树脂基复合材料中任意一种。
进一步地,所述滑动板包括设置在第一摩擦板与第二摩擦板之间的第一滑动板、设置在第二摩擦板与第三摩擦板之间的第二滑动板,所述第一滑动板与第一摩擦板和第二摩擦板的相互接触面设置不锈钢镜面,所述第二滑动板与第二摩擦板与第三摩擦板的相互接触面设置不锈钢镜面。
进一步地,所述摩擦板包括多个阵列设置的预紧螺栓,多个阵列设置的预紧螺栓分别依次贯穿所述第一摩擦板、第一滑动板、第二摩擦板、第二滑动板和第三摩擦板,所述预紧螺栓的杆部和所述第三摩擦板之间设置有第一缓冲弹簧且通过第一弹簧压板固定,所述预紧螺栓的头部和所述第一摩擦板之间设置有第二缓冲弹簧且所述预紧螺栓的头部和所述第二缓冲弹簧之间设置有第二弹簧压板,所述第二弹簧压板之间设置有预紧力传感器。
进一步地,所述摩擦板的上、下两侧分别设置有导向板,所述导向板上均设置螺栓孔,通过螺栓穿过所述第二摩擦板上上下贯穿的螺纹孔进行固定。
进一步地,所述位移传感器组件包括:
位移传感器主体;
伸缩杆顶座,所述伸缩杆顶座固定于所述顶部导向板上;
伸缩杆底座,所述伸缩杆底座固定于所述耳板上且所述位移传感器主体设置于所述伸缩杆底座上,在所述位移传感器主体上还设置有位移采集接口;
伸缩杆,所述伸缩杆一端固定于所述伸缩杆顶座,另一端固定于所述伸缩杆底座。
进一步地,所述第一耳板与滑动板端部通过销轴进行连接,所述第二耳板与摩擦板端部通过销轴进行连接;所述第一耳板与第一底座之间通过测力轴连接,所述第二耳板与第二底座之间通过测力轴连接,所述第一底座、第二底座分别与桥梁结构中的桥塔、主梁进行固结。
本发明具有以下有益效果:
本发明能够通过采用线磨耗率低的摩擦材料,且在与摩擦材料对磨的钢板表面设置不锈钢板,以最大程度的降低摩擦阻尼器服役过程中摩擦材料的磨损,满足其长距离磨耗的需求; 且第一连接座和第二连接座在转动范围内的两个极限位置能够满足摩擦阻尼器在不同使用需求时的转换,有效提高实用性。
图1为本发明的一种智能监测型桥梁摩擦阻尼器的结构示意图;
图2为本发明桥梁摩擦阻尼器本体的主视图;
图3为图1中A-A的剖视图;
图4为本发明桥梁摩擦阻尼器的俯视图;
图5为本发明实施例中滑动板结构示意图;
图6为本发明实施例中摩擦板示意图;
图7为本发明实施例中预紧力传感器结构示意图。
附图标记说明
1-第一耳板;2-滑动板;2a-第一滑动板;2b-第二滑动板;3-摩擦板;3a-第一摩擦板;3b-第二摩擦板;3c-第三摩擦板;4-导向板;5-预紧螺栓;6a-第一弹簧压板;6b-第二弹簧压板;7a-第一缓冲弹簧;7b-第二缓冲弹簧;8-摩擦片;9-预紧力传感器;10-测力销轴;11-位移传感器组件;121-第一连接座;122-第二连接座;21-滑动板主体;22-不锈钢镜面;23-滑动长孔;24-销轴连接孔;31-固定板主体;32-圆形卡槽;33-预紧螺栓孔,34-销轴连接孔;35-螺孔;111-位移传感器主体,112-伸缩杆,113-伸缩杆顶座,114-位移采集接口,115-伸缩杆底座。
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
参考图1至图7所示,本发明实施例一种智能监测型桥梁摩擦阻尼器,包括桥梁摩擦阻尼器本体和智能监测系统;
所述桥梁摩擦阻尼器本体包括滑动板2、摩擦板3、第一连接座121和第二连接座122;所述滑动板2和摩擦板3分别在相互接触面设置不锈钢镜面22和摩擦片8形成摩擦副;所述滑动板2的连接端通过第一耳板1与第一连接座121连接,所述摩擦板3的连接端通过第二耳板与第二连接座122连接;
所述智能监测系统包括数据采集模块和可视化分析模块;
所述数据采集模块包括用于实时监测施加在滑动板2和摩擦板3上的预紧力的预紧力传 感器组件、用于实时监测桥梁摩擦阻尼器的摩擦力的荷载传感器组件、以及用于实时监测摩擦板和第一耳板1的相对轴向位移的位移传感器组件;
所述可视化分析模块用于根据采集的预紧力、摩擦力和位移数据实时显示阻尼器运行动态,并通过数据处理和分析功能按照合理状态标准对其运行状态进行标定和分级,并实时反馈与合理状态的误差及调整值。
在本发明的一个可选实施例中,所述摩擦板3包括间隔设置的第一摩擦板3a、第二摩擦板3b和第三摩擦板3c,其中第一摩擦板3a与第二摩擦板3b的相对表面、第二摩擦板3b与第三摩擦板3c的相对表面均等间距设置有多个圆形卡槽32,各个圆形卡槽32中均填充有摩擦片8,所述摩擦片8的厚度大于所述圆形卡槽32的深度。
所述摩擦片8在长期使用中会存在磨损消耗,因此本发明将摩擦片8与圆形卡槽32之间采用可拆卸式的匹配装卡结构,方便在设备维护时对摩擦片8进行拆卸替换。
所述摩擦片8为耐磨的复合材料,除此之外,还需要摩擦材料8线磨耗率低,无润滑条件下,其线磨耗率≤30μm/km,摩擦系数稳定,可满足长距离磨耗的需求。基于此,所述耐磨的复合如材料为高性能聚四氟乙烯类材料或聚酰亚胺类材料或热塑性聚酯基复合材料或酚醛树脂基复合材料中任意一种。
本发明能够通过采用线磨耗率低的摩擦片8,且在与摩擦片8对面的滑动板2表面设置不锈钢镜面22,以最大程度的降低摩擦阻尼器服役过程中摩擦片8的磨损,满足其长距离磨耗的需求;且第一连接座121和第二连接座122在转动范围内的两个极限位置能够满足摩擦阻尼器在不同使用需求时的转换,有效提高实用性。
在本发明的一个可选实施例中,所述滑动板2包括设置在第一摩擦板3a与第二摩擦板3b之间的第一滑动板2a、设置在第二摩擦板3b与第三摩擦板3c之间的第二滑动板2b,所述第一滑动板2a与第一摩擦板3a和第二摩擦板3b的相互接触面设置不锈钢镜面22,所述第二滑动板2b与第二摩擦板3b与第三摩擦板3c的相互接触面设置不锈钢镜面22。
当然,摩擦板3和滑动板2的数量及仅仅是本发明提供的一组实施例,本领域技术人员可结合实际情况和本发明具体设置摩擦板3和滑动板2的数量和设置形式,但需要说明的是,摩擦板3的数量比滑动板2的数量多1,即当摩擦板3为n时,滑动板2为n-1。
在本发明的一个可选实施例中,所述摩擦板3包括多个阵列设置的预紧螺栓,多个阵列设置的预紧螺栓分别依次贯穿所述第一摩擦板3a、第一滑动板2a、第二摩擦板3b、第二滑动板2b和第三摩擦板3c,所述预紧螺栓5的杆部和所述第三摩擦板3c之间设置有第一缓冲弹簧7a且通过第一弹簧压板6a固定,所述预紧螺栓5的头部和所述第一摩擦板3a之间设置有第二缓冲弹簧7b且所述预紧螺栓5的头部和所述第二缓冲弹簧7b之间设置有第二弹簧压 板6b,所述第二弹簧压板6b之间设置有预紧力传感器9。
这里,本发明的缓冲弹簧可以为碟形弹簧、螺旋弹簧、橡胶弹性体等,缓冲弹簧具备较好的变形能力,以防止摩擦材料磨损导致的预紧力发生突变。在预紧螺栓5的头部和所述第二弹簧压板6b之间还设置有预紧力传感器9。这样,操作人员可以通过拧紧螺母施加预紧力,预紧力传感器9可监测预紧力的变化情况。
在本发明的一个可选实施例中,所述摩擦板3的上、下两侧分别设置有导向板4,所述导向板4上均设置螺栓孔,通过螺栓穿过所述第二摩擦板3b上上下贯穿的螺纹孔进行固定。螺栓拧紧后导向板4可夹紧摩擦板3的上、下侧,可防止摩擦板3和滑动板2之间相对转动。
如图2所示预紧螺栓5施加预紧力后,所述摩擦片8与滑动板2上的不锈钢镜面22紧密贴合,形成4组摩擦副,摩擦副滑动后可消耗外部能量。
在本发明的一个可选实施例中,所述位移传感器组件11包括:
位移传感器主体111;
伸缩杆顶座113,所述伸缩杆顶座113固定于所述顶部导向板4a上;
伸缩杆底座115,所述伸缩杆底座115固定于所述耳板1上且所述位移传感器主体111设置于所述伸缩杆底座115上,在所述位移传感器主体111上还设置有位移采集接口114;
伸缩杆112,所述伸缩杆112一端固定于所述伸缩杆顶座113,另一端固定于所述伸缩杆底座115。
在本发明的一个可选实施例中,所述第一耳板1与滑动板2端部通过销轴进行连接,所述第二耳板与摩擦板3端部通过销轴进行连接;所述第一耳板1与第一连接座121之间通过测力轴连接,所述第二耳板与第二底座之间通过测力轴10连接,所述第一连接座121、第一连接座122分别与桥梁结构中的桥塔、主梁进行固结。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。
Claims (9)
- 一种智能监测型桥梁摩擦阻尼器,其特征在于,包括桥梁摩擦阻尼器本体和智能监测系统;所述桥梁摩擦阻尼器本体包括滑动板、摩擦板、第一连接座和第二连接座;所述滑动板和摩擦板分别在相互接触面设置不锈钢镜面和摩擦片形成摩擦副;所述滑动板的连接端通过第一耳板与第一连接座连接,所述摩擦板的连接端通过第二耳板与第二连接座连接;所述智能监测系统包括数据采集模块和可视化分析模块;所述数据采集模块包括用于实时监测施加在滑动板和摩擦板上的预紧力的预紧力传感器组件、用于实时监测桥梁摩擦阻尼器的摩擦力的荷载传感器组件、以及用于实时监测摩擦板和第一耳板的相对轴向位移的位移传感器组件;所述可视化分析模块用于根据采集的预紧力、摩擦力和位移数据实时显示阻尼器运行动态,并通过数据处理和分析功能按照合理状态标准对其运行状态进行标定和分级,并实时反馈与合理状态的误差及调整值。
- 根据权利要求1所述的一种智能监测型桥梁摩擦阻尼器,其特征在于,所述摩擦板包括间隔设置的第一摩擦板、第二摩擦板和第三摩擦板,其中第一摩擦板与第二摩擦板的相对表面、第二摩擦板与第三摩擦板的相对表面均等间距设置有多个圆形卡槽,各个圆形卡槽中均填充有摩擦片,所述摩擦片的厚度大于所述圆形卡槽的深度。
- 根据权利要求2所述的一种智能监测型桥梁摩擦阻尼器,其特征在于,所述摩擦片与圆形卡槽之间为可拆卸式的匹配装卡结构。
- 根据权利要求3所述的一种智能监测型桥梁摩擦阻尼器,其特征在于,所述摩擦片为耐磨的复合材料,为高性能聚四氟乙烯类材料或聚酰亚胺类材料或热塑性聚酯基复合材料或酚醛树脂基复合材料中任意一种。
- 根据权利要求4所述的一种智能监测型桥梁摩擦阻尼器,其特征在于,所述滑动板包括设置在第一摩擦板与第二摩擦板之间的第一滑动板、设置在第二摩擦板与第三摩擦板之间的第二滑动板,所述第一滑动板与第一摩擦板和第二摩擦板的相互接触面设置不锈钢镜面,所述第二滑动板与第二摩擦板与第三摩擦板的相互接触面设置不锈钢镜面。
- 根据权利要求5所述的一种智能监测型桥梁摩擦阻尼器,其特征在于,所述摩擦板包括多个阵列设置的预紧螺栓,多个阵列设置的预紧螺栓分别依次贯穿所述第一摩擦板、第一滑动板、第二摩擦板、第二滑动板和第三摩擦板,所述预紧螺栓的杆部和所述第三摩擦板之间设置有第一缓冲弹簧且通过第一弹簧压板固定,所述预紧螺栓的头部和所述第一摩擦板之间设置有第二缓冲弹簧且所述预紧螺栓的头部和所述第二缓冲弹簧之间设置有第二弹簧压板,所述第二弹簧压板之间设置有预紧力传感器。
- 根据权利要求6所述的一种智能监测型桥梁摩擦阻尼器,其特征在于,所述摩擦板的上、下两侧分别设置有导向板,所述导向板上均设置螺栓孔,通过螺栓穿过所述第二摩擦板上上下贯穿的螺纹孔进行固定。
- 根据权利要求7所述的一种智能监测型桥梁摩擦阻尼器,其特征在于,所述位移传感器组件包括:位移传感器主体;伸缩杆顶座,所述伸缩杆顶座固定于所述顶部导向板上;伸缩杆底座,所述伸缩杆底座固定于所述耳板上且所述位移传感器主体设置于所述伸缩杆底座上,在所述位移传感器主体上还设置有位移采集接口;伸缩杆,所述伸缩杆一端固定于所述伸缩杆顶座,另一端固定于所述伸缩杆底座。
- 根据权利要求8所述的一种智能监测型桥梁摩擦阻尼器,其特征在于,所述第一耳板与滑动板端部通过销轴进行连接,所述第二耳板与摩擦板端部通过销轴进行连接;所述第一耳板与第一底座之间通过测力轴连接,所述第二耳板与第二底座之间通过测力轴连接,所述第一底座、第二底座分别与桥梁结构中的桥塔、主梁进行固结。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211267930 | 2022-10-17 | ||
CN202211415390.X | 2022-11-11 | ||
CN202211415390.XA CN115627688B (zh) | 2022-10-17 | 2022-11-11 | 一种智能监测型桥梁摩擦阻尼器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024098503A1 true WO2024098503A1 (zh) | 2024-05-16 |
Family
ID=84910217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/138790 WO2024098503A1 (zh) | 2022-10-17 | 2022-12-13 | 一种智能监测型桥梁摩擦阻尼器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115627688B (zh) |
WO (1) | WO2024098503A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118209256A (zh) * | 2024-05-22 | 2024-06-18 | 上海楹梁建筑科技有限公司 | 阻尼器智能监测方法与系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003307253A (ja) * | 2002-04-12 | 2003-10-31 | Ohbayashi Corp | 摩擦ダンパー |
CN106382040A (zh) * | 2016-09-14 | 2017-02-08 | 东南大学 | 一种摩擦耗能的自复位钢框架结构 |
CN111962708A (zh) * | 2020-09-07 | 2020-11-20 | 上海史狄尔建筑减震科技有限公司 | 承载-多级复合消能屈曲约束支撑构件 |
CN112943835A (zh) * | 2021-02-02 | 2021-06-11 | 中交公路长大桥建设国家工程研究中心有限公司 | 一种具有智能监测功能的多阶段位移控制型阻尼器 |
CN213456083U (zh) * | 2020-12-15 | 2021-06-15 | 昆明理工大学 | 一种阻尼器缩尺模型力学性能测试装置 |
CN216766340U (zh) * | 2021-11-23 | 2022-06-17 | 云南新控减震科技有限公司 | 一种滑动长孔螺栓摩擦阻尼器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4423697B2 (ja) * | 1999-04-06 | 2010-03-03 | 株式会社大林組 | ボルト接合部の制振構造 |
CN205152779U (zh) * | 2015-11-05 | 2016-04-13 | 株洲时代新材料科技股份有限公司 | 双球面摩擦单摆支座 |
CN107101588A (zh) * | 2017-04-26 | 2017-08-29 | 东南大学 | 一种长寿命高性能桥梁伸缩缝装置 |
CN209429304U (zh) * | 2018-12-17 | 2019-09-24 | 江苏蓝科减震科技有限公司 | 一种支撑式双阶滑移摩擦阻尼器 |
CN210797931U (zh) * | 2019-05-26 | 2020-06-19 | 天津大学 | 一种适用于大跨空间结构的sma丝-摩擦阻尼器 |
-
2022
- 2022-11-11 CN CN202211415390.XA patent/CN115627688B/zh active Active
- 2022-12-13 WO PCT/CN2022/138790 patent/WO2024098503A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003307253A (ja) * | 2002-04-12 | 2003-10-31 | Ohbayashi Corp | 摩擦ダンパー |
CN106382040A (zh) * | 2016-09-14 | 2017-02-08 | 东南大学 | 一种摩擦耗能的自复位钢框架结构 |
CN111962708A (zh) * | 2020-09-07 | 2020-11-20 | 上海史狄尔建筑减震科技有限公司 | 承载-多级复合消能屈曲约束支撑构件 |
CN213456083U (zh) * | 2020-12-15 | 2021-06-15 | 昆明理工大学 | 一种阻尼器缩尺模型力学性能测试装置 |
CN112943835A (zh) * | 2021-02-02 | 2021-06-11 | 中交公路长大桥建设国家工程研究中心有限公司 | 一种具有智能监测功能的多阶段位移控制型阻尼器 |
CN216766340U (zh) * | 2021-11-23 | 2022-06-17 | 云南新控减震科技有限公司 | 一种滑动长孔螺栓摩擦阻尼器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118209256A (zh) * | 2024-05-22 | 2024-06-18 | 上海楹梁建筑科技有限公司 | 阻尼器智能监测方法与系统 |
Also Published As
Publication number | Publication date |
---|---|
CN115627688B (zh) | 2023-07-18 |
CN115627688A (zh) | 2023-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024098503A1 (zh) | 一种智能监测型桥梁摩擦阻尼器 | |
KR100654026B1 (ko) | 궤도차의 트랙조임 장치. | |
CN101696564A (zh) | 一种复合式耗能单向桥梁支座 | |
CN113882735A (zh) | 一种转动摩擦连梁阻尼器 | |
CN112576670B (zh) | 一种可转动还原摩擦复合型金属阻尼器 | |
CN110702409B (zh) | 一种弹性关节轴承疲劳试验装置 | |
CN201866459U (zh) | 一种减少横向推力的新型橡胶补偿器 | |
CN112081260B (zh) | 新型钢条旋转摩擦阻尼器 | |
CN220037375U (zh) | 一种双螺帽法兰式精密滚珠螺杆 | |
CN117871226A (zh) | 一种风电叶片屈曲扭转复合试验系统 | |
WO2023124969A1 (zh) | 一种摩擦耗能型抗风支座及方法 | |
CN102080687A (zh) | 一种导轨 | |
CN110905095B (zh) | 一种摩擦力可变阻尼器 | |
CN219789408U (zh) | 一种可调导向板及带液压垫装置的结构横梁 | |
CN211079896U (zh) | 一种摩擦摆式的桥梁减隔震钢支座 | |
CN113756465A (zh) | 一种变刚度摩擦阻尼器 | |
CN221966404U (zh) | 轧机拉杆平衡调节装置 | |
Chen et al. | Analysis and control of fretting wear for blade bearing in wind turbine | |
CN220151443U (zh) | 一种耐磨柴油机活塞杆 | |
CN109781568A (zh) | 一种测定组合转子连接界面振动位移载荷微动磨损试验台 | |
CN220521641U (zh) | 一种无预紧力变摩擦阻尼器 | |
CN221974191U (zh) | 一种高耐磨总过渡油制板 | |
JP2020204357A (ja) | 摩擦ダンバー | |
CN101575071B (zh) | 大型机械设备大梁或臂架俯仰铰支座橡胶间隙支承装置 | |
CN220281488U (zh) | 一种汽车转向机构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22964969 Country of ref document: EP Kind code of ref document: A1 |