[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023007836A1 - 農業支援システムおよび農業支援方法 - Google Patents

農業支援システムおよび農業支援方法 Download PDF

Info

Publication number
WO2023007836A1
WO2023007836A1 PCT/JP2022/013221 JP2022013221W WO2023007836A1 WO 2023007836 A1 WO2023007836 A1 WO 2023007836A1 JP 2022013221 W JP2022013221 W JP 2022013221W WO 2023007836 A1 WO2023007836 A1 WO 2023007836A1
Authority
WO
WIPO (PCT)
Prior art keywords
agricultural
field
agricultural machine
work
farm
Prior art date
Application number
PCT/JP2022/013221
Other languages
English (en)
French (fr)
Inventor
祐樹 久保田
透 反甫
樹 大久保
一輝 太田
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to EP22848920.9A priority Critical patent/EP4378291A1/en
Priority to JP2023538260A priority patent/JPWO2023007836A1/ja
Publication of WO2023007836A1 publication Critical patent/WO2023007836A1/ja
Priority to US18/426,125 priority patent/US20240188475A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/69Coordinated control of the position or course of two or more vehicles
    • G05D1/698Control allocation
    • G05D1/6987Control allocation by centralised control off-board any of the vehicles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • A01B79/02Methods for working soil combined with other agricultural processing, e.g. fertilising, planting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/648Performing a task within a working area or space, e.g. cleaning
    • G05D1/6482Performing a task within a working area or space, e.g. cleaning by dividing the whole area or space in sectors to be processed separately
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B76/00Parts, details or accessories of agricultural machines or implements, not provided for in groups A01B51/00 - A01B75/00
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2105/00Specific applications of the controlled vehicles
    • G05D2105/15Specific applications of the controlled vehicles for harvesting, sowing or mowing in agriculture or forestry
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2107/00Specific environments of the controlled vehicles
    • G05D2107/20Land use
    • G05D2107/21Farming, e.g. fields, pastures or barns
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/10Land vehicles

Definitions

  • the present disclosure relates to an agricultural support system and an agricultural support method.
  • Patent Documents 1 and 2 each disclose a technique for realizing efficiency in agricultural work by linking a plurality of work vehicles.
  • the present disclosure provides a technology that facilitates support for agricultural work in fields by agricultural machines.
  • An agricultural support system for supporting farm work using one or more agricultural machines A control device that controls the operation of the one or more agricultural machines, The agricultural support system, wherein the control device moves the one or more agricultural machines to the farm field to support the farm work in the farm field when receiving a signal requesting farm work support in the farm field from the terminal device.
  • the control device is controlling the operation of a first agricultural machine included in the one or more agricultural machines; When the signal is received from the terminal device while the second agricultural machine is performing farm work in the field, the first agricultural machine is caused to move to the field and support the farm work performed by the second agricultural machine.
  • item 1 an agricultural support system.
  • the control device is controlling the operation of each of a first agricultural machine and a second agricultural machine included in the one or more agricultural machines;
  • the control device When receiving the signal from the terminal device, the control device causes the first agricultural machine stopped at the storage location to move to the farm field, and after the agricultural work in the farm field is completed, the first agricultural machine moves the first agricultural machine to the farm field.
  • the agricultural support system according to item 2 which is moved to a storage location.
  • the control device causes the first agricultural machine stopped at the first storage location to move to the field, and after the agricultural work in the field is completed, the first agricultural machine 3.
  • the agricultural support system according to item 2 wherein the agricultural support system moves to a second storage location different from the first storage location.
  • the control device causes the first agricultural machine stopped at the first storage location to move to the field, and after the agricultural work in the field is completed, the first agricultural machine 6.
  • the control device is controlling the operation of a third agricultural machine included in the one or more agricultural machines; Based on the positional relationship between the location where the first agricultural machine is located, the location where the third agricultural machine is located, and the farm field, the control device determines the 3.
  • the controller controls the first agricultural machine to stop at a first storage location, and the third agricultural machine to move from the farm to a second agricultural machine whose distance from the field is longer than the distance from the farm to the first storage.
  • the control device further controls the third agricultural machine to stop at the first storage location, and the first agricultural machine to move from the field to the first storage location at a distance shorter than the distance from the field to the first storage location.
  • Item 8 The agricultural support system according to item 7, wherein the first agricultural machine is caused to move from the other field to the field when the signal is received from the terminal device while farm work is being performed in the field.
  • the control device is configured such that the first agricultural machine performs farm work in a field different from the farm field, and the third agricultural machine is configured such that the distance from the farm field is the distance from the farm field to the other farm field.
  • the first agricultural machine is caused to move from the other farm field to the farm field when the signal is received from the terminal device while farm work is being performed in another farm field longer than the farm work.
  • Agricultural support system is configured such that the first agricultural machine performs farm work in a field different from the farm field, and the third agricultural machine is configured such that the distance from the farm field is the distance from the farm field to the other farm field.
  • the control device creates a work log containing at least one piece of information about the content of agricultural work performed by the one or more agricultural machines in the field, the work time, and the type of agricultural machine, and records the log in the storage device.
  • the agricultural support system according to any one of items 1 to 10.
  • control device When the control device receives the signal from the terminal device and determines to move the one or more agricultural machines to the field, the control device updates a schedule of farm work to be performed by the one or more agricultural machines. 15. The agricultural support system according to claim 14.
  • An agricultural support system for supporting agricultural work by agricultural machinery, a control device for controlling the operation of each of the first agricultural machine and the second agricultural machine;
  • the control device is schedule management of agricultural work performed by the second agricultural machine;
  • the second agricultural machine is performing farm work in a field and it is determined that the farm work by the second agricultural machine is behind schedule, the first agricultural machine is caused to move to the field, and the second agricultural machine is moved to the field.
  • An agricultural support system that supports agricultural work performed by machines.
  • a computer-implemented agricultural support method for supporting agricultural work by agricultural machinery comprising: controlling operation of each of the first agricultural machine and the second agricultural machine; managing a schedule of agricultural work to be performed by the second agricultural machine; When the second agricultural machine is performing farm work in a field and it is determined that the farm work by the second agricultural machine is behind schedule, the first agricultural machine is caused to move to the field, and the second agricultural machine is moved to the field. to support agricultural work performed by machines; Agricultural support method that causes a computer to execute
  • a generic or specific aspect of the present disclosure can be realized by an apparatus, system, method, integrated circuit, computer program, or computer-readable non-transitory storage medium, or any combination thereof.
  • a computer-readable storage medium may include both volatile and non-volatile storage media.
  • a device may consist of a plurality of devices. When the device is composed of two or more devices, the two or more devices may be arranged in one device, or may be divided and arranged in two or more separate devices. .
  • FIG. 1 is a diagram schematically showing a configuration example of an agricultural support system in an exemplary embodiment of the present disclosure
  • FIG. 2 is a block diagram illustrating a schematic hardware configuration of a server computer
  • FIG. 2 is a block diagram illustrating a schematic hardware configuration of a terminal device
  • FIG. 1 is a perspective view showing an example of the appearance of an agricultural machine in an exemplary embodiment of the present disclosure
  • FIG. FIG. 2 is a side view schematically showing an example of an agricultural machine with a work implement attached
  • 1 is a block diagram showing an example of a schematic configuration of an agricultural machine
  • FIG. 1 is a conceptual diagram showing an example of an agricultural machine that performs positioning by RTK-GNSS;
  • FIG. 4 is a diagram schematically showing an example of an agricultural machine that automatically travels along a target route in a field; 4 is a flow chart showing an example of steering control operation during automatic driving, which is executed by a control device.
  • FIG. 4 is a diagram showing an example of an agricultural machine traveling along a target route;
  • FIG. 10 is a diagram showing an example of an agricultural machine that is shifted to the right from the target path;
  • FIG. 10 is a diagram showing an example of an agricultural machine that is shifted to the left from the target path;
  • FIG. 10 shows an example of an agricultural machine oriented obliquely with respect to a target path;
  • FIG. 4 is a diagram schematically showing an example of a situation in which a plurality of agricultural machines are automatically traveling on roads inside and outside a field; It is a figure which shows an example of the setting screen of a work schedule displayed on the display apparatus of a terminal device. It is a figure which shows the example of the schedule of agricultural work produced by the server. 4 is a flow chart illustrating the steps of an example of an agricultural support method in an exemplary embodiment of the present disclosure; FIG. 2 is a diagram for explaining an overview of support for farm work in a field by agricultural machines; FIG. 2 is a diagram for explaining an overview of support for farm work in a field by agricultural machines; FIG.
  • FIG. 4 is a diagram showing an example of operations of the control device of the first agricultural machine, the control device of the second agricultural machine, and the control device of the server;
  • FIG. 10 is a diagram illustrating how an administrator around a field uses a terminal device to manage the progress of work in the field performed by the second agricultural machine.
  • FIG. 10 is a diagram showing a display example of the progress of work displayed on the display of the terminal device;
  • FIG. 10 is a diagram showing a display example of usage details displayed on the terminal device after using the agricultural work support service;
  • FIG. 11 is a diagram showing an example of operations of the control device of the first agricultural machine, the control device of the second agricultural machine, the terminal device, and the control device of the server when a terminal device used by a user requests support for work of the agricultural machine; be.
  • FIG. 5 is a diagram showing an example of operations of the control device of the first agricultural machine, the terminal device, and the control device of the server when a worker uses the terminal device to request work assistance;
  • An example of a farm work being supported by one or more agricultural machines when a manager in the vicinity of the field uses a terminal device to manage the progress of work in the field performed by the second agricultural machine.
  • FIG. 10 is a diagram for explaining an example of moving the first agricultural machine to a storage location different from the storage location where the first agricultural machine has been stopped after completion of agricultural work in a field;
  • FIG. 10 is a diagram for explaining an example of moving the first agricultural machine to a storage location different from the storage location where the first agricultural machine has been stopped after completion of agricultural work in a field;
  • FIG. 10 is a diagram for explaining an example of moving the first agricultural machine to a storage location different from the storage location where the first agricultural machine has been stopped after completion of agricultural work in a field;
  • FIG. 10 is a diagram for explaining another example of moving the first agricultural machine to a storage location different from the storage location where the first agricultural machine has been stopped after the agricultural work in the field is finished;
  • FIG. 10 is a diagram for explaining an example of moving agricultural machines in the first storage location to the farm when the first storage location is closer to the farm than the second storage location;
  • FIG. 10 is a diagram for explaining an example of moving an agricultural machine that performs farm work in another field to another field when the other field is closer to the field than the storage location;
  • FIG. 10 is a diagram for explaining an example of moving an agricultural machine that performs farm work in another field to another field when the other field is closer to the field than the storage location
  • FIG. 11 is a diagram for explaining an example of moving an agricultural machine that performs farm work in another field to another field when the other field is closer to the field than the other field;
  • Agricultural machinery in this disclosure means machinery used for agricultural purposes.
  • Examples of agricultural machinery include tractors, harvesters, rice transplanters, ride-on care machines, vegetable transplanters, mowers, seeders, fertilizer applicators, and field mobile robots.
  • a work vehicle such as a tractor functions alone as an "agricultural machine”
  • Agricultural machines perform farm work such as plowing, sowing, pest control, fertilization, planting of crops, or harvesting on the ground in fields. These agricultural works are sometimes simply referred to as "work”.
  • Automatic operation in this disclosure means controlling the movement of the agricultural machine by the action of the control device, not by manual operation by the driver.
  • Agricultural machines that operate automatically are sometimes called “automatic driving farm machines” or “robot farm machines”.
  • automated driving not only the movement of the agricultural machine but also the movement of the agricultural work may be automatically controlled.
  • the agricultural machine is a vehicle-type machine
  • the automatic driving of the agricultural machine is called “automatic driving”.
  • the controller may control at least one of the steering, movement speed adjustment, movement start and stop necessary for movement of the agricultural machine.
  • the control device may control operations such as raising and lowering the work implement and starting and stopping the operation of the work implement.
  • Movement by automatic operation may include not only movement of the agricultural machine toward a destination along a predetermined route, but also movement following a tracking target.
  • An agricultural machine that operates automatically may have a function of moving partially based on a user's instruction.
  • the agricultural machine that automatically operates may operate in a manual operation mode in which the agricultural machine is moved by manual operation by the driver.
  • the act of steering an agricultural machine not by manual operation but by the action of a control device is called "automatic steering".
  • Part or all of the controller may be external to the agricultural machine. Communication, such as control signals, commands, or data, may occur between a control device external to the agricultural machine and the agricultural machine.
  • An agricultural machine that operates automatically may move autonomously while sensing the surrounding environment without a human being involved in controlling the movement of the agricultural machine.
  • Agricultural machines capable of autonomous movement can run unmanned inside or outside a field (for example, on roads). Obstacle detection and obstacle avoidance operation may be performed during autonomous movement.
  • the agricultural support system is substantially implemented as a computer system.
  • Agricultural support systems include controllers that control the operation of one or more agricultural machines. The user can enjoy the agricultural work support service by utilizing the agricultural support system. Examples of farm work support services include agricultural machinery sharing services.
  • the control device moves one or more agricultural machines to the field to support the agricultural work in the field.
  • a signal requesting assistance for farm work may be referred to as a "request signal”.
  • the controller can be, for example, a computer comprising one or more processors and one or more memories. In that case, the processor can realize desired processing by sequentially executing the computer programs stored in the memory.
  • the control device may be installed in the agricultural machine, or may be installed in a place away from the agricultural machine, for example, in the user's home or office that monitors the agricultural machine, or in a management center that manages the agricultural machine. good.
  • One of a plurality of electronic control units (ECU) mounted on the agricultural machine may have a function as a control device, or the ECU mounted on one of the plurality of agricultural machines may be a master computer,
  • the master computer may function as the controller.
  • an external server computer or edge computer that communicates with the agricultural machine via a network may function as the control device.
  • the terminal device may have the function of the control device. Examples of terminal devices include stationary computers, smart phones, tablet computers, or laptop computers.
  • a control device controls the operation of a first agricultural machine included in one or more agricultural machines, and when a second agricultural machine is performing farm work in a field, a request from a terminal device used by a user When the signal is received, the first agricultural machine is caused to move to the field and assist the farm work performed by the second agricultural machine.
  • the control device controls the operation of each of the first agricultural machine and the second agricultural machine included in one or more agricultural machines, and when receiving a request signal from the terminal device used by the user, the first agricultural machine and the second agricultural machine may be moved to the field to assist the farm work in the field.
  • a manager e.g., a farm manager
  • a manager who manages the entire farm work can communicate with one or more workers and request the workers to support the farm work. did it.
  • Requested workers were able to assist in the farm work either manually or with farm machinery owned by the manager.
  • the scope of requests for farm work support may be limited to workers employed by the manager.
  • agricultural machinery is the property of an individual such as a manager, permission must be obtained through negotiation or the like when someone else wants to use the agricultural machinery.
  • the embodiment of the present disclosure even if there is a delay in the work schedule, it is possible to easily make up for the delay by receiving support for agricultural work using agricultural machinery. For example, if a plurality of agricultural machine groups belonging to different owners are connected to the agricultural support system, it becomes possible to realize sharing of agricultural machines between different groups. A farm worker belonging to a certain group can request agricultural machinery belonging to another group to support farm work.
  • the support request from the user is not limited to the case where the work schedule is delayed. The user can appropriately request support for farm work, such as when the user wants to accelerate farm work to bring forward the work schedule.
  • a control device when a farm worker is performing manual work in a field and receives a request signal from a terminal device used by the farm worker, causes the agricultural machine to move to the field and perform the farm work.
  • Manual work by a person may be assisted. Also in this example, the assistance of agricultural work by agricultural machinery facilitates making up for the delay.
  • a control device controls the operation of each of the first agricultural machine and the second agricultural machine.
  • the control device manages the schedule of agricultural work performed by the second agricultural machine, and when it is determined that the agricultural work by the second agricultural machine is behind the schedule while the second agricultural machine is performing agricultural work in the field, The first agricultural machine is moved to the field and assists the farm work performed by the second agricultural machine. According to this example, it is possible to provide a technology for fully automating support for agricultural work in a field by an agricultural machine that operates automatically.
  • FIG. 1 is a diagram schematically showing a configuration example of an agriculture support system 1000 according to this embodiment.
  • FIG. 2 is a block diagram illustrating a schematic hardware configuration of the server computer 100.
  • the agriculture support system 1000 includes a server computer 100 (hereinafter referred to as "server 100") and one or more terminal devices 200.
  • a plurality of agricultural machines 300 can be communicatively connected to the agricultural support system 1000 via a wired or wireless network 60 .
  • FIG. 1 shows a connection example in which three agricultural machines 300 are connected to an agricultural support system 1000 via a network 60.
  • the number of agricultural machines 300 connected to the agricultural support system 1000 is arbitrary.
  • the agriculture support system 1000 may further include one or more edge computers from the viewpoint of reducing communication delays or distributing network loads.
  • part of the server 100 functions as a control device.
  • a plurality of agricultural machines owned by an administrator can be connected to the agricultural support system 1000.
  • Server 100 may be a computer installed at a location remote from agricultural machinery 300 .
  • the server 100 includes a communication device 10 , a control device 20 and a storage device 30 . These components are communicatively connected to each other via a bus.
  • the server 100 can function as a cloud server that processes request signals, manages schedules of agricultural work performed by the agricultural machines 300, and supports agriculture by utilizing data stored in storage.
  • the communication device 10 is a communication module for communicating with the terminal device 200 and the agricultural machine 300 via the network 60.
  • the communication device 10 can perform wired communication conforming to a communication standard such as IEEE1394 (registered trademark) or Ethernet (registered trademark).
  • the communication device 10 can perform, for example, wireless communication conforming to the Bluetooth (registered trademark) standard or Wi-Fi standard, or cellular mobile communication such as 3G, 4G, or 5G.
  • the control device 20 includes, for example, a processor 21, a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, and the like.
  • Software (or firmware) for processor 21 to perform at least one process may be implemented in ROM 22 .
  • Such software may be recorded on a computer-readable recording medium such as an optical disc, sold as packaged software, or provided to users via the network 60 .
  • the processor 21 is a semiconductor integrated circuit and includes a central processing unit (CPU). Processor 21 may be implemented by a microprocessor or microcontroller. The processor 21 sequentially executes a computer program stored in the ROM 22, which describes a group of instructions for executing at least one process, and realizes desired processes.
  • CPU central processing unit
  • control device 20 includes a CPU-mounted FPGA (Field Programmable Gate Array), GPU (Graphics Processing Unit), ASIC (Application Specific Integrated Circuit), ASSP (Application Specific Standard Product), or , may comprise a combination of two or more circuits selected from among these circuits.
  • FPGA Field Programmable Gate Array
  • GPU Graphics Processing Unit
  • ASIC Application Specific Integrated Circuit
  • ASSP Application Specific Standard Product
  • the ROM 22 is, for example, a writable memory (eg PROM), a rewritable memory (eg flash memory), or a read-only memory.
  • ROM 22 stores a program for controlling the operation of processor 21 .
  • the ROM 22 does not have to be a single recording medium, but can be a collection of multiple recording media. Some of the multiple aggregates may be removable memory.
  • the RAM 23 provides a work area for temporarily developing the control program stored in the ROM 22 at boot time.
  • the RAM 23 does not have to be a single recording medium, but can be a collection of multiple recording media.
  • the storage device 30 mainly functions as database storage.
  • An example of storage device 30 is cloud storage.
  • the storage device 30 is, for example, a magnetic storage device or a semiconductor storage device.
  • An example of a magnetic storage device is a hard disk drive (HDD).
  • An example of a semiconductor memory device is a solid state drive (SSD).
  • the storage device 30 may be an external storage device connected to the server 100 via the network 60 .
  • FIG. 3 is a block diagram illustrating a schematic hardware configuration of the terminal device 200. As shown in FIG.
  • the terminal device 200 includes an input device 210 , a display device 220 , a processor 230 , a ROM 240 , a RAM 250 , a storage device 260 and a communication device 270 . These components are communicatively connected to each other via a bus.
  • the input device 210 is a device for converting instructions from the user into data and inputting it to the computer.
  • Examples of input device 210 are a keyboard, mouse or touch panel.
  • An example of the display device 220 is a liquid crystal display or an organic EL display. Descriptions of the processor 230, the ROM 240, the RAM 250, the storage device 260, and the communication device 270 are as described in the hardware configuration example of the server 100, and are omitted.
  • FIG. 4 is a perspective view showing an example of the appearance of the agricultural machine 300 according to this embodiment.
  • FIG. 5 is a side view schematically showing an example of agricultural machine 300 with work implement 400 attached.
  • the agricultural machine 300 in this embodiment is an agricultural tractor (working vehicle) with a working machine 400 attached.
  • Agricultural machine 300 is not limited to a tractor, and work machine 400 need not be attached.
  • the agricultural machine 300 includes a vehicle body 101, a prime mover (engine) 102, and a transmission (transmission) 103.
  • the vehicle body 101 is provided with tires 104 (wheels) and a cabin 105 .
  • Tires 104 include a pair of front wheels 104F and a pair of rear wheels 104R.
  • a driver's seat 107 , a steering device 106 , an operation terminal 153 , and a group of switches for operation are provided inside the cabin 105 . If the agricultural machine 300 does not run on public roads, one or both of the front wheels 104F and rear wheels 104R may be crawlers instead of tires.
  • the agricultural machine 300 shown in FIG. 5 further includes a plurality of cameras 155.
  • the cameras 155 can be provided on the front, rear, left, and right of the agricultural machine 300, for example.
  • the camera 155 photographs the environment around the agricultural machine 300 and generates image data. Images acquired by the camera 155 can be transmitted to the terminal device 200 for remote monitoring. The images can be used to monitor the agricultural machine 300 during unmanned operation. Camera 155 may also be used to generate images for recognizing white lines, signs, signs, or surrounding obstacles as agricultural machine 300 travels on the road.
  • the agricultural machine 300 further includes a positioning device 130.
  • Positioning device 130 includes a GNSS receiver.
  • the GNSS receiver includes an antenna for receiving signals from GNSS satellites and processing circuitry for determining the position of agricultural machine 300 based on the signals received by the antenna.
  • the positioning device 130 receives GNSS signals transmitted from GNSS satellites and performs positioning based on the GNSS signals.
  • GNSS is a general term for satellite positioning systems such as GPS (Global Positioning System), QZSS (Quasi-Zenith Satellite System, eg, Michibiki), GLONASS, Galileo, and BeiDou.
  • the positioning device 130 in this embodiment is provided in the upper part of the cabin 105, but may be provided in another position.
  • the positioning device 130 may include an inertial measurement unit (IMU). Signals from the IMU can be used to supplement the location data.
  • the IMU can measure tilts and minute movements of the agricultural machine 300 . Positioning performance can be improved by using data obtained by the IMU to supplement position data based on satellite signals.
  • the agricultural machine 300 illustrated in FIG. 5 further includes a LiDAR sensor 156.
  • the LiDAR sensor 156 in this example is arranged in the lower front portion of the vehicle body 101 .
  • the position of the LiDAR sensor 156 may be other positions. While the agricultural machine 300 is moving, the LiDAR sensor 156 repeats sensor data indicating the distance and direction of each measurement point on an object existing in the surrounding environment, or two-dimensional or three-dimensional coordinate values of each measurement point. Output.
  • Sensor data output from the LiDAR sensor 156 is processed by the controller of the agricultural machine 300 .
  • the control device can execute processing such as generation of an environment map based on sensor data, for example, using an algorithm such as SLAM (Simultaneous Localization and Mapping). Generation of the environment map may be performed by another computer such as the server 100 outside the agricultural machine 300 .
  • Sensor data output from the LiDAR sensor 156 may also be used for obstacle detection.
  • the positioning device 130 may use data acquired by the camera 155 or the LiDAR sensor 156 for positioning.
  • the agricultural machine 300 can be detected based on the data acquired by the camera 155 or the LiDAR sensor 156 and the environmental map recorded in advance in the storage device. 300 positions can be estimated with high accuracy.
  • the position of the agricultural machine 300 can be specified with higher accuracy.
  • the agricultural machine 300 further includes a plurality of obstacle sensors 136.
  • obstacle sensors 136 are provided in front and rear of the cabin 105 .
  • the obstacle sensor 136 is used to detect surrounding obstacles and stop or detour during automatic travel.
  • the prime mover 102 may be, for example, a diesel engine.
  • An electric motor may be used instead of the diesel engine.
  • the transmission 103 can change the driving force and the moving speed of the agricultural machine 300 by shifting.
  • the transmission 103 can also switch between forward and reverse of the agricultural machine 300 .
  • the steering device 106 includes a steering wheel, a steering shaft connected to the steering wheel, and a power steering device that assists steering by the steering wheel.
  • the front wheels 104F are steerable wheels, and the running direction of the agricultural machine 300 can be changed by changing the turning angle (also referred to as the "steering angle") of the front wheels 104F.
  • the steering angle of the front wheels 104F can be changed by operating the steering wheel.
  • the power steering system includes a hydraulic system or an electric motor that supplies an assist force for changing the steering angle of the front wheels 104F. When automatic steering is performed, the steering angle is automatically adjusted by the power of the hydraulic system or the electric motor under the control of the control device arranged inside the agricultural machine 300 .
  • a coupling device 108 is provided at the rear portion of the vehicle body 101 .
  • the coupling device 108 includes, for example, a three-point support device (also called a "three-point link” or “three-point hitch”), a PTO (Power Take Off) shaft, a universal joint, and a communication cable.
  • the work implement 400 can be attached to and detached from the agricultural machine 300 by the coupling device 108 .
  • Agricultural machine 300 can cause work machine 400 to perform a predetermined work while pulling work machine 400 .
  • the coupling device 108 may be provided in front of the vehicle body 101 . In that case, a working machine can be connected in front of the agricultural machine 300 .
  • the agricultural machine 300 illustrated in FIG. 5 is a rotary tiller, but the working machine 400 is not limited to a rotary tiller.
  • any working machine such as a seeder (seeder), spreader (fertilizer), transplanter, mower (lawn mower), harvester (harvester), sprayer, or harrow is used by being connected to the agricultural machine 300. be able to.
  • the agricultural machine 300 exemplified in FIG. 5 is capable of manned operation, but may only be compatible with unmanned operation. In that case, the components required only for manned operation, such as the cabin 105 , the steering device 106 and the driver's seat 107 , may not be provided in the agricultural machine 300 .
  • the unmanned agricultural machine 300 can travel autonomously or remotely controlled by a user.
  • FIG. 6 is a block diagram showing an example of a schematic configuration of the agricultural machine 300. As shown in FIG. Agricultural machine 300 and working machine 400 can communicate with each other via a communication cable included in coupling device 108 .
  • Agricultural machine 300 in the example of FIG. a control system 160 and a communication device 190 .
  • the positioning device 130 includes a GNSS receiver 131 and an inertial measurement device 135.
  • Control system 160 includes storage device 170 and control device 180 .
  • the controller 180 comprises a plurality of electronic control units 181-185. Note that FIG. 6 shows constituent elements that are relatively highly relevant to the automatic operation of the agricultural machine 300, and illustration of other constituent elements is omitted.
  • the GNSS receiver 131 in the positioning device 130 receives satellite signals transmitted from a plurality of GNSS satellites and generates GNSS data based on the satellite signals.
  • GNSS data may be generated in a predetermined format, such as the NMEA-0183 format, for example.
  • GNSS data may include, for example, values indicating the identification number, elevation, azimuth, and received strength of each satellite from which the satellite signal was received.
  • FIG. 6 performs positioning of the agricultural machine 300 using RTK (Real Time Kinematic)-GNSS.
  • FIG. 7 is a conceptual diagram showing an example of an agricultural machine 300 that performs positioning by RTK-GNSS. Positioning by RTK-GNSS uses correction signals transmitted from the reference station 80 in addition to satellite signals transmitted from the plurality of GNSS satellites 50 .
  • the reference station 80 can be installed near the field where the agricultural machine 300 runs (for example, within 1 km from the agricultural machine 300).
  • the reference station 80 generates, for example, an RTCM format correction signal based on the satellite signals received from the plurality of GNSS satellites 50 and transmits the correction signal to the positioning device 130 .
  • RTK receiver 137 includes an antenna and modem and receives correction signals transmitted from reference station 80 .
  • the processing circuit 138 of the positioning device 130 corrects the positioning result by the GNSS receiver 131 based on the correction signal.
  • RTK-GNSS By using RTK-GNSS, it is possible to perform positioning with an accuracy of, for example, an error of several centimeters.
  • Location information including latitude, longitude and altitude information, is obtained through RTK-GNSS high-precision positioning.
  • the positioning device 130 calculates the position of the agricultural machine 300, for example, at a frequency of about 1 to 10 times per second.
  • the positioning method is not limited to RTK-GNSS, and any positioning method (interference positioning method, relative positioning method, etc.) that can obtain position information with the required accuracy can be used.
  • positioning may be performed using VRS (Virtual Reference Station) or DGPS (Differential Global Positioning System). If position information with required accuracy can be obtained without using the correction signal transmitted from the reference station 80, the position information may be generated without using the correction signal. In that case, the positioning device 130 may not have the RTK receiver 137 .
  • the positioning device 130 in this embodiment further includes an IMU 135 .
  • IMU 135 includes a 3-axis accelerometer and a 3-axis gyroscope.
  • the IMU 135 may include an orientation sensor, such as a 3-axis geomagnetic sensor.
  • the IMU 135 functions as a motion sensor and can output signals indicating various quantities such as acceleration, speed, displacement, and attitude of the agricultural machine 300 .
  • the positioning device 130 can estimate the position and orientation of the agricultural machine 300 with higher accuracy based on the signals output from the IMU 135 in addition to the GNSS signals and correction signals. Signals output from IMU 135 may be used to correct or impute position calculated based on satellite signals and correction signals.
  • IMU 135 outputs signals more frequently than GNSS receiver 131 .
  • the processing circuit 138 can measure the position and orientation of the agricultural machine 300 at a higher frequency (eg, 10 Hz or higher).
  • a higher frequency eg, 10 Hz or higher.
  • a separate 3-axis acceleration sensor and 3-axis gyroscope may be provided.
  • the IMU 135 may be provided as a separate device from the positioning device 130 .
  • processing circuitry 138 calculates the position of agricultural machine 300 based on signals output from GNSS receiver 131 , RTK receiver 137 and IMU 135 .
  • Processing circuitry 138 may also estimate or correct the position of agricultural machine 300 based on data acquired by camera 155 or LiDAR sensor 156 . By using the data acquired by the camera 155 or the LiDAR sensor 156, the accuracy of positioning can be further improved.
  • the position calculation is not limited to the positioning device 130, and may be performed by other devices.
  • the control device 180 or an external computer may acquire the output data of each receiver and each sensor necessary for positioning, and estimate the position of the agricultural machine 300 based on those data.
  • the camera 155 is an imaging device that captures an image of the environment around the agricultural machine 300 .
  • the camera 155 includes an image sensor such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor).
  • Camera 155 may also include optics, including one or more lenses, and signal processing circuitry.
  • the camera 155 captures an image of the environment around the agricultural machine 300 while the agricultural machine 300 is running, and generates image (for example, moving image) data.
  • the camera 155 can capture moving images at a frame rate of, for example, 3 frames per second (fps) or higher. Images generated by the camera 155 can be used, for example, when a remote observer checks the environment around the agricultural machine 300 using the terminal device 200 .
  • Images generated by camera 155 may be used for positioning or obstacle detection. As shown in FIG. 5, multiple cameras 155 may be provided at different positions on the agricultural machine 300, or a single camera may be provided. There may be separate visible cameras for generating visible light images and infrared cameras for generating infrared images. Both visible and infrared cameras may be provided as cameras for generating images for surveillance. Infrared cameras can also be used to detect obstacles at night.
  • the obstacle sensor 136 detects objects existing around the agricultural machine 300 .
  • Obstacle sensor 136 may comprise, for example, a laser scanner or ultrasonic sonar.
  • the obstacle sensor 136 outputs a signal indicating the presence of an obstacle when an object is present closer than a predetermined distance from the obstacle sensor 136 .
  • Multiple obstacle sensors 136 may be provided at different locations on the agricultural machine 300 .
  • multiple laser scanners and multiple ultrasonic sonars may be placed at different locations on the agricultural machine 300 . By providing such a large number of obstacle sensors 136, blind spots in monitoring obstacles around the agricultural machine 300 can be reduced.
  • the driving device 140 includes various components necessary for running the agricultural machine 300 and driving the work implement 400, such as the prime mover 102, the transmission 103, the differential including the differential lock mechanism, the steering device 106, and the coupling device .
  • Prime mover 102 includes an internal combustion engine, such as a diesel engine, for example.
  • Drive system 140 may include an electric motor for traction instead of or in addition to the internal combustion engine.
  • the steering wheel sensor 150 measures the rotation angle of the steering wheel of the agricultural machine 300.
  • the steering angle sensor 151 measures the steering angle of the front wheels 104F, which are steered wheels. Measured values by the steering wheel sensor 150 and the steering angle sensor 151 are used for steering control by the controller 180 .
  • the axle sensor 152 measures the rotational speed of the axle connected to the tire 104, that is, the number of revolutions per unit time.
  • Axle sensor 152 may be, for example, a sensor utilizing a magnetoresistive element (MR), a Hall element, or an electromagnetic pickup.
  • the axle sensor 152 outputs, for example, a numerical value indicating the number of rotations per minute (unit: rpm) of the axle.
  • Axle sensor 152 is used to measure the speed of agricultural machine 300 .
  • the storage device 170 includes one or more storage media such as flash memory or magnetic disk.
  • the storage device 170 stores various data generated by each sensor and the control device 180 .
  • the storage device 170 prerecords an environmental map including public roads inside and outside the field and information on the target route.
  • one or more of the plurality of ECUs included in the control device 180 function as the control device 20 according to the present embodiment, for example, schedules of agricultural work performed by the agricultural machine 300, work log data, billing information, and the like are stored. may be stored in device 170.
  • the control device 180 includes multiple ECUs.
  • the plurality of ECUs include, for example, an ECU 181 for speed control, an ECU 182 for steering control, an ECU 183 for work machine control, an ECU 184 for automatic operation control, and an ECU 185 for route creation.
  • ECU 181 controls the speed of agricultural machine 300 by controlling prime mover 102 , transmission 103 and brakes included in drive 140 .
  • the ECU 182 controls the steering of the agricultural machine 300 by controlling the hydraulic system or the electric motor included in the steering system 106 based on the measurement value of the steering wheel sensor 150 .
  • ECU 183 controls the operations of the three-point linkage and the PTO shaft included in coupling device 108 in order to cause work implement 400 to perform desired operations.
  • ECU 183 also generates a signal for controlling the operation of work machine 400 and transmits the signal from communication device 190 to work machine 400 .
  • the ECU 184 performs calculation and control for realizing automatic driving based on signals output from the positioning device 130 , the steering wheel sensor 150 , the steering angle sensor 151 and the axle sensor 152 .
  • the ECU 184 transmits a speed command value to the ECU 181 and a steering angle command value to the ECU 182 .
  • ECU 181 changes the speed of agricultural machine 300 by controlling prime mover 102, transmission 103, or brakes in response to the speed command value.
  • the ECU 182 changes the steering angle by controlling the steering device 106 in response to the steering angle command value.
  • ECU 185 controls communication with other devices by communication device 190 . For example, the ECU 185 creates a target route for the agricultural machine 300 and records it in the storage device 170 .
  • the ECU 185 receives the support transmitted from the control device 20, for example.
  • the position information of the previous field may be received, and a target route from the current location to the support destination field may be created based on the received position information.
  • control device 180 realizes automatic driving, target route determination, and communication with other devices.
  • control device 180 controls drive device 140 based on the position of agricultural machine 300 measured or estimated by positioning device 130 and the target route stored in storage device 170 . Thereby, the control device 180 can cause the agricultural machine 300 to travel along the target route.
  • a plurality of ECUs included in the control device 180 can communicate with each other according to a vehicle bus standard such as CAN (Controller Area Network).
  • CAN Controller Area Network
  • each of the ECUs 181 to 185 is shown as an individual block in FIG. 6, their respective functions may be realized by a plurality of ECUs.
  • an in-vehicle computer that integrates at least part of the functions of the ECUs 181 to 185 may be provided.
  • the control device 180 may include ECUs other than the ECUs 181 to 185, and an arbitrary number of ECUs may be provided according to functions.
  • controller 180 may further include an ECU used to manage access of agricultural machine 300 to the field.
  • Each ECU has a control circuit that includes one or more processors.
  • the communication device 190 is a circuit that communicates with the communication IF of the work machine 400 .
  • Communication device 190 performs transmission/reception of signals conforming to the ISOBUS standard such as ISOBUS-TIM with communication IF of work machine 400 .
  • ISOBUS-TIM with communication IF of work machine 400 .
  • work machine 400 can be caused to perform a desired operation, or information can be acquired from work machine 400 .
  • the operation terminal 153 is a terminal for the user to execute operations related to running of the agricultural machine 300 and operation of the implement 400, and is also called a virtual terminal (VT).
  • Operation terminal 153 may include a display device such as a touch screen and/or one or more buttons.
  • the display device can be a display such as a liquid crystal or an organic light emitting diode (OLED), for example.
  • OLED organic light emitting diode
  • the operation terminal 153 the user can perform various operations such as switching the automatic driving mode on/off, recording or editing an environment map, setting a target route, and switching the implement 400 on/off. can be executed. At least part of these operations can also be realized by operating the operation switch group 154 .
  • the operating terminal 153 may be configured to be removable from the agricultural machine 300 .
  • a user located away from the agricultural machine 300 may operate the removed operation terminal 153 to control the operation of the agricultural machine 300 .
  • the user may control the operation of the agricultural machine 300 by operating a computer, such as the terminal device 200 , in which necessary application software is installed, instead of the operation terminal 153 .
  • the operation terminal 153 can also be used as a terminal device for transmitting request signals to the server 100 .
  • FIG. 8 is a diagram schematically showing an example of an agricultural machine 300 that automatically travels along a target route in a field.
  • the farm field includes a work area 72 in which the agricultural machine 300 works using the implement 400, and a headland 74 located near the outer periphery of the farm field. Which areas on the field map correspond to the work area 72 and the headlands 74 can be set in advance by the user.
  • the target paths in this example include a plurality of parallel main paths P1 and a plurality of turning paths P2 connecting the plurality of main paths P1.
  • the main path P1 is located within the working area 72 and the turning path P2 is located within the headland 74 .
  • each main path P1 may include a curved portion.
  • the dashed line in FIG. 8 represents the working width of implement 400 .
  • the working width is preset and recorded in the storage device 170 .
  • the working width can be set and recorded by the user operating the operation terminal 153 .
  • the working width may be automatically recognized and recorded when implement 400 is connected to agricultural machine 300 .
  • the intervals between the main paths P1 can be set according to the working width.
  • a target route can be created based on a user's operation before automatic driving is started.
  • the target route can be created, for example, so as to cover the entire work area 72 in the field.
  • the agricultural machine 300 automatically travels along a target route as shown in FIG. 8 from a work start point to a work end point while repeating reciprocation. Note that the target route shown in FIG. 8 is merely an example, and the method of determining the target route is arbitrary.
  • control device 180 Next, an example of control during automatic operation by the control device 180 will be described.
  • FIG. 9 is a flowchart showing an example of the steering control operation during automatic driving performed by the control device 180.
  • the control device 180 performs automatic steering by executing the operations of steps S121 to S125 shown in FIG. 9 while the agricultural machine 300 is running. As for the speed, it is maintained at a preset speed, for example.
  • the control device 180 acquires data indicating the position of the agricultural machine 300 generated by the positioning device 130 while the agricultural machine 300 is running (step S121).
  • the control device 180 calculates the deviation between the position of the agricultural machine 300 and the target route (step S122). The deviation represents the distance between the position of the agricultural machine 300 at that time and the target route.
  • the control device 180 determines whether or not the calculated positional deviation exceeds a preset threshold value (step S123).
  • control device 180 changes the steering angle by changing the control parameters of the steering device included in the drive device 140 so that the deviation becomes smaller. If the deviation does not exceed the threshold in step S123, the operation of step S124 is omitted. In subsequent step S125, control device 180 determines whether or not an operation end command has been received. A command to end the operation can be issued, for example, when the user instructs to stop the automatic operation by remote control, or when the agricultural machine 300 reaches the destination. If no command to end the operation has been issued, the process returns to step S121, and similar operations are executed based on the newly measured position of the agricultural machine 300. FIG. The control device 180 repeats the operations of steps S121 to S125 until an operation end command is issued. The above operations are executed by ECUs 182 and 184 in control device 180 .
  • the control device 180 controls the drive device 140 based only on the deviation between the position of the agricultural machine 300 identified by the positioning device 130 and the target path, but also takes into account the deviation in heading. may be controlled. For example, when the orientation deviation, which is the angular difference between the orientation of the agricultural machine 300 identified by the positioning device 130 and the direction of the target route, exceeds a preset threshold value, the control device 180 drives according to the deviation.
  • a control parameter (eg, steering angle) of the steering system of device 140 may be changed.
  • FIG. 10A is a diagram showing an example of the agricultural machine 300 traveling along the target route P.
  • FIG. 10B is a diagram showing an example of the agricultural machine 300 at a position shifted to the right from the target path P.
  • FIG. 10C is a diagram showing an example of the agricultural machine 300 at a position shifted to the left from the target path P.
  • FIG. 10D is a diagram showing an example of the agricultural machine 300 oriented in an oblique direction with respect to the target path P.
  • the pose indicating the position and orientation of the agricultural machine 300 measured by the positioning device 130 is expressed as r(x, y, ⁇ ).
  • (x, y) are coordinates representing the position of the reference point of the agricultural machine 300 in the XY coordinate system, which is a two-dimensional coordinate system fixed to the earth.
  • the reference point of the agricultural machine 300 is at the location where the GNSS antenna is installed on the cabin, but the location of the reference point is arbitrary.
  • is an angle representing the measured orientation of the agricultural machine 300 .
  • the target path P is parallel to the Y-axis, but in general the target path P is not necessarily parallel to the Y-axis.
  • the control device 180 maintains the steering angle and speed of the agricultural machine 300 without changing.
  • the control device 180 steers the agricultural machine 300 so that the running direction of the agricultural machine 300 leans leftward and approaches the path P. change the angle.
  • the speed may be changed in addition to the steering angle.
  • the magnitude of the steering angle can be adjusted, for example, according to the magnitude of the positional deviation ⁇ x.
  • the control device 180 steers the agricultural machine 300 so that the running direction of the agricultural machine 300 is tilted to the right and approaches the path P. change the angle. Also in this case, the speed may be changed in addition to the steering angle. The amount of change in the steering angle can be adjusted, for example, according to the magnitude of the positional deviation ⁇ x.
  • the control device 180 performs steering so that the azimuth deviation ⁇ becomes small. change the angle. Also in this case, the speed may be changed in addition to the steering angle.
  • the magnitude of the steering angle can be adjusted, for example, according to the respective magnitudes of the position deviation ⁇ x and heading deviation ⁇ . For example, the smaller the absolute value of the positional deviation ⁇ x, the larger the amount of change in the steering angle corresponding to the azimuth deviation ⁇ .
  • the absolute value of the positional deviation ⁇ x is large, the steering angle will be greatly changed in order to return to the route P, so the absolute value of the azimuth deviation ⁇ will inevitably become large. Conversely, when the absolute value of the positional deviation ⁇ x is small, it is necessary to make the azimuth deviation ⁇ close to zero. Therefore, it is appropriate to relatively increase the weight (that is, the control gain) of the azimuth deviation ⁇ for determining the steering angle.
  • a control technique such as PID control or MPC control (model predictive control) can be applied to the steering control and speed control of the agricultural machine 300 .
  • PID control or MPC control model predictive control
  • the control device 180 stops the agricultural machine 300 . Controller 180 may control drive 140 to avoid an obstacle if an obstacle is detected. Based on the data output from the LiDAR sensor 156, the control device 180 can also detect objects (eg, other vehicles or pedestrians) that are relatively distant from the agricultural machine 300. FIG. The control device 180 can also realize automatic driving on public roads by performing speed control and steering control so as to avoid the detected object.
  • objects eg, other vehicles or pedestrians
  • FIG. 11 is a diagram schematically showing an example of a situation in which a plurality of agricultural machines 300 are automatically traveling on the road 76 inside and outside the field F.
  • the storage device 170 records an environmental map inside the field and outside the field including public roads, and information of the target route.
  • the environment map and target route are generated by ECU 185 of controller 180, for example.
  • the agricultural machine 300 travels on a public road, the agricultural machine 300 travels along the target route while sensing the surroundings using a sensing device such as the camera 155 and the LiDAR sensor 156 with the implement 400 raised. do.
  • the target route may be changed according to the situation.
  • a work schedule includes information about a plurality of farm operations that are performed over a plurality of work days.
  • the work schedule can be a database that includes information indicating which farm work is to be done in which field at what time for each work day.
  • a work schedule can be created by the processor 21 of the server 100 based on information input by the user using the terminal device 200 . An example of a work schedule creation method will be described below.
  • FIG. 12 is a diagram showing an example of a setting screen 760 displayed on the display device 220 of the terminal device 200.
  • the processor 230 of the terminal device 200 activates the application for schedule creation in response to the user's operation using the input device 210, and causes the display device 220 to display a setting screen 760 as shown in FIG. On this setting screen 760, the user can input information necessary for creating a work schedule.
  • FIG. 12 shows an example of the setting screen 760 when plowing accompanied by fertilizer spreading is performed in a rice field as agricultural work.
  • the setting screen 760 is not limited to the illustrated one, and can be changed as appropriate.
  • the setting screen 760 in the example of FIG. 12 includes a date setting portion 762, a cropping plan selection portion 763, a field selection portion 764, a work selection portion 765, an operator selection portion 766, a time setting portion 767, a machine selection portion 768, and a fertilizer selection portion. 769 , and a spray rate setting portion 770 .
  • the date input by the input device 210 is displayed in the date setting portion 762 .
  • the input date is set as the farm work implementation date.
  • the cropping plan selection section 763 displays a list of names of cropping plans created in advance. A user can select a desired cropping plan from the list.
  • the cropping plan is created in advance for each crop type/variety and recorded in the storage device 30 of the server 100 .
  • the planting plan is a plan of which crops are to be planted in which fields.
  • a planting plan is made by a manager or the like who manages a plurality of fields before planting crops in the fields.
  • a field is a plotted field in which crops are planted (ie, planted).
  • the cropping plan for the rice variety "Koshiibuki" is selected.
  • the content set on the setting screen 760 is associated with the planting plan of "Koshiibuki".
  • a farm field in the environmental map is displayed in the farm field selection portion 764 .
  • the user can select any field from the displayed fields.
  • the portion indicating "farm field A” is selected.
  • the selected “farm field A” is set as the farm field where farm work is performed.
  • the work selection portion 765 displays a plurality of agricultural works necessary for cultivating the selected crops.
  • the user can select one agricultural work from a plurality of agricultural works.
  • "plowing” is selected from a plurality of agricultural works.
  • the selected “tillage” is set as the agricultural work to be performed.
  • Pre-registered workers are displayed in the worker selection portion 766 .
  • the user can select one or more workers from the displayed plurality of workers.
  • "worker B and worker C" are selected from the plurality of workers.
  • the selected "worker B, worker C” are set as the workers in charge of implementing or managing the farm work.
  • the worker since the agricultural machine automatically performs the farm work, the worker may not actually perform the farm work, but only remotely monitor the farm work performed by the agricultural machine.
  • the work time input from the input device 210 is displayed in the time setting portion 767 .
  • a working time is specified by a start time and an end time.
  • the input work time is set as the scheduled time for the farm work to be performed.
  • the machine selection section 768 is a part that sets the agricultural machines used in the farm work.
  • the machine selection section 768 can display, for example, the ID (identification information), type or model of the agricultural machine registered in advance by the server 100, and the type or model of usable implement.
  • a user can select a particular machine from among the displayed machines. In the example of FIG. 12, an implement whose model is "NW4511" is selected. In this case, the implement is set as the machine used in the agricultural work.
  • the names of a plurality of fertilizers registered in advance by the server 100 are displayed in the fertilizer selection portion 769 .
  • the user can select a specific fertilizer from among the displayed multiple fertilizers.
  • the selected fertilizer is set as the fertilizer used in the agricultural work.
  • a numerical value input from the input device 210 is displayed in the application amount setting portion 770 .
  • the entered numerical value is set as the spread amount.
  • the communication device 270 of the terminal device 200 sends the input information to the server. Send to 100.
  • the processor 21 of the server 100 causes the storage device 30 to store the received information. Based on the received information, the processor 21 creates a schedule of farm work to be executed by each agricultural machine, and stores the schedule in the storage device 30 .
  • the farm work information managed by the server 100 is not limited to the above.
  • the setting screen 760 may be used to set the type and application amount of agricultural chemicals used in the field. It may be possible to set information related to agricultural work other than the agricultural work shown in FIG. 12 .
  • FIG. 13 is a diagram showing an example of a farm work schedule created by the server 100.
  • the schedule in this example includes, for each registered agricultural machine, information indicating the date and time of farm work, the field, work content, and implements used.
  • the schedule may include information other than the information shown in FIG. 13, such as agricultural chemicals or the application amount of agricultural chemicals, depending on the work content.
  • the processor 21 of the server 100 issues agricultural work instructions to the agricultural machines 300 .
  • the schedule may also be downloaded by the controller of agricultural machine 300 and stored in the storage of agricultural machine 300 . In that case, the control device of the agricultural machine 300 may spontaneously start operating according to the schedule stored in the storage device.
  • FIG. 14 is a flow chart showing a procedure according to an example of an agricultural support method according to this embodiment.
  • the agricultural support method waits for a farm work support request from the terminal device 200 or the operation terminal 153 (step S10), and determines the agricultural machine 300 to support the farm work according to the type of farm work in the field to be supported. (step S20), waiting for completion of farm work support by the agricultural machine 300 (step S30), and transmitting billing information to the terminal device 200 or the operation terminal 153 (step S40).
  • the one or more agricultural machines 300 connected to the agricultural support system 1000 described below include a first agricultural machine 300A and a second agricultural machine 300B.
  • one or more agricultural machines 300 may include three or more agricultural machines.
  • the first agricultural machine 300A and the second agricultural machine 300B in this embodiment refer to the work schedule transmitted from the server 100, and move from the storage location to the field indicated in the work schedule, for example.
  • the first agricultural machine 300A and the second agricultural machine 300B automatically travel on the road from the storage location to the field, and automatically perform work in the field as well.
  • the first agricultural machine 300A and the second agricultural machine 300B may be manually moved from the storage location to the field, and the work in the field may be performed under manual operation by the driver.
  • FIGS. 15A and 15B are diagrams for explaining an overview of agricultural work support in a field by the agricultural machine 300.
  • FIG. 15A and 15B each illustrate a field map showing a field area including a plurality of fields including field F1, a storage location 510 and a management center 520.
  • FIG. 15A shows the first agricultural machine 300A stopped at the storage location 510.
  • FIG. 15B shows how the first agricultural machine 300A supports the work of the second agricultural machine 300B in the field F1.
  • Agricultural machinery may be stored in locked storage areas.
  • the storage location can be, for example, the farm machine owner's home barn or the farmer's business garage.
  • FIG. 15A the target route R2a for the second agricultural machine 300B to perform farm work in the field F1 is indicated by a dashed arrow.
  • FIG. 15B shows a target route for causing the first agricultural machine 300A and the second agricultural machine 300B to work together in the field F1. More specifically, the target route R1 for causing the first agricultural machine 300A to work in the field F1 in response to a support request, and the target route R2b for causing the second agricultural machine 300B to continue working in the field F1 are indicated by dashed lines. indicated by an arrow. In FIGS. 15A and 15B, the routes already traveled along the target route are indicated by solid lines.
  • a target route for moving to the field and/or a target route for moving in the field to perform farm work can be created manually or automatically.
  • the first agricultural machine 300A and the second agricultural machine 300B automatically travel along the target route.
  • a storage device included in the control system of the agricultural machine 300 pre-records information of an environment map including public roads inside and outside the field and a target route.
  • the agricultural machine 300 can travel along a target route while sensing the surroundings using a sensing device such as a camera and a LiDAR sensor with the work implement raised. can.
  • the second agricultural machine 300B has moved from the storage location 510 to the field F1 and is doing farm work.
  • a first agricultural machine 300A and one or more other agricultural machines are parked at a storage location 510 in preparation for supporting agricultural work in the field.
  • the control device 180 of the first agricultural machine 300A controls the operation of the first agricultural machine 300A.
  • the control device 180 of the second agricultural machine 300B controls the operation of the second agricultural machine 300B.
  • the control device 180 of the first agricultural machine 300A and the control device 180 of the second agricultural machine 300B will be referred to as "control device 180A" and "control device 180B" respectively.
  • the request signal transmitted from the operation terminal 153 or the terminal device 200 to the control device 20 and the request signal transmitted from the control device 20 to the control device 180A are respectively referred to as a "first request signal” and a "second request signal". and distinguish them.
  • FIG. 16 is a diagram showing an example of operations of the control device 180A of the first agricultural machine 300A, the control device 180B of the second agricultural machine 300B, and the control device 20 of the server 100.
  • FIG. 16 each operation in the embodiment of the present disclosure is not limited to this.
  • Step S200 First, a first request signal is transmitted to the control device 20 from the operation terminal 153 of the second agricultural machine 300B.
  • the first request signal includes the position information of the second agricultural machine 300B that requested assistance in farm work.
  • the control device 20 refers to the position information of the second agricultural machine 300B and the environment map stored in the storage device 30 to identify the field F1 where the second agricultural machine 300B is located. In addition, the control device 20 refers to the work schedule and determines an agricultural machine to support the work from among the one or more agricultural machines 300 stopped at the storage place 510, for example.
  • the control device 20 refers to the environment map, and uses the position information of the second agricultural machine 300B equipped with the operation terminal 153 that has transmitted the first request signal to determine the agricultural field. Locate F1.
  • the control device 20 refers to the work schedule, and assists the work of an agricultural machine that is not performing farm work when the first request signal is received, for example, the first agricultural machine 300A stopped at the storage location 510. Decide as a machine.
  • the control device 20 selects, from among the plurality of agricultural machines 300 stopped at the storage location 510, an agricultural machine suitable for the work in the field F1 or an agricultural machine fitted with a work machine suitable for the work in the field F1.
  • the machine may be determined based on the type of agricultural machine included in the work schedule or the information required to assist with the item of farm work.
  • control device 20 transmits to control device 180A a second request signal including a command to move first agricultural machine 300A to field F1 where second agricultural machine 300B is located.
  • control device 20 transmits a second request signal including the position information of the farm field F1 to the control device 180A of the first agricultural machine 300A stopped at the storage location 510 .
  • Step S203 After determining the agricultural machine to support the work, the control device 20 notifies the second agricultural machine 300B that the agricultural machine to support the work has been determined.
  • Step S204 Until the target route R2a is changed, the second agricultural machine 300B automatically travels in the field F1 along the target route R2a to perform farm work.
  • the control device 180B Upon receiving the notification from the control device 20, the control device 180B changes the target route required for automatic operation of the second agricultural machine 300B in the field F1.
  • the control device 180B Upon receiving the notification from the control device 20, the control device 180B changes the target route R2a in the field F1 to the target route R2b.
  • the target route R2a of the second agricultural machine 300B is set to the farm field F1.
  • the target route R2a includes a start point ST2 for starting work, an end point EN2 for finishing work, and a traveling direction indicated by an arrow in the figure.
  • the control device 180B changes the target route R2a to the target route R2b.
  • the control device 180B moves the initial end point EN2 included in the target route R2a to an arbitrary position closer to the start point ST2 on the target route R2a, and sets a new end point EN2.
  • a target route R2b is created. In other words, the control device 180B creates the target route R2b by shortening the initial length of the target route R2a (the length from the start point ST2 to the end point EN2).
  • Step S205 Upon receiving the second request signal, the control device 180A starts controlling the first agricultural machine 300A to move to the farm field F1. Upon receiving the second request signal from the control device 20, the control device 180A creates a target route R1 for farm work in the field F1 to which the first agricultural machine 300A is supported.
  • the control device 180A may acquire the target route R2a of the second agricultural machine 300B via the server 100 and create the target route R1 using the target route R2a.
  • the control device 180A sets the end point EN2 of the target route R2a as the start point ST1 of the target route R1, and sets an arbitrary point on the target route R2a as the end point EN1 of the target route R1.
  • a target route R1 may be created.
  • Controller 180A also creates a target route for moving between storage location 510 and field F1.
  • Step S206 The control device 180A causes the first agricultural machine 300A to automatically travel along the target route R1.
  • the control device 180A activates the implement to cause the first agricultural machine 300A to start working from the starting point ST1.
  • the control device 180A causes the first agricultural machine 300A to work while automatically traveling in the traveling direction along the target route R1 by controlling the operation of the steering device 106 and the like.
  • Step S207 The control device 180B causes the second agricultural machine 300B to automatically travel along the target route R2b.
  • the control device 180B causes the second agricultural machine 300B to work while automatically traveling in the traveling direction along the target route R2b by controlling the operation of the steering device 106 and the like.
  • the second agricultural machine 300B performs work while automatically driving along the target route R2b. to the farm field F1, and then work is performed along the target route R1 while automatically driving.
  • control device 180A receives the second request signal transmitted by the control device 20 in response to the first request signal transmitted from the operation terminal 153 via the server 100.
  • control device 180A may receive the first request signal directly from operation terminal 153 without going through server 100 .
  • the control device 180A refers to the environment map, and from the position information of the second agricultural machine 300B on which the operation terminal 153 that has transmitted the first request signal is mounted.
  • the position of the field F1 may be specified.
  • the control device 180A starts controlling the first agricultural machine 300A to move to the farm field F1.
  • the control device 180B changes the target route required for automatic operation of the second agricultural machine 300B in the field F1.
  • controller 180A and controller 180B created the target route by themselves after receiving the second request signal and notification from controller 20, respectively, but the present disclosure is directed to this. Not limited.
  • the control device 20 after receiving the first request signal from the control device 180, the control device 20 creates target routes R1 and R2b for the first agricultural machine 300A and the second agricultural machine 300B, and converts the created target routes R1 and R2b to They may be sent to control device 180A and control device 180B, respectively.
  • the first request signal is transmitted from the operation terminal 153 mounted on the agricultural machine 300, instead of this, the first request signal may be transmitted from the terminal device 200 used by the administrator or the like.
  • FIG. 17 An example of transmitting the first request signal from the terminal device 200 will be described with reference to FIGS. 17 to 20.
  • FIG. 17 An example of transmitting the first request signal from the terminal device 200 will be described with reference to FIGS. 17 to 20.
  • FIG. 17 is a diagram illustrating how the manager 70 around the field F1 uses the terminal device 200 to manage the progress of the work in the field F1 performed by the second agricultural machine 300B.
  • FIG. 18 is a diagram showing a display example of the work progress displayed on the display of the terminal device 200. As shown in FIG.
  • the administrator 70 can use the terminal device 200 to monitor the second agricultural machine 300B from within or around the field F1.
  • the manager 70 can easily check whether the work is delayed from the work progress displayed on the terminal device 200, for example.
  • the work progress display 201 in the example shown in FIG. 18 includes a bar chart that displays the actual progress with respect to the initial work schedule in percentage (%).
  • the display 201 may include, for example, a selection display portion for allowing the user to select use of the farming support service.
  • the first request signal is transmitted from the terminal device 200 to the control device 20 .
  • the control device 20 requests the first agricultural machine 300A stopped at the storage place 510, for example, to support the work of the second agricultural machine 300B.
  • a request signal is transmitted to instruct the first agricultural machine 300A to move to the field F1 where the second agricultural machine 300B is located.
  • the control device 180A may move the first agricultural machine 300A to the farm field F1 according to the command.
  • the control device 20 transmits the position information of the original storage location 510 as the position information of the movement destination to the first agricultural machine 300A, and returns to the storage location 510 to the first agricultural machine 300A. command to do so.
  • the controller 180A may move the first agricultural machine 300A to the storage location 510 according to the command.
  • FIG. 19 is a diagram showing a display example of usage details displayed on the terminal device 200 after using the agricultural work support service.
  • the control device 20 can create a work log containing at least one piece of information about work support work performed by the agricultural machine 300 , work time, and type of agricultural machine, and record the work log in the storage device 30 .
  • the control device 20 in response to a request from the manager M1, controls the details of the farm work performed in the field F1 by the first agricultural machine 300A owned by the manager M2 who is different from the manager M1, the work time, and the farm work.
  • a work log including information on the type of machine may be created, and data of the created work log may be transmitted to the terminal device 200 of the manager M1.
  • the control device 20 may calculate the usage fee for the agricultural machine 300 based on the work log, and transmit billing information including the usage fee to the terminal device 200 of the manager M1. By displaying the billing information 202 illustrated in FIG. 18 on the terminal device 200, it is possible to prompt the administrator M1 to pay the usage fee for the agricultural work support service.
  • the agricultural work support service may be a pay-as-you-go service or a subscription-type flat-rate service in which usage fees are calculated according to working hours and types of agricultural machinery.
  • the user can use the agricultural work support service for a certain period of time by paying a fixed usage fee.
  • a subscription-type agricultural machine sharing service can be realized.
  • FIG. 20 shows the control device 180A of the first agricultural machine 300A, the control device 180B of the second agricultural machine 300B, the terminal device 200, and the server 100 when the terminal device 200 used by the user requests support for agricultural machine work.
  • 3 is a diagram showing an example of the operation of the control device 20 of FIG.
  • each operation in the embodiment of the present disclosure is not limited to this.
  • the same reference numerals are given to the same processes as those shown in FIG. 16, and the description thereof will be omitted.
  • a first request signal is transmitted from the terminal device 200 to the control device 20 (step S210).
  • the first request signal includes the position information of the support destination farm field F1 where the user using the terminal device 200 is located.
  • the control device 20 refers to the position information of the support destination farm field F1 and the environment map stored in the storage device 30, and identifies the farm field F1 where the user is.
  • the control device 20 also refers to the work schedule and determines, for example, the first agricultural machine 300A stopped at the storage location 510 as the agricultural machine to support the work (step S211).
  • FIG. 21 is a diagram exemplifying how the farm worker 71 carries the terminal device 200 while performing manual work in the field F1.
  • the farm worker 71 can grasp the progress of his or her own work from the display of the work progress displayed on the terminal device 200, for example.
  • Farm worker 71 may use terminal device 200 to transmit to control device 20 a first request signal requesting assistance for farm work in field F ⁇ b>1 when desiring assistance for farm work.
  • the control device 20 instructs the first agricultural machine 300A stopped at the storage location 510, for example, to assist the manual work performed by the farm worker 71 in the field F1.
  • a second request signal indicating the request is transmitted, and, for example, a command is issued to move to the farm field F1 where the farm worker 71 is working.
  • the control device 20 may transmit to the control device 180 a command indicating that the original storage location 510 is the destination after the farm work in the field F1 is completed.
  • the controller 180A may move the first agricultural machine 300A to the original storage location 510 according to the command.
  • FIG. 22 is a diagram showing an example of operations of the control device 180A of the first agricultural machine 300A, the terminal device 200, and the control device 20 of the server 100 when the worker uses the terminal device 200 to request work assistance. is.
  • each operation in the embodiment of the present disclosure is not limited to this.
  • the same reference numerals are given to the same processes as those shown in FIG. 20, and the description thereof will be omitted.
  • the control device 20 transmits a second request signal to the control device 180A after identifying the first agricultural machine 300A through steps S210 and S211.
  • the second request signal in this case is, for example, information indicating that there is no agricultural machine working in the farm field F1 to be supported, or indicating that the request requires manual support by the operator. Contains information.
  • control device 180A communicates with the terminal device 200 (step S212) to acquire from the terminal device 200 an unworked range in which no work is being performed in the field F1, and obtains the unworked range.
  • a target route R1 may be created (step S220).
  • FIG. 23 illustrates a case where the administrator 70 around the farm field F1 uses the terminal device 200 to manage the progress of the work in the farm field F1 performed by the second agricultural machine 300B. It is a figure which illustrates a mode that the support of agricultural work is received.
  • the control device 20 in the present embodiment When receiving the first request signal from the terminal device 200, the control device 20 in the present embodiment supports the first agricultural machine 300A and the third agricultural machine 300C, which can move to the field F1, to work in the field F1. send a second request signal requesting that The agricultural machines 300A to 300C can accelerate the work in the field F1 by performing the same agricultural work.
  • FIGS. 24A and 24B are diagrams for explaining an example of moving the first agricultural machine 300A to a storage location different from the storage location where the first agricultural machine 300A has been stopped after the farm work in field F1 is completed.
  • 24A and 24B each illustrate a field map showing a field area including a plurality of fields including field F1, first storage location 510A, second storage location 510B, and management center 520.
  • Each of the first and second storage locations 510A, 510B in this embodiment may be owned by different administrators. For example, when the manager M1 makes a support request for farm work, the manager M2 may own the first storage location 510A and the manager M3 may own the second storage location 510B.
  • the control device 20 When the control device 20 receives the first request signal from the terminal device 200, the control device 20 transmits a second request signal requesting assistance in the field F1 to the first agricultural machine 300A stopped at the first storage location 510A. As illustrated in FIG. 24B , when the first agricultural machine 300 finishes work in the field F1 and the original storage location 510A is full of other agricultural machines 300 and there is no storage space, the control device 20 , a command to move the first agricultural machine 300A to the second storage location 510B, which still has storage space, may be sent to the control device 180A.
  • FIG. 25 is a diagram for explaining another example of moving the first agricultural machine 300A to a storage location different from the storage location where the first agricultural machine 300A has been stopped after the farm work in the field F1 is completed.
  • the control device 20 When receiving the first request signal from the terminal device 200, the control device 20 transmits to the control device 180A a second request signal to move the first agricultural machine 300A stopped at the first storage location 510A to the farm field F1. good too. After the farm work in the field F1 is completed, the first agricultural machine 300A may move to the second storage location 510B. In this example, the distance from field F1 to second storage location 510B is shorter than the distance from field F1 to first storage location 510A. When the first agricultural machine 300 has finished the work in the field F1, if there is an empty storage space in the second storage location 510B, the control device 20 causes the first agricultural machine 300 to move to the second storage location 510B. good. According to this control, the time for returning the agricultural machine 300 to the storage location can be shortened.
  • the storage device 30 of the server 100 can pre-store data of partition polygons having spatial information and attribute information representing the position on the earth (that is, geographic coordinates) and shape for each farm field.
  • a “division polygon” is field division information created along the shape of the field for each brush based on an aerial photograph, satellite image, or the like.
  • Geographic coordinates refers to a geographic coordinate system that expresses positions on the earth by latitude and longitude, or projection coordinates that express positions on the earth by XY coordinates by projecting three-dimensional coordinates on the earth onto a two-dimensional plane. means position in the system.
  • control device 20 determines the coordinates in the geographical coordinate system of each vertex that defines the shape of the agricultural field area or storage location based on the partition polygon, and determines the shape of the agricultural field area or storage location based on the determined coordinates.
  • a barycentric coordinate may be calculated.
  • the control device 20 can calculate the distance from a field to another field or the distance from a field to a storage location as, for example, the Euclidean distance or Manhattan distance between two barycentric coordinate points.
  • the control device 20 in the present embodiment A second request signal instructing to move to the farm field F1 may be transmitted to the determined first agricultural machine 300A or third agricultural machine 300C.
  • FIG. 26 is a diagram for explaining an example of moving the agricultural machine 300 at the first storage location 510A to the farm field F1 when the first storage location 510A is closer to the farm field F1 than the second storage location 510B. be.
  • one or more agricultural machines 300 are stopped at each of the first storage location 510A and the second storage location 510B.
  • the distance from field F1 to second storage location 510B is longer than the distance from field F1 to first storage location 510A.
  • the control device 20 receives the first request from the terminal device 200.
  • the first agricultural machine 300A may be determined as the agricultural machine to be moved to the farm field F1, that is, the support destination.
  • FIGS. 27 and 28 are diagrams for explaining an example of moving the agricultural machine 300, which performs farm work in the field F2, to the field F1 when another field F2 is closer to the field F1 than the storage location 510 is. is.
  • the distance from the field F1 to the field F2 is shorter than the distance from the field F1 to the storage location 510.
  • the control device 20 receives the first request signal from the terminal device 200 when the third agricultural machine 300C is stopped at the storage location 510 and the first agricultural machine 300A is performing farm work in the field F2.
  • the first agricultural machine 300A may be determined as the agricultural machine to be moved to the field F1, that is, the support destination.
  • the control device 20 commands the control device 180A to move the first agricultural machine 300A from the field F2 to the field F1 after the first agricultural machine 300A finishes the work in the field F1.
  • the controller 180A moves the first agricultural machine 300A to the farm field F1 according to the command.
  • the control in this example is, for example, rather than moving an agricultural machine stopped at a storage location to a field, it is better to move an agricultural machine that is about to finish work in another field soon after the work is finished. , it is effective when it is possible to start supporting farm work earlier as a result, or when it is better to move to the field to the agricultural machine that finished the work earlier than planned, and when it is possible to start supporting farm work sooner as a result. .
  • the control device 20 waits until the work in the field F1 is completed. Instead, the first agricultural machine 300A may be moved to the farm field F1. The control device 20 can cause the agricultural machines 300 other than the first agricultural machine 300A to continue the work in the field F1.
  • FIG. 29 is a diagram for explaining an example of moving the agricultural machine 300 that performs farm work in the field F2 to the field F1 when the field F2 is closer to the field F1 than the field F3.
  • the control device 20 receives the first request signal from the terminal device 200 when the first agricultural machine 300A is performing farm work in the field F2 and the third agricultural machine 300C is performing farm work in the field F3.
  • the controller 180A is instructed to move the first agricultural machine 300A from the field F2 to the field F1.
  • Control device 180 moves first agricultural machine 300A to farm field F1 according to the command. It is preferable that the control device 20 designates the destination of the first agricultural machine 300A as the farm field F1 after the first agricultural machine 300A finishes the work in the farm field F2.
  • the control in this example is effective when all the agricultural machines that have stopped at the storage location have been dispatched in response to requests for agricultural work support.
  • a control device mounted on an agricultural machine receives a support request from a terminal device or an operation terminal, it executes control of automatic operation for moving one or more agricultural machines to a field.
  • the control device of the server may execute control of automatic operation for moving one or more agricultural machines to a field when there is a support request from the terminal device or the operation terminal.
  • automatic operation of the agricultural machine can be realized by remote control in the server.
  • a system that provides various functions in the embodiments can be retrofitted to agricultural machines that do not have those functions.
  • Such systems can be manufactured and sold independently of agricultural machinery.
  • Computer programs used in such systems may also be manufactured and sold independently of agricultural machinery.
  • the computer program may be provided by being stored in a non-transitory computer-readable storage medium, for example.
  • Computer programs may also be provided by download via telecommunications lines (eg, the Internet).
  • the technology of the present disclosure can be applied to agricultural machines such as tractors, harvesters, rice transplanters, ride-on care machines, vegetable transplanters, mowers, seeders, fertilizers, and agricultural robots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Business, Economics & Management (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Animal Husbandry (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Agronomy & Crop Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

農業支援システムは、1以上の農業機械による農作業を支援する。農業支援システムは、1以上の農業機械の動作を制御する制御装置を備える。制御装置は、端末装置から圃場における農作業の支援を要求する信号を受信した場合に、1以上の農業機械に圃場に移動させ、圃場における農作業を支援させる。

Description

農業支援システムおよび農業支援方法
 本開示は、農業支援システムおよび農業支援方法に関する。
 圃場で使用されるトラクタなどの作業車両の自動化に向けた研究開発が進められている。例えば、精密な測位が可能なGNSS(Global Navigation Satellite System)などの測位システムを利用して自動操舵で走行する作業車両が実用化されている。自動操舵に加えて速度制御を自動で行う作業車両も実用化されている。
 特許文献1および2は、それぞれ、複数の作業車両を連携させて農作業の効率化を実現するための技術を開示している。
特開2020-108407号公報 特開2017-12134号公報
 特許文献1および2に開示された技術によれば、複数の作業車両が連携して圃場における作業を行うことにより、作業を効率よく行うことができる。しかしながら、この場合であっても、作業の進捗が作業スケジュールよりも遅れたりすることが起こり得、農作業の支援が必要な場合がある。
 本開示は、農業機械による圃場における農作業の支援を容易にする技術を提供する。
 本明細書は、以下の項目に記載の解決手段を開示している。
 [項目1]
 1以上の農業機械による農作業を支援する農業支援システムであって、
 前記1以上の農業機械の動作を制御する制御装置を備え、
 前記制御装置は、端末装置から前記圃場における農作業の支援を要求する信号を受信した場合に、前記1以上の農業機械に前記圃場に移動させ、前記圃場における農作業を支援させる、農業支援システム。
 [項目2]
 前記制御装置は、
 前記1以上の農業機械に含まれる第1農業機械の動作を制御し、
 前記圃場において第2農業機械が農作業を行っているとき、前記端末装置から前記信号を受信した場合に、前記第1農業機械に前記圃場に移動させ、前記第2農業機械が行う農作業を支援させる、項目1に記載の農業支援システム。
 [項目3]
 前記制御装置は、
 前記1以上の農業機械に含まれる第1農業機械および第2農業機械のそれぞれの動作を制御し、
 前記端末装置から前記信号を受信した場合に、前記第1農業機械および前記第2農業機械に前記圃場に移動させ、前記圃場における農作業を支援させる、項目1に記載の農業支援システム。
 [項目4]
 前記制御装置は、前記端末装置から前記信号を受信した場合に、保管場所に停止する前記第1農業機械に前記圃場に移動させ、前記圃場における農作業が終了した後、前記第1農業機械に前記保管場所に移動させる、項目2に記載の農業支援システム。
 [項目5]
 前記制御装置は、前記端末装置から前記信号を受信した場合に、第1保管場所に停止する前記第1農業機械に前記圃場に移動させ、前記圃場における農作業が終了した後、前記第1農業機械に、前記第1保管場所とは異なる第2保管場所に移動させる、項目2に記載の農業支援システム。
 [項目6]
 前記制御装置は、前記端末装置から前記信号を受信した場合に、第1保管場所に停止する前記第1農業機械に前記圃場に移動させ、前記圃場における農作業が終了した後、前記第1農業機械に、前記圃場からの距離が前記圃場から前記第1保管場所までの距離よりも短い前記第2保管場所に移動させる、項目5に記載の農業支援システム。
 [項目7]
 前記制御装置は、
 前記1以上の農業機械に含まれる第3農業機械の動作を制御し、
 前記制御装置は、前記端末装置から前記信号を受信したときの、前記第1農業機械が位置する場所と、前記第3農業機械が位置する場所と、前記圃場との位置関係に基づいて、前記第1または第3農業機械に前記圃場に移動させる、項目2に記載の農業支援システム。
 [項目8]
 前記制御装置は、前記第1農業機械が第1保管場所に停止し、かつ、前記第3農業機械が、前記圃場からの距離が前記圃場から前記第1保管場所までの距離よりも長い第2保管場所に停止しているとき、前記端末装置から前記信号を受信した場合に、前記第1農業機械に前記第1保管場所から前記圃場に移動させる、項目7に記載の農業支援システム。
 [項目9]
 前記制御装置は、前記第3農業機械が第1保管場所に停止し、かつ、前記第1農業機械が、前記圃場からの距離が前記圃場から前記第1保管場所までの距離よりも短い他の圃場において農作業を行っているとき、前記端末装置から前記信号を受信した場合に、前記第1農業機械に前記他の圃場から前記圃場に移動させる、項目7に記載の農業支援システム。
 [項目10]
 前記制御装置は、前記第1農業機械が、前記圃場とは異なる他の圃場において農作業を行い、かつ、前記第3農業機械が、前記圃場からの距離が前記圃場から前記他の圃場までの距離よりも長い更なる他の圃場において農作業を行っているとき、前記端末装置から前記信号を受信した場合に、前記第1農業機械に前記他の圃場から前記圃場に移動させる、項目7に記載の農業支援システム。
 [項目11]
 記憶装置を備え、
 前記制御装置は、前記1以上の農業機械が前記圃場において行った農作業の作業内容、作業時間、および農業機械の種類の少なくとも1つの情報を含む作業ログを作成し、前記記憶装置に記録する、項目1から10のいずれかに記載の農業支援システム。
 [項目12]
 前記制御装置は、前記作業ログのデータを前記端末装置に送信する、項目11に記載の農業支援システム。
 [項目13]
 前記制御装置は、前記作業ログに基づいて前記1以上の農業機械の使用料を算出し、前記端末装置に課金情報を送信する、項目11または12に記載の農業支援システム。
 [項目14]
 前記制御装置は、前記1以上の農業機械が実行する農作業のスケジュール管理を行う、項目1から13のいずれかに記載の農業支援システム。
 [項目15]
 前記制御装置は、前記端末装置から前記信号を受信した場合に、前記1以上の農業機械に前記圃場に移動させることを決定したとき、前記1以上の農業機械が実行する農作業のスケジュールを更新する、項目14に記載の農業支援システム。
 [項目16]
 農業機械による農作業を支援する農業支援システムであって、
 第1農業機械および第2農業機械のそれぞれの動作を制御する制御装置を備え、
 前記制御装置は、
 前記第2農業機械が実行する農作業のスケジュール管理を行い、
 前記第2農業機械が圃場における農作業を行っているとき、前記第2農業機械による農作業がスケジュールから遅れていると判断した場合に、前記第1農業機械に前記圃場に移動させ、前記第2農業機械が行う農作業を支援させる、農業支援システム。
 [項目17]
 コンピュータに実装される、1以上の農業機械によって農作業を支援するための農業支援方法であって、
 前記1以上の農業機械の動作を制御することと、
 端末装置から送信される、前記圃場における農作業の支援を要求する信号を受信することと、
 前記信号を受信したときに、前記1以上の農業機械に前記圃場に移動させ、前記圃場における農作業を支援させることと、
をコンピュータに実行させる農業支援方法。
 [項目18]
 コンピュータに実装される、農業機械による農作業を支援するための農業支援方法であって、
 第1農業機械および第2農業機械のそれぞれの動作を制御することと、
 前記第2農業機械が実行する農作業のスケジュール管理を行うことと、
 前記第2農業機械が圃場における農作業を行っているとき、前記第2農業機械による農作業がスケジュールから遅れていると判断した場合に、前記第1農業機械に前記圃場に移動させ、前記第2農業機械が行う農作業を支援させることと、
をコンピュータに実行させる農業支援方法。
 本開示の包括的または具体的な態様は、装置、システム、方法、集積回路、コンピュータプログラム、もしくはコンピュータが読み取り可能な非一時的記憶媒体、またはこれらの任意の組み合わせによって実現され得る。コンピュータが読み取り可能な記憶媒体は、揮発性の記憶媒体を含んでいてもよいし、不揮発性の記憶媒体を含んでいてもよい。装置は、複数の装置で構成されていてもよい。装置が2つ以上の装置で構成される場合、当該2つ以上の装置は、1つの機器内に配置されてもよいし、分離した2つ以上の機器内に分かれて配置されていてもよい。
 本開示の実施形態によれば、農業機械による圃場における農作業の支援を容易にすることが可能となる。
本開示の例示的な実施形態における農業支援システムの構成例を模式的に示す図である。 サーバコンピュータの概略的なハードウェア構成を例示するブロック図である。 端末装置の概略的なハードウェア構成を例示するブロック図である。 本開示の例示的な実施形態における農業機械の外観の例を示す斜視図である。 作業機が装着された状態の農業機械の例を模式的に示す側面図である。 農業機械の概略的な構成の例を示すブロック図である。 RTK-GNSSによる測位を行う農業機械の例を示す概念図である。 圃場内を目標経路に沿って自動で走行する農業機械の例を模式的に示す図である。 制御装置によって実行される自動運転時の操舵制御の動作の例を示すフローチャートである。 目標経路に沿って走行する農業機械の例を示す図である。 目標経路から右にシフトした位置にある農業機械の例を示す図である。 目標経路から左にシフトした位置にある農業機械の例を示す図である。 目標経路に対して傾斜した方向を向いている農業機械の例を示す図である。 複数の農業機械が圃場の内部および圃場の外側の道路上を自動走行している状況の例を模式的に示す図である。 端末装置の表示装置に表示される作業スケジュールの設定画面の一例を示す図である。 サーバによって作成される農作業のスケジュールの例を示す図である。 本開示の例示的な実施形態における農業支援方法の例の手順を示すフローチャートである。 農業機械による圃場における農作業の支援の概要を説明するための図である。 農業機械による圃場における農作業の支援の概要を説明するための図である。 第1農業機械の制御装置、第2農業機械の制御装置およびサーバの制御装置の動作の例を示す図である。 圃場の周辺にいる管理者が端末装置を使用して第2農業機械が行う圃場での作業の進捗を管理している様子を例示する図である。 端末装置のディスプレイに表示される作業の進捗状況の表示例を示す図である。 農作業支援サービスを利用した後に端末装置に表示される利用明細の表示例を示す図である。 ユーザが使用する端末装置から農業機械の作業の支援を要求する場合において、第1農業機械の制御装置、第2農業機械の制御装置、端末装置およびサーバの制御装置の動作の例を示す図である。 農作業者が端末装置を携帯しながら圃場で手作業を行っている様子を例示する図である。 作業者が端末装置を使用して作業の支援を要求する場合において、第1農業機械の制御装置、端末装置およびサーバの制御装置の動作の例を示す図である。 圃場の周辺にいる管理者が端末装置を使用して第2農業機械が行う圃場での作業の進捗を管理している場合に、1以上の農業機械による農作業の支援を受けている様子を例示する図である。 圃場における農作業の終了後、第1農業機械が停止していた保管場所とは異なる保管場所に第1農業機械に移動させる例を説明するための図である。 圃場における農作業の終了後、第1農業機械が停止していた保管場所とは異なる保管場所に第1農業機械に移動させる例を説明するための図である。 圃場における農作業の終了後、第1農業機械が停止していた保管場所とは異なる保管場所に第1農業機械に移動させる他の例を説明するための図である。 第2保管場所よりも第1保管場所の方が圃場に近い場合に、第1保管場所にいる農業機械に圃場に移動させる例を説明するための図である。 保管場所よりも他の圃場の方が圃場に近い場合に、他の圃場で農作業を行う農業機械に圃場に移動させる例を説明するための図である。 保管場所よりも他の圃場の方が圃場に近い場合に、他の圃場で農作業を行う農業機械に圃場に移動させる例を説明するための図である。 更なる他の圃場よりも他の圃場の方が圃場に近い場合に、他の圃場で農作業を行う農業機械に圃場に移動させる例を説明するための図である。
 以下、本開示の実施形態を説明する。ただし、必要以上に詳細な説明は省略することがある。例えば、既によく知られた事項の詳細な説明および実質的に同一の構成に関する重複する説明を省略することがある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。以下の説明において、同一または類似の機能を有する構成要素については、同一の参照符号を付している。
 以下の実施形態は例示であり、本開示の技術は以下の実施形態に限定されない。例えば、以下の実施形態で示される数値、形状、材料、ステップ、ステップの順序、表示画面のレイアウトなどは、あくまでも一例であり、技術的に矛盾が生じない限りにおいて種々の改変が可能である。また、技術的に矛盾が生じない限りにおいて、一の態様と他の態様とを組み合わせることが可能である。
 本開示における「農業機械」は、農業用途で使用される機械を意味する。農業機械の例は、トラクタ、収穫機、田植機、乗用管理機、野菜移植機、草刈機、播種機、施肥機、および、圃場用移動ロボットを含む。トラクタのような作業車両が単独で「農業機械」として機能する場合だけでなく、作業車両に装着され、または牽引される作業機(インプルメント)と作業車両の全体が一つの「農業機械」として機能する場合がある。農業機械は、圃場内の地面に対して、耕耘、播種、防除、施肥、作物の植え付け、または収穫などの農作業を行う。これらの農作業を単に「作業」と称することがある。
 本開示における「自動運転」は、運転者による手動操作によらず、制御装置の働きによって農業機械の移動を制御することを意味する。自動運転を行う農業機械は「自動運転農機」または「ロボット農機」と呼ばれることがある。自動運転中、農業機械の移動だけでなく、農作業の動作も自動で制御されてもよい。農業機械が車両型の機械である場合、自動運転によって農業機械が走行することを「自動走行」と称する。制御装置は、農業機械の移動に必要な操舵、移動速度の調整、移動の開始および停止の少なくとも1つを制御し得る。作業機が装着された作業車両を制御する場合、制御装置は、作業機の昇降、作業機の動作の開始および停止などの動作を制御してもよい。自動運転による移動には、農業機械が所定の経路に沿って目的地に向かう移動のみならず、追尾目標に追従する移動も含まれ得る。自動運転を行う農業機械は、部分的にユーザの指示に基づいて移動する機能を備えていてもよい。また、自動運転を行う農業機械は、自動運転モードに加えて、運転者の手動操作によって移動する手動運転モードで動作してもよい。手動によらず、制御装置の働きによって農業機械の操舵を行うことを「自動操舵」と称する。制御装置の一部または全部が農業機械の外部にあってもよい。農業機械の外部にある制御装置と農業機械との間では、制御信号、コマンド、またはデータなどの通信が行われ得る。自動運転を行う農業機械は、人がその農業機械の移動の制御に関与することなく、周囲の環境をセンシングしながら自律的に移動してもよい。自律的な移動が可能な農業機械は、無人で圃場内または圃場外(例えば道路)を走行することができる。自律移動中に、障害物の検出および障害物の回避動作を行ってもよい。
 本開示の実施形態による農業支援システムは、実質的に、コンピュータシステムとして実現される。農業支援システムは1以上の農業機械の動作を制御する制御装置を備える。ユーザは、農業支援システムを活用することにより、農作業支援サービスを享受することができる。農作業支援サービスの例は、農業機械のシェアリングサービスを含む。当該制御装置は、端末装置から圃場における農作業の支援を要求する信号を受信した場合に、1以上の農業機械に圃場に移動させ、圃場における農作業を支援させる。以下の説明において、農作業の支援を要求する信号を「リクエスト信号」と呼ぶ場合がある。
 制御装置は、例えば1以上のプロセッサと、1以上のメモリとを備えるコンピュータであり得る。その場合、プロセッサは、メモリに格納されたコンピュータプログラムを逐次実行することによって所望の処理を実現することができる。制御装置は、農業機械に搭載されていてもよいし、農業機械から離れた場所、例えば、農業機械を監視するユーザの自宅、事業所、または農業機械を管理する管理センターに設置されていてもよい。農業機械に搭載された複数の電子制御ユニット(ECU)の1つが制御装置としての機能を備えていてもよいし、複数の農業機械のうちの1つに搭載されたECUをマスターのコンピュータとし、当該マスターのコンピュータが制御装置として機能してもよい。あるいは、農業機械とネットワークを介して通信を行う外部のサーバコンピュータまたはエッジコンピュータが制御装置として機能してもよい。さらには、端末装置が制御装置の機能を有していてもよい。端末装置の例は、据え置き型のコンピュータ、スマートフォン、タブレットコンピュータ、またはラップトップコンピュータなどを含む。
 本開示の一態様による制御装置は、1以上の農業機械に含まれる第1農業機械の動作を制御し、圃場において第2農業機械が農作業を行っているとき、ユーザが使用する端末装置からリクエスト信号を受信した場合に、第1農業機械に圃場に移動させ、第2農業機械が行う農作業を支援させる。あるいは、制御装置は、1以上の農業機械に含まれる第1農業機械および第2農業機械のそれぞれの動作を制御し、ユーザが使用する端末装置からリクエスト信号を受信した場合に、第1農業機械および第2農業機械に圃場に移動させ、圃場における農作業を支援させてもよい。
 農作業者が圃場で手作業を行ったり、手動で農業機械を操作して農作業を行ったりする場合、作業進捗が当初の作業スケジュールから遅れることが起こり得る。また、農作業者が作成した作業スケジュールに従って、農業機械が無人による自動運転で農作業を行う場合であっても、圃場の状態、天候の変化、農業機械の部品の劣化、または作業機の劣化などの様々な要因によって、作業進捗が当初の作業スケジュールから遅れることが起こり得る。例えば、田植えまたは収穫などの作業は、短期間に集中的に行うことが求められ、圃場の面積が大きくなるほど、作業スケジュールの遅延が生じやすくなる。従来、作業スケジュールの遅延が生じた場合、例えば、農作業全体を管理する管理者(例えば農場経営者)が、1以上の作業者とコミュニケーションをとりながら、作業者に農作業の支援を要求することができた。要請を受けた作業者は、手作業で、あるいは管理者が所有する農業機械を利用して農作業を支援することができた。しかしながら、農作業の支援を要求できる範囲は、管理者が雇っている作業者などに限定され得る。さらには、農業機械は管理者などの個人の所有物であるために、他人がその農業機械を使用したい場合には、交渉などにより許可を得る必要がある。
 本開示の実施形態によれば、作業スケジュールの遅延が生じた場合であっても、農業機械による農作業の支援を受けることによって、遅れを挽回することが容易になり得る。例えば、それぞれが異なる所有者に属する複数の農業機械群を農業支援システムに接続すれば、異なるグループ間における農業機械のシェアリングなどを実現することが可能となる。あるグループに属する農作業者は、他のグループに属する農業機械に農作業の支援を要求することが可能となる。ただし、ユーザからの支援要請は、作業スケジュールの遅延が生じている場合に限定されない。作業スケジュールの前倒しのために農作業を加速させたい場合など、ユーザは農作業の支援要請を適宜行うことができる。
 本開示の他の一態様による制御装置は、圃場において農作業者が手作業を行っているとき、農作業者が使用する端末装置からリクエスト信号を受信した場合に、農業機械に圃場に移動させ、農作業者による手作業を支援させてもよい。この例においても、農業機械による農作業の支援によって遅れを挽回することを容易にする。
 本開示のさらなる他の一態様による制御装置は、第1農業機械および第2農業機械のそれぞれの動作を制御する。制御装置は、第2農業機械が実行する農作業のスケジュール管理を行い、第2農業機械が圃場における農作業を行っているとき、第2農業機械による農作業がスケジュールから遅れていると判断した場合に、第1農業機械に圃場に移動させ、第2農業機械が行う農作業を支援させる。この例によると、自動運転を行う農業機械による圃場における農作業の支援を完全自動化する技術が提供され得る。
 [1.農業支援システムの構成]
 図1は、本実施形態における農業支援システム1000の構成例を模式的に示す図である。図2は、サーバコンピュータ100の概略的なハードウェア構成を例示するブロック図である。農業支援システム1000は、サーバコンピュータ100(以下、「サーバ100」と表記する)と、1以上の端末装置200とを備える。複数の農業機械300が、有線または無線のネットワーク60を介して農業支援システム1000に互いに通信可能に接続され得る。図1に、3台の農業機械300がネットワーク60を介して農業支援システム1000に接続される接続例が示されている。ただし、農業支援システム1000に接続される農業機械300の台数は任意である。農業支援システム1000は、通信遅延の低減またはネットワーク負荷の分散の観点から、1以上のエッジコンピュータをさらに備えていてもよい。本実施形態において、サーバ100の一部が制御装置として機能する。
 農業支援システム1000に、例えば、管理者が所有する複数の農業機械を接続することが可能である。あるいは、それぞれが異なる管理者に属する複数の農業機械群を農業支援システム1000に接続することも可能である。
 (サーバ100)
 サーバ100は、農業機械300から離れた場所に設置されたコンピュータであり得る。サーバ100は、通信装置10と、制御装置20と、記憶装置30とを備える。これらの構成要素は、バスを介して相互に通信可能に接続される。サーバ100は、リクエスト信号を処理したり、農業機械300が実行する農作業のスケジュールを管理したり、ストレージに格納されたデータを活用して農業を支援したりするクラウドサーバとして機能し得る。
 通信装置10は、ネットワーク60を介して端末装置200および農業機械300と通信するための通信モジュールである。例えば、通信装置10は、IEEE1394(登録商標)、またはイーサネット(登録商標)などの通信規格に準拠した有線通信を行うことができる。通信装置10は、例えば、Bluetooth(登録商標)規格もしくはWi-Fi規格に準拠した無線通信、または、3G、4Gもしくは5Gなどのセルラー移動体通信を行うことができる。
 制御装置20は、例えば、プロセッサ21、ROM(Read Only Memory)22およびRAM(Random Access Memory)23などを備える。プロセッサ21が少なくとも1つの処理を実行するためのソフトウェア(またはファームウェア)が、ROM22に実装され得る。そのようなソフトウェアは、例えば光ディスクなど、コンピュータが読み取り可能な記録媒体に記録され、パッケージソフトウェアとして販売され、または、ネットワーク60を介してユーザに提供され得る。
 プロセッサ21は、半導体集積回路であり、中央演算処理装置(CPU)を含む。プロセッサ21は、マイクロプロセッサまたはマイクロコントローラによって実現され得る。プロセッサ21は、少なくとも1つの処理を実行するための命令群を記述した、ROM22に格納されるコンピュータプログラムを逐次実行し、所望の処理を実現する。
 制御装置20は、プロセッサ21に加えてまたは代えて、CPUを搭載したFPGA(Field Programmable Gate Array)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、ASSP(Application Specific Standard Product)、または、これら回路の中から選択される2つ以上の回路の組み合わせを備え得る。
 ROM22は、例えば、書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)、または読み出し専用のメモリである。ROM22は、プロセッサ21の動作を制御するプログラムを記憶している。ROM22は、単一の記録媒体である必要はなく、複数の記録媒体の集合であり得る。複数の集合体の一部は取り外し可能なメモリであってもよい。
 RAM23は、ROM22に格納された制御プログラムをブート時に一旦展開するための作業領域を提供する。RAM23は、単一の記録媒体である必要はなく、複数の記録媒体の集合であり得る。
 記憶装置30は、主としてデータベースのストレージとして機能する。記憶装置30の例はクラウドストレージである。記憶装置30は、例えば、磁気記憶装置または半導体記憶装置である。磁気記憶装置の例は、ハードディスクドライブ(HDD)である。半導体記憶装置の例は、ソリッドステートドライブ(SSD)である。ただし、記憶装置30は、サーバ100にネットワーク60を介して接続される外部の記憶装置であってもよい。
 (端末装置200)
 図3は、端末装置200の概略的なハードウェア構成を例示するブロック図である。
 端末装置200は、入力装置210、表示装置220、プロセッサ230、ROM240、RAM250、記憶装置260および通信装置270を備える。これらの構成要素は、バスを介して相互に通信可能に接続される。
 入力装置210は、ユーザからの指示をデータに変換してコンピュータに入力するための装置である。入力装置210の例は、キーボード、マウスまたはタッチパネルである。表示装置220の例は、液晶ディスプレイまたは有機ELディスプレイである。プロセッサ230、ROM240、RAM250、記憶装置260および通信装置270のそれぞれに関する説明は、サーバ100のハードウェア構成例において記載したとおりであり、省略する。
 [2.農業機械の構成例]
 図4は、本実施形態における農業機械300の外観の例を示す斜視図である。図5は、作業機400が装着された状態の農業機械300の例を模式的に示す側面図である。本実施形態における農業機械300は、作業機400が装着された状態の農業用トラクタ(作業車両)である。農業機械300は、トラクタに限定されず、また作業機400が装着されている必要もない。
 図5に示すように、農業機械300は、車両本体101と、原動機(エンジン)102と、変速装置(トランスミッション)103とを備える。車両本体101には、タイヤ104(車輪)と、キャビン105とが設けられている。タイヤ104は、一対の前輪104Fと一対の後輪104Rとを含む。キャビン105の内部に運転席107、操舵装置106、操作端末153、および操作のためのスイッチ群が設けられている。農業機械300が公道を走行しない場合、前輪104Fおよび後輪104Rの一方または両方は、タイヤではなくクローラであってもよい。
 図5に示す農業機械300は、複数のカメラ155をさらに備える。カメラ155は、例えば農業機械300の前後左右に設けられ得る。カメラ155は、農業機械300の周囲の環境を撮影し、画像データを生成する。カメラ155が取得した画像は、遠隔監視を行うための端末装置200に送信され得る。当該画像は、無人運転時に農業機械300を監視するために用いられ得る。カメラ155は、農業機械300が道路上を走行するときに、白線、標識、表示、または周辺の障害物を認識するための画像を生成する用途でも使用され得る。
 農業機械300は、測位装置130をさらに備える。測位装置130は、GNSS受信機を含む。GNSS受信機は、GNSS衛星からの信号を受信するアンテナと、アンテナが受信した信号に基づいて農業機械300の位置を決定する処理回路とを備える。測位装置130は、GNSS衛星から送信されるGNSS信号を受信し、GNSS信号に基づいて測位を行う。GNSSは、GPS(Global Positioning System)、QZSS(Quasi-Zenith Satellite System、例えばみちびき)、GLONASS、Galileo、およびBeiDouなどの衛星測位システムの総称である。本実施形態における測位装置130は、キャビン105の上部に設けられているが、他の位置に設けられていてもよい。
 測位装置130は、慣性計測装置(IMU)を含み得る。IMUからの信号を利用して位置データを補完することができる。IMUは、農業機械300の傾きおよび微小な動きを計測することができる。IMUによって取得されたデータを用いて、衛星信号に基づく位置データを補完することにより、測位の性能を向上させることができる。
 図5に例示される農業機械300は、さらにLiDARセンサ156を備える。この例におけるLiDARセンサ156は、車両本体101の前面下部に配置されている。LiDARセンサ156の位置は、他の位置であってもよい。LiDARセンサ156は、農業機械300が移動している間、周囲の環境に存在する物体における各計測点の距離および方向、または各計測点の2次元もしくは3次元の座標値を示すセンサデータを繰り返し出力する。LiDARセンサ156から出力されたセンサデータは、農業機械300の制御装置によって処理される。制御装置は、例えばSLAM(Simultaneous Localization and Mapping)などのアルゴリズムを利用して、センサデータに基づく環境地図の生成などの処理を実行することができる。環境地図の生成は、農業機械300の外部にあるサーバ100などの他のコンピュータで実行されてもよい。LiDARセンサ156から出力されたセンサデータは、障害物の検出にも用いられ得る。
 測位装置130は、カメラ155またはLiDARセンサ156が取得したデータを測位に利用してもよい。農業機械300が走行する環境内に特徴点として機能する地物が存在する場合、カメラ155またはLiDARセンサ156によって取得されたデータと、予め記憶装置に記録された環境地図とに基づいて、農業機械300の位置を高い精度で推定することができる。カメラ155またはLiDARセンサ156が取得したデータを用いて、衛星信号に基づく位置データを補正または補完することで、より高い精度で農業機械300の位置を特定できる。
 農業機械300は、複数の障害物センサ136をさらに備える。図5に示す例では、キャビン105の前方および後方に障害物センサ136が設けられている。障害物センサ136は、自動走行時に周囲の障害物を検出して停止したり迂回したりするために用いられる。
 原動機102は、例えばディーゼルエンジンであり得る。ディーゼルエンジンに代えて電動モータが使用されてもよい。変速装置103は、変速によって農業機械300の推進力および移動速度を変化させることができる。変速装置103は、農業機械300の前進と後進とを切り換えることもできる。
 操舵装置106は、ステアリングホイールと、ステアリングホイールに接続されたステアリングシャフトと、ステアリングホイールによる操舵を補助するパワーステアリング装置とを含む。前輪104Fは操舵輪であり、その切れ角(「操舵角」とも称する。)を変化させることにより、農業機械300の走行方向を変化させることができる。前輪104Fの操舵角は、ステアリングホイールを操作することによって変化させることができる。パワーステアリング装置は、前輪104Fの操舵角を変化させるための補助力を供給する油圧装置または電動モータを含む。自動操舵が行われるときには、農業機械300内に配置された制御装置からの制御により、油圧装置または電動モータの力によって操舵角が自動で調整される。
 車両本体101の後部には、連結装置108が設けられている。連結装置108は、例えば3点支持装置(「3点リンク」または「3点ヒッチ」とも称する。)、PTO(Power Take Off)軸、ユニバーサルジョイント、および通信ケーブルを含む。連結装置108によって作業機400を農業機械300に着脱することができる。農業機械300は、作業機400を引きながら、作業機400に所定の作業を実行させることができる。連結装置108は、車両本体101の前方に設けられていてもよい。その場合、農業機械300の前方に作業機を接続することができる。
 図5に例示される農業機械300は、ロータリ耕耘機であるが、作業機400はロータリ耕耘機に限定されない。例えば、シーダ(播種機)、スプレッダ(施肥機)、移植機、モーア(草刈機)、ハーベスタ(収穫機)、スプレイヤ、またはハローなどの、任意の作業機を農業機械300に接続して使用することができる。
 図5に例示される農業機械300は、有人運転が可能であるが、無人運転のみに対応していてもよい。その場合には、キャビン105、操舵装置106、および運転席107などの、有人運転にのみ必要な構成要素は、農業機械300に設けられていなくてもよい。無人の農業機械300は、自律走行、またはユーザによる遠隔操作によって走行することができる。
 図6は、農業機械300の概略的な構成の例を示すブロック図である。農業機械300と作業機400は、連結装置108に含まれる通信ケーブルを介して互いに通信することができる。
 図6の例における農業機械300は、カメラ155、測位装置130、障害物センサ136、操作端末153に加え、駆動装置140、ステアリングホイールセンサ150、切れ角センサ151、車軸センサ152、操作スイッチ群154、制御システム160、および通信装置190を備える。
 測位装置130は、GNSS受信機131と、慣性計測装置135とを備える。制御システム160は、記憶装置170と、制御装置180とを備える。制御装置180は、複数の電子制御ユニット181から185を備える。なお、図6には、農業機械300による自動運転の動作との関連性が相対的に高い構成要素が示されており、それ以外の構成要素の図示は省略されている。
 測位装置130におけるGNSS受信機131は、複数のGNSS衛星から送信される衛星信号を受信し、衛星信号に基づいてGNSSデータを生成する。GNSSデータは、例えばNMEA-0183フォーマットなどの所定のフォーマットで生成され得る。GNSSデータは、例えば、衛星信号が受信されたそれぞれの衛星の識別番号、仰角、方位角、および受信強度を示す値を含み得る。
 図6に示す測位装置130は、RTK(Real Time Kinematic)-GNSSを利用して農業機械300の測位を行う。図7は、RTK-GNSSによる測位を行う農業機械300の例を示す概念図である。RTK-GNSSによる測位では、複数のGNSS衛星50から送信される衛星信号に加えて、基準局80から送信される補正信号が利用される。基準局80は、農業機械300が走行する圃場の付近(例えば、農業機械300から1km以内の位置)に設置され得る。基準局80は、複数のGNSS衛星50から受信した衛星信号に基づいて、例えばRTCMフォーマットの補正信号を生成し、測位装置130に送信する。RTK受信機137は、アンテナおよびモデムを含み、基準局80から送信される補正信号を受信する。測位装置130の処理回路138は、補正信号に基づき、GNSS受信機131による測位結果を補正する。RTK-GNSSを用いることにより、例えば誤差数cmの精度で測位を行うことが可能である。緯度、経度および高度の情報を含む位置情報が、RTK-GNSSによる高精度の測位によって取得される。測位装置130は、例えば1秒間に1回から10回程度の頻度で、農業機械300の位置を計算する。
 なお、測位方法はRTK-GNSSに限らず、必要な精度の位置情報が得られる任意の測位方法(干渉測位法または相対測位法など)を用いることができる。例えば、VRS(Virtual Reference Station)またはDGPS(Differential Global Positioning System)を利用した測位を行ってもよい。基準局80から送信される補正信号を用いなくても必要な精度の位置情報が得られる場合は、補正信号を用いずに位置情報を生成してもよい。その場合、測位装置130は、RTK受信機137を備えていなくてもよい。
 本実施形態における測位装置130は、さらにIMU135を備える。IMU135は、3軸加速度センサおよび3軸ジャイロスコープを備える。IMU135は、3軸地磁気センサなどの方位センサを備えていてもよい。IMU135は、モーションセンサとして機能し、農業機械300の加速度、速度、変位、および姿勢などの諸量を示す信号を出力することができる。測位装置130は、GNSS信号および補正信号に加えて、IMU135から出力された信号に基づいて、農業機械300の位置および向きをより高い精度で推定することができる。IMU135から出力された信号は、衛星信号および補正信号に基づいて計算される位置の補正または補完に用いられ得る。IMU135は、GNSS受信機131よりも高い頻度で信号を出力する。その高頻度の信号を利用して、処理回路138は、農業機械300の位置および向きをより高い頻度(例えば、10Hz以上)で計測することができる。IMU135に代えて、3軸加速度センサおよび3軸ジャイロスコープを別々に設けてもよい。IMU135は、測位装置130とは別の装置として設けられていてもよい。
 図6の例では、処理回路138は、GNSS受信機131、RTK受信機137、およびIMU135から出力された信号に基づいて農業機械300の位置を計算する。処理回路138は、さらに、カメラ155またはLiDARセンサ156が取得したデータに基づいて農業機械300の位置を推定または補正してもよい。カメラ155またはLiDARセンサ156が取得したデータを利用することにより、測位の精度をさらに高めることができる。
 位置の計算は、測位装置130に限らず、他の装置によって実行されてもよい。例えば、制御装置180または外部のコンピュータが、測位に必要な各受信機および各センサの出力データを取得し、それらのデータに基づいて農業機械300の位置を推定してもよい。
 カメラ155は、農業機械300の周囲の環境を撮影する撮像装置である。カメラ155は、例えば、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)などのイメージセンサを備える。カメラ155は、他にも、1つ以上のレンズを含む光学系、および信号処理回路を備え得る。カメラ155は、農業機械300の走行中、農業機械300の周囲の環境を撮影し、画像(例えば動画)のデータを生成する。カメラ155は、例えば、3フレーム/秒(fps: frames per second)以上のフレームレートで動画を撮影することができる。カメラ155によって生成された画像は、例えば遠隔の監視者が端末装置200を用いて農業機械300の周囲の環境を確認するときに利用され得る。カメラ155によって生成された画像は、測位または障害物の検出に利用されてもよい。図5に示すように、複数のカメラ155が農業機械300の異なる位置に設けられていてもよいし、単数のカメラが設けられていてもよい。可視光画像を生成する可視カメラと、赤外線画像を生成する赤外カメラとが別々に設けられていてもよい。可視カメラと赤外カメラの両方が監視用の画像を生成するカメラとして設けられていてもよい。赤外カメラは、夜間において障害物の検出にも用いられ得る。
 障害物センサ136は、農業機械300の周囲に存在する物体を検出する。障害物センサ136は、例えばレーザスキャナまたは超音波ソナーを備え得る。障害物センサ136は、障害物センサ136から所定の距離よりも近くに物体が存在する場合に、障害物が存在することを示す信号を出力する。複数の障害物センサ136が農業機械300の異なる位置に設けられていてもよい。例えば、複数のレーザスキャナと、複数の超音波ソナーとが、農業機械300の異なる位置に配置されていてもよい。そのような多くの障害物センサ136を備えることにより、農業機械300の周囲の障害物の監視における死角を減らすことができる。
 駆動装置140は、例えば前述の原動機102、変速装置103、デフロック機構を含む差動装置、操舵装置106、および連結装置108などの、農業機械300の走行および作業機400の駆動に必要な各種の装置を含む。原動機102は、例えばディーゼル機関などの内燃機関を備える。駆動装置140は、内燃機関に代えて、あるいは内燃機関とともに、トラクション用の電動モータを備えていてもよい。
 ステアリングホイールセンサ150は、農業機械300のステアリングホイールの回転角を計測する。切れ角センサ151は、操舵輪である前輪104Fの切れ角を計測する。ステアリングホイールセンサ150および切れ角センサ151による計測値は、制御装置180による操舵制御に利用される。
 車軸センサ152は、タイヤ104に接続された車軸の回転速度、すなわち単位時間あたりの回転数を計測する。車軸センサ152は、例えば磁気抵抗素子(MR)、ホール素子、または電磁ピックアップを利用したセンサであり得る。車軸センサ152は、例えば、車軸の1分あたりの回転数(単位:rpm)を示す数値を出力する。車軸センサ152は、農業機械300の速度を計測するために使用される。
 記憶装置170は、フラッシュメモリまたは磁気ディスクなどの1つ以上の記憶媒体を含む。記憶装置170は、各センサ、および制御装置180が生成する各種のデータを記憶する。記憶装置170には、圃場内および圃場外の公道を含む環境地図および目標経路の情報が予め記録される。制御装置180に含まれる複数のECUのうちの1つ以上が本実施形態による制御装置20として機能する場合、例えば、農業機械300が実行する農作業のスケジュール、作業ログのデータおよび課金情報などが記憶装置170に記憶され得る。
 制御装置180は、複数のECUを含む。複数のECUは、例えば、例えば、速度制御用のECU181、ステアリング制御用のECU182、作業機制御用のECU183、自動運転制御用のECU184、経路作成用のECU185を含む。ECU181は、駆動装置140に含まれる原動機102、変速装置103、およびブレーキを制御することによって農業機械300の速度を制御する。ECU182は、ステアリングホイールセンサ150の計測値に基づいて、操舵装置106に含まれる油圧装置または電動モータを制御することによって農業機械300のステアリングを制御する。ECU183は、作業機400に所望の動作を実行させるために、連結装置108に含まれる3点リンクおよびPTO軸などの動作を制御する。ECU183はまた、作業機400の動作を制御する信号を生成し、その信号を通信装置190から作業機400に送信する。ECU184は、測位装置130、ステアリングホイールセンサ150、切れ角センサ151、および車軸センサ152から出力される信号に基づいて、自動運転を実現するための演算および制御を行う。自動運転中、ECU184は、ECU181に速度指令値を送信し、ECU182に操舵角指令値を送信する。ECU181は、速度指令値に応答して原動機102、変速装置103、またはブレーキを制御することによって農業機械300の速度を変化させる。ECU182は、操舵角指令値に応答して操舵装置106を制御することによって操舵角を変化させる。ECU185は、通信装置190による他の装置との通信を制御する。例えば、ECU185は、農業機械300の目標経路を作成して記憶装置170に記録する。
 サーバ100の制御装置20が、農作業の支援要請を受け、例えば保管場所に停止する農業機械300に圃場における農作業を支援させることを決定するとき、ECU185は、例えば、制御装置20から送信される支援先の圃場の位置情報を受信し、受信した位置情報に基づいて、現在の地点から支援先の圃場までの目標経路を作成してもよい。
 これらのECUの働きにより、制御装置180は、自動運転、目標経路の決定および他の装置との通信を実現する。自動運転時において、制御装置180は、測位装置130によって計測または推定された農業機械300の位置と、記憶装置170に記憶された目標経路に基づいて、駆動装置140を制御する。これにより、制御装置180は、農業機械300を目標経路に沿って走行させることができる。
 制御装置180に含まれる複数のECUは、例えばCAN(Controller Area Network)などのビークルバス規格に従って、相互に通信することができる。図6において、ECU181から185のそれぞれは、個別のブロックとして示されているが、これらのそれぞれの機能が、複数のECUによって実現されていてもよい。また、ECU181から185の少なくとも一部の機能を統合した車載コンピュータが設けられていてもよい。制御装置180は、ECU181から185以外のECUを備えていてもよく、機能に応じて任意の個数のECUが設けられ得る。例えば、制御装置180は、農業機械300の圃場へのアクセスを管理するために用いるECUをさらに備え得る。各ECUは、1つ以上のプロセッサを含む制御回路を備える。
 通信装置190は、作業機400の通信IFと通信を行う回路である。通信装置190は、例えばISOBUS-TIM等のISOBUS規格に準拠した信号の送受信を、作業機400の通信IFとの間で実行する。これにより、作業機400に所望の動作を実行させたり、作業機400から情報を取得したりすることができる。
 操作端末153は、農業機械300の走行およびインプルメント400の動作に関する操作をユーザが実行するための端末であり、バーチャルターミナル(VT)とも称される。操作端末153は、タッチスクリーンなどの表示装置、および/または1つ以上のボタンを備え得る。表示装置は、例えば液晶または有機発光ダイオード(OLED)などのディスプレイであり得る。ユーザは、操作端末153を操作することにより、例えば自動運転モードのオン/オフの切り替え、環境地図の記録または編集、目標経路の設定、およびインプルメント400のオン/オフの切り替えなどの種々の操作を実行することができる。これらの操作の少なくとも一部は、操作スイッチ群154を操作することによっても実現され得る。操作端末153は、農業機械300から取り外せるように構成されていてもよい。農業機械300から離れた場所にいるユーザが、取り外された操作端末153を操作して農業機械300の動作を制御してもよい。ユーザは、操作端末153の代わりに、端末装置200などの、必要なアプリケーションソフトウェアがインストールされたコンピュータを操作して農業機械300の動作を制御してもよい。操作端末153は、サーバ100にリクエスト信号を送信するための端末装置としても使用することが可能である。
 [3.自動走行動作]
 まず、農業機械300による自動走行の動作の例を説明する。
 図8は、圃場内を目標経路に沿って自動で走行する農業機械300の例を模式的に示す図である。この例において、圃場は、農業機械300がインプルメント400を用いて作業を行う作業領域72と、圃場の外周縁付近に位置する枕地74とを含む。圃場の地図上でどの領域が作業領域72および枕地74に該当するかは、ユーザによって事前に設定され得る。この例における目標経路は、並列する複数の主経路P1と、複数の主経路P1を接続する複数の旋回経路P2とを含む。主経路P1は作業領域72内に位置し、旋回経路P2は枕地74内に位置する。図8に示す各主経路P1は直線状の経路であるが、各主経路P1は曲線状の部分を含んでいてもよい。図8における破線は、インプルメント400の作業幅を表している。作業幅は、予め設定され、記憶装置170に記録される。作業幅は、ユーザが操作端末153を操作することによって設定され、記録され得る。あるいは、作業幅は、インプルメント400を農業機械300に接続したときに自動で認識され、記録されてもよい。複数の主経路P1の間隔は、作業幅に合わせて設定され得る。目標経路は、自動運転が開始される前に、ユーザの操作に基づいて作成され得る。目標経路は、例えば圃場内の作業領域72の全体をカバーするように作成され得る。農業機械300は、図8に示すような目標経路に沿って、作業の開始地点から作業の終了地点まで、往復を繰り返しながら自動で走行する。なお、図8に示す目標経路は一例に過ぎず、目標経路の定め方は任意である。
 次に、制御装置180による自動運転時の制御の例を説明する。
 図9は、制御装置180によって実行される自動運転時の操舵制御の動作の例を示すフローチャートである。制御装置180は、農業機械300の走行中、図9に示すステップS121からS125の動作を実行することにより、自動操舵を行う。速度に関しては、例えば予め設定された速度に維持される。制御装置180は、農業機械300の走行中、測位装置130によって生成された農業機械300の位置を示すデータを取得する(ステップS121)。次に、制御装置180は、農業機械300の位置と、目標経路との偏差を算出する(ステップS122)。偏差は、その時点における農業機械300の位置と、目標経路との距離を表す。制御装置180は、算出した位置の偏差が予め設定された閾値を超えるか否かを判定する(ステップS123)。偏差が閾値を超える場合、制御装置180は、偏差が小さくなるように、駆動装置140に含まれる操舵装置の制御パラメータを変更することにより、操舵角を変更する。ステップS123において偏差が閾値を超えない場合、ステップS124の動作は省略される。続くステップS125において、制御装置180は、動作終了の指令を受けたか否かを判定する。動作終了の指令は、例えばユーザが遠隔操作で自動運転の停止を指示したり、農業機械300が目的地に到達したりした場合に出され得る。動作終了の指令が出されていない場合、ステップS121に戻り、新たに計測された農業機械300の位置に基づいて、同様の動作を実行する。制御装置180は、動作終了の指令が出されるまで、ステップS121からS125の動作を繰り返す。上記の動作は、制御装置180におけるECU182、184によって実行される。
 図9に示す例では、制御装置180は、測位装置130によって特定された農業機械300の位置と目標経路との偏差のみに基づいて駆動装置140を制御するが、方位の偏差もさらに考慮して制御してもよい。例えば、制御装置180は、測位装置130によって特定された農業機械300の向きと、目標経路の方向との角度差である方位偏差が予め設定された閾値を超える場合に、その偏差に応じて駆動装置140の操舵装置の制御パラメータ(例えば操舵角)を変更してもよい。
 以下、図10Aから図10Dを参照しながら、制御装置180による操舵制御の例をより具体的に説明する。
 図10Aは、目標経路Pに沿って走行する農業機械300の例を示す図である。図10Bは、目標経路Pから右にシフトした位置にある農業機械300の例を示す図である。図10Cは、目標経路Pから左にシフトした位置にある農業機械300の例を示す図である。図10Dは、目標経路Pに対して傾斜した方向を向いている農業機械300の例を示す図である。これらの図において、測位装置130によって計測された農業機械300の位置および向きを示すポーズがr(x,y,θ)と表現されている。(x,y)は、地球に固定された2次元座標系であるXY座標系における農業機械300の基準点の位置を表す座標である。図10Aから図10Dに示す例において、農業機械300の基準点はキャビン上のGNSSアンテナが設置された位置にあるが、基準点の位置は任意である。θは、農業機械300の計測された向きを表す角度である。図示されている例においては、目標経路PがY軸に平行であるが、一般的には目標経路PはY軸に平行であるとは限らない。
 図10Aに示すように、農業機械300の位置および向きが目標経路Pから外れていない場合には、制御装置180は、農業機械300の操舵角および速度を変更せずに維持する。
 図10Bに示すように、農業機械300の位置が目標経路Pから右側にシフトしている場合には、制御装置180は、農業機械300の走行方向が左寄りに傾き、経路Pに近付くように操舵角を変更する。このとき、操舵角に加えて速度も併せて変更してもよい。操舵角の大きさは、例えば位置偏差Δxの大きさに応じて調整され得る。
 図10Cに示すように、農業機械300の位置が目標経路Pから左側にシフトしている場合には、制御装置180は、農業機械300の走行方向が右寄りに傾き、経路Pに近付くように操舵角を変更する。この場合も、操舵角に加えて速度も併せて変更してもよい。操舵角の変化量は、例えば位置偏差Δxの大きさに応じて調整され得る。
 図10Dに示すように、農業機械300の位置は目標経路Pから大きく外れていないが、向きが目標経路Pの方向とは異なる場合は、制御装置180は、方位偏差Δθが小さくなるように操舵角を変更する。この場合も、操舵角に加えて速度も併せて変更してもよい。操舵角の大きさは、例えば位置偏差Δxおよび方位偏差Δθのそれぞれの大きさに応じて調整され得る。例えば、位置偏差Δxの絶対値が小さいほど方位偏差Δθに応じた操舵角の変化量を大きくしてもよい。位置偏差Δxの絶対値が大きい場合には、経路Pに戻るために操舵角を大きく変化させることになるため、必然的に方位偏差Δθの絶対値が大きくなる。逆に、位置偏差Δxの絶対値が小さい場合には、方位偏差Δθをゼロに近づけることが必要である。このため、操舵角を決定するための方位偏差Δθの重み(すなわち制御ゲイン)を相対的に大きくすることが妥当である。
 農業機械300の操舵制御および速度制御には、PID制御またはMPC制御(モデル予測制御)などの制御技術が適用され得る。これらの制御技術を適用することにより、農業機械300を目標経路Pに近付ける制御を滑らかにすることができる。
 なお、走行中に1つ以上の障害物センサ136によって障害物が検出された場合には、制御装置180は、農業機械300を停止させる。制御装置180は、障害物が検出された場合に障害物を回避するように駆動装置140を制御してもよい。制御装置180は、LiDARセンサ156から出力されたデータに基づいて、農業機械300から比較的離れた位置に存在する物体(例えば、他の車両または歩行者等)を検出することもできる。制御装置180は、検出された物体を回避するように速度制御および操舵制御を行うことにより、公道における自動走行を実現することもできる。
 本実施形態では、農業機械300は、無人で圃場内および圃場外を自動で走行できる。図11は、複数の農業機械300が圃場Fの内部および圃場Fの外側の道路76上を自動走行している状況の例を模式的に示す図である。記憶装置170には、圃場内および公道を含む圃場外の環境地図および目標経路の情報が記録される。環境地図および目標経路は、例えば制御装置180のECU185によって生成される。農業機械300が公道を走行する場合、農業機械300は、インプルメント400を上昇させた状態で、カメラ155およびLiDARセンサ156などのセンシング装置を用いて周囲をセンシングしながら、目標経路に沿って走行する。走行中に、状況に応じて目標経路が変更されてもよい。
 [4.作業スケジュールの作成]
 本実施形態における農業機械300は、農業機械300に搭載された記憶装置に記録された作業スケジュールに従って圃場間の移動、各圃場での農作業を自動で実行する。作業スケジュールは、複数の作業日にわたって行われる複数の農作業に関する情報を含む。具体的には、作業スケジュールは、作業日ごとに、どの時刻に、どの農業機械が、どの圃場で、どの農作業を行うかを示す情報を含むデータベースであり得る。作業スケジュールは、ユーザが端末装置200を用いて入力した情報に基づいて、サーバ100のプロセッサ21によって作成され得る。以下、作業スケジュールの作成方法の例を説明する。
 図12は、端末装置200の表示装置220に表示される設定画面760の一例を示す図である。端末装置200のプロセッサ230は、ユーザによる入力装置210を用いた操作に応答して、スケジュール作成のためのアプリケーションを起動して、図12に示すような設定画面760を表示装置220に表示させる。ユーザは、この設定画面760上で、作業スケジュールの作成に必要な情報を入力することができる。
 図12は、農作業として、稲作用の圃場において肥料の散布を伴う耕耘が行われる場合の設定画面760の一例を示している。設定画面760は、図示されるものに限定されず、適宜変更が可能である。図12の例における設定画面760は、日付設定部762、作付計画選択部763、圃場選択部764、作業選択部765、作業者選択部766、時間設定部767、機械選択部768、肥料選択部769、および散布量設定部770を含む。
 日付設定部762には、入力装置210によって入力された日付が表示される。入力された日付が農作業の実施日として設定される。
 作付計画選択部763には、予め作成された作付計画の名称の一覧が表示される。一覧の中から所望の作付計画をユーザが選択することが可能である。作付計画は、作物の種類・品種ごとに予め作成され、サーバ100の記憶装置30に記録される。作付計画は、どの作物をどの圃場に作付けするかという計画である。作付計画は、作物を圃場に作付けする前に、複数の圃場を管理する管理者等によって行われる。圃場は、作物が作付けされる(すなわち植え付けられる)区画された田畑である。図4の例では、稲の品種「こしいぶき」の作付計画が選択されている。この場合、設定画面760で設定される内容は、「こしいぶき」の作付計画に関連付けられる。
 圃場選択部764には、環境地図中の圃場が表示される。ユーザは、表示された圃場の中から任意の圃場を選択できる。図12の例では、「圃場A」を示す部分が選択されている。この場合、選択された「圃場A」が農作業が行われる圃場として設定される。
 作業選択部765には、選択された作物を栽培するために必要な複数の農作業が表示される。ユーザは、複数の農作業の中から1つの農作業を選択することができる。図12の例では、複数の農作業の中から「耕耘」が選択されている。この場合、選択された「耕耘」が実施される農作業として設定される。
 作業者選択部766には、予め登録された作業者が表示される。ユーザは、表示された複数の作業者の中から一人以上の作業者を選択することができる。図12の例では、複数の作業者のうち、「作業者B、作業者C」が選択されている。この場合、選択された「作業者B、作業者C」が、その農作業を実施または管理する担当の作業者として設定される。なお、本実施形態では、農業機械は自動で農作業を行うため、作業者は実際には農作業を行わず、農業機械が実行する農作業を遠隔で監視するだけであってもよい。
 時間設定部767には、入力装置210から入力された作業時間が表示される。作業時間は、開始時刻および終了時刻によって指定される。入力された作業時間が、農作業が実行される予定時間として設定される。
 機械選択部768は、その農作業において使用される農業機械を設定する部分である。機械選択部768には、例えば、予めサーバ100によって登録された農業機械のID(識別情報)、種類または型式、および使用可能なインプルメントの種類または型式等が表示され得る。ユーザは、表示された機械の中から、特定の機械を選択することができる。図12の例では、型式が「NW4511」であるインプルメントが選択されている。この場合、そのインプルメントが、当該農作業において使用される機械として設定される。
 肥料選択部769には、予めサーバ100によって登録された複数の肥料の名称が表示される。ユーザは、表示された複数の肥料の中から特定の肥料を選択することができる。選択された肥料が当該農作業において使用される肥料として設定される。
 散布量設定部770には、入力装置210から入力された数値が表示される。入力された数値が散布量として設定される。
 設定画面760において、作付計画、圃場、農作業、作業者、作業時間、肥料、散布量が入力され、「登録」が選択されると、端末装置200の通信装置270は、入力された情報をサーバ100に送信する。サーバ100のプロセッサ21は、受信した情報を記憶装置30に記憶させる。プロセッサ21は、受信した情報に基づいて、各農業機械に実行させる農作業のスケジュールを作成し、記憶装置30に記憶させる。
 なお、サーバ100によって管理される農作業の情報は上述したものに限定されない。例えば、圃場で使用される農薬の種類および散布量を設定画面760で設定できるようにしてもよい。図12に示す農作業以外の農作業に関する情報を設定できるようにしてもよい。
 図13は、サーバ100によって作成される農作業のスケジュールの例を示す図である。この例におけるスケジュールは、登録された農業機械ごとに、農作業が行われる日および時間、圃場、作業内容、および使用されるインプルメントを示す情報を含む。スケジュールは、図13に示す情報以外にも、作業内容に応じて、例えば農薬または農薬の散布量などの情報を含んでいてもよい。このようなスケジュールに従い、サーバ100のプロセッサ21は、農業機械300に農作業の指示を出す。スケジュールは、農業機械300の制御装置によってダウンロードされ、農業機械300の記憶装置にも格納され得る。その場合、農業機械300の制御装置は、記憶装置に格納されたスケジュールに従って自発的に動作を開始してもよい。
 [5.農業支援システムの動作]
 (5.1.農業支援方法の概要)
 本実施形態における農業支援方法は、サーバ100の制御装置20に実装される。図14は、本実施形態における農業支援方法の一例による手順を示すフローチャートである。当該農業支援方法は、端末装置200または操作端末153からの農作業の支援要請を待つことと(ステップS10)、支援先の圃場における農作業の種類に応じて農作業の支援をさせる農業機械300を決定することと(ステップS20)、農業機械300による農作業の支援の完了を待つことと(ステップS30)、課金情報を端末装置200または操作端末153に送信することと(ステップS40)を含む。
 (5.2.制御装置の動作)
 次に、図15Aおよび図15Bを参照してサーバ100(主に制御装置20)および農業機械300の動作の例を説明する。以下で説明する、農業支援システム1000に接続される1以上の農業機械300は、第1農業機械300Aおよび第2農業機械300Bを含む。ただし、1以上の農業機械300は3以上の農業機械を含み得る。
 本実施形態における第1農業機械300Aおよび第2農業機械300Bは、サーバ100から送信された作業スケジュールを参照し、例えば保管場所から作業スケジュールに示された圃場に移動する。第1農業機械300Aおよび第2農業機械300Bは、保管場所から圃場に至る道路を自動運転で走行し、圃場内においても作業を自動で行う。なお、第1農業機械300Aおよび第2農業機械300Bは、保管場所から圃場まで手動運転で移動し、圃場における作業を運転者の手動操作を受けて行ってもよい。
 図15Aおよび図15Bは、それぞれ、農業機械300による圃場における農作業の支援の概要を説明するための図である。図15Aおよび図15Bのそれぞれに、圃場F1を含む複数の圃場、保管場所510および管理センター520を含む圃場エリアを示す圃場マップが例示されている。図15Aには、第1農業機械300Aが保管場所510に停止している様子が示されている。図15Bには、第1農業機械300Aが圃場F1において第2農業機械300Bによる作業を支援している様子が示されている。農業機械は、施錠された保管場所に保管され得る。保管場所は、例えば農業機械の所有者の自宅の納屋、または農業経営者の事業所の車庫であり得る。
 図15Aには、第2農業機械300Bが圃場F1で農作業を行うための目標経路R2aが破線の矢印で示されている。図15Bには、第1農業機械300Aと第2農業機械300Bとを連携させて圃場F1で作業させるための目標経路が示されている。より詳細には、支援要請を受けて第1農業機械300Aに圃場F1で農作業させるための目標経路R1、および第2農業機械300Bに圃場F1での作業を継続させるための目標経路R2bがそれぞれ破線の矢印で示されている。図15Aおよび図15Bにおいて、目標経路に沿って既に走行した経路は実線で示されている。
 第1農業機械300Aおよび第2農業機械300Bがそれぞれ自動運転を行う場合、自動運転が開始される前に、圃場まで移動するための目標経路および/または圃場内を移動しながら農作業を行うための目標経路が手動又は自動的に作成され得る。目標経路が決定されると、第1農業機械300Aおよび第2農業機械300Bは、それぞれ、目標経路に沿って自動で走行する。農業機械300が備える制御システムに含まれる記憶装置には、圃場内および圃場外の公道を含む環境地図および目標経路の情報が予め記録される。農業機械300が公道を走行する場合、農業機械300は、作業機を上昇させた状態で、カメラおよびLiDARセンサなどのセンシング装置を用いて周囲をセンシングしながら、目標経路に沿って走行することができる。
 図15Aに示される例において、第2農業機械300Bは保管場所510から圃場F1に移動し、農作業を行っている。第1農業機械300Aおよび1以上の他の農業機械が、圃場における農作業の支援に備え、保管場所510に停止している。第1農業機械300Aの制御装置180は、当該第1農業機械300Aの動作の制御を行う。第2農業機械300Bの制御装置180は、当該第2農業機械300Bの動作の制御を行う。以降、第1農業機械300Aの制御装置180および第2農業機械300Bの制御装置180を、それぞれ、「制御装置180A」および「制御装置180B」と記載して区別する。また、操作端末153または端末装置200から制御装置20に送信されるリクエスト信号、および制御装置20から制御装置180Aに送信されるリクエスト信号を、それぞれ「第1リクエスト信号」および「第2リクエスト信号」と記載して区別する。
 図16は、第1農業機械300Aの制御装置180A、第2農業機械300Bの制御装置180Bおよびサーバ100の制御装置20の動作の例を示す図である。ただし、本開示の実施形態におけるそれぞれの動作はこれに限定されない。
 (ステップS200)
 先ず、第2農業機械300Bの操作端末153から制御装置20に第1リクエスト信号が送信される。第1リクエスト信号は、農作業の支援を要求した第2農業機械300Bの位置情報を含んでいる。
 (ステップS201)
 制御装置20は、第2農業機械300Bの位置情報及び記憶装置30に記憶されている環境地図を参照し、第2農業機械300Bが位置する圃場F1を特定する。また、制御装置20は、作業スケジュールを参照し、例えば保管場所510に停止している1以上の農業機械300の中から作業支援させる農業機械を決定する。
 制御装置20は、例えば、操作端末153から第1リクエスト信号を受信した場合に、環境地図を参照し、第1リクエスト信号を送信した操作端末153を搭載した第2農業機械300Bの位置情報から圃場F1の位置を特定する。また、制御装置20は、作業スケジュールを参照し、第1リクエスト信号を受信したときに農作業を行っていない農業機械、例えば、保管場所510に停止している第1農業機械300Aを作業支援させる農業機械として決定する。制御装置20は、例えば、保管場所510に停止している複数の農業機械300の中から、圃場F1における作業に適合した農業機械、または、圃場F1における作業に適合した作業機が装着された農業機械を、作業スケジュールに含まれる農業機械の種類または農作業の項目に関する支援に必要な情報に基づいて決定することができる。
 (ステップS202)
 制御装置20は、第1リクエスト信号に応答して、第1農業機械300Aを第2農業機械300Bが位置する圃場F1に移動させる指令を含む第2リクエスト信号を、制御装置180Aに送信する。例えば、制御装置20は、保管場所510に停止している第1農業機械300Aの制御装置180Aに、圃場F1の位置情報を含む第2リクエスト信号を送信する。
 (ステップS203)
 制御装置20は、作業支援させる農業機械を決定すると、作業支援させる農業機械を決定したことを第2農業機械300Bに通知する。
 (ステップS204)
 第2農業機械300Bは、目標経路R2aが変更されるまでは、目標経路R2aに沿って圃場F1内を自動走行して農作業を行っている。制御装置180Bは、制御装置20からの通知を受け取ると、圃場F1における第2農業機械300Bの自動運転に必要な目標経路を変更する。制御装置180Bは、制御装置20からの通知を受け取ると、圃場F1における目標経路R2aを目標経路R2bに変更する。
 図15Aに示すように、第2農業機械300Bの操作端末153から第1リクエスト信号が制御装置20に送信される前は、第2農業機械300Bの目標経路R2aが圃場F1に設定されている。目標経路R2aは、作業を開始する開始地点ST2、作業を終了する終了地点EN2、および図中において矢印で示される進行方向を含む。一方で、図15Bに示すように、制御装置20からの通知を受けた後、制御装置180Bは、目標経路R2aを目標経路R2bに変更する。制御装置180Bは、目標経路R2aに含まれる当初の終了地点EN2を、目標経路R2a上の、開始地点ST2の側に寄った任意の位置に移動し、新たな終了地点EN2を設定することによって、目標経路R2bを作成する。言い換えると、制御装置180Bは、目標経路R2aの当初の長さ(開始地点ST2から終了地点EN2までの長さ)を短くすることによって、目標経路R2bを作成する。
 (ステップS205)
 制御装置180Aは、第2リクエスト信号を受信すると、第1農業機械300Aに圃場F1に移動させるための制御を開始する。制御装置180Aは、制御装置20から第2リクエスト信号を受信すると、第1農業機械300Aが支援先である圃場F1における農作業を行うための目標経路R1を作成する。
 制御装置180Aは、サーバ100を経由して、第2農業機械300Bの目標経路R2aを取得し、目標経路R2aを利用して目標経路R1を作成してもよい。制御装置180Aは、目標経路R2aにおける終了地点EN2を、目標経路R1の開始地点ST1として設定し、かつ、目標経路R2a上の任意の点を、目標経路R1の終了地点EN1として設定することにより、目標経路R1を作成してもよい。制御装置180Aは、保管場所510と圃場F1との間を移動するための目標経路も作成する。
 (ステップS206)
 制御装置180Aは、第1農業機械300Aを目標経路R1に沿って自動走行させる。制御装置180Aは、第1農業機械300Aが開始地点ST1に到達すると、インプルメントを作動させて、開始地点ST1から第1農業機械300Aに作業を開始させる。制御装置180Aは、操舵装置106などの動作を制御することによって、目標経路R1に沿って進行方向に第1農業機械300Aを自動で走行させながら作業させる。
 (ステップS207)
 制御装置180Bは、第2農業機械300Bを目標経路R2bに沿って自動走行させる。制御装置180Bは、操舵装置106などの動作を制御することによって、目標経路R2bに沿って進行方向に第2農業機械300Bを自動で走行させながら作業させる。
 このように、圃場F1における目標経路R2bおよびR1の作成が完了すると、第2農業機械300Bは、目標経路R2bに沿って自動運転を行いながら作業を行い、第1農業機械300Aは、保管場所510から圃場F1に移動した後、目標経路R1に沿って自動運転を行いながら作業を行う。
 なお、上述した動作の例では、制御装置180Aは、サーバ100を経由して、操作端末153から送信された第1リクエスト信号に応答して制御装置20が送信した第2リクエスト信号を受信する。ただし、制御装置180Aは、サーバ100を経由せずに、操作端末153から直接的に第1リクエスト信号を受信してもよい。この場合、制御装置180Aは、操作端末153から第1リクエスト信号を受信したときに、環境地図を参照し、第1リクエスト信号を送信した操作端末153を搭載した第2農業機械300Bの位置情報から圃場F1の位置を特定してもよい。制御装置180Aは、第1リクエスト信号を受信すると、第1農業機械300Aに圃場F1に移動させるための制御を開始する。また、制御装置180Bは、上述したように、圃場F1における第2農業機械300Bの自動運転に必要な目標経路を変更する。
 上述した動作の例では、制御装置180Aおよび制御装置180Bは、それぞれ、制御装置20からの第2リクエスト信号および通知を受け取った後に、自身で目標経路を作成していたが、本開示はこれに限定されない。例えば、制御装置20が、制御装置180から第1リクエスト信号を受け取った後に、第1農業機械300Aおよび第2農業機械300Bの目標経路R1、R2bを作成し、作成した目標経路R1、R2bを、それぞれ、制御装置180Aおよび制御装置180Bに送信してもよい。また、農業機械300に搭載した操作端末153から第1リクエスト信号は送信されたが、これに代えて、管理者等が使用する端末装置200から第1リクエスト信号は送信されてもよい。
 図17から図20を参照して端末装置200から第1リクエスト信号を送信する例を説明する。
 図17は、圃場F1の周辺にいる管理者70が端末装置200を使用して第2農業機械300Bが行う圃場F1での作業の進捗を管理している様子を例示する図である。図18は、端末装置200のディスプレイに表示される作業の進捗状況の表示例を示す図である。
 管理者70は、端末装置200を使用して、圃場F1内または圃場F1の周辺から第2農業機械300Bを監視し得る。管理者70は、第2農業機械300Bによる作業の進捗を管理する場合に、例えば端末装置200に表示される作業進捗の表示から作業遅延が発生しているかを容易に確認することができる。
 図18に示される例における作業進捗の表示201は、当初の作業スケジュールに対する実際の進捗具合をパーセンテージ(%)で表示するバーチャートを含む。表示201は、例えば、農作業支援サービスの利用をユーザに選択させるための選択表示部分を含み得る。図示される例において、管理者70が「はい」を選択すると、端末装置200から制御装置20に第1リクエスト信号が送信される。制御装置20は、端末装置200からの第1リクエスト信号に応答して、例えば保管場所510に停止している第1農業機械300Aに、第2農業機械300Bの作業の支援の要求を示す第2リクエスト信号を送信し、第1農業機械300Aに第2農業機械300Bが位置する圃場F1に移動するように指令する。制御装置180Aは、その指令に従って第1農業機械300Aに圃場F1に移動させてもよい。
 制御装置20は、圃場F1における農作業が終了した後、第1農業機械300Aに、移動先の位置情報として元の保管場所510の位置情報を送信し、第1農業機械300Aに保管場所510に帰還するように指令する。制御装置180Aは、その指令に従って第1農業機械300Aに保管場所510に移動させてもよい。
 図19は、農作業支援サービスを利用した後に端末装置200に表示される利用明細の表示例を示す図である。制御装置20は、農業機械300による作業支援の作業内容、作業時間、および農業機械の種類の少なくとも1つの情報を含む作業ログを作成し、記憶装置30に記録し得る。例えば、制御装置20は、管理者M1からの要請に応じて、管理者M1とは異なる管理者M2が所有する第1農業機械300Aが圃場F1において行った農作業の作業内容、作業時間、および農業機械の種類の情報を含む作業ログを作成し、作成した作業ログのデータを管理者M1の端末装置200に送信してもよい。
 制御装置20は、作業ログに基づいて農業機械300の使用料を算出し、使用料を含む課金情報を管理者M1の端末装置200に送信してもよい。図18に例示される課金情報202を端末装置200に表示することによって、農作業支援サービスの利用料金の支払いを管理者M1に促すことができる。農作業支援サービスは、利用料金が作業時間および農業機械の種類に応じて算出される従量制サービスまたはサブスクリプション型の定額制サービスであり得る。例えば、ユーザは定額の利用料金を支払うことで、農作業支援サービスを一定期間利用することができる。これにより、例えばサブスクリプション型の農業機械のシェアリングサービスが実現され得る。
 図20は、ユーザが使用する端末装置200から農業機械の作業の支援を要求する場合において、第1農業機械300Aの制御装置180A、第2農業機械300Bの制御装置180B、端末装置200およびサーバ100の制御装置20の動作の例を示す図である。ただし、本開示の実施形態におけるそれぞれの動作はこれに限定されない。図20において、図16に示す処理と同様な処理には同じ参照符号を付し、その説明は省略する。
 図20に示すように、端末装置200から制御装置20に第1リクエスト信号が送信される(ステップS210)。第1リクエスト信号は、端末装置200を使用するユーザがいる支援先の圃場F1の位置情報を含む。制御装置20は、支援先の圃場F1の位置情報及び記憶装置30に記憶されている環境地図を参照し、ユーザがいる圃場F1を特定する。また、制御装置20は、作業スケジュールを参照し、例えば保管場所510に停止している第1農業機械300Aを作業支援させる農業機械として決定する(ステップS211)。
 図21は、農作業者71が端末装置200を携帯しながら圃場F1で手作業を行っている様子を例示する図である。農作業者71は、例えば端末装置200に表示される作業進捗の表示から、自らが行う作業の進捗状況を把握することができる。農作業者71は、農作業の支援を希望する場合、端末装置200を使用して、圃場F1における農作業の支援を要求する第1リクエスト信号を制御装置20に送信してもよい。制御装置20は、端末装置200からの第1リクエスト信号に応答して、例えば保管場所510に停止している第1農業機械300Aに、農作業者71が圃場F1で行っている手作業の支援の要求を示す第2リクエスト信号を送信し、例えば、農作業者71が作業している圃場F1に移動するように指令する。制御装置20は、圃場F1における農作業が終了した後、制御装置180に、元の保管場所510が移動先であることを示す指令を送信してもよい。制御装置180Aは、その指令に従って第1農業機械300Aに元の保管場所510に移動させてもよい。
 図22は、作業者が端末装置200を使用して作業の支援を要求する場合において、第1農業機械300Aの制御装置180A、端末装置200およびサーバ100の制御装置20の動作の例を示す図である。ただし、本開示の実施形態におけるそれぞれの動作はこれに限定されない。図22において、図20に示す処理と同様な処理には同じ参照符号を付し、その説明は省略する。
 図22に示すように、制御装置20は、ステップS210及びS211を経て、第1農業機械300Aを特定すると、制御装置180Aに第2リクエスト信号を送信する。この場合における第2リクエスト信号は、例えば、支援先である圃場F1には作業を行っている農業機械がいないことを示す情報、または、要請が作業者による手作業の支援を要求することを示す情報を含む。
 図22に示すように、制御装置180Aは、端末装置200と通信を行うことで(ステップS212)、圃場F1において作業が行われていない未作業範囲を端末装置200から取得し、未作業範囲に目標経路R1を作成し得る(ステップS220)。
 図23は、圃場F1の周辺にいる管理者70が端末装置200を使用して第2農業機械300Bが行う圃場F1での作業の進捗を管理している場合に、1以上の農業機械300による農作業の支援を受けている様子を例示する図である。
 本実施形態における制御装置20は、端末装置200から第1リクエスト信号を受信した場合に、圃場F1に移動することが可能な第1農業機械300Aおよび第3農業機械300Cに圃場F1の作業を支援することを要求する第2リクエスト信号を送信する。農業機械300A~300Cは、同じ内容の農作業を行ことで、圃場F1における作業を加速させることができる。
 図24Aおよび図24Bは、それぞれ、圃場F1における農作業の終了後、第1農業機械300Aが停止していた保管場所とは異なる保管場所に第1農業機械300Aに移動させる例を説明するための図である。図24Aおよび図24Bのそれぞれに、圃場F1を含む複数の圃場、第1保管場所510A、第2保管場所510Bおよび管理センター520を含む圃場エリアを示す圃場マップが例示されている。本実施形態における第1および第2保管場所510A、510Bは、それぞれ、異なる管理者によって所有され得る。例えば、管理者M1が農作業の支援要請を行う場合、管理者M2が第1保管場所510Aを所有し、管理者M3が第2保管場所510Bを所有し得る。
 制御装置20は、端末装置200から第1リクエスト信号を受信した場合に、第1保管場所510Aに停止する第1農業機械300Aに圃場F1の支援を要求する第2リクエスト信号を送信する。図24Bに例示されるように、第1農業機械300が圃場F1における作業を終了したとき、元の保管場所510Aが他の農業機械300で一杯になり保管スペースがない場合に、制御装置20は、保管スペースが残っている第2保管場所510Bを、第1農業機械300Aの移動先とする指令を制御装置180Aに送信してもよい。
 図25は、圃場F1における農作業の終了後、第1農業機械300Aが停止していた保管場所とは異なる保管場所に第1農業機械300Aに移動させる他の例を説明するための図である。
 制御装置20は、端末装置200から第1リクエスト信号を受信した場合に、第1保管場所510Aに停止する第1農業機械300Aに圃場F1へ移動させる第2リクエスト信号を制御装置180Aに送信してもよい。圃場F1における農作業が終了した後、第1農業機械300Aは、第2保管場所510Bに移動してもよい。この例において、圃場F1から第2保管場所510Bまでの距離は、圃場F1から第1保管場所510Aまでの距離よりも短い。第1農業機械300が圃場F1における作業を終えたとき、第2保管場所510Bに保管スペースの空きがあれば、制御装置20は、第1農業機械300に第2保管場所510Bに移動させてもよい。この制御によれば、農業機械300に保管場所に帰還させる時間を短縮することができる。
 サーバ100の記憶装置30は、圃場ごとに、地球上での位置(つまり、地理座標)および形状を表す空間的な情報および属性情報を有する区画ポリゴンのデータを予め記憶し得る。「区画ポリゴン」は、航空写真または衛星画像などに基づいて筆ごとに圃場の形状に沿って作成された圃場の区画情報である。「地理座標」は、地球上の位置を緯度と経度とで表現する地理座標系、または、地球上の3次元座標を2次元平面に投影し、地球上の位置をXY座標で表現する投影座標系における位置を意味する。例えば、制御装置20は、区画ポリゴンに基づいて、圃場領域または保管場所の形状を規定する各頂点の地理座標系における座標を決定し、決定した座標に基づいて、圃場領域または保管場所の形状の重心座標を算出してもよい。制御装置20は、圃場から他の圃場までの距離、または圃場から保管場所までの距離を、例えば2つの重心座標の点のユークリッド距離またはマンハッタン距離として算出することができる。
 本実施形態における制御装置20は、第1リクエスト信号を受信したときの、第1農業機械300Aが位置する場所と、第3農業機械300Cが位置する場所と、圃場F1との位置関係に基づいて決定した第1農業機械300Aまたは第3農業機械300Cに、圃場F1への移動を指示する第2リクエスト信号を送信してもよい。
 図26は、第2保管場所510Bよりも第1保管場所510Aの方が圃場F1に近い場合に、第1保管場所510Aにいる農業機械300に圃場F1に移動させる例を説明するための図である。
 この例において、第1保管場所510Aおよび第2保管場所510Bにそれぞれ、1以上の農業機械300が停止している。圃場F1から第2保管場所510Bまでの距離は、圃場F1から第1保管場所510Aまでの距離よりも長い。この場合、制御装置20は、第1農業機械300Aが第1保管場所510Aに停止し、かつ、第3農業機械300Cが第2保管場所510Bに停止しているとき、端末装置200から第1リクエスト信号を受信した場合に、第1農業機械300Aを、圃場F1すなわち支援先に移動させる農業機械として決定してもよい。
 図27および図28は、それぞれ、保管場所510よりも他の圃場F2の方が圃場F1に近い場合に、圃場F2で農作業を行う農業機械300に圃場F1に移動させる例を説明するための図である。
 この例において、圃場F1から圃場F2の距離は、圃場F1から保管場所510までの距離よりも短い。この場合、制御装置20は、第3農業機械300Cが保管場所510に停止し、かつ、第1農業機械300Aが圃場F2において農作業を行っているとき、端末装置200から第1リクエスト信号を受信した場合に、第1農業機械300Aを、圃場F1すなわち支援先に移動させる農業機械として決定してもよい。
 制御装置20は、第1農業機械300Aが圃場F1における作業を終了した後に、第1農業機械300Aを、圃場F2から圃場F1に移動させることを制御装置180Aに指令する。制御装置180Aはその指令に従って第1農業機械300Aを圃場F1に移動させる。この例における制御は、例えば、保管場所で停止する農業機械を圃場に移動させるよりも、他の圃場で間もなく作業を終了しようとしている農業機械に、作業が終了した後に圃場に移動させた方が、結果的に農作業の支援に早く着手できる場合、または、作業を予定よりも早く終了した農業機械に圃場に移動させた方が、結果的に農作業の支援に早く着手できる場合などに有効である。
 図28に例示されるように、第1農業機械300A以外に1以上の農業機械300が圃場F1における作業を行っている場合には、制御装置20は、圃場F1における作業が終了することを待たずに、第1農業機械300Aに圃場F1に移動させてもよい。制御装置20は、第1農業機械300A以外の農業機械300に圃場F1における作業を継続させることができる。
 図29は、圃場F3よりも圃場F2の方が圃場F1に近い場合に、圃場F2で農作業を行う農業機械300に圃場F1に移動させる例を説明するための図である。
 この例において、保管場所510に停止している農業機械300はいない。圃場F3から圃場F1の距離は、圃場F1から圃場F2までの距離よりも長い。この場合、制御装置20は、第1農業機械300Aが圃場F2において農作業を行い、かつ、第3農業機械300Cが圃場F3において農作業を行っているとき、端末装置200から第1リクエスト信号を受信した場合に、第1農業機械300Aを圃場F2から圃場F1に移動させることを制御装置180Aに指令する。制御装置180はその指令に従って第1農業機械300Aを圃場F1に移動させる。制御装置20は、第1農業機械300Aが圃場F2における作業を終了した後に、第1農業機械300Aの移動先を圃場F1に指定することが好ましい。この例における制御は、保管場所に停止していた全ての農業機械が農作業の支援要請を受けて、出払っている場合に有効である。
 上述した例によれば、農業機械に搭載された制御装置が、端末装置または操作端末から支援要請がある場合に、1以上の農業機械に圃場に移動させるための自動運転の制御を実行している。しかし、これに代えて、サーバの制御装置が、端末装置または操作端末から支援要請がある場合に、1以上の農業機械に圃場に移動させるための自動運転の制御を実行してもよい。この場合は、サーバにおける遠隔操作によって、農業機械の自動運転が実現され得る。
 実施形態における各種の機能を提供するシステムを、それらの機能を有しない農業機械に後から取り付けることもできる。そのようなシステムは、農業機械とは独立して製造および販売され得る。そのようなシステムで使用されるコンピュータプログラムも、農業機械とは独立して製造および販売され得る。コンピュータプログラムは、例えばコンピュータが読み取り可能な非一時的な記憶媒体に格納されて提供され得る。コンピュータプログラムは、電気通信回線(例えばインターネット)を介したダウンロードによっても提供され得る。
 本開示の技術は、例えばトラクタ、収穫機、田植機、乗用管理機、野菜移植機、草刈機、播種機、施肥機、または農業用ロボットなどの農業機械に適用することができる。
 10:通信装置、20:制御装置、21:プロセッサ、22,240:ROM、23,250:RAM、30,170,260:記憶装置、60:ネットワーク、70:管理者、71:農作業者、100:サーバコンピュータ、100:サーバ、101:車両本体、102:原動機、103:変速装置、104:タイヤ、105:キャビン、106:操舵装置、107:運転席、108:連結装置、130:測位装置、131:GNSS受信機、135:慣性計測装置、136:障害物センサ、140:駆動装置、150:ステアリングホイールセンサ、151:切れ角センサ、152:車軸センサ、153:操作端末、154:操作スイッチ群、155:カメラ、156:LiDARセンサ、160:制御システム、180:制御装置、181~185:電子制御ユニット(ECU)、200:端末装置、210:入力装置、220:表示装置、230:プロセッサ、270:通信装置、300:農業機械、300A:第1農業機械、300B:第2農業機械、300C:第3農業機械、400:作業機、510:保管場所、520:管理センター、1000:農業支援システム、F1~F3:圃場

Claims (18)

  1.  1以上の農業機械による農作業を支援する農業支援システムであって、
     前記1以上の農業機械の動作を制御する制御装置を備え、
     前記制御装置は、端末装置から前記圃場における農作業の支援を要求する信号を受信した場合に、前記1以上の農業機械に前記圃場に移動させ、前記圃場における農作業を支援させる、農業支援システム。
  2.  前記制御装置は、
     前記1以上の農業機械に含まれる第1農業機械の動作を制御し、
     前記圃場において第2農業機械が農作業を行っているとき、前記端末装置から前記信号を受信した場合に、前記第1農業機械に前記圃場に移動させ、前記第2農業機械が行う農作業を支援させる、請求項1に記載の農業支援システム。
  3.  前記制御装置は、
     前記1以上の農業機械に含まれる第1農業機械および第2農業機械のそれぞれの動作を制御し、
     前記端末装置から前記信号を受信した場合に、前記第1農業機械および前記第2農業機械に前記圃場に移動させ、前記圃場における農作業を支援させる、請求項1に記載の農業支援システム。
  4.  前記制御装置は、前記端末装置から前記信号を受信した場合に、保管場所に停止する前記第1農業機械に前記圃場に移動させ、前記圃場における農作業が終了した後、前記第1農業機械に前記保管場所に移動させる、請求項2に記載の農業支援システム。
  5.  前記制御装置は、前記端末装置から前記信号を受信した場合に、第1保管場所に停止する前記第1農業機械に前記圃場に移動させ、前記圃場における農作業が終了した後、前記第1農業機械に、前記第1保管場所とは異なる第2保管場所に移動させる、請求項2に記載の農業支援システム。
  6.  前記制御装置は、前記端末装置から前記信号を受信した場合に、第1保管場所に停止する前記第1農業機械に前記圃場に移動させ、前記圃場における農作業が終了した後、前記第1農業機械に、前記圃場からの距離が前記圃場から前記第1保管場所までの距離よりも短い前記第2保管場所に移動させる、請求項5に記載の農業支援システム。
  7.  前記制御装置は、
     前記1以上の農業機械に含まれる第3農業機械の動作を制御し、
     前記制御装置は、前記端末装置から前記信号を受信したときの、前記第1農業機械が位置する場所と、前記第3農業機械が位置する場所と、前記圃場との位置関係に基づいて、前記第1または第3農業機械に前記圃場に移動させる、請求項2に記載の農業支援システム。
  8.  前記制御装置は、前記第1農業機械が第1保管場所に停止し、かつ、前記第3農業機械が、前記圃場からの距離が前記圃場から前記第1保管場所までの距離よりも長い第2保管場所に停止しているとき、前記端末装置から前記信号を受信した場合に、前記第1農業機械に前記第1保管場所から前記圃場に移動させる、請求項7に記載の農業支援システム。
  9.  前記制御装置は、前記第3農業機械が第1保管場所に停止し、かつ、前記第1農業機械が、前記圃場からの距離が前記圃場から前記第1保管場所までの距離よりも短い他の圃場において農作業を行っているとき、前記端末装置から前記信号を受信した場合に、前記第
    1農業機械に前記他の圃場から前記圃場に移動させる、請求項7に記載の農業支援システム。
  10.  前記制御装置は、前記第1農業機械が、前記圃場とは異なる他の圃場において農作業を行い、かつ、前記第3農業機械が、前記圃場からの距離が前記圃場から前記他の圃場までの距離よりも長い更なる他の圃場において農作業を行っているとき、前記端末装置から前記信号を受信した場合に、前記第1農業機械に前記他の圃場から前記圃場に移動させる、請求項7に記載の農業支援システム。
  11.  記憶装置を備え、
     前記制御装置は、前記1以上の農業機械が前記圃場において行った農作業の作業内容、作業時間、および農業機械の種類の少なくとも1つの情報を含む作業ログを作成し、前記記憶装置に記録する、請求項1から10のいずれかに記載の農業支援システム。
  12.  前記制御装置は、前記作業ログのデータを前記端末装置に送信する、請求項11に記載の農業支援システム。
  13.  前記制御装置は、前記作業ログに基づいて前記1以上の農業機械の使用料を算出し、前記端末装置に課金情報を送信する、請求項11または12に記載の農業支援システム。
  14.  前記制御装置は、前記1以上の農業機械が実行する農作業のスケジュール管理を行う、請求項1から13のいずれかに記載の農業支援システム。
  15.  前記制御装置は、前記端末装置から前記信号を受信した場合に、前記1以上の農業機械に前記圃場に移動させることを決定したとき、前記1以上の農業機械が実行する農作業のスケジュールを更新する、請求項14に記載の農業支援システム。
  16.  農業機械による農作業を支援する農業支援システムであって、
     第1農業機械および第2農業機械のそれぞれの動作を制御する制御装置を備え、
     前記制御装置は、
     前記第2農業機械が実行する農作業のスケジュール管理を行い、
     前記第2農業機械が圃場における農作業を行っているとき、前記第2農業機械による農作業がスケジュールから遅れていると判断した場合に、前記第1農業機械に前記圃場に移動させ、前記第2農業機械が行う農作業を支援させる、農業支援システム。
  17.  コンピュータに実装される、1以上の農業機械によって農作業を支援するための農業支援方法であって、
     前記1以上の農業機械の動作を制御することと、
     端末装置から送信される、前記圃場における農作業の支援を要求する信号を受信することと、
     前記信号を受信したときに、前記1以上の農業機械に前記圃場に移動させ、前記圃場における農作業を支援させることと、
    をコンピュータに実行させる農業支援方法。
  18.  コンピュータに実装される、農業機械による農作業を支援するための農業支援方法であって、
     第1農業機械および第2農業機械のそれぞれの動作を制御することと、
     前記第2農業機械が実行する農作業のスケジュール管理を行うことと、
     前記第2農業機械が圃場における農作業を行っているとき、前記第2農業機械による農作業がスケジュールから遅れていると判断した場合に、前記第1農業機械に前記圃場に移
    動させ、前記第2農業機械が行う農作業を支援させることと、
    をコンピュータに実行させる農業支援方法。
PCT/JP2022/013221 2021-07-30 2022-03-22 農業支援システムおよび農業支援方法 WO2023007836A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22848920.9A EP4378291A1 (en) 2021-07-30 2022-03-22 Agricultural assistance system and agricultural assistance method
JP2023538260A JPWO2023007836A1 (ja) 2021-07-30 2022-03-22
US18/426,125 US20240188475A1 (en) 2021-07-30 2024-01-29 Agricultural assistance system and agricultural assistance method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-125843 2021-07-30
JP2021125843 2021-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/426,125 Continuation US20240188475A1 (en) 2021-07-30 2024-01-29 Agricultural assistance system and agricultural assistance method

Publications (1)

Publication Number Publication Date
WO2023007836A1 true WO2023007836A1 (ja) 2023-02-02

Family

ID=85087823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013221 WO2023007836A1 (ja) 2021-07-30 2022-03-22 農業支援システムおよび農業支援方法

Country Status (4)

Country Link
US (1) US20240188475A1 (ja)
EP (1) EP4378291A1 (ja)
JP (1) JPWO2023007836A1 (ja)
WO (1) WO2023007836A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4180896A1 (en) * 2021-11-15 2023-05-17 Yanmar Holdings Co., Ltd. Work management method, work management system, and work management program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015006609A1 (en) * 2013-07-10 2015-01-15 Agco Coporation Automation of networking a group of machines
JP2017012134A (ja) 2015-07-06 2017-01-19 ヤンマー株式会社 作業車連携システム
JP2020108407A (ja) 2020-04-03 2020-07-16 ヤンマーパワーテクノロジー株式会社 コンバインの連携システム
JP2021087384A (ja) * 2019-12-04 2021-06-10 井関農機株式会社 作業車両
JP2021106555A (ja) * 2019-12-27 2021-07-29 株式会社クボタ 作業支援装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015006609A1 (en) * 2013-07-10 2015-01-15 Agco Coporation Automation of networking a group of machines
JP2017012134A (ja) 2015-07-06 2017-01-19 ヤンマー株式会社 作業車連携システム
JP2021087384A (ja) * 2019-12-04 2021-06-10 井関農機株式会社 作業車両
JP2021106555A (ja) * 2019-12-27 2021-07-29 株式会社クボタ 作業支援装置
JP2020108407A (ja) 2020-04-03 2020-07-16 ヤンマーパワーテクノロジー株式会社 コンバインの連携システム

Also Published As

Publication number Publication date
JPWO2023007836A1 (ja) 2023-02-02
EP4378291A1 (en) 2024-06-05
US20240188475A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
US20240188475A1 (en) Agricultural assistance system and agricultural assistance method
US20240341216A1 (en) Travel control system for agricultural machine capable of performing remotely-manipulated traveling
US20240172577A1 (en) Control system for agricultural machine and agriculture management system
WO2023119871A1 (ja) 自動走行を行う農業機械のための経路計画システムおよび経路計画方法
WO2023007835A1 (ja) 管理システム、および農業機械の圃場へのアクセスを管理するための方法
WO2023218688A1 (ja) 地図作成システムおよび経路計画システム
WO2024004463A1 (ja) 走行制御システム、走行制御方法およびコンピュータプログラム
WO2023127557A1 (ja) 農業機械、農業機械に用いるセンシングシステムおよびセンシング方法
WO2023127556A1 (ja) 農業機械、農業機械に用いるセンシングシステムおよびセンシング方法
JP7560412B2 (ja) 農業支援システム、農業機械の呼び出し経路を作成する装置および方法
WO2023095856A1 (ja) 自動運転を行う農業機械のための経路計画システム
WO2023238827A1 (ja) 農業管理システム
WO2023112515A1 (ja) 地図生成システムおよび地図生成方法
WO2023238724A1 (ja) 農業機械の自動走行のための経路生成システムおよび経路生成方法
WO2024004881A1 (ja) 制御システム、制御方法および運搬車
WO2023119996A1 (ja) 障害物検出システム、農業機械および障害物検出方法
JP7584654B2 (ja) 農業機械のための管理システム
EP4393286A1 (en) Agricultural support system, and device and method to generate travel route for hailed agricultural machine
US20240219908A1 (en) Agricultural support system, and device and method to generate travel route for hailed agricultural machine
US20240345603A1 (en) Travel control system for agricultural machine capable of performing remotely-manipulated traveling
WO2023234255A1 (ja) センシングシステム、農業機械、およびセンシング装置
WO2024142668A1 (ja) 管理装置、管理方法、コンピュータプログラム、及び管理システム
WO2023248909A1 (ja) 走行制御システム、農業機械および走行制御方法
WO2023243369A1 (ja) 映像表示システムおよび作業車両
EP4449841A1 (en) Agricultural machine and gesture recognition system for agricultural machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848920

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538260

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022848920

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022848920

Country of ref document: EP

Effective date: 20240229