[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023127557A1 - 農業機械、農業機械に用いるセンシングシステムおよびセンシング方法 - Google Patents

農業機械、農業機械に用いるセンシングシステムおよびセンシング方法 Download PDF

Info

Publication number
WO2023127557A1
WO2023127557A1 PCT/JP2022/046459 JP2022046459W WO2023127557A1 WO 2023127557 A1 WO2023127557 A1 WO 2023127557A1 JP 2022046459 W JP2022046459 W JP 2022046459W WO 2023127557 A1 WO2023127557 A1 WO 2023127557A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
agricultural machine
work vehicle
search area
search
Prior art date
Application number
PCT/JP2022/046459
Other languages
English (en)
French (fr)
Inventor
優之 松崎
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to JP2023570862A priority Critical patent/JPWO2023127557A1/ja
Priority to EP22915781.3A priority patent/EP4434313A1/en
Publication of WO2023127557A1 publication Critical patent/WO2023127557A1/ja
Priority to US18/749,601 priority patent/US20240345253A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/001Steering by means of optical assistance, e.g. television cameras
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B76/00Parts, details or accessories of agricultural machines or implements, not provided for in groups A01B51/00 - A01B75/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present disclosure relates to agricultural machinery, sensing systems and sensing methods used in agricultural machinery.
  • ICT Information and Communication Technology
  • IoT Internet of Things
  • GNSS Global Navigation Satellite System
  • Patent Literature 1 discloses a technology for detecting obstacles around a tractor capable of automatic operation using a LiDAR (Light Detection and Ranging) sensor.
  • LiDAR Light Detection and Ranging
  • This disclosure provides a technique for searching the environment around the agricultural machine that is suitable for the area where the agricultural machine is located.
  • a sensing system is a sensing system for a mobile agricultural machine, which is provided in the agricultural machine, senses the environment around the agricultural machine, and outputs sensing data. and a processing device for detecting an object positioned in a search area around the agricultural machine based on the sensing data, wherein the processing device detects an object located in a search area around the agricultural machine based on the sensing data, the processing device detecting , changing the pattern of the search area for detecting the object.
  • a sensing method is a sensing method for a mobile agricultural machine, comprising sensing an environment around the agricultural machine using one or more sensors and outputting sensing data; Detecting an object located in a search area around the agricultural machine based on the sensing data, and changing the pattern of the search area for detecting the object according to the area in which the agricultural machine is located. including to do.
  • a computer-readable storage medium may include both volatile and non-volatile storage media.
  • a device may consist of a plurality of devices. When the device is composed of two or more devices, the two or more devices may be arranged in one device, or may be divided and arranged in two or more separate devices. .
  • the pattern of the search area for object detection is changed according to the area in which the agricultural machine is located. Thereby, a search suitable for the area in which the agricultural machine is located can be performed.
  • FIG. 1 is a diagram for explaining an overview of an agricultural management system according to an exemplary embodiment of the present disclosure
  • FIG. 1 is a side view schematically showing an example of a working vehicle and a working machine connected to the working vehicle
  • FIG. 2 is a block diagram showing a configuration example of a working vehicle and a working machine
  • FIG. 1 is a conceptual diagram showing an example of a work vehicle that performs positioning by RTK-GNSS
  • FIG. 3 is a diagram showing an example of an operation terminal and an operation switch group provided inside a cabin; It is a block diagram which illustrates the hardware constitutions of a management apparatus and a terminal device.
  • FIG. 1 is a side view schematically showing an example of a working vehicle and a working machine connected to the working vehicle
  • FIG. 2 is a block diagram showing a configuration example of a working vehicle and a working machine
  • FIG. 1 is a conceptual diagram showing an example of a work vehicle that performs positioning by RTK-GNSS
  • FIG. 3
  • FIG. 4 is a diagram schematically showing an example of a working vehicle that automatically travels along a target route in a field; 4 is a flowchart showing an example of steering control operation during automatic driving; FIG. 3 is a diagram showing an example of a working vehicle that travels along a target route P; FIG. 4 is a diagram showing an example of a work vehicle that is shifted to the right from a target path P; FIG. 4 is a diagram showing an example of a work vehicle that is shifted to the left from a target path P; FIG. 4 is a diagram showing an example of a work vehicle facing in a direction that is inclined with respect to a target path P; FIG.
  • FIG. 4 is a diagram schematically showing an example of a situation in which a plurality of work vehicles are automatically traveling on roads inside and outside a field; 7 is a flow chart showing an example of processing for changing a search area pattern according to an area in which an agricultural machine is located;
  • FIG. 10 is a diagram showing an example of an area in which the pattern of the search area is changed;
  • FIG. 4 is a diagram showing examples of a first search area and a second search area;
  • FIG. 3 is a diagram showing the relationship between a sensing area sensed by a LiDAR sensor and a search area for searching for an object;
  • FIG. 3 is a diagram showing the relationship between a sensing area sensed by a LiDAR sensor and a search area for searching for an object;
  • FIG. 3 is a diagram showing the relationship between a sensing area sensed by a LiDAR sensor and a search area for searching for an object;
  • FIG. 10 is a diagram showing another example of an area in which the pattern of search regions is changed; 7 is a flowchart illustrating an example of processing when an obstacle is detected; FIG. 10 is a diagram showing another example of the first search area and the second search area; FIG. 10 is a diagram showing still another example of the first search area and the second search area; FIG. 10 is a diagram showing still another example of the first search area and the second search area; FIG. 10 is a diagram showing still another example of an area in which the pattern of search regions is changed; FIG. 10 is a diagram showing still another example of the first search area and the second search area; FIG. 10 is a diagram showing still another example of an area in which the pattern of search regions is changed; FIG.
  • FIG. 10 is a diagram showing still another example of an area in which the pattern of search regions is changed;
  • FIG. 10 is a diagram showing still another example of the first search area and the second search area;
  • FIG. 10 is a diagram showing still another example of an area in which the pattern of search regions is changed;
  • FIG. 5 is a diagram showing an example of search areas set according to sizes of implements connected to a work vehicle;
  • FIG. 5 is a diagram showing an example of search areas set according to the positional relationship between the work vehicle and the implement;
  • agricultural machinery means machinery used in agricultural applications.
  • the agricultural machine of the present disclosure may be a mobile agricultural machine capable of performing agricultural work while moving.
  • Examples of agricultural machinery include tractors, harvesters, rice transplanters, ride-on tenders, vegetable transplanters, lawn mowers, seeders, fertilizer applicators, and agricultural mobile robots.
  • a work vehicle such as a tractor function as an "agricultural machine” on its own, but a work vehicle (implement) attached to or towed by the work vehicle and the work vehicle as a whole function as one "agricultural machine”.
  • Agricultural machines perform farm work such as plowing, sowing, pest control, fertilization, planting of crops, or harvesting on the ground in fields. These agricultural operations are sometimes referred to as “ground operations” or simply “operations.” Traveling while a vehicle-type agricultural machine performs farm work is sometimes referred to as "working travel.”
  • “Automated operation” means that the movement of agricultural machinery is controlled by the operation of the control device, not by manual operation by the driver.
  • Agricultural machines that operate automatically are sometimes called “automatic driving farm machines” or “robot farm machines”.
  • automated driving farm machines not only the movement of the agricultural machine but also the operation of agricultural work (for example, the operation of the working machine) may be automatically controlled.
  • the agricultural machine is a vehicle-type machine
  • the automatic driving of the agricultural machine is called “automatic driving”.
  • the controller may control at least one of steering, movement speed adjustment, movement start and stop required for movement of the agricultural machine.
  • the control device may control operations such as raising and lowering the work implement and starting and stopping the operation of the work implement.
  • Movement by automatic operation may include not only movement of the agricultural machine toward a destination along a predetermined route, but also movement following a tracking target.
  • An agricultural machine that operates automatically may move partially based on a user's instruction.
  • the agricultural machine that automatically operates may operate in a manual operation mode in which the agricultural machine is moved by manual operation by the driver.
  • the act of steering an agricultural machine not by manual operation but by the action of a control device is called "automatic steering".
  • Part or all of the controller may be external to the agricultural machine. Communication, such as control signals, commands, or data, may occur between a control device external to the agricultural machine and the agricultural machine.
  • Agricultural machines that operate automatically may move autonomously while sensing the surrounding environment without human involvement in controlling the movement of the agricultural machines.
  • Agricultural machines capable of autonomous movement can run unmanned inside or outside a field (for example, on roads). Obstacle detection and obstacle avoidance operation may be performed during autonomous movement.
  • a "work plan" is data that defines a schedule for one or more farm work to be performed by an agricultural machine.
  • a work plan may include, for example, information indicating the order of farm work to be performed by the agricultural machine and the field on which each farm work is to be performed.
  • the work plan may include information about the days and times each farm work is scheduled to occur.
  • the work plan may be created by a processing device that communicates with the agricultural machine to manage farm work, or a processing device mounted on the agricultural machine.
  • the processing device can, for example, create a work plan based on information input by a user (a farmer, farm worker, etc.) by operating a terminal device.
  • a processing device that communicates with agricultural machines and manages farm work is referred to as a “management device”.
  • the management device may manage farm work of a plurality of agricultural machines.
  • the management device may create a work plan including information on each farm work performed by each of the plurality of agricultural machines.
  • the work plan may be downloaded by each agricultural machine and stored in storage. According to the work plan, each agricultural machine can automatically go to the field and perform the scheduled agricultural work.
  • Environmental map is data expressing the position or area of an object existing in the environment in which the agricultural machine moves, using a predetermined coordinate system.
  • Environmental maps are sometimes simply referred to as "maps" or “map data”.
  • the coordinate system that defines the environment map can be, for example, a world coordinate system, such as a geographic coordinate system fixed with respect to the earth.
  • the environment map may include information other than position (for example, attribute information and other information) about objects existing in the environment.
  • Environmental maps include various types of maps, such as point cloud maps or grid maps. Local map or partial map data generated or processed in the process of constructing an environment map is also referred to as a "map" or "map data”.
  • “Farm road” means a road that is mainly used for agricultural purposes.
  • Agricultural roads are not limited to roads paved with asphalt, but also include unpaved roads covered with soil or gravel.
  • Agricultural roads include roads (including private roads) exclusively passable by vehicle-type agricultural machines (for example, work vehicles such as tractors) and roads passable by general vehicles (passenger cars, trucks, buses, etc.). The work vehicle may automatically travel on general roads in addition to farm roads.
  • General roads are roads maintained for general vehicle traffic.
  • FIG. 1 is a diagram for explaining an overview of an agricultural management system 1 according to an exemplary embodiment of the present disclosure.
  • the agricultural management system 1 shown in FIG. 1 includes a work vehicle 100 , a terminal device 400 and a management device 600 .
  • Terminal device 400 is a computer used by a user who remotely monitors work vehicle 100 .
  • the management device 600 is a computer managed by a business operator who operates the agricultural management system 1 .
  • Work vehicle 100 , terminal device 400 , and management device 600 can communicate with each other via network 80 .
  • the agricultural management system 1 may include multiple work vehicles or other agricultural machines.
  • the work vehicle 100 in this embodiment is a tractor.
  • Work vehicle 100 can be equipped with a work implement on one or both of its rear and front portions.
  • the work vehicle 100 can travel in a field while performing farm work according to the type of work machine.
  • Work vehicle 100 may travel inside or outside a farm without a work implement attached.
  • the work vehicle 100 has an automatic driving function.
  • the work vehicle 100 can be driven not by manual operation but by the function of the control device.
  • the control device in this embodiment is provided inside the work vehicle 100 and can control both the speed and steering of the work vehicle 100 .
  • the work vehicle 100 can automatically travel not only inside the farm field but also outside the farm field (for example, roads).
  • the work vehicle 100 is equipped with devices such as a GNSS receiver and a LiDAR sensor, which are used for positioning or self-position estimation.
  • the control device of work vehicle 100 automatically causes work vehicle 100 to travel based on the position of work vehicle 100 and information on the target route.
  • the control device also controls the operation of the work implement.
  • the work vehicle 100 can perform farm work using the work machine while automatically traveling in the field.
  • the work vehicle 100 can automatically travel along the target route on a road outside the field (for example, a farm road or a general road).
  • the work vehicle 100 automatically travels along a road outside the field while utilizing data output from sensing devices such as the camera 120, the obstacle sensor 130, and the LiDAR sensor 140.
  • the management device 600 is a computer that manages farm work by the work vehicle 100 .
  • the management device 600 may be a server computer that centrally manages information about agricultural fields on the cloud and supports agriculture by utilizing data on the cloud, for example.
  • the management device 600 for example, creates a work plan for the work vehicle 100 and causes the work vehicle 100 to perform farm work according to the work plan.
  • Management device 600 generates a target course in a field based on information which a user inputted using terminal device 400 or other devices, for example.
  • Management device 600 may further generate and edit an environment map based on data collected by work vehicle 100 or other moving objects using sensing devices such as LiDAR sensors.
  • Management device 600 transmits the generated work plan, target route, and environment map data to work vehicle 100 .
  • Work vehicle 100 automatically performs movement and farm work based on those data.
  • the terminal device 400 is a computer used by a user who is remote from the work vehicle 100 .
  • the terminal device 400 shown in FIG. 1 is a laptop computer, but is not limited to this.
  • the terminal device 400 may be a stationary computer such as a desktop PC (personal computer), or a mobile terminal such as a smart phone or tablet computer.
  • the terminal device 400 can be used to remotely monitor the work vehicle 100 or remotely operate the work vehicle 100 .
  • the terminal device 400 can display images captured by one or more cameras (imaging devices) included in the work vehicle 100 on the display.
  • the terminal device 400 can also display on the display a setting screen for the user to input information necessary for creating a work plan (for example, a schedule for each agricultural work) for the work vehicle 100 .
  • the terminal device 400 transmits the input information to the management device 600 .
  • Management device 600 creates a work plan based on the information.
  • the terminal device 400 may further have a function of displaying on the display a setting screen for the user to input information necessary for setting the target route.
  • FIG. 2 is a side view schematically showing an example of work vehicle 100 and work machine 300 coupled to work vehicle 100.
  • the work vehicle 100 in this embodiment can operate in both manual operation mode and automatic operation mode. In the automatic operation mode, work vehicle 100 can run unmanned. The work vehicle 100 can be automatically driven both inside and outside the field.
  • the work vehicle 100 includes a vehicle body 101 , a prime mover (engine) 102 and a transmission (transmission) 103 .
  • a vehicle body 101 is provided with wheels 104 with tires and a cabin 105 .
  • Wheels 104 include a pair of front wheels 104F and a pair of rear wheels 104R.
  • a driver's seat 107 , a steering device 106 , an operation terminal 200 , and a group of switches for operation are provided inside the cabin 105 .
  • one or both of the front wheels 104F and the rear wheels 104R may be a plurality of wheels (crawlers) equipped with tracks instead of wheels with tires. .
  • the work vehicle 100 can include at least one sensing device that senses the environment around the work vehicle 100 and a processing device that processes sensing data output from the at least one sensing device.
  • work vehicle 100 includes a plurality of sensing devices.
  • the sensing device includes multiple cameras 120 , LiDAR sensors 140 and multiple obstacle sensors 130 .
  • the cameras 120 may be provided on the front, rear, left, and right of the work vehicle 100, for example. Camera 120 captures an image of the environment around work vehicle 100 and generates image data. The image acquired by the camera 120 can be output to a processing device mounted on the work vehicle 100 and transmitted to the terminal device 400 for remote monitoring. The image can also be used to monitor work vehicle 100 during unmanned operation. The camera 120 can also be used to generate images for recognizing surrounding features or obstacles, white lines, signs, displays, etc. when the work vehicle 100 travels on a road outside the field (farm road or general road). can be used.
  • the LiDAR sensor 140 in the example of FIG. 2 is arranged at the lower front portion of the vehicle body 101. LiDAR sensor 140 may be provided at other locations. For example, LiDAR sensor 140 may be provided on top of cabin 105 . LiDAR sensor 140 may be a 3D-LiDAR sensor, but may also be a 2D-LiDAR sensor.
  • the LiDAR sensor 140 senses the environment around the work vehicle 100 and outputs sensing data.
  • the LiDAR sensor 140 detects the distance and direction to each measurement point of an object present in the surrounding environment, or the three-dimensional or two-dimensional coordinate value of each measurement point while the work vehicle 100 is traveling mainly outside the farm field.
  • the sensor data output from LiDAR sensor 140 is processed by the control device of work vehicle 100 .
  • the control device can estimate the self-location of the work vehicle 100 by matching the sensor data and the environment map.
  • the control device can further detect objects such as obstacles existing around work vehicle 100 based on the sensor data.
  • the controller can also generate or edit an environment map using algorithms such as SLAM (Simultaneous Localization and Mapping).
  • Work vehicle 100 may include multiple LiDAR sensors arranged at different locations and with different orientations.
  • a plurality of obstacle sensors 130 shown in FIG. 2 are provided at the front and rear of the cabin 105. Obstacle sensors 130 may be placed at other locations as well. For example, one or more obstacle sensors 130 may be provided at any position on the side, front, and rear of the vehicle body 101 . Obstacle sensors 130 may include, for example, laser scanners or ultrasonic sonars. The obstacle sensor 130 is used to detect surrounding obstacles and stop or detour the work vehicle 100 during automatic travel.
  • a LiDAR sensor 140 may be utilized as one of the obstacle sensors 130 .
  • the work vehicle 100 further includes a GNSS unit 110.
  • GNSS unit 110 includes a GNSS receiver.
  • the GNSS receiver may include an antenna that receives signals from GNSS satellites and a processor that calculates the position of work vehicle 100 based on the signals received by the antenna.
  • the GNSS unit 110 receives satellite signals transmitted from multiple GNSS satellites and performs positioning based on the satellite signals.
  • GNSS is a general term for satellite positioning systems such as GPS (Global Positioning System), QZSS (Quasi-Zenith Satellite System, eg, Michibiki), GLONASS, Galileo, and BeiDou.
  • GPS Global Positioning System
  • QZSS Quadasi-Zenith Satellite System
  • GLONASS Galileo
  • BeiDou BeiDou.
  • the GNSS unit 110 may include an inertial measurement unit (IMU). Signals from the IMU can be used to supplement the location data.
  • the IMU can measure the tilt and minute movements of work vehicle 100 . Positioning performance can be improved by using data obtained by the IMU to supplement position data based on satellite signals.
  • the control device of work vehicle 100 may use sensing data acquired by sensing devices such as camera 120 and/or LiDAR sensor 140 for positioning in addition to the positioning result by GNSS unit 110 .
  • sensing devices such as camera 120 and/or LiDAR sensor 140
  • the data acquired by the camera 120 and/or the LiDAR sensor 140 can be estimated with high accuracy based on the environment map stored in advance in the storage device.
  • the position of the work vehicle 100 can be determined with higher accuracy.
  • the prime mover 102 may be, for example, a diesel engine.
  • An electric motor may be used instead of the diesel engine.
  • the transmission 103 can change the propulsive force and the moving speed of the work vehicle 100 by shifting.
  • the transmission 103 can also switch between forward and reverse travel of the work vehicle 100 .
  • the steering device 106 includes a steering wheel, a steering shaft connected to the steering wheel, and a power steering device that assists steering by the steering wheel.
  • the front wheels 104F are steerable wheels, and the running direction of the work vehicle 100 can be changed by changing the turning angle (also referred to as the "steering angle") of the front wheels 104F.
  • the steering angle of the front wheels 104F can be changed by operating the steering wheel.
  • the power steering system includes a hydraulic system or an electric motor that supplies an assist force for changing the steering angle of the front wheels 104F. When automatic steering is performed, the steering angle is automatically adjusted by the power of the hydraulic system or the electric motor under the control of the control device arranged in the work vehicle 100 .
  • a coupling device 108 is provided at the rear portion of the vehicle body 101 .
  • the coupling device 108 includes, for example, a three-point support device (also called a "three-point link” or “three-point hitch”), a PTO (Power Take Off) shaft, a universal joint, and a communication cable.
  • Work implement 300 can be attached to and detached from work vehicle 100 by coupling device 108 .
  • the coupling device 108 can change the position or attitude of the working machine 300 by elevating the three-point linkage by, for example, a hydraulic device.
  • power can be sent from work vehicle 100 to work implement 300 via the universal joint.
  • Work vehicle 100 can cause work implement 300 to perform a predetermined work while pulling work implement 300 .
  • the coupling device may be provided at the front portion of the vehicle body 101 . In that case, work implement 300 can be connected to the front portion of work vehicle 100 .
  • the working machine 300 shown in FIG. 2 is a rotary tiller, but the working machine 300 is not limited to the rotary tiller. Any implement such as seeder, spreader, transplanter, mower, rake, baler, harvester, sprayer, or harrow It can be used by connecting to the work vehicle 100 .
  • the work vehicle 100 shown in FIG. 2 is capable of manned operation, but may only be compatible with unmanned operation. In that case, components required only for manned operation, such as cabin 105 , steering device 106 and driver's seat 107 , may not be provided in work vehicle 100 .
  • the unmanned work vehicle 100 can travel autonomously or remotely controlled by a user.
  • FIG. 3 is a block diagram showing a configuration example of work vehicle 100 and work machine 300. As shown in FIG. Work vehicle 100 and work machine 300 can communicate with each other via a communication cable included in coupling device 108 . Work vehicle 100 can communicate with terminal device 400 and management device 600 via network 80 .
  • the GNSS unit 110 comprises a GNSS receiver 111 , an RTK receiver 112 , an inertial measurement unit (IMU) 115 and processing circuitry 116 .
  • the sensor group 150 includes a steering wheel sensor 152 , a steering angle sensor 154 and an axle sensor 156 .
  • the control system 160 comprises a processing device 161 , a storage device 170 and a control device 180 .
  • the controller 180 includes a plurality of electronic control units (ECUs) 181-185.
  • Work machine 300 includes a drive device 340 , a control device 380 , and a communication device 390 .
  • FIG. 3 shows constituent elements that are relatively highly relevant to the operation of automatic driving by the work vehicle 100, and illustration of other constituent elements is omitted.
  • the GNSS receiver 111 in the GNSS unit 110 receives satellite signals transmitted from multiple GNSS satellites and generates GNSS data based on the satellite signals.
  • GNSS data is generated in a predetermined format, eg, NMEA-0183 format.
  • GNSS data may include, for example, values indicating the identification number, elevation, azimuth, and received strength of each satellite from which the satellite signal was received.
  • the GNSS unit 110 shown in FIG. 3 performs positioning of the work vehicle 100 using RTK (Real Time Kinematic)-GNSS.
  • FIG. 4 is a conceptual diagram showing an example of the work vehicle 100 that performs positioning by RTK-GNSS. Positioning by RTK-GNSS uses correction signals transmitted from the reference station 60 in addition to satellite signals transmitted from a plurality of GNSS satellites 50 .
  • the reference station 60 can be installed near the field where the work vehicle 100 travels (for example, within 10 km from the work vehicle 100).
  • the reference station 60 generates a correction signal, for example in RTCM format, based on the satellite signals received from the plurality of GNSS satellites 50 and transmits it to the GNSS unit 110 .
  • RTK receiver 112 includes an antenna and modem to receive correction signals transmitted from reference station 60 .
  • the processing circuit 116 of the GNSS unit 110 corrects the positioning result by the GNSS receiver 111 based on the correction signal.
  • RTK-GNSS it is possible to perform positioning with an accuracy of, for example, an error of several centimeters.
  • Location data including latitude, longitude, and altitude information, are obtained by RTK-GNSS high-precision positioning.
  • the GNSS unit 110 calculates the position of the work vehicle 100, for example, at a frequency of about 1 to 10 times per second.
  • the positioning method is not limited to RTK-GNSS, and any positioning method (interferometric positioning method, relative positioning method, etc.) that can obtain position data with the required accuracy can be used.
  • positioning may be performed using VRS (Virtual Reference Station) or DGPS (Differential Global Positioning System). If position data with the required accuracy can be obtained without using the correction signal transmitted from the reference station 60, the position data may be generated without using the correction signal.
  • GNSS unit 110 may not include RTK receiver 112 .
  • the position of work vehicle 100 is estimated.
  • the position of work vehicle 100 may be estimated by matching data output from LiDAR sensor 140 and/or camera 120 with a highly accurate environmental map.
  • the GNSS unit 110 in this embodiment further includes an IMU 115 .
  • IMU 115 may include a 3-axis accelerometer and a 3-axis gyroscope.
  • the IMU 115 may include an orientation sensor, such as a 3-axis geomagnetic sensor.
  • IMU 115 functions as a motion sensor and can output signals indicating various quantities such as acceleration, speed, displacement, and attitude of work vehicle 100 .
  • Processing circuitry 116 may more accurately estimate the position and orientation of work vehicle 100 based on signals output from IMU 115 in addition to satellite signals and correction signals. Signals output from IMU 115 may be used to correct or impute positions calculated based on satellite signals and correction signals.
  • IMU 115 outputs signals more frequently than GNSS receiver 111 .
  • processing circuitry 116 can measure the position and orientation of work vehicle 100 at a higher frequency (eg, 10 Hz or higher).
  • a higher frequency eg, 10 Hz or higher.
  • IMU 115 may be provided as a separate device from GNSS unit 110 .
  • the camera 120 is an imaging device that captures the surrounding environment of the work vehicle 100 .
  • the camera 120 includes an image sensor such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor).
  • Camera 120 may also include an optical system, including one or more lenses, and signal processing circuitry.
  • the camera 120 captures an image of the environment around the work vehicle 100 while the work vehicle 100 is running, and generates image (for example, moving image) data.
  • the camera 120 can capture moving images at a frame rate of 3 frames per second (fps) or higher, for example.
  • the image generated by the camera 120 can be used, for example, when a remote monitor uses the terminal device 400 to check the environment around the work vehicle 100 .
  • the images generated by camera 120 may be used for positioning or obstacle detection.
  • a plurality of cameras 120 may be provided at different positions on work vehicle 100, or a single camera may be provided. There may be separate visible cameras for generating visible light images and infrared cameras for generating infrared images. Both visible and infrared cameras may be provided as cameras for generating images for surveillance. Infrared cameras can also be used to detect obstacles at night.
  • the obstacle sensor 130 detects objects existing around the work vehicle 100 .
  • Obstacle sensors 130 may include, for example, laser scanners or ultrasonic sonars. Obstacle sensor 130 outputs a signal indicating the presence of an obstacle when an object is present closer than a predetermined distance from obstacle sensor 130 .
  • a plurality of obstacle sensors 130 may be provided at different positions on work vehicle 100 . For example, multiple laser scanners and multiple ultrasonic sonars may be placed at different locations on work vehicle 100 . By providing such many obstacle sensors 130, blind spots in monitoring obstacles around the work vehicle 100 can be reduced.
  • the steering wheel sensor 152 measures the rotation angle of the steering wheel of the work vehicle 100.
  • the steering angle sensor 154 measures the steering angle of the front wheels 104F, which are steered wheels. Measured values by the steering wheel sensor 152 and the steering angle sensor 154 are used for steering control by the controller 180 .
  • the axle sensor 156 measures the rotational speed of the axle connected to the wheel 104, that is, the number of revolutions per unit time.
  • Axle sensor 156 can be, for example, a sensor utilizing a magnetoresistive element (MR), a Hall element, or an electromagnetic pickup.
  • the axle sensor 156 outputs, for example, a numerical value indicating the number of rotations per minute (unit: rpm) of the axle.
  • Axle sensors 156 are used to measure the speed of work vehicle 100 .
  • the drive device 240 includes various devices necessary for running the work vehicle 100 and driving the work implement 300, such as the prime mover 102, the transmission device 103, the steering device 106, and the coupling device 108 described above.
  • Prime mover 102 may comprise an internal combustion engine, such as a diesel engine, for example.
  • Drive system 240 may include an electric motor for traction instead of or in addition to the internal combustion engine.
  • the buzzer 220 is an audio output device that emits a warning sound to notify an abnormality. Buzzer 220 emits a warning sound when an obstacle is detected, for example, during automatic driving. Buzzer 220 is controlled by controller 180 .
  • the processing device 161 is, for example, a microprocessor or microcontroller.
  • the processing device 161 processes sensing data output from sensing devices such as the camera 120 , the obstacle sensor 130 and the LiDAR sensor 140 .
  • the processing device 161 detects objects located around the work vehicle 100 based on data output from the camera 120 , the obstacle sensor 130 and the LiDAR sensor 140 .
  • the storage device 170 includes one or more storage media such as flash memory or magnetic disk.
  • Storage device 170 stores various data generated by GNSS unit 110 , camera 120 , obstacle sensor 130 , LiDAR sensor 140 , sensor group 150 , and control device 180 .
  • the data stored in the storage device 170 may include map data (environmental map) of the environment in which the work vehicle 100 travels and target route data for automatic driving.
  • the environment map includes information of a plurality of farm fields where work vehicle 100 performs farm work and roads around the fields.
  • the environment map and target route may be generated by a processor in management device 600 .
  • the control device 180 may have the function of generating or editing the environment map and the target route. Control device 180 can edit the environment map and target route acquired from management device 600 according to the traveling environment of work vehicle 100 .
  • the storage device 170 also stores work plan data received by the communication device 190 from the management device 600 .
  • the storage device 170 also stores a computer program that causes each ECU in the processing device 161 and the control device 180 to execute various operations described later.
  • a computer program can be provided to work vehicle 100 via a storage medium (such as a semiconductor memory or an optical disk) or an electric communication line (such as the Internet).
  • Such computer programs may be sold as commercial software.
  • the control device 180 includes multiple ECUs.
  • the plurality of ECUs include, for example, an ECU 181 for speed control, an ECU 182 for steering control, an ECU 183 for work machine control, an ECU 184 for automatic operation control, and an ECU 185 for route generation.
  • the ECU 181 controls the speed of the work vehicle 100 by controlling the prime mover 102, the transmission 103, and the brakes included in the drive device 240.
  • the ECU 182 controls the steering of the work vehicle 100 by controlling the hydraulic system or the electric motor included in the steering system 106 based on the measurement value of the steering wheel sensor 152 .
  • the ECU 183 controls the operations of the three-point linkage and the PTO shaft included in the coupling device 108 in order to cause the working machine 300 to perform desired operations. ECU 183 also generates a signal for controlling the operation of work machine 300 and transmits the signal from communication device 190 to work machine 300 .
  • the ECU 184 performs calculations and controls for realizing automatic driving based on data output from the GNSS unit 110, camera 120, obstacle sensor 130, LiDAR sensor 140, sensor group 150, and processing device 161. For example, ECU 184 identifies the position of work vehicle 100 based on data output from at least one of GNSS unit 110 , camera 120 , and LiDAR sensor 140 . Within the field, ECU 184 may determine the position of work vehicle 100 based solely on data output from GNSS unit 110 . ECU 184 may estimate or correct the position of work vehicle 100 based on data acquired by camera 120 and/or LiDAR sensor 140 . By using the data acquired by the camera 120 and/or the LiDAR sensor 140, the accuracy of positioning can be further improved.
  • ECU 184 estimates the position of work vehicle 100 using data output from LiDAR sensor 140 and/or camera 120 .
  • ECU 184 may estimate the position of work vehicle 100 by matching data output from LiDAR sensor 140 and/or camera 120 with an environmental map.
  • the ECU 184 performs calculations necessary for the work vehicle 100 to travel along the target route based on the estimated position of the work vehicle 100 .
  • the ECU 184 sends a speed change command to the ECU 181 and a steering angle change command to the ECU 182 .
  • ECU 181 changes the speed of work vehicle 100 by controlling prime mover 102, transmission 103, or brakes in response to speed change commands.
  • the ECU 182 changes the steering angle by controlling the steering device 106 in response to the command to change the steering angle.
  • the ECU 185 can determine the destination of the work vehicle 100 based on the work plan stored in the storage device 170, and determine the target route from the start point of movement of the work vehicle 100 to the destination point. ECU 185 may perform processing for detecting objects located around work vehicle 100 based on data output from camera 120 , obstacle sensor 130 and LiDAR sensor 140 .
  • control device 180 realizes automatic operation.
  • control device 180 controls drive device 240 based on the measured or estimated position of work vehicle 100 and the target route. Thereby, the control device 180 can cause the work vehicle 100 to travel along the target route.
  • a plurality of ECUs included in the control device 180 can communicate with each other according to a vehicle bus standard such as CAN (Controller Area Network). Instead of CAN, a higher-speed communication method such as in-vehicle Ethernet (registered trademark) may be used.
  • CAN Controller Area Network
  • An on-board computer that integrates at least some functions of the ECUs 181 to 185 may be provided.
  • the control device 180 may include ECUs other than the ECUs 181 to 185, and an arbitrary number of ECUs may be provided according to functions.
  • Each ECU includes processing circuitry that includes one or more processors.
  • the processor 161 may be included in the controller 180 .
  • Processor 161 may be integrated with any of the ECUs included in controller 180 .
  • the communication device 190 is a device including circuits for communicating with the work machine 300 , the terminal device 400 and the management device 600 .
  • Communication device 190 includes a circuit for transmitting/receiving signals conforming to the ISOBUS standard such as ISOBUS-TIM to/from communication device 390 of working machine 300 .
  • ISOBUS-TIM As a result, work machine 300 can be caused to perform a desired operation, or information can be acquired from work machine 300 .
  • Communication device 190 may further include an antenna and communication circuitry for transmitting and receiving signals over network 80 to and from respective communication devices of terminal device 400 and management device 600 .
  • Network 80 may include, for example, cellular mobile communication networks such as 3G, 4G or 5G and the Internet.
  • the communication device 190 may have a function of communicating with a mobile terminal used by a supervisor near the work vehicle 100 .
  • Communication with such mobile terminals is based on any wireless communication standard, such as Wi-Fi (registered trademark), cellular mobile communication such as 3G, 4G or 5G, or Bluetooth (registered trademark).
  • Wi-Fi registered trademark
  • cellular mobile communication such as 3G, 4G or 5G
  • Bluetooth registered trademark
  • the operation terminal 200 is a terminal for the user to perform operations related to the travel of the work vehicle 100 and the operation of the work machine 300, and is also called a virtual terminal (VT).
  • Operation terminal 200 may include a display device such as a touch screen and/or one or more buttons.
  • the display device can be a display such as a liquid crystal or an organic light emitting diode (OLED), for example.
  • OLED organic light emitting diode
  • the operation terminal 200 By operating the operation terminal 200, the user can perform various operations such as switching the automatic driving mode on/off, recording or editing an environment map, setting a target route, and switching the working machine 300 on/off. can be executed. At least part of these operations can also be realized by operating the operation switch group 210 .
  • Operation terminal 200 may be configured to be removable from work vehicle 100 .
  • a user located away from work vehicle 100 may operate operation terminal 200 that has been removed to control the operation of work vehicle 100 .
  • the user may control the operation of work vehicle 100 by operating a computer, such as terminal device 400 , in which necessary application software is installed, instead of operating terminal 200 .
  • FIG. 5 is a diagram showing an example of the operation terminal 200 and the operation switch group 210 provided inside the cabin 105.
  • FIG. Inside the cabin 105, an operation switch group 210 including a plurality of switches that can be operated by the user is arranged.
  • the operation switch group 210 includes, for example, a switch for selecting the gear stage of the main transmission or the sub-transmission, a switch for switching between the automatic operation mode and the manual operation mode, a switch for switching between forward and reverse, and a working machine.
  • a switch or the like for raising or lowering 300 may be included. Note that if the work vehicle 100 only operates unmanned and does not have a function of manned operation, the work vehicle 100 need not include the operation switch group 210 .
  • the driving device 340 in the work machine 300 shown in FIG. 3 performs operations necessary for the work machine 300 to perform a predetermined work.
  • Drive device 340 includes a device, such as a hydraulic device, an electric motor, or a pump, depending on the application of work machine 300 .
  • Controller 380 controls the operation of drive 340 .
  • Control device 380 causes drive device 340 to perform various operations in response to signals transmitted from work vehicle 100 via communication device 390 .
  • a signal corresponding to the state of work implement 300 can also be transmitted from communication device 390 to work vehicle 100 .
  • FIG. 6 is a block diagram illustrating a schematic hardware configuration of the management device 600 and the terminal device 400. As shown in FIG. 6
  • the management device 600 includes a storage device 650 , a processor 660 , a ROM (Read Only Memory) 670 , a RAM (Random Access Memory) 680 and a communication device 690 . These components are communicatively connected to each other via a bus.
  • the management device 600 can function as a cloud server that manages the schedule of agricultural work in the field performed by the work vehicle 100 and utilizes managed data to support agriculture.
  • a user can use the terminal device 400 to input information necessary for creating a work plan and upload the information to the management device 600 via the network 80 . Based on the information, the management device 600 can create a farm work schedule, that is, a work plan.
  • the management device 600 can also generate or edit an environment map. The environment map may be distributed from a computer outside the management device 600 .
  • the communication device 690 is a communication module for communicating with the work vehicle 100 and the terminal device 400 via the network 80.
  • the communication device 690 can perform wired communication conforming to a communication standard such as IEEE1394 (registered trademark) or Ethernet (registered trademark), for example.
  • the communication device 690 may perform wireless communication conforming to the Bluetooth® standard or Wi-Fi standard, or cellular mobile communication such as 3G, 4G or 5G.
  • the processor 660 may be, for example, a semiconductor integrated circuit including a central processing unit (CPU).
  • Processor 660 may be implemented by a microprocessor or microcontroller.
  • the processor 660 is an FPGA (Field Programmable Gate Array) equipped with a CPU, a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), an ASSP (Application Specific Standard Product), or selected from these circuits. It can also be realized by a combination of two or more circuits.
  • the processor 660 sequentially executes a computer program describing a group of instructions for executing at least one process stored in the ROM 670 to achieve desired processes.
  • the ROM 670 is, for example, a writable memory (eg PROM), a rewritable memory (eg flash memory), or a read-only memory.
  • ROM 670 stores programs that control the operation of processor 660 .
  • the ROM 670 does not have to be a single storage medium, and may be a collection of multiple storage media. Part of the collection of multiple storage media may be removable memory.
  • the RAM 680 provides a work area for temporarily expanding the control program stored in the ROM 670 at boot time.
  • the RAM 680 does not have to be a single storage medium, and may be a collection of multiple storage media.
  • the storage device 650 mainly functions as database storage.
  • Storage device 650 may be, for example, a magnetic storage device or a semiconductor storage device.
  • An example of a magnetic storage device is a hard disk drive (HDD).
  • An example of a semiconductor memory device is a solid state drive (SSD).
  • Storage device 650 may be a device independent of management device 600 .
  • the storage device 650 may be a storage device connected to the management device 600 via the network 80, such as a cloud storage.
  • the terminal device 400 includes an input device 420 , a display device 430 , a storage device 450 , a processor 460 , a ROM 470 , a RAM 480 and a communication device 490 . These components are communicatively connected to each other via a bus.
  • the input device 420 is a device for converting a user's instruction into data and inputting it to the computer.
  • Input device 420 may be, for example, a keyboard, mouse, or touch panel.
  • Display device 430 may be, for example, a liquid crystal display or an organic EL display. Descriptions of the processor 460, the ROM 470, the RAM 480, the storage device 450, and the communication device 490 are the same as those described in the hardware configuration example of the management device 600, and the description thereof will be omitted.
  • the work vehicle 100 in this embodiment can automatically travel both inside and outside the field.
  • work vehicle 100 drives work machine 300 to perform predetermined farm work while traveling along a preset target route.
  • work vehicle 100 stops traveling, emits a warning sound from buzzer 220 , and performs operations such as transmitting a warning signal to terminal device 400 .
  • Positioning of the work vehicle 100 in the field is performed mainly based on data output from the GNSS unit 110 .
  • the work vehicle 100 automatically travels along a target route set on a farm road or a general road outside the field.
  • the work vehicle 100 utilizes data acquired by the camera 120 and/or the LiDAR sensor 140 while traveling outside the field. Outside the field, when an obstacle is detected, work vehicle 100 avoids the obstacle or stops on the spot. Outside the field, the position of work vehicle 100 is estimated based on data output from LiDAR sensor 140 and/or camera 120 in addition to positioning data output from GNSS unit 110 .
  • FIG. 7 is a diagram schematically showing an example of the working vehicle 100 that automatically travels along a target route in a field.
  • farm field 70 includes a work area 72 where work vehicle 100 performs work using work machine 300 , and a headland 74 located near the outer edge of farm field 70 .
  • Which area of the farm field 70 corresponds to the work area 72 or the headland 74 on the map can be set in advance by the user.
  • the target paths in this example include a plurality of parallel main paths P1 and a plurality of turning paths P2 connecting the plurality of main paths P1.
  • the main path P1 is located within the working area 72 and the turning path P2 is located within the headland 74 .
  • each main path P1 may include a curved portion.
  • the dashed line in FIG. 7 represents the working width of work implement 300 .
  • the working width is preset and recorded in the storage device 170 .
  • the working width can be set and recorded by the user operating the operation terminal 200 or the terminal device 400 . Alternatively, the working width may be automatically recognized and recorded when work implement 300 is connected to work vehicle 100 .
  • the intervals between the main paths P1 can be set according to the working width.
  • a target route can be created based on a user's operation before automatic driving is started.
  • the target route may be created to cover the entire work area 72 within the field 70, for example.
  • the work vehicle 100 automatically travels along a target route as shown in FIG. 7 from a work start point to a work end point while repeating reciprocation. Note that the target route shown in FIG. 7 is merely an example, and the method of determining the target route is arbitrary.
  • control device 180 Next, an example of control during automatic operation in a field by the control device 180 will be described.
  • FIG. 8 is a flowchart showing an example of the steering control operation during automatic driving executed by the control device 180.
  • the control device 180 performs automatic steering by executing the operations of steps S121 to S125 shown in FIG. As for the speed, it is maintained at a preset speed, for example.
  • the control device 180 acquires data indicating the position of the work vehicle 100 generated by the GNSS unit 110 while the work vehicle 100 is traveling (step S121).
  • control device 180 calculates the deviation between the position of work vehicle 100 and the target route (step S122). The deviation represents the distance between the position of work vehicle 100 at that time and the target route.
  • the control device 180 determines whether or not the calculated positional deviation exceeds a preset threshold value (step S123).
  • control device 180 changes the steering angle by changing the control parameters of the steering device included in the drive device 240 so that the deviation becomes smaller. If the deviation does not exceed the threshold in step S123, the operation of step S124 is omitted. In subsequent step S125, control device 180 determines whether or not an operation end command has been received.
  • An operation end command can be issued, for example, when the user instructs to stop the automatic operation by remote control, or when work vehicle 100 reaches the destination. If the command to end the operation has not been issued, the process returns to step S121, and similar operations are executed based on the newly measured position of the work vehicle 100.
  • FIG. The control device 180 repeats the operations of steps S121 to S125 until an operation end command is issued. The above operations are executed by ECUs 182 and 184 in control device 180 .
  • controller 180 controls drive 240 based only on the deviation between the position of work vehicle 100 identified by GNSS unit 110 and the target path, but also takes into account heading deviation. may be controlled. For example, when the azimuth deviation, which is the angular difference between the direction of the work vehicle 100 identified by the GNSS unit 110 and the direction of the target route, exceeds a preset threshold value, the control device 180 drives according to the deviation.
  • a control parameter eg, steering angle
  • FIG. 9A is a diagram showing an example of the work vehicle 100 traveling along the target route P.
  • FIG. 9B is a diagram showing an example of work vehicle 100 at a position shifted to the right from target path P.
  • FIG. 9C is a diagram showing an example of work vehicle 100 at a position shifted to the left from target path P.
  • FIG. 9D is a diagram showing an example of the work vehicle 100 oriented in a direction inclined with respect to the target path P.
  • the pose indicating the position and orientation of work vehicle 100 measured by GNSS unit 110 is expressed as r(x, y, ⁇ ).
  • (x, y) are coordinates representing the position of the reference point of work vehicle 100 in the XY coordinate system, which is a two-dimensional coordinate system fixed to the earth.
  • the reference point of work vehicle 100 is at the position where the GNSS antenna is installed on the cabin, but the position of the reference point is arbitrary.
  • is an angle representing the measured orientation of work vehicle 100 .
  • the target path P is parallel to the Y-axis, but in general the target path P is not necessarily parallel to the Y-axis.
  • control device 180 maintains the steering angle and speed of work vehicle 100 without changing.
  • control device 180 steers work vehicle 100 so that the traveling direction of work vehicle 100 leans leftward and approaches path P. change the angle.
  • the speed may be changed in addition to the steering angle.
  • the magnitude of the steering angle can be adjusted, for example, according to the magnitude of the positional deviation ⁇ x.
  • control device 180 steers so that the traveling direction of work vehicle 100 leans to the right and approaches path P. change the angle. Also in this case, the speed may be changed in addition to the steering angle. The amount of change in the steering angle can be adjusted, for example, according to the magnitude of the positional deviation ⁇ x.
  • control device 180 when work vehicle 100 does not deviate greatly from target path P but is oriented in a different direction from target path P, control device 180 performs steering such that azimuth deviation ⁇ becomes small. change the angle. Also in this case, the speed may be changed in addition to the steering angle.
  • the magnitude of the steering angle can be adjusted, for example, according to the respective magnitudes of the position deviation ⁇ x and heading deviation ⁇ . For example, the smaller the absolute value of the positional deviation ⁇ x, the larger the amount of change in the steering angle corresponding to the azimuth deviation ⁇ .
  • the absolute value of the positional deviation ⁇ x is large, the steering angle will be greatly changed in order to return to the route P, so the absolute value of the azimuth deviation ⁇ will inevitably become large. Conversely, when the absolute value of the positional deviation ⁇ x is small, it is necessary to make the azimuth deviation ⁇ close to zero. Therefore, it is appropriate to relatively increase the weight (that is, the control gain) of the azimuth deviation ⁇ for determining the steering angle.
  • a control technique such as PID control or MPC control (model predictive control) can be applied to the steering control and speed control of work vehicle 100 .
  • PID control or MPC control model predictive control
  • the control device 180 stops the work vehicle 100. At this time, the buzzer 220 may emit a warning sound or may transmit a warning signal to the terminal device 400 . If obstacle avoidance is possible, controller 180 may control drive 240 to avoid the obstacle.
  • the work vehicle 100 in this embodiment can automatically travel not only inside the field but also outside the field. Outside the field, the processing device 161 and/or the control device 180 detects objects (for example, , other vehicles or pedestrians) can be detected. By using the camera 120 and the LiDAR sensor 140, it is possible to detect an object existing at a relatively distant position from the work vehicle 100. FIG. The control device 180 can realize automatic traveling on the road outside the field by performing speed control and steering control so as to avoid the detected object.
  • objects for example, , other vehicles or pedestrians
  • FIG. 10 is a diagram schematically showing an example of a situation in which a plurality of work vehicles 100 are automatically traveling inside a farm field 70 and on roads 76 outside the farm field 70 .
  • the storage device 170 records an environmental map of an area including a plurality of fields 70 and roads around them and a target route.
  • Environmental maps and target routes may be generated by management device 600 or ECU 185 .
  • work vehicle 100 senses the surroundings using sensing devices such as camera 120, obstacle sensor 130, and LiDAR sensor 140 with work implement 300 raised. Drive along the target path.
  • sensing devices such as the camera 120, the obstacle sensor 130, and the LiDAR sensor 140 sense the environment around the work vehicle 100 and output sensing data.
  • Processing device 161 (FIG. 3) detects an object located in a search area around work vehicle 100 based on the sensing data.
  • the search area is an area in which an object is searched among areas around work vehicle 100 sensed by the sensing device.
  • the search area may have the same size as the sensing area sensed by the sensing device, or may be smaller than the sensing area.
  • a search region may also be referred to as a Region of Interest (ROI).
  • ROI Region of Interest
  • the pattern of the search area in the process of detecting an object using the sensing data output by the LiDAR sensor 140 is changed according to the area in which the work vehicle 100 is located.
  • Changing the pattern of the search area means, for example, changing at least one of the shape, size, and relative position of the search area with respect to the work vehicle 100 .
  • the work vehicle 100 of this embodiment includes a sensing system 10 ( FIG. 3 ) that detects objects positioned around the work vehicle 100 using sensing data output by the LiDAR sensor 140 .
  • Sensing system 10 comprises a processing unit 161 and a LiDAR sensor 140 .
  • Sensing system 10 may include GNSS unit 110 and storage device 170 when position data and map data generated by GNSS unit 110 are used to detect the area in which work vehicle 100 is located.
  • Sensing system 10 may include camera 120 and storage device 170 when estimating the area where work vehicle 100 is located by matching the data output from camera 120 with an environmental map.
  • the LiDAR sensor 140 sequentially emits pulses of a laser beam (hereinafter abbreviated as “laser pulses”) while changing the emission direction, and from the time difference between the emission time and the time when the reflected light of each laser pulse is acquired, The distance to the position of the reflection point can be measured.
  • laser pulses a laser beam
  • a “reflection point” may be an object located in the environment around work vehicle 100 .
  • the LiDAR sensor 140 can measure the distance from the LiDAR sensor 140 to the object by any method. Measurement methods of the LiDAR sensor 140 include, for example, a mechanical rotation method, a MEMS method, and a phased array method. These measurement methods differ in the method of emitting a laser pulse (scanning method).
  • a mechanical rotation type LiDAR sensor rotates a cylindrical head that emits a laser pulse and detects the reflected light of the laser pulse to scan the surrounding environment in all directions 360 degrees around the rotation axis.
  • a MEMS-type LiDAR sensor uses a MEMS mirror to oscillate the emission direction of a laser pulse, and scans the surrounding environment within a predetermined angular range around the oscillation axis.
  • a phased array LiDAR sensor controls the phase of light to oscillate the direction of light emission, and scans the surrounding environment within a predetermined angular range around the oscillation axis.
  • FIG. 11 is a flowchart showing an example of processing for changing the search area pattern according to the area in which the agricultural machine is located.
  • the control device 180 acquires position data indicating the position of the work vehicle 100 generated by the GNSS unit 110 while the work vehicle 100 is traveling (step S201).
  • the position data includes information on the geographical coordinates of the position of work vehicle 100 .
  • the storage device 170 stores map data of the area in which the work vehicle 100 moves. Map data includes information on the geographical coordinates of the area indicated by the map.
  • the processing device 161 uses the map data to determine the area corresponding to the geographical coordinates indicated by the position data (step S202).
  • the area corresponding to the geographical coordinates indicated by the position data corresponds to the area in which work vehicle 100 is located.
  • the processing device 161 determines whether the area corresponding to the geographical coordinates indicated by the position data is a predetermined area (step S203). A predetermined area is registered in map data in advance.
  • the processing device 161 sets the first search area as the search area (step S205). If the area corresponding to the geographical coordinates indicated by the position data is the predetermined area, the processing device 161 sets the second search area as the search area (step S204).
  • FIG. 12 is a diagram showing an example of areas in which the pattern of the search area is changed.
  • the predetermined area is area 712 near the outer edge of field 70 .
  • the area 712 is indicated by diagonal hatching.
  • a ridge 710 is formed along the outer edge of the farm field 70, and in this case, the area 712 can be a ridge edge area.
  • Fields in which ridges are formed are not limited to paddy fields.
  • FIG. 13 is a diagram showing examples of the first search area and the second search area.
  • First search area 810 is a search area that is set when work vehicle 100 is not located in a predetermined area.
  • Second search area 820 is a search area that is set when work vehicle 100 is located within a predetermined area.
  • the first search area 810 includes a forward search area 810F, a backward search area 810Re, a left side search area 810L, and a right side search area 810R.
  • the second search area 820 includes a forward search area 820F, a backward search area 820Re, a left side search area 820L, and a right side search area 820R.
  • FIG. 13 shows the search area in a plan view seen from the vertical direction when the work vehicle 100 is positioned on the horizontal ground. In this embodiment, the pattern of the search area in plan view seen from the vertical direction is changed.
  • the work vehicle 100 is provided with four LiDAR sensors 140F, 140Re, 140L, and 140R.
  • the LiDAR sensor 140 ⁇ /b>F is arranged in the front part of the work vehicle 100 and mainly senses the surrounding environment spreading in front of the work vehicle 100 .
  • the LiDAR sensor 140Re is arranged at the rear of the work vehicle 100 and mainly senses the surrounding environment spreading behind the work vehicle 100 .
  • LiDAR sensor 140L is arranged on the left side of work vehicle 100 and mainly senses the surrounding environment that spreads to the left side of work vehicle 100 .
  • LiDAR sensor 140R is arranged on the right side of work vehicle 100 and mainly senses the surrounding environment that spreads to the right side of work vehicle 100 .
  • LiDAR sensors 140Re, 140L, 140R may be provided in cabin 105 (FIG. 2) of work vehicle 100, for example.
  • the LiDAR sensor 140 Re may be provided in the implement 300 .
  • FIGS 14 and 15 are diagrams showing the relationship between the sensing area sensed by the LiDAR sensor and the search area for searching for objects.
  • the shape, size and position of the search area can be realized, for example, by changing the data portion used for searching for the object in the 3D point cloud data output by the LiDAR sensor.
  • the 3D point cloud data output by the LiDAR sensor contains information (attribute information) such as information on the positions of multiple points and the received intensity of the photodetector.
  • the information about the positions of the points is, for example, the emission direction of the laser pulse corresponding to the points and the distance between the LiDAR sensor and the points.
  • the information about the positions of the points is information about the coordinates of the points in the local coordinate system.
  • the local coordinate system is a coordinate system that moves together with work vehicle 100, and is also called a sensor coordinate system. The coordinates of each point can be calculated from the emission direction of the laser pulse corresponding to the point and the distance between the LiDAR sensor and the point.
  • the search area can be set based on the coordinates of each point.
  • a search area having the desired shape can be set.
  • FIG. 14 shows a sensing area 830L sensed by the LiDAR sensor 140L and a sensing area 830R sensed by the LiDAR sensor 140R.
  • a search area 810L can be set by selecting points positioned within a predetermined shape in the local coordinate system from among the plurality of points indicated by the three-dimensional point cloud data output by the LiDAR sensor 140L.
  • a search region 820L can be established by selecting points that lie within another shape in the local coordinate system.
  • the search area 810R can be set by selecting points positioned within a predetermined shape in the local coordinate system from among the plurality of points indicated by the three-dimensional point cloud data output by the LiDAR sensor 140R.
  • a search region 820R can be set by selecting a point located within another shape in the local coordinate system.
  • the shape of the search areas 810L, 810R, 820L, and 820R is substantially rectangular, but it is not limited thereto and may be another shape.
  • FIG. 15 shows a sensing area 830F sensed by the LiDAR sensor 140F and a sensing area 830Re sensed by the LiDAR sensor 140Re.
  • a search area 810F can be set by selecting points located within a predetermined shape in the local coordinate system from among the plurality of points indicated by the three-dimensional point cloud data output by the LiDAR sensor 140F.
  • a search area 820F can be established by selecting a point located within another shape in the local coordinate system.
  • the search area 810Re can be set by selecting points positioned within a predetermined shape in the local coordinate system from among the plurality of points indicated by the three-dimensional point cloud data output by the LiDAR sensor 140Re.
  • a search region 820Re can be set by selecting a point located within another shape in the local coordinate system.
  • the shape of the search areas 810F, 810Re, 820F, and 820Re is substantially fan-shaped, but it is not limited to this and may be another shape.
  • the search area 810F and the search area 820F can be the same as each other, but they can also be different.
  • the search area 810Re and the search area 820Re can be the same, but they can also be different.
  • the longitudinal length L2 of the lateral search regions 820L and 820R is greater than the longitudinal length L1 of the lateral search regions 810L and 810R.
  • the longitudinal length of the side search areas 820L and 820R is longer than when traveling in an area other than the furrow area 712 (for example, an area relatively far from the outer periphery in the field 70).
  • points indicated by the three-dimensional point cloud data output by the LiDAR sensors 140F and/or 140Re may be included as points to be searched within the lateral search area.
  • FIG. 16 is a diagram showing another example of areas in which the pattern of the search area is changed.
  • the predetermined area for changing the pattern of the search area is an area 722 adjacent to the waterway 720 on the road 76 (farm road or general road) outside the field.
  • the area 722 is indicated by diagonal hatching.
  • the processing device 161 detects objects around the work vehicle 100 using the output data of the LiDAR sensor 140 corresponding to the set search area (step S206). The processing device 161 repeats the operations from steps S201 to S206 until a command to end the operation is issued (step S207).
  • FIG. 17 is a flowchart showing an example of processing when an obstacle is detected.
  • the processing device 161 determines that there is an obstacle (step S301). For example, when an object that is not included in the pre-generated "environmental map" and is above a predetermined height is detected on the target route, it is determined that there is an obstacle.
  • the ECU 185 determines whether or not a detour route that can avoid the obstacle can be generated (step S302). For example, if there is enough space on the road 76 to allow a detour, it is determined that a detour route can be generated. In the field 70, for example, if a detour route can be generated that does not affect farm work and crops, it is determined that the detour route can be generated. For example, if the farm work is prohibited from generating a detour, or if it is determined that the detour will cause the work vehicle 100 to come into contact with the crops, it is determined that the detour cannot be generated. Further, for example, when a detour route that does not enter the worked area in the field 70 can be generated, it is determined that the detour route can be generated.
  • the ECU 185 If it is determined that the detour route can be generated, the ECU 185 generates the detour route, and the control device 180 controls the work vehicle 100 to travel along the detour route (step S303). After traveling on the detour route, the control device 180 returns the work vehicle 100 to the target route, and returns to the process of step S207 shown in FIG. 11 .
  • control device 180 When it is determined that the detour route cannot be generated, the control device 180 performs control to stop the work vehicle 100 (step S304). In parallel, operations such as issuing a warning sound from the buzzer 220 and transmitting a warning signal to the terminal device 400 are performed.
  • control device 180 When it is determined that the object detected as an obstacle has moved or the obstacle has been removed by the operator, the control device 180 restarts the work vehicle 100 to travel (steps S305 and S306), It returns to the process of step S207 shown in FIG.
  • the location data generated by the GNSS unit 110 was used to detect the area in which the work vehicle 100 is located, but it is not limited to this.
  • the area in which work vehicle 100 is located may be estimated by matching the data output from LiDAR sensor 140 and/or camera 120 with an environmental map.
  • FIG. 18 is a diagram showing another example of the first search area 810 and the second search area 820.
  • FIG. 19 is a diagram showing still another example of the first search area 810 and the second search area 820.
  • the lateral search areas 810L, 810R, 820L, and 820R have substantially rectangular shapes, but they may have other shapes.
  • the lateral search regions 810L, 810R, 820L, and 820R may be substantially fan-shaped.
  • the LiDAR sensor can sense the surrounding environment within a predetermined angular range around the rocking axis.
  • the search area is substantially fan-shaped, the point used for searching the object from among the plurality of points indicated by the three-dimensional point cloud data output by the LiDAR sensor may be selected by focusing on the emission angle of the corresponding laser pulse. good.
  • the pattern of the search area can be changed by changing the angle range that serves as the reference for the selection.
  • the points used for searching for the object from among the plurality of points indicated by the three-dimensional point cloud data may be selected by focusing on the distance between the LiDAR sensor and the points. .
  • the pattern of the search area can be changed by changing the size of the distance that serves as the criterion for selection.
  • the pattern of the search area may be changed by changing the sensing range of the LiDAR sensor.
  • the size of the search area may be changed by changing the power of the laser pulse emitted from the LiDAR sensor.
  • the angular range of the search area may be changed by changing the angular range in which the LiDAR sensor emits laser pulses.
  • the angular range of the search area may be changed by changing the angular range for swinging the emission direction of the laser pulse.
  • FIG. 20 is a diagram showing yet another example of the first search area 810 and the second search area 820.
  • the lateral search areas 820L, 820R have a shape that includes areas closer to the front wheel 104F and the rear wheel 104R compared to the lateral search areas 810L, 810R.
  • the lateral search areas 820L, 820R are set specifically to include areas near the front outer ends of the front wheels 104F.
  • FIG. 21 is a diagram showing still another example of areas for changing the pattern of the search area.
  • FIG. 21 shows a bridge area 732 that modifies the pattern of search regions.
  • Bridge area 732 may include the area over bridge 730 over river or waterway 734 and the area of road 76 near bridge 730 . It is desirable to be able to detect the state of the vicinity of the wheels of work vehicle 100, particularly the vicinity of the front wheels, when traveling in bridge area 732 .
  • a search suitable for the bridge area 732 can be performed by setting the pattern of the side search areas 820L and 820R shown in FIG.
  • FIG. 22 is a diagram showing still another example of the first search area 810 and the second search area 820.
  • the side search areas 810L, 810R, 820L, and 820R have substantially rectangular shapes, but may have other shapes.
  • the lateral search areas 810L, 810R, 820L, and 820R may be substantially fan-shaped.
  • FIG. 21 further shows a barn doorway area 742 that changes the pattern of the search area.
  • a barn doorway area 742 that changes the pattern of the search area.
  • the search area 820 shown in FIGS. 13, 18, and 19 is set.
  • the length of the lateral search areas 820L and 820R in the front-rear direction is made larger than when traveling in areas other than the entrance/exit area 742, so that the lateral state of the work vehicle 100 can be detected earlier. can be detected.
  • FIG. 23 is a diagram showing still another example of areas for changing the pattern of the search area.
  • the predetermined area in which the pattern of the search area is changed is the area 772 of the work place 78 where the work vehicle 100 is loaded onto the truck 770 .
  • Area 772 may be located on road 76 .
  • the work vehicle 100 is loaded onto the transport vehicle 770 by running the work vehicle 100 along the ladder rails 771 provided on the transport vehicle 770 .
  • the loading work area 772 includes the area near the truck 770 and ladder rails 771 .
  • a search suitable for the loading operation can be performed.
  • FIG. 24 is a diagram showing still another example of areas for changing the pattern of the search area.
  • FIG. 25 is a diagram showing still another example of the first search area 810 and the second search area 820.
  • the predetermined area in which the pattern of the search area is changed is the ridge area 752 in which the ridge 750 in the agricultural field 70 is provided. In ridge area 752, it is desirable to be able to detect the condition of a wider area around work vehicle 100.
  • the search area 820 is larger in size than the search area 810.
  • a search area 820 shown in FIG. 25 is set.
  • the state of a wider area around the work vehicle 100 can be detected. .
  • FIG. 26 is a diagram showing still another example of areas for changing the pattern of the search area.
  • the predetermined area in which the search area pattern is changed is the crop row area 762 where the crop row 760 in the field 70 is located.
  • a search area 820 shown in FIG. 25 is set in the crop row area 762 .
  • the size of the search area 820 is made larger than when traveling in the field 70 other than the crop row area 762, so that the state of a wider area around the work vehicle 100 can be detected. can be done.
  • FIG. 27 is a diagram showing an example of the search area 810 set according to the size of the implement 300 connected to the work vehicle 100.
  • FIG. A plurality of types of implements 300 having different sizes can be connected to the work vehicle 100 , and the processing device 161 changes the pattern of the search area 810 according to the sizes of the implements 300 connected to the work vehicle 100 . .
  • the storage device 170 pre-stores information on the sizes of multiple types of implements 300 .
  • the processing device 161 communicates with the implement 300 and acquires unique information that can identify the model of the implement 300 .
  • the unique information includes the model number of the implement 300, for example.
  • the processing device 161 can determine the size of the implement 300 connected to the work vehicle 100 by reading the size information corresponding to the unique information of the implement 300 from the storage device 170 . Information on the size of the implement 300 may be input to the work vehicle 100 by the worker.
  • the implement 300b connected to the work vehicle 100 on the right side of FIG. 27 is larger in size than the implement 300a connected to the work vehicle 100 on the left side.
  • the implement 300b is larger in at least one of the longitudinal direction and the lateral direction than the implement 300a.
  • the side search areas 810L and 810R shown on the right side are larger in the horizontal direction than the side search areas 810L and 810R shown on the left side.
  • the rear search region 810Re shown on the right side has larger sizes in the front-rear direction and the left-right direction.
  • FIG. 28 is a diagram showing an example of search area 810 set according to the positional relationship between work vehicle 100 and implement 300 .
  • the implement 300c shown in FIG. 28 is an implement that can change the positional relationship with the work vehicle 100.
  • the implement 300c shown in FIG. Such implements may also be referred to as offset implements.
  • the processing device 161 can determine the position of the implement 300c, for example, based on a control signal output from the work vehicle 100 to the implement 300c.
  • the implement 300c shown on the right side extends further to the right with respect to the work vehicle 100 than the implement 300c shown on the left side.
  • the side search area 810R shown on the right side has larger sizes in the front-rear direction and the left-right direction than the side search area 810R shown on the left side.
  • the rear search region 810Re shown on the right side has larger sizes in the front-rear direction and the left-right direction.
  • the implement 300c shown on the left side of FIG. By increasing the size of the lateral search region 810R shown on the left side of FIG. It can be performed.
  • the pattern of the search area in the process of detecting an object using the sensing data output by the LiDAR sensor was changed.
  • ) may be used to change the pattern of the search area in the process of detecting an object using the sensing data output by .
  • the pattern of the search area may be changed by changing the portion of the image data captured by the camera that is used for object detection.
  • the pattern of the search area may be changed by changing the output of the ultrasonic sonar or by changing the angle range for sensing.
  • the sensing system 10 of this embodiment can also be retrofitted to agricultural machines that do not have those functions.
  • Such systems can be manufactured and sold independently of agricultural machinery.
  • Computer programs used in such systems may also be manufactured and sold independently of agricultural machinery.
  • the computer program may be provided by being stored in a non-transitory computer-readable storage medium, for example. Computer programs may also be provided by download via telecommunications lines (eg, the Internet).
  • a part or all of the processing executed by the processing device 161 in the sensing system 10 may be executed by another device.
  • Such other device may be at least one of processor 660 of management device 600 , processor 460 of terminal device 400 and operation terminal 200 .
  • such other device and processing device 161 function as the processing device of sensing system 10 , or such other device functions as the processing device of sensing system 10 .
  • the processing device 161 and the processor 660 function as processing devices of the sensing system 10 .
  • a part or all of the processing executed by the processing device 161 may be executed by the control device 180 .
  • the control device 180 and the processing device 161 function as the processing device of the sensing system 10 or the control device 180 functions as the processing device of the sensing system 10 .
  • the present disclosure includes the following agricultural machines, sensing systems and sensing methods used in agricultural machines.
  • a sensing system 10 is a sensing system 10 for a mobile agricultural machine 100, is provided in the agricultural machine 100, senses the environment around the agricultural machine 100, and outputs sensing data. and a processing device 161 for detecting objects located in search areas 810 and 820 around the agricultural machine 100 based on the sensing data. The pattern of the search areas 810, 820 for object detection is changed according to the area in which it is located.
  • the processing device 161 is positioned when the agricultural machine 100 is positioned in a first area in the field 70 and in a second area closer to the outer edge of the field 70 than the first area in the field 70 .
  • the patterns of the search areas 810 and 820 may be different depending on whether the search area is being used.
  • the second area may be the ridge 712 .
  • the search areas 810, 820 include lateral search areas 810L, 810R, 820L, 820R including lateral areas of the agricultural machine 100, and the processing device 161 determines whether the agricultural machine 100 is in the first area.
  • the length of the lateral search area in the front-rear direction may be greater when positioned in the second area than when positioned.
  • the lateral state of the agricultural machine 100 can be detected early.
  • the processing device 161 changes the pattern of the search areas 810, 820 when the agricultural machine 100 is located on the bridge 730 and when it is located on the predetermined road 76 different from the bridge 730. They may be different from each other.
  • the agricultural machine 100 includes a work vehicle 100 with front wheels 104F, and the handling device 161 is located on the predetermined road 76 when the agricultural machine 100 is located on the bridge 730.
  • a search area 820 is set to include an area closer to the front outer edge of the front wheel 104F than the time.
  • the processing unit 161 determines the search areas 810, 820 when the agricultural machine 100 is located on the road 76 adjacent to the waterway 720 and when the agricultural machine 100 is located on the road 76 not adjacent to the waterway 720. patterns may be different from each other.
  • the search areas 810, 820 include lateral search areas 810L, 810R, 820L, 820R that include lateral areas of the agricultural machine 100, and the processing device 161 determines whether the agricultural machine 100 is not adjacent to the waterway 720.
  • the longitudinal length of the lateral search area may be greater when located on the road 76 adjacent to the waterway 720 than when located on the road 76 .
  • the processing device 161 searches the search area 810 when the agricultural machine 100 is located at the doorway 741 of the barn 740 and when it is located in a third area different from the doorway 741 of the barn 740 .
  • 820 may be different from each other.
  • the search areas 810, 820 include lateral search areas 810L, 810R, 820L, 820R including lateral areas of the agricultural machine 100, and the processing device 161 determines whether the agricultural machine 100 is in the third area.
  • the longitudinal length of the lateral search area may be greater when positioned at the doorway 741 of the barn 740 than when positioned.
  • the processing device 161 is closer to the ridge 750 or the crop planting area 760 of the field 70 than to the fourth area in the field 70 when the agricultural machine 100 is located in the fourth area in the field 70 .
  • the patterns of the search areas 810 and 820 may be different depending on when they are located in the fifth area.
  • the processing device 161 may cause the patterns of the search areas 810 and 820 to differ between when the agricultural machine 100 is in a position to be loaded onto the truck 770 and when it is not.
  • the agricultural machine 100 includes a work vehicle 100 and an implement 300 connected to the work vehicle 100 , and the processing unit 161 , depending on the implement 300 connected to the work vehicle 100 , search area 810 , The pattern of 820 may be changed.
  • multiple types of implements 300 having different sizes can be connected to the work vehicle 100 , and the processing device 161 selects the search area 810 according to the sizes of the implements 300 connected to the work vehicle 100 . , 820 may be changed.
  • the positional relationship between the work vehicle 100 and the implement 300 connected to the work vehicle 100 can be changed, and the processing device 161 changes the positional relationship between the work vehicle 100 and the implement 300.
  • the pattern of the search areas 810, 820 may be changed according to the change.
  • the sensing system 10 further includes a positioning device 110 that detects the position of the agricultural machine 100 and outputs position data, and a storage device 170 that stores map data of the area in which the agricultural machine 100 moves.
  • the processing device 161 may determine the area in which the agricultural machine 100 is located based on the location data and the map data.
  • the positioning device 110 By using the positioning device 110, it is possible to determine the area where the agricultural machine 100 is located.
  • the agricultural machine 100 may be equipped with the sensing system 10 described above. Thereby, a search suitable for the area in which the agricultural machine 100 is located can be performed.
  • the agricultural machine 100 may further include a traveling device 240 that causes the agricultural machine 100 to travel, and a control device 160 that controls the operation of the traveling device 240 and causes the agricultural machine 100 to operate automatically. This makes it possible to perform a search suitable for the area where the automatically traveling agricultural machine 100 is located.
  • a sensing method is a sensing method for a mobile agricultural machine 100, in which one or more sensors 140 are used to sense the environment around the agricultural machine 100 and output sensing data. detection of objects located in search areas 810 and 820 around the agricultural machine 100 based on the sensing data; search area 810 for detecting objects according to the area in which the agricultural machine 100 is located; , 820 pattern.
  • the technology of the present disclosure is particularly useful in the field of agricultural machinery such as tractors, harvesters, rice transplanters, ride-on care machines, vegetable transplanters, mowers, seeders, fertilizers, or agricultural robots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Guiding Agricultural Machines (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

ある実施形態に係るセンシングシステムは、移動型の農業機械のセンシングシステムであって、農業機械に設けられ、農業機械の周辺の環境をセンシングして、センシングデータを出力する一つ以上のセンサと、センシングデータに基づいて、農業機械の周辺のサーチ領域に位置する物体を検出する処理装置とを備える。処理装置は、農業機械が位置しているエリアに応じて、物体の検出を行うサーチ領域のパターンを変更する。

Description

農業機械、農業機械に用いるセンシングシステムおよびセンシング方法
 本開示は、農業機械、農業機械に用いるセンシングシステムおよびセンシング方法に関する。
 次世代農業として、ICT(Information and Communication Technology)およびIoT(Internet of Things)を活用したスマート農業の研究開発が進められている。圃場で使用されるトラクタなどの作業車両の自動化および無人化に向けた研究開発も進められている。例えば、精密な測位が可能なGNSS(Global Navigation Satellite System)などの測位システムを利用して自動操舵で走行する作業車両が実用化されてきている。
 また、障害物センサを用いて作業車両の周辺の領域のサーチを行い、作業車両の周辺にある障害物を検出する技術の開発も進められている。例えば特許文献1は、自動運転可能なトラクタの周辺にある障害物を、LiDAR(Light Detection and Ranging)センサを用いて検出する技術を開示している。
特開2019-175059号公報
 本開示は、農業機械が位置するエリアに適した、農業機械の周辺の環境のサーチを行うための技術を提供する。
 本開示のある実施形態に係るセンシングシステムは、移動型の農業機械のセンシングシステムであって、農業機械に設けられ、前記農業機械の周辺の環境をセンシングして、センシングデータを出力する一つ以上のセンサと、前記センシングデータに基づいて、前記農業機械の周辺のサーチ領域に位置する物体を検出する処理装置と、を備え、前記処理装置は、前記農業機械が位置しているエリアに応じて、前記物体の検出を行う前記サーチ領域のパターンを変更する。
 本開示のある実施形態に係るセンシング方法は、移動型の農業機械のセンシング方法であって、一つ以上のセンサを用いて農業機械の周辺の環境をセンシングして、センシングデータを出力すること、前記センシングデータに基づいて、前記農業機械の周辺のサーチ領域に位置する物体を検出すること、前記農業機械が位置しているエリアに応じて、前記物体の検出を行う前記サーチ領域のパターンを変更すること、を含む。
 本開示の包括的または具体的な態様は、装置、システム、方法、集積回路、コンピュータプログラム、もしくはコンピュータが読み取り可能な非一時的記憶媒体、またはこれらの任意の組み合わせによって実現され得る。コンピュータが読み取り可能な記憶媒体は、揮発性の記憶媒体を含んでいてもよいし、不揮発性の記憶媒体を含んでいてもよい。装置は、複数の装置で構成されていてもよい。装置が二つ以上の装置で構成される場合、当該二つ以上の装置は、一つの機器内に配置されてもよいし、分離した二つ以上の機器内に分かれて配置されていてもよい。
 本開示の実施形態によれば、農業機械が位置しているエリアに応じて、物体の検出を行うサーチ領域のパターンを変更する。これにより、農業機械が位置しているエリアに適したサーチを行うことができる。
本開示の例示的な実施形態による農業管理システムの概要を説明するための図である。 作業車両、および作業車両に連結された作業機の例を模式的に示す側面図である。 作業車両および作業機の構成例を示すブロック図である。 RTK-GNSSによる測位を行う作業車両の例を示す概念図である。 キャビンの内部に設けられる操作端末および操作スイッチ群の例を示す図である。 管理装置および端末装置のハードウェア構成を例示するブロック図である。 圃場内を目標経路に沿って自動で走行する作業車両の例を模式的に示す図である。 自動運転時の操舵制御の動作の例を示すフローチャートである。 目標経路Pに沿って走行する作業車両の例を示す図である。 目標経路Pから右にシフトした位置にある作業車両の例を示す図である。 目標経路Pから左にシフトした位置にある作業車両の例を示す図である。 目標経路Pに対して傾斜した方向を向いている作業車両の例を示す図である。 複数の作業車両が圃場の内部および圃場の外側の道を自動走行している状況の例を模式的に示す図である。 農業機械が位置するエリアに応じてサーチ領域のパターンを変更する処理の例を示すフローチャートである。 サーチ領域のパターンを変更するエリアの例を示す図である。 第1サーチ領域および第2サーチ領域の例を示す図である。 LiDARセンサがセンシングするセンシング領域と、物体のサーチを行うサーチ領域との関係を示す図である。 LiDARセンサがセンシングするセンシング領域と、物体のサーチを行うサーチ領域との関係を示す図である。 サーチ領域のパターンを変更するエリアの別の例を示す図である。 障害物を検出した場合の処理の例を示すフローチャートである。 第1サーチ領域および第2サーチ領域の別の例を示す図である。 第1サーチ領域および第2サーチ領域のさらに別の例を示す図である。 第1サーチ領域および第2サーチ領域のさらに別の例を示す図である。 サーチ領域のパターンを変更するエリアのさらに別の例を示す図である。 第1サーチ領域および第2サーチ領域のさらに別の例を示す図である。 サーチ領域のパターンを変更するエリアのさらに別の例を示す図である。 サーチ領域のパターンを変更するエリアのさらに別の例を示す図である。 第1サーチ領域および第2サーチ領域のさらに別の例を示す図である。 サーチ領域のパターンを変更するエリアのさらに別の例を示す図である。 作業車両に接続されたインプルメントのサイズに応じて設定するサーチ領域の例を示す図である。 作業車両とインプルメントとの間の位置関係に応じて設定するサーチ領域の例を示す図である。
 (用語の定義)
 本開示において「農業機械」は、農業用途で使用される機械を意味する。本開示の農業機械は、移動しながら農作業を行うことが可能な移動型の農業機械(Mobile Agricultural Machine)であり得る。農業機械の例は、トラクタ、収穫機、田植機、乗用管理機、野菜移植機、草刈機、播種機、施肥機、および農業用移動ロボットを含む。トラクタのような作業車両が単独で「農業機械」として機能する場合だけでなく、作業車両に装着または牽引される作業機(インプルメント)と作業車両の全体が一つの「農業機械」として機能する場合がある。農業機械は、圃場内の地面に対して、耕耘、播種、防除、施肥、作物の植え付け、または収穫などの農作業を行う。これらの農作業を「対地作業」または単に「作業」と称することがある。車両型の農業機械が農作業を行いながら走行することを「作業走行」と称することがある。
 「自動運転」は、運転者による手動操作によらず、制御装置の働きによって農業機械の移動を制御することを意味する。自動運転を行う農業機械は「自動運転農機」または「ロボット農機」と呼ばれることがある。自動運転中、農業機械の移動だけでなく、農作業の動作(例えば作業機の動作)も自動で制御されてもよい。農業機械が車両型の機械である場合、自動運転によって農業機械が走行することを「自動走行」と称する。制御装置は、農業機械の移動に必要な操舵、移動速度の調整、移動の開始および停止の少なくとも一つを制御し得る。作業機が装着された作業車両を制御する場合、制御装置は、作業機の昇降、作業機の動作の開始および停止などの動作を制御してもよい。自動運転による移動には、農業機械が所定の経路に沿って目的地に向かう移動のみならず、追尾目標に追従する移動も含まれ得る。自動運転を行う農業機械は、部分的にユーザの指示に基づいて移動してもよい。また、自動運転を行う農業機械は、自動運転モードに加えて、運転者の手動操作によって移動する手動運転モードで動作してもよい。手動によらず、制御装置の働きによって農業機械の操舵を行うことを「自動操舵」と称する。制御装置の一部または全部が農業機械の外部にあってもよい。農業機械の外部にある制御装置と農業機械との間では、制御信号、コマンド、またはデータなどの通信が行われ得る。自動運転を行う農業機械は、人がその農業機械の移動の制御に関与することなく、周辺の環境をセンシングしながら自律的に移動してもよい。自律的な移動が可能な農業機械は、無人で圃場内または圃場外(例えば道路)を走行することができる。自律移動中に、障害物の検出および障害物の回避動作を行ってもよい。
 「作業計画」は、農業機械によって実行される一つ以上の農作業の予定を定めるデータである。作業計画は、例えば、農業機械によって実行される農作業の順序および各農作業が行われる圃場を示す情報を含み得る。作業計画は、各農作業が行われる予定の日および時刻の情報を含んでいてもよい。作業計画は、農業機械と通信して農作業を管理する処理装置、または農業機械に搭載された処理装置によって作成され得る。処理装置は、例えば、ユーザ(農業経営者または農作業者など)が端末装置を操作して入力した情報に基づいて作業計画を作成することができる。本明細書において、農業機械と通信して農作業を管理する処理装置を「管理装置」と称する。管理装置は、複数の農業機械の農作業を管理してもよい。その場合、管理装置は、複数の農業機械の各々が実行する各農作業に関する情報を含む作業計画を作成してもよい。作業計画は、各農業機械によってダウンロードされ、記憶装置に格納され得る。各農業機械は、作業計画に従って、予定された農作業を実行するために、自動で圃場に向かい、農作業を実行することができる。
 「環境地図」は、農業機械が移動する環境に存在する物の位置または領域を所定の座標系によって表現したデータである。環境地図を単に「地図」または「地図データ」と称することがある。環境地図を規定する座標系は、例えば、地球に対して固定された地理座標系などのワールド座標系であり得る。環境地図は、環境に存在する物について、位置以外の情報(例えば、属性情報その他の情報)を含んでいてもよい。環境地図は、点群地図または格子地図など、さまざまな形式の地図を含む。環境地図を構築する過程で生成または処理される局所地図または部分地図のデータについても、「地図」または「地図データ」と呼ぶ。
 「農道」は、主に農業目的で利用される道を意味する。農道は、アスファルトで舗装された道に限らず、土または砂利等で覆われた未舗装の道も含む。農道は、車両型の農業機械(例えばトラクタ等の作業車両)のみが専ら通行可能な道(私道を含む)と、一般の車両(乗用車、トラック、バス等)も通行可能な道路とを含む。作業車両は、農道に加えて一般道を自動で走行してもよい。一般道は、一般の車両の交通のために整備された道路である。
 (実施形態)
 以下、本開示の実施形態を説明する。ただし、必要以上に詳細な説明は省略することがある。例えば、既によく知られた事項の詳細な説明および実質的に同一の構成に関する重複する説明を省略することがある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。以下の説明において、同一または類似の機能を有する構成要素については、同一の参照符号を付している。
 以下の実施形態は例示であり、本開示の技術は以下の実施形態に限定されない。例えば、以下の実施形態で示される数値、形状、材料、ステップ、ステップの順序、表示画面のレイアウトなどは、あくまでも一例であり、技術的に矛盾が生じない限りにおいて種々の改変が可能である。また、技術的に矛盾が生じない限りにおいて、一の態様と他の態様とを組み合わせることが可能である。
 以下、農業機械の一例であるトラクタなどの作業車両に本開示の技術を適用した実施形態を主に説明する。本開示の技術は、トラクタなどの作業車両に限らず、他の種類の農業機械にも適用することができる。
 図1は、本開示の例示的な実施形態による農業管理システム1の概要を説明するための図である。図1に示す農業管理システム1は、作業車両100と、端末装置400と、管理装置600とを備える。端末装置400は、作業車両100を遠隔で監視するユーザが使用するコンピュータである。管理装置600は、農業管理システム1を運営する事業者が管理するコンピュータである。作業車両100、端末装置400、および管理装置600は、ネットワーク80を介して互いに通信することができる。図1には1台の作業車両100が例示されているが、農業管理システム1は、複数の作業車両またはその他の農業機械を含んでいてもよい。
 本実施形態における作業車両100はトラクタである。作業車両100は、後部および前部の一方または両方に作業機を装着することができる。作業車両100は、作業機の種類に応じた農作業を行いながら圃場内を走行することができる。作業車両100は、作業機を装着しない状態で圃場内または圃場外を走行してもよい。
 作業車両100は、自動運転機能を備える。すなわち、作業車両100は、手動によらず、制御装置の働きによって走行することができる。本実施形態における制御装置は、作業車両100の内部に設けられ、作業車両100の速度および操舵の両方を制御することができる。作業車両100は、圃場内に限らず、圃場外(例えば道路)を自動走行することもできる。
 作業車両100は、GNSS受信機およびLiDARセンサなどの、測位あるいは自己位置推定のために利用される装置を備える。作業車両100の制御装置は、作業車両100の位置と、目標経路の情報とに基づいて、作業車両100を自動で走行させる。制御装置は、作業車両100の走行制御に加えて、作業機の動作の制御も行う。これにより、作業車両100は、圃場内を自動で走行しながら作業機を用いて農作業を実行することができる。さらに、作業車両100は、圃場外の道(例えば、農道または一般道)を目標経路に沿って自動で走行することができる。作業車両100は、カメラ120、障害物センサ130およびLiDARセンサ140などのセンシング装置から出力されるデータを活用しながら、圃場外の道に沿って自動走行を行う。
 管理装置600は、作業車両100による農作業を管理するコンピュータである。管理装置600は、例えば圃場に関する情報をクラウド上で一元管理し、クラウド上のデータを活用して農業を支援するサーバコンピュータであり得る。管理装置600は、例えば、作業車両100の作業計画を作成し、その作業計画に従って、作業車両100に農作業を実行させる。管理装置600は、例えば、ユーザが端末装置400または他のデバイスを用いて入力した情報に基づいて圃場内の目標経路を生成する。管理装置600は、さらに、作業車両100または他の移動体がLiDARセンサなどのセンシング装置を用いて収集したデータに基づいて、環境地図の生成および編集を行ってもよい。管理装置600は、生成した作業計画、目標経路、および環境地図のデータを作業車両100に送信する。作業車両100は、それらのデータに基づいて、移動および農作業を自動で行う。
 端末装置400は、作業車両100から離れた場所にいるユーザが使用するコンピュータである。図1に示す端末装置400はラップトップコンピュータであるが、これに限定されない。端末装置400は、デスクトップPC(personal computer)などの据え置き型のコンピュータであってもよいし、スマートフォンまたはタブレットコンピュータなどのモバイル端末でもよい。端末装置400は、作業車両100を遠隔監視したり、作業車両100を遠隔操作したりするために用いられ得る。例えば、端末装置400は、作業車両100が備える1台以上のカメラ(撮像装置)が撮影した映像をディスプレイに表示させることができる。端末装置400は、さらに、作業車両100の作業計画(例えば各農作業のスケジュール)を作成するために必要な情報をユーザが入力するための設定画面をディスプレイに表示することもできる。ユーザが設定画面上で必要な情報を入力し送信の操作を行うと、端末装置400は、入力された情報を管理装置600に送信する。管理装置600は、その情報に基づいて作業計画を作成する。端末装置400は、さらに、目標経路を設定するために必要な情報をユーザが入力するための設定画面をディスプレイに表示する機能を備えていてもよい。
 以下、本実施形態におけるシステムの構成および動作をより詳細に説明する。
 [1.構成]
 図2は、作業車両100、および作業車両100に連結された作業機300の例を模式的に示す側面図である。本実施形態における作業車両100は、手動運転モードと自動運転モードの両方で動作することができる。自動運転モードにおいて、作業車両100は無人で走行することができる。作業車両100は、圃場内と圃場外の両方で自動運転が可能である。
 図2に示すように、作業車両100は、車両本体101と、原動機(エンジン)102と、変速装置(トランスミッション)103とを備える。車両本体101には、タイヤ付きの車輪104と、キャビン105とが設けられている。車輪104は、一対の前輪104Fと一対の後輪104Rとを含む。キャビン105の内部に運転席107、操舵装置106、操作端末200、および操作のためのスイッチ群が設けられている。作業車両100が圃場内で作業走行を行うとき、前輪104Fおよび後輪104Rの一方または両方は、タイヤ付き車輪ではなく、無限軌道(track)を装着した複数の車輪(クローラ)であってもよい。
 作業車両100は、作業車両100の周辺の環境をセンシングする少なくとも1つのセンシング装置と、少なくとも1つのセンシング装置から出力されるセンシングデータを処理する処理装置とを備え得る。図2に示す例では、作業車両100は複数のセンシング装置を備える。センシング装置は、複数のカメラ120と、LiDARセンサ140と、複数の障害物センサ130とを含む。
 カメラ120は、例えば作業車両100の前後左右に設けられ得る。カメラ120は、作業車両100の周辺の環境を撮影し、画像データを生成する。カメラ120が取得した画像は、作業車両100に搭載された処理装置に出力され、遠隔監視を行うための端末装置400に送信され得る。また、当該画像は、無人運転時に作業車両100を監視するために用いられ得る。カメラ120は、作業車両100が圃場外の道(農道または一般道)を走行するときに、周辺の地物もしくは障害物、白線、標識、または表示などを認識するための画像を生成する用途でも使用され得る。
 図2の例におけるLiDARセンサ140は、車両本体101の前面下部に配置されている。LiDARセンサ140は、他の位置に設けられていてもよい。例えばLiDARセンサ140は、キャビン105の上部に設けられていてもよい。LiDARセンサ140は、3D-LiDARセンサであり得るが、2D-LiDARセンサであってもよい。LiDARセンサ140は、作業車両100の周辺の環境をセンシングして、センシングデータを出力する。LiDARセンサ140は、作業車両100が主に圃場外を走行している間、周辺の環境に存在する物体の各計測点までの距離および方向、または各計測点の3次元もしくは2次元の座標値を示すセンサデータを繰り返し出力する。LiDARセンサ140から出力されたセンサデータは、作業車両100の制御装置によって処理される。制御装置は、センサデータと、環境地図とのマッチングにより、作業車両100の自己位置推定を行うことができる。制御装置は、さらに、センサデータに基づいて、作業車両100の周辺に存在する障害物などの物体を検出することができる。制御装置は、例えばSLAM(Simultaneous Localization and Mapping)などのアルゴリズムを利用して、環境地図を生成または編集することもできる。作業車両100は、異なる位置に異なる向きで配置された複数のLiDARセンサを備えていてもよい。
 図2に示す複数の障害物センサ130は、キャビン105の前部および後部に設けられている。障害物センサ130は、他の部位にも配置され得る。例えば、車両本体101の側部、前部、および後部の任意の位置に、一つまたは複数の障害物センサ130が設けられ得る。障害物センサ130は、例えばレーザスキャナまたは超音波ソナーを含み得る。障害物センサ130は、自動走行時に周辺の障害物を検出して作業車両100を停止したり迂回したりするために用いられる。LiDARセンサ140が障害物センサ130の一つとして利用されてもよい。
 作業車両100は、さらに、GNSSユニット110を備える。GNSSユニット110は、GNSS受信機を含む。GNSS受信機は、GNSS衛星からの信号を受信するアンテナと、アンテナが受信した信号に基づいて作業車両100の位置を計算するプロセッサとを備え得る。GNSSユニット110は、複数のGNSS衛星から送信される衛星信号を受信し、衛星信号に基づいて測位を行う。GNSSは、GPS(Global Positioning System)、QZSS(Quasi-Zenith Satellite System、例えばみちびき)、GLONASS、Galileo、およびBeiDouなどの衛星測位システムの総称である。本実施形態におけるGNSSユニット110は、キャビン105の上部に設けられているが、他の位置に設けられていてもよい。
 GNSSユニット110は、慣性計測装置(IMU)を含み得る。IMUからの信号を利用して位置データを補完することができる。IMUは、作業車両100の傾きおよび微小な動きを計測することができる。IMUによって取得されたデータを用いて、衛星信号に基づく位置データを補完することにより、測位の性能を向上させることができる。
 作業車両100の制御装置は、GNSSユニット110による測位結果に加えて、カメラ120および/またはLiDARセンサ140などのセンシング装置が取得したセンシングデータを測位に利用してもよい。農道、林道、一般道、または果樹園のように、作業車両100が走行する環境内に特徴点として機能する地物が存在する場合、カメラ120および/またはLiDARセンサ140によって取得されたデータと、予め記憶装置に格納された環境地図とに基づいて、作業車両100の位置および向きを高い精度で推定することができる。カメラ120および/またはLiDARセンサ140が取得したデータを用いて、衛星信号に基づく位置データを補正または補完することで、より高い精度で作業車両100の位置を特定できる。
 原動機102は、例えばディーゼルエンジンであり得る。ディーゼルエンジンに代えて電動モータが使用されてもよい。変速装置103は、変速によって作業車両100の推進力および移動速度を変化させることができる。変速装置103は、作業車両100の前進と後進とを切り換えることもできる。
 操舵装置106は、ステアリングホイールと、ステアリングホイールに接続されたステアリングシャフトと、ステアリングホイールによる操舵を補助するパワーステアリング装置とを含む。前輪104Fは操舵輪であり、その切れ角(「操舵角」とも称する。)を変化させることにより、作業車両100の走行方向を変化させることができる。前輪104Fの操舵角は、ステアリングホイールを操作することによって変化させることができる。パワーステアリング装置は、前輪104Fの操舵角を変化させるための補助力を供給する油圧装置または電動モータを含む。自動操舵が行われるときには、作業車両100内に配置された制御装置からの制御により、油圧装置または電動モータの力によって操舵角が自動で調整される。
 車両本体101の後部には、連結装置108が設けられている。連結装置108は、例えば3点支持装置(「3点リンク」または「3点ヒッチ」とも称する。)、PTO(Power Take Off)軸、ユニバーサルジョイント、および通信ケーブルを含む。連結装置108によって作業機300を作業車両100に着脱することができる。連結装置108は、例えば油圧装置によって3点リンクを昇降させ、作業機300の位置または姿勢を変化させることができる。また、ユニバーサルジョイントを介して作業車両100から作業機300に動力を送ることができる。作業車両100は、作業機300を引きながら、作業機300に所定の作業を実行させることができる。連結装置は、車両本体101の前部に設けられていてもよい。その場合、作業車両100の前部に作業機300を接続することができる。
 図2に示す作業機300は、ロータリ耕耘機であるが、作業機300はロータリ耕耘機に限定されない。例えば、シーダ(播種機)、スプレッダ(施肥機)、移植機、モーア(草刈機)、レーキ、ベーラ(集草機)、ハーベスタ(収穫機)、スプレイヤ、またはハローなどの、任意の作業機を作業車両100に接続して使用することができる。
 図2に示す作業車両100は、有人運転が可能であるが、無人運転のみに対応していてもよい。その場合には、キャビン105、操舵装置106、および運転席107などの、有人運転にのみ必要な構成要素は、作業車両100に設けられていなくてもよい。無人の作業車両100は、自律走行、またはユーザによる遠隔操作によって走行することができる。
 図3は、作業車両100および作業機300の構成例を示すブロック図である。作業車両100と作業機300は、連結装置108に含まれる通信ケーブルを介して互いに通信することができる。作業車両100は、ネットワーク80を介して、端末装置400および管理装置600と通信することができる。
 図3の例における作業車両100は、GNSSユニット110、カメラ120、障害物センサ130、LiDARセンサ140、および操作端末200に加え、作業車両100の動作状態を検出するセンサ群150、制御システム160、通信装置190、操作スイッチ群210、ブザー220、および駆動装置240を備える。これらの構成要素は、バスを介して相互に通信可能に接続される。GNSSユニット110は、GNSS受信機111と、RTK受信機112と、慣性計測装置(IMU)115と、処理回路116とを備える。センサ群150は、ステアリングホイールセンサ152と、切れ角センサ154、車軸センサ156とを含む。制御システム160は、処理装置161、記憶装置170と、制御装置180とを備える。制御装置180は、複数の電子制御ユニット(ECU)181から185を備える。作業機300は、駆動装置340と、制御装置380と、通信装置390とを備える。なお、図3には、作業車両100による自動運転の動作との関連性が相対的に高い構成要素が示されており、それ以外の構成要素の図示は省略されている。
 GNSSユニット110におけるGNSS受信機111は、複数のGNSS衛星から送信される衛星信号を受信し、衛星信号に基づいてGNSSデータを生成する。GNSSデータは、例えばNMEA-0183フォーマットなどの所定のフォーマットで生成される。GNSSデータは、例えば、衛星信号が受信されたそれぞれの衛星の識別番号、仰角、方位角、および受信強度を示す値を含み得る。
 図3に示すGNSSユニット110は、RTK(Real Time Kinematic)-GNSSを利用して作業車両100の測位を行う。図4は、RTK-GNSSによる測位を行う作業車両100の例を示す概念図である。RTK-GNSSによる測位では、複数のGNSS衛星50から送信される衛星信号に加えて、基準局60から送信される補正信号が利用される。基準局60は、作業車両100が作業走行を行う圃場の付近(例えば、作業車両100から10km以内の位置)に設置され得る。基準局60は、複数のGNSS衛星50から受信した衛星信号に基づいて、例えばRTCMフォーマットの補正信号を生成し、GNSSユニット110に送信する。RTK受信機112は、アンテナおよびモデムを含み、基準局60から送信される補正信号を受信する。GNSSユニット110の処理回路116は、補正信号に基づき、GNSS受信機111による測位結果を補正する。RTK-GNSSを用いることにより、例えば誤差数cmの精度で測位を行うことが可能である。緯度、経度、および高度の情報を含む位置データが、RTK-GNSSによる高精度の測位によって取得される。GNSSユニット110は、例えば1秒間に1回から10回程度の頻度で、作業車両100の位置を計算する。
 なお、測位方法はRTK-GNSSに限らず、必要な精度の位置データが得られる任意の測位方法(干渉測位法または相対測位法など)を用いることができる。例えば、VRS(Virtual Reference Station)またはDGPS(Differential Global Positioning System)を利用した測位を行ってもよい。基準局60から送信される補正信号を用いなくても必要な精度の位置データが得られる場合は、補正信号を用いずに位置データを生成してもよい。その場合、GNSSユニット110は、RTK受信機112を備えていなくてもよい。
 RTK-GNSSを利用する場合であっても、基準局60からの補正信号が得られない場所(例えば圃場から遠く離れた道路上)では、RTK受信機112からの信号によらず、他の方法で作業車両100の位置が推定される。例えば、LiDARセンサ140および/またはカメラ120から出力されたデータと、高精度の環境地図とのマッチングによって、作業車両100の位置が推定され得る。
 本実施形態におけるGNSSユニット110は、さらにIMU115を備える。IMU115は、3軸加速度センサおよび3軸ジャイロスコープを備え得る。IMU115は、3軸地磁気センサなどの方位センサを備えていてもよい。IMU115は、モーションセンサとして機能し、作業車両100の加速度、速度、変位、および姿勢などの諸量を示す信号を出力することができる。処理回路116は、衛星信号および補正信号に加えて、IMU115から出力された信号に基づいて、作業車両100の位置および向きをより高い精度で推定することができる。IMU115から出力された信号は、衛星信号および補正信号に基づいて計算される位置の補正または補完に用いられ得る。IMU115は、GNSS受信機111よりも高い頻度で信号を出力する。その高頻度の信号を利用して、処理回路116は、作業車両100の位置および向きをより高い頻度(例えば、10Hz以上)で計測することができる。IMU115に代えて、3軸加速度センサおよび3軸ジャイロスコープを別々に設けてもよい。IMU115は、GNSSユニット110とは別の装置として設けられていてもよい。
 カメラ120は、作業車両100の周辺の環境を撮影する撮像装置である。カメラ120は、例えば、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)などのイメージセンサを備える。カメラ120は、他にも、一つ以上のレンズを含む光学系、および信号処理回路を備え得る。カメラ120は、作業車両100の走行中、作業車両100の周辺の環境を撮影し、画像(例えば動画)のデータを生成する。カメラ120は、例えば、3フレーム/秒(fps: frames per second)以上のフレームレートで動画を撮影することができる。カメラ120によって生成された画像は、例えば遠隔の監視者が端末装置400を用いて作業車両100の周辺の環境を確認するときに利用され得る。カメラ120によって生成された画像は、測位または障害物の検出に利用されてもよい。図2に示すように、複数のカメラ120が作業車両100の異なる位置に設けられていてもよいし、単数のカメラが設けられていてもよい。可視光画像を生成する可視カメラと、赤外線画像を生成する赤外カメラとが別々に設けられていてもよい。可視カメラと赤外カメラの両方が監視用の画像を生成するカメラとして設けられていてもよい。赤外カメラは、夜間において障害物の検出にも用いられ得る。
 障害物センサ130は、作業車両100の周辺に存在する物体を検出する。障害物センサ130は、例えばレーザスキャナまたは超音波ソナーを含み得る。障害物センサ130は、障害物センサ130から所定の距離よりも近くに物体が存在する場合に、障害物が存在することを示す信号を出力する。複数の障害物センサ130が作業車両100の異なる位置に設けられていてもよい。例えば、複数のレーザスキャナと、複数の超音波ソナーとが、作業車両100の異なる位置に配置されていてもよい。そのような多くの障害物センサ130を備えることにより、作業車両100の周辺の障害物の監視における死角を減らすことができる。
 ステアリングホイールセンサ152は、作業車両100のステアリングホイールの回転角を計測する。切れ角センサ154は、操舵輪である前輪104Fの切れ角を計測する。ステアリングホイールセンサ152および切れ角センサ154による計測値は、制御装置180による操舵制御に利用される。
 車軸センサ156は、車輪104に接続された車軸の回転速度、すなわち単位時間あたりの回転数を計測する。車軸センサ156は、例えば磁気抵抗素子(MR)、ホール素子、または電磁ピックアップを利用したセンサであり得る。車軸センサ156は、例えば、車軸の1分あたりの回転数(単位:rpm)を示す数値を出力する。車軸センサ156は、作業車両100の速度を計測するために使用される。
 駆動装置240は、前述の原動機102、変速装置103、操舵装置106、および連結装置108などの、作業車両100の走行および作業機300の駆動に必要な各種の装置を含む。原動機102は、例えばディーゼル機関などの内燃機関を備え得る。駆動装置240は、内燃機関に代えて、あるいは内燃機関とともに、トラクション用の電動モータを備えていてもよい。
 ブザー220は、異常を報知するための警告音を発する音声出力装置である。ブザー220は、例えば、自動運転時に、障害物が検出された場合に警告音を発する。ブザー220は、制御装置180によって制御される。
 処理装置161は、例えばマイクロプロセッサまたはマイクロコントローラである。処理装置161は、カメラ120、障害物センサ130およびLiDARセンサ140などのセンシング装置から出力されるセンシングデータを処理する。例えば処理装置161は、カメラ120、障害物センサ130およびLiDARセンサ140から出力されたデータに基づいて、作業車両100の周辺に位置する物体を検出する。
 記憶装置170は、フラッシュメモリまたは磁気ディスクなどの一つ以上の記憶媒体を含む。記憶装置170は、GNSSユニット110、カメラ120、障害物センサ130、LiDARセンサ140、センサ群150、および制御装置180が生成する各種のデータを記憶する。記憶装置170が記憶するデータには、作業車両100が走行する環境内の地図データ(環境地図)、および自動運転のための目標経路のデータが含まれ得る。環境地図は、作業車両100が農作業を行う複数の圃場およびその周辺の道の情報を含む。環境地図および目標経路は、管理装置600におけるプロセッサによって生成され得る。なお、制御装置180が、環境地図および目標経路を生成または編集する機能を備えていてもよい。制御装置180は、管理装置600から取得した環境地図および目標経路を、作業車両100の走行環境に応じて編集することができる。記憶装置170は、通信装置190が管理装置600から受信した作業計画のデータも記憶する。
 記憶装置170は、処理装置161、および制御装置180における各ECUに、後述する各種の動作を実行させるコンピュータプログラムも記憶する。そのようなコンピュータプログラムは、記憶媒体(例えば半導体メモリまたは光ディスク等)または電気通信回線(例えばインターネット)を介して作業車両100に提供され得る。そのようなコンピュータプログラムが、商用ソフトウェアとして販売されてもよい。
 制御装置180は、複数のECUを含む。複数のECUは、例えば、速度制御用のECU181、ステアリング制御用のECU182、作業機制御用のECU183、自動運転制御用のECU184、および経路生成用のECU185を含む。
 ECU181は、駆動装置240に含まれる原動機102、変速装置103、およびブレーキを制御することによって作業車両100の速度を制御する。
 ECU182は、ステアリングホイールセンサ152の計測値に基づいて、操舵装置106に含まれる油圧装置または電動モータを制御することによって作業車両100のステアリングを制御する。
 ECU183は、作業機300に所望の動作を実行させるために、連結装置108に含まれる3点リンクおよびPTO軸などの動作を制御する。ECU183はまた、作業機300の動作を制御する信号を生成し、その信号を通信装置190から作業機300に送信する。
 ECU184は、GNSSユニット110、カメラ120、障害物センサ130、LiDARセンサ140、センサ群150、および処理装置161から出力されたデータに基づいて、自動運転を実現するための演算および制御を行う。例えば、ECU184は、GNSSユニット110、カメラ120、およびLiDARセンサ140の少なくとも1つから出力されたデータに基づいて、作業車両100の位置を特定する。圃場内においては、ECU184は、GNSSユニット110から出力されたデータのみに基づいて作業車両100の位置を決定してもよい。ECU184は、カメラ120および/またはLiDARセンサ140が取得したデータに基づいて作業車両100の位置を推定または補正してもよい。カメラ120および/またはLiDARセンサ140が取得したデータを利用することにより、測位の精度をさらに高めることができる。また、圃場外においては、ECU184は、LiDARセンサ140および/またはカメラ120から出力されるデータを利用して作業車両100の位置を推定する。例えば、ECU184は、LiDARセンサ140および/またはカメラ120から出力されるデータと、環境地図とのマッチングにより、作業車両100の位置を推定してもよい。自動運転中、ECU184は、推定された作業車両100の位置に基づいて、目標経路に沿って作業車両100が走行するために必要な演算を行う。ECU184は、ECU181に速度変更の指令を送り、ECU182に操舵角変更の指令を送る。ECU181は、速度変更の指令に応答して原動機102、変速装置103、またはブレーキを制御することによって作業車両100の速度を変化させる。ECU182は、操舵角変更の指令に応答して操舵装置106を制御することによって操舵角を変化させる。
 ECU185は、記憶装置170に格納された作業計画に基づいて作業車両100の移動先を決定し、作業車両100の移動の開始地点から目的地点までの目標経路を決定し得る。ECU185は、カメラ120、障害物センサ130およびLiDARセンサ140から出力されたデータに基づいて、作業車両100の周辺に位置する物体を検出する処理を行ってもよい。
 これらのECUの働きにより、制御装置180は、自動運転を実現する。自動運転時において、制御装置180は、計測または推定された作業車両100の位置と、目標経路とに基づいて、駆動装置240を制御する。これにより、制御装置180は、作業車両100を目標経路に沿って走行させることができる。
 制御装置180に含まれる複数のECUは、例えばCAN(Controller Area Network)などのビークルバス規格に従って、相互に通信することができる。CANに代えて、車載イーサネット(登録商標)などの、より高速の通信方式が用いられてもよい。図3において、ECU181から185のそれぞれは、個別のブロックとして示されているが、これらのそれぞれの機能が、複数のECUによって実現されていてもよい。ECU181から185の少なくとも一部の機能を統合した車載コンピュータが設けられていてもよい。制御装置180は、ECU181から185以外のECUを備えていてもよく、機能に応じて任意の個数のECUが設けられ得る。各ECUは、一つ以上のプロセッサを含む処理回路を備える。制御装置180に処理装置161が含まれていてもよい。処理装置161は制御装置180が含むECUのいずれかと統合されていてもよい。
 通信装置190は、作業機300、端末装置400、および管理装置600と通信を行う回路を含む装置である。通信装置190は、例えばISOBUS-TIM等のISOBUS規格に準拠した信号の送受信を、作業機300の通信装置390との間で実行する回路を含む。これにより、作業機300に所望の動作を実行させたり、作業機300から情報を取得したりすることができる。通信装置190は、さらに、ネットワーク80を介した信号の送受信を、端末装置400および管理装置600のそれぞれの通信装置との間で実行するためのアンテナおよび通信回路を含み得る。ネットワーク80は、例えば、3G、4Gもしくは5Gなどのセルラー移動体通信網およびインターネットを含み得る。通信装置190は、作業車両100の近くにいる監視者が使用する携帯端末と通信する機能を備えていてもよい。そのような携帯端末との間では、Wi-Fi(登録商標)、3G、4Gもしくは5Gなどのセルラー移動体通信、またはBluetooth(登録商標)などの、任意の無線通信規格に準拠した通信が行われ得る。
 操作端末200は、作業車両100の走行および作業機300の動作に関する操作をユーザが実行するための端末であり、バーチャルターミナル(VT)とも称される。操作端末200は、タッチスクリーンなどの表示装置、および/または一つ以上のボタンを備え得る。表示装置は、例えば液晶または有機発光ダイオード(OLED)などのディスプレイであり得る。ユーザは、操作端末200を操作することにより、例えば自動運転モードのオン/オフの切り替え、環境地図の記録または編集、目標経路の設定、および作業機300のオン/オフの切り替えなどの種々の操作を実行することができる。これらの操作の少なくとも一部は、操作スイッチ群210を操作することによっても実現され得る。操作端末200は、作業車両100から取り外せるように構成されていてもよい。作業車両100から離れた場所にいるユーザが、取り外された操作端末200を操作して作業車両100の動作を制御してもよい。ユーザは、操作端末200の代わりに、端末装置400などの、必要なアプリケーションソフトウェアがインストールされたコンピュータを操作して作業車両100の動作を制御してもよい。
 図5は、キャビン105の内部に設けられる操作端末200および操作スイッチ群210の例を示す図である。キャビン105の内部には、ユーザが操作可能な複数のスイッチを含む操作スイッチ群210が配置されている。操作スイッチ群210は、例えば、主変速または副変速の変速段を選択するためのスイッチ、自動運転モードと手動運転モードとを切り替えるためのスイッチ、前進と後進とを切り替えるためのスイッチ、および作業機300を昇降するためのスイッチ等を含み得る。なお、作業車両100が無人運転のみを行い、有人運転の機能を備えていない場合、作業車両100が操作スイッチ群210を備えている必要はない。
 図3に示す作業機300における駆動装置340は、作業機300が所定の作業を実行するために必要な動作を行う。駆動装置340は、例えば油圧装置、電気モータ、またはポンプなどの、作業機300の用途に応じた装置を含む。制御装置380は、駆動装置340の動作を制御する。制御装置380は、通信装置390を介して作業車両100から送信された信号に応答して、駆動装置340に各種の動作を実行させる。また、作業機300の状態に応じた信号を通信装置390から作業車両100に送信することもできる。
 次に、図6を参照しながら、管理装置600および端末装置400の構成を説明する。図6は、管理装置600および端末装置400の概略的なハードウェア構成を例示するブロック図である。
 管理装置600は、記憶装置650と、プロセッサ660と、ROM(Read Only Memory)670と、RAM(Random Access Memory)680と、通信装置690とを備える。これらの構成要素は、バスを介して相互に通信可能に接続される。管理装置600は、作業車両100が実行する圃場における農作業のスケジュール管理を行い、管理するデータを活用して農業を支援するクラウドサーバとして機能し得る。ユーザは、端末装置400を用いて作業計画の作成に必要な情報を入力し、その情報をネットワーク80を介して管理装置600にアップロードすることが可能である。管理装置600は、その情報に基づき、農作業のスケジュール、すなわち作業計画を作成することができる。管理装置600は、さらに、環境地図の生成または編集を実行することができる。環境地図は、管理装置600の外部のコンピュータから配信されてもよい。
 通信装置690は、ネットワーク80を介して作業車両100および端末装置400と通信するための通信モジュールである。通信装置690は、例えば、IEEE1394(登録商標)またはイーサネット(登録商標)などの通信規格に準拠した有線通信を行うことができる。通信装置690は、Bluetooth(登録商標)規格もしくはWi-Fi規格に準拠した無線通信、または、3G、4Gもしくは5Gなどのセルラー移動体通信を行ってもよい。
 プロセッサ660は、例えば中央演算処理装置(CPU)を含む半導体集積回路であり得る。プロセッサ660は、マイクロプロセッサまたはマイクロコントローラによって実現され得る。あるいは、プロセッサ660は、CPUを搭載したFPGA(Field Programmable Gate Array)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、ASSP(Application Specific Standard Product)、または、これら回路の中から選択される二つ以上の回路の組み合わせによっても実現され得る。プロセッサ660は、ROM670に格納された、少なくとも一つの処理を実行するための命令群を記述したコンピュータプログラムを逐次実行し、所望の処理を実現する。
 ROM670は、例えば、書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)、または読み出し専用のメモリである。ROM670は、プロセッサ660の動作を制御するプログラムを記憶する。ROM670は、単一の記憶媒体である必要はなく、複数の記憶媒体の集合体であってもよい。複数の記憶媒体の集合体の一部は、取り外し可能なメモリであってもよい。
 RAM680は、ROM670に格納された制御プログラムをブート時に一旦展開するための作業領域を提供する。RAM680は、単一の記憶媒体である必要はなく、複数の記憶媒体の集合体であってもよい。
 記憶装置650は、主としてデータベースのストレージとして機能する。記憶装置650は、例えば、磁気記憶装置または半導体記憶装置であり得る。磁気記憶装置の例は、ハードディスクドライブ(HDD)である。半導体記憶装置の例は、ソリッドステートドライブ(SSD)である。記憶装置650は、管理装置600とは独立した装置であってもよい。例えば、記憶装置650は、管理装置600にネットワーク80を介して接続される記憶装置、例えばクラウドストレージであってもよい。
 端末装置400は、入力装置420と、表示装置430と、記憶装置450と、プロセッサ460と、ROM470と、RAM480と、通信装置490とを備える。これらの構成要素は、バスを介して相互に通信可能に接続される。入力装置420は、ユーザからの指示をデータに変換してコンピュータに入力するための装置である。入力装置420は、例えば、キーボード、マウス、またはタッチパネルであり得る。表示装置430は、例えば液晶ディスプレイまたは有機ELディスプレイであり得る。プロセッサ460、ROM470、RAM480、記憶装置450、および通信装置490のそれぞれに関する説明は、管理装置600のハードウェア構成例において記載したとおりであり、それらの説明を省略する。
 [2.動作]
 次に、作業車両100、端末装置400、および管理装置600の動作を説明する。
 [2-1.自動走行動作]
 まず、作業車両100による自動走行の動作の例を説明する。本実施形態における作業車両100は、圃場内および圃場外の両方で自動で走行することができる。圃場内において、作業車両100は、予め設定された目標経路に沿って走行しながら、作業機300を駆動して所定の農作業を行う。作業車両100は、圃場内を走行中に障害物が検出された場合、走行を停止し、ブザー220からの警告音の発出、および端末装置400への警告信号の送信などの動作を行う。圃場内において、作業車両100の測位は、主にGNSSユニット110から出力されるデータに基づいて行われる。一方、圃場外において、作業車両100は、圃場外の農道または一般道に設定された目標経路に沿って自動で走行する。作業車両100は、圃場外を走行中、カメラ120および/またはLiDARセンサ140によって取得されたデータを活用して走行する。圃場外において、作業車両100は、障害物が検出されると、障害物を回避するか、その場で停止する。圃場外においては、GNSSユニット110から出力される測位データに加え、LiDARセンサ140および/またはカメラ120から出力されるデータに基づいて作業車両100の位置が推定される。
 以下、作業車両100が圃場内を自動走行する場合の動作の例を説明する。
 図7は、圃場内を目標経路に沿って自動で走行する作業車両100の例を模式的に示す図である。この例において、圃場70は、作業車両100が作業機300を用いて作業を行う作業領域72と、圃場70の外周縁付近に位置する枕地74とを含む。地図上で圃場70のどの領域が作業領域72または枕地74に該当するかは、ユーザによって事前に設定され得る。この例における目標経路は、並列する複数の主経路P1と、複数の主経路P1を接続する複数の旋回経路P2とを含む。主経路P1は作業領域72内に位置し、旋回経路P2は枕地74内に位置する。図7に示す各主経路P1は直線状の経路であるが、各主経路P1は曲線状の部分を含んでいてもよい。図7における破線は、作業機300の作業幅を表している。作業幅は、予め設定され、記憶装置170に記録される。作業幅は、ユーザが操作端末200または端末装置400を操作することによって設定され、記録され得る。あるいは、作業幅は、作業機300を作業車両100に接続したときに自動で認識され、記録されてもよい。複数の主経路P1の間隔は、作業幅に合わせて設定され得る。目標経路は、自動運転が開始される前に、ユーザの操作に基づいて作成され得る。目標経路は、例えば圃場70内の作業領域72の全体をカバーするように作成され得る。作業車両100は、図7に示すような目標経路に沿って、作業の開始地点から作業の終了地点まで、往復を繰り返しながら自動で走行する。なお、図7に示す目標経路は一例に過ぎず、目標経路の定め方は任意である。
 次に、制御装置180による圃場内における自動運転時の制御の例を説明する。
 図8は、制御装置180によって実行される自動運転時の操舵制御の動作の例を示すフローチャートである。制御装置180は、作業車両100の走行中、図8に示すステップS121からS125の動作を実行することにより、自動操舵を行う。速度に関しては、例えば予め設定された速度に維持される。制御装置180は、作業車両100の走行中、GNSSユニット110によって生成された作業車両100の位置を示すデータを取得する(ステップS121)。次に、制御装置180は、作業車両100の位置と、目標経路との偏差を算出する(ステップS122)。偏差は、その時点における作業車両100の位置と、目標経路との距離を表す。制御装置180は、算出した位置の偏差が予め設定された閾値を超えるか否かを判定する(ステップS123)。偏差が閾値を超える場合、制御装置180は、偏差が小さくなるように、駆動装置240に含まれる操舵装置の制御パラメータを変更することにより、操舵角を変更する。ステップS123において偏差が閾値を超えない場合、ステップS124の動作は省略される。続くステップS125において、制御装置180は、動作終了の指令を受けたか否かを判定する。動作終了の指令は、例えばユーザが遠隔操作で自動運転の停止を指示したり、作業車両100が目的地に到達したりした場合に出され得る。動作終了の指令が出されていない場合、ステップS121に戻り、新たに計測された作業車両100の位置に基づいて、同様の動作を実行する。制御装置180は、動作終了の指令が出されるまで、ステップS121からS125の動作を繰り返す。上記の動作は、制御装置180におけるECU182、184によって実行される。
 図8に示す例では、制御装置180は、GNSSユニット110によって特定された作業車両100の位置と目標経路との偏差のみに基づいて駆動装置240を制御するが、方位の偏差もさらに考慮して制御してもよい。例えば、制御装置180は、GNSSユニット110によって特定された作業車両100の向きと、目標経路の方向との角度差である方位偏差が予め設定された閾値を超える場合に、その偏差に応じて駆動装置240の操舵装置の制御パラメータ(例えば操舵角)を変更してもよい。
 以下、図9Aから図9Dを参照しながら、制御装置180による操舵制御の例をより具体的に説明する。
 図9Aは、目標経路Pに沿って走行する作業車両100の例を示す図である。図9Bは、目標経路Pから右にシフトした位置にある作業車両100の例を示す図である。図9Cは、目標経路Pから左にシフトした位置にある作業車両100の例を示す図である。図9Dは、目標経路Pに対して傾斜した方向を向いている作業車両100の例を示す図である。これらの図において、GNSSユニット110によって計測された作業車両100の位置および向きを示すポーズがr(x,y,θ)と表現されている。(x,y)は、地球に固定された2次元座標系であるXY座標系における作業車両100の基準点の位置を表す座標である。図9Aから図9Dに示す例において、作業車両100の基準点はキャビン上のGNSSアンテナが設置された位置にあるが、基準点の位置は任意である。θは、作業車両100の計測された向きを表す角度である。図示されている例においては、目標経路PがY軸に平行であるが、一般的には目標経路PはY軸に平行であるとは限らない。
 図9Aに示すように、作業車両100の位置および向きが目標経路Pから外れていない場合には、制御装置180は、作業車両100の操舵角および速度を変更せずに維持する。
 図9Bに示すように、作業車両100の位置が目標経路Pから右側にシフトしている場合には、制御装置180は、作業車両100の走行方向が左寄りに傾き、経路Pに近付くように操舵角を変更する。このとき、操舵角に加えて速度も併せて変更してもよい。操舵角の大きさは、例えば位置偏差Δxの大きさに応じて調整され得る。
 図9Cに示すように、作業車両100の位置が目標経路Pから左側にシフトしている場合には、制御装置180は、作業車両100の走行方向が右寄りに傾き、経路Pに近付くように操舵角を変更する。この場合も、操舵角に加えて速度も併せて変更してもよい。操舵角の変化量は、例えば位置偏差Δxの大きさに応じて調整され得る。
 図9Dに示すように、作業車両100の位置は目標経路Pから大きく外れていないが、向きが目標経路Pの方向とは異なる場合は、制御装置180は、方位偏差Δθが小さくなるように操舵角を変更する。この場合も、操舵角に加えて速度も併せて変更してもよい。操舵角の大きさは、例えば位置偏差Δxおよび方位偏差Δθのそれぞれの大きさに応じて調整され得る。例えば、位置偏差Δxの絶対値が小さいほど方位偏差Δθに応じた操舵角の変化量を大きくしてもよい。位置偏差Δxの絶対値が大きい場合には、経路Pに戻るために操舵角を大きく変化させることになるため、必然的に方位偏差Δθの絶対値が大きくなる。逆に、位置偏差Δxの絶対値が小さい場合には、方位偏差Δθをゼロに近づけることが必要である。このため、操舵角を決定するための方位偏差Δθの重み(すなわち制御ゲイン)を相対的に大きくすることが妥当である。
 作業車両100の操舵制御および速度制御には、PID制御またはMPC制御(モデル予測制御)などの制御技術が適用され得る。これらの制御技術を適用することにより、作業車両100を目標経路Pに近付ける制御を滑らかにすることができる。
 なお、走行中にカメラ120、障害物センサ130およびLiDARセンサ140などのセンシング装置によって障害物が検出された場合には、制御装置180は、作業車両100を停止させる。このとき、ブザー220に警告音を発出させたり、警告信号を端末装置400に送信したりしてもよい。障害物の回避が可能な場合、制御装置180は、障害物を回避するように駆動装置240を制御してもよい。
 本実施形態における作業車両100は、圃場内だけでなく、圃場外でも自動走行が可能である。圃場外において、処理装置161および/または制御装置180は、カメラ120、障害物センサ130およびLiDARセンサ140などのセンシング装置から出力されたデータに基づいて、作業車両100の周辺に存在する物体(例えば、他の車両または歩行者等)を検出することができる。カメラ120およびLiDARセンサ140を用いることで、作業車両100から比較的離れた位置に存在する物体を検出することができる。制御装置180は、検出された物体を回避するように速度制御および操舵制御を行うことにより、圃場外の道における自動走行を実現できる。
 このように、本実施形態における作業車両100は、無人で圃場内および圃場外を自動で走行できる。図10は、複数の作業車両100が圃場70の内部および圃場70の外側の道76を自動走行している状況の例を模式的に示す図である。記憶装置170には、複数の圃場70およびその周辺の道を含む領域の環境地図および目標経路が記録される。環境地図および目標経路は、管理装置600またはECU185によって生成され得る。作業車両100が道路上を走行する場合、作業車両100は、作業機300を上昇させた状態で、カメラ120、障害物センサ130およびLiDARセンサ140などのセンシング装置を用いて周辺をセンシングしながら、目標経路に沿って走行する。
 [2-2.農業機械が位置するエリアに応じたサーチ領域の設定]
 次に、農業機械が位置するエリアに応じてサーチ領域を設定する処理を説明する。
 上述したように、カメラ120、障害物センサ130およびLiDARセンサ140などのセンシング装置は、作業車両100の周辺の環境をセンシングして、センシングデータを出力する。処理装置161(図3)は、それらセンシングデータに基づいて、作業車両100の周辺のサーチ領域に位置する物体を検出する。サーチ領域は、センシング装置がセンシングした作業車両100の周辺の領域のうち、物体のサーチを行う領域のことである。サーチ領域は、センシング装置がセンシングしたセンシング領域と同じ大きさであってもよいし、そのセンシング領域より小さくてもよい。サーチ領域は、関心領域(Region of Interest:ROI)とも称され得る。
 以下に例示する実施形態では、LiDARセンサ140が出力したセンシングデータを用いて物体の検出を行う処理におけるサーチ領域のパターンを、作業車両100が位置するエリアに応じて変更する。サーチ領域のパターンの変更とは、例えば、サーチ領域の形状、大きさ、作業車両100に対する相対位置の少なくとも一つを変更することである。
 本実施形態の作業車両100は、LiDARセンサ140が出力したセンシングデータを用いて、作業車両100の周辺に位置する物体を検出するセンシングシステム10(図3)を備える。センシングシステム10は、処理装置161と、LiDARセンサ140とを備える。GNSSユニット110が生成する位置データと地図データとを用いて作業車両100が位置するエリアを検出する場合は、センシングシステム10は、GNSSユニット110および記憶装置170を備え得る。カメラ120から出力されたデータと環境地図とのマッチングによって作業車両100が位置するエリアを推定する場合は、センシングシステム10は、カメラ120および記憶装置170を備え得る。
 LiDARセンサ140は、レーザビームのパルス(以下「レーザパルス」と略記する。)を、出射方向を変えながら次々と出射し、出射時刻と各レーザパルスの反射光を取得した時刻との時間差から各反射点の位置までの距離を計測することができる。「反射点」は、作業車両100の周辺の環境に位置する物体であり得る。
 LiDARセンサ140は、任意の方法により、LiDARセンサ140から物体までの距離を計測し得る。LiDARセンサ140の計測方法としては、例えば機械回転方式、MEMS方式、フェーズドアレイ方式がある。これらの計測方法は、それぞれレーザパルスを出射する方法(スキャンの方法)が異なっている。例えば、機械回転方式のLiDARセンサは、レーザパルスの出射およびレーザパルスの反射光の検出を行う筒状のヘッドを回転させて、回転軸の周囲360度全方位の周辺環境をスキャンする。MEMS方式のLiDARセンサは、MEMSミラーを用いてレーザパルスの出射方向を揺動させ、揺動軸を中心とした所定の角度範囲内の周辺環境をスキャンする。フェーズドアレイ方式のLiDARセンサは、光の位相を制御して光の出射方向を揺動させ、揺動軸を中心とした所定の角度範囲内の周辺環境をスキャンする。
 図11は、農業機械が位置するエリアに応じてサーチ領域のパターンを変更する処理の例を示すフローチャートである。
 上述したステップS121(図8)の処理と同様に、制御装置180(図3)は、作業車両100の走行中、GNSSユニット110によって生成された作業車両100の位置を示す位置データを取得する(ステップS201)。位置データは、作業車両100の位置の地理座標の情報を含んでいる。記憶装置170には、作業車両100が移動するエリアの地図データが記憶されている。地図データは、地図が示すエリアの地理座標の情報を含んでいる。
 処理装置161は、地図データを用いて、位置データが示す地理座標に対応するエリアを決定する(ステップS202)。位置データが示す地理座標に対応するエリアは、作業車両100が位置するエリアに該当する。処理装置161は、位置データが示す地理座標に対応するエリアが所定のエリアであるかを決定する(ステップS203)。所定のエリアは予め地図データに登録されている。
 位置データが示す地理座標に対応するエリアが所定のエリアでない場合、処理装置161は、サーチ領域として第1サーチ領域を設定する(ステップS205)。位置データが示す地理座標に対応するエリアが所定のエリアである場合、処理装置161は、サーチ領域として第2サーチ領域を設定する(ステップS204)。
 図12は、サーチ領域のパターンを変更するエリアの例を示す図である。図12に示す例では、所定のエリアは圃場70の外周縁部に近いエリア712である。図12では、エリア712を斜線のハッチングで示している。図12に示す例では圃場70の外周縁部に畦710が形成されており、この場合、エリア712は畦際エリアであり得る。なお、畦が形成される圃場は水田に限定されない。
 図13は、第1サーチ領域および第2サーチ領域の例を示す図である。第1サーチ領域810は、作業車両100の位置が所定のエリアでないときに設定するサーチ領域である。第2サーチ領域820は、作業車両100の位置が所定のエリア内であるときに設定するサーチ領域である。
 第1サーチ領域810は、前方サーチ領域810F、後方サーチ領域810Re、左側方サーチ領域810L、右側方サーチ領域810Rを含む。第2サーチ領域820は、前方サーチ領域820F、後方サーチ領域820Re、左側方サーチ領域820L、右側方サーチ領域820Rを含む。図13は、作業車両100が水平な地面に位置している状態における、鉛直方向から見た平面視におけるサーチ領域を示している。本実施形態では、鉛直方向から見た平面視におけるサーチ領域のパターンを変更する。
 この例では、作業車両100に4個のLiDARセンサ140F、140Re、140L、140Rが設けられている。LiDARセンサ140Fは、作業車両100の前部に配置されており、主に作業車両100の前方に広がる周辺環境をセンシングする。LiDARセンサ140Reは、作業車両100の後部に配置されており、主に作業車両100の後方に広がる周辺環境をセンシングする。LiDARセンサ140Lは、作業車両100の左側部に配置されており、主に作業車両100の左側方に広がる周辺環境をセンシングする。LiDARセンサ140Rは、作業車両100の右側部に配置されており、主に作業車両100の右側方に広がる周辺環境をセンシングする。LiDARセンサ140Re、140L、140Rは、例えば作業車両100のキャビン105(図2)に設けられ得る。LiDARセンサ140Reは、インプルメント300に設けられていてもよい。
 図14および図15は、LiDARセンサがセンシングするセンシング領域と、物体のサーチを行うサーチ領域との関係を示す図である。サーチ領域の形状、大きさおよび位置は、例えば、LiDARセンサが出力する3次元点群データのうちの、物体のサーチに用いるデータ部分を変更することで実現することができる。
 LiDARセンサが出力する3次元点群データは、複数の点の位置に関する情報および光検出器の受信強度などの情報(属性情報)を含んでいる。複数の点の位置に関する情報は、例えば、点に対応するレーザパルスの出射方向と、LiDARセンサと点との間の距離の情報である。また例えば、複数の点の位置に関する情報は、ローカル座標系における点の座標の情報である。ローカル座標系は、作業車両100とともに移動する座標系であり、センサ座標系とも称される。点に対応するレーザパルスの出射方向と、LiDARセンサと点との間の距離とから、各点の座標を算出することができる。
 例えば各点の座標に基づいてサーチ領域を設定することができる。物体のサーチに用いる点として、ローカル座標系における所望の形状内に位置する点を選択することで、その所望の形状のサーチ領域を設定することができる。
 図14は、LiDARセンサ140Lがセンシングするセンシング領域830L、およびLiDARセンサ140Rがセンシングするセンシング領域830Rを示している。
 LiDARセンサ140Lが出力した3次元点群データが示す複数の点のうち、ローカル座標系における所定の形状内に位置する点を選択することで、サーチ領域810Lを設定することができる。ローカル座標系における別の形状内に位置する点を選択することで、サーチ領域820Lを設定することができる。
 LiDARセンサ140Rが出力した3次元点群データが示す複数の点のうち、ローカル座標系における所定の形状内に位置する点を選択することで、サーチ領域810Rを設定することができる。ローカル座標系における別の形状内に位置する点を選択することで、サーチ領域820Rを設定することができる。
 図14に示す例では、サーチ領域810L、810R、820L、820Rの形状は略矩形であるが、それに限定されず、別の形状であってもよい。
 図15は、LiDARセンサ140Fがセンシングするセンシング領域830F、およびLiDARセンサ140Reがセンシングするセンシング領域830Reを示している。
 LiDARセンサ140Fが出力した3次元点群データが示す複数の点のうち、ローカル座標系における所定の形状内に位置する点を選択することで、サーチ領域810Fを設定することができる。ローカル座標系における別の形状内に位置する点を選択することで、サーチ領域820Fを設定することができる。
 LiDARセンサ140Reが出力した3次元点群データが示す複数の点のうち、ローカル座標系における所定の形状内に位置する点を選択することで、サーチ領域810Reを設定することができる。ローカル座標系における別の形状内に位置する点を選択することで、サーチ領域820Reを設定することができる。
 図15に示す例では、サーチ領域810F、810Re、820F、820Reの形状は略扇形であるが、それに限定されず、別の形状であってもよい。図15に示す例では、サーチ領域810Fとサーチ領域820Fとは互いに同じであり得るが、互いに異なっていてもよい。同様に、図15に示す例では、サーチ領域810Reとサーチ領域820Reとは互いに同じであり得るが、互いに異なっていてもよい。
 図13に示すように、側方サーチ領域820Lおよび820Rの前後方向の長さLは、側方サーチ領域810Lおよび810Rの前後方向の長さLよりも大きい。圃場70内の畦際エリア712(図12)の走行時は、作業車両100の側方の状態を早期に検出できることが望ましい。畦際エリア712の走行時は、畦際エリア712以外のエリア(例えば圃場70内における外周縁部から相対的に遠いエリア)の走行時よりも、側方サーチ領域820Lおよび820Rの前後方向の長さを大きくすることで、作業車両100の側方の状態を早期に検出することができる。
 なお、側方サーチ領域内のサーチの対象となる点として、LiDARセンサ140Fおよび/または140Reが出力する3次元点群データが示す点が含まれていてもよい。
 図16は、サーチ領域のパターンを変更するエリアの別の例を示す図である。図16に示す例では、サーチ領域のパターンを変更する所定のエリアは、圃場外の道76(農道または一般道)のうちの、水路720に隣接するエリア722である。図16では、エリア722を斜線のハッチングで示している。水路隣接エリア722の走行時は、作業車両100の側方の状態を早期に検出できることが望ましい。水路隣接エリア722の走行時は、水路隣接エリア722以外の道76の走行時よりも、側方サーチ領域820Lおよび820Rの前後方向の長さを大きくすることで、作業車両100の側方の状態を早期に検出することができる。
 図11に示すように、処理装置161は、設定したサーチ領域に対応するLiDARセンサ140の出力データを用いて、作業車両100の周辺の物体を検出する(ステップS206)。処理装置161は、動作終了の指令が出されるまで、ステップS201からS206の動作を繰り返す(ステップS207)。
 作業車両100の周辺の物体の検出処理において、障害物を検出した場合は、障害物を回避する動作を行ったり、作業車両100の走行を停止させたりし得る。図17は、障害物を検出した場合の処理の例を示すフローチャートである。
 例えば予め設定された目標経路上に位置する人間、動物または車両などの物体を検出した場合には、処理装置161は、障害物有りと判断する(ステップS301)。例えば、予め生成された「環境地図」に含まれていない物体であって、所定の高さ以上の物体を目標経路上に検出した場合に、障害物有りと判断する。
 障害物を検出した場合、ECU185は、障害物を回避可能な迂回経路を生成可能か判定する(ステップS302)。例えば、道76上に迂回可能な十分なスペースがある場合は、迂回経路を生成可能と判定する。圃場70内においては、例えば、農作業および作物に影響を与えない迂回経路を生成可能な場合は、迂回経路を生成可能と判定する。例えば、迂回経路の生成が予め禁止された農作業である場合、または迂回することで作業車両100が作物と接触すると判断される場合は、迂回経路は生成不可と判定する。また、例えば、圃場70内の作業済みのエリアに進入しない迂回経路を生成可能な場合は、迂回経路を生成可能と判定する。
 迂回経路を生成可能と判定した場合、ECU185は迂回経路を生成し、制御装置180は迂回経路に沿って作業車両100を走行させる制御を行う(ステップS303)。制御装置180は、迂回経路の走行の後、目標経路上に作業車両100を復帰させ、図11に示すステップS207の処理に戻る。
 迂回経路の生成不可と判定した場合、制御装置180は作業車両100を停止させる制御を行う(ステップS304)。並行して、ブザー220からの警告音の発出、および端末装置400への警告信号の送信などの動作を行う。
 障害物として検出した物体が移動したり、作業者が障害物を取り除いたりした結果、障害物は無くなったと判定した場合、制御装置180は作業車両100の走行を再開させ(ステップS305およびS306)、図11に示すステップS207の処理に戻る。
 上述の説明では、GNSSユニット110が生成した位置データを用いて、作業車両100が位置しているエリアを検出していたが、それに限定されない。例えば、LiDARセンサ140および/またはカメラ120から出力されるデータと、環境地図とのマッチングにより、作業車両100が位置するエリアを推定してもよい。
 図18は、第1サーチ領域810および第2サーチ領域820の別の例を示す図である。図13に示すサーチ領域810および820と比較して、図18に示すサーチ領域810および820では、前方サーチ領域および後方サーチ領域に対する側方サーチ領域の前後方向の長さが大きい。側方サーチ領域の前後方向の長さを大きくすることで、作業車両100の側方の状態を早期に検出することができる。
 図19は、第1サーチ領域810および第2サーチ領域820のさらに別の例を示す図である。上述した例では、側方サーチ領域810L、810R、820L、820Rの形状は略矩形であったが、別の形状であってもよい。例えば、図19に示すように、側方サーチ領域810L、810R、820L、820Rの形状は略扇形であってもよい。
 上述したように、LiDARセンサは、揺動軸を中心とした所定の角度範囲内の周辺環境をセンシングし得る。サーチ領域が略扇形である場合、LiDARセンサが出力する3次元点群データが示す複数の点のうちの物体のサーチに用いる点を、対応するレーザパルスの出射角度に着目して選択してもよい。その選択の基準となる角度の範囲を変更することで、サーチ領域のパターンを変更することができる。また、サーチ領域が略扇形である場合、3次元点群データが示す複数の点のうちの物体のサーチに用いる点を、LiDARセンサと点との間の距離に着目して選択してもよい。その選択の基準となる距離の大きさを変更することで、サーチ領域のパターンを変更することができる。
 また、LiDARセンサがセンシングする範囲を変更することで、サーチ領域のパターンを変更してもよい。例えば、LiDARセンサから出射されるレーザパルスの出力を変更することで、サーチ領域の大きさを変更してもよい。また例えば、LiDARセンサがレーザパルスを出射する角度範囲を変更することで、サーチ領域の角度範囲を変更してもよい。また、例えば、レーザパルスの出射方向を揺動させる角度範囲を変更することで、サーチ領域の角度範囲を変更してもよい。
 図20は、第1サーチ領域810および第2サーチ領域820のさらに別の例を示す図である。図20に示す例では、側方サーチ領域810L、810Rと比較して、側方サーチ領域820L、820Rは、前輪104Fおよび後輪104Rにより近い領域を含む形状を有する。側方サーチ領域820L、820Rは、特に前輪104Fの前方の外側端部に近い領域を含むように設定される。
 図21は、サーチ領域のパターンを変更するエリアのさらに別の例を示す図である。図21は、サーチ領域のパターンを変更する橋エリア732を示している。橋エリア732は、河川または水路734に架かる橋730上のエリアと、道76のうちの橋730近傍のエリアとを含み得る。橋エリア732の走行時は、作業車両100の車輪近傍、特に前輪近傍の状態を検出できることが望ましい。橋エリア732の走行時は、図20に示す側方サーチ領域820L、820Rのパターンを設定することで、橋エリア732に適したサーチを行うことができる。
 図22は、第1サーチ領域810および第2サーチ領域820のさらに別の例を示す図である。図20に示す例では、側方サーチ領域810L、810R、820L、820Rの形状は略矩形であったが、別の形状であってもよい。例えば、図22に示すように、側方サーチ領域810L、810R、820L、820Rの形状は略扇形であってもよい。
 図21は、サーチ領域のパターンを変更する納屋の出入口エリア742をさらに示している。作業車両100を保管する納屋740の出入口741では、作業車両100の側方の状態を早期に検出できることが望ましい。出入口エリア742の走行時は、図13、図18、図19に示したサーチ領域820を設定する。出入口エリア742の走行時は、出入口エリア742以外のエリアの走行時よりも、側方サーチ領域820Lおよび820Rの前後方向の長さを大きくすることで、作業車両100の側方の状態を早期に検出することができる。
 図23は、サーチ領域のパターンを変更するエリアのさらに別の例を示す図である。図23に示す例では、サーチ領域のパターンを変更する所定のエリアは、作業場78のうちの、作業車両100の運搬車770への積み込みを行うエリア772である。エリア772は道76上に位置していてもよい。
 作業車両100の運搬車770への積み込みは、運搬車770に設けられたラダーレール771に沿って作業車両100を走行させて行う。積み込み作業エリア772は、運搬車770およびラダーレール771の近傍のエリアを含む。作業車両100の積み込み作業時は、作業車両100の車輪近傍、特に前輪近傍の状態を検出できることが望ましい。橋エリア732の走行時は、図20、図22に示す側方サーチ領域820L、820Rのパターンを設定することで、積み込み作業に適したサーチを行うことができる。
 図24は、サーチ領域のパターンを変更するエリアのさらに別の例を示す図である。図25は、第1サーチ領域810および第2サーチ領域820のさらに別の例を示す図である。図24に示す例では、サーチ領域のパターンを変更する所定のエリアは、圃場70内の畝750が設けられた畝エリア752である。畝エリア752では、作業車両100の周囲のより広い領域の状態を検出できることが望ましい。
 図25に示す例では、サーチ領域820のサイズは、サーチ領域810よりも大きい。畝エリア752では、図25に示すサーチ領域820を設定する。畝エリア752の走行時は、畝エリア752以外の圃場70内の走行時よりも、サーチ領域820のサイズを大きくすることで、作業車両100の周囲のより広い領域の状態を検出することができる。
 図26は、サーチ領域のパターンを変更するエリアのさらに別の例を示す図である。図26に示す例では、サーチ領域のパターンを変更する所定のエリアは、圃場70内の作物列760が位置する作物列エリア762である。作物列エリア762では、作業車両100の周囲のより広い領域の状態を検出できることが望ましい。作物列エリア762では、図25に示すサーチ領域820を設定する。作物列エリア762の走行時は、作物列エリア762以外の圃場70内の走行時よりも、サーチ領域820のサイズを大きくすることで、作業車両100の周囲のより広い領域の状態を検出することができる。
 [2-3.インプルメントに応じたサーチ領域の設定]
 次に、作業車両100に接続されたインプルメント300に応じてサーチ領域を設定する処理を説明する。
 図27は、作業車両100に接続されたインプルメント300のサイズに応じて設定するサーチ領域810の例を示す図である。作業車両100には、サイズが互いに異なる複数種類のインプルメント300が接続可能であり、処理装置161は、作業車両100に接続されたインプルメント300のサイズに応じてサーチ領域810のパターンを変更する。
 記憶装置170(図3)は、複数種類のインプルメント300のサイズに関する情報を予め記憶している。処理装置161は、インプルメント300と通信を行い、インプルメント300のモデルを特定することが可能な固有情報を取得する。固有情報は、例えばインプルメント300の型番を含む。処理装置161は、インプルメント300の固有情報に対応するサイズに関する情報を記憶装置170から読み出すことで、作業車両100に接続されたインプルメント300のサイズを決定することができる。なお、インプルメント300のサイズの情報は、作業者が作業車両100に入力してもよい。
 図27の右側の作業車両100に接続されたインプルメント300bのサイズは、左側の作業車両100に接続されたインプルメント300aよりも大きい。例えば、インプルメント300aと比較して、インプルメント300bは前後方向および左右方向の少なくとも一方のサイズが大きい。図27に示す例では、左側に示す側方サーチ領域810Lおよび810Rと比較して、右側に示す側方サーチ領域810Lおよび810Rは左右方向のサイズが大きい。また、左側に示す後方サーチ領域810Reと比較して、右側に示す後方サーチ領域810Reは、前後方向および左右方向のサイズが大きい。インプルメント300のサイズに応じてサーチ領域810のパターンを変更することで、インプルメント300のサイズに適したサーチを行うことができる。
 次に、作業車両100とインプルメント300との間の位置関係の変化に応じてサーチ領域810のパターンを変更する処理を説明する。図28は、作業車両100とインプルメント300との間の位置関係に応じて設定するサーチ領域810の例を示す図である。
 図28に示すインプルメント300cは、作業車両100との間の位置関係を変更可能なインプルメントである。このようなインプルメントは、オフセット型のインプルメントとも称され得る。処理装置161は、例えば作業車両100からインプルメント300cへ出力する制御信号に基づいて、インプルメント300cの位置を決定することができる。
 図28に示す例では、左側に示すインプルメント300cと比較して、右側に示すインプルメント300cは作業車両100に対してより右側に延びた位置にある。図28に示す例では、左側に示す側方サーチ領域810Rと比較して、右側に示す側方サーチ領域810Rは前後方向および左右方向のサイズが大きい。また、左側に示す後方サーチ領域810Reと比較して、右側に示す後方サーチ領域810Reは、前後方向および左右方向のサイズが大きい。作業車両100とインプルメント300との間の位置関係の変化に応じてサーチ領域810のパターンを変更することで、インプルメント300の位置に適したサーチを行うことができる。
 また、図27の左側に示すインプルメント300aと比較して、図28の左側に示すインプルメント300cは、作業車両100に対してより右側に延びた位置にある。図27の左側に示す側方サーチ領域810Rと比較して、図28の左側に示す側方サーチ領域810Rの前後方向および左右方向のサイズを大きくすることで、インプルメント300の位置に適したサーチを行うことができる。
 上述の実施形態の説明では、LiDARセンサが出力したセンシングデータを用いて物体の検出を行う処理におけるサーチ領域のパターンを変更していたが、LiDARセンサとは異なるセンサ(例えばカメラ、超音波ソナー等)が出力したセンシングデータを用いて物体の検出を行う処理におけるサーチ領域のパターンを変更してもよい。例えば、カメラが撮像した画像データのうちの物体の検出に用いる部分を変更することで、サーチ領域のパターンを変更してもよい。また例えば、超音波ソナーの出力を変更したり、センシングする角度範囲を変更したりすることで、サーチ領域のパターンを変更してもよい。
 本実施形態のセンシングシステム10は、それらの機能を有しない農業機械に後から取り付けることもできる。そのようなシステムは、農業機械とは独立して製造および販売され得る。そのようなシステムで使用されるコンピュータプログラムも、農業機械とは独立して製造および販売され得る。コンピュータプログラムは、例えばコンピュータが読み取り可能な非一時的な記憶媒体に格納されて提供され得る。コンピュータプログラムは、電気通信回線(例えばインターネット)を介したダウンロードによっても提供され得る。
 センシングシステム10において処理装置161が実行する処理の一部または全部は、他の装置によって実行されてもよい。そのような他の装置は、管理装置600のプロセッサ660、端末装置400のプロセッサ460および操作端末200の少なくとも一つであってもよい。その場合、そのような他の装置と処理装置161とがセンシングシステム10の処理装置として機能する、または、そのような他の装置がセンシングシステム10の処理装置として機能する。例えば、処理装置161が実行する処理の一部が、管理装置600のプロセッサ660によって実行される場合、処理装置161とプロセッサ660とが、センシングシステム10の処理装置として機能する。
 処理装置161が実行する処理の一部または全部は、制御装置180によって実行されてもよい。その場合、制御装置180と処理装置161とがセンシングシステム10の処理装置として機能する、または制御装置180がセンシングシステム10の処理装置として機能する。
 以上のように、本開示は、以下に記載の農業機械、農業機械に用いるセンシングシステムおよびセンシング方法を含む。
 本開示のある実施形態に係るセンシングシステム10は、移動型の農業機械100のセンシングシステム10であって、農業機械100に設けられ、農業機械100の周辺の環境をセンシングして、センシングデータを出力する一つ以上のセンサ140と、センシングデータに基づいて、農業機械100の周辺のサーチ領域810、820に位置する物体を検出する処理装置161と、を備え、処理装置161は、農業機械100が位置しているエリアに応じて、物体の検出を行うサーチ領域810、820のパターンを変更する。
 これにより、農業機械100が位置しているエリアに適したサーチを行うことができる。
 ある実施形態において、処理装置161は、農業機械100が圃場70内の第1エリアに位置しているときと、圃場70内における第1エリアよりも圃場70の外周縁に近い第2エリアに位置しているときとで、サーチ領域810、820のパターンを互いに異ならせてもよい。
 これにより、農業機械100が圃場70の外周縁に近いエリアに位置しているときと、圃場70の外周縁から遠いエリアに位置しているときとのそれぞれに適したサーチを行うことができる。
 ある実施形態において、上記第2エリアは畦際712であってもよい。これにより、畦際712での走行に適した範囲をサーチすることができる。
 ある実施形態において、サーチ領域810、820は、農業機械100の側方の領域を含む側方サーチ領域810L、810R、820L、820Rを含み、処理装置161は、農業機械100が上記第1エリアに位置しているときよりも上記第2エリアに位置しているときの側方サーチ領域の前後方向の長さを大きくしてもよい。
 これにより、農業機械100の側方の状態を早期に検出することができる。
 ある実施形態において、処理装置161は、農業機械100が橋730に位置しているときと、橋730とは異なる所定の道76に位置しているときとで、サーチ領域810、820のパターンを互いに異ならせてもよい。
 これにより、農業機械100が橋730に位置しているときと、橋730とは異なる所定の道76に位置しているときとのそれぞれに適したサーチを行うことができる。
 ある実施形態において、農業機械100は、前輪104Fが設けられた作業車両100を含み、処理装置161は、農業機械100が橋730に位置しているときは、所定の道76に位置しているときよりも、前輪104Fの前方の外側端部に近い領域を含むようにサーチ領域820を設定する。
 これにより、橋730の走行に適した範囲をサーチすることができる。
 ある実施形態において、処理装置161は、農業機械100が水路720に隣接する道76に位置しているときと、水路720に隣接しない道76に位置しているときとで、サーチ領域810、820のパターンを互いに異ならせてもよい。
 これにより、農業機械100が水路720に隣接する道76に位置しているときと、水路720に隣接しない道76に位置しているときとのそれぞれに適したサーチを行うことができる。
 ある実施形態において、サーチ領域810、820は、農業機械100の側方の領域を含む側方サーチ領域810L、810R、820L、820Rを含み、処理装置161は、農業機械100が水路720に隣接しない道76に位置しているときよりも水路720に隣接する道76に位置しているときの側方サーチ領域の前後方向の長さを大きくしてもよい。
 これにより、水路720に隣接する道76の走行に適した範囲をサーチすることができる。
 ある実施形態において、処理装置161は、農業機械100が納屋740の出入り口741に位置しているときと、納屋740の出入り口741とは異なる第3エリアに位置しているときとで、サーチ領域810、820のパターンを互いに異ならせてもよい。
 これにより、農業機械100が納屋740の出入り口741に位置しているときと、納屋740の出入り口741に位置していないときとのそれぞれに適したサーチを行うことができる。
 ある実施形態において、サーチ領域810、820は、農業機械100の側方の領域を含む側方サーチ領域810L、810R、820L、820Rを含み、処理装置161は、農業機械100が上記第3エリアに位置しているときよりも納屋740の出入り口741に位置しているときの側方サーチ領域の前後方向の長さを大きくしてもよい。
 これにより、納屋740の出入り口741での走行に適した範囲をサーチすることができる。
 ある実施形態において、処理装置161は、農業機械100が圃場70内の第4エリアに位置しているときと、圃場70内における第4エリアよりも圃場70の畝750または作物植え付けエリア760に近い第5エリアに位置しているときとで、サーチ領域810、820のパターンを互いに異ならせてもよい。
 これにより、農業機械100が圃場70の畝750または作物植え付けエリア760に近いエリアに位置しているときと、位置していないときとのそれぞれに適したサーチを行うことができる。
 ある実施形態において、処理装置161は、農業機械100が運搬車770に積み込まれる位置にあるときとないときとで、サーチ領域810、820のパターンを互いに異ならせてもよい。
 これにより、農業機械100が運搬車770に積み込まれる位置にあるときとないときとのそれぞれに適したサーチを行うことができる。
 ある実施形態において、農業機械100は、作業車両100および作業車両100に接続されたインプルメント300を含み、処理装置161は、作業車両100に接続されたインプルメント300に応じて、サーチ領域810、820のパターンを変更してもよい。
 これにより、作業車両100に接続されたインプルメント300に適したサーチを行うことができる。
 ある実施形態において、作業車両100には、サイズが互いに異なる複数種類のインプルメント300が接続可能であり、処理装置161は、作業車両100に接続されたインプルメント300のサイズに応じてサーチ領域810、820のパターンを変更してもよい。
 これにより、作業車両100に接続されたインプルメント300のサイズに適したサーチを行うことができる。
 ある実施形態において、作業車両100と作業車両100に接続されたインプルメント300との間の位置関係は変更可能であり、処理装置161は、作業車両100とインプルメント300との間の位置関係の変化に応じてサーチ領域810、820のパターンを変更してもよい。
 これにより、作業車両100とインプルメント300との間の位置関係の変化に応じたサーチを行うことができる。
 ある実施形態において、センシングシステム10は、農業機械100の位置を検出して位置データを出力する測位装置110と、農業機械100が移動するエリアの地図データを記憶する記憶装置170と、をさらに備え、処理装置161は、位置データと地図データとに基づいて、農業機械100が位置しているエリアを決定してもよい。
 測位装置110を用いることで農業機械100が位置しているエリアを決定することができる。
 ある実施形態において、農業機械100は、上記のセンシングシステム10を備えてもよい。これにより、農業機械100が位置しているエリアに適したサーチを行うことができる。
 ある実施形態において、農業機械100は、農業機械100を走行させる走行装置240と、走行装置240の動作を制御し、農業機械100を自動運転させる制御装置160と、をさらに備えてもよい。これにより、自動走行する農業機械100が位置しているエリアに適したサーチを行うことができる。
 本開示のある実施形態に係るセンシング方法は、移動型の農業機械100のセンシング方法であって、一つ以上のセンサ140を用いて農業機械100の周辺の環境をセンシングして、センシングデータを出力すること、センシングデータに基づいて、農業機械100の周辺のサーチ領域810、820に位置する物体を検出すること、農業機械100が位置しているエリアに応じて、物体の検出を行うサーチ領域810、820のパターンを変更すること、を含む。
 これにより、農業機械100が位置しているエリアに適したサーチを行うことができる。
 本開示の技術は、例えばトラクタ、収穫機、田植機、乗用管理機、野菜移植機、草刈機、播種機、施肥機、または農業用ロボットなどの農業機械の分野において特に有用である。
 1:農業管理システム、 10:センシングシステム、 50:GNSS衛星、 60:基準局、 70:圃場、 72:作業領域、 74:枕地、 76:道路、 78:作業場、 80:ネットワーク、 100:作業車両、 101:車両本体、 102:原動機(エンジン)、 103:変速装置(トランスミッション)、 104:車輪、 105:キャビン、 106:操舵装置、 107:運転席、 108:連結装置、 110:測位装置、 111:GNSS受信機、 112:RTK受信機、 115:慣性計測装置(IMU)、 116:処理回路、 120:カメラ、 130:障害物センサ、 140:LiDARセンサ、 150:センサ群、 152:ステアリングホイールセンサ、 154:切れ角センサ、 156:回転センサ、 160:制御システム、 161:処理装置、 170:記憶装置、 180:制御装置、 181-185:ECU、 190:通信装置、 200:操作端末、 210:操作スイッチ群、 220:ブザー、 240:駆動装置、 300:作業機、 340:駆動装置、 380:制御装置、 390:通信装置、 400:端末装置、 420:入力装置、 430:表示装置、 450:記憶装置、 460:プロセッサ、 470:ROM、 480:RAM、 490:通信装置、 600:管理装置、 660:プロセッサ、 650:記憶装置、 670:ROM、 680:RAM、 690:通信装置、 710:畦、 712:畦際エリア、 720:水路、 722:水路隣接エリア、 730:橋、 732:橋エリア、 734:河川、 740:納屋、 741:出入口、 742:出入口エリア、 750:畝、 752:畝エリア、 760:作物列、 762:作物列エリア、 770:運搬車、 771:ラダーレール、 772:積み込み作業エリア、 810:第1サーチ領域、 820:第2サーチ領域、 830:センシング領域

Claims (19)

  1.  移動型の農業機械のセンシングシステムであって、
     農業機械に設けられ、前記農業機械の周辺の環境をセンシングして、センシングデータを出力する一つ以上のセンサと、
     前記センシングデータに基づいて、前記農業機械の周辺のサーチ領域に位置する物体を検出する処理装置と、
     を備え、
     前記処理装置は、前記農業機械が位置しているエリアに応じて、前記物体の検出を行う前記サーチ領域のパターンを変更する、センシングシステム。
  2.  前記処理装置は、前記農業機械が圃場内の第1エリアに位置しているときと、前記圃場内における前記第1エリアよりも前記圃場の外周縁に近い第2エリアに位置しているときとで、前記サーチ領域のパターンを互いに異ならせる、請求項1に記載のセンシングシステム。
  3.  前記第2エリアは畦際である、請求項2に記載のセンシングシステム。
  4.  前記サーチ領域は、前記農業機械の側方の領域を含む側方サーチ領域を含み、
     前記処理装置は、前記農業機械が前記第1エリアに位置しているときよりも前記第2エリアに位置しているときの前記側方サーチ領域の前後方向の長さを大きくする、請求項2または3に記載のセンシングシステム。
  5.  前記処理装置は、前記農業機械が橋に位置しているときと、前記橋とは異なる所定の道に位置しているときとで、前記サーチ領域のパターンを互いに異ならせる、請求項1から4のいずれかに記載のセンシングシステム。
  6.  前記農業機械は、前輪が設けられた作業車両を含み、
     前記処理装置は、前記農業機械が前記橋に位置しているときは、前記所定の道に位置しているときよりも、前記前輪の前方の外側端部に近い領域を含むように前記サーチ領域を設定する、請求項5に記載のセンシングシステム。
  7.  前記処理装置は、前記農業機械が水路に隣接する道に位置しているときと、水路に隣接しない道に位置しているときとで、前記サーチ領域のパターンを互いに異ならせる、請求項1から6のいずれかに記載のセンシングシステム。
  8.  前記サーチ領域は、前記農業機械の側方の領域を含む側方サーチ領域を含み、
     前記処理装置は、前記農業機械が前記水路に隣接しない道に位置しているときよりも前記水路に隣接する道に位置しているときの前記側方サーチ領域の前後方向の長さを大きくする、請求項7に記載のセンシングシステム。
  9.  前記処理装置は、前記農業機械が納屋の出入り口に位置しているときと、前記納屋の出入り口とは異なる第3エリアに位置しているときとで、前記サーチ領域のパターンを互いに異ならせる、請求項1から8のいずれかに記載のセンシングシステム。
  10.  前記サーチ領域は、前記農業機械の側方の領域を含む側方サーチ領域を含み、
     前記処理装置は、前記農業機械が前記第3エリアに位置しているときよりも前記納屋の出入り口に位置しているときの前記側方サーチ領域の前後方向の長さを大きくする、請求項9に記載のセンシングシステム。
  11.  前記処理装置は、前記農業機械が圃場内の第4エリアに位置しているときと、前記圃場内における前記第4エリアよりも前記圃場の畝または作物植え付けエリアに近い第5エリアに位置しているときとで、前記サーチ領域のパターンを互いに異ならせる、請求項1から10のいずれかに記載のセンシングシステム。
  12.  前記処理装置は、前記農業機械が運搬車に積み込まれる位置にあるときとないときとで、前記サーチ領域のパターンを互いに異ならせる、請求項1から11のいずれかに記載のセンシングシステム。
  13.  前記農業機械は、作業車両および前記作業車両に接続されたインプルメントを含み、
     前記処理装置は、前記作業車両に接続された前記インプルメントに応じて、前記サーチ領域のパターンを変更する、請求項1から12のいずれかに記載のセンシングシステム。
  14.  前記作業車両には、サイズが互いに異なる複数種類のインプルメントが接続可能であり、
     前記処理装置は、前記作業車両に接続されたインプルメントのサイズに応じて前記サーチ領域のパターンを変更する、請求項13に記載のセンシングシステム。
  15.  前記作業車両と前記作業車両に接続された前記インプルメントとの間の位置関係は変更可能であり、
     前記処理装置は、前記作業車両と前記インプルメントとの間の位置関係の変化に応じて前記サーチ領域のパターンを変更する、請求項13または14に記載のセンシングシステム。
  16.  前記農業機械の位置を検出して位置データを出力する測位装置と、
     前記農業機械が移動するエリアの地図データを記憶する記憶装置と、
     をさらに備え、
     前記処理装置は、前記位置データと前記地図データとに基づいて、前記農業機械が位置しているエリアを決定する、請求項1から15のいずれかに記載のセンシングシステム。
  17.  請求項1から16のいずれかに記載のセンシングシステムを備える農業機械。
  18.  前記農業機械を走行させる走行装置と、
     前記走行装置の動作を制御し、前記農業機械を自動運転させる制御装置と、
     をさらに備える、請求項17に記載の農業機械。
  19.  移動型の農業機械のセンシング方法であって、
     一つ以上のセンサを用いて農業機械の周辺の環境をセンシングして、センシングデータを出力すること、
     前記センシングデータに基づいて、前記農業機械の周辺のサーチ領域に位置する物体を検出すること、
     前記農業機械が位置しているエリアに応じて、前記物体の検出を行う前記サーチ領域のパターンを変更すること、
     を含む、センシング方法。
PCT/JP2022/046459 2021-12-27 2022-12-16 農業機械、農業機械に用いるセンシングシステムおよびセンシング方法 WO2023127557A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023570862A JPWO2023127557A1 (ja) 2021-12-27 2022-12-16
EP22915781.3A EP4434313A1 (en) 2021-12-27 2022-12-16 Agricultural machine, sensing system used in agricultural machine, and sensing method
US18/749,601 US20240345253A1 (en) 2021-12-27 2024-06-20 Agricultural machine, sensing system used in agricultural machine, and sensing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-212577 2021-12-27
JP2021212577 2021-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/749,601 Continuation US20240345253A1 (en) 2021-12-27 2024-06-20 Agricultural machine, sensing system used in agricultural machine, and sensing method

Publications (1)

Publication Number Publication Date
WO2023127557A1 true WO2023127557A1 (ja) 2023-07-06

Family

ID=86998822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046459 WO2023127557A1 (ja) 2021-12-27 2022-12-16 農業機械、農業機械に用いるセンシングシステムおよびセンシング方法

Country Status (4)

Country Link
US (1) US20240345253A1 (ja)
EP (1) EP4434313A1 (ja)
JP (1) JPWO2023127557A1 (ja)
WO (1) WO2023127557A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191592A (ja) * 2014-03-28 2015-11-02 ヤンマー株式会社 自律走行作業車両
JP2017015409A (ja) * 2015-06-26 2017-01-19 シャープ株式会社 路面検知装置、移動体、路面検知方法、および路面検知プログラム
JP2018113937A (ja) * 2017-01-20 2018-07-26 株式会社クボタ 自動走行作業車
JP2019175059A (ja) 2018-03-28 2019-10-10 ヤンマー株式会社 作業車両の走行制御システム
WO2020240983A1 (ja) * 2019-05-27 2020-12-03 ヤンマー株式会社 障害物判定システム及び自律走行システム
JP2021108621A (ja) * 2020-01-14 2021-08-02 株式会社クボタ 走行経路管理システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191592A (ja) * 2014-03-28 2015-11-02 ヤンマー株式会社 自律走行作業車両
JP2017015409A (ja) * 2015-06-26 2017-01-19 シャープ株式会社 路面検知装置、移動体、路面検知方法、および路面検知プログラム
JP2018113937A (ja) * 2017-01-20 2018-07-26 株式会社クボタ 自動走行作業車
JP2019175059A (ja) 2018-03-28 2019-10-10 ヤンマー株式会社 作業車両の走行制御システム
WO2020240983A1 (ja) * 2019-05-27 2020-12-03 ヤンマー株式会社 障害物判定システム及び自律走行システム
JP2021108621A (ja) * 2020-01-14 2021-08-02 株式会社クボタ 走行経路管理システム

Also Published As

Publication number Publication date
US20240345253A1 (en) 2024-10-17
JPWO2023127557A1 (ja) 2023-07-06
EP4434313A1 (en) 2024-09-25

Similar Documents

Publication Publication Date Title
US20240338037A1 (en) Path planning system and path planning method for agricultural machine performing self-traveling
US20240341216A1 (en) Travel control system for agricultural machine capable of performing remotely-manipulated traveling
US20240172577A1 (en) Control system for agricultural machine and agriculture management system
US20240188475A1 (en) Agricultural assistance system and agricultural assistance method
WO2023127557A1 (ja) 農業機械、農業機械に用いるセンシングシステムおよびセンシング方法
WO2023127556A1 (ja) 農業機械、農業機械に用いるセンシングシステムおよびセンシング方法
WO2024004463A1 (ja) 走行制御システム、走行制御方法およびコンピュータプログラム
WO2023119996A1 (ja) 障害物検出システム、農業機械および障害物検出方法
WO2024004486A1 (ja) 作業車両、制御方法および制御システム
WO2023248909A1 (ja) 走行制御システム、農業機械および走行制御方法
US20240317238A1 (en) Agricultural road identification system, control system, and agricultural machine
WO2023238827A1 (ja) 農業管理システム
WO2023218688A1 (ja) 地図作成システムおよび経路計画システム
WO2023238724A1 (ja) 農業機械の自動走行のための経路生成システムおよび経路生成方法
WO2023112515A1 (ja) 地図生成システムおよび地図生成方法
WO2023234255A1 (ja) センシングシステム、農業機械、およびセンシング装置
WO2024004881A1 (ja) 制御システム、制御方法および運搬車
WO2023095856A1 (ja) 自動運転を行う農業機械のための経路計画システム
WO2023007835A1 (ja) 管理システム、および農業機械の圃場へのアクセスを管理するための方法
US20240341215A1 (en) Agricultural machine, sensing system, sensing method, remote operation system, and control method
JP7584654B2 (ja) 農業機械のための管理システム
JP2023183840A (ja) 農業機械の自動走行のための経路生成システムおよび経路生成方法
WO2023119986A1 (ja) 農業機械、および、農業機械に用いるジェスチャ認識システム
US20240345603A1 (en) Travel control system for agricultural machine capable of performing remotely-manipulated traveling
JP2024003645A (ja) 経路生成システム、農業機械および経路生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915781

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023570862

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022915781

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022915781

Country of ref document: EP

Effective date: 20240620

NENP Non-entry into the national phase

Ref country code: DE