[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023238724A1 - 農業機械の自動走行のための経路生成システムおよび経路生成方法 - Google Patents

農業機械の自動走行のための経路生成システムおよび経路生成方法 Download PDF

Info

Publication number
WO2023238724A1
WO2023238724A1 PCT/JP2023/019921 JP2023019921W WO2023238724A1 WO 2023238724 A1 WO2023238724 A1 WO 2023238724A1 JP 2023019921 W JP2023019921 W JP 2023019921W WO 2023238724 A1 WO2023238724 A1 WO 2023238724A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
trajectory
travel
vehicle
work vehicle
Prior art date
Application number
PCT/JP2023/019921
Other languages
English (en)
French (fr)
Inventor
啓吾 小丸
透 反甫
峻史 西山
佳宏 渡辺
貴 石▲崎▼
建 作田
めぐみ 鈴川
渉 森本
健二 石原
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2023238724A1 publication Critical patent/WO2023238724A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track

Definitions

  • the present disclosure relates to a route generation system and route generation method for automatic travel of agricultural machinery.
  • Patent Documents 1 and 2 disclose examples of systems for automatically driving an unmanned work vehicle between two fields separated from each other across a road.
  • the present disclosure provides a technique for appropriately generating an automatic driving route for agricultural machinery.
  • a route generation system is a route generation system for automatic travel of agricultural machinery, and includes a processing device that generates an automatic travel route for the agricultural machinery.
  • the processing device acquires data indicating the traveling trajectory from a vehicle that manually travels along the route on which the agricultural machine is scheduled to automatically travel while recording the traveling trajectory, and uses the traveling trajectory to avoid oncoming vehicles.
  • a trajectory related to an avoidance operation performed for the purpose of the avoidance operation is removed, and an automatic travel route for the agricultural machine is generated based on the travel trajectory from which the trajectory related to the avoidance operation has been removed.
  • a route generation method is a route generation method for automatically traveling an agricultural machine, in which the agricultural machine manually runs a route on which the agricultural machine is scheduled to automatically travel while recording a travel trajectory. acquiring data indicating the driving trajectory from the vehicle; removing from the driving trajectory a trajectory related to an avoidance operation performed to avoid the oncoming vehicle; and removing a trajectory related to the avoidance operation performed to avoid the oncoming vehicle and generating an automatic travel route for the agricultural machine based on the travel trajectory from which the travel trajectory has been removed.
  • Computer-readable storage media may include volatile storage media or non-volatile storage media.
  • the device may be composed of multiple devices. When a device is composed of two or more devices, the two or more devices may be placed within a single device, or may be separated into two or more separate devices. .
  • an automatic travel route for agricultural machinery can be appropriately generated.
  • FIG. 1 is a block diagram showing an example of a route generation system.
  • FIG. 2 is a block diagram showing an example of a more detailed configuration of the route generation system.
  • FIG. 2 is a diagram schematically showing how a vehicle travels on a road outside a field while collecting data. It is a flowchart which shows an example of operation which generates an automatic driving route.
  • FIG. 3 is a diagram showing an example of an operation in which a vehicle avoids an oncoming vehicle.
  • FIG. 3 is a diagram illustrating an example of a travel trajectory from which a trajectory related to an avoidance operation has been removed.
  • FIG. 6 is a diagram illustrating a process of supplementing a portion removed from a travel trajectory with a linear supplementary route.
  • FIG. 1 is a block diagram showing an example of a route generation system.
  • FIG. 2 is a block diagram showing an example of a more detailed configuration of the route generation system.
  • FIG. 2 is a diagram schematically showing how a vehicle travels on a
  • FIG. 7 is a diagram showing another example of an operation in which a vehicle avoids an oncoming vehicle. It is a figure showing an example of a display of a display device.
  • FIG. 6 is a diagram illustrating an example of a display screen when a user touches one of the dotted frame areas.
  • FIG. 6 is a diagram illustrating an example of a display screen with one of the removed portions supplemented.
  • FIG. 6 is a diagram illustrating an example of a display screen in a state where all removed portions have been supplemented and an automatic travel route has been completed.
  • FIG. 1 is a diagram for explaining an overview of an agricultural management system according to an exemplary embodiment of the present disclosure.
  • FIG. 1 is a side view schematically showing an example of a work vehicle and an implement connected to the work vehicle.
  • FIG. 1 is a side view schematically showing an example of a work vehicle and an implement connected to the work vehicle.
  • FIG. 2 is a block diagram showing an example of the configuration of a work vehicle and an implement.
  • FIG. 2 is a conceptual diagram showing an example of a work vehicle that performs positioning using RTK-GNSS.
  • FIG. 3 is a diagram showing an example of an operation terminal and a group of operation switches provided inside the cabin.
  • FIG. 2 is a block diagram illustrating a schematic hardware configuration of a management device and a terminal device.
  • FIG. 2 is a diagram schematically showing an example of a work vehicle that automatically travels along a target route in a field. It is a flow chart which shows an example of operation of steering control at the time of automatic driving performed by a control device.
  • FIG. 3 is a diagram showing an example of a work vehicle traveling along a target route.
  • FIG. 3 is a diagram illustrating an example of a work vehicle in a position shifted to the right from a target route.
  • FIG. 3 is a diagram illustrating an example of a work vehicle in a position shifted to the left from a target route.
  • FIG. 3 is a diagram illustrating an example of a work vehicle facing in a direction inclined with respect to a target route.
  • agricultural machinery refers to machinery used in agricultural applications.
  • Examples of agricultural machinery include tractors, harvesters, rice transplanters, riding management machines, vegetable transplanters, mowers, seeders, fertilizer spreaders, and agricultural mobile robots.
  • a work vehicle such as a tractor function as an "agricultural machine” alone, but the implements attached to or towed by the work vehicle and the work vehicle as a whole function as a single "agricultural machine.”
  • Agricultural machines perform agricultural work such as plowing, sowing, pest control, fertilization, planting crops, or harvesting on the ground within a field. These agricultural works are sometimes referred to as “ground work” or simply “work.”
  • the movement of a vehicle-type agricultural machine while performing agricultural work is sometimes referred to as "work driving.”
  • Automatic operation means that the movement of agricultural machinery is controlled by the function of a control device, without manual operation by a driver.
  • Agricultural machinery that operates automatically is sometimes called “self-driving agricultural machinery” or “robotic agricultural machinery.”
  • self-driving agricultural machinery or “robotic agricultural machinery.”
  • the control device can control at least one of steering necessary for movement of the agricultural machine, adjustment of movement speed, start and stop of movement.
  • the control device may control operations such as raising and lowering the work implement, starting and stopping the operation of the work implement, and the like.
  • Movement by automatic driving may include not only movement of the agricultural machine toward a destination along a predetermined route, but also movement of the agricultural machine to follow a tracking target.
  • a self-driving agricultural machine may move partially based on user instructions.
  • agricultural machinery that performs automatic driving may operate in a manual driving mode in which the agricultural machine moves by manual operation by a driver.
  • the act of steering agricultural machinery by means of a control device, rather than manually, is called "automatic steering.”
  • Part or all of the control device may be external to the agricultural machine. Communication such as control signals, commands, or data may occur between a control device external to the agricultural machine and the agricultural machine.
  • Agricultural machines that operate automatically may move autonomously while sensing the surrounding environment, without humans being involved in controlling the movement of the agricultural machines.
  • Agricultural machinery capable of autonomous movement can run unmanned within a field or outside the field (for example, on a road). Obstacle detection and obstacle avoidance operations may be performed during autonomous movement.
  • Environmental map is data that expresses the positions or areas of objects in the environment in which agricultural machinery moves using a predetermined coordinate system.
  • Environmental maps are sometimes simply referred to as "maps" or “map data.”
  • the coordinate system defining the environmental map may be, for example, a world coordinate system, such as a geographic coordinate system fixed relative to the earth.
  • the environmental map may include information other than location (for example, attribute information and other information) about objects existing in the environment.
  • Environmental maps include maps in various formats, such as point cloud maps or grid maps. Local map or partial map data generated or processed in the process of constructing an environmental map is also referred to as a "map" or "map data.”
  • Automatic driving route means data on the route that connects the starting point to the destination point when agricultural machinery runs automatically.
  • the automated driving route is also referred to as a "global route” or a "target route.”
  • the automatic driving route can be defined, for example, by the coordinate values of a plurality of points on a map that the agricultural machine should pass through.
  • a point through which agricultural machinery should pass is called a "waypoint,” and a line segment connecting adjacent waypoints is called a "link.”
  • Waypoint data may include position and velocity information.
  • generating data indicating an automatic travel route (for example, data on a plurality of waypoints) is expressed as "generating an automatic travel route.”
  • FIG. 1 is a block diagram showing an example of a route generation system for automatic travel of agricultural machinery.
  • the route generation system 10 shown in FIG. 1 is used in combination with a vehicle 20 that collects data necessary for generating an automatic travel route and an agricultural machine 30 that is capable of automatic travel.
  • the route generation system 10 is a computer system including a processing device 15.
  • the processing device 15 generates an automatic travel route for the agricultural machine 30 based on the data collected by the vehicle 20.
  • the vehicle 20 is a vehicle that collects data necessary to generate an automatic travel route for the agricultural machine 30.
  • Vehicle 20 can be, for example, a regular car, a truck (lorry), a van, or an agricultural work vehicle.
  • the agricultural machine 30 is a self-driving agricultural machine that automatically travels according to the automatic travel route generated by the processing device 15.
  • the agricultural machine 30 is, for example, an agricultural work vehicle such as a tractor.
  • the agricultural machine 30 can automatically travel not only in the field but also on roads outside the field (for example, farm roads or general roads).
  • the vehicle 20 is a different vehicle from the agricultural machine 30, but the agricultural machine 30 may also have the function of the vehicle 20. That is, one agricultural work vehicle capable of both automatic operation and manual operation may be used as the agricultural machine 30 and the vehicle 20.
  • the route generation system 10 may be a system (for example, a cloud computing system) independent of the vehicle 20 and the agricultural machine 30, or may be mounted on the vehicle 20 or the agricultural machine 30.
  • a cloud computing system for example, a cloud computing system
  • FIG. 2 is a block diagram showing an example of a more detailed configuration of the system shown in FIG. 1.
  • the route generation system 10 includes a processing device 15, an input interface (I/F) 11, an output interface 12, and a storage device 13.
  • the vehicle 20 includes a positioning device 21, a camera 22, and a storage device 23.
  • the agricultural machine 30 includes a self-position estimating device 31, a travel control device 32, and a storage device 33.
  • FIG. 2 also illustrates a display device 45 that displays the automatic travel route generated by the processing device 15, and an input device 40 that is used by the user to edit the automatic travel route.
  • FIG. 3 is a diagram schematically showing how the vehicle 20 travels on a road 75 (for example, a farm road) outside the field 70 while collecting data.
  • FIG. 3 illustrates a plurality of farm fields 70, a road 75 around them, and a storage 78 for agricultural machinery 30.
  • the user drives the vehicle 20 to travel along a route on which the agricultural machine 30 is scheduled to travel automatically later.
  • the vehicle 20 travels while recording its own travel trajectory.
  • the vehicle 20 records position data sequentially output from a positioning device 21 such as a GNSS receiver in the storage device 23 as data indicating a running trajectory.
  • Location data may include, for example, latitude and longitude information in a geographic coordinate system.
  • the data indicating the travel trajectory may include position data of the vehicle 20 and corresponding time information. That is, the data indicating the travel trajectory can indicate changes in the position of the vehicle 20 over time.
  • the data indicating the traveling trajectory may include information on the traveling speed of the vehicle 20 at each time in addition to information on the position of the vehicle 20 at each time. Information about the location and running speed of the vehicle 20 may be recorded at relatively short intervals (eg, from a few milliseconds to a few seconds).
  • FIG. 3 an example of the travel trajectory of the vehicle 20 is shown by a broken line arrow.
  • the vehicle 20 travels from the storage 78 on a road 75 around a plurality of fields 70 where agricultural machinery 30 is scheduled to perform agricultural work, and returns to the storage 78.
  • the route that the vehicle 20 travels to collect data is determined according to the route that the agricultural machine 30 is scheduled to travel.
  • the vehicle 20 manually travels along a route on which the agricultural machine 30 is scheduled to automatically travel, while recording a travel trajectory. In this specification, when the vehicle 20 runs manually by the driver, it is expressed as "running manually.”
  • the vehicle 20 may travel while photographing the surroundings of the vehicle 20 with the camera 22. In that case, the vehicle 20 runs while recording the moving images photographed by the camera 22 in the storage device 23.
  • the data indicating the travel trajectory is sent to the processing device 15.
  • the data indicating the travel trajectory may be transmitted via a wired or wireless communication line, or may be provided to the processing device 15 via any recording medium.
  • the processing device 15 directly or indirectly acquires data indicating the travel trajectory from the vehicle 20.
  • the processing device 15 generates an automatic travel route for the agricultural machine 30 based on the data indicating the acquired travel trajectory. For example, the processing device 15 can approximate the travel trajectory of the vehicle 20 as a combination of a plurality of line segments on a map prepared in advance, and generate the combination of these line segments as an automatic travel route.
  • the automatic travel route can be appropriately generated by approximating the travel trajectory of the vehicle 20 using a plurality of line segments.
  • the vehicle 20 while the vehicle 20 is traveling, there may be an oncoming vehicle ahead. In that case, if the width of the road 75 is narrow, the vehicle 20 will perform an operation to avoid an oncoming vehicle. For example, the vehicle 20 may perform an avoidance operation to avoid contact with an oncoming vehicle by decelerating and approaching the edge of the road 75, backing up, or temporarily stopping.
  • the driving trajectory related to the avoidance action is also recorded, so if an automated driving route is simply generated based on the data showing the driving trajectory, an inappropriate automated driving route that reflects the avoidance action will be generated. It turns out.
  • the processing device 15 in this embodiment generates an automatic driving route after performing a process of removing a trajectory related to an avoidance operation from the driving trajectory of the vehicle 20.
  • An example of this processing will be described below with reference to FIG.
  • FIG. 4 is a flowchart showing an example of the operation of the processing device 15 to generate an automatic travel route.
  • the processing device 15 first obtains travel trajectory data recorded by the vehicle 20 (step S11). Next, the processing device 15 removes a trajectory related to an avoidance operation performed to avoid an oncoming vehicle from the travel trajectory indicated by the travel trajectory data (step S12). An example of a method for identifying a trajectory related to an avoidance operation from a travel trajectory will be described later.
  • the processing device 15 generates an automatic travel route for the agricultural machine 30 based on the travel trajectory from which the trajectory related to the avoidance operation has been removed (S13). For example, an automatic travel route can be generated by performing complementary processing such as approximating the removed portion with a line segment. Thereafter, the processing device 15 transmits data indicating the automatic travel route to the agricultural machine 30 (step S14). Note that if the processing device 15 is mounted on the agricultural machine 30, the operation of step S14 may be omitted.
  • step S12 and step S13 will be described with reference to FIGS. 5A to 5C.
  • FIG. 5A shows an example of an operation in which the vehicle 20 avoids an oncoming vehicle 90.
  • the driver of the vehicle 20 in order to avoid contact with the oncoming vehicle 90 approaching from the front, the driver of the vehicle 20 first moves the vehicle 20 to the left end of the road 75, passes the oncoming vehicle 90, and then stops the vehicle 20 on the road 75. Operate the steering wheel so that it returns to the center. Therefore, the travel trajectory recorded by the vehicle 20 connects two straight routes 91 and 93 and a non-straight route 92 caused by an avoidance operation between them, as shown by the broken line arrow in FIG. 5A. become something.
  • the route related to the avoidance operation (hereinafter sometimes referred to as the "avoidance route") is not limited to the route 92 as shown in FIG. 5A.
  • the avoidance route may include a backward route 95 and a subsequent forward route 96.
  • the width of the road 75 is so narrow that the vehicle 20 and the oncoming vehicle 90 cannot pass each other. In such a case, the vehicle 20 once moves backward, returns to a place large enough to pass each other, stops temporarily, allows the oncoming vehicle 90 to pass, and then moves forward and returns to its original route.
  • FIG. 5B shows an example of a travel trajectory from which a trajectory related to an avoidance motion has been removed.
  • the processing device 15 may extract a trajectory related to the avoidance operation based on data of a moving image taken by the camera 22 while the vehicle 20 is traveling. In that case, in step S11 shown in FIG. 4, the processing device 15 acquires data of the moving image in addition to the data of the traveling trajectory. The processing device 15 detects an avoidance motion based on the moving image, determines and removes a trajectory related to the avoidance motion from the travel trajectory.
  • the processing device 15 may perform image recognition processing based on the video image, and determine a trajectory related to the avoidance operation based on the result of recognizing the oncoming vehicle 90 approaching the vehicle 20 from the video image. For example, the processing device 15 converts a trajectory associated with an avoidance operation into a trajectory that corresponds to at least a portion of the period from when the oncoming vehicle 90 is recognized in the video image until the oncoming vehicle 90 is no longer recognized among the traveling trajectories. It may be removed as Alternatively, the processing device 15 recognizes that the oncoming vehicle 90 approaches the vehicle 20 by a predetermined distance (for example, 5 m, 10 m, or 20 m, etc.) in the moving image in the driving trajectory. A trajectory corresponding to a predetermined time period (for example, 10 seconds, 20 seconds, or 30 seconds, etc.) including the period until it disappears may be removed as a trajectory related to the avoidance operation.
  • a predetermined distance for example, 5 m, 10 m, or 20 m, etc.
  • the processing device 15 may also detect an avoidance operation based on a temporal change in the position of the vehicle 20 indicated by the travel trajectory. For example, the processing device 15 may detect at least one operation of reversing, turning, accelerating, and decelerating that the vehicle 20 performs to avoid the oncoming vehicle 90 as an avoidance operation. As an example, the processing device 15 may extract a portion of the traveling trajectory that depicts a non-linear trajectory even though the trajectory is in a straight portion of the road 75 as a trajectory related to the avoidance operation. A record of steering and/or acceleration/deceleration operations of the vehicle 20 may be used to extract a trajectory related to the avoidance operation.
  • the processing device 15 may extract a portion of the travel trajectory in which a large direction change is made at a position other than an intersection on the road 75 as a trajectory related to the avoidance operation.
  • the processing device 15 also extracts, from the traveling trajectory, a portion where the vehicle 20 decelerates or stops while traveling along the road 75, or moves backward and then moves forward again, as a trajectory related to the avoidance operation. It's okay.
  • a machine learning algorithm such as deep learning may be used to detect the avoidance motion.
  • the processing device 15 may extract a trajectory related to the avoidance operation from the travel trajectory based on travel trajectory data acquired from the vehicle 20 and a learned model trained in advance.
  • the processing device 15 generates an automatic travel route by removing the trajectory related to the avoidance operation and then performing a process to complement the removed portion. For example, as shown in FIG. 5C, the processing device 15 may generate an automatic travel route by complementing the portion removed from the travel trajectory with a linear complementary route 94.
  • Such complementary processing may be performed automatically by the processing device 15, or may be performed in response to an operation from the user.
  • the processing device 15 causes the display device 45 to display the traveling trajectory from which the trajectory related to the avoidance motion has been removed, and in response to an operation performed by the user using the input device 40 to determine a complementary route, the processing device 15 displays the traveling trajectory from which the trajectory related to the avoidance operation has been removed. You may supplement the parts removed from the .
  • FIG. 7A is a diagram showing a display example of the display device 45.
  • the display device 45 in this example is a computer with a built-in display, such as a tablet computer or a smartphone.
  • the illustrated display device 45 includes a touch screen and also functions as the input device 40.
  • the display device 45 displays an environmental map around the field 70. A route obtained by removing the avoidance route from the travel trajectory of the vehicle 20 is displayed on the map. In FIG. 7A, a portion corresponding to the removed avoidance route is surrounded by a dotted line. The user can perform a route complement operation by, for example, touching the part surrounded by a dotted line.
  • FIG. 7B shows an example of the display screen when the user touches one of the parts surrounded by the dotted line.
  • a popup is displayed asking "Do you want to complete the route?" and the user can select "Yes” or "No". If the user selects "Yes", the processing device 15 generates a complementary path that complements the removed portion. For example, the processing device 15 complements the removed portion with a linear complementary path. Alternatively, the user may be able to specify a supplementary route.
  • FIG. 7C illustrates a state in which one of the removed parts is complemented.
  • the interpolated portion is indicated by a dashed arrow.
  • the user can also fill in other removed portions with similar operations.
  • FIG. 7D shows an example of a state in which all removed parts have been supplemented and the automatic travel route has been completed.
  • An automated driving route may be defined by multiple waypoints, for example. Each waypoint may include position and velocity information, for example.
  • waypoints are represented by dots, and links between waypoints are represented by arrows.
  • waypoints are set at locations where the agricultural machine 30 can change direction (such as intersections, near farm entrances and exits, and storage entrances and exits).
  • the waypoint setting method is not limited to the illustrated example, and the length of the link between waypoints can be set arbitrarily.
  • the above operations can prevent the avoidance operation performed to avoid the oncoming vehicle 90 from being reflected in the automatic travel route. Thereby, a more appropriate automatic travel route for the agricultural machine 30 can be generated.
  • the data indicating the generated automatic travel route is sent to the agricultural machine 30 and recorded in the storage device 33.
  • the travel control device 32 of the agricultural machine 30 controls the travel speed and steering of the agricultural machine 30 so that the agricultural machine 30 travels along the automatic travel route. For example, if the automatic travel route is defined by a plurality of waypoints and each waypoint includes position and speed information, the travel control device 32 controls the travel speed and steering so that each waypoint is passed at a specified speed. control.
  • the travel control device 32 can estimate how far the agricultural machine 30 deviates from the automatic travel route based on the position and orientation of the agricultural machine 30 estimated by the self-position estimating device 31.
  • the self-position estimating device 31 is a device that performs self-position estimation using sensors such as GNSS, IMU (Inertial Measurement Unit), LiDAR (Light Detection and Ranging), and/or a camera (including an image sensor). .
  • the travel control device 32 can realize travel along the automatic travel route by performing steering control so as to reduce deviation in position and/or direction of the agricultural machine 30 from the automatic travel route.
  • the processing device 15 executes the above processing when generating a route for the agricultural machine 30 to automatically travel outside the field.
  • the processing device 15 may perform similar processing when generating a route for the agricultural machine 30 to automatically travel within the field. Even within a field, other agricultural work vehicles may exist as oncoming vehicles, so the route generation method according to the present embodiment is effective.
  • FIG. 8 is a diagram for explaining an overview of an agricultural management system according to an exemplary embodiment of the present disclosure.
  • the system shown in FIG. 8 includes a work vehicle 100, a terminal device 400, and a management device 600.
  • Work vehicle 100 is an agricultural machine that can run automatically.
  • Terminal device 400 is a computer used by a user who remotely monitors work vehicle 100.
  • the management device 600 is a computer managed by a business operator that operates the system. Work vehicle 100, terminal device 400, and management device 600 can communicate with each other via network 80.
  • the system may include multiple work vehicles or other agricultural machinery.
  • the work vehicle 100 functions as both the vehicle 20 and the agricultural machine 30 shown in FIG. 1.
  • the management device 600 has the functions of the processing device 15 shown in FIG.
  • the work vehicle 100 in this embodiment is a tractor.
  • Work vehicle 100 can be equipped with an implement on one or both of the rear and front parts.
  • the work vehicle 100 can travel within a field while performing agricultural work depending on the type of implement.
  • the work vehicle 100 may run inside or outside the field without any implements attached thereto.
  • the work vehicle 100 is equipped with an automatic driving function. In other words, the work vehicle 100 can be driven not manually but by the action of the control device.
  • the control device in this embodiment is provided inside the work vehicle 100 and can control both the speed and steering of the work vehicle 100.
  • the work vehicle 100 can automatically travel not only inside the field but also outside the field (for example, on a road).
  • the work vehicle 100 is equipped with devices used for positioning or self-position estimation, such as a GNSS receiver and a LiDAR sensor.
  • the control device of the work vehicle 100 automatically causes the work vehicle 100 to travel based on the position of the work vehicle 100 and information on the target route.
  • the control device also controls the operation of the implement.
  • the work vehicle 100 can perform agricultural work using the implement while automatically traveling within the field. Further, the work vehicle 100 can automatically travel along a target route on a road outside the field (for example, a farm road or a general road).
  • the work vehicle 100 When the work vehicle 100 automatically travels along a road outside the field, the work vehicle 100 creates a local route that can avoid obstacles along the target route based on data output from a sensing device such as a camera or a LiDAR sensor. Run while generating. In the field, the work vehicle 100 may travel while generating a local route as described above, or may travel along the target route without generating a local route, and when an obstacle is detected. You may also perform an operation of stopping if there is a problem.
  • a sensing device such as a camera or a LiDAR sensor
  • the management device 600 is a computer that manages agricultural work performed by the work vehicle 100.
  • the management device 600 may be, for example, a server computer that centrally manages information regarding fields on the cloud and supports agriculture by utilizing data on the cloud.
  • the management device 600 has the same functions as the processing device 15 shown in FIG. That is, the management device 600 generates an automatic travel route (ie, a target route) for the work vehicle 100.
  • the management device 600 acquires data indicating a travel trajectory when the work vehicle 100 travels in manual operation, and generates an automatic travel route for the work vehicle 100 based on the data. More specifically, before the work vehicle 100 starts automatic travel, the work vehicle 100 manually travels along the route on which the automatic travel is planned while recording the travel trajectory.
  • the work vehicle 100 uses a positioning device such as a GNSS unit to record a travel trajectory by sequentially recording its own position.
  • the management device 600 acquires data indicating the travel trajectory from the work vehicle 100.
  • the travel trajectory may include a trajectory related to an avoidance operation performed to avoid an oncoming vehicle on the road.
  • the management device 600 removes a trajectory related to an avoidance operation performed to avoid an oncoming vehicle from the trajectory indicated by the acquired data, and based on the trajectory from which the trajectory has been removed, , generates an automatic travel route for the work vehicle 100. Through such processing, an appropriate automatic travel route can be generated without reflecting the trajectory associated with the avoidance operation.
  • the management device 600 may further create a work plan for the work vehicle 100 and give instructions to the work vehicle 100 to start and end automatic travel according to the work plan.
  • the management device 600 may also generate an environmental map based on data collected by the work vehicle 100 or other vehicles using a sensing device such as a LiDAR sensor.
  • the management device 600 transmits data such as the generated automatic driving route, work plan, and environmental map to the work vehicle 100.
  • the work vehicle 100 automatically performs traveling and agricultural work based on the data.
  • generation of the automatic travel route is not limited to the management device 600, and may be performed by another device.
  • the control device of work vehicle 100 may generate the automatic travel route.
  • the control device of work vehicle 100 functions as a processing device that generates an automatic travel route.
  • the terminal device 400 is a computer used by a user located away from the work vehicle 100. Although the terminal device 400 shown in FIG. 8 is a laptop computer, it is not limited to this.
  • the terminal device 400 may be a stationary computer such as a desktop PC (personal computer), or may be a mobile terminal such as a smartphone or a tablet computer.
  • Terminal device 400 can be used to remotely monitor work vehicle 100 or remotely control work vehicle 100.
  • the terminal device 400 can display images captured by one or more cameras (imaging devices) included in the work vehicle 100 on a display. The user can view the video, check the situation around the work vehicle 100, and send an instruction to the work vehicle 100 to stop or start.
  • Terminal device 400 may further include the functions of input device 40 and display device 45 shown in FIG. That is, the terminal device 400 may be used for editing the automatic travel route generated by the management device 600.
  • FIG. 9 is a side view schematically showing an example of the work vehicle 100 and the implement 300 connected to the work vehicle 100.
  • Work vehicle 100 in this embodiment can operate in both manual driving mode and automatic driving mode. In the automatic driving mode, the work vehicle 100 can run unmanned.
  • the work vehicle 100 is capable of automatic operation both inside and outside the field.
  • the work vehicle 100 includes a vehicle body 101, a prime mover (engine) 102, and a transmission 103.
  • the vehicle body 101 is provided with wheels 104 with tires and a cabin 105.
  • the wheels 104 include a pair of front wheels 104F and a pair of rear wheels 104R.
  • a driver's seat 107, a steering device 106, an operation terminal 200, and a group of switches for operation are provided inside the cabin 105.
  • One or both of the front wheel 104F and the rear wheel 104R may be replaced with a plurality of wheels (crawlers) equipped with tracks instead of wheels with tires.
  • the work vehicle 100 includes a plurality of sensing devices that sense the surroundings of the work vehicle 100.
  • the sensing device includes multiple cameras 120, LiDAR sensors 140, and multiple obstacle sensors 130.
  • the cameras 120 may be provided, for example, on the front, rear, left and right sides of the work vehicle 100. Camera 120 photographs the environment around work vehicle 100 and generates image data. Images acquired by camera 120 may be transmitted to terminal device 400 for remote monitoring. The image may be used to monitor work vehicle 100 during unmanned operation. The camera 120 is also used to generate images for recognizing surrounding features, obstacles, white lines, signs, signs, etc. when the work vehicle 100 travels on a road outside the field (farm road or general road). can be used. For example, the camera 120 may be used to detect an oncoming vehicle while the work vehicle 100 is manually driven while recording the travel trajectory.
  • the LiDAR sensor 140 in the example of FIG. 9 is arranged at the lower front of the vehicle body 101. LiDAR sensor 140 may be provided at other locations. While the work vehicle 100 is mainly traveling outside the field, the LiDAR sensor 140 measures the distance and direction of objects in the surrounding environment to each measurement point, or the two-dimensional or three-dimensional coordinate values of each measurement point. Repeatedly outputs sensor data indicating . Sensor data output from LiDAR sensor 140 is processed by the control device of work vehicle 100. The control device can estimate the self-position of the work vehicle 100 by matching the sensor data with the environmental map. The control device further detects objects such as obstacles existing around the work vehicle 100 based on the sensor data, and generates a local route that the work vehicle 100 should actually follow along the target route.
  • the control device may be configured to generate or edit the environmental map using an algorithm such as SLAM (Simultaneous Localization and Mapping).
  • Work vehicle 100 may include a plurality of LiDAR sensors arranged at different positions and in different orientations.
  • a plurality of obstacle sensors 130 shown in FIG. 9 are provided at the front and rear of the cabin 105. Obstacle sensor 130 may also be placed at other locations. For example, one or more obstacle sensors 130 may be provided at arbitrary positions on the side, front, and rear of the vehicle body 101. Obstacle sensor 130 may include, for example, a laser scanner or an ultrasonic sonar. Obstacle sensor 130 is used to detect surrounding obstacles during automatic driving and to stop work vehicle 100 or take a detour. LiDAR sensor 140 may be used as one of the obstacle sensors 130.
  • the work vehicle 100 further includes a GNSS unit 110.
  • GNSS unit 110 includes a GNSS receiver.
  • the GNSS receiver may include an antenna that receives signals from GNSS satellites and a processor that calculates the position of work vehicle 100 based on the signals received by the antenna.
  • the GNSS unit 110 receives satellite signals transmitted from a plurality of GNSS satellites, and performs positioning based on the satellite signals.
  • GNSS is a general term for satellite positioning systems such as GPS (Global Positioning System), QZSS (Quasi-Zenith Satellite System, such as Michibiki), GLONASS, Galileo, and BeiDou.
  • GPS Global Positioning System
  • QZSS Quadasi-Zenith Satellite System
  • Galileo Galileo
  • BeiDou BeiDou.
  • the GNSS unit 110 may include an inertial measurement unit (IMU). Signals from the IMU can be used to supplement the position data.
  • the IMU can measure the tilt and minute movements of the work vehicle 100. By using data acquired by the IMU to supplement position data based on satellite signals, positioning performance can be improved.
  • the control device of the work vehicle 100 may use sensing data acquired by a sensing device such as the camera 120 or the LiDAR sensor 140 for positioning.
  • a sensing device such as the camera 120 or the LiDAR sensor 140
  • the data acquired by the camera 120 or the LiDAR sensor 140 and the previously stored can be estimated with high accuracy based on the environmental map stored in the device.
  • the position of work vehicle 100 can be specified with higher accuracy.
  • the prime mover 102 may be, for example, a diesel engine.
  • An electric motor may be used instead of a diesel engine.
  • Transmission device 103 can change the propulsive force and moving speed of work vehicle 100 by shifting. The transmission 103 can also switch the work vehicle 100 between forward movement and reverse movement.
  • the steering device 106 includes a steering wheel, a steering shaft connected to the steering wheel, and a power steering device that assists steering with the steering wheel.
  • the front wheel 104F is a steered wheel, and by changing its turning angle (also referred to as a "steering angle"), the traveling direction of the work vehicle 100 can be changed.
  • the steering angle of the front wheels 104F can be changed by operating the steering wheel.
  • the power steering device includes a hydraulic device or an electric motor that supplies an auxiliary force to change the steering angle of the front wheels 104F. When automatic steering is performed, the steering angle is automatically adjusted by the power of a hydraulic system or an electric motor under control from a control device disposed within work vehicle 100.
  • a coupling device 108 is provided at the rear of the vehicle body 101.
  • the coupling device 108 includes, for example, a three-point support device (also referred to as a "three-point link” or “three-point hitch"), a PTO (Power Take Off) shaft, a universal joint, and a communication cable.
  • the implement 300 can be attached to and detached from the work vehicle 100 by the coupling device 108.
  • the coupling device 108 can change the position or posture of the implement 300 by raising and lowering the three-point link using, for example, a hydraulic device. Further, power can be sent from the work vehicle 100 to the implement 300 via the universal joint.
  • the work vehicle 100 can cause the implement 300 to perform a predetermined work while pulling the implement 300.
  • the coupling device may be provided at the front of the vehicle body 101. In that case, an implement can be connected to the front of the work vehicle 100.
  • the implement 300 shown in FIG. 9 is a rotary tiller
  • the implement 300 is not limited to a rotary tiller.
  • any implement such as a seeder, spreader, transplanter, mower, rake, baler, harvester, sprayer, or harrow. It can be used by connecting to the work vehicle 100.
  • the work vehicle 100 shown in FIG. 9 is capable of manned operation, it may also support only unmanned operation. In that case, components necessary only for manned operation, such as the cabin 105, the steering device 106, and the driver's seat 107, may not be provided in the work vehicle 100.
  • the unmanned work vehicle 100 can run autonomously or by remote control by a user. When a work vehicle 100 without a manned driving function is used, travel locus data for route generation is acquired by a manned vehicle other than the work vehicle 100.
  • FIG. 10 is a block diagram showing a configuration example of the work vehicle 100 and the implement 300.
  • Work vehicle 100 and implement 300 can communicate with each other via a communication cable included in coupling device 108 .
  • Work vehicle 100 can communicate with terminal device 400 and management device 600 via network 80 .
  • the work vehicle 100 in the example of FIG. 10 includes, in addition to a GNSS unit 110, a camera 120, an obstacle sensor 130, a LiDAR sensor 140, and an operation terminal 200, a sensor group 150 that detects the operating state of the work vehicle 100, a control system 160, It includes a communication device 190, a group of operation switches 210, a buzzer 220, and a drive device 240. These components are communicatively connected to each other via a bus.
  • the GNSS unit 110 includes a GNSS receiver 111 , an RTK receiver 112 , an inertial measurement unit (IMU) 115 , and a processing circuit 116 .
  • IMU inertial measurement unit
  • Sensor group 150 includes a steering wheel sensor 152, a turning angle sensor 154, and an axle sensor 156.
  • Control system 160 includes a storage device 170 and a control device 180.
  • Control device 180 includes a plurality of electronic control units (ECU) 181 to 185.
  • the implement 300 includes a drive device 340, a control device 380, and a communication device 390. Note that FIG. 10 shows components that are relatively highly relevant to the automatic driving operation of the work vehicle 100, and illustration of other components is omitted.
  • the GNSS receiver 111 in the GNSS unit 110 receives satellite signals transmitted from multiple GNSS satellites, and generates GNSS data based on the satellite signals.
  • GNSS data is generated in a predetermined format, such as NMEA-0183 format.
  • GNSS data may include, for example, values indicating the identification number, elevation, azimuth, and reception strength of each satellite from which the satellite signal was received.
  • the GNSS unit 110 shown in FIG. 10 performs positioning of the work vehicle 100 using RTK (Real Time Kinematic)-GNSS.
  • FIG. 11 is a conceptual diagram showing an example of a work vehicle 100 that performs positioning using RTK-GNSS.
  • RTK-GNSS Real Time Kinematic
  • a correction signal transmitted from the reference station 60 is used in positioning using RTK-GNSS.
  • the reference station 60 may be installed near a field where the work vehicle 100 travels for work (for example, within 10 km from the work vehicle 100).
  • the reference station 60 generates, for example, a correction signal in RTCM format based on the satellite signals received from the plurality of GNSS satellites 50, and transmits it to the GNSS unit 110.
  • RTK receiver 112 includes an antenna and a modem, and receives the correction signal transmitted from reference station 60.
  • the processing circuit 116 of the GNSS unit 110 corrects the positioning result by the GNSS receiver 111 based on the correction signal.
  • RTK-GNSS it is possible to perform positioning with an accuracy of a few centimeters, for example.
  • Location information including latitude, longitude, and altitude information is obtained through highly accurate positioning using RTK-GNSS.
  • GNSS unit 110 calculates the position of work vehicle 100 at a frequency of about 1 to 10 times per second, for example.
  • the positioning method is not limited to RTK-GNSS, and any positioning method (interferometric positioning method, relative positioning method, etc.) that can obtain position information with the necessary accuracy can be used.
  • positioning may be performed using VRS (Virtual Reference Station) or DGPS (Differential Global Positioning System). If positional information with the necessary accuracy can be obtained without using the correction signal transmitted from the reference station 60, the positional information may be generated without using the correction signal.
  • GNSS unit 110 may not include RTK receiver 112.
  • the position of work vehicle 100 is estimated.
  • the position of work vehicle 100 can be estimated by matching data output from LiDAR sensor 140 and/or camera 120 with a high-precision environmental map.
  • the GNSS unit 110 in this embodiment further includes an IMU 115.
  • IMU 115 may include a 3-axis acceleration sensor and a 3-axis gyroscope.
  • the IMU 115 may include an orientation sensor such as a 3-axis geomagnetic sensor.
  • IMU 115 functions as a motion sensor and can output signals indicating various quantities such as acceleration, speed, displacement, and posture of work vehicle 100.
  • Processing circuit 116 can estimate the position and orientation of work vehicle 100 with higher accuracy based on the signal output from IMU 115 in addition to the satellite signal and correction signal.
  • the signal output from IMU 115 may be used to correct or supplement the position calculated based on the satellite signal and the correction signal.
  • IMU 115 outputs signals more frequently than GNSS receiver 111.
  • the processing circuit 116 can measure the position and orientation of the work vehicle 100 at a higher frequency (eg, 10 Hz or more).
  • a 3-axis acceleration sensor and a 3-axis gyroscope may be provided separately.
  • IMU 115 may be provided as a separate device from GNSS unit 110.
  • the camera 120 is an imaging device that photographs the environment around the work vehicle 100.
  • the camera 120 includes an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • Camera 120 may also include an optical system including one or more lenses, and signal processing circuitry.
  • Camera 120 photographs the environment around work vehicle 100 while work vehicle 100 is traveling, and generates image (for example, video) data.
  • the camera 120 can shoot moving images at a frame rate of 3 frames per second (fps) or more, for example.
  • the image generated by camera 120 can be used, for example, when a remote monitor uses terminal device 400 to check the environment around work vehicle 100. Images generated by camera 120 may be used for positioning or obstacle detection.
  • the image generated by the camera 120 while the work vehicle 100 is traveling to collect data on the traveling trajectory described above is used in the process of recognizing an oncoming vehicle and detecting an action to avoid the oncoming vehicle. can be done.
  • a plurality of cameras 120 may be provided at different positions on the work vehicle 100, or a single camera may be provided.
  • a visible camera that generates visible light images and an infrared camera that generates infrared images may be provided separately. Both a visible camera and an infrared camera may be provided as cameras that generate images for surveillance. Infrared cameras can also be used to detect obstacles at night.
  • the obstacle sensor 130 detects objects existing around the work vehicle 100.
  • Obstacle sensor 130 may include, for example, a laser scanner or an ultrasonic sonar. Obstacle sensor 130 outputs a signal indicating that an obstacle exists when an object exists closer than a predetermined distance from obstacle sensor 130 .
  • a plurality of obstacle sensors 130 may be provided at different positions of work vehicle 100. For example, multiple laser scanners and multiple ultrasonic sonars may be placed at different positions on work vehicle 100. By providing such a large number of obstacle sensors 130, blind spots in monitoring obstacles around the work vehicle 100 can be reduced.
  • the steering wheel sensor 152 measures the rotation angle of the steering wheel of the work vehicle 100.
  • the turning angle sensor 154 measures the turning angle of the front wheel 104F, which is a steered wheel. Measured values by the steering wheel sensor 152 and turning angle sensor 154 are used for steering control by the control device 180.
  • the axle sensor 156 measures the rotational speed of the axle connected to the wheel 104, that is, the number of rotations per unit time.
  • the axle sensor 156 may be a sensor using a magnetoresistive element (MR), a Hall element, or an electromagnetic pickup, for example.
  • the axle sensor 156 outputs, for example, a numerical value indicating the number of revolutions per minute (unit: rpm) of the axle.
  • Axle sensor 156 is used to measure the speed of work vehicle 100.
  • the drive device 240 includes various devices necessary for running the work vehicle 100 and driving the implement 300, such as the above-mentioned prime mover 102, transmission device 103, steering device 106, and coupling device 108.
  • Prime mover 102 may include, for example, an internal combustion engine such as a diesel engine.
  • the drive device 240 may include an electric motor for traction instead of or in addition to the internal combustion engine.
  • the buzzer 220 is an audio output device that emits a warning sound to notify of an abnormality. For example, the buzzer 220 emits a warning sound when an obstacle is detected during automatic driving. Buzzer 220 is controlled by control device 180.
  • the storage device 170 includes one or more storage media such as flash memory or magnetic disks.
  • the storage device 170 stores various data generated by the GNSS unit 110, camera 120, obstacle sensor 130, LiDAR sensor 140, sensor group 150, and control device 180.
  • the data stored in the storage device 170 may include map data in the environment in which the work vehicle 100 travels (environmental map) and data on an automatic driving route (target route) for automatic driving.
  • the environmental map includes information on a plurality of fields where the work vehicle 100 performs agricultural work and roads around the fields.
  • the environmental map and target route may be generated by a processor in management device 600.
  • the control device 180 in this embodiment has a function of generating or editing an environmental map and a target route.
  • Control device 180 can edit the environmental map and target route acquired from management device 600 according to the driving environment of work vehicle 100.
  • the storage device 170 also stores computer programs that cause each ECU in the control device 180 to execute various operations described below.
  • Such a computer program may be provided to work vehicle 100 via a storage medium (eg, semiconductor memory or optical disk, etc.) or a telecommunications line (eg, the Internet).
  • Such computer programs may be sold as commercial software.
  • the control device 180 includes multiple ECUs.
  • the plurality of ECUs include, for example, an ECU 181 for speed control, an ECU 182 for steering control, an ECU 183 for instrument control, an ECU 184 for automatic driving control, and an ECU 185 for route generation.
  • ECU 181 controls the speed of work vehicle 100 by controlling prime mover 102, transmission 103, and brakes included in drive device 240.
  • the ECU 182 controls the steering of the work vehicle 100 by controlling the hydraulic system or electric motor included in the steering device 106 based on the measured value of the steering wheel sensor 152.
  • the ECU 183 controls the operations of the three-point link, PTO axis, etc. included in the coupling device 108 in order to cause the implement 300 to perform a desired operation. ECU 183 also generates a signal to control the operation of implement 300 and transmits the signal from communication device 190 to implement 300.
  • the ECU 184 performs calculations and controls to realize automatic driving based on data output from the GNSS unit 110, camera 120, obstacle sensor 130, LiDAR sensor 140, and sensor group 150. For example, ECU 184 identifies the position of work vehicle 100 based on data output from at least one of GNSS unit 110, camera 120, and LiDAR sensor 140. In the field, ECU 184 may determine the position of work vehicle 100 based only on data output from GNSS unit 110. ECU 184 may estimate or correct the position of work vehicle 100 based on data acquired by camera 120 or LiDAR sensor 140. By using the data acquired by the camera 120 or the LiDAR sensor 140, the accuracy of positioning can be further improved.
  • ECU 184 estimates the position of work vehicle 100 using data output from LiDAR sensor 140 or camera 120. For example, the ECU 184 may estimate the position of the work vehicle 100 by matching data output from the LiDAR sensor 140 or the camera 120 with an environmental map. During automatic driving, the ECU 184 performs calculations necessary for the work vehicle 100 to travel along the target route or the local route based on the estimated position of the work vehicle 100.
  • the ECU 184 sends a speed change command to the ECU 181 and a steering angle change command to the ECU 182.
  • ECU 181 changes the speed of work vehicle 100 by controlling prime mover 102, transmission 103, or brake in response to a speed change command.
  • the ECU 182 changes the steering angle by controlling the steering device 106 in response to a command to change the steering angle.
  • the ECU 185 While the work vehicle 100 is traveling along the target route, the ECU 185 sequentially generates local routes that can avoid obstacles. ECU 185 recognizes obstacles existing around work vehicle 100 based on data output from camera 120, obstacle sensor 130, and LiDAR sensor 140 while work vehicle 100 is traveling. The ECU 185 generates a local route to avoid the recognized obstacle. ECU 185 may have a function of generating a target route instead of management device 600. In that case, ECU 185 generates a target route based on data output from GNSS unit 110, camera 120, and/or LiDAR sensor 140 while work vehicle 100 is traveling for data collection. An example of a method for generating a target route is as described with reference to FIGS. 3 to 7D. Note that the target route may be generated not only by the management device 600 or the ECU 185 but also by other devices such as the operating terminal 200 or the terminal device 400.
  • control device 180 realizes automatic operation.
  • control device 180 controls drive device 240 based on the measured or estimated position of work vehicle 100 and the target route. Thereby, the control device 180 can cause the work vehicle 100 to travel along the target route.
  • a plurality of ECUs included in the control device 180 can communicate with each other, for example, according to a vehicle bus standard such as CAN (Controller Area Network). Instead of CAN, a faster communication method such as in-vehicle Ethernet (registered trademark) may be used.
  • CAN Controller Area Network
  • a faster communication method such as in-vehicle Ethernet (registered trademark) may be used.
  • FIG. 10 each of the ECUs 181 to 185 is shown as an individual block, but the functions of each of these may be realized by a plurality of ECUs.
  • An on-vehicle computer that integrates at least some of the functions of the ECUs 181 to 185 may be provided.
  • the control device 180 may include ECUs other than the ECUs 181 to 185, and any number of ECUs may be provided depending on the function.
  • Each ECU includes processing circuitry including one or more processors.
  • the communication device 190 is a device that includes a circuit that communicates with the implement 300, the terminal device 400, and the management device 600.
  • the communication device 190 includes a circuit that transmits and receives signals compliant with the ISOBUS standard, such as ISOBUS-TIM, to and from the communication device 390 of the implement 300. Thereby, it is possible to cause the implement 300 to perform a desired operation or to obtain information from the implement 300.
  • Communication device 190 may further include an antenna and a communication circuit for transmitting and receiving signals via network 80 with respective communication devices of terminal device 400 and management device 600.
  • Network 80 may include, for example, a cellular mobile communications network such as 3G, 4G or 5G and the Internet.
  • the communication device 190 may have a function of communicating with a mobile terminal used by a supervisor near the work vehicle 100. Communication with such mobile terminals may be conducted in accordance with any wireless communication standard, such as Wi-Fi (registered trademark), cellular mobile communications such as 3G, 4G or 5G, or Bluetooth (registered trademark). I can.
  • Wi-Fi registered trademark
  • cellular mobile communications such as 3G, 4G or 5G
  • Bluetooth registered trademark
  • the operation terminal 200 is a terminal for a user to perform operations related to the traveling of the work vehicle 100 and the operation of the implement 300, and is also referred to as a virtual terminal (VT).
  • Operation terminal 200 may include a display device such as a touch screen and/or one or more buttons.
  • the display device may be a display such as a liquid crystal or an organic light emitting diode (OLED), for example.
  • OLED organic light emitting diode
  • the operating terminal 200 may be configured to be detachable from the work vehicle 100. A user located away from work vehicle 100 may operate detached operation terminal 200 to control the operation of work vehicle 100. Instead of the operation terminal 200, the user may control the operation of the work vehicle 100 by operating a computer, such as the terminal device 400, in which necessary application software is installed.
  • FIG. 12 is a diagram showing an example of the operation terminal 200 and the operation switch group 210 provided inside the cabin 105.
  • a switch group 210 including a plurality of switches that can be operated by a user is arranged inside the cabin 105.
  • the operation switch group 210 includes, for example, a switch for selecting a main gear or a sub-shift, a switch for switching between an automatic operation mode and a manual operation mode, a switch for switching between forward and reverse, and an implement. It may include a switch for raising and lowering 300, etc. Note that if the work vehicle 100 performs only unmanned operation and does not have the function of manned operation, the work vehicle 100 does not need to include the operation switch group 210.
  • the drive device 340 in the implement 300 shown in FIG. 10 performs operations necessary for the implement 300 to perform a predetermined work.
  • the drive device 340 includes a device depending on the use of the implement 300, such as a hydraulic device, an electric motor, or a pump, for example.
  • Control device 380 controls the operation of drive device 340.
  • Control device 380 causes drive device 340 to perform various operations in response to signals transmitted from work vehicle 100 via communication device 390. Further, a signal depending on the state of the implement 300 can be transmitted from the communication device 390 to the work vehicle 100.
  • FIG. 13 is a block diagram illustrating a schematic hardware configuration of the management device 600 and the terminal device 400.
  • the management device 600 includes a storage device 650, a processor 660, a ROM (Read Only Memory) 670, a RAM (Random Access Memory) 680, and a communication device 690. These components are communicatively connected to each other via a bus.
  • the management device 600 can function as a cloud server that manages the schedule of agricultural work in the field performed by the work vehicle 100 and supports agriculture by utilizing the managed data.
  • a user can input information necessary for creating a work plan using the terminal device 400 and upload the information to the management device 600 via the network 80.
  • the management device 600 can create an agricultural work schedule, that is, a work plan, based on the information.
  • the management device 600 can also generate or edit an environmental map and generate an automatic travel route for the work vehicle 100. The environmental map may be distributed from a computer external to the management device 600.
  • the communication device 690 is a communication module for communicating with the work vehicle 100 and the terminal device 400 via the network 80.
  • the communication device 690 can perform wired communication based on a communication standard such as IEEE1394 (registered trademark) or Ethernet (registered trademark), for example.
  • the communication device 690 may perform wireless communication based on the Bluetooth (registered trademark) standard or the Wi-Fi standard, or cellular mobile communication such as 3G, 4G, or 5G.
  • the processor 660 may be, for example, a semiconductor integrated circuit including a central processing unit (CPU).
  • Processor 660 may be implemented by a microprocessor or microcontroller.
  • the processor 660 is selected from an FPGA (Field Programmable Gate Array) equipped with a CPU, a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), an ASSP (Application Specific Standard Product), or one of these circuits. It can also be realized by a combination of two or more circuits.
  • the processor 660 sequentially executes a computer program stored in the ROM 670 that describes a group of instructions for executing at least one process, thereby realizing a desired process.
  • the ROM 670 is, for example, a writable memory (eg, PROM), a rewritable memory (eg, flash memory), or a read-only memory.
  • ROM 670 stores a program that controls the operation of processor 660.
  • the ROM 670 does not need to be a single storage medium, and may be a collection of multiple storage media. A portion of the collection of storage media may be removable memory.
  • the RAM 680 provides a work area for temporarily expanding the control program stored in the ROM 670 at boot time.
  • RAM 680 does not need to be a single storage medium, and may be a collection of multiple storage media.
  • the storage device 650 mainly functions as database storage.
  • Storage device 650 may be, for example, a magnetic storage device or a semiconductor storage device.
  • An example of a magnetic storage device is a hard disk drive (HDD).
  • An example of a semiconductor storage device is a solid state drive (SSD).
  • Storage device 650 may be a device independent of management device 600.
  • the storage device 650 may be a storage device connected to the management device 600 via the network 80, such as a cloud storage.
  • the terminal device 400 includes an input device 420, a display device 430, a storage device 450, a processor 460, a ROM 470, a RAM 480, and a communication device 490. These components are communicatively connected to each other via a bus.
  • the input device 420 is a device for converting instructions from a user into data and inputting the data into the computer.
  • Input device 420 may be, for example, a keyboard, mouse, or touch panel.
  • Display device 430 may be, for example, a liquid crystal display or an organic EL display. Descriptions regarding each of the processor 460, ROM 470, RAM 480, storage device 450, and communication device 490 are as described in the hardware configuration example of the management device 600, and their descriptions will be omitted.
  • the work vehicle 100 in this embodiment can automatically travel both inside and outside the field.
  • the work vehicle 100 drives the implement 300 and performs predetermined agricultural work while traveling along a preset target route.
  • the work vehicle 100 detects an obstacle by the obstacle sensor 130 while traveling in the field, the work vehicle 100 stops traveling, emits a warning sound from the buzzer 220, sends a warning signal to the terminal device 400, etc. perform an action.
  • positioning of the work vehicle 100 is performed mainly based on data output from the GNSS unit 110.
  • the work vehicle 100 automatically travels along a target route set on a farm road or a general road outside the field.
  • the work vehicle 100 travels outside the field while detecting obstacles based on data acquired by the camera 120 or the LiDAR sensor 140.
  • the work vehicle 100 either avoids the obstacle or stops on the spot.
  • the position of work vehicle 100 is estimated based on data output from LiDAR sensor 140 or camera 120 in addition to positioning data output from GNSS unit 110.
  • FIG. 14 is a diagram schematically showing an example of a work vehicle 100 that automatically travels along a target route in a field.
  • the farm field includes a work area 72 where the work vehicle 100 performs work using the implement 300, and a headland 74 located near the outer periphery of the farm field. Which area of the field on the map corresponds to the work area 72 or the headland 74 can be set in advance by the user.
  • the target route in this example includes a plurality of parallel main routes P1 and a plurality of turning routes P2 connecting the plurality of main routes P1.
  • the main route P1 is located within the work area 72, and the turning route P2 is located within the headland 74.
  • each main route P1 may include a curved portion.
  • the broken line in FIG. 14 represents the working width of the implement 300.
  • the working width is set in advance and recorded in the storage device 170.
  • the working width can be set and recorded by the user operating the operating terminal 200 or the terminal device 400. Alternatively, the working width may be automatically recognized and recorded when the implement 300 is connected to the work vehicle 100.
  • the intervals between the plurality of main routes P1 may be set according to the working width.
  • the target route may be created based on a user's operation before automatic driving is started.
  • the target route may be created to cover the entire working area 72 in the field, for example.
  • the work vehicle 100 automatically travels along a target route as shown in FIG. 14 from a work start point to a work end point while repeating back and forth movements. Note that the target route shown in FIG. 14 is only an example, and the target route can be determined in any way.
  • control device 180 Next, an example of control during automatic operation by the control device 180 will be described.
  • FIG. 15 is a flowchart illustrating an example of the operation of steering control during automatic driving executed by the control device 180.
  • the control device 180 performs automatic steering by executing the operations from steps S121 to S125 shown in FIG. 15 while the work vehicle 100 is traveling. Regarding the speed, for example, it may be maintained at a preset speed or may be adjusted depending on the situation.
  • the control device 180 acquires data indicating the position of the work vehicle 100 generated by the GNSS unit 110 (step S121).
  • control device 180 calculates the deviation between the position of work vehicle 100 and the target route (step S122). The deviation represents the distance between the position of work vehicle 100 at that point and the target route.
  • the control device 180 determines whether the calculated positional deviation exceeds a preset threshold (step S123). If the deviation exceeds the threshold, the control device 180 changes the steering angle by changing the control parameters of the steering device included in the drive device 240 so that the deviation becomes smaller. If the deviation does not exceed the threshold in step S123, the operation in step S124 is omitted. In subsequent step S125, control device 180 determines whether or not it has received an instruction to end the operation.
  • the instruction to end the operation may be issued, for example, when a user remotely instructs to stop automatic driving or when work vehicle 100 reaches a destination. If the instruction to end the operation has not been issued, the process returns to step S121, and a similar operation is executed based on the newly measured position of the work vehicle 100.
  • the control device 180 repeats the operations from steps S121 to S125 until an instruction to end the operation is issued. The above operations are executed by the ECUs 182 and 184 in the control device 180.
  • the control device 180 controls the drive device 240 based only on the deviation between the position of the work vehicle 100 specified by the GNSS unit 110 and the target route, but also takes into account the deviation in the direction. May be controlled. For example, when the azimuth deviation, which is the angular difference between the direction of the work vehicle 100 specified by the GNSS unit 110 and the direction of the target route, exceeds a preset threshold, the control device 180 drives the vehicle according to the deviation. Control parameters (eg, steering angle) of the steering device of device 240 may be changed.
  • FIG. 16A is a diagram showing an example of the work vehicle 100 traveling along the target route P.
  • FIG. 16B is a diagram showing an example of work vehicle 100 in a position shifted to the right from target route P.
  • FIG. 16C is a diagram showing an example of work vehicle 100 in a position shifted to the left from target route P.
  • FIG. 16D is a diagram showing an example of work vehicle 100 facing in a direction inclined with respect to target route P.
  • the pose indicating the position and orientation of the work vehicle 100 measured by the GNSS unit 110 is expressed as r(x, y, ⁇ ).
  • (x, y) are coordinates representing the position of the reference point of work vehicle 100 in the XY coordinate system, which is a two-dimensional coordinate system fixed to the earth.
  • the reference point of the work vehicle 100 is located at the location where the GNSS antenna is installed on the cabin, but the location of the reference point is arbitrary.
  • is an angle representing the measured direction of work vehicle 100.
  • the target route P is parallel to the Y-axis, but generally the target route P is not necessarily parallel to the Y-axis.
  • control device 180 maintains the steering angle and speed of work vehicle 100 unchanged.
  • the control device 180 steers the work vehicle 100 so that the traveling direction of the work vehicle 100 leans to the left and approaches the route P. Change the corner. At this time, the speed may be changed in addition to the steering angle.
  • the magnitude of the steering angle can be adjusted, for example, depending on the magnitude of the positional deviation ⁇ x.
  • the control device 180 steers the work vehicle 100 so that the traveling direction of the work vehicle 100 leans to the right and approaches the route P. Change the corner. In this case as well, the speed may be changed in addition to the steering angle. The amount of change in the steering angle can be adjusted, for example, depending on the magnitude of the positional deviation ⁇ x.
  • the control device 180 steers the work vehicle 100 so that the azimuth deviation ⁇ becomes smaller. Change the corner.
  • the speed may be changed in addition to the steering angle.
  • the magnitude of the steering angle can be adjusted, for example, depending on the magnitude of each of the positional deviation ⁇ x and the azimuth deviation ⁇ . For example, the smaller the absolute value of the positional deviation ⁇ x, the larger the amount of change in the steering angle according to the azimuth deviation ⁇ .
  • the absolute value of the positional deviation ⁇ x is large, the steering angle will be changed significantly in order to return to the route P, so the absolute value of the azimuth deviation ⁇ will inevitably become large. Conversely, when the absolute value of the positional deviation ⁇ x is small, it is necessary to bring the azimuth deviation ⁇ close to zero. Therefore, it is appropriate to relatively increase the weight (ie, control gain) of the azimuth deviation ⁇ for determining the steering angle.
  • a control technique such as PID control or MPC control (model predictive control) may be applied to the steering control and speed control of the work vehicle 100. By applying these control techniques, it is possible to smoothly control the work vehicle 100 to approach the target route P.
  • the control device 180 stops the work vehicle 100. At this time, the buzzer 220 may be made to emit a warning sound, or a warning signal may be transmitted to the terminal device 400. If the obstacle can be avoided, the control device 180 may control the drive device 240 to avoid the obstacle.
  • the work vehicle 100 in this embodiment can automatically travel not only inside the field but also outside the field. Outside the field, the control device 180 performs steering control and speed control along the target route (automatic travel route) generated by the method described above.
  • Control device 180 can detect objects (for example, other vehicles or pedestrians) that are located relatively far from work vehicle 100 based on data output from camera 120 or LiDAR sensor 140. .
  • the control device 180 generates a local route to avoid the detected object, and performs speed control and steering control along the local route, thereby realizing automatic driving on roads outside the field.
  • the storage device 170 records an environmental map of an area including a plurality of farm fields and roads around them, and a target route.
  • the work vehicle 100 moves along the target route while sensing the surroundings using sensing devices such as the camera 120 and the LiDAR sensor 140 with the implement 300 raised.
  • control device 180 sequentially generates local routes and causes work vehicle 100 to travel along the local routes. This allows the vehicle to travel automatically while avoiding obstacles.
  • the target route may be changed depending on the situation.
  • the track record of the driving route when the work vehicle 100 performs manual driving can be used to generate a route for automatic driving.
  • the automatic driving route is generated by excluding the actual driving route when the work vehicle 100 performs an action to avoid an oncoming vehicle. Thereby, it is possible to prevent an inappropriate route associated with an avoidance operation from being included in the automated driving route, and to generate an appropriate automated driving route.
  • the work vehicle 100 can appropriately execute automatic driving on, for example, roads around a farm field.
  • the systems that perform automatic driving route generation or automatic driving control in each of the above embodiments can also be installed later on agricultural machines that do not have these functions.
  • Such systems can be manufactured and sold independently of agricultural machinery.
  • the computer programs used in such systems may also be manufactured and sold independently of the agricultural machinery.
  • the computer program may be provided, for example, stored in a computer readable non-transitory storage medium. Computer programs may also be provided by download via telecommunications lines (eg, the Internet).
  • the present disclosure includes the route generation system and route generation method described in the following items.
  • a route generation system for automatic driving of agricultural machinery comprising a processing device that generates an automatic travel route for the agricultural machine,
  • the processing device includes: Obtaining data indicating the traveling trajectory from a vehicle that manually travels along the route on which the agricultural machine is scheduled to automatically travel while recording the traveling trajectory; removing a trajectory related to an avoidance operation performed to avoid an oncoming vehicle from the travel trajectory; generating an automatic travel route for the agricultural machine based on the travel trajectory from which a trajectory related to the avoidance operation has been removed; Route generation system.
  • the processing device includes: Obtaining data of a moving image taken while the vehicle is running by a camera mounted on the vehicle, detecting the avoidance motion based on the moving image, determining and removing a trajectory related to the avoidance motion from the travel trajectory; The route generation system described in item 1.
  • the processing device includes: Recognizing an oncoming vehicle approaching the vehicle from the video image, removing, from the travel trajectory, a trajectory corresponding to at least a portion of a period from when the oncoming vehicle is recognized until the oncoming vehicle is no longer recognized as a trajectory related to the avoidance operation; The route generation system described in item 2.
  • the processing device causes a display device to display the travel trajectory from which a trajectory related to the avoidance operation has been removed; Complementing the portion removed from the travel trajectory in response to an operation for determining a supplementary route performed by a user;
  • the route generation system according to item 8.
  • a route generation method for automatically running agricultural machinery comprising: Obtaining data indicating the traveling trajectory from a vehicle that manually travels along the route on which the agricultural machine is scheduled to automatically travel while recording the traveling trajectory; removing a trajectory related to an avoidance operation performed to avoid the oncoming vehicle from the travel trajectory; Generating an automatic travel route for the agricultural machine based on the travel trajectory from which a trajectory related to the avoidance operation has been removed;
  • a route generation method including.
  • the technology of the present disclosure is a system that generates an automatic driving route for agricultural machinery such as a tractor, a harvester, a rice transplanter, a riding management machine, a vegetable transplanter, a lawn mower, a seeding machine, a fertilizer application machine, or an agricultural robot. It can be applied to

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

経路生成システムは、農業機械の自動走行のための経路生成システムであって、前記農業機械の自動走行経路を生成する処理装置を備える。前記処理装置は、前記農業機械が自動走行を行う予定の経路を、走行軌跡を記録しながら手動で走行する車両から、前記走行軌跡を示すデータを取得し、前記走行軌跡から、対向車を回避するために行われた回避動作に関連する軌跡を除去し、前記回避動作に関連する軌跡が除去された前記走行軌跡に基づいて、前記農業機械の自動走行経路を生成する。

Description

農業機械の自動走行のための経路生成システムおよび経路生成方法
 本開示は、農業機械の自動走行のための経路生成システムおよび経路生成方法に関する。
 圃場で使用される農業機械の自動化に向けた研究開発が進められている。例えば、GNSS(Global Navigation Satellite System)などの測位システムを利用して圃場内を自動で走行するトラクタ、コンバイン、および田植機などの作業車両が実用化されている。圃場内だけでなく、圃場外でも自動で走行する作業車両の研究開発も進められている。
 特許文献1および2は、道路を挟んで互いに離れた二つの圃場間で無人の作業車両を自動走行させるシステムの例を開示している。
特開2021-073602号公報 特開2021-029218号公報
 自動走行を行う農業機械を実現するためには、自動走行経路を事前に生成しておくことが必要である。本開示は、農業機械の自動走行経路を適切に生成するための技術を提供する。
 本開示の例示的な実施形態による経路生成システムは、農業機械の自動走行のための経路生成システムであって、前記農業機械の自動走行経路を生成する処理装置を備える。前記処理装置は、前記農業機械が自動走行を行う予定の経路を、走行軌跡を記録しながら手動で走行する車両から、前記走行軌跡を示すデータを取得し、前記走行軌跡から、対向車を回避するために行われた回避動作に関連する軌跡を除去し、前記回避動作に関連する軌跡が除去された前記走行軌跡に基づいて、前記農業機械の自動走行経路を生成する。
 本開示の他の実施形態による経路生成方法は、農業機械の自動走行のための経路生成方法であって、前記農業機械が自動走行を行う予定の経路を、走行軌跡を記録しながら手動で走行する車両から、前記走行軌跡を示すデータを取得することと、前記走行軌跡から、前記対向車を回避するために行われた回避動作に関連する軌跡を除去することとと、前記回避動作に関連する軌跡が除去された前記走行軌跡に基づいて、前記農業機械の自動走行経路を生成することと、を含む。
 本開示の包括的または具体的な態様は、装置、システム、方法、集積回路、コンピュータプログラム、もしくはコンピュータが読み取り可能な非一時的記憶媒体、またはこれらの任意の組み合わせによって実現され得る。コンピュータが読み取り可能な記憶媒体は、揮発性の記憶媒体を含んでいてもよいし、不揮発性の記憶媒体を含んでいてもよい。装置は、複数の装置で構成されていてもよい。装置が二つ以上の装置で構成される場合、当該二つ以上の装置は、一つの機器内に配置されてもよいし、分離した二つ以上の機器内に分かれて配置されていてもよい。
 本開示の実施形態によれば、農業機械の自動走行経路を適切に生成することができる。
経路生成システムの一例を示すブロック図である。 経路生成システムのより詳細な構成の例を示すブロック図である。 車両がデータ収集を行いながら圃場外の道を走行する様子を模式的に示す図である。 自動走行経路を生成する動作の一例を示すフローチャートである。 車両が対向車を回避する動作の一例を示す図である。 回避動作に関連する軌跡が除去された走行軌跡の一例を示す図である。 走行軌跡から除去された部分を直線的な補完経路で補完する処理を示す図である。 車両が対向車を回避する動作の他の例を示す図である。 表示装置の表示例を示す図である。 ユーザが点線枠の部分の1つをタッチしたときの表示画面の例を示す図である。 除去された部分の1つが補完された状態の表示画面の例を示す図である。 全ての除去部分が補完され、自動走行経路が完成した状態の表示画面の例を示す図である。 本開示の例示的な実施形態による農業管理システムの概要を説明するための図である。 作業車両、および作業車両に連結されたインプルメントの例を模式的に示す側面図である。 作業車両およびインプルメントの構成例を示すブロック図である。 RTK-GNSSによる測位を行う作業車両の例を示す概念図である。 キャビンの内部に設けられる操作端末および操作スイッチ群の例を示す図である。 管理装置および端末装置の概略的なハードウェア構成を例示するブロック図である。 圃場内を目標経路に沿って自動で走行する作業車両の例を模式的に示す図である。 制御装置によって実行される自動運転時の操舵制御の動作の例を示すフローチャートである。 目標経路に沿って走行する作業車両の例を示す図である。 目標経路から右にシフトした位置にある作業車両の例を示す図である。 目標経路から左にシフトした位置にある作業車両の例を示す図である。 目標経路に対して傾斜した方向を向いている作業車両の例を示す図である。
 (用語の定義)
 本開示において「農業機械」は、農業用途で使用される機械を意味する。農業機械の例は、トラクタ、収穫機、田植機、乗用管理機、野菜移植機、草刈機、播種機、施肥機、および農業用移動ロボットを含む。トラクタのような作業車両が単独で「農業機械」として機能する場合だけでなく、作業車両に装着または牽引される作業機(インプルメント)と作業車両の全体が一つの「農業機械」として機能する場合がある。農業機械は、圃場内の地面に対して、耕耘、播種、防除、施肥、作物の植え付け、または収穫などの農作業を行う。これらの農作業を「対地作業」または単に「作業」と称することがある。車両型の農業機械が農作業を行いながら走行することを「作業走行」と称することがある。
 「自動運転」は、運転者による手動操作によらず、制御装置の働きによって農業機械の移動を制御することを意味する。自動運転を行う農業機械は「自動運転農機」または「ロボット農機」と呼ばれることがある。自動運転中、農業機械の移動だけでなく、農作業の動作(例えば作業機の動作)も自動で制御されてもよい。農業機械が車両型の機械である場合、自動運転によって農業機械が走行することを「自動走行」と称する。制御装置は、農業機械の移動に必要な操舵、移動速度の調整、移動の開始および停止の少なくとも一つを制御し得る。作業機が装着された作業車両を制御する場合、制御装置は、作業機の昇降、作業機の動作の開始および停止などの動作を制御してもよい。自動運転による移動には、農業機械が所定の経路に沿って目的地に向かう移動のみならず、追尾目標に追従する移動も含まれ得る。自動運転を行う農業機械は、部分的にユーザの指示に基づいて移動してもよい。また、自動運転を行う農業機械は、自動運転モードに加えて、運転者の手動操作によって移動する手動運転モードで動作してもよい。手動によらず、制御装置の働きによって農業機械の操舵を行うことを「自動操舵」と称する。制御装置の一部または全部が農業機械の外部にあってもよい。農業機械の外部にある制御装置と農業機械との間では、制御信号、コマンド、またはデータなどの通信が行われ得る。自動運転を行う農業機械は、人がその農業機械の移動の制御に関与することなく、周囲の環境をセンシングしながら自律的に移動してもよい。自律的な移動が可能な農業機械は、無人で圃場内または圃場外(例えば道路)を走行することができる。自律移動中に、障害物の検出および障害物の回避動作を行ってもよい。
 「環境地図」は、農業機械が移動する環境に存在する物の位置または領域を所定の座標系によって表現したデータである。環境地図を単に「地図」または「地図データ」と称することがある。環境地図を規定する座標系は、例えば、地球に対して固定された地理座標系などのワールド座標系であり得る。環境地図は、環境に存在する物について、位置以外の情報(例えば、属性情報その他の情報)を含んでいてもよい。環境地図は、点群地図または格子地図など、さまざまな形式の地図を含む。環境地図を構築する過程で生成または処理される局所地図または部分地図のデータについても、「地図」または「地図データ」と呼ぶ。
 「自動走行経路」は、農業機械が自動で走行するときの出発地点から目的地点までを結ぶ経路のデータを意味する。自動走行経路を「大域的経路」または「目標経路」とも称する。自動走行経路は、例えば、地図上で農業機械が通過すべき複数の点の座標値によって規定され得る。農業機械が通過すべき点を「ウェイポイント」と称し、隣り合うウェイポイント間を結ぶ線分を「リンク」と称する。ウェイポイントのデータは、位置および速度の情報を含んでいてもよい。本明細書において、自動走行経路を示すデータ(例えば複数のウェイポイントのデータ)を生成することを、「自動走行経路を生成する」と表現する。
 (実施形態)
 以下、本開示の実施形態を説明する。ただし、必要以上に詳細な説明は省略することがある。例えば、既によく知られた事項の詳細な説明および実質的に同一の構成に関する重複する説明を省略することがある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。以下の説明において、同一または類似の機能を有する構成要素については、同一の参照符号を付している。
 以下の実施形態は例示であり、本開示の技術は以下の実施形態に限定されない。例えば、以下の実施形態で示される数値、形状、材料、ステップ、ステップの順序、表示画面のレイアウトなどは、あくまでも一例であり、技術的に矛盾が生じない限りにおいて種々の改変が可能である。また、技術的に矛盾が生じない限りにおいて、一の態様と他の態様とを組み合わせることが可能である。
 図1は、農業機械の自動走行のための経路生成システムの一例を示すブロック図である。図1に示す経路生成システム10は、自動走行経路の生成に必要なデータを収集する車両20および自動走行が可能な農業機械30と組み合わせて利用される。経路生成システム10は、処理装置15を備えるコンピュータシステムである。処理装置15は、車両20によって収集されたデータに基づいて農業機械30の自動走行経路を生成する。車両20は、農業機械30の自動走行経路を生成するために必要なデータを収集する車両である。車両20は、例えば普通自動車、トラック(ローリー)、バン、または農業用作業車両であり得る。農業機械30は、処理装置15によって生成された自動走行経路に従って自動走行を行う自動運転農機である。農業機械30は、例えばトラクタ等の農業用作業車両である。農業機械30は、圃場内だけでなく、圃場外の道(例えば農道または一般道)を自動走行することができる。
 図1に示す例では、車両20は農業機械30とは異なる車両であるが、農業機械30が車両20の機能を兼ねていてもよい。すなわち、自動運転および手動運転の両方が可能な1台の農業用作業車両が、農業機械30および車両20として利用されてもよい。経路生成システム10は、車両20および農業機械30から独立したシステム(例えばクラウドコンピューティングシステム)であってもよいし、車両20または農業機械30に搭載されていてもよい。ここでは、車両20と農業機械30とが異なる車両であり、経路生成システム10が車両20および農業機械30とは独立したシステムである場合の例を説明する。
 図2は、図1に示すシステムのより詳細な構成の例を示すブロック図である。図2に示す例では、経路生成システム10は、処理装置15と、入力インターフェース(I/F)11と、出力インターフェース12と、記憶装置13とを備えている。車両20は、測位装置21と、カメラ22と、記憶装置23とを備えている。農業機械30は、自己位置推定装置31と、走行制御装置32と、記憶装置33とを備えている。図2には、処理装置15が生成した自動走行経路を表示する表示装置45と、ユーザが自動走行経路を編集する操作を行うために使用する入力装置40も例示されている。
 図3は、車両20がデータ収集を行いながら圃場70外の道75(例えば農道)を走行する様子を模式的に示す図である。図3には、複数の圃場70と、その周辺の道75と、農業機械30の保管庫78とが例示されている。農業機械30の運用開始前に、ユーザは、車両20を運転して、農業機械30が後に自動走行を行う予定の経路を走行する。車両20は、自身の走行軌跡を記録しながら走行する。例えば、車両20は、走行中、GNSS受信機などの測位装置21から逐次出力された位置データを、走行軌跡を示すデータとして記憶装置23に記録する。位置データは、例えば地理座標系における緯度および経度の情報を含み得る。走行軌跡を示すデータは、車両20の位置データと、対応する時刻の情報とを含み得る。すなわち、走行軌跡を示すデータは、車両20の位置の時間変化を示し得る。走行軌跡を示すデータは、各時刻における車両20の位置の情報に加えて、各時刻における車両20の走行速度の情報を含んでいてもよい。車両20の位置および走行速度の情報は、比較的短い時間(例えば数ミリ秒から数秒)ごとに記録され得る。
 図3において、車両20の走行軌跡の例が破線矢印で示されている。図3の例では、車両20は、保管庫78から、農業機械30による農作業が予定されている複数の圃場70の周辺の道75を走行し、保管庫78に戻る。車両20がデータ収集のために走行する経路は、農業機械30の走行が予定されている経路に応じて決定される。車両20は、農業機械30が自動走行を行う予定の経路を、走行軌跡を記録しながら手動運転で走行する。本明細書において、車両20が運転者による手動運転で走行することを「手動で走行する」と表現する。車両20は、カメラ22で車両20の周辺を撮影しながら走行してもよい。その場合、車両20は、カメラ22によって撮影された動画像を記憶装置23に記録しながら走行する。
 車両20によるデータ収集が完了した後、走行軌跡を示すデータは、処理装置15に送られる。走行軌跡を示すデータは、有線または無線の通信回線を介して送信されてもよいし、任意の記録媒体を介して処理装置15に提供されてもよい。いずれの形態においても、処理装置15は、車両20から、走行軌跡を示すデータを直接的または間接的に取得する。処理装置15は、取得した走行軌跡を示すデータに基づいて、農業機械30の自動走行経路を生成する。例えば、処理装置15は、予め用意された地図上で、車両20の走行軌跡を複数の線分の組み合わせとして近似し、それらの線分の組み合わせを自動走行経路として生成することができる。
 図3に示す例では、車両20が走行する道75上に障害物が存在せず、車両20は右折時および左折時を除き、直線的に走行している。このような場合、車両20の走行軌跡を複数の線分で近似することで自動走行経路を適切に生成することができる。しかし、車両20が走行しているとき、前方に対向車が存在することがある。その場合、道75の幅が狭いと、車両20は対向車を回避するための動作を行うことになる。例えば、車両20は、減速して道75の端に寄ったり、後退(バック)したり、一時的に停車したりして、対向車との接触を回避する回避動作を行うことがある。そのような場合、回避動作に関連する走行軌跡も記録されるため、走行軌跡を示すデータに基づいて単純に自動走行経路を生成すると、回避動作を反映した不適切な自動走行経路が生成されることになる。
 上記の課題を解決するため、本実施形態における処理装置15は、車両20の走行軌跡から回避動作に関連する軌跡を除去する処理を行った上で自動走行経路を生成する。以下、図4を参照しながら、この処理の例を説明する。
 図4は、処理装置15による自動走行経路を生成する動作の一例を示すフローチャートである。処理装置15は、まず、車両20によって記録された走行軌跡データを取得する(ステップS11)。次に、処理装置15は、走行軌跡データが示す走行軌跡から、対向車を回避するために行われた回避動作に関連する軌跡を除去する(ステップS12)。走行軌跡から回避動作に関連する軌跡を特定する方法の例については後述する。処理装置15は、回避動作に関連する軌跡が除去された走行軌跡に基づいて、農業機械30の自動走行経路を生成する(S13)。例えば、除去された部分を線分で近似する等の補完処理を行うことによって自動走行経路を生成することができる。その後、処理装置15は、自動走行経路を示すデータを農業機械30に送信する(ステップS14)。なお、処理装置15が農業機械30に搭載されている場合、ステップS14の動作は省略され得る。
 ここで、図5Aから図5Cを参照しながら、ステップS12およびステップS13の動作の具体例を説明する。
 図5Aは、車両20が対向車90を回避する動作の一例を示している。この例では、車両20の運転者は、前方から接近してくる対向車90との接触を避けるために、車両20がまず道75の左端に寄り、対向車90とすれ違った後、道75の中央付近に戻るようにステアリングの操作を行う。このため、車両20が記録する走行軌跡は、図5Aにおいて破線矢印で示すように、直線的な2つの経路91、93と、それらの間の回避動作に伴う非直線的な経路92とをつなげたものになる。
 回避動作に関連する経路(以下、「回避経路」と称することがある。)は、図5Aに示すような経路92に限定されない。例えば、図6に示すように、回避経路が、後進する経路95と、その後前進する経路96とを含んでいてもよい。図6の例では、道75の幅が狭く、車両20と対向車90とがすれ違うことができない。このような場合、車両20は、一旦後進してすれ違いが可能な広さの場所まで戻り、一時停止して対向車90がすれ違った後、前進して本来の経路に復帰する。
 処理装置15は、車両20の走行軌跡のデータを取得すると、当該データが示す走行軌跡から、回避動作に関連する軌跡を抽出して除去する。図5Bは、回避動作に関連する軌跡が除去された走行軌跡の一例を示している。
 処理装置15は、カメラ22によって車両20の走行中に撮影された動画像のデータに基づいて回避動作に関連する軌跡を抽出してもよい。その場合、図4に示すステップS11において、処理装置15は、走行軌跡のデータに加えて、当該動画像のデータも取得する。処理装置15は、当該動画像に基づいて回避動作を検出し、走行軌跡から回避動作に関連する軌跡を決定して除去する。
 処理装置15は、当該動画像に基づく画像認識処理を行い、当該動画像から車両20に接近する対向車90を認識した結果に基づいて回避動作に関連する軌跡を決定してもよい。例えば、処理装置15は、走行軌跡のうち、動画像中で対向車90を認識してから対向車90が認識されなくなるまでの期間の少なくとも一部に対応する軌跡を、回避動作に関連する軌跡として除去してもよい。あるいは、処理装置15は、走行軌跡のうち、動画像中で対向車90が車両20に所定距離(例えば5m、10m、または20m等)まで近づいたことを認識してから対向車90が認識されなくなるまでの期間を含む所定の時間長(例えば、10秒、20秒、または30秒等)の期間に対応する軌跡を、回避動作に関連する軌跡として除去してもよい。
 処理装置15はまた、走行軌跡が示す車両20の位置の時間変化に基づいて回避動作を検出してもよい。例えば、処理装置15は、車両20が対向車90を回避するために行った後進、方向転換、加速、および減速の少なくとも1つの動作を回避動作として検出してもよい。一例として、処理装置15は、走行軌跡のうち、道75の直線的部分における軌跡であるにも関わらず、非直線的な軌道を描く部分を回避動作に関連する軌跡として抽出してもよい。回避動作に関連する軌跡の抽出には、車両20のステアリングおよび/または加減速の操作の記録が利用されてもよい。例えば、処理装置15は、走行軌跡のうち、道75上の交差点以外の位置で大きな方向転換が行われた部分を回避動作に関連する軌跡として抽出してもよい。処理装置15はまた、走行軌跡のうち、道75に沿った走行の途中で車両20が減速または停車したり、後進してから再び前進したりした部分を、回避動作に関連する軌跡として抽出してもよい。回避動作の検出には、深層学習等の機械学習アルゴリズムが利用されてもよい。処理装置15は、車両20から取得した走行軌跡のデータと、予め訓練された学習済みモデルとに基づいて、走行軌跡から回避動作に関連する軌跡を抽出してもよい。
 処理装置15は、回避動作に関連する軌跡を除去した後、除去した部分を補完する処理行うことによって自動走行経路を生成する。例えば図5Cに示すように、処理装置15は、走行軌跡から除去した部分を直線的な補完経路94で補完することによって自動走行経路を生成してもよい。このような補完処理は、処理装置15が自動で行ってもよいし、ユーザからの操作に応答して行ってもよい。例えば、処理装置15は、回避動作に関連する軌跡が除去された走行軌跡を表示装置45に表示させ、ユーザが入力装置40を用いて行った補完経路を決定する操作に応答して、走行軌跡から除去した部分を補完してもよい。
 図7Aは、表示装置45の表示例を示す図である。この例における表示装置45は、タブレットコンピュータまたはスマートフォン等の、ディスプレイを内蔵したコンピュータである。図示される表示装置45は、タッチスクリーンを備えており、入力装置40の機能も兼ねている。表示装置45には、圃場70の周辺の環境地図が表示される。地図上に、車両20の走行軌跡から回避経路が除去された経路が表示される。図7Aにおいて、除去された回避経路に相当する部分が点線で囲まれている。ユーザは、例えば点線枠の部分をタッチすることにより、経路の補完の操作を行うことができる。
 図7Bは、ユーザが点線枠の部分の1つをタッチしたときの表示画面の例を示している。この例では、「経路を補完しますか?」というポップアップが表示され、ユーザは「はい」または「いいえ」を選択することができる。ユーザが「はい」を選択すると、処理装置15は、除去された部分を補完する補完経路を生成する。処理装置15は、例えば、除去された部分を直線的な補完経路で補完する。あるいは、ユーザが補完経路を指定できるようにしてもよい。
 図7Cは、除去された部分の1つが補完された状態を例示している。補完された部分は破線矢印で示されている。ユーザは、他の除去された部分も同様の操作で補完することができる。
 図7Dは、全ての除去部分が補完され、自動走行経路が完成した状態の例を示している。自動走行経路は、例えば、複数のウェイポイントによって規定され得る。各ウェイポイントは、例えば位置および速度の情報を含み得る。図7Dにおいて、ウェイポイントは、点で表され、ウェイポイント間のリンクが矢印で表されている。この例では、農業機械30が方向転換を行い得る場所(交差点、圃場の出入口付近、および保管庫の出入口等)にウェイポイントが設定されている。ウェイポイントの設定方法は図示される例に限定されず、ウェイポイント間のリンクの長さは任意に設定可能である。
 以上の動作により、対向車90を回避するために行われた回避動作が自動走行経路に反映されることを防止することができる。これにより、農業機械30のためのより適切な自動走行経路を生成することができる。
 生成した自動走行経路を示すデータは、農業機械30に送られ、記憶装置33に記録される。農業機械30の走行制御装置32は、自動走行経路に沿って農業機械30が走行するように、農業機械30の走行速度および操舵を制御する。例えば、自動走行経路が複数のウェイポイントによって規定され、各ウェイポイントが位置および速度の情報を含む場合、走行制御装置32は、各ウェイポイントを指定された速度で通過するように走行速度および操舵を制御する。走行制御装置32は、自己位置推定装置31によって推定された農業機械30の位置および向きに基づいて、農業機械30が自動走行経路からどの程度ずれているかを推定することができる。自己位置推定装置31は、例えばGNSS、IMU(Inertial Measurement Unit)、LiDAR(Light Detection and Ranging)、および/またはカメラ(イメージセンサを含む)等のセンサを利用して自己位置推定を行う装置である。走行制御装置32は、農業機械30の自動走行経路からの位置および/または向きのずれを小さくするように操舵制御を行うことにより、自動走行経路に沿った走行を実現できる。
 本実施形態では、処理装置15は、上記の処理を、農業機械30が圃場外で自動走行を行うための経路を生成する場合に実行する。処理装置15は、同様の処理を、農業機械30が圃場内で自動走行を行うための経路を生成する場合に実行してもよい。圃場内であっても、他の農業用作業車両が対向車として存在し得るため、本実施形態による経路生成方法は有効である。
 次に、農業機械の一例であるトラクタなどの作業車両に本開示の技術を適用した実施形態を説明する。本開示の技術は、トラクタなどの作業車両に限らず、他の種類の農業機械にも適用することができる。
 図8は、本開示の例示的な実施形態による農業管理システムの概要を説明するための図である。図8に示すシステムは、作業車両100と、端末装置400と、管理装置600とを備える。作業車両100は、自動走行が可能な農業機械である。端末装置400は、作業車両100を遠隔で監視するユーザが使用するコンピュータである。管理装置600は、システムを運営する事業者が管理するコンピュータである。作業車両100、端末装置400、および管理装置600は、ネットワーク80を介して互いに通信することができる。図8には1台の作業車両100が例示されているが、システムは、複数の作業車両またはその他の農業機械を含んでいてもよい。本実施形態では、作業車両100が図1に示す車両20および農業機械30の両方の機能を兼ねている。管理装置600は、図1に示す処理装置15の機能を備える。
 本実施形態における作業車両100はトラクタである。作業車両100は、後部および前部の一方または両方にインプルメントを装着することができる。作業車両100は、インプルメントの種類に応じた農作業を行いながら圃場内を走行することができる。作業車両100は、インプルメントを装着しない状態で圃場内または圃場外を走行してもよい。
 作業車両100は、自動運転の機能を備える。すなわち、作業車両100は、手動によらず、制御装置の働きによって走行することができる。本実施形態における制御装置は、作業車両100の内部に設けられ、作業車両100の速度および操舵の両方を制御することができる。作業車両100は、圃場内に限らず、圃場外(例えば道路)を自動走行することもできる。
 作業車両100は、GNSS受信機およびLiDARセンサなどの、測位あるいは自己位置推定のために利用される装置を備える。作業車両100の制御装置は、作業車両100の位置と、目標経路の情報とに基づいて、作業車両100を自動で走行させる。制御装置は、作業車両100の走行制御に加えて、インプルメントの動作の制御も行う。これにより、作業車両100は、圃場内を自動で走行しながらインプルメントを用いて農作業を実行することができる。さらに、作業車両100は、圃場外の道(例えば、農道または一般道)を目標経路に沿って自動で走行することができる。作業車両100は、圃場外の道に沿って自動走行を行うとき、カメラまたはLiDARセンサなどのセンシング装置から出力されるデータに基づいて、障害物を回避可能な局所的経路を目標経路に沿って生成しながら走行する。作業車両100は、圃場内においては、上記と同様に局所的経路を生成しながら走行してもよいし、局所的経路を生成せずに目標経路に沿って走行し、障害物が検出された場合に停止する、という動作を行ってもよい。
 管理装置600は、作業車両100による農作業を管理するコンピュータである。管理装置600は、例えば圃場に関する情報をクラウド上で一元管理し、クラウド上のデータを活用して農業を支援するサーバコンピュータであり得る。管理装置600は、図1に示す処理装置15と同等の機能を備える。すなわち、管理装置600は、作業車両100の自動走行経路(すなわち目標経路)を生成する。管理装置600は、作業車両100が手動運転で走行したときの走行軌跡を示すデータを取得し、当該データに基づいて作業車両100の自動走行経路を生成する。より具体的には、作業車両100が自動走行を開始する前に、作業車両100が、自動走行を行う予定の経路を、走行軌跡を記録しながら手動で走行する。作業車両100は、GNSSユニットなどの測位装置を利用して、自身の位置を逐次記録することによって走行軌跡を記録する。データ記録のための走行が完了した後、管理装置600は、作業車両100から、走行軌跡を示すデータを取得する。当該走行軌跡には、道路上で対向車を回避するために行われた回避動作に関連する軌跡が含まれ得る。管理装置600は、前述の方法により、取得したデータが示す走行軌跡から、対向車を回避するために行われた回避動作に関連する軌跡を除去し、当該軌跡が除去された走行軌跡に基づいて、作業車両100の自動走行経路を生成する。このような処理により、回避動作に伴う軌跡を反映することなく、適切な自動走行経路を生成することができる。
 管理装置600は、さらに、作業車両100の作業計画を作成し、作業計画に従って、作業車両100に自動走行の開始および終了の指示を与えてもよい。管理装置600はまた、作業車両100または他の車両がLiDARセンサなどのセンシング装置を用いて収集したデータに基づいて、環境地図の生成を行ってもよい。
 管理装置600は、生成した自動走行経路、作業計画、および環境地図等のデータを作業車両100に送信する。作業車両100は、それらのデータに基づいて、走行および農作業を自動で行う。
 なお、自動走行経路の生成は、管理装置600に限らず、他の装置が行ってもよい。例えば、作業車両100の制御装置が、自動走行経路の生成を行ってもよい。その場合、作業車両100の制御装置が、自動走行経路を生成する処理装置として機能する。
 端末装置400は、作業車両100から離れた場所にいるユーザが使用するコンピュータである。図8に示す端末装置400はラップトップコンピュータであるが、これに限定されない。端末装置400は、デスクトップPC(personal computer)などの据え置き型のコンピュータであってもよいし、スマートフォンまたはタブレットコンピュータなどのモバイル端末でもよい。端末装置400は、作業車両100を遠隔監視したり、作業車両100を遠隔操作したりするために用いられ得る。例えば、端末装置400は、作業車両100が備える1台以上のカメラ(撮像装置)が撮影した映像をディスプレイに表示させることができる。ユーザは、その映像を見て、作業車両100の周囲の状況を確認し、作業車両100に停止または発進の指示を送ることができる。端末装置400は、さらに、図2に示す入力装置40および表示装置45の機能を備えていてもよい。すなわち、端末装置400は、管理装置600によって生成された自動走行経路を編集する操作に用いられてもよい。
 以下、本実施形態におけるシステムの構成および動作をより詳細に説明する。
 [1.構成]
 図9は、作業車両100、および作業車両100に連結されたインプルメント300の例を模式的に示す側面図である。本実施形態における作業車両100は、手動運転モードと自動運転モードの両方で動作することができる。自動運転モードにおいて、作業車両100は無人で走行することができる。作業車両100は、圃場内と圃場外の両方で自動運転が可能である。
 図9に示すように、作業車両100は、車体101と、原動機(エンジン)102と、変速装置(トランスミッション)103とを備える。車体101には、タイヤ付き車輪104と、キャビン105とが設けられている。車輪104は、一対の前輪104Fと一対の後輪104Rとを含む。キャビン105の内部に運転席107、操舵装置106、操作端末200、および操作のためのスイッチ群が設けられている。前輪104Fおよび後輪104Rの一方または両方は、タイヤ付き車輪ではなく無限軌道(track)を装着した複数の車輪(クローラ)に置き換えられてもよい。
 作業車両100は、作業車両100の周囲をセンシングする複数のセンシング装置を備える。図9の例では、センシング装置は、複数のカメラ120と、LiDARセンサ140と、複数の障害物センサ130とを含む。
 カメラ120は、例えば作業車両100の前後左右に設けられ得る。カメラ120は、作業車両100の周囲の環境を撮影し、画像データを生成する。カメラ120が取得した画像は、遠隔監視を行うための端末装置400に送信され得る。当該画像は、無人運転時に作業車両100を監視するために用いられ得る。カメラ120は、作業車両100が圃場外の道(農道または一般道)を走行するときに、周辺の地物もしくは障害物、白線、標識、または表示などを認識するための画像を生成する用途でも使用され得る。例えば、カメラ120は、作業車両100が走行軌跡を記録しながら手動運転で走行しているときに対向車を検出する用途でも使用され得る。
 図9の例におけるLiDARセンサ140は、車体101の前面下部に配置されている。LiDARセンサ140は、他の位置に設けられていてもよい。LiDARセンサ140は、作業車両100が主に圃場外を走行している間、周囲の環境に存在する物体の各計測点までの距離および方向、または各計測点の2次元もしくは3次元の座標値を示すセンサデータを繰り返し出力する。LiDARセンサ140から出力されたセンサデータは、作業車両100の制御装置によって処理される。制御装置は、センサデータと、環境地図とのマッチングにより、作業車両100の自己位置推定を行うことができる。制御装置は、さらに、センサデータに基づいて、作業車両100の周辺に存在する障害物などの物体を検出し、作業車両100が実際に進むべき局所的経路を、目標経路に沿って生成することができる。制御装置は、例えばSLAM(Simultaneous Localization and Mapping)などのアルゴリズムを利用して、環境地図を生成または編集するように構成されていてもよい。作業車両100は、異なる位置に異なる向きで配置された複数のLiDARセンサを備えていてもよい。
 図9に示す複数の障害物センサ130は、キャビン105の前部および後部に設けられている。障害物センサ130は、他の部位にも配置され得る。例えば、車体101の側部、前部、および後部の任意の位置に、一つまたは複数の障害物センサ130が設けられ得る。障害物センサ130は、例えばレーザスキャナまたは超音波ソナーを含み得る。障害物センサ130は、自動走行時に周囲の障害物を検出して作業車両100を停止したり迂回したりするために用いられる。LiDARセンサ140が障害物センサ130の一つとして利用されてもよい。
 作業車両100は、さらに、GNSSユニット110を備える。GNSSユニット110は、GNSS受信機を含む。GNSS受信機は、GNSS衛星からの信号を受信するアンテナと、アンテナが受信した信号に基づいて作業車両100の位置を計算するプロセッサとを備え得る。GNSSユニット110は、複数のGNSS衛星から送信される衛星信号を受信し、衛星信号に基づいて測位を行う。GNSSは、GPS(Global Positioning System)、QZSS(Quasi-Zenith Satellite System、例えばみちびき)、GLONASS、Galileo、およびBeiDouなどの衛星測位システムの総称である。本実施形態におけるGNSSユニット110は、キャビン105の上部に設けられているが、他の位置に設けられていてもよい。
 GNSSユニット110は、慣性計測装置(IMU)を含み得る。IMUからの信号を利用して位置データを補完することができる。IMUは、作業車両100の傾きおよび微小な動きを計測することができる。IMUによって取得されたデータを用いて、衛星信号に基づく位置データを補完することにより、測位の性能を向上させることができる。
 作業車両100の制御装置は、GNSSユニット110による測位結果に加えて、カメラ120またはLiDARセンサ140などのセンシング装置が取得したセンシングデータを測位に利用してもよい。農道、林道、一般道、または果樹園のように、作業車両100が走行する環境内に特徴点として機能する地物が存在する場合、カメラ120またはLiDARセンサ140によって取得されたデータと、予め記憶装置に格納された環境地図とに基づいて、作業車両100の位置および向きを高い精度で推定することができる。カメラ120またはLiDARセンサ140が取得したデータを用いて、衛星信号に基づく位置データを補正または補完することで、より高い精度で作業車両100の位置を特定できる。
 原動機102は、例えばディーゼルエンジンであり得る。ディーゼルエンジンに代えて電動モータが使用されてもよい。変速装置103は、変速によって作業車両100の推進力および移動速度を変化させることができる。変速装置103は、作業車両100の前進と後進とを切り換えることもできる。
 操舵装置106は、ステアリングホイールと、ステアリングホイールに接続されたステアリングシャフトと、ステアリングホイールによる操舵を補助するパワーステアリング装置とを含む。前輪104Fは操舵輪であり、その切れ角(「操舵角」とも称する。)を変化させることにより、作業車両100の走行方向を変化させることができる。前輪104Fの操舵角は、ステアリングホイールを操作することによって変化させることができる。パワーステアリング装置は、前輪104Fの操舵角を変化させるための補助力を供給する油圧装置または電動モータを含む。自動操舵が行われるときには、作業車両100内に配置された制御装置からの制御により、油圧装置または電動モータの力によって操舵角が自動で調整される。
 車体101の後部には、連結装置108が設けられている。連結装置108は、例えば3点支持装置(「3点リンク」または「3点ヒッチ」とも称する。)、PTO(Power Take Off)軸、ユニバーサルジョイント、および通信ケーブルを含む。連結装置108によってインプルメント300を作業車両100に着脱することができる。連結装置108は、例えば油圧装置によって3点リンクを昇降させ、インプルメント300の位置または姿勢を変化させることができる。また、ユニバーサルジョイントを介して作業車両100からインプルメント300に動力を送ることができる。作業車両100は、インプルメント300を引きながら、インプルメント300に所定の作業を実行させることができる。連結装置は、車体101の前方に設けられていてもよい。その場合、作業車両100の前方にインプルメントを接続することができる。
 図9に示すインプルメント300は、ロータリ耕耘機であるが、インプルメント300はロータリ耕耘機に限定されない。例えば、シーダ(播種機)、スプレッダ(施肥機)、移植機、モーア(草刈機)、レーキ、ベーラ(集草機)、ハーベスタ(収穫機)、スプレイヤ、またはハローなどの、任意のインプルメントを作業車両100に接続して使用することができる。
 図9に示す作業車両100は、有人運転が可能であるが、無人運転のみに対応していてもよい。その場合には、キャビン105、操舵装置106、および運転席107などの、有人運転にのみ必要な構成要素は、作業車両100に設けられていなくてもよい。無人の作業車両100は、自律走行、またはユーザによる遠隔操作によって走行することができる。有人運転の機能を持たない作業車両100が用いられる場合、経路生成のための走行軌跡のデータは、作業車両100以外の有人運転車両によって取得される。
 図10は、作業車両100およびインプルメント300の構成例を示すブロック図である。作業車両100とインプルメント300は、連結装置108に含まれる通信ケーブルを介して互いに通信することができる。作業車両100は、ネットワーク80を介して、端末装置400および管理装置600と通信することができる。
 図10の例における作業車両100は、GNSSユニット110、カメラ120、障害物センサ130、LiDARセンサ140、および操作端末200に加え、作業車両100の動作状態を検出するセンサ群150、制御システム160、通信装置190、操作スイッチ群210、ブザー220、および駆動装置240を備える。これらの構成要素は、バスを介して相互に通信可能に接続される。GNSSユニット110は、GNSS受信機111と、RTK受信機112と、慣性計測装置(IMU)115と、処理回路116とを備える。センサ群150は、ステアリングホイールセンサ152と、切れ角センサ154、車軸センサ156とを含む。制御システム160は、記憶装置170と、制御装置180とを備える。制御装置180は、複数の電子制御ユニット(ECU)181から185を備える。インプルメント300は、駆動装置340と、制御装置380と、通信装置390とを備える。なお、図10には、作業車両100による自動運転の動作との関連性が相対的に高い構成要素が示されており、それ以外の構成要素の図示は省略されている。
 GNSSユニット110におけるGNSS受信機111は、複数のGNSS衛星から送信される衛星信号を受信し、衛星信号に基づいてGNSSデータを生成する。GNSSデータは、例えばNMEA-0183フォーマットなどの所定のフォーマットで生成される。GNSSデータは、例えば、衛星信号が受信されたそれぞれの衛星の識別番号、仰角、方位角、および受信強度を示す値を含み得る。
 図10に示すGNSSユニット110は、RTK(Real Time Kinematic)-GNSSを利用して作業車両100の測位を行う。図11は、RTK-GNSSによる測位を行う作業車両100の例を示す概念図である。RTK-GNSSによる測位では、複数のGNSS衛星50から送信される衛星信号に加えて、基準局60から送信される補正信号が利用される。基準局60は、作業車両100が作業走行を行う圃場の付近(例えば、作業車両100から10km以内の位置)に設置され得る。基準局60は、複数のGNSS衛星50から受信した衛星信号に基づいて、例えばRTCMフォーマットの補正信号を生成し、GNSSユニット110に送信する。RTK受信機112は、アンテナおよびモデムを含み、基準局60から送信される補正信号を受信する。GNSSユニット110の処理回路116は、補正信号に基づき、GNSS受信機111による測位結果を補正する。RTK-GNSSを用いることにより、例えば誤差数cmの精度で測位を行うことが可能である。緯度、経度、および高度の情報を含む位置情報が、RTK-GNSSによる高精度の測位によって取得される。GNSSユニット110は、例えば1秒間に1回から10回程度の頻度で、作業車両100の位置を計算する。
 なお、測位方法はRTK-GNSSに限らず、必要な精度の位置情報が得られる任意の測位方法(干渉測位法または相対測位法など)を用いることができる。例えば、VRS(Virtual Reference Station)またはDGPS(Differential Global Positioning System)を利用した測位を行ってもよい。基準局60から送信される補正信号を用いなくても必要な精度の位置情報が得られる場合は、補正信号を用いずに位置情報を生成してもよい。その場合、GNSSユニット110は、RTK受信機112を備えていなくてもよい。
 RTK-GNSSを利用する場合であっても、基準局60からの補正信号が得られない場所(例えば圃場から遠く離れた道路上)では、RTK受信機112からの信号によらず、他の方法で作業車両100の位置が推定される。例えば、LiDARセンサ140および/またはカメラ120から出力されたデータと、高精度の環境地図とのマッチングによって、作業車両100の位置が推定され得る。
 本実施形態におけるGNSSユニット110は、さらにIMU115を備える。IMU115は、3軸加速度センサおよび3軸ジャイロスコープを備え得る。IMU115は、3軸地磁気センサなどの方位センサを備えていてもよい。IMU115は、モーションセンサとして機能し、作業車両100の加速度、速度、変位、および姿勢などの諸量を示す信号を出力することができる。処理回路116は、衛星信号および補正信号に加えて、IMU115から出力された信号に基づいて、作業車両100の位置および向きをより高い精度で推定することができる。IMU115から出力された信号は、衛星信号および補正信号に基づいて計算される位置の補正または補完に用いられ得る。IMU115は、GNSS受信機111よりも高い頻度で信号を出力する。その高頻度の信号を利用して、処理回路116は、作業車両100の位置および向きをより高い頻度(例えば、10Hz以上)で計測することができる。IMU115に代えて、3軸加速度センサおよび3軸ジャイロスコープを別々に設けてもよい。IMU115は、GNSSユニット110とは別の装置として設けられていてもよい。
 カメラ120は、作業車両100の周囲の環境を撮影する撮像装置である。カメラ120は、例えば、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)などのイメージセンサを備える。カメラ120は、他にも、一つ以上のレンズを含む光学系、および信号処理回路を備え得る。カメラ120は、作業車両100の走行中、作業車両100の周囲の環境を撮影し、画像(例えば動画)のデータを生成する。カメラ120は、例えば、3フレーム/秒(fps: frames per second)以上のフレームレートで動画を撮影することができる。カメラ120によって生成された画像は、例えば遠隔の監視者が端末装置400を用いて作業車両100の周囲の環境を確認するときに利用され得る。カメラ120によって生成された画像は、測位または障害物の検出に利用されてもよい。例えば、前述の走行軌跡のデータを収集するために作業車両100が走行しているときにカメラ120によって生成された画像は、対向車を認識して対向車を回避する動作を検出する処理において利用され得る。図9に示すように、複数のカメラ120が作業車両100の異なる位置に設けられていてもよいし、単数のカメラが設けられていてもよい。可視光画像を生成する可視カメラと、赤外線画像を生成する赤外カメラとが別々に設けられていてもよい。可視カメラと赤外カメラの両方が監視用の画像を生成するカメラとして設けられていてもよい。赤外カメラは、夜間において障害物の検出にも用いられ得る。
 障害物センサ130は、作業車両100の周囲に存在する物体を検出する。障害物センサ130は、例えばレーザスキャナまたは超音波ソナーを含み得る。障害物センサ130は、障害物センサ130から所定の距離よりも近くに物体が存在する場合に、障害物が存在することを示す信号を出力する。複数の障害物センサ130が作業車両100の異なる位置に設けられていてもよい。例えば、複数のレーザスキャナと、複数の超音波ソナーとが、作業車両100の異なる位置に配置されていてもよい。そのような多くの障害物センサ130を備えることにより、作業車両100の周囲の障害物の監視における死角を減らすことができる。
 ステアリングホイールセンサ152は、作業車両100のステアリングホイールの回転角を計測する。切れ角センサ154は、操舵輪である前輪104Fの切れ角を計測する。ステアリングホイールセンサ152および切れ角センサ154による計測値は、制御装置180による操舵制御に利用される。
 車軸センサ156は、車輪104に接続された車軸の回転速度、すなわち単位時間あたりの回転数を計測する。車軸センサ156は、例えば磁気抵抗素子(MR)、ホール素子、または電磁ピックアップを利用したセンサであり得る。車軸センサ156は、例えば、車軸の1分あたりの回転数(単位:rpm)を示す数値を出力する。車軸センサ156は、作業車両100の速度を計測するために使用される。
 駆動装置240は、前述の原動機102、変速装置103、操舵装置106、および連結装置108などの、作業車両100の走行およびインプルメント300の駆動に必要な各種の装置を含む。原動機102は、例えばディーゼル機関などの内燃機関を備え得る。駆動装置240は、内燃機関に代えて、あるいは内燃機関とともに、トラクション用の電動モータを備えていてもよい。
 ブザー220は、異常を報知するための警告音を発する音声出力装置である。ブザー220は、例えば、自動運転時に、障害物が検出された場合に警告音を発する。ブザー220は、制御装置180によって制御される。
 記憶装置170は、フラッシュメモリまたは磁気ディスクなどの一つ以上の記憶媒体を含む。記憶装置170は、GNSSユニット110、カメラ120、障害物センサ130、LiDARセンサ140、センサ群150、および制御装置180が生成する各種のデータを記憶する。記憶装置170が記憶するデータには、作業車両100が走行する環境内の地図データ(環境地図)、および自動運転のための自動走行経路(目標経路)のデータが含まれ得る。環境地図は、作業車両100が農作業を行う複数の圃場およびその周辺の道の情報を含む。環境地図および目標経路は、管理装置600におけるプロセッサによって生成され得る。なお、本実施形態における制御装置180は、環境地図および目標経路を生成または編集する機能を備えている。制御装置180は、管理装置600から取得した環境地図および目標経路を、作業車両100の走行環境に応じて編集することができる。記憶装置170は、制御装置180における各ECUに、後述する各種の動作を実行させるコンピュータプログラムも記憶する。そのようなコンピュータプログラムは、記憶媒体(例えば半導体メモリまたは光ディスク等)または電気通信回線(例えばインターネット)を介して作業車両100に提供され得る。そのようなコンピュータプログラムが、商用ソフトウェアとして販売されてもよい。
 制御装置180は、複数のECUを含む。複数のECUは、例えば、速度制御用のECU181、ステアリング制御用のECU182、インプルメント制御用のECU183、自動運転制御用のECU184、および経路生成用のECU185を含む。
 ECU181は、駆動装置240に含まれる原動機102、変速装置103、およびブレーキを制御することによって作業車両100の速度を制御する。
 ECU182は、ステアリングホイールセンサ152の計測値に基づいて、操舵装置106に含まれる油圧装置または電動モータを制御することによって作業車両100のステアリングを制御する。
 ECU183は、インプルメント300に所望の動作を実行させるために、連結装置108に含まれる3点リンクおよびPTO軸などの動作を制御する。ECU183はまた、インプルメント300の動作を制御する信号を生成し、その信号を通信装置190からインプルメント300に送信する。
 ECU184は、GNSSユニット110、カメラ120、障害物センサ130、LiDARセンサ140、およびセンサ群150から出力されたデータに基づいて、自動運転を実現するための演算および制御を行う。例えば、ECU184は、GNSSユニット110、カメラ120、およびLiDARセンサ140の少なくとも1つから出力されたデータに基づいて、作業車両100の位置を特定する。圃場内においては、ECU184は、GNSSユニット110から出力されたデータのみに基づいて作業車両100の位置を決定してもよい。ECU184は、カメラ120またはLiDARセンサ140が取得したデータに基づいて作業車両100の位置を推定または補正してもよい。カメラ120またはLiDARセンサ140が取得したデータを利用することにより、測位の精度をさらに高めることができる。また、圃場外においては、ECU184は、LiDARセンサ140またはカメラ120から出力されるデータを利用して作業車両100の位置を推定する。例えば、ECU184は、LiDARセンサ140またはカメラ120から出力されるデータと、環境地図とのマッチングにより、作業車両100の位置を推定してもよい。自動運転中、ECU184は、推定された作業車両100の位置に基づいて、目標経路または局所的経路に沿って作業車両100が走行するために必要な演算を行う。ECU184は、ECU181に速度変更の指令を送り、ECU182に操舵角変更の指令を送る。ECU181は、速度変更の指令に応答して原動機102、変速装置103、またはブレーキを制御することによって作業車両100の速度を変化させる。ECU182は、操舵角変更の指令に応答して操舵装置106を制御することによって操舵角を変化させる。
 ECU185は、作業車両100が目標経路に沿って走行している間、障害物を回避可能な局所的経路を逐次生成する。ECU185は、作業車両100の走行中、カメラ120、障害物センサ130、およびLiDARセンサ140から出力されたデータに基づいて、作業車両100の周囲に存在する障害物を認識する。ECU185は、認識した障害物を回避するように局所的経路を生成する。ECU185は、管理装置600の代わりに目標経路を生成する機能を備えていてもよい。その場合、ECU185は、作業車両100がデータ収集のための走行を行っているときにGNSSユニット110、カメラ120、および/またはLiDARセンサ140から出力されたデータに基づいて、目標経路を生成する。目標経路を生成する方法の例は、図3から図7Dを参照して説明したとおりである。なお、目標経路は、管理装置600またはECU185に限らず、例えば操作端末200または端末装置400などの他の装置によって生成されてもよい。
 これらのECUの働きにより、制御装置180は、自動運転を実現する。自動運転時において、制御装置180は、計測または推定された作業車両100の位置と、目標経路とに基づいて、駆動装置240を制御する。これにより、制御装置180は、作業車両100を目標経路に沿って走行させることができる。
 制御装置180に含まれる複数のECUは、例えばCAN(Controller Area Network)などのビークルバス規格に従って、相互に通信することができる。CANに代えて、車載イーサネット(登録商標)などの、より高速の通信方式が用いられてもよい。図10において、ECU181から185のそれぞれは、個別のブロックとして示されているが、これらのそれぞれの機能が、複数のECUによって実現されていてもよい。ECU181から185の少なくとも一部の機能を統合した車載コンピュータが設けられていてもよい。制御装置180は、ECU181から185以外のECUを備えていてもよく、機能に応じて任意の個数のECUが設けられ得る。各ECUは、一つ以上のプロセッサを含む処理回路を備える。
 通信装置190は、インプルメント300、端末装置400、および管理装置600と通信を行う回路を含む装置である。通信装置190は、例えばISOBUS-TIM等のISOBUS規格に準拠した信号の送受信を、インプルメント300の通信装置390との間で実行する回路を含む。これにより、インプルメント300に所望の動作を実行させたり、インプルメント300から情報を取得したりすることができる。通信装置190は、さらに、ネットワーク80を介した信号の送受信を、端末装置400および管理装置600のそれぞれの通信装置との間で実行するためのアンテナおよび通信回路を含み得る。ネットワーク80は、例えば、3G、4Gもしくは5Gなどのセルラー移動体通信網およびインターネットを含み得る。通信装置190は、作業車両100の近くにいる監視者が使用する携帯端末と通信する機能を備えていてもよい。そのような携帯端末との間では、Wi-Fi(登録商標)、3G、4Gもしくは5Gなどのセルラー移動体通信、またはBluetooth(登録商標)などの、任意の無線通信規格に準拠した通信が行われ得る。
 操作端末200は、作業車両100の走行およびインプルメント300の動作に関する操作をユーザが実行するための端末であり、バーチャルターミナル(VT)とも称される。操作端末200は、タッチスクリーンなどの表示装置、および/または一つ以上のボタンを備え得る。表示装置は、例えば液晶または有機発光ダイオード(OLED)などのディスプレイであり得る。ユーザは、操作端末200を操作することにより、例えば自動運転モードのオン/オフの切り替え、環境地図の記録または編集、目標経路の設定、およびインプルメント300のオン/オフの切り替えなどの種々の操作を実行することができる。これらの操作の少なくとも一部は、操作スイッチ群210を操作することによっても実現され得る。操作端末200は、作業車両100から取り外せるように構成されていてもよい。作業車両100から離れた場所にいるユーザが、取り外された操作端末200を操作して作業車両100の動作を制御してもよい。ユーザは、操作端末200の代わりに、端末装置400などの、必要なアプリケーションソフトウェアがインストールされたコンピュータを操作して作業車両100の動作を制御してもよい。
 図12は、キャビン105の内部に設けられる操作端末200および操作スイッチ群210の例を示す図である。キャビン105の内部には、ユーザが操作可能な複数のスイッチを含むスイッチ群210が配置されている。操作スイッチ群210は、例えば、主変速または副変速の変速段を選択するためのスイッチ、自動運転モードと手動運転モードとを切り替えるためのスイッチ、前進と後進とを切り替えるためのスイッチ、およびインプルメント300を昇降するためのスイッチ等を含み得る。なお、作業車両100が無人運転のみを行い、有人運転の機能を備えていない場合、作業車両100が操作スイッチ群210を備えている必要はない。
 図10に示すインプルメント300における駆動装置340は、インプルメント300が所定の作業を実行するために必要な動作を行う。駆動装置340は、例えば油圧装置、電気モータ、またはポンプなどの、インプルメント300の用途に応じた装置を含む。制御装置380は、駆動装置340の動作を制御する。制御装置380は、通信装置390を介して作業車両100から送信された信号に応答して、駆動装置340に各種の動作を実行させる。また、インプルメント300の状態に応じた信号を通信装置390から作業車両100に送信することもできる。
 次に、図13を参照しながら、管理装置600および端末装置400の構成を説明する。図13は、管理装置600および端末装置400の概略的なハードウェア構成を例示するブロック図である。
 管理装置600は、記憶装置650と、プロセッサ660と、ROM(Read Only Memory)670と、RAM(Random Access Memory)680と、通信装置690とを備える。これらの構成要素は、バスを介して相互に通信可能に接続される。管理装置600は、作業車両100が実行する圃場における農作業のスケジュール管理を行い、管理するデータを活用して農業を支援するクラウドサーバとして機能し得る。ユーザは、端末装置400を用いて作業計画の作成に必要な情報を入力し、その情報をネットワーク80を介して管理装置600にアップロードすることが可能である。管理装置600は、その情報に基づき、農作業のスケジュール、すなわち作業計画を作成することができる。管理装置600は、さらに、環境地図の生成または編集、および作業車両100の自動走行経路の生成も実行することができる。環境地図は、管理装置600の外部のコンピュータから配信されてもよい。
 通信装置690は、ネットワーク80を介して作業車両100および端末装置400と通信するための通信モジュールである。通信装置690は、例えば、IEEE1394(登録商標)またはイーサネット(登録商標)などの通信規格に準拠した有線通信を行うことができる。通信装置690は、Bluetooth(登録商標)規格もしくはWi-Fi規格に準拠した無線通信、または、3G、4Gもしくは5Gなどのセルラー移動体通信を行ってもよい。
 プロセッサ660は、例えば中央演算処理装置(CPU)を含む半導体集積回路であり得る。プロセッサ660は、マイクロプロセッサまたはマイクロコントローラによって実現され得る。あるいは、プロセッサ660は、CPUを搭載したFPGA(Field Programmable Gate Array)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、ASSP(Application Specific Standard Product)、または、これら回路の中から選択される二つ以上の回路の組み合わせによっても実現され得る。プロセッサ660は、ROM670に格納された、少なくとも一つの処理を実行するための命令群を記述したコンピュータプログラムを逐次実行し、所望の処理を実現する。
 ROM670は、例えば、書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)、または読み出し専用のメモリである。ROM670は、プロセッサ660の動作を制御するプログラムを記憶する。ROM670は、単一の記憶媒体である必要はなく、複数の記憶媒体の集合体であってもよい。複数の記憶媒体の集合体の一部は、取り外し可能なメモリであってもよい。
 RAM680は、ROM670に格納された制御プログラムをブート時に一旦展開するための作業領域を提供する。RAM680は、単一の記憶媒体である必要はなく、複数の記憶媒体の集合体であってもよい。
 記憶装置650は、主としてデータベースのストレージとして機能する。記憶装置650は、例えば、磁気記憶装置または半導体記憶装置であり得る。磁気記憶装置の例は、ハードディスクドライブ(HDD)である。半導体記憶装置の例は、ソリッドステートドライブ(SSD)である。記憶装置650は、管理装置600とは独立した装置であってもよい。例えば、記憶装置650は、管理装置600にネットワーク80を介して接続される記憶装置、例えばクラウドストレージであってもよい。
 端末装置400は、入力装置420と、表示装置430と、記憶装置450と、プロセッサ460と、ROM470と、RAM480と、通信装置490とを備える。これらの構成要素は、バスを介して相互に通信可能に接続される。入力装置420は、ユーザからの指示をデータに変換してコンピュータに入力するための装置である。入力装置420は、例えば、キーボード、マウス、またはタッチパネルであり得る。表示装置430は、例えば液晶ディスプレイまたは有機ELディスプレイであり得る。プロセッサ460、ROM470、RAM480、記憶装置450、および通信装置490のそれぞれに関する説明は、管理装置600のハードウェア構成例において記載したとおりであり、それらの説明を省略する。
 [2.動作]
 次に、作業車両100による自動走行の動作の例を説明する。本実施形態における作業車両100は、圃場内および圃場外の両方で自動で走行することができる。圃場内において、作業車両100は、予め設定された目標経路に沿って走行しながら、インプルメント300を駆動して所定の農作業を行う。作業車両100は、圃場内を走行中、障害物センサ130によって障害物が検出された場合、走行を停止し、ブザー220からの警告音の発出、および端末装置400への警告信号の送信などの動作を行う。圃場内において、作業車両100の測位は、主にGNSSユニット110から出力されるデータに基づいて行われる。一方、圃場外において、作業車両100は、圃場外の農道または一般道に設定された目標経路に沿って自動で走行する。作業車両100は、圃場外を走行中、カメラ120またはLiDARセンサ140によって取得されたデータに基づいて障害物の検出を行いながら走行する。圃場外において、作業車両100は、障害物が検出されると、障害物を回避するか、その場で停止する。圃場外においては、GNSSユニット110から出力される測位データに加え、LiDARセンサ140またはカメラ120から出力されるデータに基づいて作業車両100の位置が推定される。
 以下、作業車両100が圃場内を自動走行する場合の動作の例を説明する。
 図14は、圃場内を目標経路に沿って自動で走行する作業車両100の例を模式的に示す図である。この例において、圃場は、作業車両100がインプルメント300を用いて作業を行う作業領域72と、圃場の外周縁付近に位置する枕地74とを含む。地図上で圃場のどの領域が作業領域72または枕地74に該当するかは、ユーザによって事前に設定され得る。この例における目標経路は、並列する複数の主経路P1と、複数の主経路P1を接続する複数の旋回経路P2とを含む。主経路P1は作業領域72内に位置し、旋回経路P2は枕地74内に位置する。図14に示す各主経路P1は直線状の経路であるが、各主経路P1は曲線状の部分を含んでいてもよい。図14における破線は、インプルメント300の作業幅を表している。作業幅は、予め設定され、記憶装置170に記録される。作業幅は、ユーザが操作端末200または端末装置400を操作することによって設定され、記録され得る。あるいは、作業幅は、インプルメント300を作業車両100に接続したときに自動で認識され、記録されてもよい。複数の主経路P1の間隔は、作業幅に合わせて設定され得る。目標経路は、自動運転が開始される前に、ユーザの操作に基づいて作成され得る。目標経路は、例えば圃場内の作業領域72の全体をカバーするように作成され得る。作業車両100は、図14に示すような目標経路に沿って、作業の開始地点から作業の終了地点まで、往復を繰り返しながら自動で走行する。なお、図14に示す目標経路は一例に過ぎず、目標経路の定め方は任意である。
 次に、制御装置180による自動運転時の制御の例を説明する。
 図15は、制御装置180によって実行される自動運転時の操舵制御の動作の例を示すフローチャートである。制御装置180は、作業車両100の走行中、図15に示すステップS121からS125の動作を実行することにより、自動操舵を行う。速度に関しては、例えば予め設定された速度に維持されてもよいし、状況に応じて調整されてもよい。制御装置180は、作業車両100の走行中、GNSSユニット110によって生成された作業車両100の位置を示すデータを取得する(ステップS121)。次に、制御装置180は、作業車両100の位置と、目標経路との偏差を算出する(ステップS122)。偏差は、その時点における作業車両100の位置と、目標経路との距離を表す。制御装置180は、算出した位置の偏差が予め設定された閾値を超えるか否かを判定する(ステップS123)。偏差が閾値を超える場合、制御装置180は、偏差が小さくなるように、駆動装置240に含まれる操舵装置の制御パラメータを変更することにより、操舵角を変更する。ステップS123において偏差が閾値を超えない場合、ステップS124の動作は省略される。続くステップS125において、制御装置180は、動作終了の指令を受けたか否かを判定する。動作終了の指令は、例えばユーザが遠隔操作で自動運転の停止を指示したり、作業車両100が目的地に到達したりした場合に出され得る。動作終了の指令が出されていない場合、ステップS121に戻り、新たに計測された作業車両100の位置に基づいて、同様の動作を実行する。制御装置180は、動作終了の指令が出されるまで、ステップS121からS125の動作を繰り返す。上記の動作は、制御装置180におけるECU182、184によって実行される。
 図15に示す例では、制御装置180は、GNSSユニット110によって特定された作業車両100の位置と目標経路との偏差のみに基づいて駆動装置240を制御するが、方位の偏差もさらに考慮して制御してもよい。例えば、制御装置180は、GNSSユニット110によって特定された作業車両100の向きと、目標経路の方向との角度差である方位偏差が予め設定された閾値を超える場合に、その偏差に応じて駆動装置240の操舵装置の制御パラメータ(例えば操舵角)を変更してもよい。
 以下、図16Aから図16Dを参照しながら、制御装置180による操舵制御の例をより具体的に説明する。
 図16Aは、目標経路Pに沿って走行する作業車両100の例を示す図である。図16Bは、目標経路Pから右にシフトした位置にある作業車両100の例を示す図である。図16Cは、目標経路Pから左にシフトした位置にある作業車両100の例を示す図である。図16Dは、目標経路Pに対して傾斜した方向を向いている作業車両100の例を示す図である。これらの図において、GNSSユニット110によって計測された作業車両100の位置および向きを示すポーズがr(x,y,θ)と表現されている。(x,y)は、地球に固定された2次元座標系であるXY座標系における作業車両100の基準点の位置を表す座標である。図16Aから図16Dに示す例において、作業車両100の基準点はキャビン上のGNSSアンテナが設置された位置にあるが、基準点の位置は任意である。θは、作業車両100の計測された向きを表す角度である。図示されている例においては、目標経路PがY軸に平行であるが、一般的には目標経路PはY軸に平行であるとは限らない。
 図16Aに示すように、作業車両100の位置および向きが目標経路Pから外れていない場合には、制御装置180は、作業車両100の操舵角および速度を変更せずに維持する。
 図16Bに示すように、作業車両100の位置が目標経路Pから右側にシフトしている場合には、制御装置180は、作業車両100の走行方向が左寄りに傾き、経路Pに近付くように操舵角を変更する。このとき、操舵角に加えて速度も併せて変更してもよい。操舵角の大きさは、例えば位置偏差Δxの大きさに応じて調整され得る。
 図16Cに示すように、作業車両100の位置が目標経路Pから左側にシフトしている場合には、制御装置180は、作業車両100の走行方向が右寄りに傾き、経路Pに近付くように操舵角を変更する。この場合も、操舵角に加えて速度も併せて変更してもよい。操舵角の変化量は、例えば位置偏差Δxの大きさに応じて調整され得る。
 図16Dに示すように、作業車両100の位置は目標経路Pから大きく外れていないが、向きが目標経路Pの方向とは異なる場合は、制御装置180は、方位偏差Δθが小さくなるように操舵角を変更する。この場合も、操舵角に加えて速度も併せて変更してもよい。操舵角の大きさは、例えば位置偏差Δxおよび方位偏差Δθのそれぞれの大きさに応じて調整され得る。例えば、位置偏差Δxの絶対値が小さいほど方位偏差Δθに応じた操舵角の変化量を大きくしてもよい。位置偏差Δxの絶対値が大きい場合には、経路Pに戻るために操舵角を大きく変化させることになるため、必然的に方位偏差Δθの絶対値が大きくなる。逆に、位置偏差Δxの絶対値が小さい場合には、方位偏差Δθをゼロに近づけることが必要である。このため、操舵角を決定するための方位偏差Δθの重み(すなわち制御ゲイン)を相対的に大きくすることが妥当である。
 作業車両100の操舵制御および速度制御には、PID制御またはMPC制御(モデル予測制御)などの制御技術が適用され得る。これらの制御技術を適用することにより、作業車両100を目標経路Pに近付ける制御を滑らかにすることができる。
 なお、走行中に一つ以上の障害物センサ130によって障害物が検出された場合には、制御装置180は、作業車両100を停止させる。このとき、ブザー220に警告音を発出させたり、警告信号を端末装置400に送信してもよい。障害物の回避が可能な場合、制御装置180は、障害物を回避するように駆動装置240を制御してもよい。
 本実施形態における作業車両100は、圃場内だけでなく、圃場外でも自動走行が可能である。圃場外において、制御装置180は、前述した方法で生成された目標経路(自動走行経路)に沿って操舵制御および速度制御を行う。制御装置180は、カメラ120またはLiDARセンサ140から出力されたデータに基づいて、作業車両100から比較的離れた位置に存在する物体(例えば、他の車両または歩行者等)を検出することができる。制御装置180は、検出された物体を回避するように局所的経路を生成し、局所的経路に沿って速度制御および操舵制御を行うことにより、圃場外の道における自動走行を実現できる。
 このように、本実施形態における作業車両100は、無人で圃場内および圃場外を自動で走行できる。記憶装置170には、複数の圃場およびその周辺の道を含む領域の環境地図および目標経路が記録される。作業車両100が道路上を走行する場合、作業車両100は、インプルメント300を上昇させた状態で、カメラ120およびLiDARセンサ140などのセンシング装置を用いて周囲をセンシングしながら、目標経路に沿って走行する。走行中、制御装置180は、局所的経路を逐次生成し、局所的経路に沿って作業車両100を走行させる。これにより、障害物を回避しながら自動走行することができる。走行中に、状況に応じて目標経路が変更されてもよい。
 以上のように、本実施形態によれば、作業車両100が手動運転を行ったときの走行経路の実績を、自動運転の経路生成に利用することができる。作業車両100が対向車を回避する動作を行ったときの走行経路の実績は除外して自動運転の経路が生成される。これにより、回避動作に伴う不適切な経路が自動走行経路に含まれることを防止し、適切な自動走行経路を生成することができる。そのようにして生成された自動走行経路に従って、作業車両100は、例えば圃場の周辺の道路上での自動走行を適切に実行することができる。
 上記の各実施形態における自動走行経路の生成あるいは自動運転制御を行うシステムは、それらの機能を有しない農業機械に後から取り付けることもできる。そのようなシステムは、農業機械とは独立して製造および販売され得る。そのようなシステムで使用されるコンピュータプログラムも、農業機械とは独立して製造および販売され得る。コンピュータプログラムは、例えばコンピュータが読み取り可能な非一時的な記憶媒体に格納されて提供され得る。コンピュータプログラムは、電気通信回線(例えばインターネット)を介したダウンロードによっても提供され得る。
 以上のように、本開示は、以下の項目に記載の経路生成システムおよび経路生成方法を含む。
 [項目1]
 農業機械の自動走行のための経路生成システムであって、
 前記農業機械の自動走行経路を生成する処理装置を備え、
 前記処理装置は、
 前記農業機械が自動走行を行う予定の経路を、走行軌跡を記録しながら手動で走行する車両から、前記走行軌跡を示すデータを取得し、
 前記走行軌跡から、対向車を回避するために行われた回避動作に関連する軌跡を除去し、
 前記回避動作に関連する軌跡が除去された前記走行軌跡に基づいて、前記農業機械の自動走行経路を生成する、
 経路生成システム。
 [項目2]
 前記処理装置は、
 前記車両に搭載されたカメラによって前記車両の走行中に撮影された動画像のデータを取得し、
 前記動画像に基づいて前記回避動作を検出し、前記走行軌跡から前記回避動作に関連する軌跡を決定して除去する、
 項目1に記載の経路生成システム。
 [項目3]
 前記処理装置は、
 前記動画像から前記車両に接近する対向車を認識し、
 前記走行軌跡のうち、前記対向車を認識してから前記対向車が認識されなくなるまでの期間の少なくとも一部に対応する軌跡を、前記回避動作に関連する軌跡として除去する、
 項目2に記載の経路生成システム。
 [項目4]
 前記処理装置は、前記走行軌跡が示す前記車両の位置の時間変化に基づいて前記回避動作を検出し、前記走行軌跡から前記回避動作に関連する軌跡を決定して除去する、項目1に記載の経路生成システム。
 [項目5]
 前記処理装置は、前記車両が対向車を回避するために行った後進、方向転換、加速、および減速の少なくとも1つの動作を前記回避動作として検出する、項目1から4のいずれかに記載の経路生成システム。
 [項目6]
 前記処理装置は、前記車両に搭載されたGNSS受信機から逐次出力された位置データを前記走行軌跡を示すデータとして取得する、項目1から5のいずれかに記載の経路生成システム。
 [項目7]
 前記処理装置は、各々が位置および速度の情報を含む複数のウェイポイントによって規定される経路を前記自動走行経路として生成する、項目1から6のいずれかに記載の経路生成システム。
 [項目8]
 前記処理装置は、前記走行軌跡から除去した部分を補完する処理を行うことによって前記自動走行経路を生成する、項目1から7のいずれかに記載の経路生成システム。
 [項目9]
 前記処理装置は、前記走行軌跡から除去した部分を直線的な補完経路で補完することによって前記自動走行経路を生成する、項目8に記載の経路生成システム。
 [項目10]
 前記処理装置は、前記回避動作に関連する軌跡が除去された前記走行軌跡を表示装置に表示させ、
 ユーザによって行われた補完経路を決定する操作に応答して、前記走行軌跡から除去した部分を補完する、
 項目8に記載の経路生成システム。
 [項目11]
 前記処理装置は、前記自動走行経路を生成する処理を、前記農業機械が圃場外で自動走行を行うための経路を生成する場合に実行する、項目1から10のいずれかに記載の経路生成システム。
 [項目12]
 農業機械の自動走行のための経路生成方法であって、
 前記農業機械が自動走行を行う予定の経路を、走行軌跡を記録しながら手動で走行する車両から、前記走行軌跡を示すデータを取得することと、
 前記走行軌跡から、前記対向車を回避するために行われた回避動作に関連する軌跡を除去することとと、
 前記回避動作に関連する軌跡が除去された前記走行軌跡に基づいて、前記農業機械の自動走行経路を生成することと、
を含む経路生成方法。
 本開示の技術は、例えばトラクタ、収穫機、田植機、乗用管理機、野菜移植機、草刈機、播種機、施肥機、または農業用ロボットなどの農業機械のための自動走行経路を生成するシステムに適用することができる。
 10・・・経路生成システム、11・・・入力インターフェース、12・・・出力インターフェース、15・・・処理装置、16・・・記憶装置、20・・・車両、21・・・GNSS受信機、22・・・カメラ、23・・・記憶装置、30・・・農業機械、31・・・自己位置推定装置、32・・・走行制御装置、33・・・記憶装置、40・・・入力装置、45・・・表示装置、50・・・GNSS衛星、60・・・基準局、70・・・圃場、72・・・作業領域、74・・・枕地、75・・・農道、78・・・保管庫、80・・・ネットワーク、90・・・対向車、91、92・・・経路、93・・・回避経路、94・・・補完経路、100・・・作業車両、101・・・車体、102・・・原動機(エンジン)、103・・・変速装置(トランスミッション)、104・・・車輪、105・・・キャビン、106・・・操舵装置、107・・・運転席、108・・・連結装置、110・・・GNSSユニット、111・・・GNSS受信機、112・・・RTK受信機、115・・・慣性計測装置(IMU)、116・・・処理回路、120・・・カメラ、130・・・障害物センサ、140・・・LiDARセンサ、150・・・センサ群、152・・・ステアリングホイールセンサ、154・・・切れ角センサ、156・・・車軸センサ、160・・・制御システム、170・・・記憶装置、180・・・制御装置、181~185・・・ECU、190・・・通信装置、200・・・操作端末、210・・・操作スイッチ群、220・・・ブザー、240・・・駆動装置、300・・・インプルメント、340・・・駆動装置、380・・・制御装置、390・・・通信装置、400・・・端末装置、420・・・入力装置、430・・・表示装置、450・・・記憶装置、460・・・プロセッサ、470・・・ROM、480・・・RAM、490・・・通信装置、600・・・管理コンピュータ、660・・・プロセッサ、670・・・記憶装置、670・・・ROM、680・・・RAM、690・・・通信装置

Claims (12)

  1.  農業機械の自動走行のための経路生成システムであって、
     前記農業機械の自動走行経路を生成する処理装置を備え、
     前記処理装置は、
     前記農業機械が自動走行を行う予定の経路を、走行軌跡を記録しながら手動で走行する車両から、前記走行軌跡を示すデータを取得し、
     前記走行軌跡から、対向車を回避するために行われた回避動作に関連する軌跡を除去し、
     前記回避動作に関連する軌跡が除去された前記走行軌跡に基づいて、前記農業機械の自動走行経路を生成する、
     経路生成システム。
  2.  前記処理装置は、
     前記車両に搭載されたカメラによって前記車両の走行中に撮影された動画像のデータを取得し、
     前記動画像に基づいて前記回避動作を検出し、前記走行軌跡から前記回避動作に関連する軌跡を決定して除去する、
     請求項1に記載の経路生成システム。
  3.  前記処理装置は、
     前記動画像から前記車両に接近する対向車を認識し、
     前記走行軌跡のうち、前記対向車を認識してから前記対向車が認識されなくなるまでの期間の少なくとも一部に対応する軌跡を、前記回避動作に関連する軌跡として除去する、
     請求項2に記載の経路生成システム。
  4.  前記処理装置は、前記走行軌跡が示す前記車両の位置の時間変化に基づいて前記回避動作を検出し、前記走行軌跡から前記回避動作に関連する軌跡を決定して除去する、請求項1に記載の経路生成システム。
  5.  前記処理装置は、前記車両が対向車を回避するために行った後進、方向転換、加速、および減速の少なくとも1つの動作を前記回避動作として検出する、請求項1から4のいずれかに記載の経路生成システム。
  6.  前記処理装置は、前記車両に搭載されたGNSS受信機から逐次出力された位置データを前記走行軌跡を示すデータとして取得する、請求項1から4のいずれかに記載の経路生成システム。
  7.  前記処理装置は、各々が位置および速度の情報を含む複数のウェイポイントによって規定される経路を前記自動走行経路として生成する、請求項1から4のいずれかに記載の経路生成システム。
  8.  前記処理装置は、前記走行軌跡から除去した部分を補完する処理を行うことによって前記自動走行経路を生成する、請求項1から4のいずれかに記載の経路生成システム。
  9.  前記処理装置は、前記走行軌跡から除去した部分を直線的な補完経路で補完することによって前記自動走行経路を生成する、請求項8に記載の経路生成システム。
  10.  前記処理装置は、前記回避動作に関連する軌跡が除去された前記走行軌跡を表示装置に表示させ、
     ユーザによって行われた補完経路を決定する操作に応答して、前記走行軌跡から除去した部分を補完する、
     請求項8に記載の経路生成システム。
  11.  前記処理装置は、前記自動走行経路を生成する処理を、前記農業機械が圃場外で自動走行を行うための経路を生成する場合に実行する、請求項1から4のいずれかに記載の経路生成システム。
  12.  農業機械の自動走行のための経路生成方法であって、
     前記農業機械が自動走行を行う予定の経路を、走行軌跡を記録しながら手動で走行する車両から、前記走行軌跡を示すデータを取得することと、
     前記走行軌跡から、前記対向車を回避するために行われた回避動作に関連する軌跡を除去することとと、
     前記回避動作に関連する軌跡が除去された前記走行軌跡に基づいて、前記農業機械の自動走行経路を生成することと、
    を含む経路生成方法。
     
     
PCT/JP2023/019921 2022-06-08 2023-05-29 農業機械の自動走行のための経路生成システムおよび経路生成方法 WO2023238724A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-093143 2022-06-08
JP2022093143 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023238724A1 true WO2023238724A1 (ja) 2023-12-14

Family

ID=89118252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019921 WO2023238724A1 (ja) 2022-06-08 2023-05-29 農業機械の自動走行のための経路生成システムおよび経路生成方法

Country Status (1)

Country Link
WO (1) WO2023238724A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055673A (ja) * 2015-09-14 2017-03-23 株式会社クボタ 作業車支援システム
JP2021073602A (ja) * 2021-01-28 2021-05-13 ヤンマーパワーテクノロジー株式会社 自動走行システム及び状況報知装置
JP2022032803A (ja) * 2020-08-14 2022-02-25 井関農機株式会社 作業車両の制御システム
JP2023079152A (ja) * 2021-11-26 2023-06-07 ヤンマーホールディングス株式会社 経路生成方法、経路生成システム、及び経路生成プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055673A (ja) * 2015-09-14 2017-03-23 株式会社クボタ 作業車支援システム
JP2022032803A (ja) * 2020-08-14 2022-02-25 井関農機株式会社 作業車両の制御システム
JP2021073602A (ja) * 2021-01-28 2021-05-13 ヤンマーパワーテクノロジー株式会社 自動走行システム及び状況報知装置
JP2023079152A (ja) * 2021-11-26 2023-06-07 ヤンマーホールディングス株式会社 経路生成方法、経路生成システム、及び経路生成プログラム

Similar Documents

Publication Publication Date Title
US20240341216A1 (en) Travel control system for agricultural machine capable of performing remotely-manipulated traveling
US20240188475A1 (en) Agricultural assistance system and agricultural assistance method
US20240172577A1 (en) Control system for agricultural machine and agriculture management system
WO2023238724A1 (ja) 農業機械の自動走行のための経路生成システムおよび経路生成方法
JP7433267B2 (ja) 作業車両、および作業車両の制御システム
WO2024004463A1 (ja) 走行制御システム、走行制御方法およびコンピュータプログラム
WO2023238827A1 (ja) 農業管理システム
WO2023119996A1 (ja) 障害物検出システム、農業機械および障害物検出方法
WO2023127556A1 (ja) 農業機械、農業機械に用いるセンシングシステムおよびセンシング方法
WO2023127557A1 (ja) 農業機械、農業機械に用いるセンシングシステムおよびセンシング方法
WO2024004486A1 (ja) 作業車両、制御方法および制御システム
WO2023218688A1 (ja) 地図作成システムおよび経路計画システム
WO2023243369A1 (ja) 映像表示システムおよび作業車両
WO2023248909A1 (ja) 走行制御システム、農業機械および走行制御方法
US20240317238A1 (en) Agricultural road identification system, control system, and agricultural machine
JP7584654B2 (ja) 農業機械のための管理システム
JP2023183840A (ja) 農業機械の自動走行のための経路生成システムおよび経路生成方法
WO2023234255A1 (ja) センシングシステム、農業機械、およびセンシング装置
US20240341215A1 (en) Agricultural machine, sensing system, sensing method, remote operation system, and control method
US20240138282A1 (en) Management system for agricultural machines
WO2023119986A1 (ja) 農業機械、および、農業機械に用いるジェスチャ認識システム
WO2024004881A1 (ja) 制御システム、制御方法および運搬車
US20240345603A1 (en) Travel control system for agricultural machine capable of performing remotely-manipulated traveling
WO2023112515A1 (ja) 地図生成システムおよび地図生成方法
JP7437340B2 (ja) 作業車両、および作業車両の制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819704

Country of ref document: EP

Kind code of ref document: A1