[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022124801A1 - 리튬 이차 전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 양극 - Google Patents

리튬 이차 전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 양극 Download PDF

Info

Publication number
WO2022124801A1
WO2022124801A1 PCT/KR2021/018559 KR2021018559W WO2022124801A1 WO 2022124801 A1 WO2022124801 A1 WO 2022124801A1 KR 2021018559 W KR2021018559 W KR 2021018559W WO 2022124801 A1 WO2022124801 A1 WO 2022124801A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
particles
precursor
Prior art date
Application number
PCT/KR2021/018559
Other languages
English (en)
French (fr)
Inventor
정해정
김지혜
유태구
정왕모
조치호
허종욱
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2022570713A priority Critical patent/JP7532555B2/ja
Priority to CN202180030790.6A priority patent/CN115461893A/zh
Priority to EP21903847.8A priority patent/EP4156339A1/en
Priority to US18/021,425 priority patent/US20230303405A1/en
Publication of WO2022124801A1 publication Critical patent/WO2022124801A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a precursor for preparing secondary particles for a positive electrode active material of a new concept, a positive electrode active material, and a lithium secondary battery including the same.
  • lithium secondary battery has been in the spotlight as a driving power source for a portable device because it is lightweight and has a high energy density. Accordingly, research and development efforts for improving the performance of lithium secondary batteries are being actively conducted.
  • an organic electrolyte or polymer electrolyte is charged between a positive electrode and a negative electrode made of an active material capable of intercalation and deintercalation of lithium ions, and lithium ions are intercalated/deintercalated from the positive electrode and the negative electrode. Electric energy is produced by a reduction reaction with
  • lithium cobalt oxide (LiCoO 2 ) lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMnO 2 or LiMn 2 O 4 , etc.), lithium iron phosphate compound (LiFePO 4 ), etc. were used. .
  • lithium cobalt oxide (LiCoO 2 ) has the advantage of high operating voltage and excellent capacity characteristics, and is widely used, and is applied as a high-voltage positive electrode active material.
  • there is a limit to mass use as a power source in fields such as electric vehicles due to an increase in the price of cobalt (Co) and unstable supply, and the need to develop a positive electrode active material that can replace it has emerged.
  • 'NCM-based lithium composite transition metal oxide' nickel-cobalt-manganese-based lithium composite transition metal oxide in which a part of cobalt (Co) is substituted with nickel (Ni) and manganese (Mn) has been developed.
  • the conventionally developed NCM-based lithium composite transition metal oxide was in the form of secondary particles in which primary micro particles were aggregated, and had a large specific surface area and low particle strength.
  • an electrode is manufactured from a cathode active material including secondary particles in which primary fine particles are aggregated and then rolled, particle breakage is severe, resulting in a large amount of gas generated during cell operation and poor stability.
  • an NCM-based lithium composite transition metal oxide with a high nickel content in which the content of nickel (Ni) is increased to secure a high capacity, structural and chemical stability are further reduced, and it is more difficult to secure thermal stability. have.
  • the problem to be solved by the present invention is, in order to solve the above problems, secondary particles having the same or similar level of average particle diameter (D50) as in the prior art, but unlike the prior art, by including the primary large particles, a positive electrode active material It is to provide a precursor capable of providing a cathode active material capable of minimizing particle breakage when rolling.
  • D50 average particle diameter
  • One aspect of the present invention provides a secondary particle precursor according to the following embodiments.
  • the secondary particle precursor has a particle diameter (D50) of 6 ⁇ 2 ⁇ m
  • the particle diameter (D50) of the core part is 1 to 5 ⁇ m
  • the porosity of the core portion may be less than 2.0 g/cc based on the tap density. More specifically, the porosity of the core portion may be 1.9 g/cc or less based on the tap density.
  • the core portion may have a particle diameter (D50) of 1 ⁇ m to 3 ⁇ m.
  • the porosity of the shell part may be 2.0 g/cc or more based on the tap density, and more specifically, the porosity of the shell part may be 2.1 g/cc or more based on the tap density.
  • the secondary particle precursor is LiaNi 1-xy Co x M1 y M2 w (OH) 2 (1.0 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2, 0 ⁇ w ⁇ 0.1, 0 ⁇ x+y ⁇ 0.2, M1 is at least one selected from the group consisting of Mn and Al, M2 is at least one selected from the group consisting of Ba, Ca, Zr, Ti, Mg, Ta, Nb and Mo) It may be a lithium transition metal hydroxide.
  • One aspect of the present invention provides a cathode active material for a lithium secondary battery prepared as an oxide by calcining the above-described precursor for a cathode active material.
  • the oxide may be secondary particles having a particle diameter (D50) of 3 to 5 ⁇ m in which primary macro particles having a particle diameter (D50) of 1 ⁇ m or more are aggregated.
  • the average crystal size of the primary large particles may be 200 nm or more.
  • a ratio of the average particle diameter (D50) of the secondary particles to the average particle diameter (D50) of the primary large particles may be 2 to 4 times.
  • the oxide is LiaNi 1-xy Co x M1 y M2 w O 2 (1.0 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2, 0 ⁇ w ⁇ 0.1, 0 ⁇ x+y ⁇ 0.2, M1 is At least one selected from the group consisting of Mn and Al, M2 is at least one selected from the group consisting of Ba, Ca, Zr, Ti, Mg, Ta, Nb and Mo) a nickel-based lithium transition metal oxide can
  • Another aspect of the present invention provides a lithium secondary battery including the above-described positive active material.
  • Another aspect of the present invention provides the following manufacturing method.
  • step (S2) a second stirring step of the resultant of step (S1); includes,
  • the first stirring speed of the first stirring step is slower than the second stirring speed of the second stirring step
  • the concentration of the nitrogen-containing complexing agent in the first stirring step may be 5000 ppm or more, and the concentration of the nitrogen-containing complexing agent in the second stirring step may be 4000 ppm or less.
  • the concentration of the nitrogen-containing complexing agent in the first stirring step is 5000 ppm or more
  • the concentration of the nitrogen-containing complexing agent in the second stirring step may be 5000 ppm or less.
  • the first stirring rate may be 800 rpm or less, and the second stirring rate may be 1000 ppm or more.
  • a cathode active material precursor including secondary particles having improved resistance by growing a crystal size at the same time as the average particle diameter (D50) of the primary large particles.
  • a precursor capable of providing a nickel-based positive electrode active material having an increased rolling density of the positive electrode active material and excellent long life and gas performance.
  • 1 is an SEM image of a positive active material according to a comparative example of the present invention.
  • FIG. 3 is a schematic view schematically showing positive electrode active material particles when the conventional secondary particle precursor is first fired.
  • FIG. 4 is a schematic view schematically showing positive electrode active material particles when the precursor for secondary particles according to an embodiment of the present invention is first fired.
  • the crystal size of the crystal grains may be quantitatively analyzed using X-ray diffraction analysis (XRD) by Cu K ⁇ X-rays (Xr ⁇ ).
  • XRD X-ray diffraction analysis
  • Xr ⁇ Cu K ⁇ X-rays
  • the average crystal size of the crystal grains can be quantitatively analyzed by putting the prepared particles in a holder and analyzing the diffraction grating that irradiates X-rays to the particles.
  • D50 may be defined as a particle size based on 50% of a particle size distribution, and may be measured using a laser diffraction method.
  • the particles of the positive active material are dispersed in a dispersion medium, and then introduced into a commercially available laser diffraction particle size measuring device (eg, Microtrac MT 3000) to about 28 kHz
  • a commercially available laser diffraction particle size measuring device eg, Microtrac MT 3000
  • the term 'primary particles' refers to particles having no apparent grain boundaries when observed in a field of view of 5000 times to 20000 times using a scanning electron microscope.
  • 'secondary particles' are particles formed by agglomeration of the primary particles.
  • 'single particle' is a particle that exists independently of the secondary particles and does not have a grain boundary in appearance, for example, a particle having a particle diameter of 0.5 ⁇ m or more.
  • 'particle' when 'particle' is described, it may mean that any one or all of single particles, secondary particles, and primary particles are included.
  • it is to provide a precursor capable of providing a positive electrode active material in the form of secondary particles different from the existing ones.
  • the present inventors have studied to solve the above-described problems, and as a result, by varying the density inside the precursor, the particles inside the positive electrode active material can grow evenly. As can be seen from FIG. 2 , when secondary particles are prepared using the precursor according to an aspect of the present invention, a positive active material having uniform grain growth may be provided.
  • the secondary particle precursor for a positive electrode active material according to an aspect of the present invention
  • the secondary particle precursor has a particle diameter (D50) of 6 ⁇ 2 ⁇ m
  • the particle diameter (D50) of the core part is 1 to 5 ⁇ m
  • the core portion has a higher porosity than the shell portion.
  • the nickel-based lithium transition metal oxide is a secondary particle.
  • These secondary particles may be in the form of agglomerated primary particles.
  • the high-density nickel-based lithium transition metal hydroxide secondary particles prepared by the co-precipitation method are used as a precursor, and when this precursor is mixed with a lithium precursor and calcined at a temperature of less than 960 ° C., nickel-based lithium transition Metal oxide secondary particles can be obtained.
  • FIG. 3 This series of processes is shown in FIG. 3 .
  • the existing dense precursor is first fired, the average particle diameter of the primary particles on the surface increases due to grain growth from the secondary particle surface, but the average particle diameter of the inner primary particles grows relatively small.
  • a positive electrode active material containing such conventional secondary particles is applied on a current collector and then rolled, the particles themselves are broken and the specific surface area is widened. If the specific surface area is increased, there is a problem that the resistance is decreased due to the formation of rock salt on the surface.
  • a porous precursor compared to the existing precursor It can be synthesized at a lower sintering temperature compared to the same nickel content by using , does not have the form of secondary particles anymore, and a single-particulated nickel-based lithium transition metal oxide can be obtained.
  • the secondary particle precursor is LiaNi 1-xy Co x M1 y M2 w (OH) 2 (1.0 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2, 0 ⁇ w ⁇ 0.1, 0 ⁇ x+y ⁇ 0.2, M1 is at least one selected from the group consisting of Mn and Al, M2 is at least one selected from the group consisting of Ba, Ca, Zr, Ti, Mg, Ta, Nb and Mo) It may be a lithium transition metal hydroxide.
  • the porosity of the core portion is relatively higher than that of the shell portion. Accordingly, primary large particles having a large particle size may be grown without increasing the firing temperature, whereas secondary particles may be grown relatively less than before. It is also possible to provide secondary particles having an even grain growth. As a result, by enabling uniform particle growth to the inside, excellent electrochemical properties can be exhibited, particle breakage can be minimized, and lifespan and gas performance can be improved.
  • the precursor for the secondary particles will have a particle diameter of 6 ⁇ 2 ⁇ m. That is, the precursor for secondary particles according to an aspect of the present invention may have the same or similar average particle diameter (D50) as before.
  • the particle diameter (D50) of the core portion is 1 to 5 ⁇ m. More specifically, the core portion may have a particle diameter (D50) of 1 ⁇ m to 3 ⁇ m.
  • the shell portion means the remaining portion excluding the core portion in the precursor for single particles. It is defined as the shell portion from the boundary portion where the porosity decreases from the core portion.
  • the thickness of the shell portion means the thickness of the remaining portion obtained by subtracting the particle diameter 50 of the core portion from the particle diameter D50 of the entire precursor.
  • the thickness of the shell portion may be 0.1 to 5 ⁇ m, specifically 0.5 to 4 ⁇ m, and more specifically 1 to 3 ⁇ m.
  • the core portion has a higher porosity than the shell portion.
  • the porosity may be classified by the tap density, in a specific embodiment of the present invention, the porosity of the core portion may be less than 2.0 g / cc based on the tap density. More specifically, it may be 1.9 g/cc or less, 1.8 g/cc or less, 1.7 g/c or 1.5 g/cc or less. In a specific embodiment of the present invention, the porosity of the shell portion may be 2.0 g/cc or more based on the tap density. More specifically, it may be 2.0 g/cc or more, 2.1 g/cc or more, 2.2 g/cc or more, or 2.5 g/cc or more. As described above, by using precursors having different tap densities, primary large particles having a large particle size can be grown without raising the firing temperature, while secondary particles can be grown relatively less than before. It is also possible to provide secondary particles having an even grain growth.
  • One aspect of the present invention provides a cathode active material for a lithium secondary battery prepared as an oxide by calcining the above-described precursor for a cathode active material.
  • the secondary particles constituting the oxide according to an aspect of the present invention have the same or similar average particle diameter (D50) as before, but have a large average diameter (D50) of the primary particles.
  • D50 average particle diameter
  • the secondary particle form in which primary large particles with increased primary particles are aggregated is provided. do.
  • the secondary particles may be aggregates of 1 to 10 primary large particles. More specifically, the secondary particles may be one or more, two or more, three or more, or four or more aggregates of the primary large particles within the numerical range, and within the numerical range, the primary particles may be agglomerated. The large particles may be agglomerated into 10 or less, 9 or less, 8 or less, or 7 or less.
  • 'primary large particles' may have an average diameter (D50) of 1 ⁇ m or more.
  • the average particle diameter of the primary large particles may be 1 ⁇ m or more, 2 ⁇ m or more, 2.5 ⁇ m or more, 3 ⁇ m or more, or 3.5 ⁇ m or more, 5 ⁇ m or less, 4.5 ⁇ m or less, or 4 ⁇ m or less.
  • the average particle diameter of the primary large particles is less than 1 ⁇ m, there may be a problem in that particles are broken during rolling because they correspond to conventional secondary particles.
  • the 'primary large particle' may have an average particle diameter (D50)/average crystal size ratio of 10 or more. That is, compared to the primary micro particles constituting the conventional secondary particles, the primary large particles may have an average particle diameter and an average crystal size of the primary particles to grow at the same time.
  • the primary macroparticle in the present invention may be a particle having a large average crystal size as well as an average particle diameter and no apparent grain boundaries.
  • the average crystal size of the primary large particles may be quantitatively analyzed using X-ray diffraction analysis (XRD) by Cu K ⁇ X-rays.
  • XRD X-ray diffraction analysis
  • the average crystal size of the primary large particles can be quantitatively analyzed by putting the prepared particles in a holder and analyzing the diffraction grating that irradiates the particles with X-rays.
  • the ratio of the average particle diameter (D50)/average crystal size (crystal size) may be 4 or more, 7 or more, or 10 or more, and may be 30 or less, or 20 or less.
  • the average crystal size of the primary large particles may be 200 nm or more, or 250 nm or more, and may be 450 nm or less, or 400 nm or less.
  • the secondary particles according to one aspect of the present invention have the same or similar average particle diameter (D50) as before, but have a large average diameter (D50) of the primary particles.
  • D50 average particle diameter
  • the conventional positive electrode active material in which primary particles with small average particle diameters gather to form secondary particles, it provides a secondary particle form in which primary large particles with increased primary particle size are aggregated. do.
  • the secondary particles according to one aspect of the present invention may have an average diameter (D50) of 3 ⁇ m to 5 ⁇ m. More specifically, it may be 3 ⁇ m or more, 3.5 ⁇ m or more, 4 ⁇ m or more, 4.5 ⁇ m or more, and 5 ⁇ m or less, 4.5 ⁇ m or less, 4 ⁇ m or less, or 3.5 ⁇ m or less.
  • D50 average diameter
  • the size of the particles and the average crystal size within the particles increase as the firing temperature increases.
  • the primary large particles having a large particle size can be grown without raising the firing temperature as high as in the prior art, whereas the secondary particles can grow relatively less compared to the conventional ones. .
  • the secondary particles according to one aspect of the present invention are primary macro particles having the same or similar average diameter (D50) as the conventional secondary particles, and having larger average diameter and average crystal size than the conventional primary fine particles. consist of.
  • the ratio of the average particle diameter (D50) of the secondary particles to the average particle diameter (D50) of the primary large particles may be 2 to 4 times.
  • the secondary particle may be a nickel-based lithium transition metal oxide.
  • the nickel-based lithium transition metal oxide is LiaNi 1-xy Co x M1 y M2 w O 2 (1.0 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2, 0 ⁇ w ⁇ 0.1, 0 ⁇ x+y ⁇ 0.2
  • M1 is at least one selected from the group consisting of Mn and Al
  • M2 is at least one selected from the group consisting of Ba, Ca, Zr, Ti, Mg, Ta, Nb and Mo
  • M1 is at least one selected from the group consisting of Mn and Al
  • M2 is at least one selected from the group consisting of Ba, Ca, Zr, Ti, Mg, Ta, Nb and Mo
  • a, x, y, and w represent the molar ratio of each element in the nickel-based lithium transition metal oxide.
  • the doped metals M1 and M2 in the crystal lattice of the secondary particles may be located only on a part of the surface of the particle according to the position preference of the element M1 and/or the element M2, and the concentration decreases from the particle surface to the particle center It may be positioned with a gradient, or it may be uniformly present throughout the particle.
  • the long life characteristics of the active material may be further improved by stabilizing the surface structure.
  • a precursor according to an aspect of the present invention may be prepared by the following method.
  • the present invention is not limited thereto.
  • it is prepared by stirring and co-precipitating a nitrogen-containing complexing agent and a basic compound in a transition metal solution containing a nickel-containing raw material, a cobalt-containing raw material, and a manganese-containing raw material.
  • the nickel-containing raw material may be, for example, nickel-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, specifically, Ni(OH) 2 , NiO, NiOOH, NiCO 3 ⁇ 2Ni(OH) 2 ⁇ 4H 2 O, NiC 2 O 2 ⁇ 2H 2 O, Ni(NO 3 ) 2 ⁇ 6H 2 O, NiSO 4 , NiSO 4 ⁇ 6H 2 O, fatty acid nickel salt, nickel halide or these It may be a combination, but is not limited thereto.
  • the cobalt-containing raw material may be cobalt-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, and specifically, Co(OH) 2 , CoOOH, Co(OCOCH 3 ) 2 ⁇ 4H 2 O , Co(NO 3 ) 2 ⁇ 6H 2 O, CoSO 4 , Co(SO 4 ) 2 ⁇ 7H 2 O, or a combination thereof, but is not limited thereto.
  • the manganese-containing raw material may be, for example, manganese-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide, oxyhydroxide, or a combination thereof, specifically Mn 2 O 3 , MnO 2 , Mn 3 manganese oxides such as O 4 ; manganese salts such as MnCO 3 , Mn(NO 3 ) 2 , MnSO 4 , manganese acetate, dicarboxylic acid manganese salt, manganese citrate, fatty acid manganese salt; It may be manganese oxyhydroxide, manganese chloride, or a combination thereof, but is not limited thereto.
  • the transition metal solution is prepared by mixing a nickel-containing raw material, a cobalt-containing raw material, and a manganese-containing raw material in a solvent, specifically water, or a mixed solvent of an organic solvent that can be uniformly mixed with water (eg, alcohol). It may be prepared by adding, or may be prepared by mixing an aqueous solution of a nickel-containing raw material, an aqueous solution of a cobalt-containing raw material, and a manganese-containing raw material.
  • a solvent specifically water, or a mixed solvent of an organic solvent that can be uniformly mixed with water (eg, alcohol).
  • the ammonium cation-containing complexing agent may be, for example, NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , NH 4 CO 3 or a combination thereof, However, the present invention is not limited thereto.
  • the ammonium cation-containing complexing agent may be used in the form of an aqueous solution, and as the solvent, water or a mixture of water and an organic solvent that is uniformly miscible with water (specifically, alcohol, etc.) and water may be used.
  • the basic compound may be a hydroxide of an alkali metal or alkaline earth metal such as NaOH, KOH or Ca(OH) 2 , a hydrate thereof, or a combination thereof.
  • the basic compound may also be used in the form of an aqueous solution, and as the solvent, water or a mixture of water and an organic solvent that is uniformly miscible with water (specifically, alcohol, etc.) and water may be used.
  • the basic compound is added to adjust the pH of the reaction solution, and may be added in an amount such that the pH of the metal solution is 11 to 13.
  • the secondary particle precursor having a core-shell structure may be prepared by controlling the concentration of the nitrogen-containing complexing agent and the reaction rate of the stirrer.
  • the stirring step includes a first stirring step and a second stirring step, wherein the concentration of the nitrogen-containing complexing agent in the first stirring step is greater than the concentration of the nitrogen-containing complexing agent in the second stirring step, It is characterized in that the first stirring speed of the first stirring step is slower than the second stirring speed of the second stirring step.
  • the concentration of the nitrogen-containing complexing agent in the first stirring step may be 5000 ppm or more, 6000 ppm or more, 7000 ppm or more, 8000 ppm or more, 9000 ppm or more, or 10,000 ppm or more, and the nitrogen-containing complexing agent in the second stirring step
  • the concentration of the complexing agent may be 5000 ppm or less, 4000 ppm or less, or 3000 ppm or less. More specifically, the concentration of the nitrogen-containing complexing agent in the first stirring step may be 5000 ppm or more, and the concentration of the nitrogen-containing complexing agent in the second stirring step may be 4000 ppm or less.
  • the first stirring rate may be 800 rpm or less, 700 rpm or less, or 600 rpm or less
  • the second stirring rate may be 1000 ppm or more, 1100 ppm or more, or 1200 ppm or more.
  • the co-precipitation reaction may be performed at a temperature of 40° C. to 70° C. under an inert atmosphere such as nitrogen or argon. That is, the primary firing may be performed.
  • a secondary particle precursor for a positive electrode active material having the above-described characteristics including a core portion and a shell portion may be prepared by the process as described above.
  • the lithium raw material may include lithium-containing sulfate, nitrate, acetate, carbonate, oxalate, citrate, halide, hydroxide or oxyhydroxide, and is not particularly limited as long as it can be dissolved in water.
  • the lithium raw material is Li 2 CO 3 , LiNO 3 , LiNO 2 , LiOH, LiOH ⁇ H 2 O, LiH, LiF, LiCl, LiBr, LiI, CH 3 COOLi, Li 2 O, Li 2 SO 4 , CH 3 COOLi, or Li 3 C 6 H 5 O 7 and the like, and any one or a mixture of two or more thereof may be used.
  • the secondary sintering may be sintered at 700 to 1,000° C., more preferably 780 to 1,000° C., in the case of a high-Ni NCM-based lithium composite transition metal oxide having a nickel (Ni) content of 60 mol% or more. 980 ° C. More preferably, it can be calcined at 780 to 900 ° C.
  • the primary firing may be carried out in an air or oxygen atmosphere, and may be performed for 10 to 35 hours.
  • the positive electrode active material having the secondary particle aggregate including the primary large particle can be manufactured.
  • a positive electrode for a lithium secondary battery and a lithium secondary battery including the positive electrode active material.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector and including the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. , nickel, titanium, silver, etc. may be used.
  • the positive electrode current collector may typically have a thickness of 3 to 500 ⁇ m, and may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface of the positive electrode current collector.
  • it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body.
  • the positive active material layer may include a conductive material and a binder together with the above-described positive active material.
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, it can be used without any particular limitation as long as it has electronic conductivity without causing chemical change.
  • Specific examples include graphite such as natural graphite and artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers, such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one or a mixture of two or more thereof may be used.
  • the conductive material may be included in an amount of 1 to 30% by weight based on the total weight of the positive active material layer.
  • the binder serves to improve adhesion between the positive electrode active material particles and the adhesive force between the positive electrode active material and the positive electrode current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and any one of them or a mixture of two or more thereof may be used.
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the above positive electrode active material. Specifically, it may be prepared by applying the above-described positive electrode active material and, optionally, a composition for forming a positive electrode active material layer including a binder and a conductive material on a positive electrode current collector, followed by drying and rolling. In this case, the types and contents of the positive electrode active material, the binder, and the conductive material are as described above.
  • the solvent may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or water, and the like, and any one of them or a mixture of two or more thereof may be used.
  • the amount of the solvent used is enough to dissolve or disperse the positive electrode active material, the conductive material and the binder in consideration of the application thickness of the slurry and the production yield, and to have a viscosity capable of exhibiting excellent thickness uniformity when applied for the production of the positive electrode thereafter. do.
  • the positive electrode may be manufactured by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating a film obtained by peeling it from the support on the positive electrode current collector.
  • an electrochemical device including the positive electrode is provided.
  • the electrochemical device may specifically be a battery or a capacitor, and more specifically, may be a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above.
  • the lithium secondary battery may optionally further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel surface. Carbon, nickel, titanium, silver, etc. surface-treated, aluminum-cadmium alloy, etc. may be used.
  • the negative electrode current collector may have a thickness of typically 3 to 500 ⁇ m, and similarly to the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to strengthen the bonding force of the negative electrode active material.
  • it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • the anode active material layer may be formed by applying a composition for forming an anode including an anode active material and, optionally, a binder and a conductive material on an anode current collector and drying, or casting the composition for forming a cathode on a separate support, and then , may be produced by laminating a film obtained by peeling from this support onto a negative electrode current collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metal compounds capable of alloying with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy; metal oxides capable of doping and dedoping lithium, such as SiO ⁇ (0 ⁇ ⁇ ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide; Alternatively, a composite including the metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite may be used, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • both low crystalline carbon and high crystalline carbon may be used.
  • low crystalline carbon soft carbon and hard carbon are representative, and as high crystalline carbon, natural or artificial graphite of amorphous, plate-like, scale-like, spherical or fibrous shape, and Kish graphite graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, liquid crystal pitches (Mesophase pitches), and petroleum and coal tar pitch (petroleum or coal tar pitch) High-temperature calcined carbon such as derived cokes) is a representative example.
  • binder and the conductive material may be the same as those described above for the positive electrode.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and as long as it is used as a separator in a lithium secondary battery, it can be used without any particular limitation, especially for the movement of ions in the electrolyte It is preferable to have a low resistance to respect and an excellent electrolyte moisture content.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these
  • a laminate structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
  • examples of the electrolyte used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, molten inorganic electrolytes, and the like, which can be used in the manufacture of lithium secondary batteries, and are limited to these. it is not going to be
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without any particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone
  • ether solvents such as dibutyl ether or tetrahydrofuran
  • ketone solvents such as cyclohexanone
  • aromatic hydrocarbon-based solvents such as benzene and fluorobenzene
  • alcohol solvents such as ethyl alcohol and isopropyl alcohol
  • nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydro
  • a carbonate-based solvent is preferable, and a cyclic carbonate (eg, ethylene carbonate or propylene carbonate, etc.) having high ionic conductivity and high dielectric constant capable of increasing the charge/discharge performance of the battery, and a low-viscosity linear carbonate-based compound (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • a cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 , etc. may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has appropriate conductivity and viscosity, excellent electrolyte performance may be exhibited, and lithium ions may move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, tri Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as taxdine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the positive electrode active material according to the present invention is useful in the field of portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicles such as hybrid electric vehicles (HEVs).
  • portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicles such as hybrid electric vehicles (HEVs).
  • HEVs hybrid electric vehicles
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool (Power Tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium and large-sized devices in a system for power storage.
  • Power Tool Power Tool
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • the composition ratio of NiSO 4 , CoSO 4 , MnSO 4 is made into a metals acid state with a molar ratio of 83:11:6, and the coprecipitation reaction is performed using ammonia as a complexing agent.
  • Co-Precipitation was performed, and NaOH providing oxide ions (OH) was used as a co-precipitant to obtain a co-precipitate. Thereafter, the co-precipitate was washed and dried in a dryer at 120° C. for about 12 hours to prepare a Ni 0.83 Co 0.11 Mn 0.6 (OH) 2 precursor powder.
  • the ammonia concentration in the reaction liquid state inside the reactor was increased to 10,000 ppm or more, and the stirring speed was stirred at 600 rpm to form a porous core part. After that, the ammonia concentration was lowered to 3000 ppm and stirred at a stirring speed of 1200 rpm to prepare a secondary particle precursor for a positive electrode active material with a dense shell.
  • the internal conditions of the reactor were such that the temperature of the reaction solution was maintained at 60 °C and pH 10.5 to 12.0.
  • the positive electrode active material precursor prepared in this way was in the form of particles having a porous core and a dense shell. Based on the synthesized Ni 0.83 Co 0.11 Mn 0.6 (OH) 2 precursor, LiOH, a lithium raw material, was mixed so that the final Li/Me molar ratio was 1.03, and then heat-treated at 800 ° C. for 10 hours to finally Li(Ni 0.83 Co 0.11 Mn 0.6 ). )O 2 A positive electrode active material was synthesized.
  • the positive electrode active material in the same manner as in Example 1, except that the stirring speed when the porous core part was formed was changed to 1000 rpm and the stirring speed when the shell part was formed was changed to 2000 rpm. was synthesized.
  • the concentration of ammonia in the reaction solution inside the reactor was maintained at 3000 ppm during the co-precipitation process and stirred at a stirring speed of 1500 rpm to prepare a dense precursor as a whole without distinction between the core and the shell.
  • a precursor was prepared in the same manner as in Examples except for the above-mentioned parts.
  • Example 2 Precursor (D50) Core ⁇ m no division 1.5 2.0 Shell ⁇ m 2.5 2.5 Tap density of precursor Core g/cc 2.2 1.8 1.6 Shell g/cc 2.2 2.0 Particle size (D50) precursor ⁇ m 4.0 4.0 4.5 Particle size (D50) Secondary particles after firing ⁇ m 4.5 4.1 4.5 Particle size (D50) Primary particles after firing ⁇ m 0.5 2.0 2.5 crystal size Average crystal size of primary particles after calcination nm 120 230 270 Rolling density of cathode active material g/cc 2.55 3.19 3.12 Electrochemistry of cathode active material 0.1C Charge mAh/g 188.9 229.2 228.5 0.1C Discharge mAh/g 167.8 203.0 207.0 Efficiency % 88.9 88.6 90.6
  • the embodiment according to one aspect of the present invention controls the concentration of ammonia in the reaction solution and the stirring speed, so that the core part is porous and the shell part is dense to produce a precursor could.
  • a positive electrode active material was prepared using the thus prepared precursor for secondary particles, as shown in Table 1, a positive electrode active material having a high rolling density and electrochemically improved was obtained.
  • it is difficult to make an absolute comparison because the composition of the positive electrode active material is different, but the efficiency of the positive electrode active material is similar at 88.9% and 88.6%, respectively, while the absolute value of charging and discharging is much higher in Examples.
  • Rolling density was measured using HPRM-1000. Specifically, 5 g of the positive electrode active material of Examples and Comparative Examples was put into a cylindrical mold, and then the mold containing the positive electrode active material was pressed at 63.694 MPa. Then, the height of the pressed mold was measured with a vernier caliper and the rolling density was obtained. The results are shown in Table 1.
  • D50 can be defined as the particle size at 50% of the particle size distribution, and was measured using a laser diffraction method.
  • the tap density of the precursor was measured using TAP-2S (manufacturer: LOGAN) in accordance with ASTM B527-06.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 코어 부분과 쉘 부분을 포함하는 양극 활물질용 2차 입자 전구체로서, 상기 2차 입자 전구체는 입경(D50)이 6±2 ㎛이며, 상기 코어 부분의 입경(D50)은 1 내지 5 ㎛이고, 상기 코어 부분이 상기 쉘 부분에 비해 다공도가 높은 것을 특징으로 하는 양극 활물질용 2차 입자 전구체, 이로부터 제조된 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지에 관한 것이다. 본 발명의 일 실시예에 따르면, 전술한 양극 활물질용 2차 입자 전구체를 이용하여 제조된 양극 활물질은 압연 밀도가 증가하여 깨짐 현상이 저감된다.

Description

리튬 이차 전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 양극
본 발명은 새로운 개념의 양극 활물질용 2차 입자를 제조하는 전구체, 양극 활물질 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
본 출원은 2020년 12월 8일 자로 출원된 한국 특허출원번호 제 10-2020-0170277호에 대한 우선권주장출원으로서, 해당 출원의 명세서에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차 전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차 전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차 전지의 성능향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차 전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차 전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 이 중에서도 리튬 코발트 산화물(LiCoO2)은 작동 전압이 높고 용량 특성이 우수한 장점이 있어, 널리 사용되고 있으며, 고전압용 양극 활물질로 적용되고 있다. 그러나, 코발트(Co)의 가격 상승 및 공급 불안정 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에 한계가 있어, 이를 대체할 수 있는 양극 활물질 개발의 필요성이 대두되었다.
이에 따라, 코발트(Co)의 일부를 니켈(Ni)과 망간(Mn)으로 치환한 니켈코발트망간계 리튬 복합 전이금속 산화물(이하 간단히 'NCM계 리튬 복합 전이금속 산화물'이라 함)이 개발되었다.
한편, 종래 개발된 NCM계 리튬 복합 전이금속 산화물은, 1차 미세(micro) 입자가 응집된 2차 입자 형태로서, 비표면적이 크고, 입자 강도가 낮았다. 또한, 1차 미세 입자가 응집된 2차 입자를 포함하는 양극 활물질로 전극을 제조한 후 압연하는 경우, 입자 깨짐이 심해 셀 구동 시 가스 발생량이 많고, 안정성이 떨어지는 문제가 있었다. 특히, 고용량 확보를 위해 니켈(Ni)의 함량을 증가시킨 고함량 니켈(High-Ni)의 NCM계 리튬 복합 전이금속 산화물의 경우 구조적 및 화학적 안정성이 더욱 저하되고, 열 안정성 확보가 더욱 어려운 문제가 있다.
본 발명이 해결하고자 하는 과제는, 상기와 같은 문제점을 해결하기 위하여, 종래와 동일 또는 유사 수준의 평균 입경(D50)을 가지는 2차 입자이면서도, 종래와 달리 1차 거대 입자를 포함함으로써, 양극 활물질을 압연하는 경우 입자 깨짐을 최소화할 수 있는 양극 활물질을 제공할 수 있는 전구체를 先제공하는 것이다.
이에 따라 장수명 및 가스 성능이 우수한 니켈계 양극 활물질을 제공하는 것이다.
본 발명의 일 측면은 하기 구현예들에 따른 2차 입자 전구체를 제공한다.
구체적으로,
코어 부분과 쉘 부분을 포함하는 양극 활물질용 2차 입자 전구체로서,
상기 2차 입자 전구체는 입경(D50)이 6±2 ㎛이며,
상기 코어 부분의 입경(D50)은 1 내지 5 ㎛이고,
상기 코어 부분이 상기 쉘 부분에 비해 다공도가 높은 것을 특징으로 하는 양극 활물질용 2차 입자 전구체이다. .
상기 코어 부분의 다공도는 탭 밀도 기준으로 2.0 g/cc 미만일 수 있다. 더욱 구체적으로는, 상기 코어 부분의 다공도는 탭 밀도 기준으로 1.9 g/cc 이하일 수 있다.
상기 코어 부분은 입경(D50)이 1 ㎛ 내지 3 ㎛일 수 있다.
상기 쉘 부분의 다공도는 탭 밀도 기준으로 2.0 g/cc 이상일 수 있고, 더욱 구체적으로는 상기 쉘 부분의 다공도는 탭 밀도 기준으로 2.1 g/cc 이상일 수 있다.
상기 2차 입자 전구체는 LiaNi1-x-yCoxM1yM2w(OH)2 (1.0≤a≤1.5, 0≤x≤0.2, 0≤y≤0.2, 0≤w≤0.1, 0≤x+y≤0.2, M1은 Mn 및 Al으로 이루어지는 군으로부터 선택되는 적어도 1종, M2는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo으로 이루어지는 군으로부터 선택되는 적어도 1종)로 표시되는 니켈계 리튬 전이금속 수산화물일 수 있다.
본 발명의 일 측면은 전술한 양극 활물질용 전구체를 소성하여 산화물로 제조된 리튬 이차 전지용 양극 활물질을 제공한다.
상기 산화물은 입경(D50)이 1 ㎛ 이상인 1차 거대(macro) 입자가 응집된 입경(D50) 3 내지 5 ㎛인 2차 입자일 수 있다.
상기 1차 거대 입자의 평균 결정 크기는 200 nm 이상일 수 있다.
상기 2차 입자의 평균 입경(D50)/상기 1차 거대 입자의 평균 입경(D50)의 비는 2 내지 4배일 수 있다
상기 산화물은 LiaNi1-x-yCoxM1yM2wO2 (1.0≤a≤1.5, 0≤x≤0.2, 0≤y≤0.2, 0≤w≤0.1, 0≤x+y≤0.2, M1은 Mn 및 Al으로 이루어지는 군으로부터 선택되는 적어도 1종, M2는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo으로 이루어지는 군으로부터 선택되는 적어도 1종)로 표시되는 니켈계 리튬 전이금속 산화물일 수 있다.
본 발명의 다른 일 측면은 전술한 양극 활물질을 포함하는 리튬 이차 전지를 제공한다.
본 발명의 다른 일 측면은 하기 제조방법을 제공한다.
구체적으로,
(S1) 니켈 함유 원료물질, 코발트 함유 원료물질 및 망간 함유 원료물질을 포함하는 전이 금속 용액에 질소 함유 착물 형성제와 염기성 화합물을 제1 교반하는 단계;
(S2) 상기 (S1) 단계의 결과물을 제2 교반하는 단계;를 포함하며,
상기 제1 교반 단계의 제1 교반 속도가 상기 제2 교반 단계의 제2 교반 속도보다 느리며,
상기 제1 교반 단계의 질소 함유 착물 형성제의 농도가 상기 제2 교반 단계의 질소 함유 착물 형성제의 농도보다 높은 것을 특징으로 하는, 양극 활물질용 2차 입자 전구체의 제조방법이다. 구체적으로는, 상기 제1 교반 단계의 질소 함유 착물 형성제의 농도는 5000 ppm 이상이며, 제2 교반 단계의 질소 함유 착물 형성제의 농도는 4000 ppm 이하일 수 있다.
상기 제1 교반 단계의 질소 함유 착물 형성제의 농도는 5000 ppm 이상이며,
제2 교반 단계의 질소 함유 착물 형성제의 농도는 5000 ppm 이하일 수 있다.
더욱 구체적으로는 상기 제1 교반 속도는 800 rpm 이하이며, 제2 교반 속도는 1000 ppm 이상일 수 있다.
본 발명의 일 실시예에 따르면, 1차 거대 입자의 평균 입경(D50) 성장과 동시에 결정 크기도 함께 성장하여 저항이 향상된 2차 입자를 포함하는 양극 활물질 전구체를 제공할 수 있다.
본 발명의 일 실시예에 따르면, 양극 활물질의 압연 밀도가 증가하고, 장수명 및 가스 성능이 우수한 니켈계 양극 활물질을 제공할 수 있는 전구체를 先 제공 할 수 있다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다.
도 1은 본 발명의 비교예에 따른 양극 활물질을 찍은 SEM 이미지이다.
도 2는 본 발명의 일 실시예에 따른 양극 활물질을 찍은 SEM 이미지이다.
도 3은 종래 2차 입자용 전구체를 1차 소성했을 때의 양극 활물질 입자를 개략적으로 나타낸 모식도이다.
도 4는 본 발명의 일 실시예에 따른 2차 입자용 전구체를 1차 소성했을 때의 양극 활물질 입자를 개략적으로 나타낸 모식도이다.
도 5는 본 발명의 실시예 및 비교예의 압연 밀도를 나타낸 그래프이다.
도 6은 본 발명의 실시예 및 비교예의 충방전 프로파일을 나타낸 그래프이다.
도 7은 본 발명의 실시예 및 비교예의 고온 수명 특성을 나타낸 그래프이다.
도 8은 본 발명의 실시예 및 비교예의 가스 발생량을 측정한 그래프이다.
이하 본 발명의 구현예를 상세히 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 명세서 및 청구범위에 있어서, "다수의 결정립을 포함한다" 함은 특정 범위의 평균 결정 크기를 갖는 둘 이상의 결정 입자가 모여서 이루어지는 결정체를 의미한다. 이때 상기 결정립의 결정 크기는 Cu Kα X선(Xrα)에 의한 X선 회절 분석(XRD)을 이용하여 정량적으로 분석될 수 있다. 구체적으로는 제조된 입자를 홀더에 넣어 X선을 상기 입자에 조사해 나오는 회절 격자를 분석함으로써, 결정립의 평균 결정 크기를 정량적으로 분석 할 수 있다.
명세서 및 청구범위에 있어서, D50은 입자크기 분포의 50% 기준에서의 입자크기로 정의될 수 있으며, 레이저 회절법(laser diffraction method)을 이용하여 측정될 수 있다. 예를 들어, 상기 양극 활물질의 평균 입경(D50)의 측정 방법은, 양극 활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 측정 장치에 있어서의 체적 누적량의 50%에 해당하는 평균 입경(D50)을 산출할 수 있다.
본 발명에 있어서 '1차 입자'란 주사형 전자 현미경을 이용하여 5000배 내지 20000배의 시야에서 관찰하였을 때 외관상 입계가 존재하지 않는 입자를 의미한다.
본 발명에서 '2차 입자'란 상기 1차 입자가 응집되어 형성된 입자이다.
본 발명에서, '단입자'란 상기 2차 입자와는 독립적으로 존재하는 것으로, 외관상에 입계가 존재하지 않는 입자로서, 예를 들어, 입자 지름이 0.5 ㎛ 이상의 입자를 의미한다.
본 발명에 있어서, '입자'라고 기재하는 경우에는 단입자, 2차 입자, 1차 입자 중 어느 하나 또는 모두가 포함되는 의미일 수 있다.
본 발명의 일 측면에서는 기존과 다른 2차 입자 형태의 양극 활물질을 제공할 수 있는 전구체를 선 제공하는 것이다.
양극 활물질용 전구체
종래 2차 입자는 도 1에서 알 수 있는 바와 같이, 양극 활물질 내부의 입자 성장(입성장)이 고르게 나타나지 않았다. 이 경우, 2차 입자를 고르게 제조할 수 없어 전기화학성능이 열위에 놓이는 문제가 있었다.
본 발명자들은 전술한 문제점을 해결하기 위하여 연구한 결과, 전구체 내부의 밀도를 다르게 함으로써, 양극 활물질 내부의 입자들이 고르게 성장할 수 있도록 하였다. 도 2에서 알 수 있는 바와 같이, 본 발명의 일 측면에 따른 전구체를 사용하여 2차 입자를 제조시에는 입성장이 고르게 나타난 양극 활물질을 제공할 수 있다.
구체적으로, 본 발명의 일 측면에 따른 양극 활물질용 2차 입자 전구체는,
코어 부분과 쉘 부분을 포함하는 양극 활물질용 2차 입자 전구체로서,
상기 2차 입자 전구체는 입경(D50)이 6±2 ㎛이며,
상기 코어 부분의 입경(D50)은 1 내지 5 ㎛이고,
상기 코어 부분이 상기 쉘 부분에 비해 다공도가 높은 것을 특징으로 한다.
일반적으로 니켈계 리튬 전이금속 산화물은 2차 입자이다. 이러한 2차 입자는 1차 입자가 응집된 형태일 수 있다.
구체적으로, 공침법에 의해 제조된 밀도가 높은(dense) 니켈계 리튬 전이금속 수산화물 2차 입자를 전구체로 하며, 이 전구체를 리튬 전구체와 혼합하여 960 ℃ 미만의 온도에서 소성하면, 니켈계 리튬 전이금속 산화물 2차 입자가 수득될 수 있다. 이러한 일련의 과정을 도 3에 나타내었다. 도 3을 참조하면, 기존의 dense한 전구체를 1차 소성하면 2차 입자 표면으로부터의 입성장으로 인해 표면의 1차 입자들은 평균 입경이 커지나, 내부의 1차 입자들은 평균 입경이 상대적으로 작게 성장하는 문제가 있었다. 이러한 기존의 2차 입자를 포함하는 포함하는 양극 활물질을 집전체 상에 도포한 후 압연하는 경우 입자 자체가 깨지게 되어 비표면적이 넓어지게 된다. 비표면적이 넓어지면 표면의 rock salt가 형성되어 저항이 떨어지는 문제가 있다.
반면, 본 발명의 일 측면에서는, 이러한 문제를 해결하고자 전술한 빽빽한(dense) 니켈계 리튬 전이금속 수산화물 2차 입자를 전구체로 하는 기존 방법과는 달리, 기존 전구체 대비 내부가 다공성의(Porous) 전구체를 사용함으로써 동일 니켈 함량 대비 낮은 소성 온도로 합성 가능하며, 더 이상 2차 입자의 형태를 갖지 않고, 단입자화된 니켈계 리튬 전이금속 산화물이 수득될 수 있다.
상기 2차 입자 전구체는 LiaNi1-x-yCoxM1yM2w(OH)2 (1.0≤a≤1.5, 0≤x≤0.2, 0≤y≤0.2, 0≤w≤0.1, 0≤x+y≤0.2, M1은 Mn 및 Al으로 이루어지는 군으로부터 선택되는 적어도 1종, M2는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo으로 이루어지는 군으로부터 선택되는 적어도 1종)로 표시되는 니켈계 리튬 전이금속 수산화물일 수 있다.
도 4에 나타낸 바와 같이, 본 발명의 일 측면에 따른 2차 입자용 전구체는, 코어 부분의 다공도가 쉘 부분의 다공도보다 상대적으로 높은 것이다. 이에 따라, 소성 온도를 높이 올리지 않아도 입경 크기가 큰 1차 거대 입자가 성장될 수 있으며, 반면 2차 입자는 기존에 비해 상대적으로 덜 성장할 수 있다. 또한 입성장이 고른 2차 입자를 제공할 수 있다. 결과적으로, 내부까지 고르게 입자 성장이 가능하게 함으로써, 우수한 전기화학 특성을 보이며, 입자 깨짐을 최소화하고 수명 및 가스 성능을 개선할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 2차 입자용 전구체는 입경이 6±2 ㎛ 인 것이다. 즉, 본 발명의 일 측면에 따른 2차 입자용 전구체는, 기존과 동일 또는 유사한 평균 입경(D50)을 가질 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 코어 부분의 입경(D50)은 1 내지 5 ㎛이다. 더욱 구체적으로는, 상기 코어 부분은 입경(D50)이 1 ㎛ 내지 3 ㎛일 수 있다.
한편, 본 발명의 구체적인 일 실시양태에 있어서, 상기 쉘 부분은 단일 입자용 전구체에서 코어 부분을 제외한 나머지 부분을 의미하는 것이다. 코어 부분으로부터 다공도가 감소하는 경계 부분으로부터 쉘 부분으로 정의된다.
쉘 부분의 두께는 전구체 전체의 입경(D50)으로부터 코어 부분의 입경(50)을 뺀 나머지 부분의 두께를 의미한다. 쉘 부분의 두께는 0.1 내지 5 ㎛일 수 있고, 구체적으로는 0.5 ㎛ 내지 4 ㎛일 수 있고, 더욱 구체적으로는 1 내지 3 ㎛일 수 있다.
본 발명의 일 측면에 따른 2차 입자 전구체에서, 상기 코어 부분은 상기 쉘 부분에 비해 다공도가 높은 것이다.
이 때, 다공도는 탭 밀도에 의해 구분지을 수 있는데, 본 발명의 구체적인 일 실시양태에 있어서, 상기 코어 부분의 다공도는 탭 밀도 기준으로 2.0 g/cc 미만일 수 있다. 보다 구체적으로, 1.9 g/cc 이하, 1.8 g/cc 이하, 1.7 g/c, 또는 1.5 g/cc 이하일 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 쉘 부분의 다공도는 탭 밀도 기준으로 2.0 g/cc이상일 수 있다. 보다 구체적으로, 2.0 g/cc 이상, 2.1 g/cc 이상, 2.2 g/cc 이상, 또는 2.5 g/cc 이상일 수 있다. 이와 같이, 탭밀도가 서로 상이한 전구체를 사용함으로써, 소성 온도를 높이 올리지 않아도 입경 크기가 큰 1차 거대 입자가 성장될 수 있으며, 반면 2차 입자는 기존에 비해 상대적으로 덜 성장할 수 있다. 또한 입성장이 고른 2차 입자를 제공할 수 있다.
본 발명의 일 측면은 전술한 양극 활물질용 전구체를 소성하여 산화물로 제조된 리튬 이차 전지용 양극 활물질을 제공한다.
이에 따라, 본 발명의 일 측면에 따른 산화물을 구성하는 2차 입자는, 기존과 동일 또는 유사한 평균 입경(D50)을 가지면서도 1차 입자의 평균 직경(D50)이 큰 형태인 것이다. 즉, 기존에 양극 활물질이 갖는 일반적인 형태 즉 평균 입경이 작은 1차 입자들이 모여서 2차 입자를 형성하는 형태와 다르게, 1차 입자의 크기를 키운 1차 거대 입자가 응집된 2차 입자 형태를 제공한다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 2차 입자는 상기 1차 거대 입자가 1개 내지 10개 이내로 응집된 것일 수 있다. 보다 구체적으로, 상기 2차 입자는 상기 수치 범위 내에서 상기 1차 거대 입자가 1개 이상, 2개 이상, 3개 이상, 또는 4개 이상 응집된 것일 수 있으며, 상기 수치 범위 내에서 상기 1차 거대 입자가 10개 이하, 9개 이하, 8개 이하, 또는 7개 이하로 응집된 것일 수 있다.
본 발명에서 '1차 거대 입자'란 평균 직경(D50)이 1 ㎛ 이상일 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 1차 거대 입자의 평균 입경은 1 ㎛ 이상, 2 ㎛ 이상, 2.5 ㎛ 이상, 3 ㎛ 이상, 또는 3.5 ㎛ 이상일 수 있으며, 5 ㎛ 이하, 4.5 ㎛ 이하, 또는 4 ㎛ 이하일 수 있다. 상기 1차 거대 입자의 평균 입경이 1 ㎛ 미만인 경우, 종래 2차 입자에 해당되어 압연시 입자 깨짐이 발생하는 문제가 있을 수 있다.
한편, 본 발명에서 '1차 거대 입자'는 평균 입경(D50)/ 평균 결정 크기(crystal size)의 비가 10 이상일 수 있다. 즉, 상기 1차 거대 입자는 종래 2차 입자를 구성하는 1차 미세(micro) 입자와 비교할 때, 1차 입자의 평균 입경과 평균 결정 크기가 동시에 성장할 수 있다.
크랙(crack) 관점에서 보자면 기존의 단입자와 같이 외관상 입계가 존재하지 존재하지 않으면서도 평균 입경이 큰 것이 유리하다. 이에 따라 본 발명자들은 1차 입자의 평균 입경(D50)을 성장시키는 데에 주력하였다. 그러던 중, 과소성 등에 의해 1차 입자의 평균 입경(D50)만을 늘리는 경우에는 1차 입자의 표면에 rock salt 가 형성되고 저항이 높아지는 문제가 있는 것을 발견하였다. 그리고 이를 해결하기 위해서는 1차 입자의 평균 결정 크기도 함께 성장시켜야 저항을 낮추는 데에 유리한 것을 발견하였다.
이에 따라, 본 발명에서의 1차 거대 입자는, 평균 입경뿐만 아니라 평균 결정 크기도 크며, 외관상의 입계가 존재하지 않는 입자일 수 있다.
이와 같이, 1차 입자의 평균 입경과 평균 결정 크기가 동시에 성장하는 경우, 고온에서의 소성으로 인해 표면에 rock salt 가 생겨 저항 증가가 큰 기존의 단입자에 비해, 저항이 낮아지며 장수명 측면에서도 유리하다.
이와 같이, 기존의 단입자에 비해, 본 발명의 일 측면에서 사용된 "1차 거대 입자의 응집체로 구성된 2차 입자"의 경우, 1차 입자 자체의 크기 증가 및 rock salt의 형성이 감소되어 저항이 낮아진다는 측면에서 유리하다.
이 때, 상기 1차 거대 입자의 평균 결정 크기(crystal size)는 Cu Kα X선(X-ray)에 의한 X선 회절 분석(XRD)을 이용하여 정량적으로 분석될 수 있다. 구체적으로는 제조된 입자를 홀더에 넣어 X선을 상기 입자에 조사해 나오는 회절 격자를 분석함으로써, 1차 거대 입자의 평균 결정 크기를 정량적으로 분석할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 평균 입경(D50)/ 평균 결정 크기(crystal size)의 비는 4 이상, 7 이상, 또는 10 이상일 수 있으며, 30 이하, 또는 20 이하일 수 있다.
또한, 상기 1차 거대 입자의 평균 결정 크기는, 200 nm 이상, 또는 250 nm 이상일 수 있으며, 450nm 이하, 또는 400nm 이하일 수 있다.
본 발명의 일 측면에 따른 2차 입자는, 기존과 동일 또는 유사한 평균 입경(D50)을 가지면서도 1차 입자의 평균 직경(D50)이 큰 형태인 것이다. 즉, 기존에 양극 활물질이 갖는 일반적인 형태 즉 평균 입경이 작은 1차 입자들이 모여서 2차 입자를 형성하는 형태와 다르게, 1차 입자의 크기를 키운 1차 거대 입자가 응집한 2차 입자 형태를 제공한다.
본 발명의 일 측면에 따른 2차 입자는 평균 직경(D50)이 3 ㎛ 내지 5 ㎛일 수 있다. 보다 구체적으로, 3 ㎛ 이상, 3.5 ㎛ 이상, 4 ㎛ 이상, 4.5 ㎛ 이상일 수 있고, 5 ㎛ 이하, 4.5 ㎛ 이하, 4 ㎛ 이하, 또는 3.5 ㎛ 이하일 수 있다.
일반적으로 입자 형태를 막론하고, 동일한 조성일 때, 소성 온도가 증가할수록 입자의 크기 및 입자 내 평균 결정 크기는 증가한다. 반면, 본 발명의 일 측면에 따른 1차 입자는 종래에 비해 소성 온도를 높이 올리지 않아도 입경 크기가 큰 1차 거대 입자가 성장될 수 있으며, 반면 2차 입자는 기존에 비해 상대적으로 덜 성장할 수 있다.
이에 따라, 본 발명의 일 측면에 따른 2차 입자는 종래 2차 입자와 평균 직경(D50)이 동일 또는 유사하면서, 종래 1차 미세 입자에 비해 평균 직경 및 평균 결정 크기가 큰 1차 거대 입자로 이루어져 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 2차 입자의 평균 입경(D50)/상기 1차 거대 입자의 평균 입경(D50)의 비는 2 내지 4배일 수 있다.
상기 2차 입자는, 니켈계 리튬 전이금속 산화물일 수 있다.
이 때, 상기 니켈계 리튬 전이금속 산화물은, LiaNi1-x-yCoxM1yM2wO2 (1.0≤a≤1.5, 0≤x≤0.2, 0≤y≤0.2, 0≤w≤0.1, 0≤x+y≤0.2, M1은 Mn 및 Al으로 이루어지는 군으로부터 선택되는 적어도 1종, M2는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo으로 이루어지는 군으로부터 선택되는 적어도 1종)을 포함할 수 있다.
상기 식에서, a, x, y, 및 w는 니켈계 리튬 전이금속 산화물 내 각 원소의 몰비를 나타낸다.
이 때, 상기 2차 입자의 결정 격자 내 도핑된 금속 M1과 M2는 원소 M1 및/또는 원소 M2의 위치 선호도에 따라 입자의 일부 표면에만 위치할 수도 있고, 입자 표면에서부터 입자 중심 방향으로 감소하는 농도구배를 가지며 위치할 수 있으며, 또는 입자 전체에 걸쳐 균일하게 존재할 수도 있다.
상기 2차 입자는 금속 M1과 M2에 의해 도핑, 또는 코팅 및 도핑될 경우, 특히 표면구조의 안정화로 활물질이 장수명 특성이 보다 개선될 수 있다.
양극 활물질 2차 입자용 전구체의 제조방법
본 발명의 일 측면에 따른 전구체는 다음과 같은 방법으로 제조될 수 있다. 다만, 이에 제한되는 것은 아니다.
구체적으로, 니켈 함유 원료물질, 코발트 함유 원료물질 및 망간 함유 원료물질을 포함하는 전이 금속 용액에 질소 함유 착물 형성제와 염기성 화합물을 교반 및 공침 반응시켜 제조하는 것이다.
상기 니켈 함유 원료물질은 예를 들면, 니켈 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는, Ni(OH)2, NiO, NiOOH, NiCO3ㆍ2Ni(OH)2ㆍ4H2O, NiC2O2ㆍ2H2O, Ni(NO3)2ㆍ6H2O, NiSO4, NiSO4ㆍ6H2O, 지방산 니켈염, 니켈 할로겐화물 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 코발트 함유 원료 물질은 코발트 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O, CoSO4, Co(SO4)2ㆍ7H2O 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 망간 함유 원료물질은 예를 들면, 망간 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물, 옥시수산화물 또는 이들의 조합일 수 있으며, 구체적으로는 Mn2O3, MnO2, Mn3O4 등과 같은 망간산화물; MnCO3, Mn(NO3)2, MnSO4, 아세트산 망간, 디카르복실산 망간염, 시트르산 망간, 지방산 망간염과 같은 망간염; 옥시 수산화망간, 염화 망간 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 전이금속 용액은 니켈 함유 원료물질, 코발트 함유 원료물질 및 망간 함유 원료물질을 용매, 구체적으로는 물, 또는 물과 균일하게 혼합될 수 있는 유기 용매(예를 들면, 알코올 등)의 혼합 용매에 첨가하여 제조되거나, 또는 니켈 함유 원료물질의 수용액, 코발트 함유 원료물질의 수용액 및 망간 함유 원료물질을 혼합하여 제조된 것일 수 있다.
상기 암모늄 양이온 함유 착물 형성제는, 예를 들면 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, NH4CO3 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다. 한편, 상기 암모늄 양이온 함유 착물 형성제는 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 염기성 화합물은 NaOH, KOH 또는 Ca(OH)2 등과 같은 알칼리 금속 또는 알칼리 토금속의 수산화물, 이들의 수화물 또는 이들의 조합일 수 있다. 상기 염기성 화합물 역시 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 염기성 화합물은 반응 용액의 pH를 조절하기 위해 첨가되는 것으로, 금속 용액의 pH가 11 내지 13이 되는 양으로 첨가될 수 있다.
이 때, 상기 교반 단계는, 질소 함유 착물 형성제의 농도 및 교반기의 반응 속도를 제어함으로써, 코어-쉘 구조인 2차 입자 전구체를 제조할 수 있다.
구체적으로, 상기 교반 단계는 제1 교반 단계와 및 제2 교반 단계를 포함하며, 제1 교반 단계의 질소 함유 착물 형성제의 농도가 제2 교반 단계의 질소 함유 착물 형성제의 농도보다 큰 것이며, 제1 교반 단계의 제1 교반 속도가 제2 교반 단계의 제2 교반 속도보다 느린 것을 특징으로 한다.
예를 들어, 제1 교반 단계의 질소 함유 착물 형성제의 농도는 5000 ppm 이상, 6000 ppm 이상, 7000 ppm 이상, 8000 ppm 이상, 9000 ppm 이상 또는 10,000 ppm 이상일 수 있으며, 제2 교반 단계의 질소 함유 착물 형성제의 농도는 5000 ppm 이하, 4000 ppm 이하, 또는 3000 ppm 이하일 수 있다. 더욱 구체적으로는, 상기 제1 교반 단계의 질소 함유 착물 형성제의 농도는 5000 ppm 이상이며, 제2 교반 단계의 질소 함유 착물 형성제의 농도는 4000 ppm 이하일 수 있다.
예를 들어, 제1 교반 속도는 800 rpm 이하, 700 rpm 이하, 또는 600 rpm 이하일 수 있으며, 제2 교반 속도는 1000 ppm 이상, 1100 ppm 이상, 또는 1200 ppm 이상일 수 있다.
한편, 상기 공침 반응은 질소 또는 아르곤 등의 비활성 분위기하에서, 40℃내지 70℃의 온도에서 수행 될 수 있다. 즉, 1차 소성될 수 있다.
상기와 같은 공정에 의해 코어 부분과 쉘 부분을 포함하는 전술한 특성을 갖는 양극 활물질용 2차 입자 전구체를 제조할 수 있다.
이 후, 전술한 전구체와 리튬 원료 물질을 혼합하고 2차 소성한다.
상기 리튬 원료물질로는 리튬 함유 황산염, 질산염, 아세트산염, 탄산염, 옥살산염, 시트르산염, 할라이드, 수산화물 또는 옥시수산화물 등이 사용될 수 있으며, 물에 용해될 수 있는 한 특별히 한정되지 않는다. 구체적으로 상기 리튬 원료물질은 Li2CO3, LiNO3, LiNO2, LiOH, LiOHㆍH2O, LiH, LiF, LiCl, LiBr, LiI, CH3COOLi, Li2O, Li2SO4, CH3COOLi, 또는 Li3C6H5O7 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 2차 소성은 니켈(Ni)의 함량이 60몰% 이상인 고함량 니켈(High-Ni) NCM계 리튬 복합 전이금속 산화물의 경우, 700 내지 1,000 ℃로 소성할 수 있으며, 보다 바람직하게는 780 내지 980 ℃ 더욱 바람직하게는 780 내지 900 ℃로 소성할 수 있다. 상기 1차 소성은 공기 또는 산소 분위기 하에서 진행할 수 있으며, 10 내지 35시간 동안 수행할 수 있다.
이와 같은 공정을 거쳐, 1차 거대 입자를 포함하는 2차 입자 응집체를 구비한 양극 활물질을 제조할 수 있다.
양극 및 리튬 이차 전지
본 발명의 또 다른 일 실시예에 따르면 상기 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지를 제공한다.
구체적으로, 상기 양극은 양극 집전체 및 상기 양극 집전체 위에 형성되며, 상기 양극 활물질을 포함하는 양극 활물질층을 포함한다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 상기 양극 집전체는 통상적으로 3 내지 500 ㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 앞서 설명한 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
또, 상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 포함하는 양극 활물질층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극 활물질층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1.
[양극 활물질용 2차 입자 전구체의 제조]
CSTR (Continuous Stirring Tank Reactor)를 이용하여 NiSO4, CoSO4, MnSO4의 조성비를 83:11:6의 몰비로 하여 Metals Acid 상태로 만들고, 착물 형성제(Chelating Agent)인 암모니아를 사용하여 공침 반응 (Co-Precipitation)을 수행하고, 공침제로서 산화이온(OH)을 제공하는 NaOH를 사용하여 공침물을 얻었다. 이 후, 공침물을 세정한 후, 120 ℃의 건조기에서 12시간 정도 건조하여 Ni0.83Co0.11Mn0.6(OH)2 전구체 분말을 제조하였다. 이 과정에서 반응기 내부의 반응액 상태에서의 암모니아 농도를 10,000ppm 이상으로 높이고 교반 속도를 600rpm으로 교반하여 다공성 코어 부분이 형성되게 하였다. 이 후 암모니아 농도를 3000ppm 수준으로 낮게 하고 1200rpm 교반 속도로 교반하여 쉘 부분은 빽빽한(dense) 양극 활물질용 2차 입자 전구체를 제조할 수 있었다. 이 때 반응기의 내부 조건은 반응액의 온도 60 ℃, pH 10.5~12.0을 유지하도록 하였다.
[양극 활물질의 제조]
이와 같이 제조된 양극 활물질 전구체는 porous한 core와 dense한 shell을 갖는 형상의 입자 형태였다. 합성된 Ni0.83Co0.11Mn0.6(OH)2 전구체를 기준으로 리튬 원료물질 LiOH를 최종 Li/Me 몰비가 1.03이 되도록 혼합한 다음 800 ℃에서 10시간 열처리하여 최종적으로 Li(Ni0.83Co0.11Mn0.6)O2 양극 활물질을 합성하였다.
실시예 2.
양극 활물질용 2차 입자 전구체의 제조시, 다공성 코어 부분 형성시의 교반 속도를 1000rpm으로 변경하고, 쉘 부분 형성시의 교반 속도를 2000rpm으로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 합성하였다.
비교예.
[양극 활물질용 전구체의 제조]
비교예에서는 공침 과정에서 반응기 내부의 반응액 상태에서의 암모니아 농도를 3000ppm 수준으로 유지하고, 1500rpm 교반 속도로 교반하여 core와 shell의 구분 없이 전체적으로 dense한 전구체를 제조하였다. 전술한 부분을 제외하고는 실시예와 동일한 방법으로 전구체를 제조하였다.
[양극 활물질의 제조]
이 외의 조건은 실시예와 동일하게 적용하되, 다만 소성 온도를 850 ℃에서 10시간 열처리하여 최종적으로 Li(Ni0.83Co0.11Mn0.6)O2 양극 활물질을 합성하였다.
Sample Unit 비교예 실시예 1 실시예 2
전구체(D50) Core μm 구분 없음 1.5 2.0
Shell μm 2.5 2.5
전구체의 탭밀도 Core g/cc 2.2 1.8 1.6
Shell g/cc 2.2 2.0
입도(D50) 전구체 μm 4.0 4.0 4.5
입도(D50) 소성 후 2차 입자 μm 4.5 4.1 4.5
입도(D50) 소성 후 1차 입자 μm 0.5 2.0 2.5
결정 크기 소성 후 1차 입자의 평균 결정 크기 nm 120 230 270
양극 활물질의 압연밀도 g/cc 2.55 3.19 3.12
양극 활물질의전기화학 0.1C Charge mAh/g 188.9 229.2 228.5
0.1C Discharge mAh/g 167.8 203.0 207.0
Efficiency % 88.9 88.6 90.6
상기 실시예와 비교예에서 알 수 있는 바와 같이, 본 발명의 일 측면에 따른 실시예는 반응액 내 암모니아의 농도와 교반 속도를 제어하여, 코어 부분은 porous하며, 쉘 부분은 dense한 전구체를 제조할 수 있었다. 이와 같이 제조된 2차 입자용 전구체를 이용하여 양극 활물질을 제조하는 경우, 표 1과 같이, 압연 밀도가 높고 전기화학적으로 개선된 양극 활물질을 얻을 수 있었다. 특히 양극 활물질 조성 등이 상이하여 절대적인 비교는 어려우나, 양극 활물질의 효율이 각각 88.9%, 88.6%로 유사한 반면, 충방전의 절대적인 값은 실시예에서 훨씬 높게 나타나는 것을 확인할 수 있었다.
[실험예 1: 양극 활물질의 관찰]
상기 비교예 및 실시예에서 제조된 양극 활물질을 주사전자현미경(SEM)으로 확대 관찰한 사진을 각각 도 1 및 도2에 나타내었다.
[실험예 2: 압연 밀도]
압연 밀도는 HPRM-1000을 이용하여 측정하였다. 구체적으로, 실시예, 비교예 의 양극활물질 5g을 각각 원기둥형의 몰드에 투입한 후, 63.694MPa로 양극 활물질이 들어있는 몰드를 가압하였다. 이후, 가압된 몰드의 높이를 버니어캘리퍼스로 측정하고 압연 밀도를 구하였다. 그 결과를 표 1에 나타내었다.
[실험예 3: 평균 입경]
D50은 입자크기 분포의 50% 기준에서의 입자크기로 정의될 수 있으며, 레이저 회절법(laser diffraction method)을 이용하여 측정하였다.
[실험예 4: 1차 입자의 평균 결정 크기]
LynxEye XE-T potision sensitive detector가 장착된 Bruker Endeavor (Cu Kα, λ=1.54 Å를 이용, FDS 0.5 °, 2-theta 15 °에서 90 ° 영역에 대한 step size 0.02 °로 전체 스캔 시간(total scan time)이 20분이 되도록 시료를 측정하였다.
측정된 데이터에 대해 각 위치(site)에서 전위(charge) (transition metal site에서의 metal들은 +3, Li site의 Ni은 +2)와 cation mixing을 고려하여 Rietveld refinement를 수행하였다. 결정 크기(crystallite size 분석시 instrumental bradening 은 Bruker TOPAS program에 implement 되어 있는 Fundemental Parameter Approach (FPA)를 이용하여 고려되었고, 피팅시 측정 범위의 전체 피크가 사용되었다. 피트 형태(peak shate)은 TOPAS에서 사용 가능한 피크 타입 중 FP(First Principle)로 Lorenzian contribution만 사용되어 피팅하였고, 이 때 strain은 고려하지 않았다. 결정 크기 결과를 상기 표 1에 나타내었다.
[실험예 5: 탭 밀도]
전구체의 탭 밀도는 ASTM B527-06에 의거하여 TAP-2S(제조사: LOGAN사)를 이용하여 측정하였다.

Claims (17)

  1. 코어 부분과 쉘 부분을 포함하는 양극 활물질용 2차 입자 전구체로서,
    상기 2차 입자 전구체는 입경(D50)이 6±2 ㎛이며,
    상기 코어 부분의 입경(D50)은 1 내지 5 ㎛이고,
    상기 코어 부분이 상기 쉘 부분에 비해 다공도가 높은 것을 특징으로 하는 양극 활물질용 2차 입자 전구체.
  2. 제1항에 있어서,
    상기 코어 부분의 다공도는 탭 밀도 기준으로 2.0 g/cc 미만인 것을 특징으로 하는 양극 활물질용 2차 입자 전구체.
  3. 제1항에 있어서,
    상기 코어 부분의 다공도는 탭 밀도 기준으로 1.9 g/cc 이하인 것을 특징으로 하는 양극 활물질용 2차 입자 전구체.
  4. 제1항에 있어서,
    상기 코어 부분은 입경(D50)이 1 ㎛ 내지 3 ㎛인 것을 특징으로 하는 양극 활물질용 2차 입자 전구체.
  5. 제1항에 있어서,
    상기 쉘 부분의 다공도는 탭 밀도 기준으로 2.0 g/cc 이상인 것을 특징으로 하는 양극 활물질용 2차 입자 전구체.
  6. 제1항에 있어서,
    상기 쉘 부분의 다공도는 탭 밀도 기준으로 2.1 g/cc 이상인 것을 특징으로 하는 양극 활물질용 2차 입자 전구체.
  7. 제1항에 있어서,
    상기 2차 입자 전구체는 LiaNi1-x-yCoxM1yM2w(OH)2 (1.0≤a≤1.5, 0≤x≤0.2, 0≤y≤0.2, 0≤w≤0.1, 0≤x+y≤0.2, M1은 Mn 및 Al으로 이루어지는 군으로부터 선택되는 적어도 1종, M2는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo으로 이루어지는 군으로부터 선택되는 적어도 1종)로 표시되는 니켈계 리튬 전이금속 수산화물인 것을 특징으로 하는 양극 활물질용 2차 입자 전구체.
  8. 제1항에 따른 양극 활물질용 전구체를 소성하여 산화물로 제조된 리튬 이차 전지용 양극 활물질.
  9. 제8항에 있어서,
    상기 산화물은 입경(D50)이 1 ㎛ 이상인 1차 거대(macro) 입자가 응집된 입경(D50) 3 내지 5 ㎛인 2차 입자인 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
  10. 제8항에 있어서,
    상기 1차 거대 입자의 평균 결정 크기는 200 nm 이상인 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
  11. 제8항에 있어서,
    상기 2차 입자의 평균 입경(D50)/상기 1차 거대 입자의 평균 입경(D50)의 비는 2 내지 4배인 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
  12. 제8항에 있어서,
    상기 산화물은 LiaNi1-x-yCoxM1yM2wO2 (1.0≤a≤1.5, 0≤x≤0.2, 0≤y≤0.2, 0≤w≤0.1, 0≤x+y≤0.2, M1은 Mn 및 Al으로 이루어지는 군으로부터 선택되는 적어도 1종, M2는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo으로 이루어지는 군으로부터 선택되는 적어도 1종)로 표시되는 니켈계 리튬 전이금속 산화물인 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
  13. 제8항에 따른 양극 활물질을 포함하는 리튬 이차 전지.
  14. (S1) 니켈 함유 원료물질, 코발트 함유 원료물질 및 망간 함유 원료물질을 포함하는 전이 금속 용액에 질소 함유 착물 형성제와 염기성 화합물을 제1 교반하는 단계;
    (S2) 상기 (S1) 단계의 결과물을 제2 교반하는 단계;를 포함하며,
    상기 제1 교반 단계의 제1 교반 속도가 상기 제2 교반 단계의 제2 교반 속도보다 느리며,
    상기 제1 교반 단계의 질소 함유 착물 형성제의 농도가 상기 제2 교반 단계의 질소 함유 착물 형성제의 농도보다 높은 것을 특징으로 하는, 제1항의 양극 활물질용 2차 입자 전구체의 제조방법.
  15. 제14항에 있어서,
    상기 제1 교반 단계의 질소 함유 착물 형성제의 농도는 5000 ppm 이상이며,
    제2 교반 단계의 질소 함유 착물 형성제의 농도는 5000 ppm 이하인 것을 특징으로 하는 양극 활물질용 2차 입자 전구체의 제조방법.
  16. 제14항에 있어서,
    상기 제1 교반 속도는 800 rpm 이하이며, 제2 교반 속도는 1000 ppm 이상인 것을 특징으로 하는 양극 활물질용 2차 입자 전구체의 제조방법.
  17. 제14항에 있어서,
    상기 제1 교반 단계의 질소 함유 착물 형성제의 농도는 5000 ppm 이상이며,
    제2 교반 단계의 질소 함유 착물 형성제의 농도는 4000 ppm 이하인 것을 특징으로 하는 양극 활물질용 2차 입자 전구체의 제조방법.
PCT/KR2021/018559 2020-12-08 2021-12-08 리튬 이차 전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 양극 WO2022124801A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022570713A JP7532555B2 (ja) 2020-12-08 2021-12-08 リチウム二次電池用正極活物質前駆体、正極活物質、及びそれを含む正極
CN202180030790.6A CN115461893A (zh) 2020-12-08 2021-12-08 锂二次电池用正极活性材料前体、正极活性材料及包含其的正极
EP21903847.8A EP4156339A1 (en) 2020-12-08 2021-12-08 Cathode active material precursor for lithium secondary battery, cathode active material, and cathode comprising same
US18/021,425 US20230303405A1 (en) 2020-12-08 2021-12-08 Positive Electrode Active Material Precursor for Lithium Secondary Battery, Positive Electrode Active Material and Positive Electrode Comprising the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0170277 2020-12-08
KR20200170277 2020-12-08

Publications (1)

Publication Number Publication Date
WO2022124801A1 true WO2022124801A1 (ko) 2022-06-16

Family

ID=81974747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018559 WO2022124801A1 (ko) 2020-12-08 2021-12-08 리튬 이차 전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 양극

Country Status (6)

Country Link
US (1) US20230303405A1 (ko)
EP (1) EP4156339A1 (ko)
JP (1) JP7532555B2 (ko)
KR (1) KR20220081312A (ko)
CN (1) CN115461893A (ko)
WO (1) WO2022124801A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024128112A1 (ja) * 2022-12-12 2024-06-20 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質
WO2024128113A1 (ja) * 2022-12-12 2024-06-20 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質の前駆体、及び、中間体
WO2024128114A1 (ja) * 2022-12-12 2024-06-20 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4434941A1 (en) * 2022-08-17 2024-09-25 LG Chem, Ltd. Positive electrode active material precursor, method for manufacturing same, positive electrode active material, and method for manufacturing positive electrode active material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150065046A (ko) * 2013-12-04 2015-06-12 주식회사 엘지화학 전이금속 화합물 전구체, 이의 제조방법, 및 이를 포함하는 양극 활물질
KR101768374B1 (ko) * 2016-04-29 2017-08-14 주식회사 엘지화학 복합 전이금속산화물계 전구체 및 이의 제조방법, 상기 전구체를 이용한 양극활물질
US20190013519A1 (en) * 2016-01-06 2019-01-10 Sumitomo Metal Mining Co., Ltd. Positive-electrode active material precursor for nonaqueous electrolyte secondary battery, positive-electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery
KR20200001082A (ko) * 2018-06-26 2020-01-06 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질 전구체, 이의 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
CN111370679A (zh) * 2018-12-25 2020-07-03 宁德时代新能源科技股份有限公司 正极活性物质前驱体、其制备方法及正极活性物质
CN111653756A (zh) * 2019-03-04 2020-09-11 屏南时代新材料技术有限公司 正极活性物质前驱体、其制备方法及正极活性物质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11152618B2 (en) 2016-12-02 2021-10-19 Samsung Sdi Co., Ltd. Nickel active material precursor for lithium secondary battery, method for producing nickel active material precursor, nickel active material for lithium secondary battery produced by method, and lithium secondary battery having cathode containing nickel active material
JP7124305B2 (ja) 2017-12-08 2022-08-24 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物の製造方法
JP7159639B2 (ja) 2018-06-25 2022-10-25 住友金属鉱山株式会社 遷移金属複合水酸化物の粒子の製造方法、及び、リチウムイオン二次電池用正極活物質の製造方法
EP3611133A1 (en) 2018-08-14 2020-02-19 Samsung SDI Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparation method thereof, nickel-based active material for lithium secondary battery formed therefrom, and lithium secondary battery including cathode including the nickel-based active material
EP3640215A1 (en) 2018-10-16 2020-04-22 Samsung SDI Co., Ltd. Nickel-based active material precursor for lithium secondary battery, method of preparing the same, nickel-based active material for lithium secondary battery formed therefrom, and lithium secondary battery including positive electrode including nickel-based active material
JP7379856B2 (ja) 2019-04-22 2023-11-15 住友金属鉱山株式会社 ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムニッケルマンガンコバルト含有複合酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150065046A (ko) * 2013-12-04 2015-06-12 주식회사 엘지화학 전이금속 화합물 전구체, 이의 제조방법, 및 이를 포함하는 양극 활물질
US20190013519A1 (en) * 2016-01-06 2019-01-10 Sumitomo Metal Mining Co., Ltd. Positive-electrode active material precursor for nonaqueous electrolyte secondary battery, positive-electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery
KR101768374B1 (ko) * 2016-04-29 2017-08-14 주식회사 엘지화학 복합 전이금속산화물계 전구체 및 이의 제조방법, 상기 전구체를 이용한 양극활물질
KR20200001082A (ko) * 2018-06-26 2020-01-06 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질 전구체, 이의 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
CN111370679A (zh) * 2018-12-25 2020-07-03 宁德时代新能源科技股份有限公司 正极活性物质前驱体、其制备方法及正极活性物质
CN111653756A (zh) * 2019-03-04 2020-09-11 屏南时代新材料技术有限公司 正极活性物质前驱体、其制备方法及正极活性物质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024128112A1 (ja) * 2022-12-12 2024-06-20 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質
WO2024128113A1 (ja) * 2022-12-12 2024-06-20 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質の前駆体、及び、中間体
WO2024128114A1 (ja) * 2022-12-12 2024-06-20 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質

Also Published As

Publication number Publication date
EP4156339A1 (en) 2023-03-29
JP2023526639A (ja) 2023-06-22
JP7532555B2 (ja) 2024-08-13
US20230303405A1 (en) 2023-09-28
KR20220081312A (ko) 2022-06-15
CN115461893A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2019235885A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2017057900A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2017150945A1 (ko) 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
WO2022092922A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2022124801A1 (ko) 리튬 이차 전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 양극
WO2022124774A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022103105A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2022169331A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021187963A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법, 양극 활물질 전구체, 이를 이용하여 제조된 양극 활물질, 양극 및 리튬 이차전지
WO2022154603A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2022114872A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2022098136A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2016053053A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021060911A1 (ko) 이차전지용 양극 활물질 전구체, 그 제조방법 및 양극 활물질의 제조방법
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2021066574A1 (ko) 리튬 이차전지용 양극 활물질 및 상기 양극 활물질의 제조 방법
WO2021194212A1 (ko) 양극 활물질의 제조 방법
WO2020111655A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2023038472A1 (ko) 리튬 이차 전지용 양극 활물질 분말, 이의 제조 방법, 리튬 이차 전지용 양극, 및 리튬 이차 전지
WO2023277382A1 (ko) 리튬 이차 전지용 양극 및 이를 구비하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570713

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021903847

Country of ref document: EP

Effective date: 20221219

NENP Non-entry into the national phase

Ref country code: DE