[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022154603A1 - 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지 - Google Patents

리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지 Download PDF

Info

Publication number
WO2022154603A1
WO2022154603A1 PCT/KR2022/000780 KR2022000780W WO2022154603A1 WO 2022154603 A1 WO2022154603 A1 WO 2022154603A1 KR 2022000780 W KR2022000780 W KR 2022000780W WO 2022154603 A1 WO2022154603 A1 WO 2022154603A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
lithium
average particle
active material
particle diameter
Prior art date
Application number
PCT/KR2022/000780
Other languages
English (en)
French (fr)
Inventor
노은솔
도중엽
박강준
한기범
곽민
박상민
이대진
이상욱
정왕모
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US18/269,155 priority Critical patent/US20240228325A9/en
Priority to CN202280008085.0A priority patent/CN116583972A/zh
Priority to EP22739795.7A priority patent/EP4254553A4/en
Priority to JP2023538142A priority patent/JP2024500909A/ja
Publication of WO2022154603A1 publication Critical patent/WO2022154603A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/53Particles with a specific particle size distribution bimodal size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery comprising primary large particles and a method for manufacturing the same.
  • lithium secondary battery has been in the spotlight as a driving power source for a portable device because it is lightweight and has a high energy density. Accordingly, research and development efforts for improving the performance of lithium secondary batteries are being actively conducted.
  • an organic electrolyte or a polymer electrolyte is charged between a positive electrode and a negative electrode made of an active material capable of intercalation and deintercalation of lithium ions, and lithium ions are intercalated/deintercalated from the positive electrode and the negative electrode. Electric energy is produced by a reduction reaction with
  • lithium cobalt oxide As a positive active material of the lithium secondary battery, lithium cobalt oxide (LiCoO 2 ), nickel-based lithium transition metal oxide, lithium manganese oxide (LiMnO 2 or LiMn 2 O 4 , etc.), lithium iron phosphate compound (LiFePO 4 ), etc. were used. Among them, lithium cobalt oxide (LiCoO 2 ) has the advantage of high operating voltage and excellent capacity characteristics, and is widely used, and is applied as a high voltage positive electrode active material. However, there is a limit to mass use as a power source in fields such as electric vehicles due to the price increase and supply instability of cobalt (Co). Ni-rich) cathode active materials made of lithium composite transition metal oxide are attracting attention due to their high capacity expression.
  • cathode active material for a lithium composite transition metal oxide containing nickel As a cathode active material for a lithium composite transition metal oxide containing nickel currently commercially available, secondary particles formed by aggregation of fine primary particles with an average particle diameter (D50) of several hundred nm are used, and secondary particles are used to increase output and rolling density.
  • the secondary particles in which the fine primary particles are aggregated have a large specific surface area and low particle strength. Therefore, when an electrode is manufactured from a bimodal positive electrode active material and then rolled, there is a problem in that the secondary large particle breakage is particularly severe, resulting in a large amount of gas generated during cell driving and poor stability.
  • high-content nickel-based (High-Ni) lithium transition metal oxide in which the content of nickel (Ni) is increased to secure high capacity, chemical stability is further reduced, and thermal stability is further reduced if particle breakage occurs due to structural problems. difficult.
  • a problem to be solved according to an aspect of the present invention is a high-content nickel-based lithium transition metal oxide positive electrode that includes secondary particles having different average particle diameters, and can improve cracking and lifespan characteristics in the rolling process. to provide an active material.
  • a problem to be solved according to another aspect of the present invention includes secondary particles having different average particle diameters, and a high content nickel-based lithium transition metal oxide positive electrode active material that can improve cracking in the rolling process and lifespan characteristics
  • An object to be solved according to another aspect of the present invention is to provide a positive electrode and a lithium secondary battery including a nickel-based lithium transition metal oxide positive electrode active material having a high content having the above-described characteristics.
  • a cathode active material for a lithium secondary battery according to the following embodiments.
  • Secondary small particles having an average particle diameter (D50) of 1 to 10 ⁇ m formed by agglomeration and
  • the large primary particles and fine primary particles are Li a Ni 1-bcd Co b Mn c Q d O 2+ ⁇ (1.0 ⁇ a ⁇ 1.5, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.2, 0 ⁇ d ⁇ 0.1, 0 ⁇ b+c+d ⁇ 0.2, -0.1 ⁇ 1.0, Q is at least one metal element selected from the group consisting of Al, Mg, V, Ti and Zr) It relates to the active material.
  • the average particle diameter (D50) of the secondary large particles is 5:1 to 2:1.
  • a third embodiment according to the first or second embodiment,
  • the content of the secondary small particles relates to a cathode active material for a lithium secondary battery in an amount of 10 to 100 parts by weight based on 100 parts by weight of the secondary large particles.
  • a fourth embodiment according to any one of the first to third embodiments,
  • M of the lithium-M oxide coating layer relates to a positive active material for a lithium secondary battery of at least one selected from the group consisting of boron and cobalt.
  • a fifth embodiment according to any one of the first to fourth embodiments,
  • the content of M in the lithium-M oxide coating layer relates to a cathode active material for a lithium secondary battery in an amount of 0.05 to 10 parts by weight based on 100 parts by weight of the secondary small particles.
  • the cohesive force between the large primary particles of the secondary small particles relates to a cathode active material for a lithium secondary battery, characterized in that smaller than the cohesive force between the fine primary particles of the secondary large particles.
  • (S1) a transition metal-containing solution containing nickel, cobalt, manganese, and Q (Q is at least one metal element selected from the group consisting of Al, Mg, V, Ti and Zr) in a predetermined molar ratio, an aqueous ammonia solution and a basic aqueous solution to form transition metal hydroxide precursor particles, separated and dried, and then pulverizing the transition metal hydroxide precursor particles to have a predetermined average particle diameter (D50):
  • the pulverized transition metal hydroxide precursor particles are mixed with a lithium raw material and calcined in an oxygen atmosphere, and Li a Ni 1-bcd Co b Mn c Q d O 2+ ⁇ (1.0 ⁇ a ⁇ 1.5, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.2, 0 ⁇ d ⁇ 0.1, 0 ⁇ b+c+d ⁇ 0.2, -0.1 ⁇ 1.0, Q is one selected from the group consisting of Al, Mg, V, Ti and Zr preparing small core particles in which large primary particles having an average particle diameter (D50) of 0.5 to 3 ⁇ m are aggregated;
  • the average particle size (D50) is 0.5 to 3 ⁇ m
  • large primary particles having a lithium-M oxide coating layer (M is at least one selected from the group consisting of boron, cobalt, manganese and magnesium) formed on a part or all of the surface are aggregated
  • D50 average particle diameter
  • the average particle diameter (D50) of the secondary large particles is 5:1 to 2:1.
  • a ninth embodiment according to any one of the seventh or eighth embodiments.
  • the content of the secondary small particles is 10 to 100 parts by weight based on 100 parts by weight of the secondary large particles relates to a method of manufacturing a cathode active material for a lithium secondary battery.
  • M of the lithium-M oxide coating layer relates to a method of manufacturing a cathode active material for a lithium secondary battery of at least one selected from the group consisting of boron and cobalt.
  • the content of M in the lithium-M oxide coating layer is 0.05 to 10 parts by weight based on 100 parts by weight of the secondary small particles.
  • the twelfth embodiment provides a positive electrode for a lithium secondary battery including the above-described positive active material.
  • a thirteenth embodiment provides a lithium secondary battery including the above-described positive electrode.
  • the positive active material according to an embodiment of the present invention has a good rolling density by simultaneously including the secondary large particles and the secondary small particles.
  • secondary small particles having a predetermined average particle diameter which are aggregates of large primary particles having a coating layer formed on the surface, part of the primary particles are separated before the secondary large particles are broken during rolling, thereby improving the cracking phenomenon of secondary large particles. Accordingly, the lifespan characteristics of the lithium secondary battery having the positive electrode active material of the present invention are improved.
  • FIG. 1A and 1B are a schematic diagram of a secondary large particle according to the present invention and an SEM image of the secondary large particle used in Example 1, respectively.
  • FIGS. 2A and 2B are a schematic diagram of a secondary small particle according to the present invention and an SEM image of the secondary small particle used in Example 1.
  • 3A and 3B are a schematic diagram of a single particle and an SEM image of a single particle used in Comparative Example 2, respectively.
  • the crystal size of the crystal grains may be quantitatively analyzed using X-ray diffraction analysis (XRD) by Cu K ⁇ X-rays (Xr ⁇ ).
  • XRD X-ray diffraction analysis
  • Xr ⁇ Cu K ⁇ X-rays
  • the average crystal size of the crystal grains can be quantitatively analyzed by putting the prepared particles in a holder and analyzing the diffraction grating emitted by irradiating X-rays to the particles.
  • D50 may be defined as a particle size based on 50% of a particle size distribution, and may be measured using a laser diffraction method.
  • the particles of the positive active material are dispersed in a dispersion medium, and then introduced into a commercially available laser diffraction particle size measuring device (eg, Microtrac MT 3000) to about 28 kHz
  • a commercially available laser diffraction particle size measuring device eg, Microtrac MT 3000
  • the term 'primary particles' refers to particles having no apparent grain boundaries when observed in a field of view of 5000 times to 20000 times using a scanning electron microscope.
  • 'secondary particles' are particles formed by agglomeration of the primary particles.
  • the term 'single particle' exists independently of the secondary particles, and is a particle having no grain boundary in appearance, for example, a particle having a particle diameter of 0.5 ⁇ m or more.
  • 'particle' when 'particle' is described, it may mean that any one or all of single particles, secondary particles, and primary particles are included.
  • Secondary small particles having an average particle diameter (D50) of 1 to 10 ⁇ m formed by agglomeration and
  • the large primary particles and fine primary particles are Li a Ni 1-bcd Co b Mn c Q d O 2+ ⁇ (1.0 ⁇ a ⁇ 1.5, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.2, 0 ⁇ d ⁇ 0.1, 0 ⁇ b+c+d ⁇ 0.2, -0.1 ⁇ 1.0, Q is at least one metal element selected from the group consisting of Al, Mg, V, Ti and Zr) provide active material.
  • the secondary large particles are secondary particles having an average particle diameter (D50) of 5 to 20 ⁇ m formed by aggregation of fine primary particles having an average particle diameter (D50) smaller than that of the large primary particles constituting the secondary small particles to be described later.
  • Fine primary particles are Li a Ni 1-bcd Co b Mn c Q d O 2+ ⁇ (1.0 ⁇ a ⁇ 1.5, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.2, 0 ⁇ d ⁇ 0.1, 0 ⁇ b+ c+d ⁇ 0.2, -0.1 ⁇ 1.0, Q is at least one metal element selected from the group consisting of Al, Mg, V, Ti and Zr).
  • the average particle diameter (D50) of the fine primary particles is smaller than the average particle diameter (D50) of the large primary particles constituting the secondary small particles, usually at the level of several hundred nm, for example, an average particle diameter (D50) of 100 to 900 nm has
  • the average particle diameter (D50) of the secondary large particles is 5 to 20 ⁇ m, which is larger than the average particle diameter (D50) of the secondary small particles, which will be described later.
  • the secondary large particles having such a size are generally used as large particles of the bimodal positive electrode active material, and are manufactured according to a conventional manufacturing method to be described later.
  • these secondary large particles in which the fine primary particles are aggregated have a large specific surface area and low particle strength. Therefore, if the fine primary particles are formed by aggregation and are mixed with secondary small particles having an average particle diameter smaller than that of the secondary large particles, and then rolled after manufacturing the electrode, the secondary large particles are severely broken, resulting in a large amount of gas generated when the cell is driven , there is a problem of poor stability.
  • the present inventors have solved this problem by mixing secondary small particles of the following form.
  • the positive active material of the present invention has an average particle diameter (D50) of 0.5 to 3 ⁇ m along with the above-described large particles, and a lithium-M oxide coating layer (M is a group consisting of boron, cobalt, manganese and magnesium on a part or all of the surface) and secondary small particles having an average particle diameter (D50) of 1 to 10 ⁇ m, formed by agglomeration of the large primary particles having one or more selected from).
  • D50 average particle diameter
  • D50 lithium-M oxide coating layer
  • the positive active material has improved rolling density by simultaneously including the secondary large particles and the secondary small particles.
  • Secondary small particles means aggregate particles formed by agglomeration of a plurality of macro primary particles on which a coating layer is formed.
  • the secondary small particles have an average particle diameter (D50) of 0.5 to 3 ⁇ m, and a lithium-M oxide coating layer (M is at least one selected from the group consisting of boron, cobalt, manganese, and magnesium) on a part or all of the surface.
  • D50 average particle diameter
  • M lithium-M oxide coating layer
  • the formed large primary particles are agglomerated and formed, which will be described in detail as follows.
  • the large primary particles constituting the secondary small particles according to one aspect of the present invention have a larger average diameter (D50) than the fine primary particles constituting the secondary large particles. That is, the secondary small particles are different from the general shape of the conventional positive electrode active material, that is, in which fine primary particles with small average particle diameters gather to form secondary particles, the large primary particles having an increased size of the primary particles are used. It is in the form of secondary particles aggregated within a predetermined number.
  • the large primary particles Compared to the micro primary particles constituting the conventional secondary particles, the large primary particles have an average particle diameter and an average crystal size of the primary particles grown at the same time.
  • the large primary particles have a large average crystal size as well as an average particle size, and are particles having no apparent grain boundaries.
  • the average crystal size of the large primary particles may be quantitatively analyzed using X-ray diffraction analysis (XRD) by Cu K ⁇ X-rays.
  • XRD X-ray diffraction analysis
  • the average crystal size of the large primary particles can be quantitatively analyzed by putting the prepared particles in a holder and analyzing the diffraction grating that irradiates the particles with X-rays.
  • the average crystal size of the large primary particles may be 200 nm or more, specifically 250 nm or more, and more specifically 300 nm or more.
  • the coating layer may be formed on the surface of some or all of the plurality of large primary particles, a form in which the coating layer is connected to each other to fill all the gaps between the large primary particles is also included as one type of the coating layer.
  • the coating layer is formed on the surfaces of all of the plurality of large primary particles, and is formed to fill all the gaps between the large primary particles.
  • the cohesive force between the large primary particles on which the coating layer is formed is weaker than the force to break the secondary large particles. That is, the cohesive force between the large primary particles of the secondary small particles is smaller than the cohesive force between the fine primary particles of the secondary large particles.
  • the large primary particles of the secondary small particles are separated before the secondary large particles are broken, thereby improving the cracking phenomenon of the secondary large particles.
  • the separated small particles themselves have high strength and are not broken, and unlike the fine primary particles constituting the secondary large particles, the exposed surface is formed with a lithium-M oxide coating layer, so the deterioration of lifespan characteristics is also insignificant.
  • M of the lithium-M oxide coating layer may be at least one selected from the group consisting of boron and cobalt.
  • the content of M in the lithium-M oxide coating layer may be 0.05 to 10 parts by weight based on 100 parts by weight of the secondary small particles, but is not limited thereto.
  • the lithium-M oxide coating layer is formed by reacting the M-containing precursor for forming the coating layer with lithium impurities remaining on the surface of the large primary particles in an oxygen atmosphere, as will be described later.
  • Such a coating layer can be formed on a stable spinel. Accordingly, even if the secondary small particles are not treated through a water washing process, the lithium impurity remaining on the surface is changed to lithium-M oxide, so that the lithium impurity content is reduced, thereby reducing the output.
  • Positive active material comprising secondary large particles and secondary small particles
  • the content of the secondary small particles may be 10 to 100 parts by weight based on 100 parts by weight of the secondary large particles.
  • the positive active material may further include a positive active material having a different average particle diameter within the limits that do not impair the object of the present invention, in addition to the secondary large particles and the secondary small particles having the above-described characteristics.
  • the positive electrode active material according to an aspect of the present invention may be manufactured by the following method. However, the present invention is not limited thereto.
  • transition metal hydroxide precursor particles are formed, separated and dried, and then the transition metal hydroxide precursor particles are pulverized to have a predetermined average particle diameter (D50) (step S1).
  • a cathode active material precursor including nickel (Ni), cobalt (Co), and manganese (Mn) is prepared.
  • the precursor for preparing the cathode active material may be prepared by purchasing a commercially available cathode active material precursor or according to a method for preparing a cathode active material precursor well known in the art.
  • the precursor may be prepared by adding an ammonium cation-containing complexing agent and a basic compound to a transition metal solution including a nickel-containing raw material, a cobalt-containing raw material, and a manganese-containing raw material, followed by a co-precipitation reaction.
  • the nickel-containing raw material may be, for example, nickel-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, specifically, Ni(OH) 2 , NiO, NiOOH, NiCO 3 ⁇ 2Ni(OH) 2 ⁇ 4H 2 O, NiC 2 O 2 ⁇ 2H 2 O, Ni(NO 3 ) 2 ⁇ 6H 2 O, NiSO 4 , NiSO 4 ⁇ 6H 2 O, fatty acid nickel salt, nickel halide or these It may be a combination, but is not limited thereto.
  • the cobalt-containing raw material may be cobalt-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, and specifically, Co(OH) 2 , CoOOH, Co(OCOCH 3 ) 2 ⁇ 4H 2 O , Co(NO 3 ) 2 ⁇ 6H 2 O, CoSO 4 , Co(SO 4 ) 2 ⁇ 7H 2 O, or a combination thereof, but is not limited thereto.
  • the manganese-containing raw material may be, for example, manganese-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide, oxyhydroxide, or a combination thereof, specifically Mn 2 O 3 , MnO 2 , Mn 3 manganese oxides such as O 4 and the like; manganese salts such as MnCO 3 , Mn(NO 3 ) 2 , MnSO 4 , manganese acetate, dicarboxylic acid manganese salt, manganese citrate, fatty acid manganese salt; It may be manganese oxyhydroxide, manganese chloride, or a combination thereof, but is not limited thereto.
  • the transition metal solution is prepared by mixing a nickel-containing raw material, a cobalt-containing raw material, and a manganese-containing raw material in a solvent, specifically water, or a mixed solvent of an organic solvent that can be uniformly mixed with water (eg, alcohol). It may be prepared by adding, or may be prepared by mixing an aqueous solution of a nickel-containing raw material, an aqueous solution of a cobalt-containing raw material, and a manganese-containing raw material.
  • a solvent specifically water, or a mixed solvent of an organic solvent that can be uniformly mixed with water (eg, alcohol).
  • the ammonium cation-containing complexing agent may be, for example, NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , NH 4 CO 3 or a combination thereof,
  • the present invention is not limited thereto.
  • the ammonium cation-containing complexing agent may be used in the form of an aqueous solution, and as the solvent, water or a mixture of water and an organic solvent that can be uniformly mixed with water (specifically, alcohol, etc.) and water may be used.
  • the basic aqueous solution may be an aqueous solution of a hydroxide of an alkali metal or alkaline earth metal, such as NaOH, KOH, or Ca(OH) 2 , a hydrate thereof, or a combination thereof as a basic compound.
  • a hydroxide of an alkali metal or alkaline earth metal such as NaOH, KOH, or Ca(OH) 2
  • a hydrate thereof such as NaOH, KOH, or Ca(OH) 2
  • a hydrate thereof such as a basic compound.
  • a combination thereof such as a basic compound.
  • water or a mixture of water and an organic solvent that is uniformly miscible with water (specifically, alcohol, etc.) and water may be used.
  • the basic aqueous solution is added to adjust the pH of the reaction solution, and may be added in an amount such that the pH of the metal solution is 9 to 12.
  • the transition metal hydroxide precursor particles may be prepared through a co-precipitation reaction by mixing the above-described transition metal-containing solution containing nickel, cobalt and manganese, an aqueous ammonia solution, and a basic aqueous solution.
  • the co-precipitation reaction may be performed at a temperature of 25° C. to 60° C. under an inert atmosphere such as nitrogen or argon.
  • the prepared transition metal hydroxide precursor particles are separated in a reactor, dried, and then pulverized to have a predetermined average particle diameter (D50) in order to form secondary small particles having a desired average particle diameter through a process to be described later.
  • D50 predetermined average particle diameter
  • the pulverized transition metal hydroxide precursor particles are mixed with a lithium raw material and calcined in an oxygen atmosphere, and Li a Ni 1-bcd Co b Mn c Q d O 2+ ⁇ (1.0 ⁇ a ⁇ 1.5, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.2, 0 ⁇ d ⁇ 0.1, 0 ⁇ b+c+d ⁇ 0.2, -0.1 ⁇ 1.0, Q is at least one selected from the group consisting of Al, Mg, V, Ti and Zr is a metal element) and an average particle diameter (D50) of 0.5 to 3 ⁇ m to prepare small core particles in which the large primary particles are aggregated (step S2).
  • lithium-containing sulfate, nitrate, acetate, carbonate, oxalate, citrate, halide, hydroxide, or oxyhydroxide may be used as the lithium raw material, and as long as it can be dissolved in water, especially not limited Specifically, the lithium raw material is Li 2 CO 3 , LiNO 3 , LiNO 2 , LiOH, LiOH ⁇ H 2 O, LiH, LiF, LiCl, LiBr, LiI, CH 3 COOLi, Li 2 O, Li 2 SO 4 , CH 3 COOLi, or Li 3 C 6 H 5 O 7 and the like, and any one or a mixture of two or more thereof may be used.
  • the oxygen atmosphere means an atmosphere containing oxygen at a sufficient level for firing including atmospheric atmosphere.
  • a solution of a precursor containing at least one selected from the group consisting of boron, cobalt manganese, and magnesium and the small core particles are mixed, sprayed and dried using a spray dryer, and then calcined in an oxygen atmosphere, the average particle size (D50) is 0.5 to 3 ⁇ m, and large primary particles having a lithium-M oxide coating layer (M is at least one selected from the group consisting of boron, cobalt, manganese and magnesium) formed on a part or all of the surface are aggregated
  • Secondary small particles having an average particle diameter (D50) of 1 to 10 ⁇ m are prepared (step S3).
  • the precursor containing boron may include boronic acid (boric acid, H 3 BO 3 ), and the precursor containing cobalt may include cobalt nitrate.
  • a solution of these precursors may be prepared, for example, by dissolving the precursor in a solvent such as DI water or ethanol.
  • step (S2) When the solution of the precursor is mixed with the small core particles prepared according to step (S2) and then sprayed and dried using a spray dryer, a plurality of agglomerated particles of the desired size with the core small particles coated with the precursor are produced.
  • the lithium-M oxide coating layer is formed by reacting an M-containing precursor for forming the coating layer with lithium impurities remaining on the surface of the small core particles in an oxygen atmosphere.
  • Such a coating layer can be formed on a stable spinel. Accordingly, even if the secondary small particles are not treated through a water washing process, the lithium impurity remaining on the surface is changed to lithium-M oxide, so that the lithium impurity content is reduced, thereby reducing the output.
  • the firing for forming the coating layer may be performed at a temperature of 350 to 600° C. for 3 to 6 hours, but is not limited thereto.
  • the secondary small particles of the above-described properties can be prepared.
  • the secondary small particles thus prepared were Li a Ni 1-bcd Co b Mn c Q d O 2+ ⁇ (1.0 ⁇ a ⁇ 1.5, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.2, 0 ⁇ d ⁇ 0.1, 0 ⁇ b+c+d ⁇ 0.2, -0.1 ⁇ 1.0, Q is at least one metal element selected from the group consisting of Al, Mg, V, Ti and Zr), and the average particle diameter (D50) is
  • the positive electrode active material of the present invention can be prepared by mixing with secondary large particles having an average particle diameter (D50) of 5 to 20 ⁇ m formed by aggregation of fine primary particles smaller than the large primary particles.
  • the secondary large particles may be purchased and used commercially, or may be directly prepared and used using known co-invasion. More specifically, it can be prepared by generally obtaining secondary particles in which a plurality of high-content nickel-based composite transition metal hydroxide particles are aggregated as a precursor using a co-precipitation method known in the art, mixing with a lithium source, and then sintering. .
  • the method of controlling the precursor composition using the co-precipitation method, the type of the lithium source, and the like may follow common technical knowledge widely known in the art.
  • a positive electrode for a lithium secondary battery and a lithium secondary battery including the positive electrode active material.
  • the positive electrode is formed on the positive electrode current collector and the positive electrode current collector, and includes a positive electrode active material layer including the positive electrode active material of the present invention described above.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. , nickel, titanium, silver or the like surface-treated may be used.
  • the positive electrode current collector may typically have a thickness of 3 to 500 ⁇ m, and may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface of the positive electrode current collector.
  • it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body.
  • the positive electrode active material layer may further include a positive electrode active material including large single particles or secondary particles in which conventional fine primary particles are aggregated together with the positive active material described above, and may include a conductive material and a binder.
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, it can be used without any particular limitation as long as it does not cause chemical change and has electronic conductivity.
  • Specific examples include graphite such as natural graphite and artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or a conductive polymer such as a polyphenylene derivative, and the like, and any one of them or a mixture of two or more thereof may be used.
  • the conductive material may be included in an amount of 1 to 30% by weight based on the total weight of the positive active material layer.
  • the binder serves to improve adhesion between the positive electrode active material particles and the adhesive force between the positive electrode active material and the positive electrode current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC) ), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and any one of them or a mixture of two or more thereof may be used.
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the above positive electrode active material. Specifically, it may be prepared by applying the above-described positive active material and, optionally, a composition for forming a positive active material layer including a binder and a conductive material on a positive electrode current collector, followed by drying and rolling. In this case, the types and contents of the positive electrode active material, the binder, and the conductive material are as described above.
  • the solvent may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or water and the like, and any one of them or a mixture of two or more thereof may be used.
  • the amount of the solvent used is enough to dissolve or disperse the positive electrode active material, the conductive material and the binder in consideration of the application thickness of the slurry and the production yield, and to have a viscosity capable of exhibiting excellent thickness uniformity when applied for the production of the positive electrode thereafter. do.
  • the positive electrode may be prepared by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating a film obtained by peeling it off the support on the positive electrode current collector.
  • an electrochemical device including the positive electrode is provided.
  • the electrochemical device may specifically be a battery or a capacitor, and more specifically, a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above.
  • the lithium secondary battery may optionally further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface. Carbon, nickel, titanium, silver, etc. surface-treated, aluminum-cadmium alloy, etc. may be used.
  • the negative electrode current collector may have a thickness of typically 3 to 500 ⁇ m, and similarly to the positive electrode current collector, fine irregularities may be formed on the surface of the current collector to strengthen the bonding force of the negative electrode active material.
  • it may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam body, a nonwoven body, and the like.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • the anode active material layer may be formed by applying a composition for forming an anode including an anode active material, and optionally a binder and a conductive material on an anode current collector and drying, or casting the composition for forming the anode on a separate support, and then , may be produced by laminating a film obtained by peeling from this support onto a negative electrode current collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metal compounds capable of alloying with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy; metal oxides capable of doping and dedoping lithium, such as SiO ⁇ (0 ⁇ ⁇ ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide; Alternatively, a composite including the metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite may be used, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • both low crystalline carbon and high crystalline carbon may be used.
  • low crystalline carbon soft carbon and hard carbon are representative, and as high crystalline carbon, natural or artificial graphite of amorphous, plate-like, scale-like, spherical or fibrous shape, and Kish graphite (Kish) graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, liquid crystal pitches (Mesophase pitches), and petroleum and coal tar pitch (petroleum or coal tar pitch) High-temperature calcined carbon such as derived cokes) is a representative example.
  • binder and the conductive material may be the same as described above for the positive electrode.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and it can be used without particular limitation as long as it is usually used as a separator in a lithium secondary battery, especially for the movement of ions in the electrolyte It is preferable to have a low resistance to and excellent electrolyte moisture content.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer, or these
  • a laminated structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and may optionally be used in a single-layer or multi-layer structure.
  • examples of the electrolyte used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in the manufacture of lithium secondary batteries, and are limited to these. it's not going to be
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone
  • ether-based solvents such as dibutyl ether or tetrahydrofuran
  • ketone solvents such as cyclohexanone
  • aromatic hydrocarbon solvents such as benzene and fluorobenzene
  • alcohol solvents such as ethyl alcohol and isopropyl alcohol
  • nitriles such as R-CN (R is a C2-C20 linear, branched or cyclic hydrocarbon group
  • a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate, etc.) having high ionic conductivity and high dielectric constant capable of increasing the charge/discharge performance of the battery, and a low-viscosity linear carbonate-based compound (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the electrolyte may exhibit excellent performance.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 and the like may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has appropriate conductivity and viscosity, excellent electrolyte performance may be exhibited, and lithium ions may move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, tri Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as taxdine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the positive electrode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics and capacity retention rate, so portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful in the field of electric vehicles such as hybrid electric vehicle, HEV).
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool (Power Tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium and large-sized devices in a system for power storage.
  • Power Tool Power Tool
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • secondary particles having a plurality of aggregated nickel-based composite transition metal hydroxide particles are obtained as a precursor, mixed with a lithium source, and calcined to form LiNi 0.8 Co 0.1 Mn 0.1O2 .
  • secondary large particles having an average particle diameter (D50) of 15 ⁇ m formed by aggregation of fine primary particles having an average particle diameter (D50) of several hundred nm were prepared.
  • a transition metal solution having a concentration of 3.2 mol/L mixed to 0.8:0.1:0.1 was continuously added to the reactor at 300 mL/hr, and a 28 wt% aqueous ammonia solution was added to the reactor at 42 mL/hr.
  • the speed of the impeller was stirred at 400 rpm, and 40% by weight of sodium hydroxide solution was used to maintain the pH so that the pH was maintained at 9.
  • the precursor particles were formed by co-precipitation reaction for 10 hours. The precursor particles were separated, washed, and dried in an oven at 130° C. to prepare a precursor.
  • Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 precursor synthesized by the co-precipitation reaction was put in a mixer and pulverized to a size of about 1 ⁇ m.
  • heat treatment LiNi 0.8 Co 0.1 Mn 0.1 O 2 lithium composite transition metal oxide was prepared.
  • the obtained secondary small particles were particles having an average particle diameter (D50) of 4 ⁇ m, formed by aggregation of large primary particles having an average particle diameter (D50) of 1 ⁇ m.
  • a bimodal positive electrode active material was prepared by mixing the secondary large particles and secondary small particles obtained by the above method in a weight ratio of 7:3.
  • a transition metal solution having a concentration of 3.2 mol/L mixed to 0.8:0.1:0.1 was continuously added to the reactor at 300 mL/hr, and a 28 wt% aqueous ammonia solution was added to the reactor at 42 mL/hr.
  • the speed of the impeller was stirred at 400 rpm, and 40% by weight of sodium hydroxide solution was used to maintain the pH so that the pH was maintained at 9.
  • the precursor particles were formed by co-precipitation reaction for 10 hours. The precursor particles were separated, washed, and dried in an oven at 130° C. to prepare a precursor.
  • Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 precursor synthesized by the co-precipitation reaction was put in a mixer and pulverized to a size of about 1 ⁇ m.
  • heat treatment LiNi 0.8 Co 0.1 Mn 0.1 O 2 lithium composite transition metal oxide was prepared.
  • the obtained secondary small particles were particles having an average particle diameter (D50) of 4 ⁇ m, formed by aggregation of large primary particles having an average particle diameter (D50) of 1 ⁇ m.
  • a bimodal positive electrode active material was prepared by mixing the secondary large particles and secondary small particles obtained by the above method in a weight ratio of 7:3.
  • a transition metal solution having a concentration of 3.2 mol/L mixed to 0.8:0.1:0.1 was continuously added to the reactor at 300 mL/hr, and a 28 wt% aqueous ammonia solution was added to the reactor at 42 mL/hr.
  • the speed of the impeller was stirred at 400rpm, and a 40% by weight sodium hydroxide solution was used to maintain the pH so that the pH was maintained at 9.
  • the precursor particles were formed by co-precipitation reaction for 10 hours. The precursor particles were separated, washed, and dried in an oven at 130° C. to prepare a precursor.
  • Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 precursor synthesized by the co-precipitation reaction was put in a mixer and pulverized to a size of about 1 ⁇ m.
  • heat treatment LiNi 0.8 Co 0.1 Mn 0.1 O 2 lithium composite transition metal oxide was prepared.
  • the obtained secondary small particles were particles having an average particle diameter (D50) of 4 ⁇ m, formed by aggregation of large primary particles having an average particle diameter (D50) of 1 ⁇ m.
  • a bimodal positive electrode active material was prepared by mixing the secondary large particles and secondary small particles obtained by the above method in a weight ratio of 7:3.
  • secondary small particles having an average particle diameter (D50) of 4 ⁇ m in which the primary fine particles prepared according to the manufacturing method of the secondary large particles of Example 2 were aggregated were used.
  • a conventional bimodal positive electrode active material (weight ratio of secondary large particles to secondary small particles 7:3) was prepared.
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that single particles prepared by the following method were used instead of the secondary small particles of Example 1.
  • the precursor particles were formed by co-precipitation reaction for 24 hours.
  • the precursor particles were separated, washed, and dried in an oven at 130° C. to prepare a precursor.
  • FIG. 1A and 1B are a schematic diagram of a secondary large particle according to the present invention and an SEM image of the secondary large particle used in Example 1, respectively.
  • FIGS. 2a and 2b are, respectively, a schematic diagram of a secondary small particle according to the present invention and an SEM image of the secondary small particle used in Example 1.
  • 3A and 3B are a schematic diagram of a single particle and an SEM image of a single particle used in Comparative Example 2, respectively.
  • D50 can be defined as the particle size based on 50% of the particle size distribution, and was measured using a laser diffraction method.
  • Rolling density was measured using HPRM-1000. Specifically, 5 g of the positive electrode active material of Examples and Comparative Examples was put into a cylindrical mold, respectively, and then the mold containing the positive electrode active material was pressed by 9 tons. Thereafter, the rolling density was obtained by measuring the height of the pressed mold with a vernier caliper.
  • Example 1 Example 2
  • Example 3 Comparative Example 1 Comparative Example 2
  • a positive electrode was manufactured using the positive electrode active material according to Examples and Comparative Examples, and only the active material remaining after the rolled electrode was fired at 500 °C for 10 hours in a kiln was obtained, and PSD measurement was performed using Microtrac MT 3000 to have a thickness of 1 ⁇ m or less. The area was measured.
  • Example 1 Example 2
  • Example 3 Comparative Example 1 Comparative Example 2 Area of 1 ⁇ m or less % 1.96 2.25 2.31 10.1 14.5
  • a positive electrode was manufactured using the positive electrode active material according to Examples and Comparative Examples, and capacity retention was measured in the following manner.
  • a negative electrode slurry was prepared by mixing artificial graphite and natural graphite in a ratio of 5:5 as an anode active material, superC as a conductive material and SBR/CMC as a binder in a weight ratio of 96:1:3, and this was applied to one side of a copper current collector. After coating, drying at 130° C. and rolling to a porosity of 30% to prepare a negative electrode.
  • An electrode assembly was prepared by interposing a separator of porous polyethylene between the positive electrode and the negative electrode prepared as described above, the electrode assembly was placed inside the case, and the electrolyte was injected into the case to prepare a lithium secondary battery.
  • LiPF6 lithium hexafluorophosphate
  • the prepared lithium secondary battery full cell was charged at 45°C in CC-CV mode at 0.5C until 4.2V, and discharged to 3.0V at a constant current of 1C, and 100 times of charging/discharging experiments were performed. By measuring the capacity retention rate at the time, life characteristics were evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 평균 입경(D50)이 0.5 내지 3 ㎛이며, 표면의 일부 또는 전부에 리튬-M 산화물 코팅층((M은 보론, 코발트, 망간 및 마그네슘으로 이루어진 군으로부터 선택된 1종 이상임)이 형성된 거대 1차 입자가 응집되어 형성된 평균 입경(D50)이 1 내지 10 ㎛인 2차 소입자; 및 평균 입경(D50)이 상기 거대 1차 입자보다 작은 미세 1차 입자가 응집되어 형성된 평균 입경(D50)이 5 내지 20 ㎛인 2차 대입자를 포함하고, 상기 거대 1차 입자 및 미세 1차 입자는 LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b<0.2, 0<c<0.2, 0≤d≤0.1, 0<b+c+d≤0.2, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되는, 리튬 이차전지용 양극 활물질을 개시한다.

Description

리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
본 발명은 1차 거대 입자를 포함하는 리튬 이차 전지용 양극 활물질 및 그 제조방법에 관한 것이다.
본 출원은 2021년 1월 15일 자로 출원된 한국 특허출원번호 제 10-2021-0006202호에 대한 우선권주장출원으로서, 해당 출원의 명세서에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차 전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차 전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차 전지의 성능향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차 전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차 전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 니켈계 리튬 전이금속 산화물, 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 이 중에서도 리튬 코발트 산화물(LiCoO2)은 작동 전압이 높고 용량 특성이 우수한 장점이 있어, 널리 사용되고 있으며, 고전압용 양극 활물질로 적용되고 있다. 그러나, 코발트(Co)의 가격 상승 및 공급 불안정 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에 한계가 있어, 이를 대체할 수 있는 양극 활물질 개발의 필요성이 대두되었고, 특히 고함량의 니켈 함유 (Ni-rich) 리튬 복합전이금속 산화물로 된 양극 활물질은 높은 용량 발현으로 주목 받고 있다.
현재 상용화된 니켈 함유 리튬 복합 전이금속 산화물의 양극 활물질로는 평균 입경(D50)이 수백 nm 수준의 미세 1차 입자가 응집되어 형성된 2차 입자들을 이용하는데, 출력 및 압연밀도를 높이기 위하여 2차 입자들의 평균입경(D50)이 상이한 2종, 즉 평균입경이 큰 2차 대입자와 평균입경이 작은 2차 소입자를 혼합한 바이모달(bimodal) 양극 활물질이 통상적으로 사용된다.
미세 1차 입자가 응집된 2차 입자들은 비표면적이 크고, 입자 강도가 낮다. 따라서, 바이모달 양극 활물질로 전극을 제조한 후 압연하는 경우, 특히 2차 대입자 깨짐이 심해 셀 구동 시 가스 발생량이 많고, 안정성이 떨어지는 문제가 있다. 고용량 확보를 위해 니켈(Ni)의 함량을 증가시킨 고함량의 니켈계(High-Ni) 리튬 전이금속 산화물의 경우 구조적인 문제로 인하여 입자 깨짐이 발생하면 화학적 안정성이 더욱 저하되고, 열 안정성 확보도 어렵다.
본 발명의 일 태양에 따라 해결하고자 하는 과제는, 서로 상이한 평균 입경을 갖는 2차 입자들을 포함하며, 압연 과정에서의 깨짐 현상과 수명 특성이 개선될 수 있는 고함량의 니켈계 리튬 전이금속 산화물 양극 활물질을 제공하는데 있다.
본 발명의 다른 태양에 따라 해결하고자 하는 과제는 서로 상이한 평균 입경을 갖는 2차 입자들을 포함하며, 압연 과정에서의 깨짐 현상과 수명 특성이 개선될 수 있는 고함량의 니켈계 리튬 전이금속 산화물 양극 활물질의 제조방법을 제공하는데 있다.
본 발명의 또 다른 태양에 따라 해결하고자 하는 과제는 전술한 특성을 갖는 고함량의 니켈계 리튬 전이금속 산화물 양극 활물질을 포함하는 양극 및 리튬 이차전지를 제공하는데 있다.
본 발명의 일 측면에서는 하기 구현예에 따른 리튬 이차 전지용 양극 활물질을 제공한다.
제1 구현예는,
평균 입경(D50)이 0.5 내지 3 ㎛이며, 표면의 일부 또는 전부에 리튬-M 산화물 코팅층((M은 보론, 코발트, 망간 및 마그네슘으로 이루어진 군으로부터 선택된 1종 이상임)이 형성된 거대 1차 입자가 응집되어 형성된 평균 입경(D50)이 1 내지 10 ㎛인 2차 소입자; 및
평균 입경(D50)이 상기 거대 1차 입자보다 작은 미세 1차 입자가 응집되어 형성된 평균 입경(D50)이 5 내지 20 ㎛인 2차 대입자를 포함하고,
상기 거대 1차 입자 및 미세 1차 입자는 LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b<0.2, 0<c<0.2, 0≤d≤0.1, 0<b+c+d≤0.2, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되는, 리튬 이차전지용 양극 활물질에 관한 것이다.
제2 구현예는, 제1 구현예에 있어서,
상기 2차 대입자의 평균입경(D50):상기 2차 소입자의 평균입경(D50)은 5:1 내지 2:1인 리튬 이차 전지용 양극 활물질에 관한 것이다.
제3 구현예는, 제1 또는 제2 구현예에 있어서,
상기 2차 소입자의 함량은 상기 2차 대입자 100 중량부를 기준으로 10 내지 100 중량부인 리튬 이차 전지용 양극 활물질에 관한 것이다.
제4 구현예는, 제1 내지 제3 구현예 중 어느 한 구현예에 있어서,
상기 리튬-M 산화물 코팅층의 M은 보론 및 코발트로 이루어진 군으로부터 선택된 1종 이상인 리튬 이차 전지용 양극 활물질에 관한 것이다.
제5 구현예는, 제1 내지 제4 구현예 중 어느 한 구현예에 있어서,
상기 리튬-M 산화물 코팅층의 M의 함량은 2차 소입자 100 중량부를 기준으로 0.05 내지 10 중량부인 리튬 이차 전지용 양극 활물질에 관한 것이다.
제6 구현예는, 제1 내지 제5 구현예 중 어느 한 구현예에 있어서,
상기 2차 소입자의 거대 1차 입자 사이의 응집력은 상기 2차 대입자의 미세 1차 입자 사이의 응집력보다 작은 것을 특징으로 하는 리튬 이차 전지용 양극 활물질에 관한 것이다.
본 발명의 다른 일 측면에서는 하기 구현예에 따른 리튬 이차 전지용 양극 활물질의 제조방법을 제공한다.
제7 구현예는,
(S1) 니켈, 코발트, 망간 및 Q (Q은 Al, Mg, V, Ti 및 Zr로 이루어진 군에서 선택된 1종 이상의 금속 원소임)을 소정 몰비로 포함하는 전이금속 함유 용액, 암모니아 수용액 및 염기성 수용액을 혼합하여 전이금속 수산화물 전구체 입자를 형성하고, 이를 분리하여 건조시킨 다음, 소정 평균 입경(D50)을 갖도록 상기 전이금속 수산화물 전구체 입자를 분쇄하는 단계:
(S2) 상기 분쇄된 전이금속 수산화물 전구체 입자를 리튬 원료 물질과 혼합하고 산소 분위기에서 소성하여, LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b<0.2, 0<c<0.2, 0≤d≤0.1, 0<b+c+d≤0.2, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되고 평균 입경(D50)이 0.5 내지 3 ㎛인 거대 1차 입자가 응집된 코어 소입자를 제조하는 단계;
(S3) 보론, 코발트 망간 및 마그네슘으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 전구체의 용액과 상기 코어 소입자를 혼합한 후 스프레이 드라이어를 이용하여 스프레이 및 건조시킨 후 산소 분위기에서 소성하여, 평균 입경(D50)이 0.5 내지 3 ㎛이며, 표면의 일부 또는 전부에 리튬-M 산화물 코팅층((M은 보론, 코발트, 망간 및 마그네슘으로 이루어진 군으로부터 선택된 1종 이상임)이 형성된 거대 1차 입자가 응집되어 형성된 평균 입경(D50)이 1 내지 10 ㎛인 2차 소입자를 제조하는 단계; 및
(S4) LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b<0.2, 0<c<0.2, 0≤d≤0.1, 0<b+c+d≤0.2, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되고 평균 입경(D50)이 상기 거대 1차 입자보다 작은 미세 1차 입자가 응집되어 형성된 평균 입경(D50)이 5 내지 20 ㎛인 2차 대입자를 준비하고 상기 2차 소입자와 혼합하는 단계를 포함하는 리튬 이차전지용 양극 활물질의 제조방법에 관한 것이다.
제8 구현예는, 제7 구현예에 있어서,
상기 2차 대입자의 평균입경(D50):상기 2차 소입자의 평균입경(D50)은 5:1 내지 2:1인 리튬 이차전지용 양극 활물질의 제조방법에 관한 것이다.
제9 구현예는, 제7 또는 제8 구현예 중 어느 한 구현예에 있어서,
상기 2차 소입자의 함량은 상기 2차 대입자 100 중량부를 기준으로 10 내지 100 중량부인 리튬 이차전지용 양극 활물질의 제조방법에 관한 것이다.
제10 구현예는, 제7 내지 제9 구현예 중 어느 한 구현예에 있어서,
상기 리튬-M 산화물 코팅층의 M은 보론 및 코발트로 이루어진 군으로부터 선택된 1종 이상인 리튬 이차전지용 양극 활물질의 제조방법에 관한 것이다.
제11 구현예는, 제7 내지 제10 구현예 중 어느 한 구현예에 있어서,
상기 리튬-M 산화물 코팅층의 M의 함량은 2차 소입자 100 중량부를 기준으로 0.05 내지 10 중량부인 리튬 이차전지용 양극 활물질의 제조방법에 관한 것이다.
제12 구현예는, 전술한 양극 활물질을 포함하는 리튬 이차 전지용 양극을 제공한다.
제13 구현예는, 전술한 양극을 포함하는 리튬 이차 전지를 제공한다.
본 발명의 일 실시예에 따른 양극 활물질은 2차 대입자와 2차 소입자를 동시에 포함하여 압연밀도가 양호하다. 또한, 표면에 코팅층이 형성된 거대 1차 입자의 응집체인 소정 평균 입경의 2차 소입자는 압연시 2차 대입자가 깨지기 전에 1차 입자의 일부가 떨어져 분리됨으로서 2차 대입자의 깨짐 현상을 개선한다. 이에 따라 본 발명의 양극 활물질을 구비한 리튬 이차전지의 수명 특성이 개선된다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다.
도 1a 및 도 1b는 각각 본 발명에 따른 2차 대입자의 모식도 및 실시예 1에 사용된 2차 대입자의 SEM 이미지이다.
도 2a 및 도 2b는 본 발명에 따른 2차 소입자의 모식도 및 실시예 1에 사용된 2차 소입자의 SEM 이미지이다.
도 3a 및 도 3b는 각각 비교예 2에 사용된 단입자의 모식도 및 단일 입자의 SEM 이미지이다.
이하 본 발명의 구현예를 상세히 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 명세서 및 청구범위에 있어서, "다수의 결정립을 포함한다" 함은 특정 범위의 평균 결정 크기를 갖는 둘 이상의 결정 입자가 모여서 이루어지는 결정체를 의미한다. 이때 상기 결정립의 결정 크기는 Cu Kα X선(Xrα)에 의한 X선 회절 분석(XRD)을 이용하여 정량적으로 분석될 수 있다. 구체적으로는 제조된 입자를 홀더에 넣어 X선을 상기 입자에 조사해 나오는 회절 격자를 분석함으로써, 결정립의 평균 결정 크기를 정량적으로 분석 할 수 있다.
명세서 및 청구범위에 있어서, D50은 입자크기 분포의 50% 기준에서의 입자크기로 정의될 수 있으며, 레이저 회절법(laser diffraction method)을 이용하여 측정될 수 있다. 예를 들어, 상기 양극 활물질의 평균 입경(D50)의 측정 방법은, 양극 활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 측정 장치에 있어서의 체적 누적량의 50%에 해당하는 평균 입경(D50)을 산출할 수 있다.
본 발명에 있어서 '1차 입자'란 주사형 전자 현미경을 이용하여 5000배 내지 20000배의 시야에서 관찰하였을 때 외관상 입계가 존재하지 않는 입자를 의미한다.
본 발명에서 '2차 입자'란 상기 1차 입자가 응집되어 형성된 입자이다.
본 발명에서, '단입자'란 상기 2차 입자와는 독립적으로 존재하는 것으로, 외관상에 입계가 존재하지 않는 입자로서, 예를 들어, 입자 지름이 0.5 ㎛ 이상의 입자를 의미한다.
본 발명에 있어서, '입자'라고 기재하는 경우에는 단입자, 2차 입자, 1차 입자 중 어느 하나 또는 모두가 포함되는 의미일 수 있다.
본 발명의 일 측면에 따르면,
평균 입경(D50)이 0.5 내지 3 ㎛이며, 표면의 일부 또는 전부에 리튬-M 산화물 코팅층((M은 보론, 코발트, 망간 및 마그네슘으로 이루어진 군으로부터 선택된 1종 이상임)이 형성된 거대 1차 입자가 응집되어 형성된 평균 입경(D50)이 1 내지 10 ㎛인 2차 소입자; 및
평균 입경(D50)이 상기 거대 1차 입자보다 작은 미세 1차 입자가 응집되어 형성된 평균 입경(D50)이 5 내지 20 ㎛인 2차 대입자를 포함하고,
상기 거대 1차 입자 및 미세 1차 입자는 LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b<0.2, 0<c<0.2, 0≤d≤0.1, 0<b+c+d≤0.2, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되는, 리튬 이차전지용 양극 활물질을 제공한다.
2차 대입자
2차 대입자는 후술하는 2차 소입자를 구성하는 거대 1차 입자보다 작은 평균 입경(D50)을 갖는 미세 1차 입자들이 응집되어 형성된 평균 입경(D50)이 5 내지 20 ㎛의 2차 입자이다. 미세 1차 입자는 LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b<0.2, 0<c<0.2, 0≤d≤0.1, 0<b+c+d≤0.2, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되는 양극 활물질이다.
미세 1차 입자들의 평균 입경(D50)은 2차 소입자를 구성하는 거대 1차 입자의 평균 입경(D50)보다 작은데, 통상적으로 수백 nm 수준, 예를 들어 100~900 nm의 평균 입경(D50)을 갖는다.
2차 대입자의 평균 입경(D50)은 5 내지 20 ㎛으로서, 후술하는 2차 소입자의 평균 입경(D50)보다 크다.
이러한 크기를 갖는 2차 대입자는 일반적으로 바이모달 양극 활물질의 대입자로 이용되는 입자로서, 후술하는 통상적인 제조방법에 따라 제조된다.
전술한 바와 같이 미세 1차 입자가 응집된 이러한 2차 대입자들은 비표면적이 크고, 입자 강도가 낮다. 따라서, 미세 1차 입자가 응집되어 형성되며 2차 대입자보다 평균 입경이 작은 2차 소입자와 혼용하여 전극을 제조한 후 압연하는 경우, 2차 대입자 깨짐이 심해 셀 구동 시 가스 발생량이 많고, 안정성이 떨어지는 문제가 있다.
본 발명자들은 이러한 문제점을 하기 형태의 2차 소입자를 혼용함으로서 해결하였다.
2차 소입자
본 발명의 양극 활물질은 전술한 대입자와 함께, 평균 입경(D50)이 0.5 내지 3 ㎛이며, 표면의 일부 또는 전부에 리튬-M 산화물 코팅층((M은 보론, 코발트, 망간 및 마그네슘으로 이루어진 군으로부터 선택된 1종 이상임)이 형성된 거대 1차 입자가 응집되어 형성된 평균 입경(D50)이 1 내지 10 ㎛인 2차 소입자를 포함한다.
양극 활물질은 2차 대입자와 2차 소입자를 동시에 포함함으로써 압연밀도가 개선된다.
본 발명의 일 측면에 따른 2차 소입자는 코팅층이 형성된 복수의 거대(macro) 1차 입자가 응집되어 형성된 응집체 입자를 의미한다.
2차 소입자는 평균 입경(D50)이 0.5 내지 3 ㎛이며, 표면의 일부 또는 전부에 리튬-M 산화물 코팅층((M은 보론, 코발트, 망간, 및 마그네슘으로 이루어진 군으로부터 선택된 1종 이상임)이 형성된 거대 1차 입자가 응집되어 형성되는데, 이에 관하여 상세히 설명하면 다음과 같다.
본 발명의 일 측면에 따른 2차 소입자를 구성하는 거대 1차 입자는 2차 대입자를 구성하는 미세 1차 입자보다 평균 직경(D50)이 큰 형태를 나타낸다. 즉, 2차 소입자는 기존에 양극 활물질이 갖는 일반적인 형태, 즉 평균 입경이 작은 미세 1차 입자들이 모여서 2차 입자를 형성하는 형태와는 다르게, 1차 입자의 크기를 키운 거대 1차 입자를 소정 개수 이내로 응집한 2차 입자 형태이다.
거대 1차 입자는 종래 2차 입자를 구성하는 미세(micro) 1차 입자와 비교할 때, 1차 입자의 평균 입경과 평균 결정 크기가 동시에 성장한 것이다.
크랙(crack) 관점에서 보자면 기존의 단입자와 같이 외관상 입계가 존재하지 않으면서도 평균 입경이 큰 것이 유리하다. 과소성 등에 의해 1차 입자의 평균 입경(D50)만을 늘리는 경우에는 1차 입자의 표면에 rock salt가 형성되고 최초(initial)저항이 높아지는 문제가 있는다. 1차 입자의 결정 크기도 함께 성장시키면 저항이 낮아지게 된다. 이에 따라, 본 발명에서 일 태양에 따른 거대 1차 입자는, 평균 입경뿐만 아니라 평균 결정 크기도 크며, 외관상의 입계가 존재하지 않는 입자이다.
이와 같이, 1차 입자의 평균 입경과 평균 결정 크기가 동시에 성장하는 경우, 고온에서의 소성으로 인해 표면에 rock salt 가 생겨 저항 증가가 큰 기존의 단입자에 비해, 저항이 낮아지며 장수명 측면에서도 유리하다.
이와 같이, 기존의 단입자에 비해, 본 발명의 일 측면에서 사용된 "거대 1차 입자의 응집체로 구성된 2차 소입자"의 경우, 1차 입자 자체의 크기 증가 및 rock salt의 형성이 감소되어 저항이 낮아진다는 측면에서 유리하다.
이 때, 거대 1차 입자의 평균 결정 크기(crystal size)는 Cu Kα X선(X-ray)에 의한 X선 회절 분석(XRD)을 이용하여 정량적으로 분석될 수 있다. 구체적으로는 제조된 입자를 홀더에 넣어 X선을 상기 입자에 조사해 나오는 회절 격자를 분석함으로써, 거대 1차 입자의 평균 결정 크기를 정량적으로 분석할 수 있다. 거대 1차 입자의 평균 결정 크기는, 200 nm 이상, 구체적으로는 250 nm 이상, 더욱 구체적으로는 300 nm 이상 일 수 있다.
한편, 코팅층은 복수의 거대 1차 입자 중 일부 또는 전부의 표면에 형성되면 되므로, 코팅층이 서로 연결되어 거대 1차 입자 사이의 간극을 모두 채우도록 형성되는 형태 역시 코팅층의 일 형태로 포함된다. 바람직하게는, 코팅층은 복수의 거대 1차 입자 전부의 표면에 형성되고, 거대 1차 입자 사이의 간극을 모두 채우도록 형성된다.
코팅층이 형성된 거대 1차 입자 사이의 응집력은 2차 대입자를 깨지게 하는 힘보다 약하다. 즉 상기 2차 소입자의 거대 1차 입자 사이의 응집력은 상기 2차 대입자의 미세 1차 입자 사이의 응집력보다 작다.
따라서, 압연시 2차 대입자가 깨지기 전에 2차 소입자의 거대 1차 입자가 떨어져 분리됨으로서 2차 대입자의 깨짐 현상을 개선한다. 분리된 소입자 자체는 강도가 높아 깨지지 않으며, 노출된 표면은 2차 대입자를 구성하는 미세 1차 입자와는 달리 리튬-M 산화물 코팅층이 형성되어 있으므로 수명 특성의 저하 현상도 미미하다.
리튬-M 산화물 코팅층의 M은 보론 및 코발트로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 또한, 리튬-M 산화물 코팅층의 M의 함량은 2차 소입자 100 중량부를 기준으로 0.05 내지 10 중량부일 수 있으나, 이에 한정되지 않는다.
리튬-M 산화물 코팅층은 후술하는 바와 같이 코팅층 형성을 위한 M 함유 전구체와 상기 거대 1차 입자의 표면에 잔류하는 리튬 불순물이 산소 분위기 하에서 반응하여 형성된다. 이러한 코팅층은 안정한 스피넬 상으로 형성될 수 있다. 이에 따라, 2차 소입자를 수세공정을 통해 처리하지 않아도 그 표면에 잔류한 리튬 불순물이 리튬-M 산화물로 변화됨으로서 리튬 불순물의 함량이 저감되어 출력이 저하되는 현상이 개선될 수 있다.
2차 대입자와 2차 소입자를 포함하는 양극 활물질
본 발명에 따라 전술한 특성을 갖는 2차 대입자와 2차 소입자를 동시에 포함하는 양극 활물질에 있어서, 2차 대입자의 평균입경(D50):2차 소입자의 평균입경(D50)은 5:1 내지 2:1일 수 있다. 또한, 2차 소입자의 함량은 2차 대입자 100 중량부를 기준으로 10 내지 100 중량부일 수 있다.
양극 활물질은 전술한 특성을 갖는 2차 대입자와 2차 소입자 외에, 본 발명의 목적을 저해하지 않는 한도 내에서 다른 평균 입경을 갖는 양극 활물질을 더 포함할 수 있음은 물론이다.
양극 활물질 제조방법
본 발명의 일 측면에 따른 양극 활물질은 다음과 같은 방법으로 제조될 수 있다. 다만, 이에 제한되는 것은 아니다.
니켈, 코발트, 망간 및 Q (Q은 Al, Mg, V, Ti 및 Zr로 이루어진 군에서 선택된 1종 이상의 금속 원소임)을 소정 몰비로 포함하는 전이금속 함유 용액, 암모니아 수용액 및 염기성 수용액을 혼합하여 전이금속 수산화물 전구체 입자를 형성하고, 이를 분리하여 건조시킨 다음, 소정 평균 입경(D50)을 갖도록 상기 전이금속 수산화물 전구체 입자를 분쇄한다(S1 단계).
Q는 선택적인 성분이므로, Q를 포함하지 않는 경우를 들어 보다 구체적으로 설명한다.
먼저, 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 양극 활물질 전구체를 마련한다.
이 때, 양극 활물질 제조를 위한 전구체는 시판되는 양극 활물질 전구체를 구입하여 사용하거나, 당해 기술 분야에서 잘 알려진 양극 활물질 전구체의 제조방법에 따라 제조될 수 있다.
예를 들면, 상기 전구체는 니켈 함유 원료물질, 코발트 함유 원료물질 및 망간 함유 원료물질을 포함하는 전이 금속 용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 첨가하여 공침 반응시켜 제조되는 것일 수 있다.
상기 니켈 함유 원료물질은 예를 들면, 니켈 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는, Ni(OH)2, NiO, NiOOH, NiCO3ㆍ2Ni(OH)2ㆍ4H2O, NiC2O2ㆍ2H2O, Ni(NO3)2ㆍ6H2O, NiSO4, NiSO4ㆍ6H2O, 지방산 니켈염, 니켈 할로겐화물 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 코발트 함유 원료 물질은 코발트 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O, CoSO4, Co(SO4)2ㆍ7H2O 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 망간 함유 원료물질은 예를 들면, 망간 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물, 옥시수산화물 또는 이들의 조합일 수 있으며, 구체적으로는 Mn2O3, MnO2, Mn3O4 등과 같은 망간산화물; MnCO3, Mn(NO3)2, MnSO4, 아세트산 망간, 디카르복실산 망간염, 시트르산 망간, 지방산 망간염과 같은 망간염; 옥시 수산화망간, 염화 망간 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 전이금속 용액은 니켈 함유 원료물질, 코발트 함유 원료물질 및 망간 함유 원료물질을 용매, 구체적으로는 물, 또는 물과 균일하게 혼합될 수 있는 유기 용매(예를 들면, 알코올 등)의 혼합 용매에 첨가하여 제조되거나, 또는 니켈 함유 원료물질의 수용액, 코발트 함유 원료물질의 수용액 및 망간 함유 원료물질을 혼합하여 제조된 것일 수 있다.
상기 암모늄 양이온 함유 착물 형성제는, 예를 들면 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, NH4CO3 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다. 한편, 상기 암모늄 양이온 함유 착물 형성제는 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 염기성 수용액은 염기성 화합물로서 NaOH, KOH 또는 Ca(OH)2 등과 같은 알칼리 금속 또는 알칼리 토금속의 수산화물, 이들의 수화물 또는 이들의 조합의 수용액일 수 있다. 이때 용매로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 염기성 수용액은 반응 용액의 pH를 조절하기 위해 첨가되는 것으로, 금속 용액의 pH가 9 내지 12이 되는 양으로 첨가될 수 있다.
전술한 니켈, 코발트 및 망간을 포함하는 전이금속 함유 용액, 암모니아 수용액 및 염기성 수용액을 혼합하여 공침 반응을 통해 전이금속 수산화물 전구체 입자를 제조할 수 있다.
이 때, 공침 반응은 질소 또는 아르곤 등의 비활성 분위기하에서, 25 ℃ 내지 60 ℃의 온도에서 수행될 수 있다.
제조된 전이금속 수산화물 전구체 입자는 반응기에서 분리하여 건조시킨 다음, 후술하는 공정을 통해 목적하는 평균 입경을 갖는 2차 소입자가 형성될 수 있도록 하기 위하여 소정 평균 입경(D50)을 갖도록 분쇄한다.
이어서, 상기 분쇄된 전이금속 수산화물 전구체 입자를 리튬 원료 물질과 혼합하고 산소 분위기에서 소성하여, LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b<0.2, 0<c<0.2, 0≤d≤0.1, 0<b+c+d≤0.2, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되고 평균 입경(D50)이 0.5 내지 3 ㎛인 거대 1차 입자가 응집된 코어 소입자를 제조한다(S2 단계).
이와 같이 (S1)~(S2) 단계에 따라 전구체 입자를 제조-분쇄-소성함으로써, 소정 평균입경을 갖는 거대 1차 입자가 응집된 코어 소입자를 제조할 수 있다.
상기 (S2) 단계에 있어서, 리튬 원료물질로는 리튬 함유 황산염, 질산염, 아세트산염, 탄산염, 옥살산염, 시트르산염, 할라이드, 수산화물 또는 옥시수산화물 등이 사용될 수 있으며, 물에 용해될 수 있는 한 특별히 한정되지 않는다. 구체적으로 상기 리튬 원료물질은 Li2CO3, LiNO3, LiNO2, LiOH, LiOHㆍH2O, LiH, LiF, LiCl, LiBr, LiI, CH3COOLi, Li2O, Li2SO4, CH3COOLi, 또는 Li3C6H5O7 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
소성시 니켈(Ni)의 함량이 80몰% 이상인 고함량 니켈(High-Ni) NCM계 리튬 복합 전이금속 산화물의 경우, 790 내지 950 ℃로 소성할 수 있으며, 산소 분위기 하에서 5 내지 35 시간 동안 수행할 수 있다. 본 명세서에 있어서, 산소 분위기란, 대기 분위기를 포함하여 소성에 충분한 정도의 산소를 포함하는 분위기를 의미한다. 특히, 산소 분압이 대기 분위기보다 더 높은 분위기에서 수행하는 것이 바람직하다.
다음으로, 보론, 코발트 망간 및 마그네슘으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 전구체의 용액과 상기 코어 소입자를 혼합한 후 스프레이 드라이어를 이용하여 스프레이 및 건조시킨 후 산소 분위기에서 소성하여, 평균 입경(D50)이 0.5 내지 3 ㎛이며, 표면의 일부 또는 전부에 리튬-M 산화물 코팅층((M은 보론, 코발트, 망간 및 마그네슘으로 이루어진 군으로부터 선택된 1종 이상임)이 형성된 거대 1차 입자가 응집되어 형성된 평균 입경(D50)이 1 내지 10 ㎛인 2차 소입자를 제조한다(S3 단계).
보론을 포함하는 전구체로는 보론산(붕산, H3BO3)을 들 수 있고, 코발트를 포함하는 전구체로는 코발트 나이트레이트 등을 예시할 수 있다. 이들 전구체의 용액은 예를 들어 전구체를 초순수(DI water), 에탄올과 같은 용매에 용해시켜 제조할 수 있다.
전구체의 용액을 (S2) 단계에 따라 제조한 코어 소입자와 함께 혼합한 후 스프레이 드라이어를 이용하여 스프레이 및 건조시키면 전구체로 코팅된 코어 소입자들이 상태로 원하는 크기로 복수 개 응집된 입자들을 제조할 수 있다.
이를 산소 분위기에서 입자 중 일부 또는 전부의 표면에 리튬-M 산화물 코팅층을 형성한다.
리튬-M 산화물 코팅층은 코팅층 형성을 위한 M 함유 전구체와 상기 코어 소입자의 표면에 잔류하는 리튬 불순물이 산소 분위기 하에서 반응하여 형성된다. 이러한 코팅층은 안정한 스피넬 상으로 형성될 수 있다. 이에 따라, 2차 소입자를 수세공정을 통해 처리하지 않아도 그 표면에 잔류한 리튬 불순물이 리튬-M 산화물로 변화됨으로서 리튬 불순물의 함량이 저감되어 출력이 저하되는 현상이 개선될 수 있다.
상기 코팅층 형성을 위한 소성은 350 내지 600 ℃의 온도에서 3 내지 6 시간 진행할 수 있으나, 이에 한정되는 것은 아니다.
전술한 (S1)~(S3) 단계에 따라 전술한 성상의 2차 소입자를 제조할 수 있다.
이렇게 제조된 2차 소입자는, LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b<0.2, 0<c<0.2, 0≤d≤0.1, 0<b+c+d≤0.2, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되고 평균 입경(D50)이 상기 거대 1차 입자보다 작은 미세 1차 입자가 응집되어 형성된 평균 입경(D50)이 5 내지 20 ㎛인 2차 대입자와 혼합함으로써 본 발명의 양극 활물질을 제조할 수 있다.
2차 대입자는 시판되는 것을 구입하여 사용할 수 있고, 공지의 공침범을 이용하여 직접 제조하여 사용할 수도 있다. 보다 구체적으로, 일반적으로 당 업계에 알려진 공침법을 이용하여 고함량의 니켈계 복합 전이금속 수산화물 입자가 복수 개 집합된 2차 입자를 전구체로 수득하고 리튬 소스와 혼합한 후 소성함으로써 제조할 수 있다. 여기서, 공침법을 이용하여 전구체 조성을 제어하는 방법, 리튬 소스의 종류 등은, 당 업계에 널리 알려진 기술 상식에 따를 수 있다.
양극 및 리튬 이차 전지
본 발명의 또 다른 일 실시예에 따르면 상기 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지를 제공한다.
구체적으로, 상기 양극은 양극 집전체 및 상기 양극 집전체 위에 형성되며, 전술한 본 발명의 양극 활물질을 포함하는 양극 활물질층을 구비한다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 앞서 설명한 양극 활물질과 함께, 거대 단입자나 종래의 미세 1차 입자가 응집된 2차 입자로 된 양극 활물질 등을 더 포함할 수 있으며, 도전재 및 바인더를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
또, 상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 포함하는 양극 활물질층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극 활물질층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
<실시예 1>
2차 대입자의 제조
당 업계에 알려진 공침법을 이용하여 고함량의 니켈계 복합 전이금속 수산화물 입자가 복수 개 집합된 2차 입자를 전구체로 수득하고 리튬 소스와 혼합한 후 소성함으로써 LiNi0.8Co0.1Mn0.1O2로 이루어지며, 평균 입경(D50)이 수백 nm인 미세 1차 입자가 응집되어 형성된 평균 입경(D50)이 15 ㎛인 2차 대입자들을 준비하였다.
2차 소입자의 제조
공침 반응기(용량 20L)에 증류수 4리터를 넣은 뒤 50 ℃의 온도를 유지시키며 28중량% 농도의 암모니아 수용액 100mL를 투입한 후, NiSO4, CoSO4, MnSO4를 니켈:코발트:망간의 몰비가 0.8:0.1:0.1이 되도록 혼합된 3.2mol/L 농도의 전이금속 용액을 300mL/hr, 28중량%의 암모니아 수용액을 42mL/hr로 반응기에 연속적으로 투입하였다. 임펠러의 속도는 400rpm으로 교반하였고, pH 유지를 위해 40중량%의 수산화나트륨 용액을 이용하여 pH가 9가 유지되도록 투입하였다. 10시간 공침 반응시켜 전구체 입자를 형성하였다. 상기 전구체 입자를 분리하여 세척 후 130 ℃의 오븐에서 건조하여 전구체를 제조하였다.
공침 반응으로 합성된 Ni0.8Co0.1Mn0.1(OH)2 전구체를 믹서기에 넣어 1 ㎛ 정도 크기로 분쇄한 후 분쇄된 전구체를 LiOH와 몰비가 1.05가 되도록 되도록 혼합하고, 산소 분위기 800 ℃에서 15시간 열처리하여 LiNi0.8Co0.1Mn0.1O2 리튬 복합 전이금속 산화물을 제조하였다.
제조된 양극재 100g을 코팅소스 H3BO3 30g을 에탄올에 용해시킨 용액과 혼합하고 스프레이 드라이어(Spray dryer)를 이용하여 스프레이 및 건조시킨 후 이를 산소분위기에서 450 ℃에서 5시간 소성하여 최종 2차 소입자를 얻었다. 얻어진 2차 소입자는 평균 입경(D50)이 1 ㎛인 거대 1차 입자가 응집되어 형성된 평균 입경(D50) 4 ㎛인 입자이었다.
양극 활물질의 제조
전술한 방법으로 얻은 2차 대입자와 2차 소입자를 7:3의 중량비로 혼합하여 바이모달 양극 활물질을 제조하였다.
<실시예 2>
2차 대입자의 제조
실시예 1과 동일한 방법으로 제조하였다.
2차 소입자의 제조
공침 반응기(용량 20L)에 증류수 4리터를 넣은 뒤 50 ℃의 온도를 유지시키며 28중량% 농도의 암모니아 수용액 100mL를 투입한 후, NiSO4, CoSO4, MnSO4를 니켈:코발트:망간의 몰비가 0.8:0.1:0.1이 되도록 혼합된 3.2mol/L 농도의 전이금속 용액을 300mL/hr, 28중량%의 암모니아 수용액을 42mL/hr로 반응기에 연속적으로 투입하였다. 임펠러의 속도는 400rpm으로 교반하였고, pH 유지를 위해 40중량%의 수산화나트륨 용액을 이용하여 pH가 9가 유지되도록 투입하였다. 10시간 공침 반응시켜 전구체 입자를 형성하였다. 상기 전구체 입자를 분리하여 세척 후 130 ℃의 오븐에서 건조하여 전구체를 제조하였다.
공침 반응으로 합성된 Ni0.8Co0.1Mn0.1(OH)2 전구체를 믹서기에 넣어 1 ㎛ 정도 크기로 분쇄한 후 분쇄된 전구체를 LiOH와 몰비가 1.05가 되도록 되도록 혼합하고, 산소 분위기 800 ℃에서 15시간 열처리하여 LiNi0.8Co0.1Mn0.1O2 리튬 복합 전이금속 산화물을 제조하였다.
제조된 양극재 100g을 코팅소스 H3BO3 60g을 에탄올에 용해시킨 용액과 혼합하고 스프레이 드라이어(Spray dryer)를 이용하여 스프레이 및 건조시킨 후 이를 산소분위기에서 450 ℃에서 5시간 소성하여 최종 2차 소입자를 얻었다. 얻어진 2차 소입자는 평균 입경(D50)이 1 ㎛인 거대 1차 입자가 응집되어 형성된 평균 입경(D50) 4 ㎛인 입자이었다.
양극 활물질의 제조
전술한 방법으로 얻은 2차 대입자와 2차 소입자를 7:3의 중량비로 혼합하여 바이모달 양극 활물질을 제조하였다.
<실시예 3>
2차 대입자의 제조
실시예 1과 동일한 방법으로 제조하였다.
2차 소입자의 제조
공침 반응기(용량 20L)에 증류수 4리터를 넣은 뒤 50 ℃의 온도를 유지시키며 28중량% 농도의 암모니아 수용액 100mL를 투입한 후, NiSO4, CoSO4, MnSO4를 니켈:코발트:망간의 몰비가 0.8:0.1:0.1이 되도록 혼합된 3.2mol/L 농도의 전이금속 용액을 300mL/hr, 28중량%의 암모니아 수용액을 42mL/hr로 반응기에 연속적으로 투입하였다. 임펠러의 속도는 400rpm으로 교반하였고, pH 유지를 위해 40중량%의 수산화나트륨 용액을 이용하여 pH가 9가 유지되도록 투입하였다. 10시간 공침 반응시켜 전구체 입자를 형성하였다. 상기 전구체 입자를 분리하여 세척 후 130 ℃의 오븐에서 건조하여 전구체를 제조하였다.
공침 반응으로 합성된 Ni0.8Co0.1Mn0.1(OH)2 전구체를 믹서기에 넣어 1 ㎛ 정도 크기로 분쇄한 후 분쇄된 전구체를 LiOH와 몰비가 1.05가 되도록 되도록 혼합하고, 산소 분위기 800 ℃에서 15시간 열처리하여 LiNi0.8Co0.1Mn0.1O2 리튬 복합 전이금속 산화물을 제조하였다.
제조된 양극재 100g을 코팅소스 (Mn acetate) 30g을 에탄올에 용해시킨 용액을 혼합하고 스프레이 드라이어(Spray dryer)를 이용하여 스프레이 및 건조시킨 후 이를 산소분위기에서 450 ℃에서 5시간 소성하여 최종 2차 소입자를 얻었다. 얻어진 2차 소입자는 평균 입경(D50)이 1 ㎛인 거대 1차 입자가 응집되어 형성된 평균 입경(D50) 4 ㎛인 입자이었다.
양극 활물질의 제조
전술한 방법으로 얻은 2차 대입자와 2차 소입자를 7:3의 중량비로 혼합하여 바이모달 양극 활물질을 제조하였다.
<비교예 1>
실시예 1의 2차 소입자 대신, 실시예 2의 2차 대입자의 제조방법에 따라 제조한 1차 미세 입자가 응집된 평균 입경(D50)이 4 ㎛인 2차 소입자를 사용하여, 통상적인 종래의 바이모달 양극 활물질(2차 대입자와 2차 소입자의 중량비=7:3)을 제조하였다.
<비교예 2>
실시예 1의 2차 소입자 대신, 하기와 같은 방법으로 제조한 단입자를 사용한 것을 제외하고는 실시예 1과 동일하게 바이모달 양극 활물질을 제조하였다.
공침 반응기(용량 20L)에 증류수 4리터를 넣은 뒤 50 ℃의 온도를 유지시키며 28중량% 농도의 암모니아 수용액 100ml를 투입한 후, NiSO4, CoSO4, MnSO4를 니켈:코발트:망간의 몰비가 0.8:0.1:0.1이 되도록 혼합된 3.2mol/L 농도의 전이금속 용액을 300ml/hr, 28중량%의 암모니아 수용액을 42ml/hr로 반응기에 연속적으로 투입하였다. 임펠러의 속도는 400rpm으로 교반하였고, pH 유지를 위해 40중량%의 수산화나트륨 용액을 이용하여 pH 9.5가 유지되도록 투입하였다.
24시간 공침반응시켜 전구체 입자를 형성하였다. 상기 전구체 입자를 분리하여 세척 후 130 ℃의 오븐에서 건조하여 전구체를 제조하였다.
상기 제조된 전구체에 Li/Metal(Ni,Co,Mn) 몰비가 1.15가 되도록 LiOH를 넣어 혼합하고, 열처리를 위해 혼합된 분말을 알루미나 도가니에 투입하였다. 이후 850 ℃에서 15시간 소성하여 단입자 형태의 양극 활물질(D50=4㎛)을 제조하였다.
[실험예 1: 양극 활물질의 관찰]
도 1a 및 도 1b는 각각 본 발명에 따른 2차 대입자의 모식도 및 실시예 1에 사용된 2차 대입자의 SEM 이미지이다.
도 2a 및 도 2b는 각각 도 2는 본 발명에 따른 2차 소입자의 모식도 및 실시예 1에 사용된 2차 소입자의 SEM 이미지이다.
도 3a 및 도 3b는 각각 비교예 2에 사용된 단입자의 모식도 및 단일 입자의 SEM 이미지이다.
[실험예 2: 평균 입경]
D50은 입자크기 분포의 50% 기준에서의 입자크기로 정의될 수 있으며, 레이저 회절법(laser diffraction method)을 이용하여 측정하였다.
[실험예 3: 1차 입자의 결정 크기]
LynxEye XE-T potision sensitive detector가 장착된 Bruker Endeavor (Cu Kα, λ=1.54 A°)를 이용, FDS 0.5 °, 2-theta 15 °에서 90 ° 영역에 대한 step size 0.02 °로 전체 스캔 시간(total scan time)이 20분이 되도록 시료를 측정하였다.
측정된 데이터에 대해 각 위치(site)에서 전위(charge) (transition metal site에서의 metal들은 +3, Li site의 Ni은 +2)와 cation mixing을 고려하여 Rietveld refinement를 수행하였다. 결정 크기(crystallite size 분석시 instrumental bradening 은 Bruker TOPAS program에 implement 되어 있는 Fundemental Parameter Approach (FPA)를 이용하여 고려되었고, 피팅시 측정 범위의 전체 피크가 사용되었다. 피트 형태(peak shate)은 TOPAS에서 사용 가능한 피크 타입 중 FP(First Principle)로 Lorenzian contribution만 사용되어 피팅하였고, 이 때 strain은 고려하지 않았다.
[실험예 4. 압연밀도의 측정]
압연밀도는 HPRM-1000을 이용하여 측정하였다. 구체적으로, 실시예 및 비교예의 양극 활물질 5g을 각각 원기둥형의 몰드에 투입한 후, 9 ton으로 양극 활물질이 들어있는 몰드를 가압하였다. 이후, 가압된 몰드의 높이를 버니어캘리퍼스로 측정하여 압연 밀도를 구하였다.
위 측정방법에 따라 측정한 실시예 및 비교예의 압연밀도를 하기 표 1에 나타냈다.
단위 실시예 1 실시예 2 실시예 3 비교예 1 비교예 2
Pellet Density (@ 9ton) g/cc 3.45 3.47 3.38 3.15 3.20
[실험예 5. 크랙 발생 여부 측정]
실시예 및 비교예에 따른 양극 활물질을 이용하여 양극을 제작하고 압연된 전극을 소성로에서 500 ℃에서 10시간 소성 후 남게되는 활물질만을 취득하여 Microtrac MT 3000을 이용, PSD 측정을 실시하여 1 ㎛ 이하의 영역을 측정하였다.
단위 실시예 1 실시예 2 실시예 3 비교예 1 비교예 2
1 ㎛ 이하의 영역 % 1.96 2.25 2.31 10.1 14.5
[실험예 6. 수명 특성 측정]
실시예 및 비교예에 따른 양극 활물질을 이용하여 양극을 제작하고 다음과 같은 방법으로 용량 유지율을 측정하였다. 음극 활물질로서 인조흑연과 천연흑연이 5:5로 혼합된 혼합물, 도전재로서 superC, 바인더로서 SBR/CMC를 96:1:3의 중량비로 혼합하여 음극 슬러리를 제작하고 이를 구리 집전체의 일면에 도포한 후 130 ℃에서 건조 후 공극률 30%로 압연하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다.
이때 전해액은 에틸렌카보네이트/에틸메틸카보네이트/디에틸카보네이트/(EC/EMC/DEC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
제조된 리튬 이차전지 풀셀 (full cell)에 대해, 45 ℃에서 CC-CV모드로 0.5C 로 4.2V가 될 때까지 충전하고, 1C의 정전류로 3.0V까지 방전하여 100회 충방전 실험을 진행하였을 시의 용량 유지율을 측정하여 수명 특성 평가를 진행하였다.
단위
(%)
실시예 1 실시예 2 실시예 3 비교예 1 비교예 2
용량 유지율(100 CYCLE) 94.9 94.9 93.5 92.8 87.5 79.2

Claims (13)

  1. 평균 입경(D50)이 0.5 내지 3 ㎛이며, 표면의 일부 또는 전부에 리튬-M 산화물 코팅층((M은 보론, 코발트, 망간 및 마그네슘으로 이루어진 군으로부터 선택된 1종 이상임)이 형성된 거대 1차 입자가 응집되어 형성된 평균 입경(D50)이 1 내지 10 ㎛인 2차 소입자; 및
    평균 입경(D50)이 상기 거대 1차 입자보다 작은 미세 1차 입자가 응집되어 형성된 평균 입경(D50)이 5 내지 20 ㎛인 2차 대입자를 포함하고,
    상기 거대 1차 입자 및 미세 1차 입자는 LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b<0.2, 0<c<0.2, 0≤d≤0.1, 0<b+c+d≤0.2, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되는, 리튬 이차전지용 양극 활물질.
  2. 제1항에 있어서,
    상기 2차 대입자의 평균입경(D50):상기 2차 소입자의 평균입경(D50)은 5:1 내지 2:1인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  3. 제1항에 있어서,
    상기 2차 소입자의 함량은 상기 2차 대입자 100 중량부를 기준으로 10 내지 100 중량부인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  4. 제1항에 있어서,
    상기 리튬-M 산화물 코팅층의 M은 보론 및 코발트로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  5. 제1항에 있어서,
    상기 리튬-M 산화물 코팅층의 M의 함량은 2차 소입자 100 중량부를 기준으로 0.05 내지 10 중량부인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  6. 제1항에 있어서,
    상기 2차 소입자의 거대 1차 입자 사이의 응집력은 상기 2차 대입자의 미세 1차 입자 사이의 응집력보다 작은 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  7. (S1) 니켈, 코발트, 망간 및 Q (Q은 Al, Mg, V, Ti 및 Zr로 이루어진 군에서 선택된 1종 이상의 금속 원소임)을 소정 몰비로 포함하는 전이금속 함유 용액, 암모니아 수용액 및 염기성 수용액을 혼합하여 전이금속 수산화물 전구체 입자를 형성하고, 이를 분리하여 건조시킨 다음, 소정 평균 입경(D50)을 갖도록 상기 전이금속 수산화물 전구체 입자를 분쇄하는 단계:
    (S2) 상기 분쇄된 전이금속 수산화물 전구체 입자를 리튬 원료 물질과 혼합하고 산소 분위기에서 소성하여, LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b<0.2, 0<c<0.2, 0≤d≤0.1, 0<b+c+d≤0.2, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되고 평균 입경(D50)이 0.5 내지 3 ㎛인 거대 1차 입자가 응집된 코어 소입자를 제조하는 단계;
    (S3) 보론, 코발트 망간 및 마그네슘으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 전구체의 용액과 상기 코어 소입자를 혼합한 후 스프레이 드라이어를 이용하여 스프레이 및 건조시킨 후 산소 분위기에서 소성하여, 평균 입경(D50)이 0.5 내지 3 ㎛이며, 표면의 일부 또는 전부에 리튬-M 산화물 코팅층((M은 보론, 코발트, 망간 및 마그네슘으로 이루어진 군으로부터 선택된 1종 이상임)이 형성된 거대 1차 입자가 응집되어 형성된 평균 입경(D50)이 1 내지 10 ㎛인 2차 소입자를 제조하는 단계; 및
    (S4) LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b<0.2, 0<c<0.2, 0≤d≤0.1, 0<b+c+d≤0.2, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti 및 Zr으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되고 평균 입경(D50)이 상기 거대 1차 입자보다 작은 미세 1차 입자가 응집되어 형성된 평균 입경(D50)이 5 내지 20 ㎛인 2차 대입자를 준비하고 상기 2차 소입자와 혼합하는 단계를 포함하는 제1항의 리튬 이차전지용 양극 활물질의 제조방법.
  8. 제7항에 있어서,
    상기 2차 대입자의 평균입경(D50):상기 2차 소입자의 평균입경(D50)은 5:1 내지 2:1인 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.
  9. 제7항에 있어서,
    상기 2차 소입자의 함량은 상기 2차 대입자 100 중량부를 기준으로 10 내지 100 중량부인 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.
  10. 제7항에 있어서,
    상기 리튬-M 산화물 코팅층의 M은 보론 및 코발트로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.
  11. 제7항에 있어서,
    상기 리튬-M 산화물 코팅층의 M의 함량은 2차 소입자 100 중량부를 기준으로 0.05 내지 10 중량부인 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.
  12. 제1항 내지 제6항 중 어느 한 항에 따른 양극 활물질을 포함하는 리튬 이차 전지용 양극.
  13. 제12항에 따른 양극을 포함하는 리튬 이차 전지.
PCT/KR2022/000780 2021-01-15 2022-01-14 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지 WO2022154603A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/269,155 US20240228325A9 (en) 2021-01-15 2022-01-14 Positive Electrode Active Material for Lithium Secondary Battery, Method for Manufacturing the Same, and Positive Electrode and Lithium Secondary Battery Comprising the Same
CN202280008085.0A CN116583972A (zh) 2021-01-15 2022-01-14 锂二次电池用正极活性材料、其制备方法及包含其的正极和锂二次电池
EP22739795.7A EP4254553A4 (en) 2021-01-15 2022-01-14 POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY, METHOD FOR PRODUCING SAME AND POSITIVE ELECTRODE AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME
JP2023538142A JP2024500909A (ja) 2021-01-15 2022-01-14 リチウム二次電池用正極活物質、その製造方法、それを含む正極及びリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210006202A KR102660455B1 (ko) 2021-01-15 2021-01-15 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
KR10-2021-0006202 2021-01-15

Publications (1)

Publication Number Publication Date
WO2022154603A1 true WO2022154603A1 (ko) 2022-07-21

Family

ID=82448539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000780 WO2022154603A1 (ko) 2021-01-15 2022-01-14 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지

Country Status (6)

Country Link
US (1) US20240228325A9 (ko)
EP (1) EP4254553A4 (ko)
JP (1) JP2024500909A (ko)
KR (1) KR102660455B1 (ko)
CN (1) CN116583972A (ko)
WO (1) WO2022154603A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024040048A1 (en) * 2022-08-19 2024-02-22 Novonix Anode Materials Llc Method for producing a battery active material and product thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024072061A1 (ko) * 2022-09-30 2024-04-04 주식회사 엘지에너지솔루션 양극재, 양극 및 이차전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109068B1 (ko) * 2008-09-30 2012-01-31 히다치 비클 에너지 가부시키가이샤 리튬 2차 전지용 양극 재료 및 그것을 사용한 리튬 2차 전지
KR20190052184A (ko) * 2017-11-06 2019-05-16 일진머티리얼즈 주식회사 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
KR20190059249A (ko) * 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 그 제조방법
US20190190018A1 (en) * 2016-08-31 2019-06-20 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2019187538A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 非水電解質二次電池
KR20210006202A (ko) 2019-07-08 2021-01-18 삼성에스디아이 주식회사 이차 전지

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102325727B1 (ko) * 2017-10-13 2021-11-12 주식회사 엘지에너지솔루션 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
CN107978751B (zh) * 2017-11-30 2020-07-03 宁波容百新能源科技股份有限公司 一种高电化学活性三元正极材料及其制备方法
KR102398689B1 (ko) * 2018-04-06 2022-05-17 주식회사 엘지에너지솔루션 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102141059B1 (ko) * 2018-09-28 2020-08-04 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN110416511B (zh) * 2019-07-19 2020-12-25 宁德新能源科技有限公司 正极材料及包括其的正极和电化学装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109068B1 (ko) * 2008-09-30 2012-01-31 히다치 비클 에너지 가부시키가이샤 리튬 2차 전지용 양극 재료 및 그것을 사용한 리튬 2차 전지
US20190190018A1 (en) * 2016-08-31 2019-06-20 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
KR20190052184A (ko) * 2017-11-06 2019-05-16 일진머티리얼즈 주식회사 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
KR20190059249A (ko) * 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 그 제조방법
WO2019187538A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 非水電解質二次電池
KR20210006202A (ko) 2019-07-08 2021-01-18 삼성에스디아이 주식회사 이차 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4254553A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024040048A1 (en) * 2022-08-19 2024-02-22 Novonix Anode Materials Llc Method for producing a battery active material and product thereof

Also Published As

Publication number Publication date
US20240132375A1 (en) 2024-04-25
KR102660455B1 (ko) 2024-04-23
CN116583972A (zh) 2023-08-11
EP4254553A1 (en) 2023-10-04
KR20220103511A (ko) 2022-07-22
US20240228325A9 (en) 2024-07-11
JP2024500909A (ja) 2024-01-10
EP4254553A4 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
WO2019235885A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020106024A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2017150945A1 (ko) 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
WO2022092922A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2022124774A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2021154026A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022103105A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022124801A1 (ko) 리튬 이차 전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 양극
WO2022169331A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2020055198A1 (ko) 리튬 이차전지용 양극재의 제조 방법 및 이에 의해 제조된 리튬 이차전지용 양극재
WO2016053056A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020085731A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2021187963A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법, 양극 활물질 전구체, 이를 이용하여 제조된 양극 활물질, 양극 및 리튬 이차전지
WO2022092477A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법
WO2022154603A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2022114872A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2022098136A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2016053053A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019194609A1 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739795

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280008085.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023538142

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18269155

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022739795

Country of ref document: EP

Effective date: 20230628

NENP Non-entry into the national phase

Ref country code: DE