[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018193589A1 - 電力変換装置用フィルタモジュール - Google Patents

電力変換装置用フィルタモジュール Download PDF

Info

Publication number
WO2018193589A1
WO2018193589A1 PCT/JP2017/015922 JP2017015922W WO2018193589A1 WO 2018193589 A1 WO2018193589 A1 WO 2018193589A1 JP 2017015922 W JP2017015922 W JP 2017015922W WO 2018193589 A1 WO2018193589 A1 WO 2018193589A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
module
inductor
filter module
space
Prior art date
Application number
PCT/JP2017/015922
Other languages
English (en)
French (fr)
Inventor
勇太 瓜生
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/015922 priority Critical patent/WO2018193589A1/ja
Priority to EP17906715.2A priority patent/EP3614547B1/en
Priority to US16/603,742 priority patent/US11431237B2/en
Priority to CN201780089652.9A priority patent/CN110521100B/zh
Priority to JP2019513169A priority patent/JP6716025B2/ja
Publication of WO2018193589A1 publication Critical patent/WO2018193589A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/04Mountings specially adapted for mounting on a chassis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • H01G2/103Sealings, e.g. for lead-in wires; Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • H01G2/106Fixing the capacitor in a housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors

Definitions

  • the present invention relates to an output filter of a power conversion device mounted on a vehicle having a motor as one of driving sources, for example.
  • a DC / DC converter which is a power conversion device mounted on an electric vehicle or a hybrid vehicle, steps down the high-voltage power supplied from a vehicle driving battery to the operating voltage of auxiliary equipment while insulating. ing.
  • a high voltage is applied to the primary circuit, and a large current flows to the secondary circuit. For this reason, a configuration for dissipating heat generated from the components and a configuration for securing an insulation distance between the components are required, and it is difficult to reduce the size of the apparatus.
  • a surge voltage may be generated due to parasitic inductance existing in the wiring in the circuit, causing the power semiconductor element to fail. Then, a surge voltage is superimposed on the output voltage, causing a failure of auxiliary equipment and peripheral devices to which power is supplied.
  • it is necessary to provide a configuration for reducing the parasitic inductance of components such as a smoothing capacitor constituting the DC / DC converter, or to add an output filter.
  • the first wide conductor and the second wide conductor connected to a plurality of capacitor elements are laminated via an insulating sheet, and the magnetic flux is canceled by energizing in the opposite direction to reduce the parasitic inductance.
  • What is made to be disclosed is disclosed (for example, refer to Patent Document 1).
  • the size of the housing cannot be increased.
  • the present invention has been made to solve the above-described problems, and it is possible to reduce the size of a power converter without reducing the size of existing components, and to add an inductor for countermeasures against surge voltage and noise.
  • the filter module for power converters which can be obtained is obtained.
  • the filter module for a power converter includes a capacitor module, an inductor module, and a case member.
  • the capacitor module includes a positive bus bar on which a positive terminal is formed and a negative bus bar on which a negative terminal is formed. And a plurality of capacitor elements respectively connected to the positive electrode side bus bar and the negative electrode side bus bar, the inductor module has an inductor bus bar and a magnetic member through which the inductor bus bar is inserted, and the case member is And a first space in which the capacitor module is stored and a second space in which the inductor module is stored.
  • the filter module of the power conversion device of the present invention existing parts and additional parts are integrated.
  • additional filter parts can be installed without increasing the size of the casing of the existing power converter, without reducing the size of the existing components, and without changing the layout of the existing components. It can arrange
  • FIG. 3 is a diagram illustrating a capacitor module constituting the filter module according to the first embodiment. It is a figure which shows the negative electrode side bus-bar of the capacitor
  • FIG. 3 is a diagram illustrating an inductor module that constitutes the filter module according to the first embodiment.
  • FIG. 8 is an exploded view of the inductor module of FIG. 7.
  • FIG. 1 It is the perspective view which looked at the filter module by Embodiment 1 of this invention from the upper surface side. It is the perspective view which looked at the modification of the filter module by Embodiment 1 of this invention from the upper surface side. It is the figure which looked at the positive electrode terminal of the positive electrode side bus bar which comprises the capacitor
  • FIG. 1 is a circuit diagram of a power conversion device 1 as an insulated DC / DC converter in which a filter module 20 according to Embodiment 1 of the present invention is arranged.
  • the power conversion device 1 includes an input filter circuit unit 100, a switching circuit unit 110, a transformer unit 120, a rectifier circuit unit 130, a smoothing circuit unit 140, and a filter circuit unit 150. ing.
  • the input filter circuit unit 100 includes a common mode choke coil 101 and capacitors 102 and 103. And the surge component of the specific frequency input from a PN line is removed.
  • the switching circuit unit 110 includes a plurality of MOSFETs or IGBT switching elements 111. And the input DC voltage applied between PN is converted into an AC voltage.
  • the transformer section 120 has a primary side high voltage coil 121 and a secondary side low voltage coil 122. And the high voltage input voltage converted into alternating current by the switching circuit part 110 is stepped down and output to the drive voltage of the auxiliary machine in the vehicle, and an electrical component, isolating.
  • the primary side high voltage coil 121 has more turns than the secondary side low voltage coil 122, and the transformation ratio is determined according to the turns ratio.
  • the rectifier circuit unit 130 includes a plurality of diodes 131 that are rectifier elements. Then, the low-voltage AC voltage output from the secondary side low-voltage coil 122 of the transformer unit 120 is converted into a DC voltage.
  • the smoothing circuit unit 140 includes a smoothing reactor 141 and a smoothing capacitor 142. Then, the DC voltage rectified by the rectifier circuit unit 130 is smoothed and output.
  • the smoothing capacitor 142 is inserted between the smoothing reactor 141 and the output terminal, and the negative electrode side terminal of the smoothing capacitor 142 is grounded to the GND portion.
  • the filter circuit unit 150 includes an inductor 151 and a capacitor 152. Then, the surge voltage superimposed on the output voltage is removed.
  • the power conversion device 1 that is an isolated DC / DC converter steps down an input DC voltage of, for example, 100 to 500 V to a DC voltage of 12 to 16 V that is a driving voltage for vehicle auxiliary equipment and electrical components. Output.
  • the input filter circuit unit 100, the switching circuit unit 110, the transformer unit 120, the rectifier circuit unit 130, the smoothing circuit unit 140, and the filter circuit unit 150 are fixed to a housing such as an aluminum die cast having a cooler (not shown).
  • the housing itself functions as a heat radiating member for each component to be mounted and a GND ground line.
  • FIG. 2 is a perspective view of the filter module 20 according to Embodiment 1 as viewed from the bottom surface side which is the mounting surface side
  • FIG. 3 is a diagram in which the potting material is removed from the filter module 20 of FIG.
  • FIG. 4 is an exploded view of the filter module 20.
  • the filter module 20 has a case 50, a capacitor module 30 as a smoothing capacitor 142, and an inductor module 40 as an inductor 151.
  • the case 50 has a first space 50a and a second space 50b.
  • the capacitor module 30 is stored in the first space 50a and filled with the potting material 60
  • the inductor module 40 is stored in the second space 50b and filled with the potting material 61.
  • FIG. 5 is a diagram showing a capacitor module 30 constituting the filter module 20 of the first embodiment.
  • the capacitor module 30 includes five capacitor elements 80, a positive side bus bar 31, and a negative side bus bar 32.
  • the capacitor element 80 is a film capacitor in which a plastic film on which a metal is deposited is laminated and an electrode is formed on a terminal joint surface by metal spraying.
  • the positive electrode side bus bar 31 and the negative electrode side bus bar 32 are made of a copper material, and are subjected to metal plating in order to improve the bondability with the capacitor element 80.
  • the number of capacitor elements 80 is not limited to five, and is appropriately determined according to the capacitance (capacitance) required for the power conversion device 1.
  • the type of the capacitor element 80 is not limited to the film capacitor, and may be other than the film capacitor as long as it has a predetermined capacitance.
  • the material of the positive electrode side bus bar 31 and the negative electrode side bus bar 32 is not limited to a copper material, but may be a metal material having a predetermined electrical resistivity.
  • the positive electrode side bus bar 31 includes a main body 31a, five joints 31b, and a fixing part 31c.
  • the five joint portions 31b are formed to extend below the main body portion 31a and are joined to the positive electrode sides of the five capacitor elements 80, respectively.
  • the fixing portion 31 c extends above the main body portion 31 a, is bent toward the negative electrode side bus bar 32, and is formed so as to intersect the negative electrode side bus bar 32 above the negative electrode side bus bar 32. Further, the fixing portion 31c is formed with a through hole 31d through which a fastening member such as a screw is inserted.
  • FIG. 6 is a view showing the negative electrode bus bar 32 in the capacitor module 30 of FIG.
  • the negative electrode side bus bar 32 includes a main body portion 32a, five joint portions 32b, and two fixing portions 32c.
  • the five joint portions 32b are formed to extend below the main body portion 32a and are joined to the negative electrode sides of the five capacitor elements 80, respectively.
  • the two fixing portions 32c are formed to extend to the side of the main body portion 32a, and a through hole 32d through which a fastening member such as a screw is inserted is formed.
  • the capacitor module 30 is arranged with the positive electrode side bus bar 31 and the negative electrode side bus bar 32 facing each other with respect to the five capacitor elements 80. Then, the five joint portions 31b of the positive electrode side bus bar 31 are joined to the electrode surfaces 80a of the five capacitor elements 80 by welding or soldering, respectively, and the five joint portions 32b of the negative electrode side bus bar 32 are joined to the five capacitor elements. Each of the electrode surfaces 80b is joined by welding or soldering.
  • the capacitor module 30 as the smoothing capacitor 142 configured as described above stores the electric power whose current is smoothed by the smoothing reactor 141 after rectification, and smoothes the output voltage according to the capacitance.
  • FIG. 7 is a perspective view of the inductor module 40 as the inductor 151 constituting the filter module 20.
  • the inductor module 40 includes an inductor bus bar 41, a core 42, a tape 43, and a clip 44.
  • FIG. 8 is an exploded view of the inductor module 40 of FIG.
  • FIG. 9 is a diagram showing the inductor bus bar 41 constituting the inductor module 40
  • FIG. 10 is a diagram showing the core 42.
  • the inductor bus bar 41 is formed by integrating a resin bar 41g with a bus bar made of a copper material by insert molding.
  • the inductor bus bar 41 includes a straight portion 41a, two flat portions 41b and 41c, and a rising portion 41f obtained by bending a portion of the flat portion 41b. Further, through holes 41d and 41e are formed in the flat portions 41b and 41c, respectively.
  • the resin part 41g is formed of an insulating resin such as PPS or PBT, and covers both ends of the straight part 41a.
  • the material of the bus bar is not limited to copper, and may be a metal material having a predetermined electrical resistivity.
  • the core 42 is formed of a U-type core 45 and an I-type core 46.
  • the U-type core 45 and the I-type core 46 are made of ferrite.
  • the U-shaped core 45 has a stepped portion 45a
  • the I-shaped core 46 has a stepped portion 46a.
  • the I-type core 46 is formed with a chamfered portion 46 c that matches the shape of the case 50.
  • the gap sheet 46b is bonded to the surface of the I-type core 46 that covers the inductor bus bar 41.
  • the material of the U-type core 45 and the I-type core 46 is not limited to ferrite, but may be any magnetic material having a defined magnetic characteristic.
  • the clip 44 is a spring member formed of a stainless steel plate having a certain strength.
  • the material of the clip 44 is not limited to stainless steel, and may be iron or non-metal such as resin as long as it has a predetermined elasticity and strength.
  • the tape 43 is an adhesive tape in which an adhesive is applied to a resin base material.
  • a polyester film tape is used as the tape 43.
  • the inductor module 40 is formed by sandwiching the inductor bus bar 41 between the U-shaped core 45 and the I-shaped core 46, winding the tape 43, and fitting the clip 44.
  • the inductor module 40 configured in this manner has an inductance and an impedance determined by the cross-sectional area of the core 42 covering the bus bar and the length in the longitudinal direction, and functions as an inductor. Further, by disposing the gap sheet 46b on the core 42, an inductor having a superimposition characteristic corresponding to the current is obtained.
  • the inductor module 40 removes a surge component in a specific frequency band that causes noise and is superimposed on the voltage smoothed by the smoothing capacitor 142 according to the impedance held by the inductor module 40.
  • FIG. 11 is a perspective view of the case 50. As shown in FIG. 11, the case 50 has a first space 50a and a second space 50b. A wall 50c is formed between the first space 50a and the second space 50b.
  • the capacitor module 30 is stored in the first space 50a of the case 50, and the inductor module 40 is stored in the second space 50b.
  • Notches 50g are formed on both side surfaces of the second space 50b in the longitudinal direction.
  • a chamfered portion 50f is formed so as not to interfere with surrounding components when the filter module 20 is arranged in the power conversion device 1.
  • case 50 has a pair of fixing
  • An iron bush 51 is disposed on the pair of fixed portions 50d.
  • positioning pins 50e that are engaged with positioning holes of a housing (not shown) of the power conversion device 1 are formed in the two fixing portions 50d.
  • the case 50 is formed of an insulating PPS resin, and the bush 51 is integrated with the case 50 by insert molding.
  • the material of the case 50 is not limited to PPS, and the material of the bush 51 is not limited to iron.
  • the material of the case 50 may be an insulating resin such as PBT, and the material of the bush 51 may be stainless steel.
  • the inductor module 40 is stored in the second space 50b of the case 50.
  • the inductor module 40 is stored so that the two flat portions 41b and 41c of the inductor bus bar 41 are accommodated in a pair of notches 50g and 50g formed on the side surface of the second space 50b.
  • the inductor module 40 is positioned with respect to the case 50 by the pair of notches 50g in the second space 50b.
  • the capacitor module 30 is stored in the first space 50a. At this time, it stores so that the fixing
  • a through hole 31 d is formed in the fixing portion 31 c of the positive electrode side bus bar 31, and a through hole 41 e is formed in the flat surface portion 41 c of the inductor module 40.
  • the inner diameter of the through hole 31d is formed larger than the inner diameter of the through hole 41e.
  • the fixing portion 32 c of the negative electrode side bus bar 32 of the capacitor module 30 is overlapped with the bush 51 arranged in the fixing portion 50 d of the case 50.
  • the inner diameter of the through hole 32 d formed in the fixing portion 32 c of the negative electrode side bus bar 32 is formed larger than the inner diameter of the bush 51.
  • the first space 50a in which the capacitor module 30 is stored and the second space 50b in which the inductor module 40 is stored are filled with a potting material and cured.
  • the first space 50a in which the capacitor module 30 is stored is filled with an epoxy potting resin
  • the second space 50b in which the inductor module 40 is stored is filled with a silicon potting resin.
  • the filter module 20 is formed. Next, the incorporation of the filter module 20 into the power conversion device 1 will be described.
  • FIG. 12 is a perspective view of the filter module 20 as viewed from the upper surface side.
  • the case 50 is assembled with the opening side of the case 50 facing the housing of the power conversion device 1 (not shown).
  • the filter module 20 is fastened to the housing by inserting a fastening member through the bushes 51 of the pair of fixing portions 50d of the case 50 and fastening the fastening member.
  • the pair of fixing portions 32 c and 32 c of the negative electrode side bus bar 32 of the capacitor module 30 are overlapped with the pair of fixing portions 50 d and 50 d of the case 50. Therefore, when the case 50 is attached to the casing, the pair of fixing portions 32c and 32c of the negative electrode side bus bar 32 are fixed in a state of being in contact with the casing.
  • one planar portion 41b of the inductor bus bar 41 of the inductor module 40 is fixed and electrically connected to a wiring bus bar (not shown) attached to the inductor 151 in the circuit of the power converter 1 of FIG.
  • the flat portion 41c of the inductor bus bar 41 is fixed on and electrically connected to the wiring bus bar attached to the capacitor 152 of the filter circuit portion 150.
  • the filter module 20 is incorporated in the power conversion device 1.
  • the capacitor module 30 corresponding to the existing smoothing capacitor 142 constituting the power conversion device 1 and the inductor 151 as an additional component. are integrated in a case 50 formed of an insulating member.
  • an inductor can be added without enlarging the housing of the power converter 1.
  • the volume of the components constituting the power conversion device 1 can be reduced. Therefore, the power converter device 1 can be reduced in size and weight.
  • members for holding the components can be reduced, and the manufacturing cost of the power conversion device 1 can be reduced.
  • the negative side bus bar 32 of the capacitor module 30 is disposed on the side close to the inductor module 40. Since the negative electrode side bus bar 32 is connected to the GND of the casing, the heat generated from the core 42 and the inductor bus bar 41 is driven via the negative electrode side bus bar 32 of the capacitor module 30 when the inductor module 40 is driven. Heat can be radiated to the housing. Thereby, while the temperature rise of the inductor module 40 can be suppressed, the temperature rise of the several capacitor
  • the heat generation of the capacitor module 30 can also be radiated to the housing via the negative electrode side bus bar 32, the influence on the inductor module 40 due to the heat generation of the capacitor module 30 can be suppressed. Therefore, the deterioration of the characteristics of the power conversion device 1 due to temperature rise can be suppressed, and the power conversion device 1 can be operated stably.
  • the capacitor module 30 has a positive electrode side bus bar 31 and a negative electrode side bus bar 32 arranged in a three-dimensionally intersecting manner. Thereby, the magnetic flux generated in the positive electrode side bus bar 31 and the negative electrode side bus bar 32 can be canceled. Thereby, the parasitic inductance generated in the positive electrode side bus bar 31 and the negative electrode side bus bar 32 can be removed, and the parasitic inductance of the capacitor module 30 itself and the parasitic inductance of the capacitor element 80 can be reduced. Therefore, surge voltage suppression and EMC characteristics can be improved.
  • the negative electrode side bus bar 32 of the capacitor module 30 adjacent to the inductor module 40 has two branched fixing portions 32c.
  • the cross-sectional area of the negative electrode side bus bar 32 can be increased, and the parasitic inductance of the negative electrode side bus bar 32 and the capacitor module 30 can be further reduced.
  • the two branched fixing portions 32c are in contact with the casing, the thermal resistance can be lowered also on the heat radiating surface, and the heat radiating effect via the negative electrode side bus bar 32 can be further enhanced.
  • connection of the negative electrode side bus bar 32 to the housing is performed together with the fixing of the fixing portion 50d of the case 50.
  • the filter module 20 can be reduced in size and the power converter device 1 can be reduced in size.
  • the number of fastening points is reduced, so that productivity is improved and processing costs can be reduced.
  • the inner diameter of the through hole 32 d of the negative electrode side bus bar 32 is larger than the inner diameter of the bush 51.
  • the positive electrode side bus bar 31 of the capacitor module 30 crosses the capacitor module 30, intersects with the negative electrode side bus bar 32, and is connected to the flat portion 41 c of the inductor bus bar 41.
  • the length of the inductor bus bar 41 can be increased without increasing the parasitic inductance. Therefore, the stress accompanying the displacement when the inductor bus bar 41 is fixed can be reduced, and the vibration resistance of the inductor bus bar 41 can be improved.
  • the fixing portion 31 c of the positive electrode side bus bar 31 is overlapped and fixed with the flat portion 41 c of the inductor module 40. Thereby, it is not necessary to add a fixed part newly. Therefore, the power converter 1 can be further downsized. Furthermore, it is possible to reduce the fastening process by fixing, and it is possible to improve the productivity and reduce the processing cost.
  • the positive-side bus bar 31 which is thinner than the inductor bus bar 41 of the inductor module 40 and weak in strength, is arranged on the housing side and overlapped. Thereby, the deformation
  • the inductor bus bar 41 is thicker than the positive electrode bus bar 31, but the present invention is not limited to this.
  • the positive electrode side bus bar 31 may be thicker than the inductor bus bar 41 and the arrangement may be reversed.
  • the inductor bus bar 41 or the positive electrode side bus bar 31 may be rotated and deformed during the fastening process
  • the inductor bus bar 41 or the positive electrode side bus bar is disposed in the case 50 as shown in the modified example of FIG. Protrusions 50m and 50n that prevent rotation of 31 may be formed.
  • the inner diameter of the through hole 31 d of the fixing portion 31 c of the positive electrode side bus bar 31 is formed in advance larger than the inner diameter of the through hole 41 e of the inductor bus bar 41. Accordingly, even when the center of the through hole 41e of the inductor bus bar 41 and the position of the through hole 31d of the positive electrode bus bar 31 are displaced during the fastening process, the positive bus bar 31 is scraped by the fastening member. It is possible to suppress the generation of conductive foreign matter due to the above.
  • the inner diameter of through hole 31d of positive electrode side bus bar 31 is increased, but this is not restrictive.
  • the inner diameter of the through hole 41 e of the inductor bus bar 41 may be larger than the through hole 31 d of the positive electrode side bus bar 31.
  • the first space 50a and the second space 50b of the case 50 are separated by the wall 50c.
  • the types of potting materials used in the first space 50a in which the capacitor module 30 is stored and the second space 50b in which the inductor module 40 is stored can be made different. Therefore, the optimal potting material according to the capacitor module 30 and the inductor module 40 to be stored can be filled, and the characteristics of each module can be optimized and stabilized.
  • the opening directions of the first space 50a and the second space 50b of the case 50 are the same, but they may be opposite to each other. Thereby, the freedom degree of the component layout as the power converter device 1 can be raised. Therefore, the space can be effectively utilized to reduce the size. If the opening directions of the first space 50a and the second space 50b are the same, there is no need to change the orientation of the case 50 when filling different potting materials into the first space 50a and the second space 50b. The potting process can be simplified and productivity is improved. Furthermore, since the wiring can be connected in the vicinity of the component mounting surface of the power conversion device 1, the wiring can be shortened, and the thickness of the power conversion device 1 can be reduced and the size can be reduced.
  • the inductor module 40 by using a silicon-based potting resin for the inductor module 40, it is possible to prevent a brittle material such as ferrite constituting the core 42 from cracking during a heat cycle. Therefore, the characteristics of the inductor module 40 can be stabilized and long-term reliability can be ensured.
  • notches 50g are formed on both side surfaces of the second space 50b of the case 50, and the flat portions 41b and 41c of the inductor bus bar 41 of the inductor module 40 are disposed in the notches 50g.
  • the height direction of the inductor module 40 is positioned, and the workability of the assembly is improved. Furthermore, the dimension of the filter module 20 in the height direction can be suppressed.
  • a bush 51 is insert-molded and integrated with the fixed portion 50d of the case 50. Then, when the case 50 is fixed to the housing, a fastening member such as a screw is brought into contact with the metal bush 51. Thereby, since a fastening member does not contact a resin part, the creep of resin can be suppressed. Therefore, the case 50 can be stably fixed, and long-term durability and reliability can be ensured.
  • a positioning pin 50e is formed in the fixed portion 50d of the case 50 and is engaged with a positioning hole formed in the housing.
  • a gap sheet 46b is arranged on the core 42 of the component part.
  • the inductor bus bar 41 is insert-molded in the resin portion 41g.
  • the core 42 and the resin portion 41g are brought into contact with each other.
  • the core 42 can be prevented from coming into contact with the inductor bus bar 41 and being damaged, and the inductor bus bar 41 can be protected.
  • the straight portion 41a is exposed from the resin. Further, step portions 45 a and 46 a are formed in the core 42 at a portion where the resin portion 41 g and the core 42 are in contact with each other. Thereby, in the straight part 41a, the cross-sectional area of the core 42 can be enlarged, and the size of the core 42 can be reduced while obtaining desired inductance and impedance. In addition, in the straight portion 41a, when there is a concern about contact between the inductor bus bar 41 and the core 42, the inductor bus bar 41 may be protected with a tape or the like.
  • the straight portion 41a may be entirely covered with resin. In this case, it is not necessary to protect the straight portion 41a with a tape or the like, and productivity is improved.
  • a hole may be provided in a portion that is insert-molded in the resin portion 41g.
  • resin is filled in the hole portion of the bus bar, and the adhesive strength between the bus bar and the resin can be improved by the anchor effect.
  • the tape 43 is wound around the core 42.
  • the core 42 can be temporarily fixed and the workability
  • the core 42 can be protected when the clip 44 is mounted in a later process.
  • the clip 44 is attached to fix the core 42 to the inductor bus bar 41.
  • the clip 44 is attached to fix the core 42 to the inductor bus bar 41.
  • the inductor bus bar 41 and the core 42 are separate components, but the present invention is not limited to this.
  • the core 42 and the inductor bus bar 41 may be integrated by insert molding.
  • the tape 43 and the clip 44 are not necessary, and the number of assembling steps can be reduced.
  • a wiring bus bar (not shown) is disposed below the flat surface portion 41 b of the inductor module 40 for the capacitor 152 in the filter circuit portion 150. Further, a rising portion 41 f is formed on the flat portion 41 b of the inductor module 40. Therefore, when the filter module 20 is assembled to the power converter 1, if the wiring bus bar is mistakenly assembled to the upper portion of the flat portion 41b of the inductor module 40, the wiring module is brought into contact with the rising portion 41f to The bus bar cannot be fixed. Thereby, the mistake at the time of assembling the filter module 20 can be prevented.
  • the rising portion 41f may be formed on the flat surface portion 41c.
  • the filter module 20 is configured by the smoothing capacitor 142 in the circuit diagram of FIG. 1 and the inductor 151 that is an additional filter component. However, including the plurality of capacitors 152 in the circuit diagram of FIG. The filter module 20 may be configured.
  • Embodiment 1 demonstrated the power converter device 1 as a step-down DC / DC converter, it is not restricted to this.
  • the power conversion device 1 may be an inverter for driving a motor, an in-vehicle charger, other inverters, and a converter.
  • Embodiment 2 The filter module 20 of the power conversion device 1 according to the second embodiment is different from the filter module 20 of the first embodiment in the shapes of the positive electrode bus bar 31 and the inductor bus bar 41 of the capacitor module 30. Other configurations are the same as those in the first embodiment.
  • FIG. 14 is a side view of the fixed portion 31c of the positive electrode bus bar 31 and the flat portion 41c of the inductor bus bar 41, which constitute the capacitor module 30 of the first embodiment.
  • FIG. 15 is a side view of the fixing portion 31c of the positive electrode bus bar 31 and the flat portion 41c of the inductor bus bar 41 constituting the capacitor module 30 of the second embodiment.
  • the positive electrode side bus bar 31 of the capacitor module 30 is adjacent to the flat portion 41c of the inductor bus bar 41 without being overlapped.
  • a bent portion 41h is formed on the flat surface portion 41c of the inductor module 40
  • a bent portion 31e is formed on the positive-side bus bar 31 of the capacitor module 30, and the bent portion 41h and the bent portion 31e are brought into contact with each other and joined. ing.
  • the man-hour for fastening the inductor bus bar 41 and the positive electrode side bus bar 31 of the capacitor module 30 can be reduced, and contact failure due to loosening of the fastening member can be eliminated. Therefore, the reliability of the power converter device 1 can be ensured and the quality can be stabilized.
  • the electrical resistance of the contact portion can be greatly reduced. Therefore, when a large current is energized, performance degradation and failure of the power converter 1 due to local heat generation can be prevented. Therefore, the quality of the power converter device 1 can be stabilized.
  • the bent portion 41h of the inductor module 40 and the bent portion 31e of the positive electrode side bus bar 31 of the capacitor module 30 are formed in a plane. Thereby, a junction part becomes a parallel plate and the magnetic flux generated at the time of energization is canceled. Therefore, the parasitic inductance of the junction can be reduced.
  • FIG. 17 is a cross-sectional view of the filter module 20 according to the third embodiment.
  • the filter module 20 according to the third embodiment is different from the first embodiment in the structure of the wall 50c of the case 50. Other configurations are the same as those in the first embodiment.
  • the wall 50c formed between the capacitor module 30 and the inductor module 40 has a space 50h inside.
  • the space 50h reduces the thermal conductivity by interposing air between the capacitor module 30 and the inductor module 40.
  • it is possible to further suppress a temperature rise due to thermal interference between the capacitor module 30 and the inductor module 40. Therefore, the temperature rise of the filter module 20 whole can be suppressed, and the performance of the power converter device 1 can be stabilized.
  • the space 50h is formed in the wall 50c.
  • the present invention is not limited to this.
  • a highly heat conductive metal plate 19 made of aluminum or copper may be insert-molded and arranged on the wall 50 c. This metal plate 19 can provide the same effect as that of the space 50h.
  • the metal plate 19 may be bent and extended from the wall 50 c of the case 50 to the bottom surface side and exposed to the outside of the case 50. In this case, heat loss from the capacitor module 30 and the inductor module 40 can be efficiently radiated to the outside.
  • the metal plate 19 may not be exposed from the surface of the case 50.
  • the bending direction of the metal plate 19 may be the capacitor module 30 or the inductor module 40 side, or may be branched to both.
  • Embodiment 4. 19 and 20 are perspective views of the filter module 20 according to the fourth embodiment.
  • the filter module 20 according to the fourth embodiment is different from the filter module 20 according to the first embodiment in the shapes of the positive electrode bus bar 31 and the negative electrode bus bar 32 of the capacitor module 30. Other configurations are the same as those in the first embodiment.
  • the positive terminal bus bar 31 of the capacitor module 30 is formed with an extension terminal 31f
  • the negative terminal bus bar 32 is formed with an extension terminal 32e.
  • the extension terminal 31f and the extension terminal 32e extend to the outside of the case 50, respectively.
  • the extension terminal 31f and the extension terminal 32e are inserted into through holes of a control board (not shown) arranged around the mounting portion of the filter module 20, and are connected to the control board by soldering.
  • an output voltage is detected by a sensor, sensor information is input to a control board, and feedback control is performed.
  • the sensor is generally connected to the control board using a harness or the like by connecting the positive electrode side near the B terminal on the output side in the circuit diagram of FIG. 1 and connecting the GND terminal to the housing. .
  • additional parts such as a harness are required, and a space for connecting terminals is required.
  • the extension terminal 31f and the extension terminal 32e are formed on the positive electrode side bus bar 31 and the negative electrode side bus bar 32 of the capacitor module 30 corresponding to the smoothing capacitor 142 arranged near the B terminal. And connected to the control board.
  • the output voltage can be detected through the extension terminal 31f and the extension terminal 32e. Therefore, the output voltage can be detected without requiring additional parts such as a harness, and the number of parts can be reduced, and the power converter 1 can be reduced in size and cost.
  • the inductor module 40 is formed as an inductor that is a passive element that stores magnetic energy generated by current.
  • the present invention can also be applied to a coil as a component.
  • the core 42 of the inductor module 40 is formed by a combination of the U-type core 45 and the I-type core 46, but the present invention is not limited to this.
  • any shape other than the combination of the U type and the I type may be used as long as the bus bar can be circulated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

電力変換装置用フィルタモジュールにおいて、コンデンサモジュールと、インダクタモジュールと、ケース部材とを有し、コンデンサモジュールは、正極端子が形成された正極側バスバーと、負極端子が形成された負極側バスバーと、正極側バスバー及び負極側バスバーに、それぞれ接続された複数のコンデンサ素子とを有し、インダクタモジュールは、インダクタ用バスバーと、インダクタ用バスバーが挿通される磁性部材とを有し、ケース部材は、コンデンサモジュールが格納される第1スペースと、インダクタモジュールが格納される第2スペースとを有する。

Description

電力変換装置用フィルタモジュール
 本発明は、例えばモータを駆動源の一つとする車両に搭載される、電力変換装置の出力フィルタに関するものである。
 従来、電気自動車、ハイブリッド車に搭載される電力変換装置であるDC/DCコンバータは、車両駆動用のバッテリから供給される高電圧の電力を、絶縁させながら補機電装品の使用電圧まで降圧させている。この降圧型DC/DCコンバータは、一次側回路では高電圧が印加され、二次側回路では大電流が流れる。このため、部品の発熱を放熱する構成及び部品間の絶縁距離を確保する構成が必要となり、装置の小型化が困難であった。
 また、DC/DCコンバータでは、回路内の配線に存在する寄生インダクタンスにより、サージ電圧が発生し、パワー半導体素子を故障させることがある。そして、出力される電圧にサージ電圧が重畳され、電力が供給される補機電装品及び周辺機器の故障の原因となっていた。サージ電圧を抑制するためには、DC/DCコンバータを構成する平滑用コンデンサなどの構成部品の寄生インダクタンスを低減させる構成を設けるか、又は出力フィルタを追加する必要がある。
 そこで、複数のコンデンサ素子と接続される第1の幅広の導体と第2の幅広の導体とを、絶縁シートを介して積層し、逆方向に通電させて磁束をキャンセルして、寄生インダクタンスを低減させるものが開示されている(例えば特許文献1参照)。
特開2007-143272号公報
 特許文献1の方法では、寄生インダクタンスを完全に除去することはできないので、インダクタ及びコンデンサの出力フィルタを追加する必要がある。出力フィルタを追加する場合、通常は既存の構成に、フィルタ部品としてのインダクタ、コンデンサを追加している。このため、追加する部品を配置するスペースに加え、インダクタ、コンデンサを保持する構成と、配線及び絶縁をするためのクリアランスを確保する必要がある。
 しかしながら、電力変換装置は小型化が要求されているため、筐体の寸法を大きくすることはできない。電力変換装置を小型化し、かつフィルタ部材を追加するためには、既存の構成部品を小型化する必要があり、設計変更に伴うコストが増大するという課題があった。
 本発明は、上記のような課題を解決するためになされたものであり、既存の構成部品を小型化することなく電力変換装置を小型化し、さらにサージ電圧及びノイズ対策用のインダクタを追加することのできる、電力変換装置用フィルタモジュールを得るものである。
 本発明の電力変換装置用フィルタモジュールは、コンデンサモジュールと、インダクタモジュールと、ケース部材とを有し、コンデンサモジュールは、正極端子が形成された正極側バスバーと、負極端子が形成された負極側バスバーと、正極側バスバー及び負極側バスバーに、それぞれ接続された複数のコンデンサ素子とを有し、インダクタモジュールは、インダクタ用バスバーと、インダクタ用バスバーが挿通される磁性部材とを有し、ケース部材は、コンデンサモジュールが格納される第1スペースと、インダクタモジュールが格納される第2スペースとを有する。
 本発明の電力変換装置のフィルタモジュールによれば、既存の部品と追加部品とを一体化させている。これにより、既存の電力変換装置の筐体の寸法を大きくすることなく、また、既存の構成部品の小型化及び既存の構成部品の大きなレイアウト変更をすることなく、追加のフィルタ部品を、既存の電力変換装置に配置することができる。
本発明の実施の形態1によるフィルタモジュールを配置した、電力変換装置の回路図である。 本発明の実施の形態1による電力変換装置のフィルタモジュールを、底面側から見た斜視図である。 図2のフィルタモジュールからポッティング材を取り除いた図である。 実施の形態1のフィルタモジュールの分解図である。 実施の形態1のフィルタモジュールを構成するコンデンサモジュールを示す図である。 図5のコンデンサモジュールの負極側バスバーを示す図である。 実施の形態1のフィルタモジュールを構成するインダクタモジュールを示す図である。 図7のインダクタモジュールの分解図である。 図7のインダクタモジュールを構成するインダクタ用バスバーを示す図である。 図7のインダクタモジュールを構成するコア部材を示す図である。 実施の形態1のフィルタモジュールを構成するケース部材の斜視図である。 本発明の実施の形態1によるフィルタモジュールを、上面側から見た斜視図である。 本発明の実施の形態1によるフィルタモジュールの変形例を、上面側から見た斜視図である。 実施の形態1のコンデンサモジュールを構成する正極側バスバーの正極端子と、インダクタ用バスバーの入力端子を、側面から見た図である。 本発明の実施の形態2のコンデンサモジュールを構成する正極側バスバーの正極端子と、インダクタ用バスバーの入力端子を、側面から見た図である。 本発明の実施の形態2のコンデンサモジュールの変形例を構成する正極側バスバーの正極端子と、インダクタ用バスバーの入力端子を、側面から見た図である。 本発明の実施の形態3による電力変換装置のフィルタモジュールの断面を示す図である。 本発明の実施の形態3による電力変換装置のフィルタモジュールの変形例の断面を示す図である。 本発明の実施の形態4による電力変換装置のフィルタモジュールを底面側からみた斜視図である。 本発明の実施の形態4による電力変換装置のフィルタモジュールを、上面側からみた図である。
 以下、本発明の電力変換装置のフィルタモジュールの好適な実施の形態につき、図面を用いて説明する。
 実施の形態1.
 図1は本発明の実施の形態1によるフィルタモジュール20が配置された、絶縁型DC/DCコンバータとしての電力変換装置1の回路図である。
 図1に示す様に、電力変換装置1は、入力フィルタ回路部100と、スイッチング回路部110と、トランス部120と、整流回路部130と、平滑回路部140と、フィルタ回路部150を有している。
 入力フィルタ回路部100は、コモンモードチョークコイル101と、コンデンサ102及び103を有している。そして、PNラインから入力される特定周波数のサージ成分を除去する。
 スイッチング回路部110は、複数のMOSFET又はIGBTによるスイッチング素子111を有している。そして、PN間に印加される入力直流電圧を交流電圧に変換する。
 トランス部120は、一次側高圧コイル121と、二次側低圧コイル122を有している。そして、スイッチング回路部110で交流に変換された高圧な入力電圧を、絶縁させながら、車両内の補機及び電装品の駆動電圧まで降圧して出力している。一次側高圧コイル121は、二次側低圧コイル122よりも巻数が多く、これらの巻数比に応じて変圧比が決定される。
 整流回路部130は、整流素子である複数のダイオード131で構成されている。そして、トランス部120の二次側低圧コイル122から出力された低圧な交流電圧を、直流電圧に変換する。
 平滑回路部140は、平滑リアクトル141と平滑コンデンサ142を有している。そして、整流回路部130で整流された直流電圧を、平滑化して出力する。平滑コンデンサ142は、平滑リアクトル141と出力端子の間に挿入され、平滑コンデンサ142の負極側の端子は、GND部に接地される。
 フィルタ回路部150は、インダクタ151とコンデンサ152を有している。そして、出力電圧に重畳されたサージ電圧を除去する。
 以上の構成により、絶縁型DC/DCコンバータである電力変換装置1は、例えば100~500Vの入力直流電圧を、車両の補機及び電装品の駆動電圧である12~16Vの直流電圧に降圧して出力する。
 なお、入力フィルタ回路部100、スイッチング回路部110、トランス部120、整流回路部130、平滑回路部140、フィルタ回路部150は、図示しない冷却器を有するアルミダイカスト等の筐体に固定される。筐体自体は、実装される各構成部品の放熱部材、及びGND接地ラインとして機能する。
 次に、図2~図19を用いて、実施の形態1による電力変換装置1のフィルタモジュール20について、詳細に説明する。
 図2は、実施の形態1によるフィルタモジュール20を、取り付け面側である底面側から見た斜視図であり、図3は、図2のフィルタモジュール20からポッティング材を取り除いた図である。また、図4は、フィルタモジュール20の分解図である。
 図2~図4に示すように、フィルタモジュール20は、ケース50と、平滑コンデンサ142としてのコンデンサモジュール30と、インダクタ151としてのインダクタモジュール40を有している。図4に示すように、ケース50は、第1スペース50aと第2スペース50bを有している。そして、第1スペース50aには、コンデンサモジュール30が格納されて、ポッティング材60が充填され、第2スペース50bには、インダクタモジュール40が格納されて、ポッティング材61が充填される。
 図5は、実施の形態1のフィルタモジュール20を構成する、コンデンサモジュール30を示す図である。図5に示すように、コンデンサモジュール30は、5つのコンデンサ素子80と、正極側バスバー31と、負極側バスバー32により構成されている。コンデンサ素子80は、金属を蒸着させたプラスチックフィルムを積層させて、金属吹付けにより端子接合面に電極を形成したフィルムコンデンサである。正極側バスバー31及び負極側バスバー32は銅材で形成されており、コンデンサ素子80との接合性を高める為に金属メッキ処理が施されている。
 なお、コンデンサ素子80の数は、5つに限るものではなく、電力変換装置1に要求されるキャパシタンス(静電容量)により、適宜決定される。また、コンデンサ素子80の種類は、フィルムコンデンサに限るものではなく、定められたキャパシタンスを有するコンデンサであれば、フィルムコンデンサ以外であってもよい。さらに、正極側バスバー31及び負極側バスバー32の材質は、銅材に限らず、定められた電気抵抗率を有する金属材であればよい。
 図5に示すように、正極側バスバー31は、本体部31aと、5つの接合部31bと、固定部31cにより構成されている。5つの接合部31bは、本体部31aの下方に延出して形成されており、5つのコンデンサ素子80の正極側にそれぞれ接合される。固定部31cは、本体部31aの上方に延出して、負極側バスバー32側に曲げられ、負極側バスバー32の上方で、負極側バスバー32と交差するように形成されている。また、固定部31cには、ネジなどの締結部材を挿通させる貫通孔31dが形成されている。
 図6は、図5のコンデンサモジュール30における、負極側バスバー32を示す図である。図6に示すように、負極側バスバー32は、本体部32aと、5つの接合部32bと、2つの固定部32cにより構成されている。5つの接合部32bは、本体部32aの下方に延出して形成されており、5つのコンデンサ素子80の負極側にそれぞれ接合される。2つの固定部32cは、本体部32aの側方に延出して形成されており、ネジなどの締結部材を挿通させる貫通孔32dが形成されている。
 図5に示すように、コンデンサモジュール30は、5つのコンデンサ素子80に対して、正極側バスバー31と負極側バスバー32を、対面させた状態で配置している。そして、正極側バスバー31の5つの接合部31bを、5つのコンデンサ素子80の電極面80aに、溶接又は半田付けによりそれぞれ接合し、負極側バスバー32の5つの接合部32bを、5つのコンデンサ素子80の電極面80bに、溶接又は半田付けによりそれぞれ接合している。
 このように構成された、平滑コンデンサ142としてのコンデンサモジュール30は、整流後、平滑リアクトル141により電流が平滑された電力を蓄え、キャパシタンスに応じて出力電圧を平滑化させる。
 図7は、フィルタモジュール20を構成するインダクタ151としてのインダクタモジュール40の斜視図である。図7に示すように、インダクタモジュール40は、インダクタ用バスバー41と、コア42と、テープ43と、クリップ44を有している。
 図8は、図7のインダクタモジュール40の分解図である。また、図9は、インダクタモジュール40を構成するインダクタ用バスバー41を示す図であり、図10は、コア42を示す図である。
 図9に示すように、インダクタ用バスバー41は、インサート成形により、銅材で形成されたバスバーを樹脂部41gと一体化して形成されている。インダクタ用バスバー41は、ストレート部41aと、2つの平面部41b,41cと、平面部41bの一部を曲げ加工した立上げ部41fとを有している。また、平面部41b,41cには、それぞれ貫通孔41d,41eが形成されている。
 樹脂部41gは、絶縁性を有するPPS又はPBTなどの樹脂で形成され、ストレート部41aの両端部を覆っている。なお、バスバーの材質は、銅に限るものではなく、定められた電気抵抗率を有する金属材であればよい。
 図8及び図10に示すように、コア42は、U型コア45とI型コア46により形成されている。U型コア45とI型コア46は、フェライトで形成されている。図8に示すように、U型コア45は、段差部45aを有しており、I型コア46は、段差部46aを有している。また、I型コア46には、ケース50の形状に合わせた面取り部46cが形成されている。
 また、I型コア46は、インダクタ用バスバー41を覆う側の面に、ギャップシート46bが接着されている。なお、U型コア45及びI型コア46の材質は、フェライトに限るものではなく、定められた磁気特性を有する磁性体であればよい。
 クリップ44は、一定の強度を有するステンレス製の板材で形成されたバネ部材である。なお、クリップ44の材質は、ステンレスに限るものではなく、定められた弾性と強度を有するものであれば、鉄であってもよいし、樹脂などの非金属であってもよい。
 テープ43は、樹脂の母材に粘着剤が塗布された粘着テープである。テープ43には、例えばポリエステルフィルムテープが用いられる。
 そして、インダクタモジュール40は、インダクタ用バスバー41を、U型コア45とI型コア46によって挟み、テープ43を巻回してクリップ44を嵌合することにより形成される。
 この様に構成されたインダクタモジュール40は、バスバーを覆うコア42の断面積及び長手方向の長さにより決定される、インダクタンス及びインピーダンスを有し、インダクタとして機能する。また、ギャップシート46bをコア42に配置することにより、電流に対応する重畳特性を有するインダクタとなる。
 インダクタモジュール40は、平滑コンデンサ142で平滑された電圧に重畳する、ノイズの原因となる特定の周波数帯域のサージ成分を、インダクタモジュール40が保有するインピーダンスに応じて除去する。
 図11は、ケース50の斜視図である。図11に示すように、ケース50は、第1スペース50aと第2スペース50bとを有している。そして、第1スペース50aと第2スペース50bとの間には壁50cが形成されている。
 ケース50の第1スペース50aには、コンデンサモジュール30が格納され、第2スペース50bには、インダクタモジュール40が格納される。第2スペース50bの、長手方向の両側面には、それぞれ切欠き50gが形成されている。
 また、第2スペース50bの底部には、フィルタモジュール20を電力変換装置1に配置する場合に、周辺の部品と干渉しないように、面取り部50fが形成されている。そして、ケース50は、第1スペース50aの側面から延出する、一対の固定部50dを有している。一対の固定部50dには、鉄製のブッシュ51が配置されている。さらに、2つの固定部50dには、それぞれ、電力変換装置1の、図示しない筐体の位置決め穴と係合する、位置決めピン50eが形成されている。
 ケース50は、絶縁性を有するPPS樹脂により形成されており、ブッシュ51は、インサート成形によって、ケース50と一体化されている。なお、ケース50の材質はPPSに限るものではなく、ブッシュ51の材質は鉄に限るものではない。例えば、ケース50の材質は絶縁性を有するPBTなどの樹脂であってもよいし、ブッシュ51の材質はステンレスであってもよい。
 次に、図4の分解図を用いて、フィルタモジュール20の組み立てについて説明する。
 まず、ケース50の第2スペース50bに、インダクタモジュール40を格納する。インダクタモジュール40は、インダクタ用バスバー41の2つの平面部41b,41cが、第2スペース50bの側面に形成された一対の切欠き部50g,50gに収まるように格納する。この第2スペース50bの一対の切欠き部50gにより、インダクタモジュール40は、ケース50に対して位置決めされる。
 次に、第1スペース50aにコンデンサモジュール30を格納する。このとき、図4に破線の円で示した、コンデンサモジュール30の正極側バスバー31の固定部31cと、インダクタモジュール40の平面部41cとが重なるように格納する。正極側バスバー31の固定部31cには、貫通孔31dが形成されており、インダクタモジュール40の平面部41cには、貫通孔41eが形成されている。そして、貫通孔31dの内径は、貫通孔41eの内径よりも大きく形成されている。正極側バスバー31の固定部31cと、インダクタモジュール40の平面部41cとを重ねる際には、正極側バスバー31の貫通孔31dの中心と、インダクタモジュール40の貫通孔41eの中心とを合わせるようにする。
 さらに、コンデンサモジュール30の負極側バスバー32の固定部32cを、ケース50の固定部50dに配置されたブッシュ51に重ねる。負極側バスバー32の固定部32cに形成された貫通孔32dの内径は、ブッシュ51の内径よりも大きく形成されている。負極側バスバー32の固定部32cをブッシュ51に重ねる際には、負極側バスバー32の貫通孔32dの中心と、ブッシュ51の中心とを合わせるようにする。
 次に、コンデンサモジュール30が格納された第1スペース50aと、インダクタモジュール40が格納された第2スペース50bに、それぞれポッティング材を充填して硬化させる。コンデンサモジュール30が格納される第1スペース50aには、エポキシ系のポッティング樹脂を充填し、インダクタモジュール40が格納される第2スペース50bには、シリコン系のポッティング樹脂を充填する。
 以上により、フィルタモジュール20が形成される。続いて、フィルタモジュール20の、電力変換装置1への組み込みについて説明する。
 図12は、フィルタモジュール20を、上面側から見た斜視図である。フィルタモジュール20を電力変換装置1に組み付ける際には、図12に示すように、ケース50の開口側を、図示しない電力変換装置1の筐体に向けた状態で組み付けられる。フィルタモジュール20は、ケース50の一対の固定部50dのブッシュ51に、それぞれ締結部材を挿通させて、締結部材を締め付けることにより筐体に締結される。
 図2に示すように、コンデンサモジュール30の負極側バスバー32の一対の固定部32c,32cは、ケース50の一対の固定部50d,50dと重ね合わせられている。よって、ケース50が筐体に取付けられたとき、負極側バスバー32の一対の固定部32c,32cは、筐体に接した状態で固定される。
 一方、インダクタモジュール40の、インダクタ用バスバー41の一方の平面部41bは、図1の電力変換装置1の回路における、インダクタ151に付属する図示しない配線用バスバー上に固定され、電気的に接続される。そして、インダクタ用バスバー41の平面部41cは、フィルタ回路部150のコンデンサ152に付属する配線用バスバー上に固定され、電気的に接続される。以上により、フィルタモジュール20は、電力変換装置1に組み込まれる。
 このように構成された実施の形態1による電力変換装置1のフィルタモジュール20によれば、電力変換装置1を構成する、既存の平滑コンデンサ142に対応するコンデンサモジュール30と、追加部品であるインダクタ151に対応するインダクタモジュール40を、絶縁部材で形成されたケース50に格納して一体化している。これにより、フィルタモジュール20を電力変換装置1に組み込む際に、電力変換装置1の筐体を大きくすることなく、インダクタを追加することができる。さらに、既存の部品とインダクタを一体化してコンパクトに配置することができるため、電力変換装置1を構成する部品の体積を小さくすることができる。よって、電力変換装置1を小型化及び軽量化することができる。さらに、複数のコンデンサ素子80とインダクタモジュール40をケース50で保持することにより、部品を保持するための部材を減らすことができ、電力変換装置1の製造コストを削減することができる。
 また、フィルタモジュール20は、インダクタモジュール40に近接する側にコンデンサモジュール30の負極側バスバー32を配置している。負極側バスバー32は、筐体のGNDに接続されるので、インダクタモジュール40が駆動される際に、コア42及びインダクタ用バスバー41から発生する熱を、コンデンサモジュール30の負極側バスバー32を介して筐体に放熱することができる。これにより、インダクタモジュール40の温度上昇を抑制するとともに、ケース50に一体化された複数のコンデンサ素子80の温度上昇を抑制することができる。
 また、コンデンサモジュール30の発熱についても、負極側バスバー32を介して筐体に放熱することができるため、コンデンサモジュール30の発熱による、インダクタモジュール40への影響を抑制することができる。よって、温度上昇による電力変換装置1の特性の低下が抑制でき、電力変換装置1を安定して動作させることができる。
 また、コンデンサモジュール30は、正極側バスバー31と負極側バスバー32とを、立体的に交差させて配置している。これにより、正極側バスバー31と負極側バスバー32で発生する磁束をキャンセルすることができる。これにより、正極側バスバー31及び負極側バスバー32で発生する寄生インダクタンスを除去することができ、コンデンサモジュール30自体の寄生インダクタンス、及びコンデンサ素子80の寄生インダクタンスを低減させることができる。よって、サージ電圧の抑制、及びEMC特性を改善させることができる。
 そして、インダクタモジュール40に近接するコンデンサモジュール30の負極側バスバー32は、2つの分岐させた固定部32cを有している。これにより、負極側バスバー32の断面積を大きくさせることが可能となり、負極側バスバー32及びコンデンサモジュール30の寄生インダクタンスをさらに低減させることができる。また、分岐させた2つの固定部32cを筐体に接触させていることから、放熱面においても熱抵抗を下げることが可能となり、負極側バスバー32を介した放熱効果をさらに高めることができる。
 また、負極側バスバー32の筐体への接続を、ケース50の固定部50dの固定とともに行っている。これにより、フィルタモジュール20を小型化することができ、電力変換装置1を小型化することができる。さらに、締結箇所が減ることにより、生産性が向上し、加工コストが削減できる。また、負極側バスバー32の貫通孔32d内径が、ブッシュ51の内径より大きくしている。これにより、フィルタモジュール20の筐体への取り付けの際、負極側バスバー32の貫通孔32dとブッシュ51の中心がずれた場合であっても、締結部材により負極側バスバー32の固定部32cが削られて、導電性の異物を発生させることが防止できる。
 また、コンデンサモジュール30の正極側バスバー31は、コンデンサモジュール30を横断する形で、負極側バスバー32と交差させ、インダクタ用バスバー41の平面部41cに接続させている。これにより、寄生インダクタンスを増加させずに、インダクタ用バスバー41の長さを大きくすることができる。よって、インダクタ用バスバー41の固定時の変位に伴う、応力を低減することができ、インダクタ用バスバー41の耐振性を向上させることができる。
 また、フィルタモジュール20では、正極側バスバー31の固定部31cを、インダクタモジュール40の平面部41cと重ねて固定している。これにより、新たに固定部を追加する必要が無い。よって、電力変換装置1としてさらに小型化させることができる。さらに固定による締結工程も削減することができ、生産性向上と共に加工コスト削減も可能とである。
 さらに、フィルタモジュール20では、インダクタモジュール40のインダクタ用バスバー41より厚みが薄く、強度の弱い正極側バスバー31を、筐体側に配置させて重ねている。これにより、ネジ締め等の締結工程時に、ネジの接触に伴う正極側バスバー31の変形を抑制することができる。なお、実施の形態1では、インダクタ用バスバー41を、正極側バスバー31よりも厚くしているが、これに限るものではない。例えば、正極側バスバー31をインダクタ用バスバー41よりも厚くして、配置を逆にしてもよい。また、締結工程時に、インダクタ用バスバー41又は正極側バスバー31が回転して変形するおそれがある場合には、ケース50に、図13の変形例に示すように、インダクタ用バスバー41又は正極側バスバー31の回転を防止する突起部50m、50nを形成するとよい。
 また、フィルタモジュール20では、正極側バスバー31の固定部31cの貫通孔31dの内径を、インダクタ用バスバー41の貫通孔41eの内径より予め大きく形成している。これにより、締結工程の際、インダクタ用バスバー41の貫通孔41eの中心と、正極側バスバー31の貫通孔31dの位置がずれた場合であっても、締結部材によって正極側バスバー31が削られることによる導電性異物の発生を抑制することができる。なお、実施の形態1では、締結時に正極側バスバー31が下に配置されるため、正極側バスバー31の貫通孔31dの内径を大きくしているが、これに限るものではない。例えば、インダクタ用バスバー41を下に配置する場合には、インダクタ用バスバー41の貫通孔41eの内径を、正極側バスバー31の貫通孔31dより大きくしてもよい。
 また、フィルタモジュール20では、ケース50の第1スペース50aと第2スペース50bを、壁50cによって分離させている。これにより、コンデンサモジュール30が格納される第1スペース50aと、インダクタモジュール40が格納される第2スペース50bで使用するポッティング材の種類を、異なるものとすることができる。よって、格納されるコンデンサモジュール30及びインダクタモジュール40に応じた最適なポッティング材を充填することができ、各モジュールの特性を最適化且つ安定化させることができる。
 なお、実施の形態1では、ケース50の第1スペース50a及び第2スペース50bの開口方向は同一であるが、互いに逆の方向にしてもよい。これにより、電力変換装置1としての部品レイアウトの自由度を高めることができる。よって、スペースを有効に活用して小型化することができる。第1スペース50aと第2スペース50bの開口方向を同一とした場合には、第1スペース50aと第2スペース50bに異なるポッティング材を充填する場合に、ケース50の向きを変える必要がないため、ポッティング工程を簡略化することができ、生産性が向上する。さらに、電力変換装置1の部品実装面の近傍に配線を接続できるため、配線を短縮することができ、電力変換装置1の厚みを薄くし、小型化することができる。
 また、インダクタモジュール40には、シリコン系のポッティング樹脂を使用することにより、コア42を構成するフェライト等の脆性材料が、ヒートサイクル時にクラックを発生することが防止できる。よって、インダクタモジュール40の特性を安定化させるとともに、長期信頼性を確保することができる。
 また、ケース50の第2スペース50bの両側面に、切り欠き部50gを形成し、この切り欠き部50gに、インダクタモジュール40のインダクタ用バスバー41の平面部41b,41cを配置している。これにより、インダクタモジュール40の高さ方向が位置決めされ、組立の作業性が向上する。さらに、フィルタモジュール20の高さ方向の寸法を抑制させることができる。
 また、ケース50の固定部50dに、ブッシュ51をインサート成形して一体化させている。そして、ケース50を筐体に固定する際に、ネジ等の締結部材を、金属製のブッシュ51に接触させる。これにより、締結部材が樹脂部分に接触しないので、樹脂のクリープを抑制することができる。よって、ケース50を安定して固定することができ、長期の耐久性、信頼性を確保することができる。
 また、ケース50の固定部50dに位置決めピン50eを形成し、筐体に形成された位置決め穴に係合させている。これにより、フィルタモジュール20を筐体に対して位置決めすることができる。よって、電力変換装置1の特性を安定させることができ、さらに、組立の際の作業性、生産性も向上させることができる。
 また、インダクタモジュール40において、構成部品のコア42に、ギャップシート46bを配置している。これにより、電力変換装置1の二次側回路に大電流が通電された場合であっても、インダクタとして磁気的飽和を起こすことがない。よって、インダクタモジュール40の性能を安定させることができる。
 また、インダクタ用バスバー41を樹脂部41gにインサート成形している。これにより、コア42をインダクタ用バスバー41に装着した際に、コア42と樹脂部41gを当接させている。これにより、コア42がインダクタ用バスバー41に接触して破損させることを防止し、インダクタ用バスバー41を保護することができる。
 さらに、樹脂部41gをインサート成形によってインダクタ用バスバー41一体化することにより、別部品を装着する工程をなくすことができ、生産性及び部品の寸法精度が向上し、加工コストが低減できる。
 インダクタ用バスバー41では、ストレート部41aを樹脂から露出させている。また、樹脂部41gとコア42が接触する部分には、コア42に段差部45a,46aを形成している。これにより、ストレート部41aではコア42の断面積を大きくすることができ、所望のインダクタンス及びインピーダンスを得ながら、コア42のサイズを小型化させることができる。
なお、ストレート部41aにおいて、インダクタ用バスバー41とコア42との接触が懸念される場合には、インダクタ用バスバー41をテープなどで保護すればよい。なお、所望のインダクタンス、及びインピーダンスが十分確保できており、コア42の断面積を増加させる必要がない場合には、ストレート部41aを全て樹脂で被覆してもよい。この場合、ストレート部41aをテープなどで保護する必要がなく、生産性が向上する。
 また、インダクタ用バスバー41において、樹脂部41gにインサート成形される部位に、穴を設けてもよい。これにより、バスバーの穴部に樹脂が充填され、アンカー効果によりバスバーと樹脂の接着強度を向上させることができる。
 また、コア42を装着した後に、コア42の周囲にテープ43を巻回している。これにより、コア42を仮止めすることができ、後工程の作業性を向上させることができる。さらに、後工程でクリップ44を装着する際に、コア42を保護することができる。
 そして、テープ43を巻回した後に、クリップ44を装着して、コア42をインダクタ用バスバー41に固定している。これにより、インダクタ用バスバー41の組立時又は組立後のギャップ長の変化を防止させることが可能となり、製品特性及び長期信頼性を安定化させることができる。また、金属製のクリップ44をコア42に接触させることにより、クリップ44を介してコア42の熱を放熱することができる。
なお、実施の形態1では、インダクタ用バスバー41とコア42を別部品としているが、これに限るものではない。例えば、コア42とインダクタ用バスバー41を、インサート成形により一体化してもよい。この場合、テープ43及びクリップ44が不要となり、組立工数が削減できる。
 フィルタモジュール20を電力変換装置1に実装する際、インダクタモジュール40の平面部41bの下部には、フィルタ回路部150におけるコンデンサ152用に、図示しない配線用バスバーが配置される。また、インダクタモジュール40の平面部41bには、立上げ部41fが形成されている。よって、フィルタモジュール20を電力変換装置1に組み付ける際に、この配線用バスバーを間違ってインダクタモジュール40の平面部41bの上部に組み付けようとした場合には、立上げ部41fに当接して、配線用バスバーを固定することができない。これにより、フィルタモジュール20を組み付ける際の間違いを防止することができる。なお、立上げ部41fは、平面部41cに形成してもよい。
 なお、実施の形態1では、図1の回路図における平滑コンデンサ142と、追加フィルタ部品であるインダクタ151によりフィルタモジュール20を構成したが、図1の回路図における、複数のコンデンサ152を含めて、フィルタモジュール20を構成してもよい。
 なお、実施の形態1では、電力変換装置1を、降圧型DC/DCコンバータとして説明したが、これに限るものではない。例えば、電力変換装置1は、モータ駆動用のインバータ、車載充電器、その他のインバータ、コンバータであってもよい。
 実施の形態2.
 実施の形態2による電力変換装置1のフィルタモジュール20は、コンデンサモジュール30の正極側バスバー31と、インダクタ用バスバー41の形状が、実施の形態1のフィルタモジュール20とは異なる。他の構成は実施の形態1と同様である。
 図14は、実施の形態1のコンデンサモジュール30を構成する、正極側バスバー31の固定部31cと、インダクタ用バスバー41の平面部41cを側面から見た図である。そして、図15は、実施の形態2のコンデンサモジュール30を構成する正極側バスバー31の固定部31cと、インダクタ用バスバー41の平面部41cを、側面から見た図である。
 図15に示すように、実施の形態2によるフィルタモジュール20は、コンデンサモジュール30の正極側バスバー31を、インダクタ用バスバー41の平面部41cと重ねずに、隣接させている。インダクタモジュール40の平面部41cに、曲げ部41hを形成し、コンデンサモジュール30の正極側バスバー31に、曲げ部31eを形成して、曲げ部41hと曲げ部31eとを互いに当接させて接合している。
 これにより、インダクタ用バスバー41とコンデンサモジュール30の正極側バスバー31を締結する工数が削減でき、締結部材が緩むことによる接触不良をなくすことができる。よって、電力変換装置1の信頼性を確保し、品質を安定させることができる。
 また、インダクタ用バスバー41とコンデンサモジュール30の正極側バスバー31を、溶接又は半田付けによって接合することにより、接触部の電気抵抗を大幅に低減させることができる。これにより、大電流が通電された場合に、局所的な発熱による電力変換装置1の性能劣化及び故障を防止することができる。よって、電力変換装置1の品質を安定させることができる。
 そして、インダクタモジュール40の曲げ部41hと、コンデンサモジュール30の正極側バスバー31の曲げ部31eは平面に形成されている。これにより、接合部が平行平板となって、通電時に発生する磁束がキャンセルされる。よって、接合部の寄生インダクタンスを低減させることができる。
 なお、図15では、曲げ部41hと曲げ部31eの接合部をケース50に近接させているが、図16に示す変形例のように、ケース50から遠ざかる方向に折り曲げて接合してもよい。
 実施の形態3.
 図17は、実施の形態3によるフィルタモジュール20の断面図である。実施の形態3によるフィルタモジュール20は、ケース50の壁50cの構造が、実施の形態1とは異なる。他の構成は実施の形態1と同様である。
 図17に示す様に、コンデンサモジュール30とインダクタモジュール40間に形成された壁50cは、内部に空間50hを有している。そして、空間50hにより、コンデンサモジュール30とインダクタモジュール40の間に空気を介在させて、熱伝導率を低下させている。これにより、ケース50の壁50cに、空間50hを形成することにより、コンデンサモジュール30とインダクタモジュール40との間の熱干渉による温度上昇をさらに抑制することができる。よって、フィルタモジュール20全体の温度上昇を抑制することができ、電力変換装置1の性能を安定化させることができる。
 なお、実施の形態3では、壁50cに空間50hを形成したが、これに限るものではない。例えば、図18に示す変形例のように、壁50cに、アルミ又は銅製の高熱伝導性の金属板19をインサート成形して配置してもよい。この金属板19によっても、空間50hと同様の効果が得られる。
 また、図18に示すように、ケース50の壁50cから底面側に金属板19折り曲げて延出させ、ケース50の外に露出させてもよい。この場合、コンデンサモジュール30、インダクタモジュール40からの熱損失を効率的に外部に放熱することが可能となる。金属板19は、ケース50の表面から露出させなくてもよい。さらに、金属板19の折り曲げ方向は、コンデンサモジュール30であっても、インダクタモジュール40側であってもよいし、両方に分岐させてもよい。
 実施の形態4.
 図19及び図20は、実施の形態4によるフィルタモジュール20の斜視図である。実施の形態4によるフィルタモジュール20は、実施の形態1のフィルタモジュール20とは、コンデンサモジュール30の正極側バスバー31及び負極側バスバー32の形状が異なる。他の構成は実施の形態1と同様である。
 図19及び図20に示す様に、コンデンサモジュール30の正極側バスバー31には、延長端子31fが形成されており、負極側バスバー32には、延長端子32eが形成されている。延長端子31f及び延長端子32eは、それぞれケース50の外側に延出している。延長端子31f及び延長端子32eは、フィルタモジュール20の取り付け部の周辺に配置された図示しない制御基板のスルーホールに挿入され、半田付けにより制御基板と接続される。
 降圧型DC/DCコンバータである電力変換装置1では、出力電圧をセンサにより検出して、制御基板にセンサ情報を入力し、フィードバック制御を実施している。センサは、図1の回路図における、出力側のB端子付近に正極側を接続し、筐体にGND端子を接続して、ハーネスなどを使用して制御基板に接続する手法が一般的である。しかしながら、ハーネスなどの追加部品が必要になり、端子を接続するスペースが必要となる。
 実施の形態4のフィルタモジュール20によれば、B端子付近に配置されている平滑コンデンサ142に相当するコンデンサモジュール30の、正極側バスバー31と負極側バスバー32に延長端子31fと延長端子32eを形成し、制御基板に接続させている。これにより、これらの延長端子31fと延長端子32eを介して、出力電圧を検出することができる。よって、ハーネスなどの追加部品を必要とせずに出力電圧を検出することができる、部品点数の削減、及び電力変換装置1の小型化、及び低コスト化が実現できる。
 なお、本発明は、その発明の範囲内において、実施の形態を適宜変更し、部分的に省略することができる。
 なお、本発明では、電流によって発生する磁気エネルギーを蓄える受動素子であるインダクタとしてインダクタモジュール40を形成したが、構成部品としてコイルであっても適用可能である。
 また、インダクタモジュール40のコア42は、本発明ではU型コア45とI型コア46の組み合わせにより形成したが、これに限るものではない。例えば、バスバーを周回させることができる形状であれば、U型とI型の組み合わせ以外であってもよい。
 1 電力変換装置、19 金属板、20 フィルタモジュール、30 コンデンサモジュール、31 正極側バスバー、31a 本体部、31b 接合部、31c 固定部(正極端子)、31d 貫通孔、31e 曲げ部、31f 延長端子、32 負極側バスバー、32a 本体部、32b 接合部、32c 固定部(負極端子)、32d 貫通孔、32e 延長端子、40 インダクタモジュール、41 インダクタ用バスバー、41a ストレート部、41b 平面部(出力端子)、41c 平面部(入力端子)、41d,41e 貫通孔、41f 立上げ部 41g 樹脂部、41h 曲げ部、42 コア、43 テープ、44 クリップ、45 U型コア、45a,46a 段差部、46 I型コア、46b ギャップシート、46c 面取り部、50 ケース(ケース部材)、50a 第1スペース、50b 第2スペース、50c 壁、50d 固定部、50e 位置決めピン、50f 面取り部、50g 切り欠き部、50h 空間、50m、50n 突起部、51 ブッシュ、60,61 ポッティング材、80 コンデンサ素子、80a,80b 電極面、100 入力フィルタ回路部、110 スイッチング回路部、120 トランス部、130 整流回路部、140 平滑回路部、150 フィルタ回路部。

Claims (18)

  1.  コンデンサモジュールと、
     インダクタモジュールと、
     ケース部材とを有する電力変換装置のフィルタモジュールであって、
     前記コンデンサモジュールは、
     正極端子が形成された正極側バスバーと、
     負極端子が形成された負極側バスバーと、
     前記正極側バスバー及び前記負極側バスバーに、それぞれ接続された複数のコンデンサ素子とを有し、
     前記インダクタモジュールは、
     インダクタ用バスバーと、前記インダクタ用バスバーが挿通される磁性部材とを有し、
     前記ケース部材は、
     前記コンデンサモジュールが格納される第1スペースと、
     前記インダクタモジュールが格納される第2スペースとを有する、
      電力変換装置用フィルタモジュール。
  2.  前記第1スペースに前記コンデンサモジュールを格納し、
     前記第2スペースに前記インダクタモジュールを格納した場合に、
     前記コンデンサモジュールの前記負極側バスバーは、
     前記インダクタモジュール側に配置される、
     請求項1に記載の電力変換装置用フィルタモジュール。
  3.  前記正極端子と前記負極端子は、
     前記正極側バスバーと前記負極側バスバーが前記複数のコンデンサ素子に接続された場合に、互いに立体的に交差して配置される、
     請求項1又は2に記載の電力変換装置用フィルタモジュール。
  4.  前記ケース部材は、
     前記ケース部材を電力変換装置に固定するケース固定部を有し、
     前記負極端子は、前記ケース固定部と共に、前記電力変換装置に固定される、
     請求項1に記載の電力変換装置用フィルタモジュール。
  5.  前記負極側バスバーは、複数の前記負極端子を有する、
     請求項1又は4に記載の電力変換装置用フィルタモジュール。
  6.  前記ケース部材は、
     前記第1スペースと前記第2スペースとの間に壁を有する、
     請求項1に記載の電力変換装置用フィルタモジュール。
  7.  前記インダクタ用バスバーは、入力端子と出力端子を有し、
     前記入力端子は、前記正極側バスバーの前記正極端子と重ねて配置される、
     請求項1に記載の電力変換装置用フィルタモジュール。
  8.  前記入力端子と前記正極端子とは、
     重ね合わされた状態で、締結部材により電力変換装置に固定され、
     前記入力端子と前記正極端子のうち、
     前記締結部材と接触する方の肉厚は、他方の肉厚よりも厚い、
     請求項7に記載の電力変換装置用フィルタモジュール。
  9.  前記第1スペースと前記第2スペースは、同一の方向に開口する、
     請求項6に記載の電力変換装置用フィルタモジュール。
  10.  前記ケース部材は、前記第2スペースの開口部に切り欠き部を有する、
     請求項1に記載の電力変換装置用フィルタモジュール。
  11.  前記負極端子は、貫通孔を有し、
     前記ケース固定部は、固定孔を有し、
     前記貫通孔は、前記固定孔よりも大きい、
     請求項4に記載の電力変換装置用フィルタモジュール。
  12.  前記インダクタ用バスバーは、入力端子を有し、
     前記入力端子は、前記正極側バスバーの前記正極端子に隣接する位置に配置されて、
     前記正極端子の曲げ部に接合される、
     請求項1に記載の電力変換装置用フィルタモジュール。
  13.  前記インダクタ用バスバーは、一方の端部側に立ち上げ部を有する、
     請求項1又は7に記載の電力変換装置用フィルタモジュール。
  14.  前記ケース部材は、前記インダクタ用バスバーの移動を規制する、突起部を有する請求項1又は7に記載の電力変換装置用フィルタモジュール。
  15.  前記ケース部材は、前記壁の内部に空間を有する、
     請求項6に記載の電力変換装置用フィルタモジュール。
  16.  前記ケース部材は、前記壁の内部に、金属板を有する、
     請求項6に記載の電力変換装置用フィルタモジュール。
  17.  前記コンデンサモジュールの前記正極側バスバーと前記負極側バスバーは、
     前記コンデンサモジュールが、前記ケース部材の前記第1スペースに格納された場合に、それぞれ、前記第1スペースの外部に延出するバスバー延長部を有する、
     請求項1に記載の電力変換装置用フィルタモジュール。
  18.  前記インダクタモジュールの前記インダクタ用バスバーの一部は、樹脂部材にインサート成形されている、
     請求項1に記載の電力変換装置用フィルタモジュール。
PCT/JP2017/015922 2017-04-20 2017-04-20 電力変換装置用フィルタモジュール WO2018193589A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/015922 WO2018193589A1 (ja) 2017-04-20 2017-04-20 電力変換装置用フィルタモジュール
EP17906715.2A EP3614547B1 (en) 2017-04-20 2017-04-20 Filter module for power conversion device
US16/603,742 US11431237B2 (en) 2017-04-20 2017-04-20 Filter module for power conversion device
CN201780089652.9A CN110521100B (zh) 2017-04-20 2017-04-20 电力转换装置用滤波器模块
JP2019513169A JP6716025B2 (ja) 2017-04-20 2017-04-20 電力変換装置用フィルタモジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015922 WO2018193589A1 (ja) 2017-04-20 2017-04-20 電力変換装置用フィルタモジュール

Publications (1)

Publication Number Publication Date
WO2018193589A1 true WO2018193589A1 (ja) 2018-10-25

Family

ID=63856657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015922 WO2018193589A1 (ja) 2017-04-20 2017-04-20 電力変換装置用フィルタモジュール

Country Status (5)

Country Link
US (1) US11431237B2 (ja)
EP (1) EP3614547B1 (ja)
JP (1) JP6716025B2 (ja)
CN (1) CN110521100B (ja)
WO (1) WO2018193589A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020088945A (ja) * 2018-11-19 2020-06-04 三菱電機株式会社 電力変換装置
JP2020087699A (ja) * 2018-11-26 2020-06-04 矢崎総業株式会社 バスバー誤組付防止構造
JP2020171109A (ja) * 2019-04-02 2020-10-15 株式会社デンソー 電力変換装置
JP2021012991A (ja) * 2019-07-09 2021-02-04 株式会社デンソー コイルモジュール及び電力変換装置
EP3905500A4 (en) * 2018-12-28 2021-12-29 Mitsubishi Electric Corporation In-vehicle power conversion device
US20220375845A1 (en) * 2021-05-24 2022-11-24 Fuji Electric Co., Ltd. Semiconductor device
EP4057490A4 (en) * 2019-11-07 2022-12-07 Mitsubishi Electric Corporation POWER CONVERSION DEVICE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116028B2 (ja) * 2019-09-13 2022-08-09 矢崎総業株式会社 車載電源装置
DE102022203946A1 (de) * 2022-04-22 2023-10-26 Magna powertrain gmbh & co kg Verfahren zur Herstellung eines Inverters und Inverter
CN115910599A (zh) * 2022-12-06 2023-04-04 上海法雷奥汽车电器系统有限公司 电容支架及逆变器总成

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285125A (ja) * 1996-04-12 1997-10-31 Ricoh Co Ltd Oa機器用電源装置
JP2004296813A (ja) * 2003-03-27 2004-10-21 Tdk Corp コアユニット及びスイッチング電源装置
JP2005093536A (ja) * 2003-09-12 2005-04-07 Tdk Corp コアユニット、スイッチング電源装置、及びコア保持部材
JP2007143272A (ja) 2005-11-17 2007-06-07 Hitachi Ltd コンデンサモジュール,電力変換装置及び車載用電機システム
JP2014082894A (ja) * 2012-10-18 2014-05-08 Denso Corp 同期整流装置および電源装置
JP2015035862A (ja) * 2013-08-08 2015-02-19 トヨタ自動車株式会社 電力変換装置
JP2015177585A (ja) * 2014-03-13 2015-10-05 トヨタ自動車株式会社 電力変換器
JP2016039699A (ja) * 2014-08-07 2016-03-22 株式会社デンソー 電力変換装置
JP2016058688A (ja) * 2014-09-12 2016-04-21 株式会社豊田自動織機 コンデンサモジュールおよびコンデンサモジュールの製造方法
JP2016100913A (ja) * 2014-11-18 2016-05-30 株式会社デンソー 電力変換装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8670237B2 (en) * 2010-12-28 2014-03-11 Mitsubishi Electric Corporation Power conversion apparatus
JP5506740B2 (ja) * 2011-05-31 2014-05-28 日立オートモティブシステムズ株式会社 電力変換装置
JP5508357B2 (ja) * 2011-07-29 2014-05-28 日立オートモティブシステムズ株式会社 電力変換装置
JP5818754B2 (ja) * 2012-08-14 2015-11-18 日立オートモティブシステムズ株式会社 Dc−dcコンバータ装置
JP5974761B2 (ja) * 2012-09-18 2016-08-23 株式会社豊田自動織機 車載用電動圧縮機
JP5718873B2 (ja) * 2012-10-22 2015-05-13 トヨタ自動車株式会社 電気自動車用の電力変換装置
JP6152722B2 (ja) * 2013-07-08 2017-06-28 株式会社オートネットワーク技術研究所 ノイズフィルタ装置
JP2015082951A (ja) * 2013-10-24 2015-04-27 トヨタ自動車株式会社 電力変換装置
JP6387278B2 (ja) * 2014-09-30 2018-09-05 太陽誘電株式会社 回路モジュール及びその製造方法
CN204271909U (zh) * 2014-12-08 2015-04-15 厦门银江智慧城市技术有限公司 一种电源滤波电路
JP6459648B2 (ja) * 2015-03-06 2019-01-30 株式会社デンソー 電力変換装置
JP2020088888A (ja) * 2018-11-15 2020-06-04 株式会社日立製作所 電圧フィルタおよび電力変換装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285125A (ja) * 1996-04-12 1997-10-31 Ricoh Co Ltd Oa機器用電源装置
JP2004296813A (ja) * 2003-03-27 2004-10-21 Tdk Corp コアユニット及びスイッチング電源装置
JP2005093536A (ja) * 2003-09-12 2005-04-07 Tdk Corp コアユニット、スイッチング電源装置、及びコア保持部材
JP2007143272A (ja) 2005-11-17 2007-06-07 Hitachi Ltd コンデンサモジュール,電力変換装置及び車載用電機システム
JP2014082894A (ja) * 2012-10-18 2014-05-08 Denso Corp 同期整流装置および電源装置
JP2015035862A (ja) * 2013-08-08 2015-02-19 トヨタ自動車株式会社 電力変換装置
JP2015177585A (ja) * 2014-03-13 2015-10-05 トヨタ自動車株式会社 電力変換器
JP2016039699A (ja) * 2014-08-07 2016-03-22 株式会社デンソー 電力変換装置
JP2016058688A (ja) * 2014-09-12 2016-04-21 株式会社豊田自動織機 コンデンサモジュールおよびコンデンサモジュールの製造方法
JP2016100913A (ja) * 2014-11-18 2016-05-30 株式会社デンソー 電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3614547A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020088945A (ja) * 2018-11-19 2020-06-04 三菱電機株式会社 電力変換装置
JP2020087699A (ja) * 2018-11-26 2020-06-04 矢崎総業株式会社 バスバー誤組付防止構造
JP7182129B2 (ja) 2018-11-26 2022-12-02 矢崎総業株式会社 バスバー誤組付防止構造
EP3905500A4 (en) * 2018-12-28 2021-12-29 Mitsubishi Electric Corporation In-vehicle power conversion device
US11923775B2 (en) 2018-12-28 2024-03-05 Mitsubishi Electric Corporation In-vehicle power conversion device
JP2020171109A (ja) * 2019-04-02 2020-10-15 株式会社デンソー 電力変換装置
JP7095645B2 (ja) 2019-04-02 2022-07-05 株式会社デンソー 電力変換装置
JP2021012991A (ja) * 2019-07-09 2021-02-04 株式会社デンソー コイルモジュール及び電力変換装置
JP7268508B2 (ja) 2019-07-09 2023-05-08 株式会社デンソー コイルモジュール及び電力変換装置
EP4057490A4 (en) * 2019-11-07 2022-12-07 Mitsubishi Electric Corporation POWER CONVERSION DEVICE
US12113451B2 (en) 2019-11-07 2024-10-08 Mitsubishi Electric Corporation Power conversion device and arrangement of a wire therein
US20220375845A1 (en) * 2021-05-24 2022-11-24 Fuji Electric Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
US20210099072A1 (en) 2021-04-01
CN110521100B (zh) 2021-12-07
EP3614547A4 (en) 2020-04-29
US11431237B2 (en) 2022-08-30
JPWO2018193589A1 (ja) 2019-07-11
CN110521100A (zh) 2019-11-29
JP6716025B2 (ja) 2020-07-01
EP3614547A1 (en) 2020-02-26
EP3614547B1 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
WO2018193589A1 (ja) 電力変換装置用フィルタモジュール
US8910372B2 (en) Method of fabricating a choke assembly
JP7055800B2 (ja) 直流-直流コンバータ
US9345160B2 (en) Electronic device
US9350267B2 (en) Reactor, converter and power conversion device
US7692525B1 (en) Power electronic module with an improved choke and methods of making same
EP3151401B1 (en) Noise reduction device
JP5288325B2 (ja) リアクトル集合体、及びコンバータ
JP2002281758A (ja) 降圧型全波整流装置
CN114123810A (zh) 电力转换装置
JP6647350B2 (ja) 電力変換装置
CN112216484A (zh) 线圈模块和电力转换器
US11289261B2 (en) Circuit assembly
JP4662033B2 (ja) Dc−dcコンバータ
JP2013188010A (ja) 絶縁型スイッチング電源装置
JPH11354342A (ja) トランス
CN112863815B (zh) 电力转换装置
JP7509620B2 (ja) リアクトル
JP7504009B2 (ja) コイル装置
JP2019004363A (ja) Acフィルタ
JP5705263B2 (ja) スイッチング電源装置
JP6349874B2 (ja) 電源装置
JP4300718B2 (ja) 共振型dc−dcコンバータ
JP2021168562A (ja) 電動圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513169

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017906715

Country of ref document: EP

Effective date: 20191120