[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017094832A1 - 蛍光体シート、それを用いた発光体、光源ユニット、ディスプレイ、および発光体の製造方法 - Google Patents

蛍光体シート、それを用いた発光体、光源ユニット、ディスプレイ、および発光体の製造方法 Download PDF

Info

Publication number
WO2017094832A1
WO2017094832A1 PCT/JP2016/085710 JP2016085710W WO2017094832A1 WO 2017094832 A1 WO2017094832 A1 WO 2017094832A1 JP 2016085710 W JP2016085710 W JP 2016085710W WO 2017094832 A1 WO2017094832 A1 WO 2017094832A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
layer
transparent resin
phosphor sheet
fine particles
Prior art date
Application number
PCT/JP2016/085710
Other languages
English (en)
French (fr)
Inventor
達也 神崎
卓哉 西山
長瀬 亮
石田 豊
広樹 関口
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016571440A priority Critical patent/JP6852401B2/ja
Priority to CN201680066389.7A priority patent/CN108351444B/zh
Priority to KR1020187014115A priority patent/KR102419336B1/ko
Publication of WO2017094832A1 publication Critical patent/WO2017094832A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a phosphor sheet, a light emitter using the phosphor sheet, a light source unit, a display, and a method for manufacturing the light emitter.
  • LEDs Light-emitting diodes
  • LCD liquid crystal display
  • LEDs Light Emitting Diodes
  • LCD Liquid Crystal Display
  • LEDs are expected to form a huge market in the general lighting field because of their low environmental impact.
  • Patent Document 1 discloses a Mn-activated double fluoride phosphor, which is a red phosphor having a narrow emission peak half-value width, and a Eu 2 + -activated alkaline earth siliconitride phosphor, which is a yellow phosphor or a green phosphor. A method for obtaining white light emission by use is described.
  • An object of the present invention is to solve such problems.
  • the phosphor sheet according to the present invention includes a phosphor layer including a red phosphor, a ⁇ -type sialon phosphor, and a resin.
  • It is Mn activation double fluoride represented by Formula (1), It is characterized by the above-mentioned.
  • a 2 MF 6 Mn (1)
  • A is one or more alkali metals selected from the group consisting of Li, Na, K, Rb and Cs and containing at least one of Na and K
  • M is Si
  • one or more tetravalent elements selected from the group consisting of Ti, Zr, Hf, Ge and Sn.
  • the phosphor layer is composed of a single layer or a plurality of layers including the red phosphor, the ⁇ -type sialon phosphor, and the resin.
  • the ⁇ -sialon phosphor and the resin are contained in the same layer.
  • the phosphor sheet according to the present invention is characterized in that, in the above invention, the refractive index of the resin is 1.45 or more and 1.7 or less.
  • the phosphor sheet according to the present invention is characterized in that, in the above invention, the resin is a silicone resin.
  • the phosphor sheet according to the present invention is characterized in that, in the above invention, the proportion of the red phosphor in the total solid content in the phosphor layer is 20 wt% or more and 60 wt% or less. To do.
  • the total of the proportion of the red phosphor and the proportion of the ⁇ -sialon phosphor in the total solid content in the phosphor layer is 50% by weight or more. 90% by weight or less.
  • the phosphor sheet according to the present invention is characterized in that, in the above invention, the D50 of the red phosphor is 10 ⁇ m or more and 40 ⁇ m or less.
  • the phosphor sheet according to the present invention is characterized in that, in the above invention, D10 of the red phosphor is 3 ⁇ m or more.
  • the phosphor sheet according to the present invention is characterized in that, in the above invention, (D90-D10) / D50 of the red phosphor is 0.5 or more and 1.5 or less.
  • the phosphor sheet according to the present invention is characterized in that, in the above invention, the porosity in the phosphor layer is 0.1% or more and 3% or less.
  • the phosphor sheet according to the present invention is characterized in that, in the above invention, the phosphor layer contains fine particles.
  • the phosphor sheet according to the present invention is characterized in that, in the above invention, the fine particles are silicone fine particles.
  • the phosphor sheet according to the present invention is characterized in that, in the above invention, a transparent resin layer is further laminated on the phosphor layer.
  • the phosphor sheet according to the present invention is characterized in that, in the above invention, the refractive index of the resin contained in the transparent resin layer is 1.3 or more and 1.6 or less.
  • the phosphor sheet according to the present invention is characterized in that, in the above invention, the refractive index of the resin contained in the transparent resin layer is not more than the refractive index of the resin contained in the phosphor layer.
  • the phosphor sheet according to the present invention is characterized in that, in the above-mentioned invention, the transparent resin layer contains fine particles.
  • the fine particles contained in the transparent resin layer are one or more selected from silica fine particles, alumina fine particles, and silicone fine particles.
  • the phosphor sheet according to the present invention is characterized in that, in the above invention, the transparent resin layer has a minimum transmittance of 80% or more at a wavelength of 400 nm to 800 nm.
  • the phosphor sheet according to the present invention is characterized in that, in the above invention, the proportion of fine particles in the total solid content in the transparent resin layer is 0.1 wt% or more and 30 wt% or less. .
  • the phosphor sheet according to the present invention is characterized in that, in the above invention, the average particle size of the fine particles contained in the transparent resin layer is 1 nm or more and 1000 nm or less.
  • the manufacturing method of the light-emitting body which concerns on this invention picks up the said fluorescent substance sheet separated into the individualization process which separates the fluorescent substance sheet as described in any one of said invention, and individualized It includes a pick-up step and a pasting step of pasting the separated phosphor sheet to a light source.
  • a light emitter according to the present invention includes the phosphor sheet according to any one of the above inventions.
  • a light source unit according to the present invention is characterized by including the phosphor sheet according to any one of the above inventions.
  • a display according to the present invention is characterized by comprising the light source unit described in the above invention.
  • the present invention it is possible to provide a phosphor sheet that achieves both improved color reproducibility and high luminous flux.
  • the light emitting body, the light source unit, and the display including the phosphor sheet according to the present invention have an effect that both improvement in color reproducibility and high luminance can be achieved.
  • FIG. 1A is a side view showing an example of a phosphor sheet according to an embodiment of the present invention.
  • FIG. 1B is a side view showing another example of the phosphor sheet according to the embodiment of the present invention.
  • FIG. 2 is a process diagram showing an example of a method for manufacturing a light emitter using the phosphor sheet according to the embodiment of the present invention.
  • a phosphor sheet according to the present invention a light emitter using the phosphor sheet, a light source unit, a display, and a method for producing the light emitter will be described in detail.
  • the present invention is not limited to the following embodiments, and can be implemented with various modifications according to the purpose and application.
  • the phosphor sheet according to the embodiment of the present invention includes a phosphor layer containing a red phosphor, a ⁇ -type sialon phosphor, and a resin.
  • the red phosphor is a Mn-activated bifluoride represented by the general formula (1).
  • a 2 MF 6 Mn (1)
  • A is selected from the group consisting of lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs), and at least one of Na and K is selected.
  • M is at least one tetravalent element selected from the group consisting of silicon (Si), titanium (Ti), zirconium (Zr), hafnium (Hf), germanium (Ge), and tin (Sn).
  • FIG. 1A is a side view showing an example of a phosphor sheet according to an embodiment of the present invention.
  • the phosphor sheet 4 according to the embodiment of the present invention includes a phosphor layer 2 containing a phosphor 1 and a resin 14 on a support 3.
  • the phosphor layer 2 is a layer containing a plurality of phosphors 1 in the resin 14.
  • the phosphor layer 2 contains, as the phosphor 1, a red phosphor represented by the general formula (1) and a ⁇ -type sialon phosphor.
  • the phosphor layer 2 is formed on a support 3 to constitute a phosphor sheet 4.
  • the phosphor layer 2 may be composed of a single layer containing the red phosphor and the ⁇ -type sialon phosphor as the phosphor 1 and the resin 14.
  • the phosphor layer 2 may be composed of a plurality of layers containing the phosphor 1 and the resin 14.
  • the phosphor layer 1 contains a first phosphor layer containing the red phosphor as the phosphor 1 and the resin 14, and a ⁇ -sialon phosphor as the phosphor 1 and the resin 14.
  • One or more second phosphor layers may be laminated to form a plurality of layers of the phosphor layer 2.
  • the red phosphor and ⁇ -sialon phosphor as the phosphor 1 and the resin 14 are included in the same layer. This is due to the following reason.
  • the phosphor layer 2 is a laminate of a layer containing a red phosphor (first phosphor layer) and a layer containing a ⁇ -type sialon phosphor (second phosphor layer), color reproducibility Although it is possible to achieve both improvement and high luminous flux, in the phosphor layer 2, it is necessary to control the film thickness of each layer separately. For this reason, the chromaticity dispersion
  • FIG. 1B is a side view showing another example of the phosphor sheet according to the embodiment of the present invention.
  • the phosphor sheet 4 may further include a transparent resin layer 5 on the phosphor layer 2 formed on the support 3.
  • the transparent resin layer 5 is formed on the upper surface (surface opposite to the support 3) of the phosphor layer 2 composed of a single layer or a plurality of layers, for example. The presence of the transparent resin layer 5 as described above improves the durability of the phosphor sheet 4.
  • the phosphor sheet 4 is provided with a single layer or a plurality of phosphor layers 2 or is provided with the phosphor layer 2 and the transparent resin layer 5. From the standpoints of shape maintenance and ease of handling, it is normally in a state of being supported by the support 3. That is, in the present embodiment, the phosphor sheet 4 and the support 3 may be collectively referred to as “phosphor sheet”.
  • the phosphor layer 2 is a layer mainly including the phosphor 1 and the resin 14.
  • the phosphor 1 include at least a red phosphor represented by the general formula (1) and a ⁇ -type sialon phosphor.
  • the red phosphor is a phosphor having an emission peak at a wavelength of 590 nm to 750 nm.
  • the phosphor layer 2 includes a Mn-activated double fluoride (A 2 ) represented by the general formula (1) described above. It is necessary to include a red phosphor that is MF 6 : Mn).
  • the red phosphor which is this Mn activated double fluoride is referred to as “Mn activated double fluoride complex phosphor”.
  • the Mn-activated double fluoride complex phosphor is abbreviated as “red phosphor” as appropriate.
  • the Mn-activated double fluoride complex phosphor is a phosphor having manganese (Mn) as an activator and an alkali metal or alkaline earth metal fluoride complex salt as a base crystal.
  • the coordination center of the fluoride complex forming the host crystal is preferably a tetravalent metal (Si, Ti, Zr, Hf, Ge, Sn),
  • the number of coordinated fluorine atoms is preferably 6.
  • a preferred Mn-activated bifluoride complex phosphor is one in which A is K (potassium) and M is Si (silicon) in the general formula (1), that is, K 2 SiF 6 : Mn. This is called a KSF phosphor.
  • the ratio of the red phosphor (that is, the Mn-activated bifluoride complex phosphor) in the total solid content in the phosphor layer 2 is preferably 10% by weight or more, and more preferably 20% by weight or more. Further, this ratio is preferably 80% by weight or less, and more preferably 60% by weight or less. When this ratio is equal to or greater than the preferable lower limit value, the color reproduction range of the phosphor sheet 4 is further improved. On the other hand, when this ratio is 80% by weight or less, the chromaticity variation of the phosphor sheet 4 is improved, and when this ratio is 60% by weight or less, the chromaticity variation of the phosphor sheet 4 is further improved.
  • the D50 of the red phosphor as the phosphor 1 is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more. Further, D50 of the red phosphor is preferably 40 ⁇ m or less, and more preferably 30 ⁇ m or less. When the D50 of the red phosphor is 5 ⁇ m or more, the phosphor sheet 4 having a high luminous flux can be obtained. When the D50 of the red phosphor is 40 ⁇ m or less, the chromaticity variation of the phosphor sheet 4 is improved.
  • D10 of the red phosphor as the phosphor 1 is preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more. Thereby, the durability of the phosphor sheet 4 is improved.
  • D10 of this red fluorescent substance it is preferable that it is 15 micrometers or less, and it is more preferable that it is 12 micrometers or less.
  • the value x is an index of the particle size distribution of the red phosphor.
  • a small value x means that there are few red phosphors having a small particle size (for example, KSF phosphor) that cause a decrease in durability, and a red phosphor having a large particle size that causes chromaticity variation (for example, KSF). This means that there is little phosphor.
  • the value x is 1.5 or less, the durability and chromaticity variation of the phosphor sheet 4 are further improved.
  • Yellow ring is a phenomenon in which the color appears different when the light emitter is viewed from the front and when viewed from an oblique direction. This yellow ring is a remarkable phenomenon when light scattering in the phosphor layer 2 is small.
  • the value x is preferably 0.5 or more.
  • D10, D50, and D90 are particle sizes measured by the following method.
  • the cross section of the phosphor layer 2 is observed with an SEM, and in the obtained two-dimensional image, the maximum distance among the distances between the two intersections of the straight line that intersects the outer edge of the particles of the phosphor 1 at two points. Is defined as the individual particle size of the particles.
  • the particle size of accumulated 10% from the small particle size side is D10
  • the particle size (average particle size) of accumulated 50% is D50.
  • a particle diameter of 90% of the accumulated portion is D90.
  • this fluorescence can be obtained by any of mechanical polishing, microtome, CP (Cross-section Polisher) and focused ion beam (FIB) processing.
  • CP Cross-section Polisher
  • FIB focused ion beam
  • the ⁇ -type sialon phosphor is a solid solution of ⁇ -type silicon nitride.
  • Aluminum (Al) is substituted and dissolved in the Si position of ⁇ -type silicon nitride crystal, and oxygen (O) is substituted and dissolved in the nitrogen (N) position. It is what. Since there are two types of atoms in the unit cell (unit cell) of the ⁇ -type sialon used in the ⁇ -type sialon phosphor, Si 6-z Al z O z N 8-z is used as a general formula of the ⁇ -type sialon. It is done. In this general formula, z is a value greater than 0 and less than 4.2.
  • the solid solution range of ⁇ -type sialon is very wide, and the molar ratio of (Si, Al) / (N, O) must be maintained at 3/4. is there.
  • a general method for producing ⁇ -sialon is a method in which, in addition to silicon nitride, silicon oxide and aluminum nitride, or aluminum oxide and aluminum nitride are added and heated.
  • ⁇ -type sialon is a ⁇ -type sialon that emits green light with a wavelength of 520 nm to 560 nm when excited by ultraviolet to blue light by incorporating a light emitting element such as rare earth (Eu, Sr, Mn, Ce, etc.) into the crystal structure. Becomes a phosphor. This is preferably used as a green light emitting component of a light emitting body such as a white LED.
  • europium is ⁇ -sialon phosphor which contains the Eu 2+ activated ⁇ -sialon phosphor, since the emission spectrum is very sharp, blue, green, red narrow band emission It is a material suitable for the backlight light source of the required image processing display device or liquid crystal display panel.
  • the D50 of the ⁇ -type sialon phosphor as the phosphor 1 is preferably 1 ⁇ m or more, and more preferably 10 ⁇ m or more. Further, D50 of this ⁇ -type sialon phosphor is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • D50 limiting in particular as a shape of (beta) type
  • the content of the ⁇ -sialon phosphor as the phosphor 1 in the phosphor layer 2 is preferably 3% by weight or more of the entire phosphor layer 2 from the viewpoint of expanding the color reproduction range. More preferably, it is 5% by weight or more. Further, the content of the ⁇ -type sialon phosphor is preferably 50% by weight or less of the entire phosphor layer 2, and more preferably 40% by weight or less of the entire phosphor layer 2.
  • the total of the proportion of the red phosphor and the proportion of the ⁇ -sialon phosphor in the total solid content in the phosphor layer 2 is preferably 50% by weight or more and 90% by weight or less.
  • the lower limit of the sum of these ratios is more preferably 65% by weight or more, and even more preferably 70% by weight or more.
  • the upper limit of the sum of these two ratios is more preferably 85% by weight or less, and further preferably 80% by weight or less.
  • the porosity in the phosphor layer 2 is preferably 3% or less. % Or less, more preferably 1% or less, still more preferably 0.5% or less. This is because, as the porosity in the phosphor layer 2 is smaller, the light extraction efficiency from the phosphor layer 2 is improved, so that the phosphor sheet 4 that gives a high luminous flux can be obtained. . Further, the porosity of the phosphor layer 2 is not particularly limited to a lower limit, but is preferably 0.1% or more.
  • the porosity is the ratio of the voids in the phosphor layer 2.
  • This porosity can be measured by the following method.
  • the phosphor sheet 4 and the cross section of the phosphor layer 2 are observed by any one of a mechanical polishing method, a microtome method, a CP method (Cross-section Polisher), and a focused ion beam (FIB) processing method. Grind. Thereafter, an area corresponding to the gap of the phosphor layer 2 is calculated from a two-dimensional image obtained by observing the obtained cross-section with an SEM, and the calculated area of the gap is calculated for the entire phosphor layer 2 in the section. Divide by area. Thereby, the porosity of the phosphor layer 2 is obtained.
  • the above-mentioned value x (see formula (11)) that is an index of the particle size distribution of the red phosphor is small. By doing so, the porosity of the phosphor layer 2 tends to be small.
  • the phosphor layer 2 may further contain a phosphor other than the phosphor 1 described above.
  • phosphors other than the phosphor 1 described above include other red phosphors, other green phosphors, yellow phosphors, and blue phosphors.
  • the green phosphor is a phosphor having an emission peak at a wavelength of 500 nm to 560 nm.
  • the yellow phosphor is a phosphor having an emission peak at a wavelength of 560 nm to 590 nm.
  • the blue phosphor is a phosphor having an emission peak at a wavelength of 430 nm to 500 nm.
  • red phosphors are other than the red phosphor (Mn-activated bifluoride complex phosphor) represented by the general formula (1).
  • examples of such other red phosphors include Y 2 O 2 S: Eu, La 2 O 2 S: Eu, Y 2 O 3 : Eu, and Gd 2 O 2 S: Eu.
  • green phosphors are other than ⁇ -type sialon phosphors.
  • SrAl 2 O 4 Eu
  • Y 2 SiO 5 Ce
  • Tb Ce
  • MgAl 11 O 19 Ce
  • Tb Ce
  • Sr 7 Al 12 O 25 Eu
  • (Mg, Ca , Sr, and Ba, at least one element) Ga 2 S 4 Eu, and the like.
  • yellow phosphors include yttrium / aluminum oxide phosphors activated with at least cerium, yttrium / gadolinium / aluminum oxide phosphors consolidated with at least cerium, and at least cerium-activated yttrium / gallium / Examples thereof include aluminum oxide phosphors.
  • blue phosphor for example, Sr 5 (PO 4 ) 3 Cl: Eu, (SrCaBa) 5 (PO 4 ) 3 Cl: Eu, (BaCa) 5 (PO 4 ) 3 Cl: Eu, (Mg, Ca, Sr , Ba, at least one element) 2 B 5 O 9 Cl: Eu, Mn, (at least one element of Mg, Ca, Sr, Ba) (PO 4 ) 6 Cl 2 : Eu, Mn Etc.
  • Examples of phosphors that emit light corresponding to the current mainstream blue LEDs include Y 3 (Al, Ga) 5 O 12 : Ce, (Y, Gd) 3 Al 5 O 12 : Ce, Lu 3 Al 5.
  • YAG phosphors such as O 12 : Ce, Y 3 Al 5 O 12 : Ce
  • TAG phosphors such as Tb 3 Al 5 O 12 : Ce
  • (Ba, Sr) 2 SiO 4 Eu phosphors
  • the refractive index of the resin 14 contained in the phosphor layer 2 is 1.45 or more and 1.7 or less.
  • the refractive index of the resin 14 is more preferably 1.5 or more, and more preferably 1.65 or less. Since the refractive index of the resin 14 is 1.45 or more, the refractive index of the Mn-activated double fluoride complex phosphor (red phosphor as the phosphor 1) having an average refractive index of around 1.4. The difference is increased, and light is easily scattered in the phosphor layer 2. Therefore, the optical path length from when light enters the phosphor layer 2 to when it exits becomes longer. By increasing the optical path length, the blue light emitted from the LED chip is easily color-converted by the phosphor 1 in the phosphor layer 2, so that the amount of phosphor for expressing desired chromaticity is reduced. Can do.
  • the refractive index of the resin 14 exceeds 1.7, the optical path length becomes longer than necessary due to excessive scattering of light in the phosphor layer 2. For this reason, the emitted light emitted from the phosphor 1 in the phosphor layer 2 is easily absorbed by the phosphor 1, and as a result, the intensity of the light emitted from the phosphor is reduced.
  • the material of the resin 14 is not particularly limited as long as the phosphor (such as the phosphor 1 shown in FIG. 1A) can be uniformly dispersed therein and the phosphor layer 2 can be formed.
  • the resin 14 include silicone resin, epoxy resin, polyarylate resin, PET-modified polyarylate resin, polycarbonate resin, cyclic olefin resin, polyethylene terephthalate resin, polymethyl methacrylate resin, polypropylene resin, modified acrylic resin, Examples thereof include polystyrene resin and acrylonitrile / styrene copolymer resin. Of these, silicone resins and epoxy resins are preferred from the viewpoint of transparency. Furthermore, a silicone resin is particularly preferable from the viewpoint of heat resistance.
  • a curable silicone resin is preferable.
  • the curable silicone resin used as the resin 14 may be of one liquid type or two liquid type (three liquid type).
  • the curable silicone resin includes a dealcohol type, a deoxime type, a deacetic acid type, a dehydroxylamine type and the like as a type that causes a condensation reaction with moisture in the air or a catalyst.
  • the curable silicone resin includes an addition reaction type as a type that causes a hydrosilylation reaction by a catalyst. Any of these types of curable silicone resins may be used as the resin 14.
  • an addition reaction type silicone resin is more preferable because it has no by-products associated with the curing reaction, has a small curing shrinkage, and can easily be cured by heating.
  • the addition reaction type silicone resin as an example of the resin 14 is formed by, for example, a hydrosilylation reaction between a compound containing an alkenyl group bonded to a silicon atom and a compound having a hydrogen atom bonded to a silicon atom.
  • Examples of the “compound containing an alkenyl group bonded to a silicon atom” include, for example, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, propenyltrimethoxysilane, norbornenyltrimethoxysilane, octenyltrimethoxysilane Etc.
  • Examples of the “compound having a hydrogen atom bonded to a silicon atom” include, for example, methyl hydrogen polysiloxane, dimethyl polysiloxane-CO-methyl hydrogen polysiloxane, ethyl hydrogen polysiloxane, methyl hydrogen polysiloxane-CO-methyl. Examples thereof include phenyl polysiloxane. Examples of the addition reaction type silicone resin include those formed by hydrosilylation reaction of such materials. In addition, as the resin 14, other well-known resins as described in, for example, JP 2010-159411 A can be used.
  • a resin 14 it is also possible to use a commercially available product, for example, a general silicone sealing material for LED use.
  • a commercially available product for example, a general silicone sealing material for LED use.
  • Specific examples thereof include OE-6630A / B and OE-6336A / B manufactured by Toray Dow Corning, and SCR-1012A / B and SCR-1016A / B manufactured by Shin-Etsu Chemical Co., Ltd.
  • the silicone resin as the resin 14 may have heat-fusibility. This is because, when the resin 14 of the phosphor layer 2 is a silicone resin having heat-fusibility, the phosphor sheet 4 provided with the phosphor layer 2 has heat-fusibility. This is because the phosphor sheet 4 having the above can be heated and attached to the LED chip.
  • the heat fusibility here is a property of softening by heating. In the case where the phosphor sheet 4 has heat-fusibility, it is not necessary to use an adhesive for attaching the phosphor sheet 4 to the LED chip, so that the manufacturing process of the light emitter and the like can be simplified.
  • the storage elastic modulus at 25 ° C. is 0.1 MPa or more, and the storage elastic modulus at 100 ° C. is less than 0.1 MPa.
  • a cross-linked product obtained by hydrosilylation reaction of a cross-linkable silicone composition including the following components (A) to (D) is particularly preferable.
  • This crosslinked product can be preferably used as a matrix resin for the phosphor sheet 4 that does not require an adhesive because the storage elastic modulus decreases at 60 ° C. to 250 ° C. and high adhesive strength is obtained by heating.
  • the component (A) is an organopolysiloxane represented by the following average unit formula (21). (R 1 2 SiO 2/2 ) a (R 1 SiO 3/2 ) b (R 2 O 1/2 ) c (21)
  • R 1 is a phenyl group, an alkyl or cycloalkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms.
  • 65 mol% to 75 mol% of R 1 is a phenyl group
  • 10 mol% to 20 mol% of R 1 is an alkenyl group.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the component (B) is an organopolysiloxane represented by the following general formula (2).
  • This organopolysiloxane has a content of 5 to 15 parts by weight per 100 parts by weight of component (A).
  • R 3 is a phenyl group, an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group, or an alkenyl group having 2 to 6 carbon atoms.
  • 40 mol% to 70 mol% of R 3 is a phenyl group, at least one R 3 is an alkenyl group.
  • m is an integer in the range of 5-50.
  • Component (C) is an organotrisiloxane represented by the following general formula (3).
  • the molar ratio of silicon-bonded hydrogen atoms in component (C) to the sum of alkenyl groups in component (A) and alkenyl groups in component (B) is in the range of 0.5 to 2.
  • R 4 is a phenyl group, or an alkyl group or cycloalkyl group having 1 to 6 carbon atoms. However, 30 mol% to 70 mol% of R 4 is a phenyl group.
  • component is a catalyst for hydrosilylation reaction.
  • This catalyst for hydrosilylation reaction is of an amount sufficient to promote the hydrosilylation reaction between the alkenyl group in component (A) and component (B) and the silicon-bonded hydrogen atom in component (C). .
  • component (A) when the values of a, b, and c satisfy the above conditions, sufficient hardness at room temperature of the resulting crosslinked product is obtained, and at the high temperature of this crosslinked product. Can be obtained.
  • the resulting crosslinked product In the general formula (2) of the component (B), when the phenyl group content is less than the lower limit of the above range, the resulting crosslinked product is not sufficiently softened at high temperature. On the other hand, if the phenyl group content exceeds the upper limit of the above range, the resulting crosslinked product loses its transparency and its mechanical strength also decreases.
  • at least one of R 3 is an alkenyl group.
  • m is an integer in the range of 5-50.
  • the numerical range of m is a range in which handling workability can be maintained while maintaining the mechanical strength of the obtained cross-linked product.
  • the content of the component (B) is an amount in the range of 5 to 15 parts by weight with respect to 100 parts by weight of the component (A). This range of content is a range for obtaining sufficient softening of the obtained crosslinked product at a high temperature.
  • R 4 is a phenyl group, or an alkyl group or cycloalkyl group having 1 to 6 carbon atoms.
  • alkyl group for R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a heptyl group.
  • cycloalkyl group represented by R 4 include a cyclopentyl group and a cycloheptyl group.
  • the phenyl group content is in the range of 30 mol% to 70 mol%. The range of the content is a range in which the obtained crosslinked product can be sufficiently softened at a high temperature, and the transparency and mechanical strength of the crosslinked product can be maintained.
  • the content of the component (C) is such that the molar ratio of silicon-bonded hydrogen atoms in the component (C) is 0. 0 with respect to the sum of the alkenyl groups in the component (A) and the alkenyl groups in the component (B).
  • the amount is in the range of 5 to 2.
  • the range of this content is a range in which sufficient hardness at room temperature of the obtained crosslinked product is obtained.
  • Component (D) is a hydrosilylation catalyst for promoting a hydrosilylation reaction between an alkenyl group in component (A) and component (B) and a silicon atom-bonded hydrogen atom in component (C).
  • component (D) include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. Of these, platinum-based catalysts are preferred because they can significantly accelerate the curing of the silicone composition.
  • the platinum catalyst include platinum fine powder, chloroplatinic acid, an alcohol solution of chloroplatinic acid, a platinum-alkenylsiloxane complex, a platinum-olefin complex, and a platinum-carbonyl complex.
  • the platinum-based catalyst is preferably a platinum-alkenylsiloxane complex.
  • alkenyl siloxane examples include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples thereof include alkenyl siloxanes in which part of the methyl groups of these alkenyl siloxanes are substituted with ethyl groups, phenyl groups, and the like, and alkenyl siloxanes in which the vinyl groups of these alkenyl siloxanes are substituted with allyl groups, hexenyl groups, and the like.
  • 1,3-divinyl-1,1,3,3-toteramethyldisiloxane is preferred because the stability of this platinum-alkenylsiloxane complex is good.
  • the content of the component (D) is an amount sufficient to promote the hydrosilylation reaction between the alkenyl group in the component (A) and the component (B) and the silicon atom-bonded hydrogen atom in the component (C).
  • the content of the component (D) is such that the metal atom in the component (D) is in the range of 0.01 ppm to 500 ppm in terms of mass unit with respect to the silicone composition.
  • the content of the component (D) is preferably such that the metal atom is in the range of 0.01 ppm to 100 ppm, and in particular, the metal atom is in the range of 0.01 ppm to 50 ppm.
  • An amount is preferred. This range of content is a range in which the resulting silicone composition is sufficiently crosslinked and does not cause problems such as coloring.
  • the ratio of the resin 14 to the total solid content in the phosphor layer 2 is preferably 10% by weight or more and 60% by weight or less. This is because, by setting the ratio of the resin 14 in the above range, both improvement in color reproducibility and high durability of the phosphor sheet 4 can be achieved.
  • the refractive index of the resin 14 can be measured by measuring the refractive index of the refractive index measurement sample using a refractive index / film thickness measuring device “Prism Coupler MODEL 2010 / M” (Metricon).
  • the refractive index measurement sample was prepared by stirring and defoaming the resin 14 for 10 minutes at 1000 rpm using a planetary stirring and degassing apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries) to prepare a dispersion of the resin 14. After 5 cc of this dispersion is dropped on a PET film, it can be obtained by heating in an oven at 150 ° C. for 1 hour.
  • the phosphor sheet 4 according to the embodiment of the present invention contains fine particles in the phosphor layer 2 for the purpose of improving the dispersion stability of the phosphor 1 in the phosphor layer 2 in the resin 14. Also good.
  • the fine particles include fine particles composed of titania, silica, alumina, silicone, zirconia, ceria, aluminum nitride, silicon carbide, silicon nitride, barium titanate, and the like. These may be used alone or in combination of two or more.
  • the fine particles contained in the phosphor layer 2 are preferably silica fine particles, alumina fine particles, and silicone fine particles from the viewpoint of easy availability, and silicone fine particles are particularly preferable from the viewpoint of low hardness. Since the hardness of the fine particles is low, there is an effect of suppressing the crushing of the red phosphor in the step of dispersing the phosphor 1, and as a result, the phosphor sheet 4 having higher emission intensity can be obtained.
  • silicone fine particles include hydrolyzing and then condensing organosilanes such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, and organodioxime silane.
  • organosilanes such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, and organodioxime silane.
  • silicone fine particles obtained by the method.
  • organotrialkoxysilane examples include methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-proxysilane, methyltri-i-proxysilane, methyltri-n-butoxysilane, methyltri-i-butoxysilane, and methyltri-s.
  • organodialkoxysilane examples include dimethyldimethoxysilane, dimethyldiethoxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, N- ( 2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminoisobutylmethyldimethoxysilane, N-ethylaminoisobutylmethyldiethoxysilane, (phenylaminomethyl) methyldimethoxysilane, Examples thereof include vinyl methyldiethoxysilane.
  • organotriacetoxy silane examples include methyl triacetoxy silane, ethyl triacetoxy silane, vinyl triacetoxy silane, and the like.
  • organodiacetoxysilane examples include dimethyldiacetoxysilane, methylethyldiacetoxysilane, vinylmethyldiacetoxysilane, vinylethyldiacetoxysilane, and the like.
  • organotrioxime silane include methyl trismethyl ethyl ketoxime silane and vinyl trismethyl ethyl ketoxime silane.
  • organodioxime silane examples include methyl ethyl bismethyl ethyl ketoxime silane.
  • Such fine particles are specifically the method reported in Japanese Patent Laid-Open No. 63-77940 and the method reported in Japanese Patent Laid-Open No. 6-248081. It can be obtained by the method reported in JP-A No. 2003-342370, the method reported in JP-A No. 4-88022, and the like. Also, at least one of organosilanes such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, organodioxime silane, and partial hydrolysates thereof is added to the alkaline aqueous solution.
  • organosilanes such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, organodioxime silane, and partial hydrolysates thereof is added to the alkaline aqueous solution.
  • At least one hydrolysis of the organosilane and its partial hydrolyzate by adding at least one of the organosilane and its partial hydrolyzate to water or an acidic solution.
  • a method in which alkali is added and the condensation reaction proceeds to obtain fine particles at least one of organosilane and a hydrolyzate thereof is used as an upper layer, and an alkali or a mixture of an alkali and an organic solvent is used as a lower layer
  • the method or the like to obtain the emissions and at least one by hydrolyzing and polycondensing microparticles hydrolyzate thereof are also known. In any of these methods, fine particles contained in the phosphor layer 2 can be obtained in the present invention.
  • organosilane and its partial hydrolyzate is hydrolyzed / condensed to produce spherical organopolysilsesquioxane fine particles, as reported in JP-A-2003-342370. It is preferable to use silicone fine particles obtained by a method in which a polymer dispersant is added to a reaction solution.
  • the average particle size of the silicone fine particles is represented by D50.
  • the lower limit of the average particle diameter is preferably 0.05 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • an upper limit of this average particle diameter it is preferable that it is 2.0 micrometers or less, and it is further more preferable that it is 1.0 micrometers or less.
  • the average particle diameter (D50) of the silicone fine particles can be obtained by the same method as the average particle diameter of the red phosphor as the phosphor 1 described above.
  • the proportion of fine particles in the total solid content in the phosphor layer 2 is preferably 0.1% by weight or more and 10% by weight or less.
  • the proportion of the fine particles is within the above range, the dispersion stability of the phosphor 1 in the phosphor layer 2 (in the resin 14) can be improved.
  • the color reproducibility of the phosphor sheet 4 is improved. Can achieve both high luminous flux and high durability.
  • the contents of the phosphor 1, the resin 14, and the silicone fine particles in the phosphor layer 2 in the present invention can also be obtained from the prepared phosphor layer 2 and the LED luminous body on which the phosphor layer 2 is mounted.
  • the phosphor layer 2 is embedded and cut with a predetermined resin, a sample whose cross section is polished is prepared, and the exposed cross section is observed with a scanning electron microscope (SEM). It is possible to clearly discriminate the particle portion of the phosphor 1, the silicone fine particle portion, and the resin 14 portion. From the area ratio of the cross-sectional image, it is possible to accurately measure the volume ratios of phosphor 1 (phosphor particles), silicone fine particles, and resin 14 occupying the entire phosphor layer 2.
  • the weight ratio of the phosphor 1 to the phosphor layer 2 can be calculated by dividing each volume ratio by the specific gravity. .
  • the composition of each component forming the phosphor layer 2 can be determined by analyzing the cross-section of the phosphor layer 2 with high-resolution micro-infrared spectroscopy or IPC emission analysis. . If the composition of each of these components is clarified, the specific gravity specific to the substance of the resin 14 or the phosphor 1 can be estimated with a considerable degree of accuracy, and the weight ratio can be obtained using this.
  • the phosphor layer 2 is preferably blended with a hydrosilylation reaction retarder in order to suppress curing at room temperature and lengthen the pot life.
  • a hydrosilylation reaction retarder examples include 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, phenylbutynol, 1-ethynyl-1-cyclohexanol and the like.
  • Alcohol derivatives having a carbon-carbon triple bond enyne compounds such as 3-methyl-3-penten-1-yne, 3,5-dimethyl-3-hexen-1-yne, tetramethyltetravinylcyclotetrasiloxane, tetramethyl Low molecular weight siloxane containing alkenyl groups such as tetrahexenylcyclotetrasiloxane, methyl-tris (3-methyl-1-butyne-3-oxy) silane, vinyl-tris (3-methyl-1-butyne-3-oxy) silane, etc. And alkyne-containing silanes.
  • the phosphor layer 2 has an inorganic filler such as fumed silica, glass powder, quartz powder, etc., an inorganic filler such as zinc oxide, a flame retardant, and the like, as long as the effects of the present invention are not impaired.
  • the transparent resin layer 5 (see FIG. 1B) is a resin layer that has a total light transmittance of 90% or more at a wavelength of 450 nm and does not include the phosphor 1.
  • the transparent resin layer 5 is laminated on the phosphor layer 2 as shown in FIG. 1B, for example.
  • the minimum transmittance of the transparent resin layer 5 at a wavelength of 400 nm to 800 nm is preferably 80% or more.
  • the minimum transmittance is the smallest value of the light transmittance at wavelengths of 400 nm to 800 nm.
  • the phosphor sheet 4 can easily achieve both high luminous flux and high durability.
  • the presence of the transparent resin layer 5 on the phosphor layer 2 improves the durability of the phosphor 1 (for example, a red phosphor) in the phosphor layer 2, and as a result, the durability as the phosphor sheet 4. Will improve.
  • the transparent resin layer 5 may further contain fine particles. Since the transparent resin layer 5 contains fine particles, the film thickness uniformity of the transparent resin layer 5 is improved, so that the phosphor sheet 4 can be accurately picked up in the phosphor sheet 4 pick-up process described later. .
  • One of the causes for the non-uniform thickness of the transparent resin layer 5 is the flow of resin in the drying process when the transparent resin layer 5 is formed. In this drying step, the resin contained in the transparent resin layer 5 is easy to flow because the viscosity is lowered by being heated.
  • the resin contained in the transparent resin layer 5 is a silicone resin having heat-fusibility, since the viscosity of the resin is significantly reduced, the film thickness of the transparent resin layer 5 tends to be non-uniform.
  • a silicone resin having heat-fusibility is used for the transparent resin layer 5, it is particularly important that the transparent resin layer 5 contains fine particles in order to maintain the uniformity of the film thickness of the transparent resin layer 5.
  • Improvement of the uniformity of the film thickness of the transparent resin layer 5 also has an effect of enhancing the function of the transparent resin layer 5 as a protective layer.
  • this thin portion does not sufficiently function as a protective layer, so that the durability of the obtained light emitter is inferior. According to the present invention, such a situation can be suppressed.
  • the resin used for the transparent resin layer 5 examples include silicone resin, fluororesin, epoxy resin, polyarylate resin, PET-modified polyarylate resin, polycarbonate resin, cyclic olefin resin, polyethylene terephthalate resin, polymethyl methacrylate resin, polypropylene resin, One or more resins selected from a modified acrylic resin, a polystyrene resin, and an acrylonitrile / styrene copolymer resin are preferable. Among these, one or more kinds of resins selected from silicone resins, fluororesins, and epoxy resins are more preferable, and silicone resins are particularly preferable from the viewpoint of heat resistance.
  • the silicone resin may have a heat-fusibility.
  • this silicone resin has heat-fusibility, when forming the transparent resin layer 5 by the transparent resin sheet method mentioned later, the fluorescent substance layer 2 and the transparent resin layer 5 can be adhere
  • the fine particles used for the transparent resin layer 5 are preferably those that absorb little visible light or emit light.
  • the fine particles include fine particles such as titania, silica, alumina, silicone, zirconia, ceria, aluminum nitride, silicon carbide, silicon nitride, and barium titanate.
  • one or more types of fine particles selected from silica fine particles, alumina fine particles, and silicone fine particles are more preferable from the viewpoint of easy availability, and silicone fine particles are particularly preferable from the viewpoint of easy control of the refractive index and particle size. .
  • the minimum transmittance of the transparent resin layer 5 at a wavelength of 400 nm to 800 nm is reduced. It can be 80% or more.
  • the average particle size of the fine particles contained in the transparent resin layer 5 is preferably 1 nm or more, and more preferably 3 nm or more.
  • the average particle size of the fine particles is preferably 1000 nm or less, and more preferably 300 nm or less.
  • the average particle diameter of the fine particles is equal to or more than a preferable lower limit value, the fine particles can be stably dispersed in the transparent resin layer 5. Since the average particle diameter of the fine particles is 1000 nm or less, light scattering in the transparent resin layer 5 can be suppressed, so that the high light transmittance of the transparent resin layer 5 can be maintained.
  • the average particle diameter of the fine particles is a median diameter (D50).
  • the average particle diameter of the fine particles can be obtained by the same method as the average particle diameter of the red phosphor as the phosphor 1 described above.
  • the proportion of fine particles in the total solid content in the transparent resin layer 5 is preferably 0.1% by weight or more, and more preferably 1% by weight or more. Further, the proportion of the fine particles is preferably 30% by weight or less, and more preferably 10% by weight or more.
  • the variation in the film thickness of the transparent resin layer 5 can be suppressed when the ratio of the fine particles is equal to or more than a preferable lower limit value. When the proportion of the fine particles is equal to or less than the preferable upper limit value, the high light transmittance of the transparent resin layer 5 can be maintained.
  • the light transmittance of the transparent resin layer 5 containing fine particles can be measured using a spectrophotometer.
  • a spectrophotometer For example, when U-4100 Spectrophotometer manufactured by Hitachi, Ltd. is used, the light transmittance of the sample of the transparent resin layer 5 can be measured with a basic configuration using an integrating sphere attached to this measuring apparatus.
  • the slit is 2 nm and the scanning speed is 600 nm / min.
  • the sample for light transmittance measurement of the transparent resin layer 5 (hereinafter referred to as “transmittance measurement sample”) can be prepared by the following method. For example, the resin and fine particles used for the transparent resin layer 5 are stirred and degassed to prepare a dispersion. The dispersion is applied onto quartz glass with a blade coater and then heated in an oven at 150 ° C. for 1 hour. In this way, a transmittance measurement sample can be produced.
  • the film thickness of the transmittance measurement sample can be measured by the following method. For example, the thickness at a predetermined position of quartz glass is measured in advance with a micrometer, and the measured position is marked. Next, after forming a transmittance measurement sample of the transparent resin layer 5 on the quartz glass by the above-described method, the thickness of the marking portion is again measured with a micrometer. By subtracting the previously measured thickness of the quartz glass from the obtained thickness, the film thickness of this transmittance measurement sample can be obtained.
  • the refractive index difference between the resin and the fine particles contained in the transparent resin layer 5 is preferably 0.5 or less, more preferably 0.3 or less, and particularly preferably 0.1 or less.
  • the refractive index of the resin contained in the transparent resin layer 5 is preferably 1.3 or more, and preferably 1.6 or less. Since the refractive index difference of the resin is 1.3 or more, the difference in refractive index between the transparent resin layer 5 and the phosphor layer 2 becomes relatively small. Therefore, the light extraction efficiency from the phosphor layer 2 to the transparent resin layer 5 is improved. Can be improved.
  • the refractive index of the resin is 1.6 or less, the difference in refractive index between the transparent resin layer 5 and the air layer becomes relatively small, so that the light extraction efficiency from the transparent resin layer 5 to the air layer is improved. Can be made. Further, from the viewpoint of further improving the light extraction efficiency, the refractive index of the resin contained in the transparent resin layer 5 is preferably equal to or lower than the refractive index of the resin contained in the phosphor layer 2.
  • the refractive index of the resin contained in the transparent resin layer 5 is measured by measuring the refractive index of the refractive index measurement sample using a refractive index / film thickness measuring device “Prism Coupler Model 2010 / M” (made by Metricon). can do.
  • this resin was stirred for 10 minutes at 1000 rpm using a planetary stirring deaerator “Mazerustar KK-400” manufactured by Kurabo Industries, and defoamed to prepare a dispersion. After dropping 5 cc on the film, it can be obtained by heating at 150 ° C. for 1 hour in an oven.
  • the phosphor sheet 4 according to the embodiment of the present invention may include another phosphor layer or a diffusion layer different from the phosphor layer 2 on at least one of the top and bottom of the phosphor layer 2.
  • the transparent resin layer formed under the phosphor layer 2 or another phosphor layer does not use an adhesive for the LED chip. It is preferable to have heat-fusibility so that it can be affixed to.
  • the refractive index of this LED chip surface and the transparent resin layer located under any phosphor layer As the refractive index difference is smaller, the light extraction efficiency from the LED chip surface to the transparent resin layer can be improved. Therefore, in this case, the refractive index of the transparent resin layer is preferably 1.56 or more.
  • the diffusion layer is a layer containing a predetermined resin and a diffusion material such as silica, titania or zirconia. By forming the diffusion layer, the directivity of emitted light can be weakened and more isotropic emitted light can be obtained. Therefore, the diffusion layer is preferably formed in the upper layer of the phosphor layer 2.
  • One method for producing the phosphor sheet 4 is to apply the phosphor layer 2 directly on the support 3.
  • a coating solution for forming the phosphor layer 2 a solution in which the phosphor 1 is dispersed in the resin 14 (hereinafter, referred to as “phosphor layer preparation resin solution”) is prepared.
  • the resin liquid for producing a phosphor layer is obtained by mixing phosphor 1 and resin 14 in a solvent.
  • the type of the solvent is not particularly limited as long as the viscosity of the resin 14 in a fluid state can be adjusted.
  • the solvent include toluene, methyl ethyl ketone, methyl isobutyl ketone, hexane, heptane, cyclohexane, acetone, terpineol, butyl carbitol, butyl carbitol acetate, glyme, diglyme, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and the like. Can be mentioned.
  • a resin solution for preparing a phosphor layer can be obtained by homogeneously mixing and dispersing with a stirrer / kneader such as a three-roller, ball mill, planetary ball mill, or bead mill. Defoaming is preferably performed after this mixing and dispersion or in the process of mixing and dispersion under vacuum or reduced pressure conditions.
  • the Mn-activated bifluoride complex phosphor as the phosphor 1 has properties of low hardness and brittleness as compared with a phosphor produced by firing at a high temperature such as a ⁇ -type sialon phosphor. Therefore, when the Mn-activated double fluoride complex phosphor is dispersed with a stirrer / kneader or the like, the Mn-activated double fluoride complex phosphor can be dispersed by setting the dispersion conditions so that the impact applied to the Mn-activated double fluoride complex phosphor is as small as possible. It is preferable to suppress crushing of the fluoride complex phosphor. By suppressing the crushing of the Mn-activated double fluoride complex phosphor, the phosphor sheet 4 having a high emission intensity can be obtained.
  • the phosphor layer preparation resin solution prepared as described above is applied onto the support 3 and dried.
  • the phosphor layer 2 obtained on the support 3 is produced by heat curing.
  • Application of the resin liquid for preparing the phosphor layer on the support 3 is reverse roll coater, blade coater, slit die coater, direct gravure coater, offset gravure coater, kiss coater, screen printing, natural roll coater, air knife coater, roll.
  • a blade coater, two stream coater, rod coater, wire bar coater, applicator, dip coater, curtain coater, spin coater, knife coater or the like can be used.
  • a slit die coater In order to obtain the uniformity of the film thickness of the phosphor layer 2, it is preferable to apply with a slit die coater.
  • the phosphor layer 2 can also be produced by using a printing method such as screen printing, gravure printing, or lithographic printing. In particular, screen printing is preferably used.
  • the drying of the phosphor layer forming resin liquid can be performed using a general heating device such as a hot air dryer or an infrared dryer.
  • a general heating device such as a hot air dryer or an infrared dryer is used.
  • the heat curing condition is usually 40 ° C. to 250 ° C. for 1 minute to 5 hours, preferably 100 ° C. to 200 ° C. for 2 minutes to 3 hours.
  • the phosphor sheet 4 provided with at least the phosphor layer 2 can be produced by the method described above. As illustrated in FIG. 1A, the phosphor sheet 4 is in a state of being supported by the support body 3 as a single sheet.
  • the support 3 used in the present invention is not particularly limited, and examples thereof include known metals, resin films, glass, ceramics, paper, and cellulose acetate.
  • glass and a resin film are preferably used from the viewpoint of easy preparation of the phosphor sheet 4 and easy separation of the phosphor sheet 4.
  • the support 3 is preferably in the form of a flexible film because of the adhesion when the phosphor sheet 4 is attached to the LED chip.
  • a film having high strength is preferable as the support 3 so that there is no fear of breakage or the like when the film-shaped support 3 is handled.
  • a resin film is preferable as the support 3 in terms of these required characteristics and economy.
  • a plastic film selected from the group consisting of polyethylene terephthalate, polyphenylene sulfide, polypropylene, and polyimide is preferable from the viewpoints of economy and handleability.
  • a polyimide film is preferable from the viewpoint of heat resistance.
  • the surface of the support 3 may be subjected to a release treatment in advance from the ease of peeling off the phosphor sheet 4 from the support 3.
  • the forming method of the transparent resin layer 5 includes a direct coating method and a transparent resin sheet method.
  • a resin solution whose viscosity is adjusted with a transparent resin solvent for the production of the transparent resin layer 5 (hereinafter referred to as “resin solution for producing a transparent resin layer”) is directly applied onto the phosphor layer 2. Thereafter, drying and heat curing are performed.
  • the transparent resin layer preparation resin solution can be applied by the same method as the preparation of the phosphor layer 2 (application of the phosphor layer preparation resin solution).
  • a resin solution for preparing a transparent resin layer with a slit die coater can be applied using a general heating device such as a hot air dryer or an infrared dryer.
  • a general heating device such as a hot air dryer or an infrared dryer is used.
  • the heat curing condition is usually 40 ° C. to 250 ° C. for 1 minute to 5 hours, preferably 100 ° C. to 200 ° C. for 2 minutes to 3 hours.
  • the transparent resin sheet method a transparent resin sheet is produced, and the phosphor layer 2 side of the phosphor sheet 4 and the transparent resin layer 5 side of the produced transparent resin sheet are bonded to each other on the phosphor layer 2.
  • the transparent resin sheet can be produced by the same method as the phosphor sheet 4 provided with the phosphor layer 2 described above. That is, using the “transparent resin layer preparation resin liquid” instead of the “phosphor layer preparation resin liquid”, a method similar to the method of manufacturing the phosphor sheet 4 described above is performed, and a predetermined support (for example, a support)
  • a transparent resin sheet can be produced by forming the transparent resin layer 5 on the same body 3.
  • the resin of at least one of the phosphor layer 2 and the transparent resin layer 5 needs to be in a semi-cured state.
  • the resin of at least one layer is in a semi-cured state, the phosphor layer 2 and the transparent resin layer 5 can be bonded.
  • the transparent resin sheet method at least the resin of the transparent resin layer 5 is more preferably semi-cured, and both the resin 14 of the phosphor layer 2 and the resin of the transparent resin layer 5 are in a semi-cured state. Particularly preferred.
  • the phosphor layer 2 and the transparent resin layer 5 are bonded together by heating.
  • the viscosity of each resin of the phosphor layer 2 and the transparent resin layer 5 is lowered, so that the phosphor layer 2 and the transparent resin layer 5 can be firmly bonded.
  • the heating condition is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, and particularly preferably 80 ° C. or higher.
  • the resin in a semi-cured state (for example, the resin of the transparent resin layer 5) is cured before the phosphor layer 2 and the transparent resin layer 5 are bonded.
  • the heating condition is preferably 200 ° C. or less, more preferably 170 ° C. or less, and particularly preferably 150 ° C. or less.
  • the phosphor layer 2 and the transparent resin layer 5 are preferably bonded together in a vacuum atmosphere.
  • a vacuum atmosphere is an atmosphere whose pressure is a predetermined value or less. The pressure in this vacuum atmosphere is 100 hPa or less, more preferably 10 hPa or less, further preferably 5 hPa or less, and particularly preferably 1 hPa or less.
  • FIG. 2 is a process diagram showing an example of a method for manufacturing a light emitter using the phosphor sheet according to the embodiment of the present invention.
  • the following description is an example and the manufacturing method of the light-emitting body based on embodiment of this invention is not limited to what is demonstrated below.
  • the manufacturing method of the light emitter using the phosphor sheet 4 roughly includes three steps.
  • the first step is an individualization step for individualizing the phosphor sheet 4.
  • the second step is a pickup step for picking up the individual phosphor sheet 4.
  • the third step is a pasting step of pasting the picked up phosphor sheet 4 (individualized by the individualizing step) to a light source.
  • the manufacturing method of this light-emitting body may include the other process as needed.
  • the phosphor sheet 4 is composed of the phosphor layer 2 formed on the support 3, and the phosphor layer 2 as the phosphor sheet 4 is separated into individual pieces, and an LED chip which is an example of a light source A method for manufacturing a light emitter according to an embodiment of the present invention will be described with reference to FIG.
  • the phosphor sheet 4 can be singulated by a method such as punching with a mold, processing with a laser, dicing or cutting.
  • the phosphor layer 2 as the phosphor sheet 4 may be in a semi-cured state or may be cured in advance. Processing with a laser imparts high energy to the phosphor layer 2, so that the resin of the phosphor layer 2 (for example, the resin 14 shown in FIG. 1A) is burnt or the phosphor (for example, the phosphor 1 shown in FIG. 1A) is deteriorated. It is very difficult to avoid. Therefore, as a method for dividing the phosphor sheet 4 into pieces, cutting or cutting with a blade is desirable.
  • the phosphor layer 2 as the phosphor sheet 4 is in a state of being supported by the support 3.
  • the phosphor layer 2 on the support 3 is cut by the blade 6 (state S1).
  • the phosphor layer 2 is divided into a plurality of pieces and processed into the individual phosphor layers 7 (state S2).
  • the individualized phosphor layer 7 remains attached to the support 3.
  • the blade 6 is, for example, a rotary blade.
  • a device for cutting the phosphor layer 2 with a rotary blade a device called a dicer used for cutting (dicing) a semiconductor substrate into individual chips can be suitably used. If the dicer is used, the width of the dividing line of the phosphor layer 2 can be precisely controlled by the thickness of the rotary blade and the condition setting, so that higher processing accuracy can be obtained than cutting the phosphor layer 2 by pushing a simple blade. .
  • the phosphor layer 2 may be singulated together with the support 3. Alternatively, the support 3 may not be cut while the phosphor layer 2 is separated. Under the present circumstances, it is preferable to perform what is called a half cut with respect to the support body 3 in which the notch line which does not penetrate enters.
  • the phosphor layer 2 is preferably cut by dry cutting.
  • Dry cutting is a cutting method that does not use liquid such as water during cutting.
  • the cutting of the phosphor layer 2 in the singulation process is not limited to this, and examples thereof include cutting with a Thomson blade. Dry cutting is particularly effective when the phosphor layer 2 contains a phosphor whose luminous efficiency is reduced by reacting with water, such as K 2 SiF 6 : Mn.
  • the phosphor sheet 4 may be subjected to perforation processing of the phosphor layer 2 before or after the individualization step or simultaneously with the individualization step.
  • a known method such as laser processing or punching with a mold can be suitably used.
  • laser processing causes scorching of the resin of the phosphor layer 2 and deterioration of the phosphor, punching with a mold is possible. Processing is more desirable.
  • the phosphor sheet 4 singulated by the singulation process described above is picked up by a pickup process that is the next process of the singulation process.
  • a pickup process that is the next process of the singulation process.
  • the singulated phosphor layer 7 is in a state of being stuck on the support 3.
  • the singulated phosphor layer 7 is peeled off and picked up from the support 3 by a pickup device (not shown) provided with a suction device such as a collet 8 (state S3).
  • the individualized phosphor layer 7 (an example of the individualized phosphor sheet 4) picked up by the pickup process described above is attached to the light source by the application process which is the next process of the pickup process.
  • the singulated phosphor layer 7 is picked up by a collet 8.
  • the collet 8 is transported together with the individualized phosphor layer 7 to the position of the LED chip 9 (an example of a light source) mounted on the substrate 11, thereby the light extraction surface of the LED chip 9 and the individualized phosphor layer 7.
  • the adhesive surface (for example, the lower surface) is made to oppose.
  • the collet 8 presses and adheres the adhesive surface of the singulated phosphor layer 7 to the light extraction surface of the LED chip 9 (state S4).
  • the reflector 10 may be formed around the LED chip 9 on the substrate 11.
  • an adhesive (not shown) for attaching the singulated phosphor layer 7 and the LED chip 9 in the attaching step.
  • this adhesive a well-known die bond agent and an adhesive agent can be used.
  • acrylic resin, epoxy resin, urethane resin, silicone resin, modified silicone resin, phenol resin, polyimide, polyvinyl alcohol, polymethacrylate resin, melamine resin, urea resin adhesive can be used.
  • the phosphor layer 2 has adhesiveness
  • the individualized phosphor layer 7 and the LED chip 9 may be attached using this adhesiveness.
  • the sticking step is a step of heating the individual phosphor layer 7 and sticking it to the LED chip 9
  • this sticking step is performed in the atmosphere, the LED chip 9 and the individual phosphor layer 7 are not separated. Air bubbles may be caught in When bubbles are bitten, light is irregularly reflected at the interface between the bubbles and the LED chip 9 and at the interface between the bubbles and the singulated phosphor layer 7. Thereby, the light extraction efficiency from the LED chip 9 is lowered, and as a result, the luminance of the light emitter (for example, the light emitter 13 shown in FIG. 2) manufactured using the phosphor sheet 4 is lowered. From the viewpoint of preventing such bubble entrapment, this sticking step is preferably performed in a vacuum atmosphere.
  • the light emitting body manufacturing method described above may further include a connection step of electrically connecting the LED chip 9 and the substrate 11 which is an example of a circuit board as other steps.
  • this connection step the electrode of the LED chip 9 and the wiring of the substrate 11 are electrically connected by a known method. Thereby, the light emitter 13 can be obtained.
  • the LED chip 9 has an electrode on the light extraction surface side, the electrode on the upper surface of the LED chip 9 and the wiring of the substrate 11 are connected by wire bonding.
  • the LED chip 9 is a flip chip type having an electrode pad on the surface opposite to the light emitting surface, the electrode surface of the LED chip 9 is opposed to the wiring of the substrate 11 and these are connected by batch bonding.
  • the substrate 11 and the LED chip 9 may be connected before the individualized phosphor sheet 4 (for example, the individualized phosphor layer 7) is attached.
  • the individual phosphor layer 7 When the individual phosphor layer 7 is attached to the LED chip 9 in a semi-cured state, the individual phosphor layer 7 can be cured at a suitable timing before or after the connection step described above. For example, when thermocompression bonding is performed so that the flip chip type LED chip 9 is bonded to the substrate 11 at once, the individualized phosphor layer 7 may be simultaneously cured by the heating. In the case where the package in which the LED chip 9 and the substrate 11 are connected is surface-mounted on a larger circuit board, the individualized phosphor layer 7 may be cured simultaneously with soldering by solder reflow. .
  • the individual phosphor layer 7 When the LED chip 9 is attached in a state where the individual phosphor layer 7 is cured, after the individual phosphor layer 7 and the LED chip 9 are attached, the individual phosphor layer 7 There is no need to provide a curing process.
  • the case where the individualized phosphor layer 7 is affixed to the LED chip 9 in a cured state includes, for example, a case where a separate adhesive layer is formed on the cured individualized phosphor layer 7, or an individualized phosphor layer. This is the case when the body layer 7 has heat-fusibility after curing.
  • the manufacturing method of the light emitting body described above may further include a sealing step of sealing the LED chip 9 after the pasting step is performed as another step.
  • a sealing step of sealing the LED chip 9 after the pasting step is performed as another step.
  • the transparent sealing material 12 is placed on the substrate 11 (in detail, a reflector so as to cover the LED chip 9 after the individualized phosphor layer 7 is attached). 10).
  • this LED chip 9 is sealed by the transparent sealing material 12 (state S5).
  • the transparent sealing material 12 a silicone resin is suitably used from the viewpoint of transparency and heat resistance.
  • the phosphor sheet 4 includes the phosphor layer 2 on the support 3 is illustrated. It is not limited to. That is, the phosphor sheet 4 used in this method for manufacturing a phosphor may be composed of the phosphor layer 2, or the phosphor layer 2 and the transparent resin layer 5 illustrated in FIG. 1B. It may consist of a laminated body, or may further include other layers such as the diffusion layer described above.
  • the phosphor sheet 4 includes the phosphor layer 2 and the transparent resin layer 5
  • both the phosphor layer 2 and the transparent resin layer 5 on the support 3 are singulated in the individualization step. .
  • the pick-up process the laminated body obtained by dividing the phosphor layer 2 and the transparent resin layer 5 is picked up from the support 3. In the sticking step, the picked-up laminate (separated) is stuck on the light extraction surface of the LED chip 9.
  • the light emitter according to the embodiment of the present invention includes the phosphor sheet 4 described above.
  • the light emitter 13 shown in FIG. 2 includes an individualized phosphor layer 7 as the phosphor sheet 4 on the light extraction surface of the LED chip 9.
  • Such a light emitter can be widely applied to an in-vehicle headlight, a backlight of a television or a smartphone, illumination, and the like.
  • the phosphor sheet 4 and a phosphor using the phosphor sheet are preferably applied to a light source unit such as a backlight because they are excellent in color reproducibility and have high luminous flux and high durability.
  • the light source unit according to the embodiment of the present invention includes the phosphor sheet 4 described above.
  • the light source unit includes a light source having a phosphor having the phosphor sheet 4.
  • Such a light source unit can be applied to displays for televisions, smartphones, tablet computers, and game machines.
  • the display according to the embodiment of the present invention includes a light source unit having the phosphor sheet 4 described above.
  • This display includes a display provided with a light source unit having a light emitter (light emitter manufactured using the phosphor sheet 4) in the present invention.
  • a display is a liquid crystal display.
  • the color reproduction range of a liquid crystal display when a light-emitting body produced using the phosphor sheet 4 is used as a backlight of a liquid crystal display can be evaluated by a DCI ratio.
  • the DCI ratio is an area ratio in the chromaticity region when the area of the DCI chromaticity region according to the DCI (Digital Cinema Initiative) standard is used as a reference (100%).
  • the DCI ratio can be measured by the following procedure.
  • a color filter that transmits red light produced by a known method is placed on the produced illuminant, and 1 W of electric power is applied to the illuminant to turn on the illuminant, and the total luminous flux measurement system (HM) -3000, manufactured by Otsuka Electronics Co., Ltd.) to measure the chromaticity of the emitted light.
  • the chromaticity of the emitted light is measured for each of a case where a color filter that transmits green light is placed on the light emitter and a case where a color filter that transmits blue light is placed.
  • the DCI ratio can be calculated by dividing the area of the triangle having the obtained three chromaticities as vertices by the area of the DCI chromaticity region.
  • Silicone resin T11 is OE-6351A / B (manufactured by Toray Dow Corning). The refractive index of the silicone resin T11 is 1.41. Silicone resin T12 is KER6075LV A / B (made by Shin-Etsu Chemical Co., Ltd.). The refractive index of the silicone resin T12 is 1.45. The silicone resin T13 is XE14-C2860 (manufactured by Momentive Performance Materials). The refractive index of the silicone resin T13 is 1.50. Silicone resin T14 is OE6630 A / B (made by Toray Dow Corning Co., Ltd.). The refractive index of the silicone resin T14 is 1.53.
  • Silicone resin T15 contains 75 parts by weight of the following component (E), 10 parts by weight of component (F), 25 parts by weight of component (G), 0.025 parts by weight of reaction inhibitor, and 0.01% of platinum catalyst. It was obtained by mixing parts by weight.
  • the transparent resin sheet produced using the silicone resin T15 had a storage elastic modulus at 25 ° C. of 1 Mpa, a storage elastic modulus at 100 ° C. of 0.01 MPa, and exhibited good heat-fusibility.
  • the refractive index of the silicone resin T15 is 1.56.
  • the component (E) is (MeViSiO 2/2 ) 0.25 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.45 (HO 1/2 ) 0.03 .
  • the component (F) is ViMe 2 SiO (MePhSiO) 17.5 SiMe 2 Vi.
  • the component (G) is (HMe 2 SiO) 2 SiPh 2 .
  • Me is a methyl group
  • Vi is a vinyl group
  • Ph is a phenyl group.
  • the reaction inhibitor is 1-ethynylhexanol.
  • the platinum catalyst is a 1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex.
  • the platinum content of this solution is 5% by weight.
  • Silicone resin T16 was obtained by the following preparation method.
  • the refractive index of the silicone resin T16 is 1.60.
  • silicone resin T16 In the preparation method of silicone resin T16, 1-naphthyltrimethoxysilane (892.8 g) and 1,3-divinyl-1,3-diphenyldimethyldisiloxane (372.0 g) were charged into a reaction vessel and mixed in advance. Thereafter, trifluoromethanesulfonic acid (6.15 g) was added, and water (213.84 g) was added with stirring, followed by heating under reflux for 2 hours. Then, heating and normal pressure distillation were performed until it became 85 degreeC.
  • 1-naphthyltrimethoxysilane 50 g was charged into a reaction vessel, heated and melted, and trifluoromethanesulfonic acid (0.06 g) was added. Subsequently, acetic acid (9.3 g) was added dropwise while heating to 45 ° C. to 50 ° C. After completion of dropping, the mixture was heated and stirred at 50 ° C. for 30 minutes. Low boiling point substances were distilled off under normal pressure by heating until the reaction temperature reached 80 ° C. Thereafter, the mixture was cooled to room temperature, 1,3,3-tetramethyldisiloxane (4.4 g) was added dropwise and heated until the reaction temperature reached 45 ° C.
  • acetic acid (18 g) was added dropwise at 45 ° C. to 50 ° C. After completion of dropping, the mixture was heated and stirred at 50 ° C. for 30 minutes.
  • Acetic anhydride (15.5 g) was added dropwise while keeping the temperature at 60 ° C. or lower by air cooling or water cooling, and after completion of the dropwise addition, the mixture was stirred at 50 ° C. for 30 minutes. Next, toluene and water were added, and stirring, standing, and extraction of the lower layer were repeated, followed by washing with water.
  • organopolysiloxane resin P1 52.0 parts by mass of organopolysiloxane resin P1, 30.0 parts by mass of organopolysiloxane P2, 14.0 parts by mass of organotrisiloxane represented by the formula: HMe 2 SiOPh 2 SiOSiMe 2 H, and platinum-1 , 3-Divinyl-1,1,3,3-tetramethyldisiloxane complex 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane solution (0.
  • a curable silicone composition was prepared by mixing 0.25 part by mass of a solution containing 1% by mass.
  • Silicone resin T17 was obtained by the following preparation method.
  • the refractive index of the silicone resin T17 is 1.65.
  • silicone resin T17 methyltrimethoxysilane (16.6 g), phenyltrimethoxysilane (56.2 g), “Optlake TR-527” having a number average particle diameter of 15 nm (trade name, Catalyst Kasei Kogyo Co., Ltd.) )
  • Composition Titanium oxide particles 20% by weight, methanol 80% by weight (194 g), propylene glycol monomethyl ether acetate (126.9 g) are placed in a reaction vessel, and water (21.9 g) and phosphoric acid ( 0.36 g) was added dropwise with stirring so that the reaction temperature did not exceed 40 ° C.
  • silicone resin T14 (8.00 g) was mixed with the obtained titanium oxide particles (50.00 g), and a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries Co., Ltd.) was used. The mixture was stirred and degassed for 20 minutes, thereby producing a silicone resin T17. As a result of measuring the refractive index, the average refractive index of the silicone resin T17 was 1.65.
  • Silicone resin T18 was obtained by the following preparation method.
  • the refractive index of the silicone resin T18 is 1.70.
  • silicone resin T18 In the preparation method of silicone resin T18, silicone resin T14 (3.0 g) is mixed with titanium oxide particles (60.0 g) grafted with polysiloxane in the same manner as the preparation method of silicone resin T17 described above, and planetary type Using a stirring / degassing apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries), stirring / degassing was performed at 1000 rpm for 20 minutes. Thereby, silicone resin T18 was produced. As a result of measuring the refractive index, the refractive index of the silicone resin T18 was 1.70.
  • the fluororesin T21 is AF2400S (Mitsui / DuPont Fluorochemical).
  • the refractive index of the fluororesin T21 is 1.30.
  • the fluororesin T22 is CTX-800 (CT-solv 180 solution) (manufactured by Asahi Glass Co., Ltd.).
  • the refractive index of the fluororesin T22 is 1.35.
  • the green phosphor is a ⁇ -sialon phosphor called GR-MW540K (manufactured by Denka Co., Ltd.).
  • the yellow phosphor is a Ce-doped YAG phosphor called NYAG-02 (manufactured by Intematix).
  • the red phosphor T1 is KSF phosphor sample A (manufactured by Nemoto Lumi Material Co., Ltd.).
  • the red phosphor T2 is KSF phosphor sample B (manufactured by Nemoto Lumi Material Co., Ltd.).
  • the red phosphor T3 is a KSF phosphor sample C (manufactured by Nemoto Lumi Material Co., Ltd.).
  • the red phosphor T4 is a KSF phosphor sample D (manufactured by Nemoto Lumi Material Co., Ltd.).
  • the red phosphor T5 is a KSF phosphor sample E (manufactured by Nemoto Lumi Material Co., Ltd.).
  • the red phosphor T6 is a KSF phosphor sample F (manufactured by Nemoto Lumi Material Co., Ltd.).
  • the D10, D50 and D90 of the red phosphors T1 to T6 used in this example were measured by the following method. The measurement results are shown in Table 1. Table 1 also shows a value x calculated based on the above equation (11) based on the measured D10, D50, and D90.
  • a phosphor sheet (for example, phosphor sheet 4 shown in FIGS. 1A and 1B) is prepared as described later, and the cross section of the phosphor layer is SEM.
  • the maximum distance is calculated from the distance between the two intersections of the straight line that intersects the outer edge of the particle at two points, and this is defined as the individual particle size of the particle. did.
  • the particle size of 10% of the accumulated portion from the small particle size side is D10
  • the particle size of 50% of the accumulated portion is D50
  • the accumulated portion was designated as D90.
  • a base film is an example of the support body (For example, support body 3 shown to FIG. 1A and 1B) of the fluorescent substance sheet in this invention.
  • the base film was a PET film.
  • This PET film is “Therapy” BX9 (manufactured by Toray Film Processing Co., Ltd.), and its film thickness is 50 ⁇ m.
  • Silicone fine particles were obtained by the following production method.
  • a 2 L four-necked round bottom flask is equipped with a stirrer, a thermometer, a reflux tube and a dropping funnel, and this flask is 2.5% containing 10,000 ppm of polyether-modified siloxane “BYK333” as a surfactant.
  • ammonia water (2 L) was added, and the temperature was raised by an oil bath while stirring at 300 rpm. When the internal temperature reached 50 ° C., a mixture of methyltrimethoxysilane and phenyltrimethoxysilane (22/78 mol%) (200 g) was dropped from the dropping funnel over 30 minutes.
  • the obtained silicone fine particles were observed with an SEM and confirmed to be monodispersed spherical fine particles.
  • As a result of calculating the average particle diameter of the silicone fine particles from the obtained SEM image it was 50 nm.
  • the refractive index of the silicone fine particles was measured by a liquid immersion method and found to be 1.54.
  • As a result of observing the silicone fine particles with a cross-sectional TEM it was confirmed that the particles were single-structured fine particles.
  • the silica fine particles T31 are Aerosil 200 (manufactured by Nippon Aerosil Co., Ltd.). The average particle diameter of the silica fine particles T31 is 12 nm. The refractive index of the silica fine particles T31 is 1.46.
  • the silica fine particles T32 are “Admanano” YA050C (manufactured by Admatechs Co., Ltd.). The average particle diameter of the silica fine particles T32 is 50 nm. The refractive index of the silica fine particles T32 is 1.46.
  • the silica fine particles T33 are “Admanano” YA100C (manufactured by Admatechs Co., Ltd.).
  • the average particle diameter of the silica fine particles T33 is 100 nm.
  • the refractive index of the silica fine particles T33 is 1.46.
  • Silica fine particles T34 are “Admafine” SO-E1 (manufactured by Admatechs Co., Ltd.).
  • the average particle diameter of the silica fine particles T34 is 250 nm.
  • the refractive index of the silica fine particles T34 is 1.46.
  • Silica fine particles T35 are HPS-1000 (manufactured by Toa Gosei Co., Ltd.).
  • the average particle diameter of the silica fine particles T35 is 1000 nm.
  • the refractive index of the silica fine particles T35 is 1.46.
  • Silica fine particles T36 are “Admafine” SO-E5 (manufactured by Admatechs Co., Ltd.). The average particle diameter of the silica fine particles T36 is 1500 nm. The refractive index of the silica fine particles T36 is 1.46.
  • the alumina fine particles are Aeroxide AluC (manufactured by Nippon Aerosil Co., Ltd.).
  • the average particle diameter of the alumina fine particles is 12 nm.
  • the refractive index of the alumina fine particles is 1.77.
  • the titania fine particles are MT-01 (manufactured by Teika Co., Ltd.).
  • the average particle diameter of the titania fine particles is 10 nm.
  • the refractive index of the titania fine particles is 2.50.
  • ⁇ Preparation of phosphor sheet> silicone resin, silicone fine particles, red phosphor, and green phosphor were mixed in a predetermined ratio in a polyethylene container having a volume of 300 mL. Furthermore, 8 wt% of toluene was added as a solvent, and a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries) was used to stir and degas at 1000 rpm to obtain a resin solution for preparing a phosphor layer. . Then, the fluorescent substance layer preparation resin liquid was apply
  • ⁇ Measurement of film thickness of phosphor layer In the measurement of the thickness of the phosphor layer in this example, the thickness at a predetermined position of the PET film for producing the phosphor layer was measured in advance with a micrometer and marked. Next, a phosphor layer was formed on this PET film, and then the thickness of the marking portion was measured again with a micrometer. The thickness of the phosphor layer was obtained by subtracting the thickness of the PET film previously measured from the obtained thickness. In this example, the film thickness was measured at 25 points in a grid pattern at intervals of 10 mm, and the average value of these was taken as the film thickness of the phosphor layer.
  • a phosphor sheet provided with a transparent resin layer on the phosphor layer was obtained.
  • the “phosphor sheet having a transparent resin layer on the phosphor layer” is appropriately referred to as a “phosphor sheet with a transparent resin layer”.
  • a transparent resin layer-forming resin solution is applied onto a PET film using a slit die coater and dried at 130 ° C. for 30 minutes, whereby a transparent resin sheet is formed.
  • a vacuum laminator V130 manufactured by Nikko Materials Co., Ltd.
  • the phosphor layer of the phosphor sheet and the transparent resin layer of the transparent resin sheet are thermocompression bonded at 100 ° C. for 30 seconds in a vacuum atmosphere of 1 hPa. By pasting together.
  • the PET film on the transparent resin sheet side was peeled off, thereby forming a transparent resin layer on the phosphor layer.
  • a phosphor sheet with a transparent resin layer was obtained.
  • ⁇ Porosity measurement> the phosphor sheet was cut by a focused ion beam (FIB) processing method, and the cross section of the phosphor layer was observed by SEM. 20 cross-sections were observed per phosphor sheet, and the total cross-sectional area corresponding to the voids of the 20 obtained two-dimensional images was calculated. By dividing the total cross-sectional area corresponding to the void by the total cross-sectional area of these 20 two-dimensional images, the porosity of the phosphor layer was obtained.
  • FIB focused ion beam
  • the phosphor sheet or the phosphor sheet with a transparent resin layer (1 cm square) produced as described above was cut with a cutting device (GCUT manufactured by UHT), thereby producing a 1 mm square.
  • 100 individual sheets were prepared.
  • the individual sheet is obtained by dividing a phosphor sheet or a phosphor sheet with a transparent resin layer.
  • a die bonding apparatus manufactured by Toray Engineering
  • a 1 mm square piece sheet was vacuum-adsorbed with a collet and peeled from the base film.
  • the phosphor layer of this individual sheet was aligned and pasted on the surface of the blue LED chip of the LED package in which the flip chip type blue LED chip was mounted and the reflector was formed around the blue LED chip. .
  • an adhesive was applied in advance on the blue LED chip, and a phosphor layer was attached via the adhesive. Silicone resin T15 was used for this adhesive.
  • Total luminous flux retention (%) (total luminous flux after 300 hours / total luminous flux immediately after the start of the test) ⁇ 100
  • ⁇ Color reproduction range measurement> In the measurement of the color reproduction range in this example, a color filter that transmits red light produced by a known method was placed on the luminous body produced as described above, and the chromaticity of the emitted light was measured. Similarly, the chromaticity of the emitted light was measured for each of the case where a color filter that transmits green light was placed on the light emitter and the case where a color filter that transmitted blue light was placed. The DCI ratio was calculated by dividing the area of the triangle with the three chromaticities obtained as vertices by the area of the DCI chromaticity region. The higher the DCI ratio, the better the color reproducibility.
  • the refractive index of the refractive index measurement sample is measured using a refractive index / film thickness measuring device “prism coupler MODEL 2010 / M” (manufactured by Metricon Co., Ltd.). The refractive index of the cured fluororesin was measured.
  • ⁇ Preparation of refractive index measurement sample> In the preparation of the refractive index measurement sample in this example, the resin contained in the phosphor sheet was stirred for 10 minutes at 1000 rpm using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries), and defoamed. Thus, a dispersion of this resin was produced. After 5 cc of this dispersion was dropped onto a PET film, it was heated in an oven at 150 ° C. for 1 hour, thereby producing an average refractive index measurement sample as a refractive index measurement sample.
  • the light transmittance of the transparent resin layer containing fine particles is a basic configuration using an integrating sphere attached to a spectrophotometer (U-4100 Spectrophotometer (manufactured by Hitachi, Ltd.)). It was obtained by measuring the light transmittance of the measurement sample.
  • the transmittance measurement sample used in each example was used.
  • the slit was 2 nm and the scanning speed was 600 nm / min.
  • the smallest value among the light transmittances at wavelengths of 400 nm to 800 nm was defined as the minimum transmittance.
  • the silicone resin and fine particles used for the transparent resin layer are mixed in a polyethylene container having a volume of 300 mL, and the planetary stirring deaerator “Mazerustar KK-400” (manufactured by Kurabo Industries Co., Ltd.) Was stirred at 1000 rpm for 10 minutes and defoamed to prepare a dispersion.
  • the dispersion is applied onto quartz glass with a blade coater and then heated in an oven at 150 ° C. for 1 hour.
  • permeability measurement sample was produced about each Example.
  • ⁇ Measurement of film thickness of transmittance measurement sample> In the film thickness measurement of the transmittance measurement sample in this example, the thickness at a predetermined position of the quartz glass was previously measured with a micrometer, and the measured position was marked. Next, after forming a transmittance measurement sample of the transparent resin layer on the quartz glass, the thickness of the marking portion was again measured with a micrometer. The film thickness of this transmittance measurement sample was obtained by subtracting the thickness of the quartz glass previously measured from the obtained thickness. The film thickness was measured at 25 points in a grid pattern at intervals of 10 mm, and the average value of these was taken as the film thickness of the transmittance measurement sample.
  • Examples 1 to 6 (Examples 1 to 6) -Effect of phosphor particle size- In Examples 1 to 6, a phosphor sheet having a phosphor layer having the composition shown in Table 2 was prepared, and the porosity was measured by the method described above. Also, a phosphor (light emitting device) was prepared using the phosphor sheets obtained in each of Examples 1 to 6, and chromaticity, total luminous flux, total luminous flux retention, and color reproduction range were measured by the above-described methods. did. These measurement results are shown in Table 3. As can be seen with reference to Tables 2 and 3, when the phosphor sheet according to the present invention was used, all of Examples 1 to 6 were able to obtain a light emitter with excellent color reproducibility and high luminous flux. .
  • the D50 of the red phosphor is 10 ⁇ m or more like the D50 of the red phosphors T2 to T6 shown in Table 1, the total luminous flux is further improved, and the D10 of the red phosphors T3 to T6 shown in Table 1 is improved.
  • the D10 of the red phosphor is 5 ⁇ m or more, the total luminous flux retention rate is further improved.
  • the porosity of the phosphor sheet tended to decrease as the D10 and D50 of the red phosphor increased.
  • Example 7 to 13 Effect of phosphor concentration-
  • a phosphor sheet having a phosphor layer having the composition shown in Table 4 was prepared, and the porosity was measured by the method described above.
  • a phosphor was prepared using the phosphor sheet obtained in each of Examples 7 to 13, and chromaticity, total luminous flux, total luminous flux retention, and color reproduction range were measured by the above-described methods. These measurement results are shown in Table 5.
  • Table 4 shows the composition of Example 6 again, and Table 5 shows the result of Example 6 again. From Tables 4 and 5, it was found that the higher the concentration of the phosphors such as the red phosphor T6 and the green phosphor, the higher the total luminous flux retention rate.
  • Examples 14 to 17 Effect of silicone fine particles
  • a phosphor sheet having a phosphor layer having the composition shown in Table 6 was produced, and the porosity was measured by the method described above.
  • a phosphor was prepared using the phosphor sheets obtained in each of Examples 14 to 17, and the chromaticity, total luminous flux, total luminous flux retention, and color reproduction range were measured by the above-described methods. These measurement results are shown in Table 7. From Tables 6 and 7, it was found that the chromaticity variation ( ⁇ (Cx)) was further improved by containing the silicone fine particles.
  • a phosphor sheet was produced with a composition in which the silicone resin T15 was 50 wt% and the red phosphor T6 was 50 wt%.
  • a phosphor sheet was produced with a composition in which the silicone resin T15 was 50 wt% and the green phosphor was 50 wt%.
  • Example 19 to 25 Effect of refractive index of phosphor layer resin-
  • phosphor sheets having phosphor layers having the compositions shown in Table 9 were produced. Further, the film thickness of the phosphor layer of the phosphor sheet produced in each of Examples 19 to 25 was measured by the method described above. Moreover, also about the fluorescent substance sheet of Example 10, the film thickness of the fluorescent substance layer was measured. Further, a phosphor was produced using the phosphor sheet produced in each of Examples 19 to 25, and chromaticity, total luminous flux, and color reproduction range were measured by the above-described methods. These measurement results are shown in Table 10. Table 9 shows the composition of Example 10 again, and Table 10 shows the measurement result of Example 10 again.
  • Example 26 to 36 Effect of refractive index of transparent resin layer-
  • a resin solution for preparing a transparent resin layer was applied onto the phosphor sheet prepared in Example 6 using a slit die coater, and this resin solution for preparing a transparent resin layer was applied.
  • a phosphor resin sheet having a transparent resin layer on a phosphor layer is prepared by preparing a transparent resin sheet by the above-described method using silicone resin T15 and bonding the phosphor layer and the transparent resin layer. Produced.
  • the film thickness of the transparent resin layer of the phosphor sheet produced in each of Examples 26 to 36 was measured by the method described above.
  • the phosphor layer side of the phosphor sheet with the transparent resin layer produced in each of Examples 26 to 36 is attached on the LED chip to produce a light emitter, and the chromaticity, total luminous flux is obtained by the above-described method.
  • the total luminous flux retention and the color reproduction range were measured.
  • Table 11 shows the types of resins used in the production of the resin liquid for producing the transparent resin layer in each of Examples 26 to 36 and the measurement results in Examples 26 to 36.
  • Examples 37 to 42-Refractive index of fine particles- resin solutions for preparing a transparent resin layer having the compositions shown in Table 12 were prepared. Next, the transparent resin layer preparation resin solution prepared in each of Examples 37 to 42 was applied on the phosphor sheet prepared in Example 10, and the transparent resin layer preparation resin solution was applied at 130 ° C. for 30 minutes. By drying, a phosphor sheet having a transparent resin layer on the phosphor layer was produced.
  • the film thickness of the transparent resin layer of the phosphor sheet produced in each of Examples 37 to 42 was measured by the method described above. Next, the phosphor layer side of the phosphor sheet with a transparent resin layer produced in each of Examples 37 to 42 is attached on the LED chip to produce a light emitter. The luminous flux, total luminous flux retention, and color reproduction range were measured. Further, a transmittance measurement sample having a thickness of 100 ⁇ m was prepared using the resin liquid for preparing the transparent resin layer prepared in each of Examples 37 to 42, and the light transmittance of the transparent resin layer was measured by the above-described method. . Table 13 shows the refractive index difference between the resin and the fine particles of the transparent resin layer in each of Examples 37 to 42 and the measurement results thereof.
  • Example 43 to 47 Additional amount of silica fine particles-
  • resin solutions for preparing a transparent resin layer having the compositions shown in Table 14 were prepared.
  • the transparent resin layer preparation resin solution prepared in each of Examples 43 to 47 was applied on the phosphor sheet prepared in Example 10, and this transparent resin layer preparation resin solution was applied at 130 ° C. for 30 minutes. By drying, a phosphor sheet having a transparent resin layer on the phosphor layer was produced.
  • the film thickness of the transparent resin layer of the phosphor sheet produced in each of Examples 43 to 47 was measured by the method described above.
  • the phosphor layer side of the phosphor sheet with a transparent resin layer produced in each of Examples 43 to 47 is attached on the LED chip to produce a light emitter.
  • the luminous flux, total luminous flux retention, and color reproduction range were measured.
  • a transmittance measurement sample having a thickness of 100 ⁇ m was prepared using the resin liquid for preparing a transparent resin layer prepared in each of Examples 43 to 47, and the light transmittance of the transparent resin layer was measured by the method described above.
  • Table 15 shows the refractive index difference between the resin and fine particles of the transparent resin layer in each of Examples 43 to 47, and the measurement results thereof.
  • Table 14 shows the compositions of Examples 38 and 39 again, and Table 15 shows the results of Examples 38 and 39 again.
  • the content of the silica fine particles T31 is preferably 30% by weight or less and more preferably 10% by weight or less from the viewpoint of the minimum transmittance. Further, it was found that the content of the silica fine particles T31 is preferably 0.1% by weight or more and more preferably 1% by weight or more from the viewpoint of suppressing variation in the thickness of the transparent resin layer. .
  • Example 48 to 52 Alumina fine particle addition amount-
  • resin solutions for preparing a transparent resin layer having the compositions shown in Table 16 were prepared.
  • the transparent resin layer preparation resin solution prepared in each of Examples 48 to 52 was applied on the phosphor sheet prepared in Example 10, and this transparent resin layer preparation resin solution was applied at 130 ° C. for 30 minutes. By drying, a phosphor sheet having a transparent resin layer on the phosphor layer was produced.
  • the film thickness of the transparent resin layer of the phosphor sheet produced in each of Examples 48 to 52 was measured by the method described above.
  • the phosphor layer side of the phosphor sheet with a transparent resin layer produced in each of Examples 48 to 52 is attached on the LED chip to produce a light emitter.
  • the luminous flux, total luminous flux retention, and color reproduction range were measured.
  • a transmittance measurement sample having a thickness of 100 ⁇ m was prepared using the resin liquid for preparing the transparent resin layer prepared in each of Examples 48 to 52, and the light transmittance of the transparent resin layer was measured by the method described above.
  • Table 17 shows the difference in refractive index between the resin and fine particles of the transparent resin layer in each of Examples 48 to 52 and the measurement results thereof.
  • Table 16 shows the compositions of Examples 38 and 41 again, and Table 17 shows the results of Examples 38 and 41 again.
  • the content of the alumina fine particles is preferably 30% by weight or less, and more preferably 10% by weight or less from the viewpoint of the minimum transmittance.
  • the content of the alumina fine particles is preferably 0.1% by weight or more, and more preferably 1% by weight or more, from the viewpoint of suppressing variation in the thickness of the transparent resin layer.
  • Example 53 to 57 -Addition amount of silicone fine particles-
  • a resin liquid for preparing a transparent resin layer having the composition shown in Table 18 was prepared.
  • the transparent resin layer preparation resin solution prepared in each of Examples 53 to 57 was applied on the phosphor sheet prepared in Example 10, and this transparent resin layer preparation resin solution was applied at 130 ° C. for 30 minutes. By drying, a phosphor sheet having a transparent resin layer on the phosphor layer was produced.
  • the film thickness of the transparent resin layer of the phosphor sheet produced in each of Examples 53 to 57 was measured by the method described above.
  • the phosphor layer side of the phosphor sheet with a transparent resin layer produced in each of Examples 53 to 57 is attached on the LED chip to produce a light emitter.
  • the luminous flux, total luminous flux retention, and color reproduction range were measured.
  • a transmittance measurement sample having a thickness of 100 ⁇ m was prepared using the resin liquid for preparing a transparent resin layer prepared in each of Examples 53 to 57, and the light transmittance of the transparent resin layer was measured by the method described above.
  • Table 19 shows the refractive index difference between the resin and the fine particles of the transparent resin layer in each of Examples 53 to 57 and the measurement results thereof.
  • Table 18 shows the compositions of Examples 38 and 40 again, and Table 19 shows the results of Examples 38 and 40 again.
  • Example 58 to 62 Particle size of fine particles-
  • resin solutions for preparing a transparent resin layer having the compositions shown in Table 20 were prepared.
  • the transparent resin layer preparation resin solution prepared in each of Examples 58 to 62 was applied on the phosphor sheet prepared in Example 10, and this transparent resin layer preparation resin solution was applied at 130 ° C. for 30 minutes. By drying, a phosphor sheet having a transparent resin layer on the phosphor layer was produced.
  • the film thickness of the transparent resin layer of the phosphor sheet produced in each of Examples 58 to 62 was measured by the method described above.
  • the phosphor layer side of the phosphor sheet with a transparent resin layer produced in each of Examples 58 to 62 is attached on the LED chip to produce a light emitter.
  • the luminous flux, total luminous flux retention, and color reproduction range were measured.
  • a transmittance measurement sample having a thickness of 100 ⁇ m was prepared using the resin liquid for preparing a transparent resin layer prepared in each of Examples 58 to 62, and the light transmittance of the transparent resin layer was measured by the method described above. .
  • Table 21 shows the refractive index difference between the resin and the fine particles of the transparent resin layer in each of Examples 58 to 62 and the measurement results thereof.
  • Table 20 shows the compositions of Examples 38 and 39 again, and Table 21 shows the results of Examples 38 and 39 again. From Tables 20 and 21, it was found that the smaller the particle size of the fine particles, the higher the minimum transmittance and the smaller the variation in the thickness of the transparent resin layer.
  • a phosphor sheet was prepared with a composition in which the silicone resin T15 was 40 wt% and the yellow phosphor (YAG yellow phosphor) was 60 wt%, and the porosity was obtained by the method described above. Was measured. Further, a phosphor was prepared using the obtained phosphor sheet, and chromaticity, total luminous flux, total luminous flux retention, and color reproduction range were measured by the above-described methods. These measurement results are shown in Table 22. From Table 22, it was found that when a YAG yellow phosphor was used, the color reproduction range was 70%, which was not suitable for a backlight for a liquid crystal display.
  • the phosphor sheet according to the present invention, the light emitter using the phosphor sheet, the light source unit, the display, and the method for producing the light emitter are a phosphor sheet that achieves both improved color reproducibility and high luminous flux, and Is suitable for a manufacturing method of a light emitter, a light source unit, a display, and a light emitter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)
  • Optical Filters (AREA)

Abstract

赤色蛍光体とβ型サイアロン蛍光体と樹脂とを含む蛍光体層を備える蛍光体シートである。この赤色蛍光体は、一般式(1)で表されるMn賦活複フッ化物である。 (一般式) A2MF6:Mn ・・・(1) (一般式(1)において、Aは、Li、Na、K、RbおよびCsからなる群より選ばれ、かつNaおよびKの少なくとも1つを含む1種以上のアルカリ金属であり、Mは、Si、Ti、Zr、Hf、GeおよびSnからなる群より選ばれる1種以上の4価元素である。)

Description

蛍光体シート、それを用いた発光体、光源ユニット、ディスプレイ、および発光体の製造方法
 本発明は、蛍光体シート、それを用いた発光体、光源ユニット、ディスプレイ、および発光体の製造方法に関する。
 発光ダイオード(LED、Light Emitting Diode)は、その発光効率の目覚ましい向上を背景とし、低い消費電力、長寿命、意匠性等を特長として液晶ディスプレイ(LCD、Liquid Crystal Display)のバックライト向けや、車のヘッドライト等の車載分野で急激に市場を拡大している。LEDは、環境負荷も低いことから、今後、一般照明分野でも巨大な市場を形成すると期待されている。
 LEDの発光スペクトルは、LEDチップを形成する半導体材料に依存するため、その発光色は限られている。そのため、LEDを用いてLCDのバックライトや一般照明向けの白色光を得るためには、LEDチップ上にそれぞれのチップに合う蛍光体を設置し、発光波長を変換する必要がある。具体的には、青色を発光するLEDチップ(以下、青色LEDチップと適宜いう)上に黄色蛍光体を設置する方法、青色LEDチップ上に赤色蛍光体および緑色蛍光体を設置する方法、紫外線を発するLEDチップ上に赤色蛍光体、緑色蛍光体および青色蛍光体を設置する方法等が提案されている。これらの中で、LEDチップの発光効率やコストの面から、青色LEDチップ上に黄色蛍光体を設置する方法、および青色LEDチップ上に赤色蛍光体および緑色蛍光体を設置する方法が、現在、最も広く採用されている。
 ディスプレイ用途のLED等に用いられる蛍光体としては、色再現範囲を拡大するという観点から、発光ピークの半値幅の狭いことが望まれる。特許文献1には、発光ピークの半値幅の狭い赤色蛍光体であるMn賦活複フッ化物蛍光体と、黄色蛍光体または緑色蛍光体であるEu2+賦活アルカリ土類ケイ窒化物蛍光体とを用いることにより白色発光を得る方法が記載されている。
特開2012-178574号公報
 しかしながら、特許文献1に記載のような従来の蛍光体を用いた発光体では、色再現性の向上と高光束との両立が困難であった。本発明は、このような問題点を解決することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る蛍光体シートは、赤色蛍光体とβ型サイアロン蛍光体と樹脂とを含む蛍光体層を備え、前記赤色蛍光体は、一般式(1)で表されるMn賦活複フッ化物である、ことを特徴とする。
(一般式)
 A2MF6:Mn         ・・・(1)
(一般式(1)において、Aは、Li、Na、K、RbおよびCsからなる群より選ばれ、かつNaおよびKの少なくとも1つを含む1種以上のアルカリ金属であり、Mは、Si、Ti、Zr、Hf、GeおよびSnからなる群より選ばれる1種以上の4価元素である。)
 また、本発明に係る蛍光体シートは、上記の発明において、前記蛍光体層は、前記赤色蛍光体と前記β型サイアロン蛍光体と前記樹脂とを含む単一層または複数層からなり、前記赤色蛍光体、前記β型サイアロン蛍光体および前記樹脂は、同一層に含まれる、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記樹脂の屈折率は、1.45以上、1.7以下である、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記樹脂は、シリコーン樹脂である、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記蛍光体層における全固形分に占める前記赤色蛍光体の割合は、20重量%以上、60重量%以下である、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記蛍光体層における全固形分に占める前記赤色蛍光体の割合と前記β型サイアロン蛍光体の割合との合計は、50重量%以上、90重量%以下である、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記赤色蛍光体のD50は、10μm以上、40μm以下である、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記赤色蛍光体のD10は、3μm以上である、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記赤色蛍光体の(D90-D10)/D50は、0.5以上、1.5以下である、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記蛍光体層中の空隙率は、0.1%以上、3%以下である、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記蛍光体層に微粒子を含有する、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記微粒子は、シリコーン微粒子である、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記蛍光体層上にさらに透明樹脂層が積層される、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記透明樹脂層に含まれる樹脂の屈折率は、1.3以上、1.6以下である、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記透明樹脂層に含まれる樹脂の屈折率は、前記蛍光体層に含まれる樹脂の屈折率以下である、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記透明樹脂層は、微粒子を含有する、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記透明樹脂層に含まれる微粒子は、シリカ微粒子、アルミナ微粒子、シリコーン微粒子から選択される1種類以上である、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記透明樹脂層の波長400nm~800nmにおける最小透過率は、80%以上である、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記透明樹脂層における全固形分に占める微粒子の割合は、0.1重量%以上、30重量%以下である、ことを特徴とする。
 また、本発明に係る蛍光体シートは、上記の発明において、前記透明樹脂層に含まれる微粒子の平均粒径は、1nm以上、1000nm以下である、ことを特徴とする。
 また、本発明に係る発光体の製造方法は、上記の発明のいずれか一つに記載の蛍光体シートを個片化する個片化工程と、個片化された前記蛍光体シートをピックアップするピックアップ工程と、個片化された前記蛍光体シートを光源に貼り付ける貼付工程と、を含むことを特徴とする。
 また、本発明に係る発光体は、上記の発明のいずれか一つに記載の蛍光体シートを備える、ことを特徴とする。
 また、本発明に係る光源ユニットは、上記の発明のいずれか一つに記載の蛍光体シートを備える、ことを特徴とする。
 また、本発明に係るディスプレイは、上記の発明に記載の光源ユニットを備える、ことを特徴とする。
 本発明によれば、色再現性の向上と高光束とを両立させる蛍光体シートを提供することができるという効果を奏する。本発明に係る蛍光体シートを備える発光体、光源ユニット、およびディスプレイは、色再現性の向上と高輝度とを両立させることができるという効果を奏する。
図1Aは、本発明の実施の形態に係る蛍光体シートの一例を示す側面図である。 図1Bは、本発明の実施の形態に係る蛍光体シートの別例を示す側面図である。 図2は、本発明の実施の形態に係る蛍光体シートを用いた発光体の製造方法の一例を示す工程図である。
 以下、本発明に係る蛍光体シート、それを用いた発光体、光源ユニット、ディスプレイ、および発光体の製造方法の好適な実施の形態を詳細に説明する。ただし、本発明は、以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。
<蛍光体シート>
 本発明の実施の形態に係る蛍光体シートは、赤色蛍光体、β型サイアロン蛍光体および樹脂を含む蛍光体層を含有するものである。この蛍光体シートにおいて、赤色蛍光体は、一般式(1)で表されるMn賦活複フッ化物である。
 
2MF6:Mn           ・・・(1)
 
一般式(1)において、Aは、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)およびセシウム(Cs)からなる群より選ばれ、かつNaおよびKの少なくとも1つを含む1種以上のアルカリ金属である。Mは、ケイ素(Si)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、ゲルマニウム(Ge)およびスズ(Sn)からなる群より選ばれる1種以上の4価元素である。
 図1Aは、本発明の実施の形態に係る蛍光体シートの一例を示す側面図である。図1Aに示すように、本発明の実施の形態に係る蛍光体シート4は、支持体3の上に、蛍光体1と樹脂14とを含有する蛍光体層2を備える。蛍光体層2は、樹脂14中に複数の蛍光体1を含有する層である。蛍光体層2は、蛍光体1として、一般式(1)で表される赤色蛍光体と、β型サイアロン蛍光体とを含有する。例えば、図1Aに示すように、蛍光体層2は、支持体3の上に形成されて、蛍光体シート4を構成する。
 蛍光体層2は、蛍光体1としての赤色蛍光体およびβ型サイアロン蛍光体と、樹脂14とを含有する単一層からなるものであってもよい。または、蛍光体層2は、蛍光体1と樹脂14とを含有する複数層からなるものであってもよい。蛍光体層2が複数層からなる場合、蛍光体1としての赤色蛍光体と樹脂14とを含有する第1の蛍光体層と、蛍光体1としてのβ型サイアロン蛍光体と樹脂14とを含有する第2の蛍光体層とが、それぞれ1つ以上積層されて、蛍光体層2の複数層を構成してもよい。好ましくは、蛍光体層2を構成する単一層または複数層の各層において、蛍光体1としての赤色蛍光体およびβ型サイアロン蛍光体と樹脂14とは、同一層に含まれる。このことは、以下に示す理由による。
 蛍光体層2が、赤色蛍光体を含む層(第1の蛍光体層)とβ型サイアロン蛍光体を含む層(第2の蛍光体層)との積層体であっても、色再現性の向上と高光束との両立は可能であるが、この蛍光体層2では、各層の膜厚をそれぞれ別々に制御する必要がある。このため、結果として得られる蛍光体シート4の色度ばらつきが大きくなってしまう。これに対し、蛍光体層2において蛍光体1としての赤色蛍光体およびβ型サイアロン蛍光体と樹脂14とが同一層に含まれることにより、蛍光体シート4の色度ばらつきが改善する。
 図1Bは、本発明の実施の形態に係る蛍光体シートの別例を示す側面図である。図1Bに示すように、蛍光体シート4は、支持体3の上に形成された蛍光体層2の上に、さらに、透明樹脂層5を備えてもよい。図1Bに示す蛍光体シート4において、透明樹脂層5は、例えば、単一層または複数層からなる蛍光体層2の上面(支持体3とは反対側の面)に形成されている。このように透明樹脂層5があることにより、蛍光体シート4の耐久性が向上する。
 本実施の形態において、蛍光体シート4は、単一層または複数層の蛍光体層2を備えたもの、または、この蛍光体層2と透明樹脂層5とを備えたものであるが、そのシート形状の維持および取り扱い易さ等の観点から、通常、支持体3によって支持された状態にある。すなわち、本実施の形態では、蛍光体シート4と支持体3とを含めて「蛍光体シート」と称する場合がある。
<蛍光体層>
 蛍光体層2は、例えば図1A、1Bに示すように、主として蛍光体1と樹脂14とを含む層である。蛍光体1としては、少なくとも、一般式(1)で表される赤色蛍光体と、β型サイアロン蛍光体とが挙げられる。
(赤色蛍光体)
 赤色蛍光体とは、波長590nm~750nmに発光ピークを有する蛍光体のことである。本発明の実施の形態に係る蛍光体シート4は、その色再現性を向上させるために、蛍光体層2中に、上述した一般式(1)で表されるMn賦活複フッ化物(A2MF6:Mn)である赤色蛍光体を含む必要がある。このMn賦活複フッ化物である赤色蛍光体は、「Mn賦活複フッ化物錯体蛍光体」と称される。以下、Mn賦活複フッ化物錯体蛍光体は、「赤色蛍光体」と適宜略記される。
 Mn賦活複フッ化物錯体蛍光体とは、マンガン(Mn)を賦活剤とし、アルカリ金属またはアルカリ土類金属のフッ化物錯体塩を母体結晶とする蛍光体である。このMn賦活複フッ化物錯体蛍光体において、母体結晶を形成するフッ化物錯体の配位中心は、4価金属(Si、Ti、Zr、Hf、Ge、Sn)であることが好ましく、その周りに配位するフッ素原子の数は、6であることが好ましい。好ましいMn賦活複フッ化物錯体蛍光体は、一般式(1)において、AがK(カリウム)であり、MがSi(ケイ素)であるもの、つまりK2SiF6:Mnである。これは、KSF蛍光体と呼ばれる。
 蛍光体層2における全固形分に占める赤色蛍光体(すなわちMn賦活複フッ化物錯体蛍光体)の割合は、10重量%以上であることが好ましく、20重量%以上であることがより好ましい。また、この割合は、80重量%以下であることが好ましく、60重量%以下であることがより好ましい。この割合が好ましい下限値以上であることによって、蛍光体シート4の色再現範囲がより改善される。一方、この割合が80重量%以下であることによって、蛍光体シート4の色度ばらつきが改善され、この割合が60重量%以下であることによって、蛍光体シート4の色度ばらつきがより改善される。
 蛍光体1(図1A参照)としての赤色蛍光体のD50は、5μm以上であることが好ましく、10μm以上であることがより好ましい。また、この赤色蛍光体のD50は、40μm以下であることが好ましく、30μm以下であることがより好ましい。この赤色蛍光体のD50が5μm以上であることによって、高光束な蛍光体シート4を得ることができる。この赤色蛍光体のD50が40μm以下であることによって、蛍光体シート4の色度ばらつきが改善される。
 また、蛍光体1としての赤色蛍光体のD10は、3μm以上であることが好ましく、5μm以上であることがより好ましい。これにより、蛍光体シート4の耐久性が改善される。この赤色蛍光体のD10の上限としては、特に制限はないが、15μm以下であることが好ましく、12μm以下であることがより好ましい。
 さらに、蛍光体1としての赤色蛍光体において、下記の式(11)で表される値xは、0.5以上、1.8以下であることが好ましく、1.5以下であることがより好ましい。さらには、この値xの上限値として、1.50以下であることが好ましく、1.4以下であることがより好ましく、1.35以下であることがより一層好ましく、1以下であることがさらに好ましい。
 
x=(D90-D10)/D50     ・・・(11)
 
値xは、赤色蛍光体の粒度分布の指標である。値xが小さいということは、耐久性低下の原因となる小粒径の赤色蛍光体(例えばKSF蛍光体)が少なく、かつ、色度ばらつきの原因となる大粒径の赤色蛍光体(例えばKSF蛍光体)が少ないことを意味する。値xが1.5以下であることによって、蛍光体シート4の耐久性および色度ばらつきがさらに改善する。
 ただし、蛍光体層2における赤色蛍光体の粒度分布が狭すぎると、蛍光体シート4中で光が散乱しにくくなる。この場合、蛍光体シート4を用いて発光体を組み立てた際、イエローリングと呼ばれる不具合が発生する。イエローリングとは、発光体を正面から見た場合と、斜め方向から見た場合とで色が異なって見える現象このことである。このイエローリングは、蛍光体層2中での光の散乱が少ない場合、顕著にみられる現象である。イエローリング抑制の観点から、値xは0.5以上であることが好ましい。
 ここでいうD10、D50、D90とは、以下の方法で測定される粒径のことである。例えば、蛍光体層2の断面をSEMで観察し、得られた2次元画像において、蛍光体1の粒子の外縁と2点で交わる直線の当該2つの交点間の距離のうち、最大になる距離を算出し、それを粒子の個別の粒径と定義する。観察された全粒子の個別の粒径から求められる粒度分布において、小粒径側からの通過分積算10%の粒径をD10とし、通過分積算50%の粒径(平均粒径)をD50とし、通過分積算90%の粒径をD90とする。
 蛍光体シート4を搭載したLED発光体を対象とする場合は、機械研磨法、ミクロトーム法、CP法(Cross-section Polisher)および集束イオンビーム(FIB)加工法のいずれかの方法で、この蛍光体シート4を、蛍光体層2の断面が観測されるよう研磨した後、得られた断面をSEMで観察して得られる2次元画像から上述の粒径を算出することができる。
(β型サイアロン蛍光体)
 β型サイアロン蛍光体とは、β型窒化ケイ素の固溶体であり、β型窒化ケイ素結晶のSi位置にアルミニウム(Al)が置換固溶し、窒素(N)位置に酸素(O)が置換固溶したものである。β型サイアロン蛍光体に用いられるβ型サイアロンの単位胞(単位格子)に2式量の原子があるので、β型サイアロンの一般式として、Si6-zAlzz8-zが用いられる。この一般式において、zは、0超、4.2未満の値である。本実施の形態におけるβ型サイアロン蛍光体において、β型サイアロンの固溶範囲は非常に広く、また、(Si、Al)/(N、O)のモル比は、3/4を維持する必要がある。β型サイアロンの一般的な製法は、窒化ケイ素の他に、酸化ケイ素と窒化アルミニウムとを、あるいは酸化アルミニウムと窒化アルミニウムとを加えて加熱する方法である。
 β型サイアロンは、結晶構造内に希土類等の発光元素(Eu、Sr、Mn、Ce等)を取り込むことで、紫外から青色の光で励起して波長520nm~560nmの緑色発光を示すβ型サイアロン蛍光体となる。これは、白色LED等の発光体の緑色発光成分として好ましく用いられる。特に、ユーロピウム(Eu2+)を含有させたβ型サイアロン蛍光体であるEu2+賦活β型サイアロン蛍光体は、発光スペクトルが非常にシャープであるため、青色、緑色、赤色の狭帯域発光が要求される画像処理表示装置または液晶ディスプレイパネルのバックライト光源に適した素材である。
 蛍光体1(図1A参照)としてのβ型サイアロン蛍光体のD50は、1μm以上が好ましく、10μm以上がより好ましい。また、このβ型サイアロン蛍光体のD50は、100μm以下が好ましく、50μm以下がより好ましい。β型サイアロン蛍光体の形状としては、特に制限はなく、球状、柱状等、様々なものを用いることができる。ここでいうD50は、上述した赤色蛍光体の場合と同様の方法で測定される粒径のことである。
 蛍光体層2における蛍光体1としてのβ型サイアロン蛍光体の含有量は、色再現範囲の拡大という観点から、蛍光体層2全体の3重量%以上であることが好ましく、蛍光体層2全体の5重量%以上であることがより好ましい。また、このβ型サイアロン蛍光体の含有量は、蛍光体層2全体の50重量%以下であることが好ましく、蛍光体層2全体の40重量%以下であることがより好ましい。
 また、蛍光体層2における全固形分に占める赤色蛍光体の割合とβ型サイアロン蛍光体の割合との合計は、50重量%以上、90重量%以下であることが好ましい。これら両割合の合計の下限としては、65重量%以上であることがより好ましく、70重量%以上であることがさらに好ましい。これら両割合の合計の上限としては、85重量%以下であることがより好ましく、80重量%以下であることがさらに好ましい。これら両割合の合計が50重量%以上であることにより、蛍光体層2の放熱性が向上するため、蛍光体層2に含有の蛍光体1の蓄熱を抑制することができる。この結果、蛍光体シート4の高光束を維持することができる。また、これら両割合の合計が90重量%以下であることにより、蛍光体シート4の色度ばらつきが改善する。
 本発明における赤色蛍光体およびβ型サイアロン蛍光体を蛍光体1として蛍光体層2中に有する蛍光体シート4において、蛍光体層2中の空隙率は、3%以下であることが好ましく、2%以下であることがより好ましく、1%以下であることがより一層好ましく、0.5%以下であることがさらに好ましい。何故ならば、蛍光体層2中の空隙率が小さいほど、蛍光体層2からの光の取り出し効率が向上するため、高光束な発光体を与える蛍光体シート4を得ることができるからである。また、この蛍光体層2中の空隙率は、特に下限に制限はないが、0.1%以上であることが好ましい。
 ここでいう空隙率とは、蛍光体層2における空隙の割合である。この空隙率は、以下の方法で測定することができる。例えば、機械研磨法、ミクロトーム法、CP法(Cross-section Polisher)および集束イオンビーム(FIB)加工法のいずれかの方法で、蛍光体シート4を、蛍光体層2の断面が観測されるよう研磨する。その後、得られた断面をSEMで観察して得られる2次元画像から、蛍光体層2の空隙に相当する面積を算出し、この算出した空隙の面積を、当該断面における蛍光体層2全体の面積で除する。これにより、蛍光体層2の空隙率が得られる。
 蛍光体層2に含有する赤色蛍光体のD10およびD50を上述の好ましい範囲とすることで、また、この赤色蛍光体の粒度分布の指標である上記の値x(式(11)参照)が小さくなるようにすることで、蛍光体層2の空隙率は、小さくなる傾向にある。
(他の蛍光体)
 蛍光体層2は、上記した蛍光体1以外の蛍光体をさらに含有していてもよい。上記した蛍光体1以外の蛍光体としては、例えば、他の赤色蛍光体、他の緑色蛍光体、黄色蛍光体、青色蛍光体等が挙げられる。本実施の形態において、緑色蛍光体とは、波長500nm~560nmに発光ピークを有する蛍光体のことである。黄色蛍光体とは、波長560nm~590nmに発光ピークを有する蛍光体のことである。青色蛍光体とは、波長430nm~500nmに発光ピークを有する蛍光体のことである。
 他の赤色蛍光体は、一般式(1)で表される赤色蛍光体(Mn賦活複フッ化物錯体蛍光体)以外のものである。このような他の赤色蛍光体として、例えば、Y22S:Eu、La22S:Eu、Y23:Eu、Gd22S:Eu等が挙げられる。
 他の緑色蛍光体は、β型サイアロン蛍光体以外のものである。このような他の緑色蛍光体として、例えば、SrAl24:Eu、Y2SiO5:Ce,Tb、MgAl1119:Ce,Tb、Sr7Al1225:Eu、(Mg、Ca、Sr、Baのうち少なくとも1つ以上の元素)Ga24:Eu等が挙げられる。
 黄色蛍光体として、例えば、少なくともセリウムで賦活されたイットリウム・アルミニウム酸化物蛍光体、少なくともセリウムで賦括されたイットリウム・ガドリニウム・アルミニウム酸化物蛍光体、および、少なくともセリウムで賦活されたイットリウム・ガリウム・アルミニウム酸化物蛍光体等が挙げられる。
 青色蛍光体として、例えば、Sr5(PO43Cl:Eu、(SrCaBa)5(PO43Cl:Eu、(BaCa)5(PO43Cl:Eu、(Mg、Ca、Sr、Baのうち少なくとも1つ以上の元素)259Cl:Eu,Mn、(Mg、Ca、Sr、Baのうち少なくとも1つ以上の元素)(PO46Cl2:Eu,Mn等が挙げられる。
 また、現在主流の青色LEDに対応して発光する蛍光体としては、例えば、Y3(Al,Ga)512:Ce、(Y,Gd)3Al512:Ce、Lu3Al512:Ce、Y3Al512:Ce等のYAG系蛍光体、Tb3Al512:Ce等のTAG系蛍光体、(Ba,Sr)2SiO4:Eu系蛍光体やCa3Sc2Si312:Ce系蛍光体、(Sr,Ba,Mg)2SiO4:Eu等のシリケート系蛍光体、(Ca,Sr)2Si58:Eu、(Ca,Sr)AlSiN3:Eu、CaSiAlN3:Eu等のナイトライド系蛍光体、Cay(Si,Al)12(O,N)16:Eu等のオキシナイトライド系蛍光体、さらには(Ba,Sr,Ca)Si222:Eu系蛍光体、Ca8MgSi416Cl2:Eu系蛍光体、SrAl24:Eu、Sr4Al1425:Eu等の蛍光体が挙げられる。
(樹脂)
 蛍光体層2に含まれる樹脂14の屈折率は、1.45以上、1.7以下である。この樹脂14の屈折率は、1.5以上であることがより好ましく、また、1.65以下であることがより好ましい。この樹脂14の屈折率が1.45以上であることで、平均的な屈折率が1.4前後であるMn賦活複フッ化物錯体蛍光体(蛍光体1としての赤色蛍光体)との屈折率差が大きくなり、蛍光体層2中で光が散乱しやすくなる。そのため、光が蛍光体層2に入ってから出るまでの光路長が長くなる。光路長が長くなることで、LEDチップから放射される青色光が蛍光体層2中の蛍光体1により色変換されやすくなるため、所望の色度を発現するための蛍光体量を少なくすることができる。
 一方で、この樹脂14の屈折率が1.7を超えると、蛍光体層2中での光の過剰な散乱により、必要以上に光路長が長くなる。そのため、蛍光体層2中の蛍光体1から放射された発光光が蛍光体1に吸収されやすくなり、この結果、発光体から放射される光の強度が低下してしまう。
 樹脂14の材質は、内部に蛍光体(図1Aに示す蛍光体1等)を均質に分散させられるものであり、蛍光体層2を形成できるものであれば、特に制限はない。このような樹脂14としては、例えば、シリコーン樹脂、エポキシ樹脂、ポリアリレート樹脂、PET変性ポリアリレート樹脂、ポリカーボネート樹脂、環状オレフィン樹脂、ポリエチレンテレフタレート樹脂、ポリメチルメタアクリレート樹脂、ポリプロピレン樹脂、変性アクリル樹脂、ポリスチレン樹脂およびアクリルニトリル・スチレン共重合体樹脂等が挙げられる。これらのうち、透明性の面から、シリコーン樹脂やエポキシ樹脂が好ましい。さらに、耐熱性の面から、シリコーン樹脂が特に好ましい。
 本発明で用いられる樹脂14の一例であるシリコーン樹脂としては、硬化型シリコーン樹脂が好ましい。樹脂14として使用する硬化型シリコーン樹脂は、一液型、二液型(三液型)のいずれの液構成のものであってもよい。この硬化型シリコーン樹脂には、空気中の水分あるいは触媒によって縮合反応を起こすタイプとして、脱アルコール型、脱オキシム型、脱酢酸型、脱ヒドロキシルアミン型等がある。また、この硬化型シリコーン樹脂には、触媒によってヒドロシリル化反応を起こすタイプとして、付加反応型がある。樹脂14としては、これらのいずれのタイプの硬化型シリコーン樹脂が使用されてもよい。特に、付加反応型のシリコーン樹脂は、硬化反応に伴う副成物がなく、硬化収縮が小さい点と、加熱により硬化を早めることが容易な点とから、より好ましい。
 樹脂14の一例としての付加反応型のシリコーン樹脂は、例えば、ケイ素原子に結合したアルケニル基を含有する化合物と、ケイ素原子に結合した水素原子を有する化合物とのヒドロシリル化反応により、形成される。「ケイ素原子に結合したアルケニル基を含有する化合物」としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、プロペニルトリメトキシシラン、ノルボルネニルトリメトキシシラン、オクテニルトリメトキシシラン等が挙げられる。「ケイ素原子に結合した水素原子を有する化合物」としては、例えば、メチルハイドロジェンポリシロキサン、ジメチルポリシロキサン-CO-メチルハイドロジェンポリシロキサン、エチルハイドロジェンポリシロキサン、メチルハイドロジェンポリシロキサン-CO-メチルフェニルポリシロキサン等が挙げられる。付加反応型のシリコーン樹脂としては、このような材料のヒドロシリル化反応によって形成されるものが挙げられる。また、樹脂14としては、他にも、例えば特開2010-159411号公報に記載されているような公知のものを利用することができる。
 このような樹脂14としては、市販されているもの、例えば、一般的なLED用途のシリコーン封止材を使用することも可能である。これの具体例としては、東レ・ダウコーニング社製のOE-6630A/B、OE-6336A/Bや信越化学工業株式会社製のSCR-1012A/B、SCR-1016A/B等が挙げられる。
 また、樹脂14としてのシリコーン樹脂は、熱融着性を有するものであってもよい。何故ならば、蛍光体層2の樹脂14が熱融着性を有するシリコーン樹脂である場合、この蛍光体層2を備える蛍光体シート4が熱融着性を有することとなり、この熱融着性を有する蛍光体シート4を加熱してLEDチップに貼り付けることができるからである。ここでいう熱融着性とは、加熱により軟化する性質のことである。蛍光体シート4が熱融着性を有する場合、LEDチップへの蛍光体シート4の貼り付けに接着剤を使用する必要がないため、発光体等の製造工程を簡略化することができる。熱融着性を有する蛍光体シート4の蛍光体層2においては、25℃における貯蔵弾性率が0.1MPa以上であり、かつ100℃における貯蔵弾性率が0.1MPa未満である。
 熱融着性を有するシリコーン樹脂の一例としては、以下に示す(A)成分~(D)成分の組成を含む架橋性シリコーン組成物をヒドロシリル化反応してなる架橋物であることが特に好ましい。この架橋物は、60℃~250℃で貯蔵弾性率が減少し、加熱によって高い接着力が得られるため、接着剤不要の蛍光体シート4用のマトリックス樹脂として好ましく用いることができる。
 (A)成分は、下記の平均単位式(21)で表されるオルガノポリシロキサンである。
 
(R1 2SiO2/2)a(R1SiO3/2)b(R21/2)c   ・・・(21)
 
平均単位式(21)において、R1は、フェニル基、炭素原子数1~6のアルキル基もしくはシクロアルキル基、または炭素原子数2~6のアルケニル基である。ただし、R1の65モル%~75モル%はフェニル基であり、R1の10モル%~20モル%はアルケニル基である。R2は、水素原子または炭素原子数1~6のアルキル基である。a、b、およびcは、0.5≦a≦0.6、0.4≦b≦0.5、0≦c≦0.1、かつa+b=1を満たす数である。
 (B)成分は、下記の一般式(2)で表されるオルガノポリシロキサンである。このオルガノポリシロキサンは、(A)成分の100重量部に対して5~15重量部の範囲内となる含有量のものである。
 
3 3SiO(R3 2SiO)mSiR3 3    ・・・(2)
 
一般式(2)において、R3は、フェニル基、炭素原子数1~6のアルキル基もしくはシクロアルキル基、または炭素原子数2~6のアルケニル基である。ただし、R3の40モル%~70モル%はフェニル基であり、R3の少なくとも1個はアルケニル基である。mは、5~50の範囲内の整数である。
 (C)成分は、下記の一般式(3)で表されるオルガノトリシロキサンである。このオルガノトリシロキサンは、(A)成分中のアルケニル基と(B)成分中のアルケニル基との合計に対する(C)成分中のケイ素原子結合水素原子のモル比が0.5~2の範囲内となる量のものである。
 
(HR4 2SiO)2SiR4 2      ・・・(3)
 
一般式(3)において、R4は、フェニル基、または炭素原子数1~6のアルキル基もしくはシクロアルキル基である。ただし、R4の30モル%~70モル%は、フェニル基である。
 (D)成分は、ヒドロシリル化反応用触媒である。このヒドロシリル化反応用触媒は、(A)成分中および(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するに十分な量のものである。
 (A)成分の平均単位式(21)においてa、b、およびcの値が上記条件を満たす場合、得られる架橋物の室温での十分な硬さが得られ、かつこの架橋物の高温での軟化が得られる。(B)成分の一般式(2)において、フェニル基の含有量が上記範囲の下限未満であると、得られる架橋物の高温での軟化が不十分である。一方、フェニル基の含有量が上記範囲の上限を超えると、得られる架橋物の透明性が失われ、その機械的強度も低下する。また、一般式(2)において、R3の少なくとも1個はアルケニル基である。これは、(B)成分がアルケニル基を有さないと、(B)成分が架橋反応に取り込まれず、得られる架橋物から(B)成分がブリードアウトするおそれがあるからである。また、一般式(2)において、mは5~50の範囲内の整数である。このmの数値範囲は、得られる架橋物の機械的強度を維持しつつ取扱作業性を保持し得る範囲である。
 (B)成分の含有量は、(A)成分の100重量部に対して5~15重量部の範囲内となる量である。この含有量の範囲は、得られる架橋物の高温での十分な軟化を得るための範囲である。
 (C)成分の一般式(3)において、R4は、フェニル基、または炭素原子数1~6のアルキル基もしくはシクロアルキル基である。R4のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘプチル基が例示される。R4のシクロアルキル基としては、シクロペンチル基、シクロヘプチル基が例示される。なお、R4の内、フェニル基の含有量は30モル%~70モル%の範囲内である。この含有量の範囲は、得られる架橋物の高温での十分な軟化が得られ、かつこの架橋物の透明性と機械的強度とを保つことができる範囲である。
 (C)成分の含有量は、(A)成分中のアルケニル基と(B)成分中のアルケニル基との合計に対して、(C)成分中のケイ素原子結合水素原子のモル比が0.5~2の範囲内となる量である。この含有量の範囲は、得られる架橋物の室温での十分な硬さが得られる範囲である。
 (D)成分は、(A)成分中および(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するためのヒドロシリル化反応用触媒である。(D)成分としては、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示される。これらのうち、シリコーン組成物の硬化を著しく促進できることから、白金系触媒が好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体が例示される。特に、この白金系触媒は、白金-アルケニルシロキサン錯体であることが好ましい。このアルケニルシロキサンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-トテラメチルジシロキサンが好ましい。
 また、この白金-アルケニルシロキサン錯体の安定性を向上させることができることから、この錯体に対して、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジアリル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,3-ジメチル-1,3-ジフェニルジシロキサン、1,3-ジビニル-1,1,3,3-テトラフェニルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン等のアルケニルシロキサンやジメチルシロキサンオリゴマー等のオルガノシロキサンオリゴマーを添加することが好ましい。特に、この錯体に対してアルケニルシロキサンを添加することが好ましい。
 (D)成分の含有量は、(A)成分中および(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するに十分な量であれば特に限定されない。好ましくは、(D)成分の含有量は、シリコーン組成物に対して、(D)成分中の金属原子が質量単位で0.01ppm~500ppmの範囲内となる量である。さらには、(D)成分の含有量は、この金属原子が0.01ppm~100ppmの範囲内となる量であることが好ましく、特には、この金属原子が0.01ppm~50ppmの範囲内となる量であることが好ましい。この含有量の範囲は、得られるシリコーン組成物が十分に架橋し、かつ着色等の問題が生じないようにする範囲である。
 一方、蛍光体層2中の全固形分に占める樹脂14の割合は、10重量%以上、60重量%以下であることが好ましい。何故ならば、この樹脂14の割合を上記の範囲にすることによって、蛍光体シート4の色再現性の向上と高耐久性とを両立することができるからである。
 樹脂14の屈折率は、屈折率・膜厚測定装置“プリズムカプラMODEL2010/M”(メトリコン社製)を使用して、屈折率測定サンプルの屈折率を測定することにより測定することができる。屈折率測定サンプルは、樹脂14を、遊星式攪拌脱泡装置“マゼルスターKK-400”(クラボウ社製)を用いて1000rpmで10分間攪拌、脱泡して、樹脂14の分散液を作製し、この分散液を、PETフィルム上に5cc滴下した後、オーブンにて150℃で1時間加熱することにより、得ることができる。
(微粒子)
 本発明の実施の形態に係る蛍光体シート4は、蛍光体層2中の蛍光体1の樹脂14への分散安定性を向上させることを目的として、蛍光体層2中に微粒子を含有してもよい。この微粒子の例としては、チタニア、シリカ、アルミナ、シリコーン、ジルコニア、セリア、窒化アルミニウム、炭化ケイ素、窒化ケイ素、チタン酸バリウム等で構成される微粒子が挙げられる。これらは、単独で用いられてもよく、2種類以上併用されてもよい。蛍光体層2中に含有する微粒子としては、入手しやすいという観点から、シリカ微粒子、アルミナ微粒子、シリコーン微粒子が好ましく、硬度が低いという観点から、シリコーン微粒子が特に好ましい。この微粒子の硬度が低いことにより、蛍光体1の分散工程にて赤色蛍光体の破砕を抑制する効果があり、この結果、より発光強度の高い蛍光体シート4を得ることが可能である。
 シリコーン微粒子の例としては、特に、オルガノトリアルコキシシランやオルガノジアルコキシシラン、オルガノトリアセトキシシラン、オルガノジアセトキシシラン、オルガノトリオキシムシラン、オルガノジオキシムシラン等のオルガノシランを加水分解し、次いで縮合させる方法により得られるシリコーン微粒子が挙げられる。
 オルガノトリアルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-プロキシシラン、メチルトリ-i-プロキシシラン、メチルトリ-n-ブトキシシラン、メチルトリ-i-ブトキシシラン、メチルトリ-s-ブトキシシラン、メチルトリ-t-ブトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、i-プロピルトリメトキシシラン、n-ブチルトリブトキシシラン、i-ブチルトリブトキシシラン、s-ブチルトリメトキシシラン、t-ブチルトリブトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン等が挙げられる。
 オルガノジアルコキシシランとしては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノイソブチルメチルジメトキシシラン、N-エチルアミノイソブチルメチルジエトキシシラン、(フェニルアミノメチル)メチルジメトキシシラン、ビニルメチルジエトキシシラン等が挙げられる。
 オルガノトリアセトキシシランとしては、例えば、メチルトリアセトキシシラン、エチルトリアセトキシシラン、ビニルトリアセトキシシラン等が挙げられる。オルガノジアセトキシシランとしては、例えば、ジメチルジアセトキシシラン、メチルエチルジアセトキシシラン、ビニルメチルジアセトキシシラン、ビニルエチルジアセトキシシラン等が挙げられる。オルガノトリオキシムシランとしては、例えば、メチルトリスメチルエチルケトオキシムシラン、ビニルトリスメチルエチルケトオキシムシラン等が挙げられる。オルガノジオキシムシランとしては、例えば、メチルエチルビスメチルエチルケトオキシムシラン等が挙げられる。
 このような微粒子(蛍光体層2中に含有する微粒子)は、具体的には、特開昭63-77940号公報で報告されている方法、特開平6-248081号公報で報告されている方法、特開2003-342370号公報で報告されている方法、特開平4-88022号公報で報告されている方法等により、得ることができる。また、オルガノトリアルコキシシランやオルガノジアルコキシシラン、オルガノトリアセトキシシラン、オルガノジアセトキシシラン、オルガノトリオキシムシラン、オルガノジオキシムシラン等のオルガノシランおよびその部分加水分解物の少なくとも1つをアルカリ水溶液に添加し、加水分解・縮合させて微粒子を得る方法や、水あるいは酸性溶液にオルガノシランおよびその部分加水分解物の少なくとも1つを添加し、該オルガノシランおよびその部分加水分解物の少なくとも1つの加水分解部分縮合物を得た後、アルカリを添加し縮合反応を進行させて微粒子を得る方法、オルガノシランおよびその加水分解物の少なくとも1つを上層にし、アルカリまたはアルカリと有機溶媒との混合液を下層にして、これらの界面で該オルガノシランおよびその加水分解物の少なくとも1つを加水分解・重縮合させて微粒子を得る方法等も知られている。これらいずれの方法においても、本発明で蛍光体層2中に含有する微粒子を得ることができる。
 これらの中で、オルガノシランおよびその部分加水分解物の少なくとも1つを加水分解・縮合させ、球状オルガノポリシルセスキオキサン微粒子を製造するにあたり、特開2003-342370号公報で報告されているような反応溶液内に高分子分散剤を添加する方法により得られたシリコーン微粒子を用いることが好ましい。
 本発明において、シリコーン微粒子の平均粒径は、D50で表される。この平均粒径の下限としては、0.05μm以上であることが好ましく、0.1μm以上であることがさらに好ましい。また、この平均粒径の上限としては、2.0μm以下であることが好ましく、1.0μm以下であることがさらに好ましい。このようなシリコーン微粒子を用いることで、スリットダイコーターを用いた場合の吐出性に優れ、膜厚均一性に優れた蛍光体層2を得ることができる。また、単分散で真球状のシリコーン微粒子を用いることが好ましい。シリコーン微粒子の平均粒径(D50)は、上述した蛍光体1としての赤色蛍光体の平均粒径と同様の方法で求めることができる。
 蛍光体層2中の全固形分に占める微粒子の割合は、0.1重量%以上、10重量%以下であることが好ましい。この微粒子の割合が上記の範囲内であることによって、蛍光体層2中(樹脂14中)での蛍光体1の分散安定性を向上でき、この結果、蛍光体シート4の色再現性の向上と高光束および高耐久性とを両立することができる。
 本発明における蛍光体層2中の蛍光体1、樹脂14、およびシリコーン微粒子の各含有量は、作製済みの蛍光体層2や、それを搭載したLED発光体からも求めることが可能である。例えば、蛍光体層2を所定の樹脂で包埋して切断し、断面を研磨した試料を作製し、その露出した断面を走査型電子顕微鏡(SEM)で観測することにより、蛍光体層2中における蛍光体1の粒子部分、シリコーン微粒子の部分、および樹脂14の部分を明確に判別することが可能である。その断面像の面積比から、蛍光体層2全体に占める蛍光体1(蛍光体粒子)、シリコーン微粒子、および樹脂14の各体積比率を正確に測定することが可能である。蛍光体層2を形成する各成分の比重が明らかな場合は、これらの各体積比率をそれぞれの比重で除することにより、蛍光体1が蛍光体層2に占める重量比率を計算することができる。蛍光体層2を形成する各成分の組成が明らかでない場合は、蛍光体層2の断面を高分解能の顕微赤外分光やIPC発光分析で分析することで、これらの各成分の組成を判別できる。これらの各成分の組成が明らかになれば、樹脂14や蛍光体1の物質固有の比重は相当程度の正確さで推定できるので、これを用いて上記の重量比率を求めることができる。
(その他の成分)
 蛍光体層2には、その他の成分として、常温での硬化を抑制してポットライフを長くするために、ヒドロシリル化反応遅延剤を配合することが好ましい。ヒドロシリル化反応遅延剤としては、例えば、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、フェニルブチノール、1-エチニル-1-シクロヘキサノール等の炭素-炭素三重結合を有するアルコール誘導体、3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物、テトラメチルテトラビニルシクロテトラシロキサン、テトラメチルテトラヘキセニルシクロテトラシロキサン等のアルケニル基含有低分子量シロキサン、メチル-トリス(3-メチル-1-ブチン-3-オキシ)シラン、ビニル-トリス(3-メチル-1-ブチン-3-オキシ)シラン等のアルキン含有シラン等が挙げられる。
 また、蛍光体層2には、本発明の効果が損なわれない範囲で、必要に応じてフュームドシリカ、ガラス粉末、石英粉末等の微粒子、酸化亜鉛等の無機充填剤や顔料、難燃剤、耐熱剤、酸化防止剤、分散剤、溶剤、シランカップリング剤やチタンカップリング剤等の接着性付与剤等を配合してもよい。
<透明樹脂層>
 透明樹脂層5(図1B参照)は、波長450nmにおける全光線透過率が90%以上であり、蛍光体1を含まない樹脂層である。透明樹脂層5は、例えば図1Bに示すように、蛍光体層2の上に積層される。また、透明樹脂層5の波長400nm~800nmにおける最小透過率は、80%以上であることが好ましい。ここでいう最小透過率とは、波長400nm~800nmにおける光透過率のうち最も小さい値のことである。この最小透過率が80%以上であることによって、蛍光体シート4は、高光束化と高耐久性とを両立しやすくなる。蛍光体層2の上に透明樹脂層5があることにより、蛍光体層2中の蛍光体1(例えば赤色蛍光体等)の耐久性が向上し、この結果、蛍光体シート4としての耐久性が向上する。
 また、透明樹脂層5は、さらに微粒子を含有していてもよい。透明樹脂層5が微粒子を含有することにより、透明樹脂層5の膜厚均一性が向上するため、後述する蛍光体シート4のピックアップ工程において蛍光体シート4を精度よくピックアップすることが可能である。透明樹脂層5の膜厚が不均一となる原因の一つに、透明樹脂層5の形成時の乾燥工程における樹脂の流動がある。この乾燥工程において、透明樹脂層5に含まれる樹脂は、加熱されることにより粘度が低下するため、流動しやすくなる。特に、透明樹脂層5に含まれる樹脂が熱融着性を有するシリコーン樹脂である場合、この樹脂の粘度低下が顕著であるため、透明樹脂層5の膜厚が不均一となりやすい。熱融着性を有するシリコーン樹脂を透明樹脂層5に用いる場合、透明樹脂層5の膜厚の均一性を保つため、透明樹脂層5が微粒子を含有することは、特に重要である。
 透明樹脂層5の膜厚の均一性が向上することは、透明樹脂層5の保護層としての機能を高める効果もある。局所的に透明樹脂層5の膜厚が薄い部分がある場合、この薄い部分は保護層として十分機能しないため、得られる発光体の耐久性が劣る。本発明によれば、そのような事態を抑制することができる。
(樹脂)
 透明樹脂層5に用いられる樹脂としては、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、ポリアリレート樹脂、PET変性ポリアリレート樹脂、ポリカーボネート樹脂、環状オレフィン樹脂、ポリエチレンテレフタレート樹脂、ポリメチルメタアクリレート樹脂、ポリプロピレン樹脂、変性アクリル樹脂、ポリスチレン樹脂およびアクリルニトリル・スチレン共重合体樹脂から選択される1種類以上の樹脂であることが好ましい。中でも、シリコーン樹脂、フッ素樹脂、エポキシ樹脂から選択される1種類以上の樹脂がより好ましく、耐熱性の面から、シリコーン樹脂が特に好ましい。
 透明樹脂層5に用いられる樹脂がシリコーン樹脂である場合、このシリコーン樹脂は、熱融着性を有するものであってもよい。このシリコーン樹脂が熱融着性を有することにより、後述の透明樹脂シート法により透明樹脂層5を形成する場合、蛍光体層2と透明樹脂層5とを強固に接着することができる。
(微粒子)
 透明樹脂層5に用いられる微粒子は、可視光における吸収や発光が小さいものが好ましい。この微粒子としては、例えば、チタニア、シリカ、アルミナ、シリコーン、ジルコニア、セリア、窒化アルミニウム、炭化ケイ素、窒化ケイ素、チタン酸バリウム等の微粒子が挙げられる。これらのうち、入手しやすいという観点から、シリカ微粒子、アルミナ微粒子、シリコーン微粒子から選択される1種類以上の微粒子がより好ましく、屈折率や粒径を制御しやすいという観点から、シリコーン微粒子が特に好ましい。
 透明樹脂層5中の微粒子の粒径を小さくし、かつ、透明樹脂層5中の樹脂と微粒子との屈折率差を小さくすることによって、透明樹脂層5の波長400nm~800nmにおける最小透過率を80%以上にすることができる。
 透明樹脂層5に含まれる微粒子の平均粒径は、1nm以上であることが好ましく、3nm以上であることがより好ましい。また、この微粒子の平均粒径は、1000nm以下であることが好ましく、300nm以下であることがより好ましい。この微粒子の平均粒径が好ましい下限値以上であることで、透明樹脂層5中に安定して微粒子を分散することができる。この微粒子の平均粒径が1000nm以下であることで、透明樹脂層5中での光の散乱を抑制できるため、透明樹脂層5の高い光透過率を維持することができる。
 ここでいう微粒子(透明樹脂層5に含まれる微粒子)の平均粒径とは、メジアン径(D50)のことである。この微粒子の平均粒径は、上述した蛍光体1としての赤色蛍光体の平均粒径と同様の方法で求めることができる。
 透明樹脂層5における全固形分に占める微粒子の割合は、0.1重量%以上であることが好ましく、1重量%以上であることがより好ましい。また、この微粒子の割合は、30重量%以下であることが好ましく、10重量%以上であることがより好ましい。この微粒子の割合が好ましい下限値以上であることで、透明樹脂層5の膜厚のばらつきを抑制することができる。この微粒子の割合が好ましい上限値以下であることで、透明樹脂層5の高い光透過率を維持することができる。
(その他の特徴)
 微粒子を含有する透明樹脂層5の光透過率は、分光光度計を用いて測定することができる。例えば、日立製作所製:U-4100 Spectrophotomaterを用いる場合は、この測定装置に付属の積分球を用いた基本構成で透明樹脂層5のサンプルの光透過率を測定することができる。この光透過率の測定条件については、スリットは2nmとし、走査速度は600nm/分とする。
 透明樹脂層5の光透過率測定用のサンプル(以下、「透過率測定サンプル」という)は、下記の方法によって作製することができる。例えば、透明樹脂層5に用いる樹脂および微粒子を攪拌、脱泡して分散液を作製し、この分散液を、石英ガラス上にブレードコーターによって塗布した後、オーブンによって150℃で1時間加熱する。このようにして、透過率測定サンプルを作製することができる。
 透過率測定サンプルの膜厚は、下記の方法によって測定することができる。例えば、石英ガラスの所定位置の厚さを予めマイクロメーターで測定し、この測定した位置をマーキングしておく。ついで、この石英ガラス上に上述の方法で透明樹脂層5の透過率測定サンプルを形成した後、マーキング部分の厚さを再びマイクロメーターで測定する。得られた厚さから、先に測定しておいた石英ガラスの厚さを差し引くことで、この透過率測定サンプルの膜厚を得ることができる。
 透明樹脂層5に含まれる樹脂と微粒子との屈折率差は、0.5以下であることが好ましく、0.3以下であることがより好ましく、0.1以下であることが特に好ましい。透明樹脂層5に含まれる樹脂の屈折率は、1.3以上であることが好ましく、1.6以下であることが好ましい。この樹脂の屈折率が1.3以上であることで、透明樹脂層5と蛍光体層2との屈折率差が比較的小さくなるため、蛍光体層2から透明樹脂層5への光取り出し効率を向上させることができる。また、この樹脂の屈折率が1.6以下であることにより、透明樹脂層5と空気層との屈折率差が比較的小さくなるため、透明樹脂層5から空気層への光取り出し効率を向上させることができる。また、光取り出し効率をより向上させるという観点から、透明樹脂層5に含まれる樹脂の屈折率は、蛍光体層2に含まれる樹脂の屈折率以下であることが好ましい。
 透明樹脂層5に含まれる樹脂の屈折率は、屈折率・膜厚測定装置“プリズムカプラMODEL2010/M”(メトリコン社製)を使用して、屈折率測定サンプルの屈折率を測定することにより測定することができる。屈折率測定サンプルは、この樹脂を、クラボウ社製遊星式攪拌脱泡装置“マゼルスターKK-400”を用いて1000rpmで10分間攪拌、脱泡して分散液を作製し、この分散液を、PETフィルム上に5cc滴下した後、オーブンによって150℃で1時間加熱することにより、得ることができる。
<その他の層>
 本発明の実施の形態に係る蛍光体シート4は、蛍光体層2の上および下の少なくとも一方に、蛍光体層2とは異なる別の蛍光体層や拡散層を備えていてもよい。この場合、蛍光体層2または別の蛍光体層の下(例えば、いずれかの蛍光体層とLEDチップ表面との間)に形成される透明樹脂層は、LEDチップに接着剤を使用せずに貼り付けできるように、熱融着性を備えることが好ましい。屈折率の高いGaNやサファイア等のLEDチップ表面に上記の透明樹脂層が貼り付けられた場合、このLEDチップ表面の屈折率と、いずれかの蛍光体層の下に位置する透明樹脂層との屈折率差が小さいほど、このLEDチップ表面からこの透明樹脂層への光取り出し効率を向上させることができる。それ故、この場合は、この透明樹脂層の屈折率が1.56以上であることが好ましい。
 拡散層とは、所定の樹脂と、シリカ、チタニア、ジルコニア等の拡散材とを含む層である。拡散層の形成により、発光光の指向性を弱め、より等方的な発光光を得ることができる。そのため、拡散層は、蛍光体層2の上層に形成されることが好ましい。
<蛍光体シートの作製方法>
 つぎに、本発明の実施の形態に係る蛍光体シート4の作製方法について、詳細に説明する。なお、以下に説明する作製方法は一例であり、蛍光体シート4の作製方法は、これに限定されない。
 蛍光体シート4を作製する一つの方法としては、蛍光体層2を支持体3上に直接塗布する方法がある。この方法では、まず、蛍光体層2の形成用の塗布液として、蛍光体1を樹脂14に分散した溶液(以下、「蛍光体層作製用樹脂液」という)を作製する。蛍光体層作製用樹脂液は、蛍光体1と樹脂14とを溶媒中で混合することによって得られる。
 粘度を調整するために溶媒を添加する必要がある場合には、流動状態の樹脂14の粘度を調整できるものであれば、溶媒の種類は特に限定されない。この溶媒としては、例えば、トルエン、メチルエチルケトン、メチルイソブチルケトン、ヘキサン、ヘプタン、シクロヘキサン、アセトン、テルピネオール、ブチルカルビトール、ブチルカルビトールアセテート、グライム、ジグライム、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。
 蛍光体層2を構成するのに必要な成分と、必要に応じ添加される溶媒等の成分とを所定の組成になるよう調合した後、これらの成分の調合物を、ホモジナイザー、自公転型攪拌機、3本ローラー、ボールミル、遊星式ボールミル、ビーズミル等の撹拌・混練機で均質に混合分散することで、蛍光体層作製用樹脂液が得られる。この混合分散後、もしくは、この混合分散の過程において、真空もしくは減圧条件下で脱泡することも好ましく行われる。
 ただし、蛍光体1としてのMn賦活複フッ化物錯体蛍光体は、β型サイアロン蛍光体等の高温で焼成して製造する蛍光体と比較して、硬度が低く、脆いという性質を持っている。そのため、Mn賦活複フッ化物錯体蛍光体を撹拌・混練機等で分散させるときは、Mn賦活複フッ化物錯体蛍光体に加わる衝撃ができるだけ小さくなるように分散条件を設定することにより、Mn賦活複フッ化物錯体蛍光体の破砕を抑制することが好ましい。Mn賦活複フッ化物錯体蛍光体の破砕を抑制することにより、発光強度の強い蛍光体シート4を得ることができる。
 つぎに、上述したように作製した蛍光体層作製用樹脂液を、支持体3上に塗布し、乾燥させる。これによって支持体3上に得られる蛍光体層2を、加熱硬化して作製する。支持体3上への蛍光体層作製用樹脂液の塗布は、リバースロールコーター、ブレードコーター、スリットダイコーター、ダイレクトグラビアコーター、オフセットグラビアコーター、キスコーター、スクリーン印刷、ナチュラルロールコーター、エアーナイフコーター、ロールブレードコーター、トゥーストリームコーター、ロッドコーター、ワイヤーバーコーター、アプリケーター、ディップコーター、カーテンコーター、スピンコーター、ナイフコーター等により、行うことができる。蛍光体層2の膜厚の均一性を得るためには、スリットダイコーターで塗布することが好ましい。また、蛍光体層2は、スクリーン印刷やグラビア印刷、平版印刷等の印刷法を用いても作製することもできる。特に、スクリーン印刷が好ましく用いられる。
 蛍光体層作製用樹脂液の乾燥は、熱風乾燥機や赤外線乾燥機等の一般的な加熱装置を用いて行うことができる。蛍光体層2の加熱硬化には、熱風乾燥機や赤外線乾燥機等の一般的な加熱装置が用いられる。この場合、加熱硬化条件は、通常、40℃~250℃で1分~5時間、好ましくは100℃~200℃で2分~3時間である。
 上述した方法により、少なくとも蛍光体層2を備える蛍光体シート4を作製することができる。この蛍光体シート4は、図1Aに例示されるように、シート単体では支持体3によって支持された状態にある。
 本発明で用いられる支持体3としては、特に制限なく、例えば、公知の金属、樹脂フィルム、ガラス、セラミック、紙、セルロースアセテートが挙げられる。これらのうち、蛍光体シート4の作製のし易さや蛍光体シート4の個片化のし易さから、ガラスや樹脂フィルムが好ましく用いられる。特に、蛍光体シート4をLEDチップに貼り付ける際の密着性から、支持体3は、柔軟なフィルム状であることが好ましい。また、フィルム状の支持体3を取り扱う際に破断等の恐れがないように、強度が高いフィルムが、支持体3として好ましい。これらの要求特性や経済性の面から、樹脂フィルムが、支持体3として好ましい。支持体3として用いられる樹脂フィルムの中でも、経済性や取り扱い性の面から、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ポリプロピレン、ポリイミドからなる群より選ばれるプラスチックフィルムが好ましい。また、蛍光体層作製用樹脂液を乾燥させる際や蛍光体シート4をLEDチップに貼り付ける際に200℃以上の高温を必要とする場合は、耐熱性の面から、ポリイミドフィルムが好ましい。支持体3からの蛍光体シート4の剥離のし易さから、支持体3は、予め表面が離型処理されていてもよい。
 また、蛍光体シート4の作製方法において、透明樹脂層5を蛍光体層2上に形成する場合、透明樹脂層5の形成方法としては、直接塗布法と、透明樹脂シート法とがある。直接塗布法とは、例えば、透明樹脂層5の作製用として透明樹脂溶媒により粘度調整した樹脂溶液(以下、「透明樹脂層作製用樹脂液」という)を、蛍光体層2上に直接塗布した後、乾燥、加熱硬化処理を行う方法である。
 直接塗布法において、透明樹脂層作製用樹脂液の塗布は、蛍光体層2の作製(蛍光体層作製用樹脂液の塗布)と同様の方法を用いることができるが、透明樹脂層5の膜厚の均一性を得るために、スリットダイコーターで透明樹脂層作製用樹脂液を塗布することが好ましい。透明樹脂層作製用樹脂液の乾燥は、熱風乾燥機や赤外線乾燥機等の一般的な加熱装置を用いて行うことができる。この乾燥によって形成される透明樹脂層5の加熱硬化には、熱風乾燥機や赤外線乾燥機等の一般的な加熱装置が用いられる。この場合、加熱硬化条件は、通常、40℃~250℃で1分~5時間、好ましくは100℃~200℃で2分~3時間である。
 透明樹脂シート法とは、透明樹脂シートを作製し、蛍光体シート4の蛍光体層2側と、作製した透明樹脂シートの透明樹脂層5側とを貼り合わせることにより、蛍光体層2上に透明樹脂層5を形成する方法である。透明樹脂シートは、上述した蛍光体層2を備える蛍光体シート4と同様の方法によって、作製することができる。すなわち、「蛍光体層作製用樹脂液」の代わりに「透明樹脂層作製用樹脂液」を用いて、上述した蛍光体シート4の作製方法と同様の方法を行い、所定の支持体(例えば支持体3と同様のもの)上に透明樹脂層5を形成することにより、透明樹脂シートを作製することができる。
 透明樹脂シート法により蛍光体層2上に透明樹脂層5を形成する場合、蛍光体層2および透明樹脂層5のうち少なくとも一方の層の樹脂は、半硬化の状態である必要がある。少なくとも一方の層の樹脂が半硬化の状態であることにより、蛍光体層2と透明樹脂層5とを接着することができる。この透明樹脂シート法においては、少なくとも透明樹脂層5の樹脂が半硬化であることがより好ましく、蛍光体層2の樹脂14および透明樹脂層5の樹脂の両方が半硬化の状態であることが特に好ましい。
 蛍光体層2と透明樹脂層5との貼り合わせは、加熱して貼り合わせることが好ましい。加熱することにより、蛍光体層2および透明樹脂層5の各樹脂の粘度が下がるため、蛍光体層2と透明樹脂層5とを強固に貼り合わせることができる。この貼り合わせ時の各樹脂の粘度を十分下げるために、加熱条件としては、40℃以上であることが好ましく、60℃以上であることがより好ましく、80℃以上であることが特に好ましい。また、貼り合わせ時の各樹脂の温度が高すぎると、蛍光体層2と透明樹脂層5とが接着する前に、半硬化状態の樹脂(例えば透明樹脂層5の樹脂)が硬化してしまうため、蛍光体層2と透明樹脂層5とが接着しにくくなってしまう。この貼り合わせ時の熱硬化を抑制するという観点から、加熱条件としては、200℃以下であることが好ましく、170℃以下であることがより好ましく、150℃以下であることが特に好ましい。
 また、蛍光体層2と透明樹脂層5とが貼り合わせ時に気泡を噛み込んだ場合、気泡と蛍光体層2との界面と、気泡と透明樹脂層5との界面とにおいて、光が乱反射する。これにより、蛍光体シート4からの光取り出し効率が低下し、結果として、この蛍光体シート4を用いて製造された発光体の輝度が低下してしまう。このような気泡の噛み込みを防ぐという観点から、蛍光体層2と透明樹脂層5との貼り合わせは、真空雰囲気下において行うことが好ましい。真空雰囲気下とは、圧力が所定値以下の雰囲気である。この真空雰囲気下での圧力は、100hPa以下であり、10hPa以下であることがより好ましく、5hPa以下であることがさらに好ましく、1hPa以下であることが特に好ましい。
(蛍光体シートを用いた発光体の製造方法)
 本発明の実施の形態に係る発光体の製造方法(蛍光体シート4を用いた発光体の製造方法)について説明する。図2は、本発明の実施の形態に係る蛍光体シートを用いた発光体の製造方法の一例を示す工程図である。なお、以下の説明は一例であり、本発明の実施の形態に係る発光体の製造方法は、以下に説明するものに限定されない。
 蛍光体シート4を用いた発光体の製造方法は、大きく分けて3つの工程を含む。第1の工程は、蛍光体シート4を個片化する個片化工程である。第2の工程は、個片化された蛍光体シート4をピックアップするピックアップ工程である。第3の工程は、ピックアップした蛍光体シート4(個片化工程によって個片化されたもの)を光源に貼り付ける貼付工程である。また、この発光体の製造方法は、必要に応じて、その他の工程を含んでいてもよい。
 以下、蛍光体シート4は、支持体3上に形成された蛍光体層2からなるものとし、この蛍光体シート4としての蛍光体層2を、個片化して、光源の一例であるLEDチップに貼り付ける場合を例に挙げて、図2を参照しつつ、本発明の実施の形態に係る発光体の製造方法を説明する。
(個片化工程)
 個片化工程において、蛍光体シート4の個片化は、金型によるパンチング、レーザーによる加工、ダイシングやカッティング等の方法により、行うことができる。このとき、蛍光体シート4としての蛍光体層2は、半硬化状態でもよいし、予め硬化されていてもよい。レーザーによる加工は、蛍光体層2に高エネルギーが付与されるので、蛍光体層2の樹脂(例えば図1Aに示す樹脂14)の焼け焦げや蛍光体(例えば図1Aに示す蛍光体1)の劣化を回避することが非常に難しい。したがって、蛍光体シート4の個片化の方法としては、刃物による切削または切断が望ましい。
 例えば、図2に示すように、蛍光体シート4としての蛍光体層2は、支持体3によって支持された状態にある。個片化工程において、支持体3上の蛍光体層2は、刃物6によって切断される(状態S1)。これにより、この蛍光体層2は、複数に個片化されて、個片化蛍光体層7に加工される(状態S2)。このとき、個片化蛍光体層7は、支持体3に貼り付けられたままである。
 刃物6は、例えば、回転刃である。蛍光体層2を回転刃によって切断する装置としては、ダイサーと呼ばれる、半導体基板を個別のチップに切断(ダイシング)するのに用いる装置が、好適に利用できる。ダイサーを用いれば、回転刃の厚みや条件設定により、蛍光体層2の分割ラインの幅を精密に制御できるため、単純な刃物の押し込みによる蛍光体層2の切断よりも高い加工精度が得られる。これら何れの切断方法の場合も、蛍光体層2は支持体3ごと個片化してもよい。あるいは、蛍光体層2は個片化しつつ、支持体3は切断しなくてもよい。この際、支持体3に対しては、貫通しない切り込みラインが入る所謂ハーフカットを行うことが好ましい。
 個片化工程において、蛍光体層2の切断は、ドライカットによる切断であることが好ましい。ドライカットとは、切断時に水等の液体を使用しない切断方法のことである。個片化工程での蛍光体層2の切断は、これに限られるのもではないが、例えば、トムソン刃による切断等が挙げられる。蛍光体層2が、K2SiF6:Mn等のように、水と反応することで発光効率が低下する蛍光体を含む場合、ドライカットが特に有効である。
 蛍光体シート4は、個片化工程の前後において、または個片化工程と同時に、蛍光体層2の孔開け加工が施されてもよい。この孔開け加工としては、レーザー加工、金型によるパンチング等の公知の方法が好適に使用できるが、レーザー加工は蛍光体層2の樹脂の焼け焦げや蛍光体の劣化を引き起こすので、金型によるパンチング加工がより望ましい。
(ピックアップ工程)
 上述した個片化工程によって個片化された蛍光体シート4は、個片化工程の次工程であるピックアップ工程によってピックアップされる。例えば、図2に示すように、個片化蛍光体層7は、支持体3上に貼り付けられた状態にある。ピックアップ工程において、個片化蛍光体層7は、コレット8等の吸引装置を備えたピックアップ装置(図示せず)により、支持体3から剥離されてピックアップされる(状態S3)。
(貼付工程)
 上述したピックアップ工程によってピックアップされた個片化蛍光体層7(個片化された蛍光体シート4の一例)は、ピックアップ工程の次工程である貼付工程によって光源に貼り付けられる。例えば、図2に示すように、個片化蛍光体層7は、コレット8によってピックアップされた状態にある。コレット8は、基板11に実装されたLEDチップ9(光源の一例)の位置へ個片化蛍光体層7とともに搬送され、これにより、LEDチップ9の光取り出し面と個片化蛍光体層7の接着面(例えば下面)とを対向させる。ついで、コレット8は、LEDチップ9の光取り出し面に、個片化蛍光体層7の接着面を押し付けて貼り付ける(状態S4)。このとき、基板11上のLEDチップ9の周囲には、リフレクター10が形成されていてもよい。
 貼付工程での個片化蛍光体層7とLEDチップ9との貼り付けには、接着剤(図示せず)を使用することが好ましい。この接着剤としては、公知のダイボンド剤や接着剤を使用することができる。例えば、アクリル樹脂系、エポキシ樹脂系、ウレタン樹脂系、シリコーン樹脂系、変性シリコーン樹脂系、フェノール樹脂系、ポリイミド系、ポリビニルアルコール系、ポリメタクリレート樹脂系、メラミン樹脂系、ユリア樹脂系の接着剤を使用することができる。蛍光体層2が粘着性を有する場合は、この粘着性を利用して、個片化蛍光体層7とLEDチップ9とを貼り付けてもよい。
 また、貼付工程が個片蛍光体層7を加熱してLEDチップ9に貼り付ける工程である場合、この貼付工程を大気中で行うと、LEDチップ9と個片化蛍光体層7との間に気泡を噛み込むことがある。気泡を噛み込んだ場合、気泡とLEDチップ9との界面と、気泡と個片化蛍光体層7との界面とにおいて、光が乱反射する。これにより、LEDチップ9からの光取り出し効率が低下し、結果として、蛍光体シート4を用いて製造された発光体(例えば図2に示す発光体13)の輝度が低下してしまう。このような気泡の噛み込みを防ぐという観点から、この貼付工程は、真空雰囲気下において行うことが好ましい。
(その他の工程)
 上述した発光体の製造方法には、その他の工程として、LEDチップ9と回路基板の一例である基板11とを電気的に接続する接続工程がさらに含まれてもよい。この接続工程において、LEDチップ9の電極と基板11の配線とが、公知の方法で電気的に接続される。これにより、発光体13を得ることができる。LEDチップ9が光取り出し面側に電極を有する場合には、LEDチップ9の上面の電極と基板11の配線とが、ワイヤーボンディングによって接続される。また、LEDチップ9が発光面の反対面に電極パッドを有するフリップチップタイプである場合には、LEDチップ9の電極面を基板11の配線と対向させ、これらが一括接合によって接続される。この場合、基板11とLEDチップ9との接続は、個片化された蛍光体シート4(例えば個片化蛍光体層7)の貼り付け前に行ってもよい。
 個片蛍光体層7が半硬化状態でLEDチップ9と貼り付けられていた場合は、上述した接続工程の前もしくは後の好適なタイミングに、個片蛍光体層7を硬化させることができる。例えば、フリップチップタイプのLEDチップ9を基板11に一括接合すべく熱圧着の接合を行う場合には、その加熱によって同時に個片化蛍光体層7を硬化させてもよい。また、LEDチップ9と基板11とを接続したパッケージを、より大きな回路基板上に表面実装する場合には、半田リフローでハンダ付けを行うと同時に個片化蛍光体層7を硬化させてもよい。
 個片化蛍光体層7が硬化された状態でLEDチップ9と貼り付けられる場合には、個片化蛍光体層7とLEDチップ9とを貼り付けた後に、個片化蛍光体層7の硬化過程を設ける必要はない。個片化蛍光体層7が硬化された状態でLEDチップ9に貼り付けられる場合とは、例えば、硬化した個片化蛍光体層7に別途接着層が形成される場合や、個片化蛍光体層7が硬化後に熱融着性を有する場合等である。
 また、上述した発光体の製造方法には、その他の工程として、貼付工程が行われた後のLEDチップ9を封止する封止工程がさらに含まれてもよい。例えば、図2に示すように、封止工程において、透明封止材12は、個片化蛍光体層7が貼り付けられた後のLEDチップ9を覆うように基板11上(詳細にはリフレクター10の内側)に注入される。これにより、このLEDチップ9は、透明封止材12によって封止される(状態S5)。このようにして、図2に示すような発光体13が作製される。透明封止材12としては、透明性や耐熱性の観点から、シリコーン樹脂が好適に用いられる。
 上述したように図2を参照しつつ説明した発光体の製造方法では、蛍光体シート4が支持体3上の蛍光体層2からなる場合を例示したが、この発光体の製造方法は、これに限定されるものではない。すなわち、この発光体の製造方法に用いられる蛍光体シート4は、蛍光体層2からなるものであってもよいし、図1Bに例示されるような蛍光体層2と透明樹脂層5との積層体からなるものであってもよいし、上述した拡散層等のその他の層をさらに備えるものであってもよい。例えば、蛍光体シート4が蛍光体層2および透明樹脂層5を備えるものである場合、個片化工程では、支持体3上の蛍光体層2および透明樹脂層5がともに個片化される。ピックアップ工程では、蛍光体層2および透明樹脂層5の個片化された積層体が支持体3からピックアップされる。貼付工程では、このピックアップされた積層体(個片化されたもの)がLEDチップ9の光取り出し面に貼り付けられる。
<発光体、光源ユニット、ディスプレイ>
 本発明の実施の形態に係る発光体は、上述した蛍光体シート4を備える。例えば、図2に示される発光体13は、蛍光体シート4としての個片化蛍光体層7をLEDチップ9の光取り出し面上に備える。このような発光体は、車載のヘッドライト、テレビやスマートフォンのバックライト、照明等に幅広く適用することができる。本発明において、蛍光体シート4およびこれを用いた発光体は、色再現性の向上に優れ、高光束、高耐久性を有するため、バックライト等の光源ユニットに適用することが好ましい。
 本発明の実施の形態に係る光源ユニットは、上述した蛍光体シート4を備える。この光源ユニットには、蛍光体シート4を有する発光体を備えたものも含まれる。このような光源ユニットは、テレビ用、スマートフォン用、タブレット型コンピュータ用、ゲーム機器用のディスプレイに適用することができる。
 本発明の実施の形態に係るディスプレイは、上述した蛍光体シート4を有する光源ユニットを備える。このディスプレイには、本発明における発光体(蛍光体シート4を用いて作製された発光体)を有する光源ユニットを備えたものも含まれる。このようなディスプレイとしては、例えば、液晶ディスプレイ等が挙げられる。
<色再現範囲測定>
 蛍光体シート4を用いて作製した発光体を液晶ディスプレイのバックライトとして使用したときの液晶ディプレイの色再現範囲は、DCI比で評価することができる。DCI比とは、DCI(Digital Cinema Initiative)規格に係るDCI色度領域の面積を基準(100%)としたときの、色度領域における面積比のことである。DCI比は、下記の手順で測定することができる。
 まず、作製した発光体上に、公知の方法で作製した赤色光を透過するカラーフィルターを載せ、この発光体に1Wの電力を投入して、この発光体を点灯させ、全光束測定システム(HM-3000、大塚電子社製)を用いて発光光の色度を測定する。同様に、この発光体上に緑色光を透過するカラーフィルターを載せた場合と青色光を透過するカラーフィルターを載せた場合とのそれぞれについて、発光光の色度を測定する。得られた3つの色度を頂点とした三角形の面積をDCI色度領域の面積で除することにより、DCI比を算出することができる。
 以下に、本発明を実施例により、具体的に説明する。ただし、本発明は、これらに限定されるものではない。
<シリコーン樹脂>
 シリコーン樹脂T11は、OE-6351A/B(東レ・ダウコーニング社製)である。シリコーン樹脂T11の屈折率は、1.41である。シリコーン樹脂T12は、KER6075LV A/B(信越化学工業社製)である。シリコーン樹脂T12の屈折率は、1.45である。シリコーン樹脂T13は、XE14-C2860(モメンティブ・パフォーマンス・マテリアル社製)である。シリコーン樹脂T13の屈折率は、1.50である。シリコーン樹脂T14は、OE6630 A/B(東レ・ダウコーニング株式会社製)である。シリコーン樹脂T14の屈折率は、1.53である。
 シリコーン樹脂T15は、下記の(E)成分を75重量部、(F)成分を10重量部、(G)成分を25重量部、反応抑制剤を0.025重量部、白金触媒を0.01重量部混合することで得た。シリコーン樹脂T15を用いて作製した透明樹脂シートは、25℃における貯蔵弾性率が1Mpaであり、100℃における貯蔵弾性率が0.01MPaであり、良好な熱融着性を示した。シリコーン樹脂T15の屈折率は、1.56である。
 シリコーン樹脂T15において、(E)成分は、(MeViSiO2/20.25(Ph2SiO2/20.3(PhSiO3/20.45(HO1/20.03である。(F)成分は、ViMe2SiO(MePhSiO)17.5SiMe2Viである。(G)成分は、(HMe2SiO)2SiPh2である。ただし、Meはメチル基であり、Viはビニル基であり、Phはフェニル基である。また、反応抑制剤は、1-エチニルヘキサノールである。白金触媒は、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液である。この溶液の白金含有量は、5重量%である。
 シリコーン樹脂T16は、下記の調製法によって得た。シリコーン樹脂T16の屈折率は、1.60である。
 シリコーン樹脂T16の調製法では、反応容器に、1-ナフチルトリメトキシシラン(892.8g)および1,3-ジビニル-1,3-ジフェニルジメチルジシロキサン(372.0g)を投入し、予め混合した後、トリフルオロメタンスルホン酸(6.15g)を投入し、撹拌下、水(213.84g)を投入し、2時間加熱還流を行った。その後、85℃になるまで加熱常圧留去を行った。ついで、トルエン(435.6g)、水酸化カリウム(3.28g)を投入し、反応温度が120℃になるまで加熱常圧留去を行い、この温度で6時間反応させた。その後、室温まで冷却し、酢酸(3.524g)を投入し、中和した。生成した塩を濾別した後、得られた透明な溶液から低沸点物を加熱減圧留去して、平均単位式:(MePhViSiO1/20.40(NaphSiO3/20.60で表されるオルガノポリシロキサンレジンP1を957.4g得た。
 また、反応容器に、1-ナフチルトリメトキシシラン(50g)を投入し、加熱溶融させた後、トリフルオロメタンスルホン酸(0.06g)を添加した。ついで、45℃~50℃に加熱しながら、酢酸(9.3g)を滴下した。滴下終了後、50℃で30分間加熱撹拌した。反応温度が80℃になるまで低沸点物を加熱常圧留去した。その後、室温まで冷却し、1,3,3-テトラメチルジシロキサン(4.4g)を滴下し、反応温度が45℃になるまで加熱した。ついで、酢酸(18g)を45℃~50℃で滴下した。滴下終了後、50℃で30分間加熱撹拌した。空冷または水冷によって温度を60℃以下に保ちながら、無水酢酸(15.5g)を滴下し、滴下終了後、50℃で30分間加熱撹拌を行った。つぎに、トルエンと水を投入し、撹拌、静置および下層抜き出しを繰り返し、水洗を行った。下層のpHが7であることを確認した後、上層であるトルエン層から低沸点物を加熱減圧留去して、平均単位式:(HMe2SiO1/2)0.60(NaphSiO3/20.40で表される、無色透明液状のオルガノポリシロキサンP2を43g得た。
 オルガノポリシロキサンレジンP1を52.0質量部、オルガノポリシロキサンP2を30.0質量部、式:HMe2SiOPh2SiOSiMe2Hで表されるオルガノトリシロキサンを14.0質量部、および白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体の1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサンの溶液(白金として0.1質量%含有する溶液)を0.25質量部混合して、硬化性シリコーン組成物を調製した。
 シリコーン樹脂T17は、下記の調製法によって得た。シリコーン樹脂T17の屈折率は、1.65である。
 シリコーン樹脂T17の調製法では、メチルトリメトキシシラン(16.6g)、フェニルトリメトキシシラン(56.2g)、数平均粒径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)(194g)、プロピレングリコールモノメチルエーテルアセテート(126.9g)を反応容器に入れ、この溶液に、水(21.9g)およびリン酸(0.36g)を、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して、加水分解により生成したメタノールを留去しつつ反応させた。その後、この溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
 つぎに、この得られた酸化チタン粒子(50.00g)にシリコーン樹脂T14(8.00g)を混合し、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ社製)を用い、1000rpmで20分間撹拌・脱泡し、これにより、シリコーン樹脂T17を作製した。屈折率測定を行った結果、シリコーン樹脂T17の平均屈折率は、1.65であった。
 シリコーン樹脂T18は、下記の調製法によって得た。シリコーン樹脂T18の屈折率は、1.70である。
 シリコーン樹脂T18の調製法では、上述したシリコーン樹脂T17の調製法と同様にポリシロキサンでグラフト化された酸化チタン粒子(60.0g)に、シリコーン樹脂T14(3.0g)を混合し、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、1000rpmで20分間撹拌・脱泡した。これにより、シリコーン樹脂T18を作製した。屈折率測定を行った結果、シリコーン樹脂T18の屈折率は、1.70であった。
<フッ素樹脂>
 フッ素樹脂T21は、AF2400S(三井・デュポンフロロケミカル社製)である。フッ素樹脂T21の屈折率は、1.30である。フッ素樹脂T22は、CTX-800(CT-solv180溶液)(旭硝子社製)である。フッ素樹脂T22の屈折率は、1.35である。
<蛍光体>
 緑色蛍光体は、GR-MW540K(デンカ株式会社製)というβ型サイアロン蛍光体である。黄色蛍光体は、NYAG-02(Intematix社製)というCeドープYAG蛍光体である。赤色蛍光体T1は、KSF蛍光体サンプルA(株式会社ネモト・ルミマテリアル製)である。赤色蛍光体T2は、KSF蛍光体サンプルB(株式会社ネモト・ルミマテリアル製)である。赤色蛍光体T3は、KSF蛍光体サンプルC(株式会社ネモト・ルミマテリアル製)である。赤色蛍光体T4は、KSF蛍光体サンプルD(株式会社ネモト・ルミマテリアル製)である。赤色蛍光体T5は、KSF蛍光体サンプルE(株式会社ネモト・ルミマテリアル製)である。赤色蛍光体T6は、KSF蛍光体サンプルF(株式会社ネモト・ルミマテリアル製)である。
 本実施例で使用した赤色蛍光体T1~T6のD10、D50およびD90は、以下の方法で測定した。この測定結果は、表1に示す。表1には、測定したD10、D50およびD90をもとに上述の式(11)に基づいて算出される値xも示す。
 赤色蛍光体T1~T6のD10、D50およびD90の測定方法では、後述のように蛍光体シート(例えば図1A、1Bに示される蛍光体シート4)を作製し、その蛍光体層の断面をSEMで観察し、得られた2次元画像において、粒子の外縁と2点で交わる直線の当該2つの交点間の距離のうち、最大になる距離を算出し、それを粒子の個別の粒径と定義した。観察された全粒子の個別の粒径から求められる粒度分布において、小粒径側からの通過分積算10%の粒径をD10とし、通過分積算50%の粒径をD50とし、通過分積算90%の粒径をD90とした。
Figure JPOXMLDOC01-appb-T000001
<基材フィルム>
 基材フィルムは、本発明における蛍光体シートの支持体(例えば図1A、1Bに示す支持体3)の一例である。本実施例において、基材フィルムは、PETフィルムとした。このPETフィルムは、“セラピール”BX9(東レフィルム加工(株)製)であり、その膜厚は、50μmである。
<シリコーン微粒子>
 シリコーン微粒子は、以下の製造方法によって得た。
 シリコーン微粒子の製造方法では、2L四つ口丸底フラスコに攪拌機、温度計、環流管、滴下ロートを取り付け、このフラスコに、界面活性剤としてポリエーテル変性シロキサン“BYK333”を10000ppm含む2.5%のアンモニア水(2L)を入れ、300rpmで攪拌しつつ、オイルバスによって昇温した。内温50℃に到達したところで、滴下ロートからメチルトリメトキシシランとフェニルトリメトキシシランとの混合物(22/78mol%)(200g)を30分かけて滴下した。そのままの温度で、さらに60分間撹拌を続けた後、酢酸(試薬特級)(約5g)を添加し、撹拌混合した後、濾過を行った。濾過器上の生成粒子に水(600mL)を2回、メタノール(200mL)を1回添加し、濾過、洗浄を行った。濾過器上のケークを取り出し、解砕後、10時間かけて凍結乾燥することにより、シリコーン微粒子として白色粉末(40g)を得た。
 得られたシリコーン微粒子は、SEMで観察したところ、単分散球状微粒子であることが確認できた。得られたSEM画像から、このシリコーン微粒子の平均粒径を算出した結果、50nmであった。このシリコーン微粒子の屈折率を液浸法により測定した結果、1.54であった。このシリコーン微粒子を断面TEMで観察した結果、粒子内が単一構造の微粒子であることが確認できた。
<シリカ微粒子>
 シリカ微粒子T31は、Aerosil200(日本アエロジル(株)製)である。シリカ微粒子T31の平均粒径は、12nmである。シリカ微粒子T31の屈折率は、1.46である。シリカ微粒子T32は、“アドマナノ”YA050C(アドマテックス(株)製)である。シリカ微粒子T32の平均粒径は、50nmである。シリカ微粒子T32の屈折率は、1.46である。シリカ微粒子T33は、“アドマナノ”YA100C(アドマテックス(株)製)である。シリカ微粒子T33の平均粒径は、100nmである。シリカ微粒子T33の屈折率は、1.46である。シリカ微粒子T34は、“アドマファイン”SO-E1(アドマテックス(株)製)である。シリカ微粒子T34の平均粒径は、250nmである。シリカ微粒子T34の屈折率は、1.46である。シリカ微粒子T35は、HPS-1000(東亜合成(株)製)である。シリカ微粒子T35の平均粒径は、1000nmである。シリカ微粒子T35の屈折率は、1.46である。シリカ微粒子T36は、“アドマファイン”SO-E5(アドマテックス(株)製)である。シリカ微粒子T36の平均粒径は、1500nmである。シリカ微粒子T36の屈折率は、1.46である。
<アルミナ微粒子>
 アルミナ微粒子は、Aeroxide AluC(日本アエロジル(株)製)である。このアルミナ微粒子の平均粒径は、12nmである。このアルミナ微粒子の屈折率は、1.77である。
<チタニア微粒子>
 チタニア微粒子は、MT-01(テイカ株式会社製)である。このチタニア微粒子の平均粒径は、10nmである。このチタニア微粒子の屈折率は、2.50である。
<蛍光体シートの作製>
 本実施例における蛍光体シートの作製では、容積300mLのポリエチレン製容器にシリコーン樹脂、シリコーン微粒子、赤色蛍光体、緑色蛍光体を所定の比率で混合した。さらに、溶媒としてトルエンを8wt%添加し、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、1000rpmで撹拌・脱泡して、蛍光体層作製用樹脂液を得た。その後、スリットダイコーターを用いて蛍光体層作製用樹脂液をPETフィルム上に塗布し、130℃で30分乾燥させることにより、蛍光体層を作製して、蛍光体シートを得た。
<蛍光体層の膜厚測定>
 本実施例における蛍光体層の膜厚測定では、蛍光体層を作製するPETフィルムの所定位置の厚さを予めマイクロメーターで測定し、マーキングした。ついで、蛍光体層をこのPETフィルム上に作製し、その後、マーキング部分の厚さを再びマイクロメーターで測定した。得られた厚さから、先に測定しておいたPETフィルムの厚さを差し引くことで、この蛍光体層の膜厚を得た。本実施例において、膜厚は10mm間隔で碁盤目状に25点測定し、これらの平均値を蛍光体層の膜厚とした。
<直接塗布法による透明樹脂層の形成>
 本実施例における直接塗布法による透明樹脂層の形成では、容積300mLのポリエチレン製容器にシリコーン樹脂またはフッ素樹脂、微粒子を所定の比率で混合した。さらに、溶媒としてトルエンを5wt%添加し、その後、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、1000rpmで20分間撹拌・脱泡して、透明樹脂層作製用樹脂液を得た。ついで、スリットダイコーターを用いて透明樹脂層作製用樹脂液を蛍光体層上に塗布し、130℃で30分乾燥させることにより、この蛍光体層上に透明樹脂層を形成した。この結果、蛍光体層上に透明樹脂層を備える蛍光体シートを得た。以下、「蛍光体層上に透明樹脂層を備える蛍光体シート」は、「透明樹脂層付き蛍光体シート」と適宜称される。
<透明樹脂シート法による透明樹脂層の形成>
 本実施例における透明樹脂シート法による透明樹脂層の形成では、スリットダイコーターを用いて透明樹脂層作製用樹脂液をPETフィルム上に塗布し、130℃で30分乾燥させることにより、透明樹脂シートを得た。ついで、ニッコー・マテリアルズ株式会社製の真空ラミネーターV130を用いて、蛍光体シートの蛍光体層と透明樹脂シートの透明樹脂層とを、1hPaの真空雰囲気下において100℃で30秒加熱圧着することにより、貼り合わせた。その後、透明樹脂シート側のPETフィルムを剥離し、これにより、この蛍光体層上に透明樹脂層を形成した。この結果、透明樹脂層付き蛍光体シートを得た。
<透明樹脂層の膜厚測定>
 本実施例における透明樹脂層の膜厚測定では、透明樹脂層を作製する蛍光体シートの所定位置の厚さを予めマイクロメーターで測定し、マーキングした。ついで、透明樹脂層をこの蛍光体シート上に形成し、その後、マーキング部分の厚さを再びマイクロメーターで測定した。得られた厚さから、先に測定しておいた厚さを差し引くことで、この透明樹脂層の膜厚を得た。本実施例において、膜厚は10mm間隔で碁盤目状に25点測定した。この測定結果から、それぞれのサンプルの平均値および膜厚ばらつき(=最大膜厚-最小膜厚)を算出した。
<空隙率測定>
 本実施例における空隙率測定では、蛍光体シートを集束イオンビーム(FIB)加工法により切断し、蛍光体層の断面をSEMにより観察した。1つの蛍光体シートにつき20ヶ所の断面を観察し、得られた20枚の2次元画像の空隙に相当する断面積の合計を算出した。この空隙に相当する断面積の合計を、これら20枚の2次元画像の断面積の合計で除することにより、この蛍光体層の空隙率を得た。
<発光体の製造方法>
 本実施例における発光体の製造方法では、上述したように作製した蛍光体シートまたは透明樹脂層付き蛍光体シート(1cm角)をカッティング装置(UHT社製GCUT)によりカットし、これにより、1mm角の個片シートを100個、作製した。本実施例において、個片シートは、蛍光体シートまたは透明樹脂層付き蛍光体シートを個片化したものである。ついで、ダイボンディング装置(東レエンジニアリング製)を用いて、1mm角の個片シート(蛍光体層等)を、コレットで真空吸着して基材フィルムから剥離した。この個片シートの蛍光体層を、フリップチップ型の青色LEDチップが実装され、かつこの青色LEDチップの周囲にリフレクターが形成されたLEDパッケージの青色LEDチップ表面に、位置合わせして貼り付けた。このとき、この青色LEDチップ上に、予め接着剤を塗布し、この接着剤を介して蛍光体層を貼り付けた。この接着剤には、シリコーン樹脂T15を使用した。このようにして、蛍光体シートまたは透明樹脂層付き蛍光体シートを備えた発光体を作製した。
<色度、全光束測定>
 本実施例における色度および全光束の測定では、上述したように作製した発光体に1Wの電力を投入して、この発光体のLEDチップを点灯させ、全光束測定システム(HM-3000、大塚電子社製)を用いて、CIE1931 XYZ表色系の色度(Cx,Cy)および全光束(lm)を測定した。本実施例では、各蛍光体シートにつき、それぞれ10個の発光体(LEDチップを備えたもの)を作製し、これら10個の発光体の色度の平均値と、色度ばらつきの指標である色度Cxの標準偏差(σ)とを求めた。
<全光束保持率測定>
 本実施例における全光束保持率の測定では、各蛍光体シートを青色LEDチップに搭載した発光体に、1Wの電力を投入して、この青色LEDチップを点灯させ、この点灯状態の発光体(青色LEDチップ)を温度85℃、湿度85%の条件下で放置し、300時間経過後の全光束を測定した。下記の式に基づき全光束保持率を算出することによって、発光体およびその蛍光体シートの耐久性を評価した。全光束保持率が高いほど、耐久性に優れていることを示す。
 
全光束保持率(%)=(300時間経過後の全光束/試験開始直後の全光束)×100
 
<色再現範囲測定>
 本実施例における色再現範囲の測定では、上述したように作製した発光体上に、公知の方法で作製した赤色光を透過するカラーフィルターを載せて、発光光の色度を測定した。同様に、この発光体上に緑色光を透過するカラーフィルターを載せた場合と青色光を透過するカラーフィルターを載せた場合とのそれぞれについて、発光光の色度を測定した。得られた3つの色度を頂点とした三角形の面積をDCI色度領域の面積で除することにより、DCI比を算出した。DCI比が高いほど、色再現性が良好である。
<屈折率測定>
 本実施例における屈折率の測定では、屈折率・膜厚測定装置“プリズムカプラMODEL2010/M”(メトリコン社製)を使用して、屈折率測定サンプルの屈折率を測定し、これにより、シリコーン樹脂およびフッ素樹脂硬化物の屈折率を測定した。
<屈折率測定サンプル作製>
 本実施例における屈折率測定サンプルの作製では、蛍光体シートに含有する樹脂を、遊星式攪拌脱泡装置“マゼルスターKK-400”(クラボウ社製)を用い、1000rpmで10分間攪拌し、脱泡して、この樹脂の分散液を作製した。この分散液を、PETフィルム上に5cc滴下した後、オーブンによって150℃で1時間加熱し、これにより、屈折率測定サンプルとして平均屈折率測定サンプルを作製した。
<透過率測定>
 本実施例における透過率測定において、微粒子を含有する透明樹脂層の光透過率は、分光光度計(U-4100 Spectrophotomater(日立製作所製))に付属の積分球を用いた基本構成で、透過率測定サンプルの光透過率を測定することによって得た。透過率測定サンプルは、各実施例で作製したものを用いた。この光透過率の測定条件については、スリットは2nmとし、走査速度は600nm/分とした。また、得られた測定結果において、波長400nm~800nmにおける光透過率のうち最も小さい値は、最小透過率とした。
<透過率測定サンプルの作製>
 本実施例における透過率測定サンプルの作製では、透明樹脂層に用いるシリコーン樹脂および微粒子を、容積300mLのポリエチレン製容器に混合し、遊星式攪拌脱泡装置“マゼルスターKK-400”(クラボウ社製)を用い、1000rpmで10分間攪拌し、脱泡して、分散液を作製した。この分散液を、石英ガラス上にブレードコーターによって塗布した後、オーブンによって150℃で1時間加熱する。このようにして、透過率測定サンプルは、各実施例について作製した。
<透過率測定サンプルの膜厚測定>
 本実施例における透過率測定サンプルの膜厚測定では、石英ガラスの所定位置の厚さを予めマイクロメーターで測定し、この測定した位置をマーキングした。ついで、この石英ガラス上に透明樹脂層の透過率測定サンプルを形成した後、マーキング部分の厚さを再びマイクロメーターで測定した。得られた厚さから、先に測定しておいた石英ガラスの厚さを差し引くことで、この透過率測定サンプルの膜厚を得た。膜厚は10mm間隔で碁盤目状に25点測定し、これらの平均値を透過率測定サンプルの膜厚とした。
(実施例1~6)-蛍光体の粒径による影響-
 実施例1~6では、表2に示した組成の蛍光体層を備えた蛍光体シートを作製し、上述の方法により空隙率を測定した。また、実施例1~6の各々で得られた蛍光体シートを用いて発光体(発光装置)を作製し、上述の方法により、色度、全光束、全光束保持率、色再現範囲を測定した。これらの測定結果は、表3に示す。表2、3を参照してわかるように、本発明に係る蛍光体シートを用いた場合、実施例1~6のいずれも、色再現性に優れ、高光束な発光体を得ることができた。また、表1に示す赤色蛍光体T2~T6のD50のように、赤色蛍光体のD50が10μm以上であれば、全光束がより向上し、表1に示す赤色蛍光体T3~T6のD10のように、赤色蛍光体のD10が5μm以上であれば、全光束保持率がより向上することがわかった。また、表1に示す赤色蛍光体T1~T6のD10およびD50のように、赤色蛍光体のD10およびD50が大きいほど、蛍光体シートの空隙率は小さくなる傾向が見られた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(実施例7~13)-蛍光体の濃度による影響-
 実施例7~13では、表4に示した組成の蛍光体層を備えた蛍光体シートを作製し、上述の方法により空隙率を測定した。また、実施例7~13の各々で得られた蛍光体シートを用いて発光体を作製し、上述の方法により、色度、全光束、全光束保持率、色再現範囲を測定した。これらの測定結果は、表5に示す。なお、表4は実施例6の組成を再掲し、表5は実施例6の結果を再掲する。表4、5から、赤色蛍光体T6および緑色蛍光体等の蛍光体の濃度が高いほど、全光束保持率がより向上することがわかった。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
(実施例14~17)-シリコーン微粒子の効果-
 実施例14~17では、表6に示した組成の蛍光体層を備えた蛍光体シートを作製し、上述の方法により空隙率を測定した。また、実施例14~17の各々で得られた蛍光体シートを用いて発光体を作製し、上述の方法により、色度、全光束、全光束保持率、色再現範囲を測定した。これらの測定結果は、表7に示す。表6、7から、シリコーン微粒子を含有することにより、色度ばらつき(σ(Cx))はさらに改善することがわかった。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
(実施例18)-赤色蛍光体層と緑色蛍光体層の二層品-
 実施例18では、シリコーン樹脂T15が50wt%であり、赤色蛍光体T6が50wt%である組成で、蛍光体シートを作製した。同様に、シリコーン樹脂T15が50wt%であり、緑色蛍光体が50wt%である組成で、蛍光体シートを作製した。これらの得られた2枚の蛍光体シートの蛍光体層側を、真空ラミネーターV130(ニッコー・マテリアルズ株式会社製)を用いて貼り合わせ、これにより、赤色蛍光体を含む蛍光体層と緑色蛍光体を含む層とが積層された蛍光体シートを作製し、上述の方法により空隙率を測定した。また、この得られた蛍光体シートを用いて発光体を作製し、上述の方法により、色度、全光束、全光束保持率、色再現範囲を測定した。これらの測定結果は、表8に示す。表8から、実施例18では、色再現性の向上と高光束とを両立できるが、色度ばらつきは大きくなることがわかった。
Figure JPOXMLDOC01-appb-T000008
(実施例19~25)-蛍光体層の樹脂の屈折率の影響-
 実施例19~25では、表9に示した組成の蛍光体層を備えた蛍光体シートを作製した。また、実施例19~25の各々で作製した蛍光体シートの蛍光体層の膜厚は、上述の方法により測定した。また、実施例10の蛍光体シートについても、蛍光体層の膜厚を測定した。さらに、実施例19~25の各々で作製した蛍光体シートを用いて発光体を作製し、上述の方法により、色度、全光束、色再現範囲を測定した。これらの測定結果は、表10に示す。なお、表9は実施例10の組成を再掲し、表10は実施例10の測定結果を再掲する。
 表9、10を参照してわかるように、蛍光体層の樹脂の屈折率が高いほど、赤色蛍光体T6、緑色蛍光体の充填率が低くても同じ色度の発光体を得ることができた。また、この樹脂の屈折率が1.56である場合に、全光束が極大値となった。これは、蛍光体層の樹脂と空気層との屈折率差が大きくなることで、光の取り出し効率が低下したため、と考えられる。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
(実施例26~36)-透明樹脂層の屈折率の影響について-
 実施例26~32および実施例34~36では、実施例6で作製した蛍光体シート上に、スリットダイコーターを用いて透明樹脂層作製用樹脂液を塗布し、この透明樹脂層作製用樹脂液を130℃で30分乾燥させることで、蛍光体層上に透明樹脂層を有する蛍光体シートを作製した。実施例33では、シリコーン樹脂T15を用いて上述の方法により透明樹脂シートを作製し、蛍光体層と透明樹脂層とを貼り合わせることにより、蛍光体層上に透明樹脂層を有する蛍光体シートを作製した。実施例26~36の各々で作製した蛍光体シートの透明樹脂層の膜厚を、上述の方法で測定した。また、実施例26~36の各々で作製した透明樹脂層付き蛍光体シートの蛍光体層側をLEDチップ上に貼り付けることにより、発光体を作製し、上述の方法により、色度、全光束、全光束保持率、色再現範囲を測定した。実施例26~36の各々で透明樹脂層作製用樹脂液の作製に使用した樹脂の種類および実施例26~36での測定結果は、表11に示す。
 表11から、透明樹脂層を設けることにより、全光束保持率は向上することがわかった。また、透明樹脂層に含まれる樹脂の屈折率が、蛍光体層に含まれる樹脂の屈折率以下である場合、全光束は向上することがわかった。
Figure JPOXMLDOC01-appb-T000011
(実施例37~42)-微粒子の屈折率-
 実施例37~42では、表12に示した組成の透明樹脂層作製用樹脂液を作製した。つぎに、実施例10で作製した蛍光体シート上に、実施例37~42の各々で作製した透明樹脂層作製用樹脂液を塗布し、この透明樹脂層作製用樹脂液を130℃で30分乾燥させることにより、蛍光体層上に透明樹脂層を有する蛍光体シートを作製した。
 実施例37~42の各々で作製した蛍光体シートの透明樹脂層の膜厚は、上述の方法により測定した。つぎに、実施例37~42の各々で作製した透明樹脂層付き蛍光体シートの蛍光体層側をLEDチップ上に貼り付けることにより、発光体を作製し、上述の方法により、色度、全光束、全光束保持率、色再現範囲を測定した。また、実施例37~42の各々で作製した透明樹脂層作製用樹脂液を用いて、厚さ100μmの透過率測定サンプルを作製し、上述の方法により、透明樹脂層の光透過率を測定した。実施例37~42の各々における透明樹脂層の樹脂と微粒子との屈折率差、および、これらの測定結果は、表13に示す。
 表12、13を参照してわかるように、透明樹脂層における樹脂の屈折率と微粒子の屈折率との差が小さいほど、透明樹脂層の最小透過率が高く、全光束が高いという結果が得られた。また、透明樹脂層に微粒子を添加することにより、透明樹脂層の膜厚ばらつきが抑制されていることがわかった。さらに、実施例37および実施例38の結果から、良好な熱融着性を示すシリコーン樹脂T15を用いた場合、透明樹脂層の膜厚ばらつきは特に大きくなることがわかった。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
(実施例43~47)-シリカ微粒子の添加量-
 実施例43~47では、表14に示した組成の透明樹脂層作製用樹脂液を作製した。つぎに、実施例10で作製した蛍光体シート上に、実施例43~47の各々で作製した透明樹脂層作製用樹脂液を塗布し、この透明樹脂層作製用樹脂液を130℃で30分乾燥させることにより、蛍光体層上に透明樹脂層を有する蛍光体シートを作製した。
 実施例43~47の各々で作製した蛍光体シートの透明樹脂層の膜厚は、上述の方法により測定した。つぎに、実施例43~47の各々で作製した透明樹脂層付き蛍光体シートの蛍光体層側をLEDチップ上に貼り付けることにより、発光体を作製し、上述の方法により、色度、全光束、全光束保持率、色再現範囲を測定した。また、実施例43~47の各々で作製した透明樹脂層作製用樹脂液を用いて、厚さ100μmの透過率測定サンプルを作製し、上述の方法により、透明樹脂層の光透過率を測定した。実施例43~47の各々における透明樹脂層の樹脂と微粒子との屈折率差、および、これらの測定結果は、表15に示す。なお、表14は実施例38、39の組成を再掲し、表15は実施例38、39の結果を再掲する。
 表14、15を参照して、最小透過率の観点から、シリカ微粒子T31の含有量は、30重量%以下であることが好ましく、10重量%以下であることがより好ましいことがわかった。また、透明樹脂層の膜厚ばらつきを抑制するという観点から、シリカ微粒子T31の含有量は、0.1重量%以上であることが好ましく、1重量%以上であることがより好ましいことがわかった。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
(実施例48~52)-アルミナ微粒子の添加量-
 実施例48~52では、表16に示した組成の透明樹脂層作製用樹脂液を作製した。つぎに、実施例10で作製した蛍光体シート上に、実施例48~52の各々で作製した透明樹脂層作製用樹脂液を塗布し、この透明樹脂層作製用樹脂液を130℃で30分乾燥させることにより、蛍光体層上に透明樹脂層を有する蛍光体シートを作製した。
 実施例48~52の各々で作製した蛍光体シートの透明樹脂層の膜厚は、上述の方法により測定した。つぎに、実施例48~52の各々で作製した透明樹脂層付き蛍光体シートの蛍光体層側をLEDチップ上に貼り付けることにより、発光体を作製し、上述の方法により、色度、全光束、全光束保持率、色再現範囲を測定した。また、実施例48~52の各々で作製した透明樹脂層作製用樹脂液を用いて、厚さ100μmの透過率測定サンプルを作製し、上述の方法により、透明樹脂層の光透過率を測定した。実施例48~52の各々における透明樹脂層の樹脂と微粒子との屈折率差、および、これらの測定結果は、表17に示す。なお、表16は実施例38、41の組成を再掲し、表17は実施例38、41の結果を再掲する。
 表16、17を参照して、最小透過率の観点から、アルミナ微粒子の含有量は、30重量%以下であることが好ましく、10重量%以下であることがより好ましいことがわかった。また、透明樹脂層の膜厚ばらつきを抑制するという観点から、アルミナ微粒子の含有量は、0.1重量%以上であることが好ましく、1重量%以上であることがより好ましいことがわかった。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
(実施例53~57)-シリコーン微粒子の添加量-
 実施例53~57では、表18に示した組成の透明樹脂層作製用樹脂液を作製した。つぎに、実施例10で作製した蛍光体シート上に、実施例53~57の各々で作製した透明樹脂層作製用樹脂液を塗布し、この透明樹脂層作製用樹脂液を130℃で30分乾燥させることにより、蛍光体層上に透明樹脂層を有する蛍光体シートを作製した。
 実施例53~57の各々で作製した蛍光体シートの透明樹脂層の膜厚は、上述の方法により測定した。つぎに、実施例53~57の各々で作製した透明樹脂層付き蛍光体シートの蛍光体層側をLEDチップ上に貼り付けることにより、発光体を作製し、上述の方法により、色度、全光束、全光束保持率、色再現範囲を測定した。また、実施例53~57の各々で作製した透明樹脂層作製用樹脂液を用いて、厚さ100μmの透過率測定サンプルを作製し、上述の方法により、透明樹脂層の光透過率を測定した。実施例53~57の各々における透明樹脂層の樹脂と微粒子との屈折率差、および、これらの測定結果は、表19に示す。なお、表18は実施例38、40の組成を再掲し、表19は実施例38、40の結果を再掲する。
 表18、19から、シリコーン微粒子の含有量が50重量%であっても、最小透過率は80%以上を維持できることがわかった。また、透明樹脂層の膜厚ばらつきを抑制するという観点から、シリコーン微粒子の含有量は、0.1重量%以上であることが好ましく、1重量%以上であることがより好ましいことがわかった。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
(実施例58~62)-微粒子の粒径-
 実施例58~62では、表20に示した組成の透明樹脂層作製用樹脂液を作製した。つぎに、実施例10で作製した蛍光体シート上に、実施例58~62の各々で作製した透明樹脂層作製用樹脂液を塗布し、この透明樹脂層作製用樹脂液を130℃で30分乾燥させることにより、蛍光体層上に透明樹脂層を有する蛍光体シートを作製した。
 実施例58~62の各々で作製した蛍光体シートの透明樹脂層の膜厚は、上述の方法により測定した。つぎに、実施例58~62の各々で作製した透明樹脂層付き蛍光体シートの蛍光体層側をLEDチップ上に貼り付けることにより、発光体を作製し、上述の方法により、色度、全光束、全光束保持率、色再現範囲を測定した。また、実施例58~62の各々で作製した透明樹脂層作製用樹脂液を用いて、厚さ100μmの透過率測定サンプルを作製し、上述の方法により、透明樹脂層の光透過率を測定した。実施例58~62の各々における透明樹脂層の樹脂と微粒子との屈折率差、および、これらの測定結果は、表21に示す。なお、表20は実施例38、39の組成を再掲し、表21は実施例38、39の結果を再掲する。表20、21から、微粒子の粒径が小さいほど、最小透過率が高く、透明樹脂層の膜厚ばらつきも抑制されることがわかった。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
(比較例)
 実施例1~62に対する比較例では、シリコーン樹脂T15が40wt%であり、黄色蛍光体(YAG系黄色蛍光体)が60wt%である組成で、蛍光体シートを作製し、上述の方法により空隙率を測定した。また、得られた蛍光体シートを用いて発光体を作製し、上述の方法により、色度、全光束、全光束保持率、色再現範囲を測定した。これらの測定結果は、表22に示す。表22から、YAG系黄色蛍光体を用いた場合、色再現範囲は70%であり、液晶ディスプレイ用バックライトとしては不向きなものであることがわかった。
Figure JPOXMLDOC01-appb-T000022
 以上のように、本発明に係る蛍光体シート、それを用いた発光体、光源ユニット、ディスプレイ、および発光体の製造方法は、色再現性の向上と高光束とを両立させる蛍光体シート、それを用いた発光体、光源ユニット、ディスプレイ、および発光体の製造方法に適している。
 1  蛍光体
 2  蛍光体層
 3  支持体
 4  蛍光体シート
 5  透明樹脂層
 6  刃物
 7  個片化蛍光体層
 8  コレット
 9  LEDチップ
 10 リフレクター
 11 基板
 12 透明封止材
 13 発光体
 14 樹脂

Claims (24)

  1.  赤色蛍光体とβ型サイアロン蛍光体と樹脂とを含む蛍光体層を備え、
     前記赤色蛍光体は、一般式(1)で表されるMn賦活複フッ化物である、
    ことを特徴とする蛍光体シート。
    (一般式)
     A2MF6:Mn         ・・・(1)
    (一般式(1)において、Aは、Li、Na、K、RbおよびCsからなる群より選ばれ、かつNaおよびKの少なくとも1つを含む1種以上のアルカリ金属であり、Mは、Si、Ti、Zr、Hf、GeおよびSnからなる群より選ばれる1種以上の4価元素である。)
  2.  前記蛍光体層は、前記赤色蛍光体と前記β型サイアロン蛍光体と前記樹脂とを含む単一層または複数層からなり、
     前記赤色蛍光体、前記β型サイアロン蛍光体および前記樹脂は、同一層に含まれる、
    ことを特徴とする請求項1に記載の蛍光体シート。
  3.  前記樹脂の屈折率は、1.45以上、1.7以下である、ことを特徴とする請求項1または2に記載の蛍光体シート。
  4.  前記樹脂は、シリコーン樹脂である、ことを特徴とする請求項1~3のいずれか一つに記載の蛍光体シート。
  5.  前記蛍光体層における全固形分に占める前記赤色蛍光体の割合は、20重量%以上、60重量%以下である、ことを特徴とする請求項1~4のいずれか一つに記載の蛍光体シート。
  6.  前記蛍光体層における全固形分に占める前記赤色蛍光体の割合と前記β型サイアロン蛍光体の割合との合計は、50重量%以上、90重量%以下である、ことを特徴とする請求項1~5のいずれか一つに記載の蛍光体シート。
  7.  前記赤色蛍光体のD50は、10μm以上、40μm以下である、ことを特徴とする請求項1~6のいずれか一つに記載の蛍光体シート。
  8.  前記赤色蛍光体のD10は、3μm以上である、ことを特徴とする請求項1~7のいずれか一つに記載の蛍光体シート。
  9.  前記赤色蛍光体の(D90-D10)/D50は、0.5以上、1.5以下である、ことを特徴とする請求項1~8のいずれか一つに記載の蛍光体シート。
  10.  前記蛍光体層中の空隙率は、0.1%以上、3%以下である、ことを特徴とする請求項1~9のいずれか一つに記載の蛍光体シート。
  11.  前記蛍光体層に微粒子を含有する、ことを特徴とする請求項1~10のいずれか一つに記載の蛍光体シート。
  12.  前記微粒子は、シリコーン微粒子である、ことを特徴とする請求項11に記載の蛍光体シート。
  13.  前記蛍光体層上にさらに透明樹脂層が積層される、ことを特徴とする請求項1~12のいずれか一つに記載の蛍光体シート。
  14.  前記透明樹脂層に含まれる樹脂の屈折率は、1.3以上、1.6以下である、ことを特徴とする請求項13に記載の蛍光体シート。
  15.  前記透明樹脂層に含まれる樹脂の屈折率は、前記蛍光体層に含まれる樹脂の屈折率以下である、ことを特徴とする請求項14に記載の蛍光体シート。
  16.  前記透明樹脂層は、微粒子を含有する、ことを特徴とする請求項13~15のいずれか一つに記載の蛍光体シート。
  17.  前記透明樹脂層に含まれる微粒子は、シリカ微粒子、アルミナ微粒子、シリコーン微粒子から選択される1種類以上である、ことを特徴とする請求項16に記載の蛍光体シート。
  18.  前記透明樹脂層の波長400nm~800nmにおける最小透過率は、80%以上である、ことを特徴とする請求項13~17のいずれか一つに記載の蛍光体シート。
  19.  前記透明樹脂層における全固形分に占める微粒子の割合は、0.1重量%以上、30重量%以下である、ことを特徴とする請求項16、17、請求項16を引用する請求項18のいずれか一つに記載の蛍光体シート。
  20.  前記透明樹脂層に含まれる微粒子の平均粒径は、1nm以上、1000nm以下である、ことを特徴とする請求項16、17、請求項16を引用する請求項18、請求項19のいずれか一つに記載の蛍光体シート。
  21.  請求項1~20のいずれか一つに記載の蛍光体シートを個片化する個片化工程と、
     個片化された前記蛍光体シートをピックアップするピックアップ工程と、
     個片化された前記蛍光体シートを光源に貼り付ける貼付工程と、
     を含むことを特徴とする発光体の製造方法。
  22.  請求項1~20のいずれか一つに記載の蛍光体シートを備える、ことを特徴とする発光体。
  23.  請求項1~20のいずれか一つに記載の蛍光体シートを備える、ことを特徴とする光源ユニット。
  24.  請求項23に記載の光源ユニットを備える、ことを特徴とするディスプレイ。
PCT/JP2016/085710 2015-12-04 2016-12-01 蛍光体シート、それを用いた発光体、光源ユニット、ディスプレイ、および発光体の製造方法 WO2017094832A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016571440A JP6852401B2 (ja) 2015-12-04 2016-12-01 蛍光体シート、それを用いた発光体、光源ユニット、ディスプレイ、および発光体の製造方法
CN201680066389.7A CN108351444B (zh) 2015-12-04 2016-12-01 荧光体片、使用其的发光体、光源单元、显示器及发光体的制造方法
KR1020187014115A KR102419336B1 (ko) 2015-12-04 2016-12-01 형광체 시트, 그것을 사용한 발광체, 광원 유닛, 디스플레이 및 발광체의 제조 방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015237232 2015-12-04
JP2015-237232 2015-12-04
JP2015-247004 2015-12-18
JP2015247004 2015-12-18
JP2016088896 2016-04-27
JP2016-088896 2016-04-27

Publications (1)

Publication Number Publication Date
WO2017094832A1 true WO2017094832A1 (ja) 2017-06-08

Family

ID=58796994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085710 WO2017094832A1 (ja) 2015-12-04 2016-12-01 蛍光体シート、それを用いた発光体、光源ユニット、ディスプレイ、および発光体の製造方法

Country Status (5)

Country Link
JP (1) JP6852401B2 (ja)
KR (1) KR102419336B1 (ja)
CN (1) CN108351444B (ja)
TW (1) TWI728011B (ja)
WO (1) WO2017094832A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731996A (zh) * 2017-09-28 2018-02-23 惠州市华瑞光源科技有限公司 Led灯珠及其制备方法
JP2019001985A (ja) * 2017-06-14 2019-01-10 デンカ株式会社 フッ化物蛍光体とそれを用いた発光装置
JP2019001986A (ja) * 2017-06-14 2019-01-10 デンカ株式会社 フッ化物蛍光体とそれを用いた発光装置
JP2019064136A (ja) * 2017-09-29 2019-04-25 日亜化学工業株式会社 透光性シートの製造方法
WO2019181478A1 (ja) * 2018-03-20 2019-09-26 株式会社タムラ製作所 波長変換部材及び波長変換素子
JP2019186537A (ja) * 2018-03-30 2019-10-24 日亜化学工業株式会社 波長変換部材及び発光装置
WO2019218337A1 (en) * 2018-05-18 2019-11-21 Rohm And Haas Electronic Materials Llc Two-layer phosphor film for led
CN110753735A (zh) * 2017-06-14 2020-02-04 电化株式会社 氟化物荧光体和使用其的发光装置
JPWO2019021926A1 (ja) * 2017-07-28 2020-07-30 デュポン・東レ・スペシャルティ・マテリアル株式会社 光学部材用樹脂シート、それを備える光学部材、積層体又は発光デバイス、及び光学部材用樹脂シートの製造方法
US11114589B2 (en) 2017-06-14 2021-09-07 Denka Company Limited Fluoride phosphor and light-emitting device using same
WO2022044860A1 (ja) * 2020-08-25 2022-03-03 デンカ株式会社 フッ化物蛍光体、複合体および発光装置
WO2022075293A1 (ja) * 2020-10-06 2022-04-14 シャープ株式会社 波長変換素子、光学機器及び波長変換素子の製造方法
WO2022255173A1 (ja) * 2021-06-02 2022-12-08 東レ株式会社 色変換組成物、色変換シート、それを含む光源ユニット、ディスプレイおよび照明装置
WO2023037831A1 (ja) * 2021-09-09 2023-03-16 信越化学工業株式会社 被覆ksf蛍光体、該蛍光体の製造方法、該蛍光体を含有する硬化性シリコーン組成物及び光半導体装置
JP7530019B2 (ja) 2020-08-31 2024-08-07 日亜化学工業株式会社 発光装置の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945389B (zh) * 2017-07-28 2021-08-03 东丽株式会社 颜色转换组合物、颜色转换膜以及包含其的装置
US11094530B2 (en) 2019-05-14 2021-08-17 Applied Materials, Inc. In-situ curing of color conversion layer
US11239213B2 (en) 2019-05-17 2022-02-01 Applied Materials, Inc. In-situ curing of color conversion layer in recess
DE102022131065A1 (de) * 2022-11-23 2024-05-23 Ams-Osram International Gmbh Modifizierung von silikonen mit polysilsesquioxanpartikeln

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093132A (ja) * 2008-10-09 2010-04-22 Sharp Corp 半導体発光装置およびそれを用いた画像表示装置、液晶表示装置
JP2012178574A (ja) * 2010-10-15 2012-09-13 Mitsubishi Chemicals Corp 白色発光装置及び照明器具
JP2013168480A (ja) * 2012-02-15 2013-08-29 Konica Minolta Inc Led装置の製造方法
JP2014022704A (ja) * 2012-07-24 2014-02-03 Toray Ind Inc 蛍光体含有樹脂シートと発光装置及びその製造方法
WO2014077240A1 (ja) * 2012-11-13 2014-05-22 電気化学工業株式会社 蛍光体、発光素子及び照明装置
JP2015052648A (ja) * 2013-09-05 2015-03-19 日亜化学工業株式会社 カラーフィルター及び発光装置の組合せの選択方法並びに画像表示装置の製造方法
WO2015056590A1 (ja) * 2013-10-15 2015-04-23 シャープ株式会社 発光装置及びその製造方法
JP2015091915A (ja) * 2013-10-04 2015-05-14 三菱化学株式会社 発光装置、及び波長変換部材
JP2015212360A (ja) * 2014-04-17 2015-11-26 パナソニックIpマネジメント株式会社 樹脂組成物およびその製造方法並びに半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8491816B2 (en) * 2008-02-07 2013-07-23 Mitsubishi Chemical Corporation Semiconductor light emitting device, backlight, color image display device and phosphor to be used for them
JP5332673B2 (ja) * 2008-02-07 2013-11-06 三菱化学株式会社 半導体発光装置、バックライトおよびカラー画像表示装置
US8237348B2 (en) * 2008-03-03 2012-08-07 Sharp Kabushiki Kaisha Light-emitting device
JP5682104B2 (ja) * 2008-09-05 2015-03-11 三菱化学株式会社 蛍光体及びその製造方法と、その蛍光体を用いた蛍光体含有組成物及び発光装置、並びに、その発光装置を用いた画像表示装置及び照明装置
JP5391946B2 (ja) * 2009-09-07 2014-01-15 日亜化学工業株式会社 蛍光体及びそれを用いた発光装置並びに蛍光体の製造方法
JP5953797B2 (ja) * 2012-02-17 2016-07-20 東レ株式会社 半導体発光装置の製造方法
JP2013252637A (ja) * 2012-06-06 2013-12-19 Toray Ind Inc 蛍光体シート積層体
WO2014065358A1 (ja) * 2012-10-25 2014-05-01 東レ株式会社 蛍光体含有樹脂シートおよび発光装置
JP5804149B2 (ja) * 2014-01-30 2015-11-04 信越化学工業株式会社 複フッ化物蛍光体の製造方法及び処理方法
JP6119623B2 (ja) * 2014-01-30 2017-04-26 信越化学工業株式会社 複フッ化物蛍光体の製造方法
JP6008017B2 (ja) * 2015-06-12 2016-10-19 日亜化学工業株式会社 蛍光体及びこれを用いた発光装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093132A (ja) * 2008-10-09 2010-04-22 Sharp Corp 半導体発光装置およびそれを用いた画像表示装置、液晶表示装置
JP2012178574A (ja) * 2010-10-15 2012-09-13 Mitsubishi Chemicals Corp 白色発光装置及び照明器具
JP2013168480A (ja) * 2012-02-15 2013-08-29 Konica Minolta Inc Led装置の製造方法
JP2014022704A (ja) * 2012-07-24 2014-02-03 Toray Ind Inc 蛍光体含有樹脂シートと発光装置及びその製造方法
WO2014077240A1 (ja) * 2012-11-13 2014-05-22 電気化学工業株式会社 蛍光体、発光素子及び照明装置
JP2015052648A (ja) * 2013-09-05 2015-03-19 日亜化学工業株式会社 カラーフィルター及び発光装置の組合せの選択方法並びに画像表示装置の製造方法
JP2015091915A (ja) * 2013-10-04 2015-05-14 三菱化学株式会社 発光装置、及び波長変換部材
WO2015056590A1 (ja) * 2013-10-15 2015-04-23 シャープ株式会社 発光装置及びその製造方法
JP2015212360A (ja) * 2014-04-17 2015-11-26 パナソニックIpマネジメント株式会社 樹脂組成物およびその製造方法並びに半導体装置

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110753735A (zh) * 2017-06-14 2020-02-04 电化株式会社 氟化物荧光体和使用其的发光装置
JP2019001985A (ja) * 2017-06-14 2019-01-10 デンカ株式会社 フッ化物蛍光体とそれを用いた発光装置
JP2019001986A (ja) * 2017-06-14 2019-01-10 デンカ株式会社 フッ化物蛍光体とそれを用いた発光装置
CN110753735B (zh) * 2017-06-14 2023-01-06 电化株式会社 氟化物荧光体和使用其的发光装置
US11114589B2 (en) 2017-06-14 2021-09-07 Denka Company Limited Fluoride phosphor and light-emitting device using same
US10982139B2 (en) 2017-06-14 2021-04-20 Denka Company Limited Fluoride phosphor and light-emitting device using same
JP7004721B2 (ja) 2017-07-28 2022-01-21 デュポン・東レ・スペシャルティ・マテリアル株式会社 光学部材用樹脂シート、それを備える光学部材、積層体又は発光デバイス、及び光学部材用樹脂シートの製造方法
US12060472B2 (en) 2017-07-28 2024-08-13 Dupont Toray Specialty Materials Kabushiki Kaisha Optical member resin sheet, optical member, layered body, or light-emitting device comprising optical member resin sheet, and method for manufacturing optical member resin sheet
JPWO2019021926A1 (ja) * 2017-07-28 2020-07-30 デュポン・東レ・スペシャルティ・マテリアル株式会社 光学部材用樹脂シート、それを備える光学部材、積層体又は発光デバイス、及び光学部材用樹脂シートの製造方法
CN107731996A (zh) * 2017-09-28 2018-02-23 惠州市华瑞光源科技有限公司 Led灯珠及其制备方法
JP2019064136A (ja) * 2017-09-29 2019-04-25 日亜化学工業株式会社 透光性シートの製造方法
US11398587B2 (en) 2017-09-29 2022-07-26 Nichia Corporation Method of manufacturing light-transmissive sheet
WO2019181478A1 (ja) * 2018-03-20 2019-09-26 株式会社タムラ製作所 波長変換部材及び波長変換素子
JP7178074B2 (ja) 2018-03-20 2022-11-25 国立研究開発法人物質・材料研究機構 波長変換部材及び波長変換素子、並びに波長変換部材の製造方法
JP2019164302A (ja) * 2018-03-20 2019-09-26 株式会社タムラ製作所 波長変換部材及び波長変換素子
JP2019186537A (ja) * 2018-03-30 2019-10-24 日亜化学工業株式会社 波長変換部材及び発光装置
WO2019218337A1 (en) * 2018-05-18 2019-11-21 Rohm And Haas Electronic Materials Llc Two-layer phosphor film for led
WO2022044860A1 (ja) * 2020-08-25 2022-03-03 デンカ株式会社 フッ化物蛍光体、複合体および発光装置
JP7554833B2 (ja) 2020-08-25 2024-09-20 デンカ株式会社 フッ化物蛍光体、複合体および発光装置
JP7530019B2 (ja) 2020-08-31 2024-08-07 日亜化学工業株式会社 発光装置の製造方法
US12117691B2 (en) 2020-08-31 2024-10-15 Nichia Corporation Method of producing light-emitting device and planar light source
WO2022075293A1 (ja) * 2020-10-06 2022-04-14 シャープ株式会社 波長変換素子、光学機器及び波長変換素子の製造方法
WO2022255173A1 (ja) * 2021-06-02 2022-12-08 東レ株式会社 色変換組成物、色変換シート、それを含む光源ユニット、ディスプレイおよび照明装置
WO2023037831A1 (ja) * 2021-09-09 2023-03-16 信越化学工業株式会社 被覆ksf蛍光体、該蛍光体の製造方法、該蛍光体を含有する硬化性シリコーン組成物及び光半導体装置

Also Published As

Publication number Publication date
KR102419336B1 (ko) 2022-07-12
CN108351444A (zh) 2018-07-31
TW201728744A (zh) 2017-08-16
JPWO2017094832A1 (ja) 2018-09-20
TWI728011B (zh) 2021-05-21
CN108351444B (zh) 2021-10-26
KR20180090260A (ko) 2018-08-10
JP6852401B2 (ja) 2021-03-31

Similar Documents

Publication Publication Date Title
WO2017094832A1 (ja) 蛍光体シート、それを用いた発光体、光源ユニット、ディスプレイ、および発光体の製造方法
KR101967623B1 (ko) 형광체 시트, 이것을 사용한 led 및 발광 장치, 그리고 led의 제조 방법
KR101713087B1 (ko) 형광체 함유 실리콘 경화물, 그 제조 방법, 형광체 함유 실리콘 조성물, 그 조성물 전구체, 시트상 성형물, led 패키지, 발광 장치 및 led 실장 기판의 제조 방법
JP5488761B2 (ja) 積層体および波長変換層付き発光ダイオードの製造方法
TWI657599B (zh) 螢光體組成物、螢光體片、螢光體片積層體及使用它們的led晶片、led封裝及其製造方法
JP6287212B2 (ja) 蛍光体含有樹脂シートおよび発光装置
TWI693730B (zh) 發光裝置的製造方法
KR20130079496A (ko) 형광체 함유 시트, 그것을 사용한 led 발광 장치 및 그 제조 방법
JP2014116587A (ja) 蛍光体含有樹脂シート、これを用いたled素子およびその製造方法
JP2014114446A (ja) ポリオルガノシロキサン組成物、その硬化物、蛍光体シート、その製造方法、発光デバイスおよびその製造方法
JP2013252637A (ja) 蛍光体シート積層体
TW202027302A (zh) 被覆有螢光體層之光半導體元件及其製造方法
WO2017094618A1 (ja) 樹脂組成物、そのシート状成型物、ならびにそれを用いた発光装置およびその製造方法
JP2013144770A (ja) 熱硬化性シリコーン樹脂組成物、該組成物から成形された成形物、光半導体装置、及び熱硬化性シリコーン樹脂組成物の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016571440

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187014115

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870769

Country of ref document: EP

Kind code of ref document: A1