[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016117361A1 - 回路構成体及び電気接続箱 - Google Patents

回路構成体及び電気接続箱 Download PDF

Info

Publication number
WO2016117361A1
WO2016117361A1 PCT/JP2016/050294 JP2016050294W WO2016117361A1 WO 2016117361 A1 WO2016117361 A1 WO 2016117361A1 JP 2016050294 W JP2016050294 W JP 2016050294W WO 2016117361 A1 WO2016117361 A1 WO 2016117361A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
conductive path
resistance
bus bar
section
Prior art date
Application number
PCT/JP2016/050294
Other languages
English (en)
French (fr)
Inventor
裕 角野
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to DE112016000424.9T priority Critical patent/DE112016000424T5/de
Priority to CN201680005348.7A priority patent/CN107112737A/zh
Priority to US15/544,538 priority patent/US10454259B2/en
Publication of WO2016117361A1 publication Critical patent/WO2016117361A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/08Distribution boxes; Connection or junction boxes
    • H02G3/16Distribution boxes; Connection or junction boxes structurally associated with support for line-connecting terminals within the box
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks

Definitions

  • the present invention relates to a circuit structure and an electrical junction box.
  • a technique for detecting a current in a conductive path with a current sensor is known.
  • a current sensor using a Hall element needs to be used according to the magnitude of the current. Therefore, when the current is large, a large current sensor must be used.
  • a technique is known in which a parallel circuit is provided in the conductive path, a resistance element is connected to each of the parallel circuits, current is shunted, and the shunt current is detected.
  • an energization line connecting a driver and a motor is branched into a main energization line and a bypass line, a shunt resistor is connected to the main energization line, and a voltage dividing resistor and a non-contact current sensor are connected to the bypass line. Connected in series. By doing so, current flows through each line based on the ratio of the shunt resistor, the resistor for dividing, and the input internal resistance of the non-contact current sensor. Compared to the case where the entire energized current is detected by the current sensor. Thus, the current sensor can be reduced in size.
  • the present invention has been completed based on the above situation, and an object thereof is to detect a current in a conductive path by reducing a loss due to resistance.
  • the circuit structure of the present invention includes a circuit board having a conductive path, and a current sensor connected in parallel to a section of the conductive path to which an element having a resistance is not connected, and detects a current shunted from the conductive path. And comprising.
  • the ratio between the internal resistance of the section and the resistance of the parallel circuit (internal resistance) connected in parallel to the section The shunt current that is shunted by the reciprocal of flows in the parallel circuit. If the current sensor detects this shunt current, the current in the conductive path can be detected based on this shunt current and the ratio. As a result, in the section of the conductive path in which the element having resistance is not connected, the element having resistance is not energized at the time of current detection. Can be detected.
  • the material of the shunt path through which the shunt current flows is the same material as the material of the section where the resistance element is not connected in the conductive path. According to this configuration, the shunt path is made of the same material as the temperature characteristic of the section where the element having resistance is not connected. High current detection can be performed.
  • the circuit board includes an insulating substrate in which a conductive path of a metal foil is formed on an insulating plate, and a bus bar as a conductive path superimposed on the insulating substrate, and a section where the element having the resistance is not connected It is arranged in the route of the bus bar.
  • the insulating substrate and the bus bar are stacked.
  • the current sensor includes a plurality of power terminals connected in parallel in a section where the element having the resistance is not connected, and an output terminal that outputs a signal of a current detection result, and the output terminal It is connected to the conductive path of the insulating substrate. In this way, the signal of the detection result of the current having a small energization current can be energized through the conductive path of the insulating substrate.
  • the plurality of power terminals are connected to the bus bar, and the section where the element having the resistance is not connected is between the plurality of power terminals. If it does in this way, the electric current of a bus bar can be detected only by connecting a plurality of electric power terminals to a bus bar.
  • the bus bar has a plurality of current paths formed in a section where the element having the resistance is not connected, and the current sensor is connected to the current path. If it does in this way, the current of a bus bar can be shunted with the simple composition of forming a plurality of current paths in a bus bar.
  • a section where the element having the resistance is not connected is formed to bypass. In this way, when the resistance value of the parallel circuit is considerably larger than the internal resistance of the conductive path, the current detection accuracy may be reduced. Since the resistance can be increased, it is possible to suppress a decrease in current detection accuracy.
  • -It is set as an electrical junction box provided with the said circuit structure and the case which accommodates the said circuit structure.
  • FIG. 1 is a longitudinal sectional view showing an electrical junction box according to a first embodiment.
  • Plan view showing part of circuit board Top view showing part of an insulating substrate
  • Plan view showing part of bus bar Plan view showing the connection between the current sensor and the outside Diagram showing internal resistance of parallel circuit
  • FIG. 7 is a longitudinal sectional view.
  • the longitudinal cross-sectional view which expands and shows the part by which the current sensor of Embodiment 3 was mounted in the circuit board
  • the top view which expands and shows the vicinity of the part by which the current sensor of Embodiment 4 was mounted in the circuit board 10 is a longitudinal sectional view of FIG.
  • the longitudinal cross-sectional view which expands and shows the part by which the current sensor of Embodiment 5 was mounted in the circuit board The top view which shows the bus-bar by which the current sensor was mounted in the shunt path of Embodiment 6.
  • a plan view showing a bus bar in which a current sensor is mounted in a shunt path divided at different positions The top view which shows the bus-bar by which the current sensor was mounted in the shunt path formed in the position where the width direction differs
  • the electric junction box 10 is arranged in a route from a power source such as a battery to a load such as a motor in a vehicle (not shown) such as an electric vehicle or a hybrid vehicle, and is mounted in an engine room that is susceptible to heat, for example. Is done.
  • the electrical junction box 10 includes a circuit structure 11 and a case 30 in which the circuit structure 11 is accommodated.
  • the case 30 includes a case main body 31 made of a box-shaped metal and a heat radiating member 32 superimposed on the circuit board 12.
  • the heat radiating member 32 is made of a metal material having high thermal conductivity, and is overlaid on the circuit board 12 via an insulating adhesive.
  • circuit structure 11 As shown in FIGS. 2 to 4, the circuit structure 11 includes a circuit board 12 and a plurality of electronic components such as a current sensor 25 mounted on the circuit board 12 (other than the current sensor 25 is omitted in the drawing). I have. 2 to 4, one corner portion of the entire surface of the rectangular circuit board 12 is shown, and the other is omitted.
  • the circuit board 12 includes an insulating substrate 13 in which a conductive path (not shown) made of a metal such as copper foil is formed on the surface of the insulating board by a printed wiring technique, and a plate-like metal having a shape corresponding to the shape of the conductive path. And a bus bar 18.
  • a terminal insertion hole 14, a component mounting hole 15, and communication holes 16 ⁇ / b> A and 16 ⁇ / b> B are formed through the insulating substrate 13.
  • the component mounting hole 15 has a rectangular shape corresponding to the shape of an electronic component (FET (Field Effect Transistor), IC (Integrated Circuit), resistor, capacitor, etc.) to be mounted.
  • FET Field Effect Transistor
  • IC Integrated Circuit
  • resistor capacitor, etc.
  • the communication holes 16 ⁇ / b> A and 16 ⁇ / b> B have a circular shape, have an inner wall having conductivity, and are opened at positions that are continuous with the conductive path of the insulating substrate 13.
  • the communication holes 16A, 16B and the bus bar 18 directly below are electrically connected by soldering or the like in the communication holes 16A, 16B.
  • the bus bar 18 is made of copper or a copper alloy metal, and is formed by punching a plate-like metal into the shape of a conductive path using a mold, and includes a terminal portion 19 that can be connected to an external terminal (not shown). As shown in FIG. 4, the terminal portion 19 is connected to a bypass conductive path 20 that extends to the load L side (or the power supply side) through the bypass path.
  • the bypass conductive path 20 includes at least a wide portion 21 having a large width dimension and a narrow portion 22 having a smaller width dimension than the wide portion 21 in a path between A1 and A2 in FIG. Appropriate shapes and dimensions are set for the wide portion 21 and the narrow portion 22 based on a detourable path and a necessary resistance value.
  • the communication holes 16A and 16B of the insulating substrate 13 are located above the position near the starting end of the wide portion 21 and the position near the end of the narrow portion 22, and this position is a conductive path to the parallel circuit on the current sensor 25 side. Are a pair of branch points 23A and 23B.
  • the electronic component includes a current sensor 25 and a FET, IC, resistor, capacitor, etc. (not shown), which are mounted on the conductive path of the circuit board 12.
  • the current sensor 25 is a Hall-type current sensor (non-contact type current sensor) that uses a Hall element, and detects a shunt current of a parallel circuit to which an element having a resistance is not connected. As shown in FIG. 5, the current sensor 25 has a Hall element housed in a flat rectangular package 26 and eight terminals 28 A to 28 H project from the side surface of the package 26. The terminals 28A to 28H are connected to the conductive paths on the surface of the insulating substrate 13 by soldering.
  • the four terminals 28A to 28D on the left side are two power terminals 28A and 28B to which DC power from the power source side is input, and two power terminals that output power to the load L side. 28C, 28D.
  • the power terminals 28A and 28B are connected to the power terminals 28C and 28D via a detection conductive path 29 made of copper or a copper alloy provided in the package 26.
  • the power terminals 28A and 28B are connected to one communication hole 16A via a conductive path of the insulating substrate 13, and the power terminals 28C and 28D are connected to the other communication hole 16B via a conductive path of the insulating substrate 13. Yes.
  • a shunt current I2 flows through the power terminals 28A to 28D and the detection conductive path 29.
  • a common material copper or copper alloy
  • the conductive path of the insulating substrate 13 is used as a shunt path
  • the power terminals 28A to 28D and the detection conductive path 29, and the bus bar 18 is used as the main path.
  • the four terminals 28E to 28H on the right side include a power terminal 28E, an output terminal 28F, a filter terminal 28G, and a ground terminal 28H.
  • the power supply terminal 28E receives, for example, a voltage of 5V from the power supply side.
  • the output terminal 28F outputs a signal of the detection result of the shunt current I2 shunted between the bus bar 18 and the power terminals 28A to 28D.
  • the filter terminal 28G is connected to, for example, a capacitor or the like to reduce noise in the output signal.
  • FIG. 6 shows the internal resistance RA in the section between the branch point 23A and the branch point 23B in the bus bar 18 (the section where the element having resistance is not connected) and the conductive path of the insulating substrate 13 from the branch points 23A and 23B.
  • the relationship between the internal resistance RB up to the connection point with the power terminals 28A to 28D and the internal resistance RC of the current sensor 25 is shown.
  • the current (I1 + I2) in the conductive path can be detected by the detection circuit.
  • the detection circuit for detecting the current (I1 + I2) of the entire conductive path from the shunt current I2 is provided on the circuit board 12.
  • the detection circuit is not limited to this, and may be a Hall IC having a detection circuit in the current sensor. Good.
  • the following operations and effects are achieved.
  • the internal resistance RA of the section and the section are connected in parallel.
  • a shunt current I2 that is shunted at a reciprocal of the ratio to the internal resistance RB + RC of the connected parallel circuit flows to the parallel circuit. If the current sensor 25 detects the shunt current I2, it becomes possible to detect the current of the conductive path based on the ratio of the shunt current I2 and the internal resistance.
  • the resistance of the conductive path is not caused by energizing the resistance element (the element having resistance) during current detection. It becomes possible to detect the current.
  • the shunt path (between the conductive path of the insulating substrate 13 and the terminals 28A to 28H of the current sensor 25) through which the shunt current I2 flows is not connected to an element having resistance, and the material of the shunt path is a conductive path.
  • the material copper or copper alloy
  • the temperature characteristics of this element may reduce the accuracy of current detection.
  • the element having resistance is not connected to the shunt path.
  • the material is not affected by the temperature characteristics of the element and the same temperature characteristics (temperature-resistance characteristics) are used in the main flow path and the diversion path (all copper or all copper alloy). Even in an environment that is affected by external heat, highly accurate current detection can be performed. Note that different materials having a difference that does not affect current detection may be included in the same temperature characteristics.
  • the circuit board 12 includes an insulating substrate 13 in which a conductive path of metal foil is formed on an insulating plate, and a bus bar 18 as a conductive path superimposed on the insulating substrate 13, and between the branch points 23A and 23B (resistance is reduced).
  • a section in which no element is connected is arranged in the path of the bus bar 18. In this way, since the current sensor 25 detects the shunt current I2 from the bus bar 18, a relatively large current can be detected using the current sensor 25 having a small capacity.
  • the current sensor 25 has a plurality of power terminals 28A to 28D connected in parallel between the branch points 23A and 23B (section in which an element having resistance is not connected), and an output for outputting a current detection result signal.
  • the output terminal 28 ⁇ / b> F is connected to the conductive path of the insulating substrate 13. In this way, the signal of the detection result of the current having a small energization current can be energized through the conductive path of the insulating substrate 13.
  • the bypass conductive path 20 is formed so as to bypass between the branch points 23 ⁇ / b> A and 23 ⁇ / b> B (section in which a resistance element is not connected).
  • the resistance value RB + RC of the parallel circuit is considerably larger than the internal resistance RA of the conductive path, there is a possibility that the current detection accuracy may be lowered. Since the internal resistance RA in the non-interval section) can be increased, it is possible to suppress a decrease in detection accuracy.
  • the bus bar 18 is overlaid on the insulating substrate 13.
  • the insulating substrate 13 and the bus bar 18 are arranged on the same plane with a space therebetween. . Since other configurations are the same as those of the first embodiment, the same configurations as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the bus bar 18 and the insulating substrate 13 are arranged on the heat radiation member 32 with a space (gap) therebetween.
  • the four left terminals 28A to 28D in the current sensor 25 are soldered to the bus bar 18, and the four right terminals 28E to 28H are soldered to the conductive path 13A on the surface of the insulating substrate 13.
  • the plurality of power terminals 28A to 28D are connected to the bus bar 18, and a section having no resistance is connected between the plurality of power terminals 28A to 28D in the bus bar 18. .
  • the shunt current I2 from the bus bar 18 can be detected simply by connecting the plurality of power terminals 28A to 28D to the bus bar 18.
  • the circuit configuration body 41 according to the third embodiment is configured such that an insulating substrate 45 in which a copper foil conductive path is printed on an insulating plate is disposed at a position overlapping the bus bar 18 with a space therebetween. In the vicinity of the current sensor 43 in the substrate 45, a circular through hole 42A is formed to penetrate. Further, the four left power terminals 44 in the current sensor 43 are formed longer than the right terminals 28E to 28H, penetrate the through hole 42A, and are soldered to the bus bar 18 with solder S. Connected.
  • the power terminals 28A to 28H of the current sensor 25 are soldered to lands 47A of the conductive paths 47 of the insulating substrate 46 as shown in FIGS.
  • the conductive path 47 of the insulating substrate 46 is formed with a land 47B to which a bonding wire 48 is soldered at an end portion extending from the land 47A along the peripheral edge of the insulating substrate 46.
  • the bonding wire 48 is formed of, for example, copper, copper alloy, aluminum, aluminum alloy or the like, and one end is soldered to the bus bar 18 with solder S and the other end is soldered to the conductive path 47 of the insulating substrate 46. .
  • the bonding wire may be connected by melting a metal other than solder, or the bonding wire 48 may be directly connected by heat, ultrasonic waves or the like without melting the metal.
  • the circuit configuration body 50 according to the fifth embodiment has an insulating substrate 54 laminated on the bus bar 18 and insulates the other end side of the pair of bonding wires 53 soldered to the lands 47B on both sides. Through the through hole 52 that penetrates the substrate 51, the bus bar 18 is soldered with solder S. Since other configurations are the same as those of the fourth embodiment, description thereof is omitted.
  • Embodiment 6 will be described with reference to FIGS. 13 to 16.
  • FIG. 6 a plurality of current paths 62 and 63 for diverting current are formed by forming a slit 61 extending along the energizing direction in a section B1 where no element having resistance in one bus bar 60 is connected. Is.
  • the bus bar 60 extending in a strip shape has a slit 61 extending along the energization direction, and a main flow path 62 is formed on one side in the width direction divided by the slit 61.
  • a diversion path 63 having a width dimension smaller than that of the main flow path 62 is formed on the other side in the width direction.
  • the diversion path 63 is composed of diversion paths 63A and 63B with the middle portion divided, and a plurality of power terminals 28A to 28D of the current sensor 25 are connected to the ends of the diversion paths 63A and 63B, so that one of the diversion paths 63 The current 63A flows through the current sensor 25 to the other shunt path 63B.
  • a bus bar 69 may be used in which flow-dividing paths 64A and 64B are formed by dividing the end portions in the energizing direction in the section B1 where no element having resistance is connected.
  • two slits 65A and 65B extending in parallel in the left-right direction are provided in the middle portion of the bus bar 70 in the width direction, and the diversion paths 66A and 66B are provided between the two slits 65A and 65B. It is also possible to form two main flow paths 67A and 67B.
  • the insulating substrate 13 is not described, but the insulating substrate 13, 45, 46, 51, and 54 may overlap the bus bars 60, 69, 70, and 71 to constitute a circuit substrate.
  • the bus bar 60 may be placed on the heat radiating member 32. According to the above-described embodiment, the current of the bus bar can be shunted with a simple configuration in which a plurality of current paths are formed in the bus bar by slits.
  • the present invention is not limited to the embodiments described with reference to the above description and drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the current sensor 25 may be a Hall IC packaged with an IC that converts an output signal from the Hall element into an output voltage.
  • the current sensor is not limited to the hall type current sensor, and other current sensors may be used.
  • Another non-contact type current sensor or a non-contact type current sensor may be used.
  • the number of power terminals 28A to 28D in the current sensor 25 is not limited to four. For example, two power terminals may be used.
  • the circuit board 12 is composed of an insulating substrate and a bus bar, but may be composed of only one of the insulating substrate and the bus bar.
  • the materials of the conductive paths of the insulating substrate, the bus bars, and the detection conductive paths 29 between the terminals 28A to 28H and the terminals 28A to 28H in the current sensor are all copper, but are not limited thereto.
  • aluminum or an aluminum alloy may be used. Further, different materials may be used instead of the same material.
  • the position where the electrical junction box 10 is mounted is not limited to the engine room of the vehicle, and can be mounted at other locations. Moreover, you may mount other than a vehicle.
  • the current sensor detects a direct current, but may detect an alternating current.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Connection Or Junction Boxes (AREA)

Abstract

 回路構成体11は、導電路を有する回路基板12と、導電路のうち、抵抗を有する素子が接続されていない区間に並列に接続されて当該導電路から分流した電流I2を検出する電流センサ25と、を備える。

Description

回路構成体及び電気接続箱
 本発明は、回路構成体及び電気接続箱に関する。
 従来、導電路の電流を電流センサで検出する技術が知られている。この種の電流センサとして、ホール素子を用いた電流センサは、電流の大きさに応じたものを使用する必要があるため、電流が大きい場合には、大型の電流センサを使用しなければならず、小型化の要請に反するとともに、製造コストが高くなるという問題がある。そこで、導電路に並列回路を設け、この並列回路のそれぞれに抵抗素子を接続して電流を分流させ、分流した電流を検出する技術が知られている。特許文献1では、ドライバとモータとを接続する通電ラインを主通電ラインとバイパスラインとに分岐し、主通電ラインに分流用抵抗を接続し、バイパスラインに分圧用抵抗と非接触電流センサとを直列に接続している。このようにすることで、分流用抵抗、分圧用抵抗及び非接触電流センサの入力内部抵抗との比率に基づいて各ラインに電流が流れるため、通電電流の全体を電流センサで検出する場合と比較して電流センサを小型化することができる。
特開2004-294306号公報
 ところで、特許文献1の構成では、電流を検出するために、分流用抵抗と分圧用抵抗とが並列回路に接続されるため、これらの抵抗に通電されることによる損失が生じ、非接触電流センサの低損失性というメリットを十分に生かすことができないという問題があった。
 本発明は上記のような事情に基づいて完成されたものであって、抵抗による損失を低減して導電路の電流を検出することを目的とする。
 本発明の回路構成体は、導電路を有する回路基板と、前記導電路のうち、抵抗を有する素子が接続されていない区間に並列に接続されて当該導電路から分流した電流を検出する電流センサと、を備える。
 本構成によれば、導電路のうち、抵抗を有する素子が接続されていない区間については、当該区間の内部抵抗と、当該区間に並列に接続された並列回路の抵抗(内部抵抗)との比率の逆数で分流された分流電流が並列回路に流れる。この分流電流を電流センサが検出すれば、この分流電流と前記比率とに基づいて導電路の電流を検出することが可能になる。これにより、導電路のうち、抵抗を有する素子が接続されていない区間については、電流検出の際に抵抗を有する素子に通電されることがないため、抵抗による損失を低減して導電路の電流を検出することが可能になる。
 本発明の実施態様としては以下の態様が好ましい。
・前記分流した電流が流れる分流経路の材質は、前記導電路のうち、抵抗を有する素子が接続されていない区間の材質と温度特性が同じ材質とされている。
 本構成によれば、分流経路は、抵抗を有する素子が接続されていない区間と温度特性が同じ材質が用いられているため、外部からの熱の影響を受けた場合であっても、精度の高い電流検出を行うことができる。
・前記回路基板は、絶縁板に金属箔の導電路が形成された絶縁基板と、前記絶縁基板に重ねられる導電路としてのバスバーと、を備え、前記抵抗を有する素子が接続されていない区間は前記バスバーの経路に配されている。
 このようにすれば、バスバーからの分流電流を電流センサが検出するため、比較的大電流を容量の小さい電流センサを用いて検出可能となる。
・前記絶縁基板と、前記バスバーとは積層されている。
・前記電流センサは、前記抵抗を有する素子が接続されていない区間に並列に接続される複数の電力端子と、電流の検出結果の信号を出力する出力端子とを備え、前記出力端子は、前記絶縁基板の導電路に接続されている。
 このようにすれば、通電電流の小さい電流の検出結果の信号は、絶縁基板の導電路に通電させることができる。
・前記複数の電力端子は、前記バスバーに接続されており、前記抵抗を有する素子が接続されていない区間は、前記複数の電力端子間である。
 このようにすれば、複数の電力端子をバスバーに接続するだけで、バスバーの電流を検出することができる。
・前記バスバーは、前記抵抗を有する素子が接続されていない区間に複数の電流経路が形成されており、前記電流経路に前記電流センサが接続されている。
 このようにすれば、バスバーに複数の電流経路を形成するという簡素な構成で、バスバーの電流を分流させることができる。
・前記導電路のうち、前記抵抗を有する素子が接続されていない区間は迂回するように形成されている。
 このようにすれば、並列回路の抵抗値が導電路の内部抵抗に対してかなり大きいために電流の検出精度の低下を生じるおそれがある場合に、抵抗を有する素子が接続されていない区間の内部抵抗を大きくすることができるため、電流の検出精度の低下を抑制することが可能になる。
・前記回路構成体と、前記回路構成体を収容するケースとを備える電気接続箱とする。
 本発明によれば、抵抗による損失を低減して導電路の電流を検出することが可能になる。
実施形態1の電気接続箱を示す縦断面図 回路基板の一部を示す平面図 絶縁基板の一部を示す平面図 バスバーの一部を示す平面図 電流センサと外部との接続を示す平面図 並列回路の内部抵抗を示す図 実施形態2の電流センサが回路基板に実装された部分を拡大して示す平面図 図7の縦断面図 実施形態3の電流センサが回路基板に実装された部分を拡大して示す縦断面図 実施形態4の電流センサが回路基板に実装された部分の近傍を拡大して示す平面図 図10の縦断面図 実施形態5の電流センサが回路基板に実装された部分を拡大して示す縦断面図 実施形態6の分流経路に電流センサが実装されたバスバーを示す平面図 異なる位置で分断された分流経路に電流センサが実装されたバスバーを示す平面図 幅方向の異なる位置に形成された分流経路に電流センサが実装されたバスバーを示す平面図 異なる位置で分断された分流経路に電流センサが実装されたバスバーを示す平面図
 <実施形態1>
 実施形態1を図1ないし図6を参照しつつ説明する。
 電気接続箱10は、例えば、電気自動車やハイブリッド自動車等の車両(図示しない)においてバッテリ等の電源からモータ等の負荷に至る経路に配され、例えば、熱の影響を受けやすいエンジンルーム内に搭載される。
(電気接続箱10)
 電気接続箱10は、図1に示すように、回路構成体11と、回路構成体11が収容されるケース30とを備えている。ケース30は、箱形の金属からなるケース本体31と、回路基板12に重ねられる放熱部材32とを備えている。放熱部材32は、熱伝導性が高い金属材料からなり、絶縁性の接着剤を介して回路基板12に重ねられている。
(回路構成体11)
 回路構成体11は、図2~図4に示すように、回路基板12と、回路基板12に装着される電流センサ25等の複数の電子部品(電流センサ25以外は図面上省略)と、を備えている。なお、図2~図4では、長方形状の回路基板12の全面のうち、1つの角部側を図示し、他は省略している。
(回路基板12)
 回路基板12は、絶縁板の表面に銅箔等の金属からなる導電路(図示しない)がプリント配線技術により形成されてなる絶縁基板13と、導電路の形状に応じた形状の板状の金属からなるバスバー18とを備えている。絶縁基板13には、端子挿通孔14と、部品装着孔15と、連通孔16A,16Bとが貫通形成されている。部品装着孔15は、装着される電子部品(FET(Field Effect Transistor),IC(Integrated Circuit),抵抗,コンデンサ等)の形状に応じた長方形状であって、電子部品の端子を絶縁基板13及びバスバー18のそれぞれの導電路に接続できるように形成されている。連通孔16A,16Bは、円形状であって、導電性を有する内壁を有し、絶縁基板13の導電路に連なる位置に開孔している。連通孔16A,16B内の半田付け等により連通孔16A,16Bと直下のバスバー18とが電気的に接続される。
 バスバー18は、銅又は銅合金の金属からなり、板状の金属を金型により導電路の形状に打ち抜いて形成されており、図示しない外部の端子と接続可能な端子部19を備える。端子部19は、図4に示すように、迂回した経路を通って負荷L側(又は電源側)に延びる迂回導電路20に連なっている。
 迂回導電路20は、後述する電流センサ25の内部抵抗RCに対して内部抵抗RAが小さ過ぎると、検出の精度を保つことができないため、導電路の経路を長くして導電路の抵抗を大きくし、内部抵抗RAと内部抵抗RCの比率を検出の精度を保つことができる範囲内となるように設定する。この迂回導電路20は、少なくとも図4のA1とA2の間の経路に、幅寸法が大きい幅広部21と、幅広部21よりも幅寸法が小さい幅狭部22とを備えている。幅広部21と幅狭部22は、迂回可能な経路や、必要な抵抗値の値から適切な形状や寸法が設定される。幅広部21の始端寄りの位置と、幅狭部22の終端寄りの位置の上には、絶縁基板13の連通孔16A,16Bが位置し、この位置が電流センサ25側の並列回路に導電路が分岐する一対の分岐点23A,23Bとなっている。
 バスバー18における一対の分岐点23A,23Bの間(図4のA1とA2の間の経路)は、他の抵抗素子等の電子部品が取付けられていない(抵抗を有する素子が接続されていない)区間となっている。即ち、この区間の抵抗は、当該区間におけるバスバー18の内部抵抗のみとなっている。電子部品は、電流センサ25と、図示しないFET,IC,抵抗,コンデンサ等から構成されており、それらが回路基板12の導電路に実装されている。
(電流センサ25)
 電流センサ25は、ホール素子を利用するホール式の電流センサ(非接触式電流センサ)であり、抵抗を有する素子が接続されていない並列回路の分流電流を非接触で検出する。電流センサ25は、図5に示すように、扁平な長方形状のパッケージ26にホール素子が収容されるとともに、パッケージ26の側面から8つの端子28A~28Hが突出している。端子28A~28Hは、絶縁基板13の表面の導電路に半田付けにより接続されている。
 8つの端子28A~28Hのうち、左側の4つの端子28A~28Dは、電源側からの直流電力が入力される2つの電力端子28A,28Bと、電力を負荷L側に出力する2つの電力端子28C,28Dとからなる。電力端子28A,28Bは、パッケージ26の内部に設けられた銅又は銅合金からなる検出導電路29を介して電力端子28C,28Dに接続されている。電力端子28A,28Bは、絶縁基板13の導電路を介して一方の連通孔16Aに接続され、電力端子28C,28Dは、絶縁基板13の導電路を介して他方の連通孔16Bに接続されている。電力端子28A~28D及び検出導電路29には、分流電流I2が流れる。本実施形態では、分流経路である絶縁基板13の導電路、電力端子28A~28D及び検出導電路29と、本流経路であるバスバー18とは全て共通の材質(銅又は銅合金)が用いられており、これにより、本流側と分流側の温度特性が等しくされている。
 右側の4つの端子28E~28Hは、電源端子28Eと出力端子28Fとフィルタ端子28Gとグランド端子28Hとからなる。電源端子28Eは、電源側から例えば、5Vの電圧を受ける。出力端子28Fは、バスバー18から電力端子28A~28D間に分流された分流電流I2の検出結果の信号を出力する。フィルタ端子28Gは、例えばコンデンサ等に接続されて出力信号のノイズを低減する。
 図6は、バスバー18における分岐点23Aと分岐点23Bとの間の区間(抵抗を有する素子が接続されていない区間)の内部抵抗RAと、分岐点23A,23Bから絶縁基板13の導電路における電力端子28A~28Dとの接続点までの内部抵抗RBと、電流センサ25の内部抵抗RCとの関係を表している。迂回導電路20の電流I1と分流電流I2の関係式は、I2/I1=RA/(RB+RC)であり、分流比αは、I2/(I1+I2)=RA/(RA+RB+RC)となる。これらの式を用いて、導電路の電流(I1+I2)を検出回路で検出することができる。なお、分流電流I2から導電路の全体の電流(I1+I2)を検出する検出回路は、回路基板12に設けられているが、これに限られず、電流センサ内に検出回路を設けたホールICとしてもよい。
 本実施形態によれば、以下の作用・効果を奏する。
 本実施形態によれば、導電路(バスバー18)のうち、分岐点23A,23B間(抵抗を有する素子が接続されていない区間)については、当該区間の内部抵抗RAと、当該区間に並列に接続された並列回路の内部抵抗RB+RCとの比率の逆数で分流された分流電流I2が並列回路に流れる。この分流電流I2を電流センサ25が検出すれば、この分流電流I2と内部抵抗の比率とに基づいて導電路の電流を検出することが可能になる。これにより、導電路(バスバー18)のうち、分岐点23A,23B間については、電流検出の際に抵抗素子(抵抗を有する素子)に通電することによる抵抗損失を生じさせることなく、導電路の電流を検出することが可能になる。
 また、分流電流I2が流れる分流経路(絶縁基板13の導電路及び電流センサ25における端子28A~28H間)は、抵抗を有する素子が接続されておらず、かつ、分流経路の材質は、導電路(バスバー18)のうち、分岐点23A,23B間(抵抗を有する素子が接続されていない区間)の材質と温度特性が同じ材質(銅又は銅合金)とされている。
 抵抗を有する素子が分流経路に接続されると、この素子の温度特性により、電流検出の精度が低下するおそれがあるが、本実施形態によれば、抵抗を有する素子が分流経路に接続されないため、素子の温度特性の影響を受けないとともに、本流経路と分流経路とで温度特性(温度-抵抗特性)が同じ材質(全て銅又は全て銅合金)が用いられているため、エンジンルーム内のように外部からの熱の影響を受ける環境においても、精度の高い電流検出を行うことができる。なお、電流検出に影響を与えない程度の差異を有する異なる材質を温度特性が同じ材質に含めてもよい。
 また、回路基板12は、絶縁板に金属箔の導電路が形成された絶縁基板13と、絶縁基板13に重ねられる導電路としてのバスバー18と、を備え、分岐点23A,23B間(抵抗を有する素子が接続されていない区間)はバスバー18の経路に配されている。
 このようにすれば、バスバー18からの分流電流I2を電流センサ25が検出するため、比較的大電流を容量の小さい電流センサ25を用いて検出可能となる。
 また、電流センサ25は、分岐点23A,23B間(抵抗を有する素子が接続されていない区間)に並列に接続される複数の電力端子28A~28Dと、電流の検出結果の信号を出力する出力端子28Fとを備え、出力端子28Fは、絶縁基板13の導電路に接続されている。
 このようにすれば、通電電流の小さい電流の検出結果の信号は、絶縁基板13の導電路に通電させることができる。
 また、バスバー18のうち、分岐点23A,23B間(抵抗を有する素子が接続されていない区間)は迂回導電路20が迂回するように形成されている。
 このようにすれば、並列回路の抵抗値RB+RCが導電路の内部抵抗RAに対してかなり大きいために電流の検出精度の低下を生じるおそれがある場合に、バスバー18(抵抗を有する素子が接続されていない区間)の内部抵抗RAを大きくすることができるため、検出精度の低下を抑制することが可能になる。
 <実施形態2>
 実施形態2について、図7,図8を参照して説明する。実施形態1では、絶縁基板13にバスバー18が重ねられていたが、実施形態2の回路構成体40は、絶縁基板13とバスバー18とが同一平面上に間隔を空けて配置されるものである。他の構成は実施形態1と同一であるため、実施形態1と同一の構成については同一の符号を付して説明を省略する。
 回路構成体40は、図7,図8に示すように、バスバー18と絶縁基板13とが、放熱部材32の上に間隔(隙間)を空けて配置されている。電流センサ25における左側の4本の端子28A~28Dは、バスバー18に半田付けされ、右側の4本の端子28E~28Hは、絶縁基板13の表面の導電路13Aに半田付けされている。
 実施形態2によれば、複数の電力端子28A~28Dは、バスバー18に接続されており、バスバー18における複数の電力端子28A~28D間が抵抗を有する素子が接続されていない区間とされている。
 このようにすれば、複数の電力端子28A~28Dをバスバー18に接続するだけで、バスバー18からの分流電流I2を検出することができる。
 <実施形態3>
 実施形態3について、図9を参照して説明する。上記実施形態と同一の構成については同一の符号を付して説明を省略する。
 実施形態3の回路構成体41は、図9に示すように、絶縁板に銅箔の導電路がプリント配線された絶縁基板45がバスバー18に間隔を空けて重なる位置に配置されており、絶縁基板45における電流センサ43の近傍には、円形状の貫通孔42Aが貫通形成されている。また、電流センサ43における左側の4本の電力端子44は、右側の端子28E~28Hよりも長く形成されており、貫通孔42Aを貫通して、先端部がバスバー18に半田Sで半田付けされて接続されている。
 <実施形態4>
 実施形態4について、図10,図11を参照して説明する。実施形態4の回路構成体45は、同一平面上に間隔を空けて配置された絶縁基板46とバスバー18とがワイヤボンディングによって接続されるものである。以下では、上記実施形態と同一の構成については同一の符号を付して説明を省略する。
 電流センサ25の電力端子28A~28Hは、図10,図11に示すように、絶縁基板46の導電路47のランド47Aに半田付けされている。絶縁基板46の導電路47は、ランド47Aから絶縁基板46の周縁に沿って延びた端部にボンディングワイヤ48がハンダ付けされるランド47Bが形成されている。ボンディングワイヤ48は、例えば、銅、銅合金、アルミニウム、アルミニウム合金等で形成されており、一端がバスバー18に半田Sで半田付けされ、他端が絶縁基板46の導電路47に半田付けされる。なお、半田以外の金属を溶融させてボンディングワイヤを接続してもよく、また、金属を溶融させずにボンディングワイヤ48を熱、超音波等で直接接続してもよい。
 <実施形態5>
 実施形態5について、図12を参照して説明する。実施形態5の回路構成体50は、実施形態4とは異なり、バスバー18に絶縁基板54が積層されており、両側のランド47Bに半田付けされた一対のボンディングワイヤ53の他端側を、絶縁基板51を貫通する貫通孔52に通して、バスバー18に半田Sで半田付けするものである。他の構成は、実施形態4と同一であるため説明は省略する。
 <実施形態6>
 実施形態6について、図13~図16を参照して説明する。
 実施形態6は、1つのバスバー60における抵抗を有する素子が接続されていない区間B1に通電方向に沿って延びるスリット61を形成することにより、電流を分流させる複数の電流経路62,63を形成したものである。
 図13に示すように、帯状に延びたバスバー60には、通電方向に沿って延びるスリット61が形成されており、スリット61で分断された幅方向の一方の側に本流経路62が形成され、幅方向の他方の側に幅寸法が本流経路62よりも小さい分流経路63が形成されている。
 分流経路63は、中間部が分断された分流経路63A,63Bからなり、電流センサ25の複数の電力端子28A~28Dが分流経路63A,63Bの端部に接続されることで、一方の分流経路63Aの電流が電流センサ25を介して他方の分流経路63Bに流れるようになっている。
 他の実施形態として、図14に示すように、抵抗を有する素子が接続されていない区間B1における通電方向の端部側を分断した分流経路64A,64Bを形成したバスバー69としてもよい。また、図15に示すように、バスバー70の幅方向の中間部に、左右方向に平行に延びる二本のスリット65A,65Bを設け、二本のスリット65A,65B間に分流経路66A,66Bが形成し、本流経路67A,67Bが2本形成されるようにしてもよい。さらに、この場合も、図16に示すように、抵抗を有する素子が接続されていない区間B1における端部側を分断した分流経路68としたバスバー71としてもよい。
 なお、図13~図16では、絶縁基板13は記載されていないが、バスバー60,69,70,71に絶縁基板13,45,46,51,54が重ねて回路基板を構成してもよい。また、バスバー60が放熱部材32の上に載置されていてもよい。
 上記実施形態によれば、バスバーにスリットによって複数の電流経路を形成するという簡素な構成で、バスバーの電流を分流させることができる。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)電流センサ25は、ホール素子からの出力信号を出力電圧に変換するICとがパッケージ化されたホールICを用いてもよい。また、ホール式の電流センサに限られず、他の電流センサを用いてもよい。他の非接触型の電流センサや、非接触型ではない接触型の電流センサとしてもよい。また、電流センサ25における電力端子28A~28Dの数は、4本に限られない。例えば、電力端子を2本としてもよい。
(2)回路基板12は、絶縁基板とバスバーとから構成されたが、絶縁基板とバスバーの一方のみから構成されるようにしてもよい。
(3)絶縁基板の導電路とバスバーと電流センサにおける端子28A~28H及び端子28A~28H間の検出導電路29の材質は、全て銅であるしたが、これに限られない。例えば、アルミニウムやアルミニウム合金としてもよい。また、同一の材質ではなく、異なる材質を用いてもよい。
(4)電気接続箱10が搭載される位置は、車両のエンジンルームに限られず、他の箇所にも搭載することができる。また、車両以外に搭載してもよい。
(5)電流センサは、直流電流を検出するものであったが、交流電流を検出してもよい。
10: 電気接続箱
11,40,41,45,50: 回路構成体
12: 回路基板
13,45,46,51,54: 絶縁基板
16: 連通孔
18,60,69,70、71: バスバー
20: 迂回導電路
25,43: 電流センサ
28A~28D,44A~44D: 電力端子
28F: 出力端子30: ケース
48,53: ボンディングワイヤ
61: スリット
62: 本流経路(電流経路)
63: 分流経路(電流経路)
I1: 電流
I2: 分流電流
RA,RB,RC: 内部抵抗
S: 半田

Claims (9)

  1. 導電路を有する回路基板と、
     前記導電路のうち、抵抗を有する素子が接続されていない区間に並列に接続されて当該導電路から分流した電流を検出する電流センサと、を備える回路構成体。
  2. 前記分流した電流が流れる分流経路の材質は、前記導電路のうち、抵抗を有する素子が接続されていない区間の材質と温度特性が同じ材質とされている請求項1に記載の回路構成体。
  3. 前記回路基板は、絶縁板に金属箔の導電路が形成された絶縁基板と、前記絶縁基板に重ねられる導電路としてのバスバーと、を備え、前記抵抗を有する素子が接続されていない区間は前記バスバーの経路に配されている請求項1又は請求項2に記載の回路構成体。
  4. 前記絶縁基板と、前記バスバーとは積層されている請求項3に記載の回路構成体。
  5. 前記電流センサは、前記抵抗を有する素子が接続されていない区間に並列に接続される複数の電力端子と、電流の検出結果の信号を出力する出力端子とを備え、
     前記出力端子は、前記絶縁基板の導電路に接続されている請求項3又は請求項4に記載の回路構成体。
  6. 前記複数の電力端子は、前記バスバーに接続されており、前記抵抗を有する素子が接続されていない区間は、前記複数の電力端子間である請求項5に記載の回路構成体。
  7. 前記バスバーは、前記抵抗を有する素子が接続されていない区間に複数の電流経路が形成されており、前記電流経路に前記電流センサが接続されている請求項3ないし請求項6のいずれか一項に記載の回路構成体。
  8. 前記導電路のうち、前記抵抗を有する素子が接続されていない区間は迂回するように形成されている請求項1ないし請求項7のいずれか一項に記載の回路構成体。
  9. 請求項1ないし請求項8のいずれか一項に記載の回路構成体と、前記回路構成体を収容するケースとを備える電気接続箱。
PCT/JP2016/050294 2015-01-21 2016-01-07 回路構成体及び電気接続箱 WO2016117361A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016000424.9T DE112016000424T5 (de) 2015-01-21 2016-01-07 Schaltungsanordnung und elektrischer Verteiler
CN201680005348.7A CN107112737A (zh) 2015-01-21 2016-01-07 电路结构体及电连接箱
US15/544,538 US10454259B2 (en) 2015-01-21 2016-01-07 Circuit assembly and electrical junction box

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-009177 2015-01-21
JP2015009177A JP6341427B2 (ja) 2015-01-21 2015-01-21 回路構成体及び電気接続箱

Publications (1)

Publication Number Publication Date
WO2016117361A1 true WO2016117361A1 (ja) 2016-07-28

Family

ID=56416910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050294 WO2016117361A1 (ja) 2015-01-21 2016-01-07 回路構成体及び電気接続箱

Country Status (5)

Country Link
US (1) US10454259B2 (ja)
JP (1) JP6341427B2 (ja)
CN (1) CN107112737A (ja)
DE (1) DE112016000424T5 (ja)
WO (1) WO2016117361A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018219468A1 (de) 2018-11-14 2020-05-14 Audi Ag Hochstromkomponentenverbindungsanordnung, Batterieanschlussbox, Hochvoltbordnetz, Kraftfahrzeug und Verfahren zum Verbinden zweier Hochstromkomponenten

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993771A (ja) * 1995-09-20 1997-04-04 Yazaki Corp 電気接続箱のバスバー構造
JP2004340917A (ja) * 2003-04-24 2004-12-02 Auto Network Gijutsu Kenkyusho:Kk 電圧降下式電流計測装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841235A (en) * 1987-06-11 1989-06-20 Eaton Corporation MRS current sensor
US6545456B1 (en) * 1998-08-12 2003-04-08 Rockwell Automation Technologies, Inc. Hall effect current sensor package for sensing electrical current in an electrical conductor
JP4164615B2 (ja) * 1999-12-20 2008-10-15 サンケン電気株式会社 ホ−ル素子を備えた電流検出装置
CN1168104C (zh) * 2000-05-24 2004-09-22 潘玉明 交流分流式电流互感器
ITBG20020027A1 (it) * 2002-09-12 2004-03-13 Abb Service Srl Dispositivo per la misura di correnti e relativo metodo
JP2004294306A (ja) 2003-03-27 2004-10-21 Mitsuba Corp 電流検出回路
JP4381845B2 (ja) * 2004-02-19 2009-12-09 株式会社オートネットワーク技術研究所 ヒューズモジュール
CN100421044C (zh) * 2005-03-10 2008-09-24 崇贸科技股份有限公司 分流装置及方法
JP4394076B2 (ja) * 2006-01-12 2010-01-06 三菱電機株式会社 電流センサ
US20080042636A1 (en) * 2006-08-18 2008-02-21 General Electric Company System and method for current sensing
US8461824B2 (en) * 2010-06-07 2013-06-11 Infineon Technologies Ag Current sensor
JP5187598B2 (ja) * 2010-10-18 2013-04-24 株式会社デンソー 電流検出回路
CN102646960B (zh) * 2011-02-22 2016-10-05 北京科易动力科技有限公司 一种电池组主回路接口保护电路及保护方法
JP5845057B2 (ja) * 2011-10-31 2016-01-20 株式会社デンソー 電流検出装置
CN102998517B (zh) * 2012-12-17 2015-06-24 浙江中凯科技股份有限公司 一种霍尔电流检测装置
CN103575968B (zh) * 2013-10-15 2016-05-11 西安文理学院 一种非接触直流电流检测装置
FR3021750B1 (fr) * 2014-05-30 2016-07-01 Thales Sa Dispositif de detection de courant
JP2016099127A (ja) * 2014-11-18 2016-05-30 富士電機株式会社 パワー半導体モジュールの製造方法及びその中間組立ユニット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993771A (ja) * 1995-09-20 1997-04-04 Yazaki Corp 電気接続箱のバスバー構造
JP2004340917A (ja) * 2003-04-24 2004-12-02 Auto Network Gijutsu Kenkyusho:Kk 電圧降下式電流計測装置

Also Published As

Publication number Publication date
CN107112737A (zh) 2017-08-29
JP6341427B2 (ja) 2018-06-13
US20180269670A1 (en) 2018-09-20
DE112016000424T5 (de) 2017-10-05
US10454259B2 (en) 2019-10-22
JP2016135039A (ja) 2016-07-25

Similar Documents

Publication Publication Date Title
US20130221532A1 (en) Semiconductor module with switching elements
JP4381845B2 (ja) ヒューズモジュール
CN107710000A (zh) 电流检测装置
US9368309B2 (en) Electronic part and electronic control unit
CN106463928A (zh) 电路结构体、连结母线及电连接箱
US10267824B2 (en) Shunt resistor
JP2009146933A (ja) バスバーとバスバーを備えた半導体装置
CN104021932B (zh) 电子部件和电子控制单元
JP2014165166A (ja) 電子部品及び電子制御装置
KR102644470B1 (ko) 자기장 검출기 모듈을 갖는 전류 변환기
CN103680957A (zh) 电容器模块
JP6341427B2 (ja) 回路構成体及び電気接続箱
JP5859814B2 (ja) 電流検出装置
US10958055B2 (en) Circuit assembly and electrical junction box
JP2011082390A (ja) 回路構成体および電気接続箱
JP6128924B2 (ja) 高周波ノイズ対策用電源回路
JPWO2019107128A1 (ja) コンデンサ
JP7327931B2 (ja) 電流検出装置、電気接続箱、及びシャント抵抗一体型バスバー形成方法
WO2018229822A1 (ja) パワーモジュール
JP5762856B2 (ja) 電流センサ
JP2018048840A (ja) 電流測定装置
JP6819163B2 (ja) 絶縁型信号伝達装置、電子機器
JP6881115B2 (ja) 回路基板
JP2017211271A (ja) 熱流測定装置
JP6004579B2 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16739968

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15544538

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000424

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16739968

Country of ref document: EP

Kind code of ref document: A1