[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016111162A1 - 組合せオイルコントロールリング - Google Patents

組合せオイルコントロールリング Download PDF

Info

Publication number
WO2016111162A1
WO2016111162A1 PCT/JP2015/085791 JP2015085791W WO2016111162A1 WO 2016111162 A1 WO2016111162 A1 WO 2016111162A1 JP 2015085791 W JP2015085791 W JP 2015085791W WO 2016111162 A1 WO2016111162 A1 WO 2016111162A1
Authority
WO
WIPO (PCT)
Prior art keywords
control ring
oil control
plating film
combined oil
spacer expander
Prior art date
Application number
PCT/JP2015/085791
Other languages
English (en)
French (fr)
Inventor
市川 貴之
琢磨 関矢
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to KR1020177022235A priority Critical patent/KR101863107B1/ko
Priority to EP15877035.4A priority patent/EP3244099B1/en
Priority to US15/536,799 priority patent/US10352446B2/en
Publication of WO2016111162A1 publication Critical patent/WO2016111162A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F5/00Piston rings, e.g. associated with piston crown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/06Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction using separate springs or elastic elements expanding the rings; Springs therefor ; Expansion by wedging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/06Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction using separate springs or elastic elements expanding the rings; Springs therefor ; Expansion by wedging
    • F16J9/064Rings with a flat annular side rail
    • F16J9/065Spring expander with massive cross-section
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0685Spraying of electrolyte

Definitions

  • the present invention relates to a combined oil control ring (hereinafter also referred to as “combined oil ring” or “oil ring”) that is mounted on an engine piston and performs oil control.
  • combined oil ring hereinafter also referred to as “combined oil ring” or “oil ring”
  • the increase in combustion temperature and the improvement in combustion efficiency due to direct injection are due to the problem of oil sludge caused by engine lubricating oil sticking or sticking to side rails and spacer expanders, and the side rails and side rail inner peripheral surfaces. There is also a problem of wearing the ears of the spacer expander in contact.
  • the side rail is thinned to reduce the section modulus and the followability coefficient is increased, and for the problem of sticking / adhesion, a method of forming an oil repellent film such as a fluorine-containing film on the surface
  • various methods such as a method of performing chrome plating or nitriding treatment have been proposed.
  • Patent Document 1 discloses that the specific dimensions of the pressure ring are 1.0 mm or less and the combined oil ring is 2.0 mm or less.
  • Patent Document 2 discloses a method of forming a liquid repellent film by a sol-gel method from a metal alkoxide and a fluoroalkyl group-substituted metal alkoxide in which a part of the alkoxyl group is substituted with a fluoroalkyl group. is suggesting.
  • Patent Document 3 discloses that a spacer expander is nitrided
  • the tension variation increases due to the increase in Young's modulus due to nitriding and the increase in the deployment length (circumferential length) of the spacer expander. Therefore, it becomes difficult to manufacture with a predetermined tolerance width. For example, if a nitride layer having a thickness of 30 ⁇ m is formed on the entire surface of the spacer expander by gas nitriding, the tension will increase by 18 N compared to the tension before the nitride layer is formed, making it difficult to manage the tension.
  • the first step of applying 1-5 ⁇ m of Ni, Cr or Cu film as an anti-nitriding layer on the surface of the wire for manufacturing the spacer expander the wire is formed into an axial waveform by gear forming. Teaches a method of manufacturing a spacer expander comprising a second step, a third step in which a pressing piece (ear portion) is formed by shearing on the inner peripheral portion of the corrugated wire, and a fourth step in which nitriding treatment is applied to the shearing surface.
  • Patent Document 6 discloses that a spacer expander is used in a nitriding treatment process due to chipping / peeling of the Ni plating film at the corners of the corrugated shape and exposure of the base material due to the thin plating thickness when forming the spacer expander gear. It teaches that in order to prevent the panda body, in particular, the corrugated corners from being nitrided, surfaces other than the shear surface should be covered with a 1-7 ⁇ m thick Ni plating film having a Ni diffusion layer.
  • Patent Document 7 teaches that the Ni plating film suppresses the adhesion of oil sludge in terms of surface free energy and hydrogen bonding force.
  • the Ni plating film functions well as an anti-nitriding film or anti-adhesion / glue film, but defects that cause chipping or peeling of the Ni plating film itself are introduced depending on the manufacturing conditions. In some cases, in reality, further studies are required on the preferred structure of the Ni plating film.
  • An object of the present invention is to provide a combined oil control ring having low tension, little tension variation, and excellent wear resistance and sludge resistance.
  • the inventors of the present invention have found that there is no defect by adjusting the crystal orientation of the plating film, the structure, etc. within a predetermined range. It was conceived that a plating film that does not cause chipping or peeling can be formed.
  • the combination oil control ring of the present invention has a pair of annular side rails having a joint and an axial waveform having an ear portion interposed between them and pressing the inner peripheral surface of the side rail on the inner peripheral portion.
  • a combined oil control ring comprising a spacer expander having a shape, wherein a nitride layer is formed on the side rail pressing surface of the ear, and a plating film is formed on the entire surface of the spacer expander excluding the portion where the nitride layer is formed.
  • the plated coating is characterized in that the Vickers hardness is 300 HV0.01 or less.
  • the ratio of the diffraction intensity (I (111) ) of the (111) plane to the diffraction intensity (I (200) ) of the ( 200 ) plane Is preferably 2.0 or less, and the texture coefficient of the (200) plane is preferably 1.1 or more.
  • the plating film does not contain columnar crystals having an average diameter of less than 0.2 ⁇ m.
  • the film thickness of the plating film is preferably 1 to 7 ⁇ m.
  • the surface roughness of the plating film is preferably 0.005 to 0.4 ⁇ m in terms of centerline average roughness (Ra 75 ).
  • the plating film is preferably a Ni plating film.
  • the nitride layer preferably has a thickness of 30 ⁇ m or more.
  • the combined oil control ring of the present invention preferably has a combined tension of 5 to 20 N.
  • the combined oil control ring of the present invention has a crystal structure in which the preferential orientation of the (111) plane is suppressed and the ratio of the (200) plane is increased in the plating film coated on the spacer expander hoop material. It is possible to obtain a plating film that hardly causes chipping or peeling. This plating film functions as a reliable anti-nitriding film, and enables the formation of a thick nitride layer on the side rail pressing surface of the spacer expander ear. In addition, if the surface roughness of the plating film is 0.005 to 0.4 ⁇ m in terms of the centerline average roughness (Ra 75 ), it will contribute to the suppression of sticking and sticking by oil sludge, with less tension variation and low tension. A combined oil control ring with excellent wear resistance and sludge resistance can be obtained, which can contribute to lower fuel consumption even in harsh usage environments due to improved combustion efficiency.
  • FIG. 1 is a sectional view of the combined oil ring
  • FIG. 2 is a perspective view of a part of the spacer expander.
  • the combination oil ring (1) is composed of a pair of annular side rails (3, 3) having a joint and a spacer expander (2) that supports the side rails (3, 3).
  • the spacer expander (2) The inner peripheral part of the side is provided with an ear part (4) for pressing the inner peripheral surface of the side rail (3, 3), and the outer peripheral part is provided with a shaft for supporting the side rail (3, 3) as required.
  • a support portion (5) protruding in the direction is provided.
  • the connecting part of the ear part (4) and the support part (5) is called the middle hand part (6).
  • a nitride layer is formed on the side rail pressing surface (7) of the ear (4), and the Ni plating film is coated on the entire surface of the spacer expander excluding the portion where the nitride layer is formed.
  • the Ni plating film is covered with a band-shaped hoop wire before being formed into a spacer expander.
  • a hoop wire coated with a Ni plating film is first formed into an axial waveform to form continuous peaks (10) and valleys (20) as shown in FIG.
  • the ear part (4) is formed on the inner peripheral part of the peak part (10) and the valley part (20), and the support part (5) and the middle hand part (6) are formed on the outer peripheral part.
  • a shear surface (side rail pressing surface (7)) having no Ni plating film is formed on the middle portion (6) side of the ear portion (4).
  • the nitride layer is formed only on this shearing surface.
  • the coated Ni plating film should not have defects such as chipping or peeling even after being molded from a hoop wire to a spacer expander. Desired.
  • the Ni plating film of the present invention has a Vickers hardness of about 350 to 550 HV0.01 when it is plated. At this level of hardness, the elongation is as small as about 6%, so that the Ni plating film is chipped or peeled off during processing of the spacer expander. Therefore, the hardness of the Ni plating film is reduced to 300 HV0.01 or less by heat treatment.
  • the heat treatment is preferably performed at a temperature of 500 to 700 ° C. in a non-oxidizing atmosphere (for example, N 2 atmosphere). Considering productivity, it is more preferable to set the temperature at 550 ° C. or higher for 1 minute or shorter.
  • the non-oxidizing atmosphere is preferably 200 ppm or less in terms of oxygen concentration.
  • the hardness of the Ni plating film thus heat-treated is more preferably 270 HV0.01 or less, and further preferably 250 HV0.01 or less. As an example, when the hardness is 250 HV0.01 or less, these Ni plating films are said to exhibit elongation of 10% or more.
  • the diffraction intensity of the (111) plane to the (200) plane diffraction intensity (I (200)) (I (111))
  • the ratio (I (111) / I (200) ) is preferably 2.0 or less. It is more preferable if it is 1.8 or less. More preferably, the diffraction intensity (I (200) ) of the (200) plane is maximized. When the diffraction intensity (I (200) ) of the (200) plane is maximized, the ratio (I (111) / I (200) ) is preferably 0.8 or less.
  • the texture coefficient of the (200) plane is preferably 1.1 or more.
  • I (hkl) is the X-ray diffraction intensity of the measured (hkl) plane (the maximum of the measured X-ray diffraction intensity is converted to 100)
  • I 0 (hkl) is the JCPDS file. It is a standard X-ray diffraction intensity described in No. 04-0850.
  • File number 04-0850 contains 8 types of (hkl) plane standard X-rays (111), (200), (220), (311), (222), (400), (331), (420) Although the diffraction intensity is listed, in the present invention, for the sake of simplicity, the diffraction intensity is defined using the X-ray diffraction intensities of only the three types (hkl) planes (111), (200), and (220).
  • (hkl) surface texture coefficient I (hkl) / I 0 (hkl) ⁇ [1/3 ⁇ I (111) / I 0 (111) + I (200) / I 0 (200) + I (220) / I 0 (220) )] -1 ...
  • I 0 (111) is 100
  • I 0 (200) is 42
  • I 0 (220) is 21.
  • the texture coefficient of the (200) plane is more preferably 1.2 or more, and further preferably 1.3 or more. When the diffraction intensity (I (200) ) of the (200) plane is maximized, it is more preferable that the texture coefficient of the (200) plane is 1.8 or more.
  • the Ni plating film of the present invention preferably has no columnar crystals penetrating in the thickness direction of the film, and preferably has no columnar crystals having an average diameter of less than 0.2 ⁇ m.
  • the columnar structure means one having an aspect ratio (length / diameter) of 2 or more, and if the aspect ratio is less than 2, it is classified as a granular structure.
  • the Ni plating film of the present invention is recrystallized by heat treatment, but at this time, it is preferable to grow to a particle size of an appropriate size with few defects. Therefore, it is preferable to be composed of granular crystals having an average particle diameter of 0.2 to 3 ⁇ m and / or columnar crystals having an average diameter of 0.2 to 3 ⁇ m.
  • the average particle size of the granular crystals is more preferably from 0.3 to 2 ⁇ m, even more preferably from 0.5 to 1.5 ⁇ m.
  • the average diameter of the columnar crystals is more preferably from 0.3 to 2 ⁇ m, further preferably from 0.5 to 1.5 ⁇ m.
  • the average particle diameter and the average diameter can be obtained by extracting granular crystals and columnar crystals and performing image analysis.
  • the Ni plating film of the present invention preferably has a thickness of 1 to 7 ⁇ m. 3 to 6.5 ⁇ m is more preferable, and 4 to 6 ⁇ m is more preferable.
  • the mirror surface state is preferable, but if the surface portion is a bright Ni plating film, the surface roughness in these ranges can be obtained.
  • the surface roughness Ra 75 of the Ni plating film is more preferably 0.005 to 0.25 ⁇ m, and further preferably 0.005 to 0.15 ⁇ m.
  • the combined oil ring of the present invention preferably has an axial width (A) of the support portion (5) of 0.07 mm or more. It is more preferably 0.09 mm or more, and further preferably 0.11 mm or more.
  • the nitride layer formed on the side rail pressing surface (7) of the spacer expander ear (4) preferably has a thickness of 30 ⁇ m or more from the viewpoint of wear resistance. It is more preferably 35 ⁇ m or more, and further preferably 40 ⁇ m or more. The upper limit is preferably 60 ⁇ m from the viewpoint of productivity.
  • the combination oil ring of the present invention has a nitride layer formed only on the side rail pressing surface of the spacer expander, so that the tension variation is small and the tension can be reduced.
  • the tension can be 5-20 N.
  • the spacer expander is not limited, but austenitic stainless steel made of SUS304 is used as the base material. Since the surface is covered with a passive film, it is preferable to perform electrolytic degreasing by hydrochloric acid-based electropolishing, activation by hydrochloric acid cleaning, and Ni strike plating by a wood bath as pretreatment of Ni plating.
  • various plating baths such as Watt bath and sulfamic acid bath can be used.
  • dispersion strengthened plating is not preferable, and additives such as a brightening agent are preferably set to the minimum necessary for ensuring a predetermined surface roughness and a uniform film thickness.
  • the Ni plating film of the present invention does not require the presence of a diffusion phase between the base material and the Ni plating as long as Ni strike plating is applied as a pretreatment, but the diffusion phase is not necessary in the softening heat treatment for hardness adjustment. Although it is preferable that it is formed, it does not cause inconvenience.
  • Heat treatment at 550 ° C. or higher and within 1 minute considering productivity is partial or extremely thin even if a diffusion phase is formed. Even if there is no diffusion phase, a Ni plating film having a structure in which Ni strike plating is applied and the ratio of the (200) plane is increased functions sufficiently as an anti-nitriding film.
  • Molding to the spacer expander is made from the hoop wire coated with the Ni plating film through the steps of gear molding, coiling, constant-size cutting, and abutment surface finishing including local bending and shearing. . Since the ear portion is formed by shearing on the inner peripheral side after the first-stage gear formation on the peak portion and the valley portion, there is no Ni plating film on the side rail pressing surface of the ear portion. If the thickness of the Ni plating film is too thick, the Ni plating film may cover a part of the pressing surface, but there is no problem if the thickness is within 10 ⁇ m. Although the tension of the spacer expander can be controlled by adjusting the deployment length, it is important to suppress variations in the exact shape and the deployment length in terms of accuracy.
  • the nitriding treatment of the present invention preferably uses gas nitriding using a gas containing NH 3 in order to form a nitrided layer having a thickness of 30 ⁇ m or more.
  • salt bath nitriding can be used, it is difficult to form a thick nitrided layer.
  • the base material of the spacer expander is SUS304, it is preferable to add ammonium chloride at a predetermined timing in order to reduce the passive film prior to nitriding.
  • the nitriding temperature is preferably 470 to 600 ° C., and the nitriding time may be selected according to the desired thickness of the nitrided layer.
  • Ni plating Ni plating was performed under the following conditions using a rolled strip-like SUS304 hoop wire rod (0.3R at the end) of 2.50 mm ⁇ 0.25 mm.
  • Pretreatment Electrolytic degreasing-Acid activity-Ni strike Ni plating bath: Semi-bright Ni plating bath (Ni solution of sulfamic acid + Ni chloride) + Boric acid + additive A), bright Ni plating bath (sulfamic acid Ni solution + Ni chloride) + Boric acid + additive B) Bath temperature: 50 °C Initial pH: 2.8 Current density: 8 A / dm 2 Time: Semi-bright Ni plating 60 seconds, Bright Ni plating 30 seconds
  • Ni plating film-coated hoop wire was subjected to softening heat treatment at 600 ° C. for 30 seconds in a N 2 atmosphere (oxygen concentration 50 ppm) after washing with hot water and drying.
  • the maximum intensity of the three diffraction intensities is taken as 100, and the (111), (200), and (220) diffraction intensities are converted, and the (111) plane with respect to the (200) plane diffraction intensity (I (200) )
  • the ratio of the diffraction intensity (I (111) ) (I (111) / I (200) ) and the texture coefficient of the (200) plane were obtained.
  • I (111) / I (200) was 1.25
  • the texture coefficient of the (200) plane was 1.35.
  • FIG. 5 shows an SEM photograph.
  • the Ni plating film of Example 1 was composed of a Ni strike layer (31), a semi-bright Ni plating layer (32), and a bright Ni plating layer (33), and the film thickness was about 5 ⁇ m. Further, there were no columnar crystals penetrating in the thickness direction of the film, and columnar crystals having an average diameter of less than 0.2 ⁇ m were not observed. The average particle size of the granular structure was 0.8 ⁇ m.
  • Spacer expander and side rail molding The spacer expander is made from the hoop wire coated with the Ni plating film, using ordinary gear molding, etc., nominal diameter 82.5 mm, combined nominal width 2.5 mm, combined thickness 2.8 It was molded to be a combined oil ring of mm and tension 23 N ⁇ 3.0 N.
  • the side rail is formed by coiling from a rolled strip-shaped SUS440B hoop wire rod (0.3R at the end) of 2.30 mm ⁇ 0.40 mm, and a CrN film is formed on the outer peripheral surface by ion plating.
  • An oil sludge resistant coating composition containing C6FMA, PolySiMA, and SiMA was coated on the entire surface of the side rail.
  • Example 2-5 Comparative Examples 1-3 Except for changing the current density and initial pH as shown in Table 1 and adjusting the plating time to a film with a film thickness of about 5 ⁇ m, the same plating conditions and manufacturing conditions as in Example 1 were used, and the nominal diameter was 82.5 mm. A combined oil ring having a combined nominal width of 2.5 mm, a combined thickness of 2.8 mm, and a tension of 23 N ⁇ 3.0 N was produced.
  • film hardness before and after heat treatment, surface roughness after heat treatment, X-ray diffraction measurement, SEM structure observation, film thickness and surface hardness of nitrided layer, and tension were measured, and the results were Tables 1 and 2 show. The table also shows the results of various tests of Example 1.
  • FIGS. 6 and 7 show the X-ray diffraction profile and SEM photograph of the film cross section of Example 3
  • FIGS. 8 and 9 show the X-ray diffraction profile and SEM photograph of the film cross section of Comparative Example 1, respectively.
  • a plating film was formed at a current density of 5 to 10 A / dm 2 and an initial pH in the range of 2.8 to 4.7, and further heat treatment at 600 ° C. for 30 seconds. It was observed that the hardness was 300 HV or less, I (111) / I (200) was 2.0 or less, and there were no fine columnar crystals with an average diameter of less than 0.2 ⁇ m. On the other hand, as the initial pH increased, I (111) / I (200) was larger than 2.0, and fine columnar crystals having an average diameter of less than 0.2 ⁇ m were also observed as shown in the SEM photograph of FIG. Furthermore, defects were also observed in the structure of fine columnar crystals having an average diameter of less than 0.2 ⁇ m.
  • the nitride layer could be formed as thick as 27 to 43 ⁇ m in any of Examples 1 to 5 and Comparative Examples 1 to 3.
  • the results of the tension measurement show that in Examples 1 to 5, the average tension is almost the target value (23 N), the standard deviation is 0.28 to 0.39 ⁇ N, the process capability Cp value is 2.56 to 3.57, and the CpK value is 2.45 to 3.25 showed sufficient process capability.
  • Comparative Examples 1 to 3 the Cpk value in the process capability is remarkably low. For example, in Comparative Example 2, the Cpk value is negative, indicating that the average tension is out of specification.
  • Oil sludge resistance test 1 In the actual machine oil sludge resistance test, the same engine used in the actual machine endurance test was used, and the oil rings of Examples 1 to 4 were installed in each cylinder. It was performed under the condition of cyclic operation that continuously repeats the operating conditions from the state to the maximum output speed and the hot and cold water temperature conditions from low temperature to high temperature. Also in this test, the ring used for the engine was used for the top ring and the second ring.
  • Example 6 A strip-shaped SUS304 hoop wire (rolled at 0.3R) of 2.2 mm x 0.275 mm was used for the spacer expander, and a rolled SUS440B hoop wire (2.00 mm x 0.40 mm) was used for the side rail (0.3 mm at the end). R) was used, and a combined oil ring was prepared in the same manner as in Example 1, except that the nominal diameter was 75.0 mm, the combined nominal width was 2.0 mm, the combined thickness was 2.5 mm, and the tension was 7.5 N ⁇ 2.0 N. . As for the tension of the combination oil ring of Example 6, the average tension was 7.23 N, the standard deviation was 0.33 N, the Cp value was 2.02, and the Cpk value was 1.75.
  • Oil sludge resistance test 2 For Example 6 as well, an actual oil sludge resistance test was conducted using the engine with the displacement of 1500 cm 3 described above. Here, the combination oil ring of Example 6 was used for all four cylinders. As a result of taking out the piston from each cylinder after observing a predetermined time and observing the oil ring, there was no adhesion between the spacer expander and the side rail, and the oil ring was taken out from the piston and subjected to ultrasonic cleaning in acetone for a certain period of time. The amount of deposits was extremely small, and it was confirmed that even in a combination oil ring with low tension, excellent oil sludge resistance was exhibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

【課題】 合口を有する一対の円環状のサイドレールと、それらの間に介在し内周部に前記サイドレールの内周面を押圧する耳部を有する軸方向波形形状のスペーサエキスパンダよりなる組合せオイルコントロールリングにおいて、低張力で張力バラツキが少なく、耐摩耗性及び耐スラッジ性に優れた組合せオイルコントロールリングを提供するため、前記耳部のサイドレール押圧面に窒化層を形成し、前記窒化層が形成された部分を除く前記スペーサエキスパンダの全面にめっき皮膜を被覆し、前記めっき皮膜は、ビッカース硬さが300 HV0.01以下となるようにする。

Description

組合せオイルコントロールリング
 本発明は、エンジンのピストンに装着され、オイルコントロールを行う組合せオイルコントロールリング(以下、「組合せオイルリング」又は「オイルリング」ともいう。)に関する。
 近年、地球温暖化防止の観点からCO2排出の削減が求められており、自動車エンジンでは、燃費の向上、燃焼効率の向上が図られ、特に燃費の向上を目指して、ピストン系摺動部のフリクション低減に着目した改良が進められている。
 ピストンリングの低張力化は特に重要で、中でもオイルリングの張力は、ピストンリングの全張力の50%以上を占めていることから、その張力を低減する対策が行われている。また、張力の低減には張力の公差幅も小さくすることが求められている。
 一方、燃焼温度の上昇や直噴化による燃焼効率の向上は、エンジン潤滑油の変性により生じるオイルスラッジがサイドレールやスペーサエキスパンダを固着又は膠着する問題や、サイドレールやサイドレール内周面と接触するスペーサエキスパンダの耳部を摩耗するという問題も抱えている。
 オイルリングの張力を低減することは、シリンダ壁面への追従性を低下させることにも繋がるため、オイル消費を増加させてしまうという懸念が生じ、また、オイルリングの固着・膠着、さらには摩耗の問題も、オイル消費を急激に増加させてしまうという不具合をもたらす。
 追従性の問題については、サイドレールを薄幅化して断面係数を小さくし、追従性係数を増加させる方法、固着・膠着の問題については、表面にフッ素含有皮膜等の撥油性皮膜を形成する方法、摩耗の問題については、クロムめっきや窒化処理を施す方法等、様々な方法が提案されている。
 例えば、ピストンリングの薄幅化については、特許文献1は具体的寸法として圧力リングの幅寸法を1.0 mm以下、組合せオイルリングの幅寸法を2.0 mm以下とすることを開示している。また、オイルリングの固着・膠着の問題について、特許文献2は金属アルコキシドとアルコキシル基の一部がフルオロアルキル基で置換されたフルオロアルキル基置換金属アルコキシドからゾルゲル法により撥液膜を形成する方法を提案している。さらに、摩耗の問題について、特許文献3はスペーサエキスパンダに窒化処理することを開示し、特許文献4は、耐食性に優れた窒化層として、Cu-KαX線回折において2θ=40°及び2θ=46°にピークを持つ特殊なS相を含むガス窒化層を10~60μmに厚く形成することを開示している。
 しかし、スペーサエキスパンダへの窒化は、窒化層を施す面積と厚さが増加すると、窒化によるヤング率の上昇とスペーサエキスパンダの展開長さ(周方向長さ)の増加によって、張力バラツキが大きくなり、所定の公差幅で製造しにくくなる。例えば、ガス窒化により30μmの厚さの窒化層をスペーサエキスパンダ全面に形成すると、窒化層形成前の張力に対し18Nも張力が上昇してしまって張力管理が困難になる。
 特許文献5は、張力バラツキを低減するため、スペーサエキスパンダを製造する線材表面に窒化防止層としてNi、Cr又はCu皮膜を1~5μm施す第一工程、ギア成形により線材を軸方向波形に形成する第二工程、波形線材の内周部分に押圧片部(耳部)を剪断によって形成する第三工程、ついで剪断面に窒化処理を施す第四工程からなるスペーサエキスパンダの製造方法を教示し、さらに、特許文献6は、スペーサエキスパンダのギア成形時に、波形形状角部のNiめっき皮膜の欠け・剥離や、めっき厚さが薄いこと等に伴う母材露出によって、窒化処理工程でスペーサエキスパンダ本体、とりわけ波形形状角部が窒化されることを防止するために、剪断面以外の面がNi拡散層を有する膜厚1~7μmのNiめっき皮膜で覆われるべきことを教示している。
 なお、特許文献7は、Niめっき皮膜が表面自由エネルギー及び水素結合力の観点でオイルスラッジの付着を抑制することを教示している。
 上記のように、Niめっき皮膜は窒化防止膜又は耐固着・耐膠着膜として良好に機能することが確認されたが、製造条件によってはNiめっき皮膜自体の欠けや剥離をもたらす欠陥が導入される場合もあり、現実には、Niめっき皮膜の好ましい構造についてさらなる検討が求められている。
特開2003-286898号公報 特開2000-27995号公報 実開昭53-147308号公報 国際公開第2005/040645号 特開2003-28299号公報 特許第4323456号公報 特許第5463364号公報 特開2011-122060号公報 特開平10-311763号公報
 本発明は、低張力で張力バラツキが少なく、耐摩耗性及び耐スラッジ性に優れた組合せオイルコントロールリングを提供することを課題とする。
 本発明者らは、組合せオイルコントロールリングのスペーサエキスパンダに被覆しためっき皮膜の構造について鋭意研究した結果、めっき皮膜の結晶配向、組織構造等を所定の範囲に調整することにより、欠陥が無く皮膜の欠けや剥離を起こさないめっき皮膜を形成することができることに想到した。
 すなわち、本発明の組合せオイルコントロールリングは、合口を有する一対の円環状のサイドレールと、それらの間に介在し内周部に前記サイドレールの内周面を押圧する耳部を有する軸方向波形形状のスペーサエキスパンダよりなる組合せオイルコントロールリングであって、前記耳部のサイドレール押圧面に窒化層が形成され、前記窒化層が形成された部分を除く前記スペーサエキスパンダの全面にめっき皮膜が被覆され、前記めっき皮膜は、ビッカース硬さが300 HV0.01以下であることを特徴とする。めっき皮膜被覆面の
X線回折プロファイルで、(200)面の回折強度(I(200))に対する(111)面の回折強度(I(111))の比(I(111)/I(200))は2.0以下であることが好ましく、前記(200)面の組織係数は1.1以上であることが好ましい。
 また、前記めっき皮膜は、平均径0.2μm未満の柱状晶を含まないことが好ましい。
 また、めっき皮膜の膜厚は、1~7μmであることが好ましい。
 また、めっき皮膜の表面粗さは、中心線平均粗さ(Ra75)で0.005~0.4μmであることが好ましい。
 また、前記めっき皮膜は、Niめっき皮膜であることが好ましい。
 また、本発明の組合せオイルコントロールリングにおいて、前記窒化層の厚さは30μm以上であることが好ましい。
 また、本発明の組合せオイルコントロールリングは、組合せ張力が5~20 Nであることが好ましい。
 本発明の組合せオイルコントロールリングは、スペーサエキスパンダ用フープ材に被覆しためっき皮膜において、(111)面の優先配向を抑え、(200)面の比率を高めた結晶構造とすることにより、欠陥のほとんど無い、欠けや剥離の生じにくいめっき皮膜とすることができる。このめっき皮膜は確実な窒化防止膜として機能し、スペーサエキスパンダ耳部のサイドレール押圧面に厚い窒化層の形成を可能とする。また、めっき皮膜の表面粗さを中心線平均粗さ(Ra75)で0.005~0.4μmとすれば、さらにオイルスラッジによる固着・膠着の抑制にも貢献し、張力バラツキが小さく、低張力の、耐摩耗性及び耐スラッジ性に優れた組合せオイルコントロールリングとすることが可能となり、燃焼効率の向上による厳しい使用環境においても、低燃費化に貢献することができる。
本発明の組合せオイルコントロールリングの断面図である。 本発明の組合せオイルコントロールリングの部分斜視図である。 帯状フープ線材を軸方向波形に成形した状態の部分斜視図である。 実施例1で得られたNiめっき皮膜のX線回折プロファイルを示す。 実施例1で得られたNiめっき皮膜断面のSEM写真を示す。 実施例3で得られたNiめっき皮膜のX線回折プロファイルを示す。 実施例3で得られたNiめっき皮膜断面のSEM写真を示す。 比較例1で得られたNiめっき皮膜のX線回折プロファイルを示す。 比較例1で得られたNiめっき皮膜断面のSEM写真を示す。
 以下に、本発明の組合せオイルリング、特にNiめっき皮膜を被覆したオイルリングについて詳細に説明する。
 図1は組合せオイルリングの断面図を、図2はスペーサエキスパンダの一部の斜視図を示す。組合せオイルリング(1)は、合口を有する一対の円環状サイドレール(3,3)と、サイドレール(3,3)を支持するスペーサエキスパンダ(2)とからなり、スペーサエキスパンダ(2)の内周部にはサイドレール(3,3)の内周面を押圧する耳部(4)が設けられ、外周部には必要に応じてサイドレール(3,3)を支持するための軸方向に突出する支持部(5)が設けられている。支持部(5)が設けられた場合、耳部(4)と支持部(5)の連結部分を中手部(6)と呼んでいる。本発明では、耳部(4)のサイドレール押圧面(7)に窒化層が形成され、窒化層が形成された部分を除くスペーサエキスパンダの全面にNiめっき皮膜が被覆される。
 Niめっき皮膜はスペーサエキスパンダに成形する前の帯状のフープ線材に被覆される。スペーサエキスパンダは、まずNiめっき皮膜が被覆されたフープ線材を軸方向波形に成形して図3に示すような連続する山部(10)と谷部(20)が形成され、続いて、図2に示すように山部(10)と谷部(20)の内周部に耳部(4)、外周部に支持部(5)及び中手部(6)が形成されて製造される。この時、耳部(4)の中手部(6)側にNiめっき皮膜の無い剪断面(サイドレール押圧面(7))が形成される。窒化層は、この剪断面のみに形成される。また、他の部分のNiめっき皮膜が窒化防止膜として機能するためには、フープ線材からスペーサエキスパンダに成形加工された後も被覆されたNiめっき皮膜に欠けや剥離等の不具合の無いことが求められる。
 本発明のNiめっき皮膜は、めっきしたままでは350~550 HV0.01程度のビッカース硬さを有する。このレベルの硬さでは伸びが6%程度と小さいので、スペーサエキスパンダへの加工においてNiめっき皮膜に欠けや剥離が生じてしまう。よって、熱処理によりNiめっき皮膜の硬さを300 HV0.01以下にする。熱処理は、非酸化性雰囲気(例えば、N2雰囲気)中、500~700℃の温度で行うことが好ましい。生産性を考慮すれば、550℃以上の温度で1分以下とするのがより好ましい。また、非酸化性雰囲気は酸素濃度で評価すれば200 ppm以下が好ましい。このように熱処理したNiめっき皮膜の硬さは、270 HV0.01以下であるのがより好ましく、250 HV0.01以下であるのがさらに好ましい。一例として、硬さが250 HV0.01以下であれば、これらのNiめっき皮膜は10%以上の伸びを示すといわれている。
 さらに、本発明では、熱処理後、Niめっき皮膜の被覆面のX線回折プロファイルで、(200)面の回折強度(I(200))に対する(111)面の回折強度(I(111))の比(I(111)/I(200))が2.0以下であることが好ましい。1.8以下であればより好ましい。(200)面の回折強度(I(200))が最大となればさらに好ましい。(200)面の回折強度(I(200))が最大となった場合は、比(I(111)/I(200))は0.8以下であることが好ましい。また、(200)面の組織係数は1.1以上であることが好ましい。ここで、(hkl)面の組織係数(Texture Coefficient)は、一般に、
   (hkl)面の組織係数=I(hkl)/I0(hkl)・[(1/n)・Σ(I(hkl)/I0(hkl))]-1  …(1)
により定義され、I(hkl)は測定された(hkl)面のX線回折強度(測定されたX線回折強度の最大のものを100として換算している)、I0(hkl)はJCPDSファイル番号04-0850に記載されている標準X線回折強度である。ファイル番号04-0850には(111)、(200)、(220)、(311)、(222)、(400)、(331)、(420)の8種類の(hkl)面の標準X線回折強度が載っているが、本発明では、簡単のため、(111)、(200)、(220)の3種類の(hkl)面のみのX線回折強度を用いて定義する。したがって、本発明においては、
   (hkl)面の組織係数= I(hkl)/I0(hkl)・[1/3・I(111)/I0(111)+I(200)/I0(200)
             +I(220)/I0(220))]-1                       …(2)
と定義する。ちなみに、I0(111)は100、I0(200)は42、I0(220)は21である。(200)面の組織係数は1.2以上であればより好ましく、1.3以上であればさらに好ましい。(200)面の回折強度(I(200))が最大となった場合は、(200)面の組織係数は1.8以上となればさらに好ましい。
 本発明のNiめっき皮膜は、皮膜の厚さ方向に貫通する柱状晶が無いことが好ましく、平均径0.2μm未満の柱状晶も無いことが好ましい。本発明で柱状組織とはアスペクト比(長さ/径)が2以上のものをいい、アスペクト比が2未満であれば粒状組織に分類する。本発明のNiめっき皮膜は、熱処理により再結晶するが、この時、欠陥の少ない適度なサイズの粒径に成長することが好ましい。よって、平均粒径0.2~3μmの粒状晶及び/又は平均径0.2~3μmの柱状晶からなることが好ましい。粒状晶の平均粒径は0.3~2μmがより好ましく、0.5~1.5μmがさらに好ましい。柱状晶の平均径も0.3~2μmがより好ましく、0.5~1.5μmがさらに好ましい。ここで、平均粒径及び平均径は、粒状晶と柱状晶を抽出し、画像解析により求めることができる。
 本発明のNiめっき皮膜は膜厚が1~7μmであることが好ましい。3~6.5μmがより好ましく、4~6μmがさらに好ましい。
 オイルスラッジに関する問題については、トップリングの合口隙間を縮小することによってブローバイガスを少なくし、エンジンオイルの劣化を抑制することや、生成したスラッジがリングに付着しづらくするためにスペーサエキスパンダやサイドレール表面に皮膜処理を施すことが有効である。その点、特許文献7に開示されているように、Niめっき皮膜はオイルスラッジによる固着・膠着の抑制に効果を有するので、耳部のサイドレール押圧面を除くスペーサエキスパンダの全面にNiめっき皮膜を被覆したことは有効である。さらに、このNiめっき皮膜の表面粗さを中心線平均粗さ(Ra75)で0.005~0.4μmとすれば、耐オイルスラッジ性をより向上させることができる。鏡面状態がもちろん好ましいが、表面部を光沢Niめっき皮膜とすれば、これらの範囲の表面粗さとすることが可能となる。Niめっき皮膜の表面粗さRa75は0.005~0.25μmであればより好ましく、0.005~0.15μmであればさらに好ましい。
 また、オイルスラッジは、特にスペーサエキスパンダ(2)の中手部(6)とサイドレール(3,3)との間の狭い空間に付着・堆積しやすい。よって、構造的な観点から、本発明の組合せオイルリングは、支持部(5)の軸方向幅(A)を0.07 mm以上とすることが好ましい。0.09 mm以上とすることがより好ましく、0.11 mm以上とすることがさらに好ましい。
 スペーサエキスパンダ耳部(4)のサイドレール押圧面(7)に形成する窒化層は、耐摩耗性の観点から厚さが30μm以上であることが好ましい。35μm以上であればより好ましく、40μm以上であればさらに好ましい。上限値は、生産性の観点から60μmであることが好ましい。
 本発明の組合せオイルリングは、上記に詳述したように、スペーサエキスパンダのサイドレール押圧面にのみ窒化層が形成されているので、張力バラツキが小さく、低張力化が可能となって、組合せ張力を5~20 Nとすることができる。
 本発明においてスペーサエキスパンダは、限定されるものではないが、母材にSUS304材のオーステナイト系ステンレス鋼を使用する。表面が不動態皮膜で覆われているため、Niめっきの前処理として、塩酸系電解研磨による電解脱脂、塩酸洗浄による活性化、及びウッド浴によるNiストライクめっきを行うことが好ましい。Niめっきは、ワット浴、スルファミン酸浴等、様々なめっき浴が使用できる。スペーサエキスパンダへの曲げ加工を考慮すると分散強化めっきは好ましくなく、また、光沢剤等の添加剤は所定の表面粗さや均一な膜厚を確保するための必要最低限とすることが好ましい。一方、皮膜の厚さ方向に貫通する柱状晶が現れないようにするためにも、条件の異なるNiめっきからなる2段階以上のめっき処理を行うことが好ましい。その点、Niストライクめっきの後に、半光沢Niめっき、さらに光沢Niめっきを行うことも好ましい。
 本発明のNiめっき皮膜は、前処理としてNiストライクめっきが施されていれば、特に母材とNiめっき間の拡散相の存在を必要としないが、硬さ調整のための軟化熱処理において拡散相が形成されることは、好ましくはあっても、不都合をもたらすものではない。生産性を考慮した550℃以上、1分以内の熱処理は、拡散相が形成されたとしても、部分的なものか、極めて薄いものとなる。拡散相が存在しなくても、Niストライクめっきが施され且つ(200)面の比率を高めた組織のNiめっき皮膜であれば、窒化防止膜として十分機能する。
 スペーサエキスパンダへの成形は、上記Niめっき皮膜を被覆したフープ線材から、局部的な曲げと剪断による耳部成形を含むギア成形、コイリング、定寸切断、合口面部仕上げの工程を経て作製される。耳部は、山部と谷部への1段目のギア成形の後に、内周側で剪断して形成されるため、耳部のサイドレール押圧面にはNiめっき皮膜は存在しない。Niめっき皮膜の厚さが厚すぎれば、押圧面の一部にNiめっき皮膜が被さることもあるが、厚さが10μm以内であれば問題ない。スペーサエキスパンダの張力は、展開長さの調整によってコントロールできるが、精度的には正確な形状と展開長さのバラツキを抑えることが重要である。
 また、本発明の窒化処理は、厚さ30μm以上の窒化層とするためには、NH3を含むガスを使用したガス窒化を利用することが好ましい。塩浴窒化も使用できるが、厚い窒化層とするのは困難である。スペーサエキスパンダの母材がSUS304材の場合は、窒化処理に先立ち、不動態皮膜を還元するため塩化アンモニウムを所定のタイミングで添加するのが好ましい。窒化温度は470~600℃が好ましく、所望の窒化層の厚さに応じて窒化時間を選択すればよい。
実施例1
[1] Niめっき
 2.50 mm×0.25 mmの圧延した帯状のSUS304フープ線材(端部は0.3R)を用い、次の条件でNiめっきを行った。
   前処理:電解脱脂-酸活性-Niストライク
   Niめっき浴:半光沢Niめっき浴(スルファミン酸Ni溶液+塩化Ni
         +ホウ酸+添加剤A)、及び
         光沢Niめっき浴(スルファミン酸Ni溶液+塩化Ni
         +ホウ酸+添加剤B)
   浴温:50℃
   初期pH:2.8
   電流密度:8 A/dm2
   時間:半光沢Niめっき 60秒、光沢Niめっき30秒
[2] 熱処理
 Niめっき皮膜被覆フープ線材は、湯洗浄、乾燥後に、N2雰囲気中(酸素濃度50 ppm)、600℃、30秒の軟化熱処理を行った。
[3] 硬さ測定
 Niめっき皮膜の硬さ測定は、被覆面に平行な鏡面研磨した表面について、マイクロビッカース硬さ試験機を使用し試験力0.098 N(10 g)で行った。実施例1のNiめっき皮膜の硬さは、熱処理前は435 HV0.01、熱処理後は245 HV0.01であった。
[4] 表面粗さの測定
 表面粗さは、熱処理後のフープ線材について、触針式表面粗さ測定機を用いて中心線平均粗さ(Ra75)を測定した。実施例1の中心線平均粗さ(Ra75)は0.16μmであった。
[5] X線回折測定
 X線回折強度は、鏡面研磨した被覆面に平行な表面について、管電圧40 kV、管電流30 mAのCu-Kα線を使用して2θがNiの(111)、(200)及び(220)の各面の回折線位置をカバーする2θ=35~90°の範囲で測定した。図4に実施例1で得られたX線回折プロファイルを示す。3つの回折強度のうちの最大強度を100として、(111)、(200)、(220)の各回折強度を換算し、 (200)面の回折強度(I(200))に対する(111)面の回折強度(I(111))の比(I(111)/I(200))、及び(200)面の組織係数を求めた。実施例1のI(111)/I(200)は1.25、(200)面の組織係数は1.35であった。
[6] Niめっき皮膜の膜厚測定と組織観察
 膜厚測定と組織観察は、被覆面に垂直な鏡面研磨した断面の走査電子顕微鏡(SEM)で観察した写真を用いて行った。図5にSEM写真を示す。実施例1のNiめっき皮膜は、Niストライク層(31)、半光沢Niめっき層(32)及び光沢Niめっき層(33)から構成され、膜厚は約5μmであった。また、皮膜の厚さ方向に貫通する柱状晶は無く、平均径0.2μm未満の柱状晶も観察されなかった。なお、粒状組織の平均粒径は0.8μmであった。
[7] スペーサエキスパンダ及びサイドレールの成形
 スペーサエキスパンダは、上記Niめっき皮膜を被覆したフープ線材から、通常のギア成形等を用い、呼び径82.5 mm、組合せ呼び幅2.5 mm、組合せ厚さ2.8 mm、張力23 N±3.0 Nの組合せオイルリングとなるように成形した。サイドレールは、2.30 mm×0.40 mmの圧延した帯状のSUS440Bフープ線材(端部は0.3R)からコイリングにより成形し、外周面にイオンプレーティングによるCrN皮膜を形成し、さらに特許文献8に開示のC6FMA、PolySiMA、及びSiMAを含有する耐オイルスラッジ用コーティング組成物をサイドレールの全表面に被覆した。
[8] ガス窒化
 スペーサエキスパンダの耳部のサイドレール押圧面への窒化処理は、脱脂洗浄後、NH3:90%、N2:10%のガス窒化雰囲気中、570℃、80分の条件で行った。窒化層の厚さは27μm、であった。
[9] 張力測定
 組合せオイルリングの張力測定サンプルとして20セット準備し、特許文献9に示される張力測定装置を用いて張力を測定した。平均22.91 N、標準偏差0.31 N、工程性能指数Cp 3.23、Cpk 3.13であった。
実施例2~5、比較例1~3
 電流密度と初期pHを表1に示すように変更し、めっき時間を調整して約5μmの膜厚の皮膜とした以外は、実施例1と同じめっき条件、同じ製造条件で、呼び径82.5 mm、組合せ呼び幅2.5 mm、組合せ厚さ2.8 mm、張力23 N±3.0 Nの組合せオイルリングを作製した。実施例1と同様に、熱処理前後の皮膜硬さ、熱処理後の表面粗さ、X線回折測定、SEM組織観察、窒化層の膜厚及び表面硬さ、並びに張力の測定を行い、その結果を表1及び表2に示す。表には実施例1の各種試験の結果も併せて示す。また、実施例3のX線回折プロファイル及び皮膜断面のSEM写真を図6及び図7に、比較例1のX線回折プロファイル及び皮膜断面のSEM写真を図8及び図9に示す。
Figure JPOXMLDOC01-appb-T000001
*  CDは電流密度(Current Density)を意味する。
** HTは熱処理(Heat Treatment)を意味する。
   
Figure JPOXMLDOC01-appb-T000002
 実施例1~5及び比較例1~3の結果からは、電流密度が5~10 A/dm2、初期pHが2.8~4.7の範囲でめっき皮膜を形成し、さらに600℃、30秒の熱処理を施すと硬さが300HV以下となり、またI(111)/I(200) が2.0以下となり、平均径0.2μm未満の微細柱状晶も無いことが観察された。一方、初期pHが高くなるとI(111)/I(200) が2.0よりも大きくなって、図9のSEM写真に示すように、平均径0.2μm未満の微細柱状晶も観察された。さらに、平均径0.2μm未満の微細柱状晶の組織中には欠陥も観察された。
 窒化層は、実施例1~5及び比較例1~3のいずれにおいても27~43μmと厚く形成することができた。また、張力測定の結果は、実施例1~5では、平均張力がほぼ狙い値(23 N)通りであり、標準偏差も0.28~0.39 N、工程能力のCp値が2.56~3.57、CpK値は2.45~3.25で、十分な工程能力を示した。一方、比較例1~3では、工程能力のうちのCpk値が著しく低く、例えば、比較例2ではCpk値がマイナスとなって、平均張力が規格外であることを示している。
[10] 実機耐久試験1
 排気量が2400 cm3の4気筒ガソリンエンジンを用い、各気筒それぞれに実施例1~4のオイルリングを装着し、6,500 rpm、全負荷(WOT:Wide Open Throttle)の運転条件で実機耐久試験を行った。ここで、トップリング及びセカンドリングは、当該エンジン用として使用されていたリングを使用した。所定時間経過後の各オイルリングについて、張力を再度測定した結果、実施例1は22.15 N、実施例2は22.34 N、実施例3は22.11 N、実施例4は22.26 Nであった。いずれも、規格内に十分入る特性を示しており、スペーサエキスパンダの耳部の摩耗による張力減退は全く生じなかった。
[11] 実機耐オイルスラッジ試験1
 実機耐オイルスラッジ試験は、上記実機耐久試験に用いたのと同じエンジンを使って、各気筒それぞれに実施例1~4のオイルリングを装着し、エンジンオイルには市場回収劣化オイルを用い、停止状態から最高出力回転数までの運転条件と、低温から高温までの湯水温条件を連続的に繰り返すサイクリック運転を実施する条件で行った。この試験においても、トップリングとセカンドリングは、当該エンジン用として使用されていたリングを使用した。所定時間経過後、各気筒からピストンを取り出してオイルリングを観察した結果、スペーサエキスパンダとサイドレールの間の固着は無く、オイルリングをピストンから取り出し、アセトン中で一定時間超音波洗浄した結果、付着物も極微量であり、実施例1~4の組合せオイルリングは、耐オイルスラッジ性に優れていることが確認された。
実施例6
 スペーサエキスパンダ用に2.2 mm×0.275 mmの圧延した帯状のSUS304フープ線材(端部は0.3R)を用い、サイドレール用に2.00 mm×0.40 mmの圧延した帯状のSUS440Bフープ線材(端部は0.3R)を用い、呼び径75.0 mm、組合せ呼び幅2.0 mm、組合せ厚さ2.5 mm、張力7.5 N±2.0 Nとなるように成形した以外は、実施例1と同様にして組合せオイルリングを作製した。実施例6の組合せオイルリングの張力は、平均張力が7.23 N、標準偏差が0.33 N、Cp値が2.02、Cpk値が1.75であった。
[12] 実機耐久試験2
 排気量が1500 cm3の4気筒ガソリンエンジンを用い、4気筒全てに実施例6の組合せオイルリングを装着し、6,000 rpm、全負荷(WOT:Wide Open Throttle)の運転条件で実機耐久試験を行った。トップリング及びセカンドリングは、当該エンジン用として使用されていたリングを使用した。所定時間経過後の各オイルリングについて、張力を再度測定した結果、7.15 N、7.09 N、7.12 N、7.04 Nで、いずれも規格内に十分入る特性を示しており、スペーサエキスパンダの耳部の摩耗による張力減退は全く生じなかった。
[13] 実機耐オイルスラッジ試験2
 実施例6についても、上記の排気量1500 cm3のエンジンを使って、実機耐オイルスラッジ試験を行った。ここでは、4気筒全てに実施例6の組合せオイルリングを使用した。所定時間経過後、各気筒からピストンを取り出してオイルリングを観察した結果、スペーサエキスパンダとサイドレールの間の固着は無く、オイルリングをピストンから取り出し、アセトン中で一定時間超音波洗浄した結果、付着物も極微量であり、低張力の組合せオイルリングにおいても、優れた耐オイルスラッジ性を示すことが確認された。

Claims (9)

  1.  合口を有する一対の円環状のサイドレールと、それらの間に介在し内周部に前記サイドレールの内周面を押圧する耳部を有する軸方向波形形状のスペーサエキスパンダよりなる組合せオイルコントロールリングであって、前記耳部のサイドレール押圧面に窒化層が形成され、前記窒化層が形成された部分を除く前記スペーサエキスパンダの全面にめっき皮膜が被覆され、前記めっき皮膜は、ビッカース硬さが300 HV0.01以下であることを特徴とする組合せオイルコントロールリング。
  2.  請求項1に記載の組合せオイルコントロールリングにおいて、めっき皮膜被覆面のX線回折プロファイルで、(200)面の回折強度(I(200))に対する(111)面の回折強度(I(111))の比(I(111)/I(200))が2.0以下であることを特徴とする組合せオイルコントロールリング。
  3.  請求項2に記載の組合せオイルコントロールリングにおいて、前記(200)面の組織係数が1.1以上であることを特徴とする組合せオイルコントロールリング。
  4.  請求項1~3のいずれかに記載の組合せオイルコントロールリングにおいて、前記めっき皮膜が平均径0.2μm未満の柱状晶を含まないことを特徴とする組合せオイルコントロールリング。
  5.  請求項1~4のいずれかに記載の組合せオイルコントロールリングにおいて、前記めっき皮膜の膜厚が1~7μmであることを特徴とする組合せオイルコントロールリング。
  6.  請求項1~5のいずれかに記載の組合せオイルコントロールリングにおいて、前記めっき皮膜の表面粗さが中心線平均粗さ(Ra75)で0.005~0.4μmであることを特徴とする組合せオイルコントロールリング。
  7.  請求項1~6のいずれかに記載の組合せオイルコントロールリングにおいて、前記めっき皮膜がNiめっき皮膜であることを特徴とする組合せオイルコントロールリング。
  8.  請求項1~7のいずれかに記載の組合せオイルコントロールリングにおいて、前記窒化層の厚さが30μm以上であることを特徴とする組合せオイルコントロールリング。
  9.  請求項1~8のいずれかに記載の組合せオイルコントロールリングにおいて、組合せ張力が5~20 Nであることを特徴とする組合せオイルコントロールリング。
PCT/JP2015/085791 2015-01-09 2015-12-22 組合せオイルコントロールリング WO2016111162A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177022235A KR101863107B1 (ko) 2015-01-09 2015-12-22 조합 오일 컨트롤 링
EP15877035.4A EP3244099B1 (en) 2015-01-09 2015-12-22 Combined oil control ring
US15/536,799 US10352446B2 (en) 2015-01-09 2015-12-22 Combined oil control ring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-002946 2015-01-09
JP2015002946A JP5980966B2 (ja) 2015-01-09 2015-01-09 組合せオイルコントロールリング

Publications (1)

Publication Number Publication Date
WO2016111162A1 true WO2016111162A1 (ja) 2016-07-14

Family

ID=56355862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085791 WO2016111162A1 (ja) 2015-01-09 2015-12-22 組合せオイルコントロールリング

Country Status (5)

Country Link
US (1) US10352446B2 (ja)
EP (1) EP3244099B1 (ja)
JP (1) JP5980966B2 (ja)
KR (1) KR101863107B1 (ja)
WO (1) WO2016111162A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6389970B1 (ja) 2018-01-16 2018-09-12 Tpr株式会社 組合せオイルリング

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292021A (ja) * 2005-04-07 2006-10-26 Riken Corp スペーサエキスパンダ及びその製造方法
JP2006300224A (ja) * 2005-04-21 2006-11-02 Riken Corp 3ピース組合せオイルリング
WO2008059791A1 (en) * 2006-11-14 2008-05-22 Kabushiki Kaisha Riken Chromium nitride coating film by ion plating, process for producing the same, and piston ring for internal combustion engine
US20090278320A1 (en) * 2007-06-16 2009-11-12 Juliano Avelar Araujo Piston ring with chromium nitride coating for internal combustion engines
WO2012133714A1 (ja) * 2011-03-31 2012-10-04 株式会社リケン 組合せオイルリング

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2904377A (en) * 1957-05-21 1959-09-15 Muskegon Piston Ring Co Inc Spacer and expander for piston rings
US2854301A (en) * 1957-09-06 1958-09-30 Wilkening Mfg Co Piston ring expander and method of forming same
FR1540312A (fr) * 1967-02-17 1968-09-27 Ensemble piston et segments pour moteur à combustion interne
US3695622A (en) * 1970-12-18 1972-10-03 Sealed Power Corp Piston ring construction
US4111437A (en) * 1976-09-08 1978-09-05 Sealed Power Corporation Oil control ring spacer-expander with improved slip latch
US4115959A (en) * 1977-01-31 1978-09-26 Ramsey Corporation Method for increasing the life of silicon carbide grinding wheels
JPS5638199Y2 (ja) 1977-04-26 1981-09-07
US4194747A (en) * 1978-12-05 1980-03-25 Muskegon Piston Ring Company Three-piece oil control ring
US4429885A (en) * 1982-11-04 1984-02-07 Kabushiki Kaisha Riken Spacer and expander member for holding and biasing piston ring rails
JPS6026147A (ja) * 1983-07-21 1985-02-09 Toyota Motor Corp 組合せオイルリング
JPS6088164U (ja) * 1983-11-24 1985-06-17 株式会社リケン 組合せオイルリング
GB2175065B (en) * 1985-05-17 1988-07-13 Ae Plc Multiple part oil-control ring for piston
JPS6323067A (ja) * 1986-07-15 1988-01-30 Nippon Piston Ring Co Ltd スペ−サエキスパンダ
CA2023718C (en) * 1989-08-31 1998-07-14 Sumio Ono Steel oil ring assembly
US5469616A (en) * 1990-11-15 1995-11-28 Teikoku Piston Ring Co., Ltd. Method of manufacturing a side rail of a combined oil ring
US5195758A (en) * 1991-11-19 1993-03-23 Hastings Manufacturing Company Three-piece oil control ring assembly
US5794941A (en) * 1995-06-01 1998-08-18 Dana Corporation Piston ring assembly
JP2855419B2 (ja) * 1995-12-19 1999-02-10 帝国ピストンリング株式会社 組合せオイルリングのスペーサエキスパンダおよび組合せオイルリング
JPH10311763A (ja) 1997-05-09 1998-11-24 Riken Corp ピストンリングの張力測定装置及び張力測定方法
JP2000027995A (ja) 1998-07-15 2000-01-25 Toyota Motor Corp ピストンリング
JP2002206188A (ja) 2001-01-09 2002-07-26 Sumitomo Electric Fine Polymer Inc 電鋳ニッケルベルト、被覆ニッケルベルト、及び被覆ニッケルベルトの製造方法
JP2003028299A (ja) 2001-07-11 2003-01-29 Riken Corp スペーサーエキスパンダおよびその製造方法
JP2003148617A (ja) * 2001-11-15 2003-05-21 Nippon Piston Ring Co Ltd 鋼製組合せオイルコントロールリング
JP4132815B2 (ja) * 2001-12-28 2008-08-13 株式会社リケン サイドレール及び組合せオイルリング
US6655697B2 (en) * 2002-01-18 2003-12-02 Dana Corporation Piston oil ring having land flanked by concave sidewalls
JP2003286898A (ja) 2002-03-28 2003-10-10 Teikoku Piston Ring Co Ltd ピストンリングの組合せ
TWI258547B (en) * 2002-08-27 2006-07-21 Riken Co Ltd Side rails for combined oil control ring and their nitriding method
TWI238233B (en) * 2003-02-20 2005-08-21 Riken Kk Combined oil control ring
US20060113730A1 (en) * 2003-04-07 2006-06-01 Takao Suzuki Combination oil ring
JP4480369B2 (ja) * 2003-08-21 2010-06-16 株式会社リケン スペーサエキスパンダ
TWI255885B (en) 2003-10-27 2006-06-01 Riken Kk Three-piece type combined oil control ring
JP4633639B2 (ja) * 2006-01-31 2011-02-16 日本ピストンリング株式会社 3ピースオイルリング及び3ピースオイルリングとピストンとの組合せ
JP2008133923A (ja) * 2006-11-29 2008-06-12 Teikoku Piston Ring Co Ltd 組合せオイルリング
BR112012008116A2 (pt) 2009-10-06 2017-10-10 Kk Riken anel de óleo para motor de combustão interna
JP5562018B2 (ja) 2009-12-10 2014-07-30 株式会社リケン エンジン部品用コーティング組成物及びそれを用いたエンジン部品
JP5557562B2 (ja) * 2010-03-10 2014-07-23 Tpr株式会社 組合せオイルリング
WO2011151927A1 (ja) * 2010-06-04 2011-12-08 日本ピストンリング株式会社 内燃機関用オイルリング
JP2014009776A (ja) * 2012-06-29 2014-01-20 Nippon Piston Ring Co Ltd スペーサエキスパンダの製造方法
BR102012024729B1 (pt) * 2012-09-27 2020-05-19 Mahle Int Gmbh anel de controle de óleo de três peças para motores de combustão interna, elemento expansor e elemento anelar
JP6239964B2 (ja) 2013-12-18 2017-11-29 株式会社リケン 組合せオイルコントロールリング

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292021A (ja) * 2005-04-07 2006-10-26 Riken Corp スペーサエキスパンダ及びその製造方法
JP2006300224A (ja) * 2005-04-21 2006-11-02 Riken Corp 3ピース組合せオイルリング
WO2008059791A1 (en) * 2006-11-14 2008-05-22 Kabushiki Kaisha Riken Chromium nitride coating film by ion plating, process for producing the same, and piston ring for internal combustion engine
US20090278320A1 (en) * 2007-06-16 2009-11-12 Juliano Avelar Araujo Piston ring with chromium nitride coating for internal combustion engines
WO2012133714A1 (ja) * 2011-03-31 2012-10-04 株式会社リケン 組合せオイルリング

Also Published As

Publication number Publication date
JP2016128700A (ja) 2016-07-14
US20170350508A1 (en) 2017-12-07
JP5980966B2 (ja) 2016-08-31
US10352446B2 (en) 2019-07-16
EP3244099B1 (en) 2019-12-04
KR20170097226A (ko) 2017-08-25
KR101863107B1 (ko) 2018-05-31
EP3244099A1 (en) 2017-11-15
EP3244099A4 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP5452734B2 (ja) コーティングを有するスライド要素、特に、ピストンリング、およびスライド要素を製造するプロセス
JP5030439B2 (ja) 摺動部材
US9353864B2 (en) Oil ring for internal combustion engine
JP6340014B2 (ja) 摺動エレメント
JP5564099B2 (ja) シリンダとピストンリングの組合せ
EP2162561B1 (en) Piston ring with a sulphonitriding treatment
JP7508747B2 (ja) ピストンリング
WO2005040645A1 (ja) 3ピース組合せオイルリング
JP4320605B2 (ja) 一対の摺動部材
CN110382747B (zh) 复合镀铬覆膜和具有该覆膜的活塞环
JP2016169798A (ja) ピストンリング
JP6029790B2 (ja) 組合せオイルコントロールリング
JP5980966B2 (ja) 組合せオイルコントロールリング
WO2015114822A1 (ja) 圧力リングおよび圧力リング用母材
JP2007270880A (ja) ピストンリング
JP4650157B2 (ja) 摺動部用メッキ皮膜及び同皮膜の形成方法
JP4059621B2 (ja) クロムめっき摺動部材及びその製造方法
JP4323456B2 (ja) スペーサエキスパンダ及びその製造方法
JP4374153B2 (ja) ピストンリング
JP2023133290A (ja) ピストンリング
JP2004256913A (ja) Cr−Mo合金めっき被膜
JP2020003022A (ja) ピストンリング
EP3978655A2 (en) Method for producing layered film structure and piston for internal combustion engine
JP2008215280A (ja) ピストンリング
JP2023051683A (ja) 摺動部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877035

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15536799

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015877035

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177022235

Country of ref document: KR

Kind code of ref document: A