[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015011935A1 - 半芳香族ポリアミド樹脂組成物およびそれを含む成型品 - Google Patents

半芳香族ポリアミド樹脂組成物およびそれを含む成型品 Download PDF

Info

Publication number
WO2015011935A1
WO2015011935A1 PCT/JP2014/003943 JP2014003943W WO2015011935A1 WO 2015011935 A1 WO2015011935 A1 WO 2015011935A1 JP 2014003943 W JP2014003943 W JP 2014003943W WO 2015011935 A1 WO2015011935 A1 WO 2015011935A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
aromatic polyamide
structural unit
resin composition
acid
Prior art date
Application number
PCT/JP2014/003943
Other languages
English (en)
French (fr)
Inventor
功 鷲尾
洋樹 江端
英人 小笠原
信宏 滝沢
文雄 影山
晶規 天野
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US14/906,990 priority Critical patent/US9732223B2/en
Priority to KR1020167000335A priority patent/KR20160018696A/ko
Priority to JP2015528159A priority patent/JP6346181B2/ja
Priority to CN201480038529.0A priority patent/CN105377990A/zh
Priority to EP14828822.8A priority patent/EP3026084B1/en
Publication of WO2015011935A1 publication Critical patent/WO2015011935A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • the present invention relates to a semi-aromatic polyamide resin composition and a molded article containing the same.
  • Polyamides typified by nylon 6, nylon 66, etc. are excellent in molding processability, mechanical properties and chemical resistance, so various types for automobiles, industrial materials, clothing, electrical / electronic or industrial use. Widely used as part material.
  • there has been a demand for drastic reduction in the amount of transpiration of automobile fuel mainly in the United States, and in the fuel system parts such as fuel tubes and joints that are their joints, transpiration of automobile fuel from the fuel tubes or joints is required. There is a need to significantly reduce the amount.
  • the joints are required to have high impact strength so that they are not broken by a stepping stone or an impact caused by an accident.
  • Patent Document 1 discloses a polyamide resin composition containing specific PA9T, a maleic anhydride-modified ethylene-butene copolymer, which is a modified olefin polymer, and glass fibers.
  • PA9T used in the resin composition described in Patent Document 1 uses 2-methyl-1,8-octanediamine in addition to 1,9-nonanediamine as a diamine component. For this reason, the crystallinity is impaired, the crystallization speed is lowered, and moldability such as mold releasability at the time of injection molding may not be sufficient.
  • PA9T has a problem that the toughness such as impact resistance in the molded product is lower than that of the conventional aliphatic polyamide such as nylon 12.
  • impact strength is improved by mix
  • the present inventors show good moldability in such cases, such as the resin composition does not exhibit sufficient mold releasability, or the viscosity increases and injection fluidity decreases. Found that there may not be.
  • An object of the present invention is to provide a semi-aromatic polyamide resin composition excellent in impact resistance, fuel barrier property, and moldability, and a molded product including the same.
  • the present invention relates to the semi-aromatic polyamide resin composition shown below.
  • Tm melting point
  • DSC differential scanning calorimeter
  • the semi-aromatic polyamide (A) includes a structural unit derived from terephthalic acid and a structural unit derived from adipic acid as the dicarboxylic acid component, and a structure derived from a linear aliphatic having 4 to 10 carbon atoms as the diamine component.
  • the ratio of the content of the structural unit derived from terephthalic acid and the structural unit derived from adipic acid contained in the semi-aromatic polyamide (A) is a structural unit derived from terephthalic acid / a structural unit derived from adipic acid
  • the semi-aromatic polyamide (B) includes a structural unit derived from isophthalic acid as a dicarboxylic acid component, and includes a structural unit derived from an aliphatic group having 4 to 15 carbon atoms as a diamine component.
  • the semi-aromatic polyamide (B) may have a structural unit derived from terephthalic acid, and the ratio of the content of the structural unit derived from isophthalic acid and the structural unit derived from terephthalic acid is isophthalic acid.
  • the mass ratio ((B) / ((A) + (B))) of the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B) is 0.05 to 0.5 [1] ]
  • the semi-aromatic polyamide resin composition according to any one of [5] to [5].
  • 80 to 100 mol% of all diamine components contained in the semiaromatic polyamide (A) are structural units derived from 1,6-hexanediamine.
  • the olefin polymer (C) includes a skeleton portion derived from a polyolefin, and the skeleton portion derived from the polyolefin is a copolymer of ethylene and an olefin having 3 or more carbon atoms.
  • the semi-aromatic polyamide resin composition according to any one of the above.
  • the functional group structural unit containing a hetero atom of the olefin polymer (C) contains a functional group selected from the group consisting of a carboxylic acid group, an ester group, an ether group, an aldehyde group, and a ketone group.
  • the semi-aromatic polyamide resin composition according to any one of to [9].
  • a semi-aromatic polyamide resin composition excellent in impact resistance, fuel barrier property, and moldability and a molded product including the same, such as a quick connector.
  • means a range including not only the intermediate value but also the boundary value.
  • a to B means a range including “A”, “B”, and “an intermediate value between A and B”.
  • the semi-aromatic polyamide resin composition of the present invention comprises a semi-aromatic polyamide (A), a semi-aromatic polyamide (B), and an olefin polymer (C), preferably a fibrous filler.
  • (D) includes a conductive material (E).
  • the present inventors use a semi-aromatic polyamide (B) that is low in crystallinity but excellent in gas barrier properties and mixed with the semi-aromatic polyamide (A).
  • a semi-aromatic polyamide (B) that is low in crystallinity but excellent in gas barrier properties and mixed with the semi-aromatic polyamide (A).
  • the semi-aromatic polyamide (A) comprises the main layer as can be seen from the component ratio described later.
  • the semi-aromatic polyamide (B) is finely dispersed in the main layer, the semi-aromatic polyamide (B) is excellent while maintaining the excellent moldability of the semi-aromatic polyamide (A) as the main layer. It is presumed that the effect of improving gas barrier properties is compatible.
  • the semi-aromatic polyamide resin composition of the present invention preferably has a melting point of 280 ° C. to 330 ° C.
  • the semi-aromatic polyamide (A) is a semi-aromatic polyamide having a melting point (Tm) obtained by differential scanning calorimetry (hereinafter DSC) of 290 ° C. or higher and 340 ° C. or lower.
  • the melting point of the semi-aromatic polyamide is more preferably 290 ° C. or higher and 330 ° C. or lower.
  • the semi-aromatic polyamide (A) is not particularly limited as long as it is an aromatic polyamide.
  • a polyamide having a dicarboxylic acid component such as a structural unit derived from terephthalic acid or a structural unit derived from isophthalic acid and a diamine component
  • a polyamide having a structural unit derived from an aromatic diamine such as metaxylylenediamine.
  • the melting point of the semi-aromatic polyamide (A) can be within the above range by adjusting the composition.
  • the molar ratio of structural units derived from terephthalic acid / structural units derived from adipic acid is 40/60 to 80 / By setting it to 20, the melting point can be in the above range.
  • the melting point can be set in the above range.
  • the melting point can be within the above range.
  • the molar ratio of the structural unit derived from terephthalic acid to the structural unit derived from isophthalic acid is 70/30 to 50 / By setting it to 50, the melting point can be in the above range.
  • Each structural unit contained in the semi-aromatic polyamide (A) and the ratio thereof are known ratios such as a charging ratio for producing the semi-aromatic polyamide (A), 13 C-NMR measurement or 1 H-NMR measurement. Can be specified.
  • semi-aromatic polyamide (hereinafter referred to as semi-aromatic polyamide (A ′)) having a dicarboxylic acid component containing a structural unit derived from terephthalic acid and a structural unit derived from adipic acid and a diamine component. ).
  • the semi-aromatic polyamide (A ′) has a structural unit derived from terephthalic acid and a structural unit derived from adipic acid as a dicarboxylic acid component, and thus has excellent moldability and an excellent gas barrier compared to aliphatic polyamide.
  • a polyamide resin composition having properties can be obtained. The reason for this is not clear, but can be estimated as follows.
  • semi-aromatic polyamides such as PA6T and PA9T using terephthalic acid have an aromatic group, and thus have better gas barrier properties than aliphatic polyamides.
  • PA6T and PA9T have a melting point that is too high when used as a homopolymer, the polymer and various additives may be thermally decomposed during melt polymerization or melt molding. Therefore, in practical use, the melting point is about 280 ° C. to 330 ° C. by copolymerizing a dicarboxylic acid component such as adipic acid or isophthalic acid or an aliphatic diamine such as 2-methyl-1,5-pentanediamine. Lowering is done.
  • the semi-aromatic polyamide (A ′) since adipic acid is copolymerized with terephthalic acid as a dicarboxylic acid, the linearity of the resulting polymer is high. Furthermore, the semi-aromatic polyamide (A ′) is an isomorphous substituted copolymer in which the structural units derived from terephthalic acid and the structural units derived from adipic acid have similar molecular chain lengths. Since these are characteristics that enhance crystallinity, the semi-aromatic polyamide (A ′) can have a low melting point without impairing the high crystallinity that is characteristic of polyamides using terephthalic acid. Thereby, it is considered that a polyamide resin composition excellent in moldability such as mold releasability can be obtained.
  • the content ratio of the structural unit derived from terephthalic acid and the structural unit derived from adipic acid contained in the semi-aromatic polyamide (A ′) is such that the molar ratio of the structural unit derived from terephthalic acid / the structural unit derived from adipic acid is 40 / It is preferably 60 to 80/20, more preferably 40/60 to 70/30, still more preferably 50/50 to 70/30, and further preferably 60/40 to 70/30.
  • the polyamide resin composition has sufficient heat resistance and chemical resistance.
  • the molding temperature at the time of injection molding is lowered, so that the amount of gas generated at the time of molding due to decomposition of the olefin polymer (C) can be reduced. For this reason, it is possible to suppress mold contamination due to gas burning and the like, and there is an effect of excellent moldability.
  • the semi-aromatic polyamide (A ′) may have a dicarboxylic acid component derived from other than terephthalic acid or adipic acid.
  • the number of moles of the dicarboxylic acid component derived from other than terephthalic acid or adipic acid contained in the semi-aromatic polyamide (A ′) is based on the total number of moles of structural units derived from terephthalic acid and structural units derived from adipic acid. 5% or less is preferable.
  • dicarboxylic acids derived from other than terephthalic acid or adipic acid contained in the semi-aromatic polyamide (A ′) include aromatic dicarboxylic acids such as isophthalic acid, 2-methylterephthalic acid and naphthalenedicarboxylic acid; Flanged carboxylic acid such as furandicarboxylic acid, alicyclic dicarboxylic acid such as 1,4-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid; malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, 2-methyladipic acid Aliphatic dicarboxylic acids such as trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinic acid, azelaic acid, sebacic acid and suberic acid; and aliphatic dicarboxylic acids having 11 or more carbon atoms As well as structural units derived from any
  • the diamine component constituting the semi-aromatic polyamide (A ′) is preferably a component derived from a linear aliphatic diamine having 4 to 10 carbon atoms. This is because by using a linear aliphatic diamine within this range alone, a semi-aromatic polyamide having low water absorption and high heat resistance and high crystallinity can be obtained. Of all the diamine components constituting the semi-aromatic polyamide (A ′), 80 to 100 mol% is preferably a component derived from a linear aliphatic diamine having 4 to 10 carbon atoms.
  • straight chain aliphatic diamines having 4 to 10 carbon atoms examples include 1,4-butanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, and 1,9-nonanediamine. And 1,10-decanediamine and the like. These may be used alone or in combination.
  • the diamine component constituting the semi-aromatic polyamide (A ′) is preferably a component derived from 1,6-hexanediamine, and among the total diamine components constituting the semi-aromatic polyamide (A ′) 80 to 100 mol% is preferably a component derived from 1,6-hexanediamine having carbon atoms, and 90 to 100 mol% is preferably a component derived from 1,6-hexanediamine having carbon atoms. .
  • the semi-aromatic polyamide (A ′) may have a diamine component other than the aliphatic diamine having 4 to 10 carbon atoms as the diamine component, but the number of moles of the diamine other than the diamine may be semi-aromatic. It is preferably 5% or less of the total diamine component contained in the polyamide (A ′).
  • diamines other than the above diamines include linear aliphatic diamines having 11 or more carbon atoms such as 1,11-undecanediamine and 1,12-dodecanediamine; 2-methyl-1,5-pentanediamine, 2-methyl- 1,6-hexanediamine, 2-methyl-1,7-heptanediamine, 2-methyl-1,8-octanediamine, 2-methyl-1,9-nonanediamine, 2-methyl-1,10-decanediamine and Chain aliphatic diamines having side chains such as 2-methyl-1,11-undecanediamine; aromatic diamines such as metaxylenediamine; and alicyclics such as 1,4-cyclohexanediamine and 1,3-cyclohexanediamine Examples include diamines.
  • the intrinsic viscosity [ ⁇ ] of the semi-aromatic polyamide (A) is preferably 0.7 to 1.6 dl / g, more preferably 0.8 to 1.2.
  • the intrinsic viscosity [ ⁇ ] is measured in a temperature of 25 ° C. and 96.5% sulfuric acid.
  • the semi-aromatic polyamide (A) has a terminal amino group content of preferably 10 to 400 ⁇ equivalent, more preferably 50 to 400 ⁇ equivalent, and still more preferably 100 to 400 ⁇ equivalent.
  • the presence of a terminal amino group of 10 ⁇ equivalent or more increases compatibility with the olefin polymer (C) and the strength of the resin interface, and also adheres to the fibrous filler (D) and the conductive material (E). This is because the mechanical properties such as impact resistance tend to be improved.
  • the amount of terminal amino groups is 400 micro equivalents or less, a water absorption rate will be low and there exists a tendency which is excellent in long-term heat resistance.
  • the terminal amino group amount [NH 2 ] of the semi-aromatic polyamide (A) is measured by the following method. Weigh 0.5-0.7 g of semi-aromatic polyamide (A), dissolve in 30 mL of m-cresol, add 1-2 drops of 0.1% thymol blue / m-cresol, which is an indicator, and sample solution And Titration is carried out with a 0.02 N p-toluenesulfonic acid solution until the color changes from yellow to blue-violet, and the terminal amino group content ([NH 2 ], unit: ⁇ equivalent / g) is measured.
  • Semi-aromatic polyamide (A) can be produced based on a known production method in the same manner as conventional semi-aromatic polyamide.
  • dicarboxylic acid and diamine can be produced by polycondensation in a uniform solution. More specifically, a low-order condensate is obtained by heating dicarboxylic acid and diamine in the presence of a catalyst as described in WO 03/085029, and then this low-order condensation. It can be produced by polycondensation by applying shear stress to the melt of the product.
  • Semi-aromatic polyamide (B) The semi-aromatic polyamide (B) contained in the semi-aromatic polyamide resin composition of the present invention is melted in a temperature raising process (temperature raising rate: 10 ° C./min) obtained by differential scanning calorimetry (hereinafter referred to as DSC).
  • the amount of heat ( ⁇ H) is from 0 J / g to 5 J / g.
  • the heat of fusion becomes an index of the crystallinity of the polyamide resin, and the higher the heat of fusion, the higher the crystallinity, and the lower the heat of fusion, the lower the crystallinity.
  • the semi-aromatic polyamide (A) is excellent in compatibility with the semi-aromatic polyamide (A). It is preferable in that the appearance is excellent.
  • the heat of fusion ( ⁇ H) of the semi-aromatic polyamide (B) is preferably 0 J / g.
  • the semi-aromatic polyamide (B) is preferably an amorphous resin.
  • the heat of fusion ( ⁇ H) here is a value obtained according to JIS K7122, ie, in the differential scanning calorimetry chart obtained when scanning at a heating rate of 10 ° C./min, an exothermic peak accompanying crystallization. It is the value calculated from the area.
  • the heat of fusion ( ⁇ H) in the present invention is a value at the first temperature increase without erasing the history.
  • the semi-aromatic polyamide (B) is not particularly limited as long as it is an aromatic polyamide.
  • a polyamide containing a dicarboxylic acid component such as a structural unit derived from terephthalic acid or a structural unit derived from isophthalic acid and a diamine component
  • a polyamide containing a structural unit derived from an aromatic diamine such as metaxylylenediamine.
  • the semi-aromatic polyamide (B) includes those in which the benzene ring of the terephthalic acid component and / or isophthalic acid component constituting these polycondensates is substituted with an alkyl group or a halogen atom.
  • a polycondensate of isophthalic acid / terephthalic acid / 1,6-hexanediamine can be more preferably used because the resulting molded article has a high effect of improving the gas barrier properties and surface appearance.
  • Two or more of these semiaromatic polyamides (B) can be used in combination.
  • the heat of fusion of the semi-aromatic polyamide (B) can be within the above range by a known method.
  • the molar ratio of the structural unit derived from isophthalic acid is 50% or more, preferably 60% or more with respect to the molar amount of the whole polyamide, so that a semi-aromatic polyamide ( The heat of fusion of B) can be in the above range.
  • Each structural unit contained in the semi-aromatic polyamide (B) and the ratio thereof are known ratios for producing the semi-aromatic polyamide (B), known means such as 13 C-NMR measurement or 1 H-NMR measurement. Can be specified.
  • semi-aromatic polyamide containing a structural unit derived from isophthalic acid as a dicarboxylic acid component and a structural unit derived from an aliphatic diamine having 4 to 15 carbon atoms as a diamine component.
  • Aromatic polyamide (B ′) a semi-aromatic polyamide containing a structural unit derived from isophthalic acid as a dicarboxylic acid component and a structural unit derived from an aliphatic diamine having 4 to 15 carbon atoms as a diamine component.
  • Semi-aromatic polyamide (B ') contains a structural unit derived from isophthalic acid as a dicarboxylic acid component, and thus has low crystallinity but excellent gas barrier properties.
  • the semi-aromatic polyamide (B ′) may contain another dicarboxylic acid component other than the structural unit derived from isophthalic acid as long as the effects of the present invention are not impaired.
  • dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, 2-methylterephthalic acid and naphthalenedicarboxylic acid; furandicarboxylic acids such as 2,5-furandicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and 1 Alicyclic dicarboxylic acids such as 1,3-cyclohexanedicarboxylic acid; malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid Aliphatic dicarboxylic acids such as 3,3-diethylsuccinic acid, azelaic acid, sebacic acid and suberic acid
  • the molar ratio of the structural unit derived from isophthalic acid and the structural unit derived from terephthalic acid in the semi-aromatic polyamide (B ′) is such that the molar ratio of the structural unit derived from isophthalic acid / the structural unit derived from terephthalic acid is 60/40. It is preferably ⁇ 100 / 0, more preferably 60/40 to 90/10.
  • the semi-aromatic polyamide (B ′) becomes amorphous and is compatible with the semi-aromatic polyamide (A). Therefore, the impact resistance and gas barrier properties of the polyamide resin composition can be improved.
  • the content of the structural unit derived from isophthalic acid with respect to the total dicarboxylic acid component in the semi-aromatic polyamide (B ′) is preferably 40 mol% or more, more preferably 50 mol% or more.
  • the content of the structural unit derived from isophthalic acid with respect to the total dicarboxylic acid component in the semi-aromatic polyamide (B ′) is 40 mol% or more, the appearance and gas barrier properties of the molded product are excellent.
  • Semi-aromatic polyamide (B ') contains an aliphatic diamine having 4 to 15 carbon atoms as a diamine component.
  • the aliphatic diamine having 4 to 15 carbon atoms include 1,4-butanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, Linear aliphatic diamines such as 1,10-decanediamine, 1,11-undecanadiamine, 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine and 1,15-pentadecanediamine; 2-methyl-1,5-pentanediamine, 2-methyl-1,6-hexanediamine, 2-methyl-1,7-heptanediamine, 2-methyl-1,8-octanediamine, 2-methyl-1, Has side chains such as 9-nonanediamine, 2-methyl-1,10-decanediamine and 2-methyl-1,11-undecanediamine
  • the aliphatic diamine unit having 4 to 15 carbon atoms is more preferably an aliphatic diamine having 4 to 9 carbon atoms.
  • Particularly preferred is 1,6-hexanediamine.
  • the content of 1,6-hexanediamine with respect to the total diamine component is 40 mol% to 100 mol%, preferably 60 mol% to 100 mol%. This is because when the 1,6-hexanediamine is contained in an amount of 40 mol% or more as the diamine component, a semi-aromatic polyamide (B ′) having a low water absorption and excellent gas barrier properties can be obtained.
  • the intrinsic viscosity [ ⁇ ] of the semi-aromatic polyamide (B) is preferably 0.7 to 1.6 dl / g, more preferably 0.8 to 1.2.
  • the intrinsic viscosity [ ⁇ ] is measured in a temperature of 25 ° C. and 96.5% sulfuric acid.
  • the semi-aromatic polyamide (B) has a terminal amino group content of preferably 10 to 400 ⁇ equivalent, more preferably 50 to 400 ⁇ equivalent, and still more preferably 100 to 400 ⁇ equivalent.
  • the presence of a terminal amino group of 10 ⁇ equivalent or more increases compatibility with the olefin polymer (C) and the strength of the resin interface, and also adheres to the fibrous filler (D) and the conductive material (E). This is because the mechanical properties such as impact resistance tend to be improved.
  • the amount of terminal amino groups is 400 micro equivalents or less, a water absorption rate will be low and there exists a tendency which is excellent in long-term heat resistance.
  • the terminal amino group amount [NH 2 ] of the semi-aromatic polyamide (B) is measured by the following method. Weigh 0.5-0.7 g of semi-aromatic polyamide (B), dissolve in 30 mL of m-cresol, and add 1-2 drops of 0.1% thymol blue / m-cresol solution as an indicator solution. And Titration is carried out with a 0.02 N p-toluenesulfonic acid solution until the color changes from yellow to blue-violet, and the terminal amino group content ([NH 2 ], unit: ⁇ equivalent / g) is measured.
  • Semi-aromatic polyamide (B) can be produced based on a known production method in the same manner as conventional semi-aromatic polyamide.
  • dicarboxylic acid and diamine can be produced by polycondensation in a uniform solution. More specifically, a low-order condensate is obtained by heating dicarboxylic acid and diamine in the presence of a catalyst as described in WO 03/085029, and then this low-order condensate. It can be produced by polycondensation by applying shear stress to the melt.
  • Olefin polymer (C) In the olefin polymer (C), structural units having a functional group containing a hetero atom (hereinafter, also simply referred to as “functional group”) with respect to 100 parts by mass of the olefin polymer (C) are 0.1 to 1. 5 parts by mass, preferably 0.5 to 1.2 parts by mass. These functional groups are preferably functional groups containing carbon, hydrogen, and oxygen which is a hetero atom. Specific examples of the functional group include a carboxylic acid group (including a carboxylic anhydride group), an ester group, an ether group, an aldehyde group, and a functional group selected from the group consisting of a ketone group.
  • functional group include a carboxylic acid group (including a carboxylic anhydride group), an ester group, an ether group, an aldehyde group, and a functional group selected from the group consisting of a ketone group.
  • the structural unit having a functional group can be introduced by modifying the olefin polymer.
  • the compound for the modification reaction include unsaturated carboxylic acids and derivatives thereof.
  • Specific examples of the unsaturated carboxylic acid or derivative thereof include acrylic acid, methacrylic acid, ⁇ -ethylacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid and endocis-bicyclo [ 2,2,1] hept-5-ene-2,3-dicarboxylic acid (Nadic acid [trademark]) and other unsaturated carboxylic acids or unsaturated dicarboxylic acids, and their acid halides, amides, imides, acid anhydrides And derivatives such as esters.
  • unsaturated dicarboxylic acids or acid anhydrides thereof are preferable, and maleic acid, Nadic acid (trademark) and acid anhydrides thereof are particularly preferable.
  • a particularly preferred compound for modifying the olefin polymer is maleic anhydride.
  • Maleic anhydride has a relatively high reactivity with the olefin polymer before modification, hardly causes polymerization of maleic anhydride, and tends to be stable as a basic structure. For this reason, there are various advantages such as obtaining a stable quality olefin polymer (C).
  • Examples of the olefin polymer skeleton portion of the olefin polymer (C) include known polymer skeletons such as ethylene polymers, propylene polymers, butene polymers, and copolymers of these olefins.
  • a particularly preferred olefin polymer skeleton is a copolymer of ethylene and an olefin having 3 or more carbon atoms.
  • the olefin polymer (C) can be obtained, for example, by subjecting the olefin polymer before modification to a compound having a corresponding functional group at a specific ratio.
  • One preferred example of the olefin polymer before modification is an ethylene / ⁇ -olefin copolymer.
  • the ethylene / ⁇ -olefin copolymer refers to ethylene and other olefins such as propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene and 1-decene.
  • a copolymer with an ⁇ -olefin include an ethylene / propylene copolymer, an ethylene / 1-butene copolymer, an ethylene / 1-hexene copolymer, an ethylene / 1-octene copolymer, and an ethylene / propylene copolymer. 4-methyl-1-pentene copolymer and the like are included. Of these, ethylene / propylene copolymers, ethylene / 1-butene copolymers, ethylene / 1-hexene copolymers and ethylene / 1-octene copolymers are preferred.
  • the ethylene / ⁇ -olefin copolymer contains 70 to 99.5 mol%, preferably 80 to 99 mol%, of structural units derived from ethylene, and 0.5 to 30 mol% of structural units derived from ⁇ -olefin. , Preferably 1 to 20 mol%.
  • the ethylene / ⁇ -olefin copolymer has a melt flow rate (MFR) at 190 ° C. and a load of 2.16 kg according to ASTM D1238 of 0.01 to 20 g / 10 minutes, preferably 0.05 to 20 g / 10 minutes. Things are desirable.
  • MFR melt flow rate
  • the method for producing the ethylene / ⁇ -olefin copolymer is not particularly limited.
  • a transition metal catalyst such as titanium (Ti), vanadium (V), chromium (Cr), or zirconium (Zr) is used.
  • the method of manufacturing can be illustrated. In particular, a production method using a metallocene catalyst is suitable.
  • the ethylene / ⁇ -olefin copolymer can be converted to an olefin polymer (C) by a so-called graft modification method using a compound having a functional group, for example.
  • the graft modification of the ethylene / ⁇ -olefin copolymer can be carried out by a known method.
  • an ethylene / ⁇ -olefin copolymer is dissolved in an organic solvent, and an unsaturated carboxylic acid or a derivative thereof and a radical initiator are added to the obtained solution, and the temperature is usually 60 to 350 ° C., preferably 80 to 190 ° C. Examples thereof include a method of reacting at a temperature for 0.5 to 15 hours, preferably 1 to 10 hours.
  • organic solvent for dissolving the ethylene / ⁇ -olefin copolymer are not particularly limited, but are aromatic hydrocarbon solvents such as benzene, toluene and xylene; and aliphatic hydrocarbons such as pentane, hexane and heptane. System solvents and the like.
  • Another example of the graft modification method for ethylene / ⁇ -olefin copolymer is preferably an ethylene / ⁇ -olefin copolymer and an unsaturated carboxylic acid or derivative thereof using an extruder or the like in the absence of a solvent. And reacting with.
  • the reaction conditions in this case are such that the reaction temperature is usually not lower than the melting point of the ethylene / ⁇ -olefin copolymer, specifically 100 to 350 ° C.
  • the reaction time can usually be 0.5 to 10 minutes.
  • radical initiators include organic peroxides, organic peresters and azo compounds.
  • organic peroxides and organic peroxides examples include benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (peroxide benzoate) hexyne-3,1 , 4-bis (t-butylperoxyisopropyl) benzene, lauroyl peroxide, t-butylperacetate, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3,2,5-dimethyl-2 , 5-di (t-butylperoxy) hexane, t-butylperbenzoate, t-butylperphenylacetate, t-butylperisobutyrate, t-butylper-sec-octoate, t-butylperpivalate, cumyl Perpivalate and t-butylper
  • azo compound examples include azobisisobutyronitrile and dimethylazoisobutyrate.
  • dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3,2,5-dimethyl-2,5-di (t Dialkyl peroxides such as -butylperoxy) hexane and 1,4-bis (t-butylperoxyisopropyl) benzene are preferred.
  • the radical initiator is usually used in a proportion of 0.001 to 1 part by weight based on 100 parts by weight of the ethylene / ⁇ -olefin copolymer before modification.
  • the modified ethylene / ⁇ -olefin copolymer preferably has a density measured by JIS K7112 of 0.80 to 0.95 g / cm 3 and preferably 0.85 to 0.90 g / cm 3. More preferred.
  • the intrinsic viscosity [ ⁇ ] of the modified ethylene / ⁇ -olefin copolymer measured in a 135 ° C. decalin (decahydronaphthalene) solution is preferably 0.5 to 4.0 dl / g, more preferably 1.0 to 3 dl / g, more preferably 1.5 to 3 dl / g. If [ ⁇ ] is within the above range, the toughness and melt fluidity of the resin composition of the present invention can be compatible at a high level.
  • the intrinsic viscosity [ ⁇ ] in 135 ° C. decalin of the olefin polymer (C) is measured as follows based on a conventional method. 20 mg of a sample is dissolved in 15 ml of decalin, and the specific viscosity ( ⁇ sp) is measured in an atmosphere of 135 ° C. using an Ubbelohde viscometer. After adding 5 ml of decalin to the decalin solution and diluting, the same specific viscosity is measured. Based on the measurement result obtained by repeating this dilution operation and viscosity measurement twice more, the “ ⁇ sp / C” value when the concentration (C) is extrapolated to zero is defined as the intrinsic viscosity [ ⁇ ].
  • the content of the structural unit having a functional group contained in the olefin polymer (C) is 0.1 to 1.5 parts by mass, preferably 0.2 to 1 part by mass with respect to 100 parts by mass of the olefin polymer (C). 1 part by mass. If there are too few structural units having a functional group, the effect of improving the impact resistance of the resin composition may be low. This is because the reaction or interaction between the end groups of the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B) and the functional group of the olefin polymer (C) is eliminated, whereby the olefin polymer (C) is agglomerated.
  • the content of the structural unit having a functional group contained in the olefin polymer (C) is determined by a charge ratio when the olefin polymer before modification and the compound having a functional group are reacted, 13 C-NMR measurement or 1 H- It can be specified by a known means such as NMR measurement.
  • 1 H-NMR measurement an ECX400 type nuclear magnetic resonance apparatus manufactured by JEOL Ltd. is used, the solvent is deuterated orthodichlorobenzene, the sample concentration is 20 mg / 0.6 mL, the measurement temperature is 120 ° C., the observation nucleus Is 1 H (400 MHz), the sequence is a single pulse, the pulse width is 5.12 ⁇ s (45 ° pulse), the repetition time is 7.0 seconds, and the number of integration is 500 times or more.
  • the standard chemical shift is 0 ppm for tetramethylsilane hydrogen, but the same result can also be obtained by setting the peak derived from the residual hydrogen of deuterated orthodichlorobenzene to 7.10 ppm as the standard value for chemical shift. Can be obtained.
  • a peak such as 1 H derived from the functional group-containing compound can be assigned by a conventional method.
  • an ECP500 type nuclear magnetic resonance apparatus manufactured by JEOL Ltd. is used as a measurement apparatus, a mixed solvent of orthodichlorobenzene / heavy benzene (80/20 vol%), a measurement temperature is 120 ° C.,
  • the observation nucleus is a condition of 13 C (125 MHz), single pulse proton decoupling, 45 ° pulse, repetition time of 5.5 seconds, integration number of 10,000 times or more, and 27.50 ppm as a reference value for chemical shift. Assignment of various signals is performed based on a conventional method, and quantification can be performed based on an integrated value of signal intensity.
  • the functional group content of polymers having different functional group contents is determined by NMR measurement, and infrared spectroscopy (IR) measurement is performed on the polymer whose functional group content is determined.
  • IR infrared spectroscopy
  • a calibration curve between the intensity ratio of a specific peak of the infrared spectroscopy (IR) spectrum and the functional group content is created. Based on the calibration curve, the functional group content of any polymer is determined.
  • This method is simpler than the NMR measurement described above, but basically, it is necessary to prepare a corresponding calibration curve depending on the type of base resin and functional group. For this reason, this method is preferably used for process management in resin production at a commercial plant, for example.
  • Fibrous filler (D) The semi-aromatic polyamide resin composition of the present invention can contain a fibrous filler (D).
  • the fibrous filler (D) include glass fiber, wholly aromatic polyamide fiber (for example, polyparaphenylene terephthalamide fiber, polymetaphenylene terephthalamide fiber, polyparaphenylene isophthalamide fiber, polymetaphenylene isophthalate). Amide fibers and fibers obtained from condensates of diaminodiphenyl ether and terephthalic acid or isophthalic acid), boron fibers, and liquid crystal polyester fibers.
  • the fibrous filler (D) one or more of these can be used.
  • the fibrous filler (D) is at least one selected from glass fibers and wholly aromatic polyamide fibers. Is preferred.
  • the average length of the fibrous filler (D) used is preferably in the range of 1 ⁇ m to 20 mm from the viewpoint of maintaining good moldability and improving the mechanical properties and heat resistance of the obtained molded product.
  • a range of 5 ⁇ m to 10 mm is more preferable, and a range of 10 ⁇ m to 5 mm is more preferable.
  • the aspect ratio of the fibrous filler (D) is preferably in the range of 5 to 2000, more preferably in the range of 30 to 600.
  • the fibrous filler (D) is subjected to a surface treatment since the adhesion to the matrix resin, particularly the adhesion to the polyamide, is improved, and the mechanical properties of the resulting polyamide resin composition are greatly improved.
  • the surface treatment agent in the surface treatment include coupling agents such as a silane coupling agent, a titanium coupling agent and an aluminate coupling agent, and a sizing agent.
  • suitably used coupling agents include aminosilane, epoxy silane, methyltrimethoxysilane, methyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane and vinyltrimethoxysilane. .
  • sizing agents examples include epoxy compounds, urethane compounds, carboxylic acid compounds, urethane / maleic acid modified compounds, and urethane / amine modified compounds. These surface treatment agents may be used alone or in combination of two or more. In particular, when a coupling agent and a sizing agent are used in combination, the adhesion between the fibrous filler (D) and the matrix resin, particularly polyamide, is further improved, and the mechanical properties of the resulting semi-aromatic polyamide resin composition are further improved. improves.
  • the surface-treated fibrous filler (D) has a mass reduction when heated at 625 ⁇ 20 ° C. for 10 minutes or more with respect to 100 parts by mass of the surface-treated fibrous filler (D). It is preferably in the range of 8.0 parts by mass, more preferably in the range of 0.1 to 5.0 parts by mass.
  • the semi-aromatic polyamide resin composition of the present invention can contain a conductive material (E).
  • a conductive material (E) for example, it is possible to suppress the occurrence of electrostatic sparks when molded into fuel system parts, and is required when molding into automobile parts and further applying electrostatic coating. Conductivity can be imparted.
  • the conductive material in the present invention is defined as having a volume resistivity of 100 ⁇ ⁇ cm or less.
  • the conductive material (E) examples include, for example, carbon fiber, conductive carbon black, carbon fibril, carbon nanotube, metal fiber, metal powder, metal flake, metal oxide powder, and metal-coated fiber. Since the specific gravity is excellent and the balance between the conductivity imparting effect and the reinforcing effect is excellent, the conductive material (E) is at least one selected from the group consisting of carbon fiber, conductive carbon black, carbon fibril and carbon nanotube. Is preferred.
  • the fibrous filler (D) may also serve as the conductive material (E).
  • the conductive material (E) For example, carbon fibers, carbon fibrils, carbon nanotubes, metal fibers, metal-coated fibers, and the like may be not only the fibrous filler (D) but also the conductive material (E).
  • the carbon fiber may be either pitch-based or PAN-based carbon fiber, but is preferably PAN-based carbon fiber because of its excellent elasticity and impact resistance.
  • the average fiber length of the carbon fibers is preferably in the range of 1 to 20 mm in the state before melt-kneading from the viewpoint of maintaining good moldability and improving the mechanical properties and heat resistance of the obtained molded product. A range of 3 to 10 mm is more preferable, and a range of 5 to 8 mm is more preferable.
  • the aspect ratio of the carbon fiber is preferably in the range of 100 to 5000, more preferably in the range of 300 to 2000.
  • conductive carbon black for example, carbon black described as conductive carbon black in International Publication No. 01/81473 pamphlet or Japanese Patent Laid-Open No. 2006-213798 can be used. Commercially available conductive carbon black can also be used. Ketjen Black EC600JD and EC300J available from Ketjen Black International Co., Ltd .; Vulcan XC-72 and XC-305 available from Cabot Corporation; PrintexXE2B available from Degussa, # 5500, # 4500 available from Tokai Carbon Co., Ltd., # 5400B available from Mitsubishi Chemical Corporation, etc. can be used.
  • carbon fibril fine carbon fibers described in International Publication No. 94/23433 pamphlet can be used.
  • Commercially available carbon fibrils can also be used, and BN fibrils available from Hyperion Catalysis International can be used.
  • carbon nanotubes multi-walled carbon nanotubes described in Japanese Patent No. 3761561 can be used.
  • the content of the conductive material (E) is preferably in the range of 0.1 to 30 parts by mass with respect to 100 parts by mass of the polyamide resin composition because the balance between conductivity and mechanical properties is excellent. 2 to 25 parts by mass is more preferable, and 0.3 to 20 parts by mass is even more preferable.
  • the semi-aromatic polyamide resin composition of the present invention may contain an optional additive depending on the application within a range not impairing the effects of the invention.
  • optional additives include antioxidants (phenols, amines, sulfurs and phosphorus, etc.), fillers (clay, silica, alumina, talc, kaolin, quartz, mica, graphite, etc.), heat resistant stability Agents (lactone compounds, vitamin Es, hydroquinones, copper halides and iodine compounds, etc.), light stabilizers (benzotriazoles, triazines, benzophenones, benzoates, hindered amines, oxanilides, etc.), other polymers (Olefins such as polyolefins, ethylene / propylene copolymer, ethylene / 1-butene copolymer, olefin copolymers such as propylene / 1-butene copolymer, polystyrene, polyamide,
  • the content of the optional additive in the polyamide resin composition of the present invention varies depending on the type of the component, but the semiaromatic polyamide (A), the semiaromatic polyamide (B), the olefin polymer (C), and the fibrous form
  • the amount is preferably 0 to 10 parts by mass, more preferably 0 to 5 parts by mass, and still more preferably 0 to 1 part by mass with respect to 100 parts by mass of the filler (D).
  • the semi-aromatic polyamide resin composition of the present invention comprises a semi-aromatic polyamide (A), a semi-aromatic polyamide (B), an olefin polymer (C) and a fibrous filler (D), 20-60 parts by mass of semi-aromatic polyamide (A) with respect to 100 parts by mass in total of aromatic polyamide (A), semi-aromatic polyamide (B), olefin polymer (C) and fibrous filler (D)
  • the semi-aromatic polyamide (B) is 5 to 30 parts by mass
  • the olefin polymer (C) is 1 to 30 parts by mass
  • the fibrous filler (D) is 0 to 60 parts by mass, preferably the fibrous filler (D 5) to 60 parts by mass, more preferably 5 to 50 parts by mass of the fibrous filler (D).
  • the ratio of the mass of the semi-aromatic polyamide (B) to the total mass of the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B), that is, (B) / ((A) + (B)) is It is preferably 0.05 to 0.5, and more preferably 0.1 to 0.3.
  • the ratio of (B) is 0.05 or less, the effect of improving the gas barrier property of the obtained resin composition tends to be insufficient.
  • the ratio of (B) is 0.5 or more, although the gas barrier property of the resin composition can be improved, moldability such as injection fluidity and mold release property may be impaired.
  • the ratio of the mass of the olefin polymer (C) to the total mass of the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B), that is, (C) / ((A) + (B)) is 0. It is preferably from 03 to 0.75, more preferably from 0.07 to 0.5. When the ratio of (C) is 0.03 or less, the resulting resin composition may not have sufficient impact strength. Moreover, when the ratio of (C) is 0.75 or more, gas barrier properties, heat resistance, mechanical properties, and moldability tend to be impaired.
  • the semi-aromatic polyamide resin composition of the present invention comprises a semi-aromatic polyamide (A), a semi-aromatic polyamide (B), an olefin polymer (C) in the above ratio, and If necessary, the fibrous filler (D), the conductive material (E) and other components are mixed by a known method, for example, a Henschel mixer, a V blender, a ribbon blender or a tumbler blender, or further uniaxial after mixing. It can be produced by a method of melt-kneading with an extruder, a multi-screw extruder, a kneader or a Banbury mixer, and thereafter granulating or pulverizing.
  • a known method for example, a Henschel mixer, a V blender, a ribbon blender or a tumbler blender, or further uniaxial after mixing. It can be produced by a method of melt-kneading with an extruder, a multi-screw extru
  • melt-kneading method a known method can be employed, for example, the method described in Patent Document 1 can be employed.
  • molded articles containing a semi-aromatic polyamide resin composition examples include, for example, a radiator grill, a rear spoiler, a wheel cover, a wheel cap, a cowl vent grill, an air outlet louver, Automotive exterior parts such as air scoop, hood bulge, fender and back door; cylinder head cover, engine mount, air intake manifold, throttle body, air intake pipe, radiator tank, radiator support, water pump inlet, water Pump outlet, thermostat housing, cooling fan, fan shroud, oil pan, oil filter housing, oil filler cap, oil level gauge, tie Automotive engine compartment components such as mining belts, timing belt covers and engine covers; fuel caps, fuel filler tubes, automotive fuel tanks, fuel sender modules, fuel cut-off valves, quick connectors, canisters, Automobile fuel system parts such as fuel delivery pipes and fuel filler necks; Automobile drive system parts such as shift lever housings and propeller shafts; Automobile chassis parts such as stabilizer bars and linkage rods;
  • Automotive functional parts automotive electronics parts such as wire harnesses / connectors, relay blocks, sensor housings, encapsulations, ignition coils and distributor caps; general-purpose equipment (mowers, lawn mowers, chainsaws, etc.) Fuel system parts for general equipment such as fuel tanks; and electrical and electronic parts such as connectors and LED reflectors, etc., but the polyamide resin composition of the present invention has toughness such as impact resistance and elongation, tensile strength, etc.
  • the ratio of the content ratio of the structural unit derived from terephthalic acid and the structural unit derived from adipic acid contained in the semi-aromatic polyamide (A ′) is the molar ratio of the structural unit derived from terephthalic acid / the structural unit derived from adipic acid.
  • a conductive material (E) is at least one selected from the group consisting of carbon fiber, conductive carbon black, carbon fibril, and carbon nanotube.
  • a molded article comprising the semi-aromatic polyamide resin composition according to any one of [1] to [9].
  • a quick connector comprising the semi-aromatic polyamide resin composition according to any one of [1] to [9].
  • Polyamides (A-1) to (A-3), (a-1) to (a-2) and (B-1) were prepared as follows.
  • Polyamide (A-1) 1787 g (10.8 mol) of terephthalic acid, 2800 g (24.1 mol) of 1,6-hexanediamine, 1921 g (13.1 mol) of adipic acid, 5.7 g of sodium hypophosphite monohydrate and 554 g of distilled water was placed in an autoclave with an internal volume of 13.6 L and purged with nitrogen. Stirring was started from 190 ° C., and the internal temperature was raised to 250 ° C. over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.01 MPa. The reaction was continued for 1 hour as it was, and then discharged from the spray nozzle installed at the bottom of the autoclave to extract the low condensate.
  • the obtained low condensate had a water content of 3600 ppm and an intrinsic viscosity [ ⁇ ] of 0.14 dl / g.
  • this low condensate was placed in a shelf type solid phase polymerization apparatus and heated to 220 ° C. over about 1 hour and 30 minutes after nitrogen substitution. Then, it reacted for 1 hour and cooled to room temperature.
  • the intrinsic viscosity [ ⁇ ] of the obtained polyamide was 0.48 dl / g.
  • the obtained polyamide resin had an intrinsic viscosity [ ⁇ ] of 0.9 dl / g and a melting point Tm 1 of 295 ° C.
  • the amount of terminal amine was 180 ⁇ equivalent.
  • Polyamide (A-2) A polyamide resin was prepared in the same manner as in A-1, except that the amount of terephthalic acid was changed to 2184 g and the amount of adipic acid was changed to 1572 g.
  • the obtained polyamide resin had an intrinsic viscosity [ ⁇ ] of 0.94 dl / g and a melting point Tm 1 of 310 ° C.
  • Polyamide (A-3) A polyamide resin was prepared in the same manner as in A-1, except that the amount of terephthalic acid was changed to 2482 g and the amount of adipic acid was changed to 1310 g.
  • the obtained polyamide resin had an intrinsic viscosity [ ⁇ ] of 0.90 dl / g and a melting point Tm 1 of 320 ° C.
  • Polyamide (a-1) 1708 g (10.3 mol) of terephthalic acid, 2800 g (24.1 mol) of 1,6-hexanediamine, 516 g (3.1 mol) of isophthalic acid, 1537 g (10.5 mol) of adipic acid, sodium hypophosphite 5.7 g of hydrate and 535 g of distilled water were placed in an autoclave with an internal volume of 13.6 L and purged with nitrogen. Stirring was started from 190 ° C., and the internal temperature was raised to 250 ° C. over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.02 MPa.
  • the reaction was continued for 1 hour as it was, and then discharged from the spray nozzle installed at the bottom of the autoclave to extract the low condensate. Then, after cooling to room temperature, it grind
  • the obtained low condensate had a water content of 4000 ppm and an intrinsic viscosity [ ⁇ ] of 0.15 dl / g.
  • this low condensate was put into a shelf type solid phase polymerization apparatus, and after the nitrogen substitution, the temperature was raised to 180 ° C. over about 1 hour 30 minutes. Thereafter, the reaction was performed for 1 hour 30 minutes, and the temperature was lowered to room temperature.
  • the obtained polyamide resin had an intrinsic viscosity [ ⁇ ] of 0.91 dl / g and a melting point Tm 1 of 279 ° C. Moreover, the amount of terminal amines was 170 micro equivalents.
  • Polyamide (a-2) 3971 g (23.9 mol) terephthalic acid, 3051 g (19.3 mol) 1,9-nonanediamine, 763 g (4.8 mol) 2-methyl-1,8-octanediamine, 36.5 g (0.3 mol) benzoic acid Mol), sodium hypophosphite-hydrate (5.7 g) and distilled water (780 g) were placed in an autoclave having an internal volume of 13.6 L and purged with nitrogen. The mixture was heated and stirring was started from 190 ° C., and the internal temperature was raised to 250 ° C. over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.03 MPa.
  • the reaction was continued for 1 hour as it was, and then discharged from the spray nozzle installed at the bottom of the autoclave to extract the low condensate. Then, after cooling to room temperature, it grind
  • the obtained low condensate had a water content of 4100 ppm and an intrinsic viscosity [ ⁇ ] of 0.13 dl / g.
  • this low condensate was put into a shelf type solid phase polymerization apparatus, and after the nitrogen substitution, the temperature was raised to 180 ° C. over about 1 hour 30 minutes. Thereafter, the reaction was performed for 1 hour 30 minutes, and the temperature was lowered to room temperature.
  • the obtained polyamide resin had an intrinsic viscosity [ ⁇ ] of 1.09 dl / g and a melting point Tm 1 of 302 ° C. Moreover, the amount of terminal amines was 25 micro equivalents.
  • Polyamide (B-1) 1390 g (8.4 mol) of terephthalic acid, 2800 g (24.1 mol) of 1,6-hexanediamine, 2581 g (15.5 mol) of isophthalic acid, 109.5 g (0.9 mol) of benzoic acid, hypophosphorous acid Sodium monohydrate (5.7 g) and distilled water (545 g) were placed in an autoclave having an internal volume of 13.6 L and purged with nitrogen. Stirring was started from 190 ° C., and the internal temperature was raised to 250 ° C. over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.02 MPa.
  • the reaction was continued for 1 hour as it was, and then discharged from the spray nozzle installed at the bottom of the autoclave to extract the low condensate. Then, after cooling to room temperature, it grind
  • the obtained low condensate had a water content of 3000 ppm and an intrinsic viscosity [ ⁇ ] of 0.14 dl / g.
  • a polyamide resin was prepared.
  • the heat of fusion ⁇ H of the obtained polyamide resin was 0 J / g.
  • the obtained polyamide resin had an intrinsic viscosity [ ⁇ ] of 0.68 dl / g and no melting point Tm1.
  • the amount of terminal amines was 270 micro equivalents.
  • the water content of the obtained low condensate was determined by weighing about 0.2 g of a sample, heating to 200 ° C. with a Karl Fischer moisture meter, and measuring the amount of water generated at that time (solid vaporization method). .
  • the intrinsic viscosity [ ⁇ ] of the obtained polyamide was measured as follows. 0.5 g of polyamide was dissolved in 50 ml of a 96.5% sulfuric acid solution. The number of seconds flowing down under the condition of 25 ° C. ⁇ 0.05 ° C.
  • the melting point Tm 1 of the obtained polyamide was measured as follows in accordance with JIS K7121.
  • the polyamide was held at 350 ° C. for 5 minutes using a PerkinElmer DSC7, then cooled to 23 ° C. at a rate of 10 ° C./min, and then heated at 10 ° C./min.
  • Endothermic peak based on melting at this time - the peak of click top was defined as the melting point Tm 1.
  • the heat of fusion ⁇ H was determined from the area of the exothermic peak of crystallization according to JIS K7122.
  • Olefin polymer Olefin polymers (C-1) to (C-2) and (c-1) were prepared as follows.
  • Olefin polymer (C-1) 0.63 mg of bis (1,3-dimethylcyclopentadienyl) zirconium dichloride is placed in a glass flask thoroughly purged with nitrogen, and 1.57 ml of a toluene solution of methylaminoxan (Al; 0.13 mmol / liter). And 2.43 ml of toluene were added to obtain a catalyst solution.
  • ethylene / 1-butene copolymer 100 parts by weight of the obtained ethylene / 1-butene copolymer was mixed with 0.5 parts by weight of maleic anhydride and 0.04 parts by weight of peroxide (Perhexin 25B, trade name, manufactured by NOF Corporation). .
  • the obtained mixture was melt graft modified with a single screw extruder set at 230 ° C. to obtain a modified ethylene / 1-butene copolymer.
  • the amount of maleic anhydride graft modification of the obtained modified ethylene / 1-butene copolymer was 0.46% by weight.
  • the intrinsic viscosity [ ⁇ ] measured in a 135 ° C. decalin solution was 1.98 dl / g.
  • Olefin polymer (C-2) Modified olefin polymer except that the amount of maleic anhydride added when modifying the ethylene / 1-butene copolymer before the modification treatment in the production of the olefin polymer (C-1) was changed to 1.0 part by weight Prepared in the same manner as (C-1). The amount of maleic anhydride graft modification was 0.98% by weight. The intrinsic viscosity [ ⁇ ] measured in a 135 ° C. decalin solution was 1.90 dl / g.
  • Olefin polymer (c-1) Modified olefin polymer except that the amount of maleic anhydride added when modifying the ethylene / 1-butene copolymer before the modification treatment in the production of the olefin polymer (C-1) was changed to 2.0 parts by weight Prepared in the same manner as (C-1). The amount of maleic anhydride graft modification was 1.89% by weight.
  • the intrinsic viscosity [ ⁇ ] measured in a 135 ° C. decalin solution was 1.78 dl / g.
  • composition of the olefin polymer for example, the content (mol%) of ethylene and ⁇ -olefin having 3 or more carbon atoms and the content (mass%) of the functional group structural unit were measured by 13 C-NMR.
  • the measurement conditions are as follows.
  • Measuring apparatus Nuclear magnetic resonance apparatus (ECP500 type, manufactured by JEOL Ltd.) Observation nucleus: 13 C (125 MHz) Sequence: Single pulse proton decoupling Pulse width: 4.7 ⁇ sec (45 ° pulse) Repeat time: 5.5 seconds Accumulated number: 10,000 times or more Solvent: Orthodichlorobenzene / deuterated benzene (volume ratio: 80/20) mixed solvent Sample concentration: 55 mg / 0.6 mL Measurement temperature: 120 ° C Standard value of chemical shift: 27.50ppm
  • the density of the ethylene / 1-butene copolymer was measured at a temperature of 23 ° C. using a density gradient tube in accordance with JIS K7112.
  • melt flow rate (MFR) The melt flow rate (MFR) of the ethylene / 1-butene copolymer was measured at 190 ° C. under a load of 2.16 kg in accordance with ASTM D1238. The unit is g / 10 min.
  • the intrinsic viscosity [ ⁇ ] of the olefin polymer was measured at 135 ° C. in a decalin solvent. Specifically, about 20 mg of the acid-modified polyolefin resin (B) was dissolved in 25 ml of decalin, and then the specific viscosity ⁇ sp was measured in an oil bath at 135 ° C. using an Ubbelohde viscometer. After 5 ml of decalin was added to the decalin solution for dilution, the specific viscosity ⁇ sp was measured in the same manner as described above.
  • Tm 2 The melting point Tm 2 of the resulting resin composition was measured as follows. The resin composition was heated at a rate of 10 ° C./min using DSC7 manufactured by PerkinElmer. Endothermic peak based on melting at this time - the peak of click top was defined as the melting point Tm 2.
  • IZOD impact strength Using the following injection molding machine, a test piece with a notch and a thickness of 3.2 mm adjusted under the following molding conditions was prepared, and in accordance with ASTM D256, in an atmosphere of a temperature of 23 ° C. and a relative humidity of 50% The IZOD impact strength was measured. Molding machine: SE50DU, manufactured by Sumitomo Heavy Industries, Ltd. Molding machine cylinder temperature: (Tm 2 +15) ° C., mold temperature: 120 ° C.
  • injection fluidity A bar flow mold having a width of 10 mm and a thickness of 0.5 mm was used for injection under the following conditions, and the flow length (mm) of the resin in the mold was measured. In addition, it shows that injection
  • Molding machine Toshiba Machine Co., Ltd.
  • Examples 1 to 8 have a high melting point and excellent results in all of IZOD impact strength, flexural modulus, flexural strength, fuel permeability, injection fluidity, and mold releasability. Furthermore, Example 5 shows a sufficiently low resistance value by containing a conductive material.
  • Comparative Example 1 does not contain the semi-aromatic polyamide (B), it can be seen that the fuel permeability is poor. It can be seen that Comparative Example 2 has poor injection fluidity and mold releasability because the content of the semi-aromatic polyamide (B) is too large. Since Comparative Example 3 contains neither semi-aromatic polyamide (A) nor semi-aromatic polyamide (B), it can be seen that the melting point is low, and injection fluidity and mold releasability are poor. Since the comparative example 4 does not contain an olefin polymer (C), it turns out that IZOD impact strength is small. It can be seen that Comparative Example 5 has poor injection fluidity because the content of the structural unit having a functional group in the olefin polymer (C) is large.
  • the semi-aromatic polyamide resin composition of the present invention is excellent in impact resistance, fuel barrier properties, and moldability, it is particularly suitably used for molding quick connectors and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

 テレフタル酸とアジピン酸からなるジカルボン酸成分と、炭素原子数4~10の直鎖脂肪族ジアミンを有するジアミン成分とからなる半芳香族ポリアミド(A)と、イソフタル酸を有するジカルボン酸成分と、炭素原子数4~15の脂肪族ジアミンを有するジアミン成分からなる半芳香族ポリアミド(B)と、官能基構造単位を特定量含むオレフィン重合体(C)と、繊維状充填材(D)とを特定の割合で含む半芳香族ポリアミド樹脂組成物によって、耐衝撃性、燃料バリア性、および射出成形性に優れる半芳香族ポリアミド樹脂組成物、およびそれを含む成型品が提供される。

Description

半芳香族ポリアミド樹脂組成物およびそれを含む成型品
 本発明は、半芳香族ポリアミド樹脂組成物およびそれを含む成形品に関する。
 ナイロン6、ナイロン66などに代表されるポリアミドは、成形加工性、機械物性や耐薬品性に優れていることから、自動車用、産業資材用、衣料用、電気・電子用又は工業用などの各種部品材料として広く用いられている。近年、米国を中心として自動車燃料の蒸散量を大幅に低減することが求められており、燃料チューブやその接合部である継手などの燃料系部品においては、燃料チューブまたは継手からの自動車燃料の蒸散量を大幅に低減することが求められている。
 また、継手においては、飛び石や事故による衝撃で破壊されないよう、高い耐衝撃強度も求められている。
 これに対して、燃料バリア性が良好であるPA9Tを用いた燃料配管継手が提案されている。特許文献1においては、特定のPA9T、変性オレフィン重合体である無水マレイン酸変性エチレン-ブテン共重合体、およびガラス繊維を含むポリアミド樹脂組成物が開示されている。
特開2008-179753号公報
 しかし、特許文献1に記載の樹脂組成物に用いられているPA9Tでは、ジアミン成分として1,9-ノナンジアミンに加えて2-メチル-1,8-オクタンジアミンを用いている。そのため、結晶性が損なわれ結晶化速度が低くなり、射出成形時の金型離型性などの成形性が十分でない場合があった。
 また、PA9Tは、従来のナイロン12などの脂肪族ポリアミドに比べて成形品における耐衝撃性等の靱性が低いという問題を有する。これに対し、特許文献1においては、樹脂組成物に変性オレフィン重合体を配合することで耐衝撃強度を改良している。しかし、本発明者らは、このような場合に、樹脂組成物が十分な金型離型性を示さなかったり、増粘して射出流動性が低下したりするなど、良好な成形性を示さない場合があることを見出した。
 本発明の課題は、耐衝撃性、燃料バリア性、および成形性に優れる半芳香族ポリアミド樹脂組成物、およびそれを含む成型品を提供することである。
 本発明は、以下に示す半芳香族ポリアミド樹脂組成物に関する。
 [1]示差走査熱量計(DSC)で測定した融点(Tm)が290℃以上340℃以下である半芳香族ポリアミド(A)20~60質量部と、
 示差走査熱量計(DSC)で測定した、昇温過程(昇温速度:10℃/min)における融解熱量(ΔH)が0J/g以上5J/g以下である半芳香族ポリアミド(B)5~30質量部と、
 ヘテロ原子を含む官能基構造単位0.1~1.5質量部を含むオレフィン重合体(C)1~30質量部と
 繊維状充填材(D)0~60質量部とを含む半芳香族ポリアミド樹脂組成物(ただし、(A)、(B)、(C)、および(D)の合計は100質量部である)。
 [2]前記半芳香族ポリアミド(A)が、ジカルボン酸成分としてテレフタル酸由来の構造単位およびアジピン酸由来の構造単位を含み、ジアミン成分として炭素原子数4~10の直鎖脂肪族由来の構造単位を含む、[1]に記載の半芳香族ポリアミド樹脂組成物。
 [3]前記半芳香族ポリアミド(A)に含まれる前記テレフタル酸由来の構造単位と前記アジピン酸由来の構成単位との含有量の比が、テレフタル酸由来の構造単位/アジピン酸由来の構造単位のモル比が40/60~80/20である[2]に記載の半芳香族ポリアミド樹脂組成物。
 [4]前記半芳香族ポリアミド(B)が、ジカルボン酸成分としてイソフタル酸由来の構造単位を含み、ジアミン成分として炭素原子数4~15の脂肪族由来の構造単位を含む、[1]~[3]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
 [5]前記半芳香族ポリアミド(B)はテレフタル酸由来の構成単位を有してもよく、前記イソフタル酸由来の構造単位と前記テレフタル酸由来の構成単位との含有量の比が、イソフタル酸由来の構造単位/テレフタル酸由来の構造単位のモル比が60/40~100/0である[4]に記載の半芳香族ポリアミド樹脂組成物。
 [6]前記半芳香族ポリアミド(A)と半芳香族ポリアミド(B)の質量の割合((B)/((A)+(B)))は0.05~0.5である[1]~[5]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
 [7]前記半芳香族ポリアミド(A)に含まれる全ジアミン成分のうち、80~100モル%が1,6-ヘキサンジアミン由来の構造単位である[1]~[6]のいずれかに記載の半芳香族ポリミアド樹脂組成物。
 [8]前記半芳香族ポリアミド(B)に含まれる全ジアミン成分のうち、40~100モル%が1,6-ヘキサンジアミン由来の構造単位である[1]~[7]のいずれかに記載の半芳香族ポリミアド樹脂組成物。
 [9]前記オレフィン重合体(C)がポリオレフィン由来の骨格部分を含み、前記ポリオレフィン由来の骨格部分がエチレンと炭素数3以上のオレフィンとの共重合体である、[1]~[8]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
 [10]前記オレフィン重合体(C)のヘテロ原子を含む官能基構造単位が、カルボン酸基、エステル基、エーテル基、アルデヒド基およびケトン基からなる群から選ばれる官能基を含む、[1]~[9]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
 [11]前記オレフィン重合体(C)のヘテロ原子を含む官能基構造単位が無水マレイン酸により変性された構造単位である、[1]~[10]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
 [12]さらに導電材(E)を含む[1]~[11]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
 [13]前記導電材(E)が炭素繊維、導電性カーボンブラック、カーボンフィブリルおよびカーボンナノチューブからなる群から選ばれる少なくとも1種である[12]に記載の半芳香族ポリアミド樹脂組成物。
 [14][1]~[13]のいずれかに記載の半芳香族ポリアミド樹脂組成物を含む成形品。
 [15]クイックコネクタ用である、[14]に記載の成形品。
 本発明によると、耐衝撃性、燃料バリア性、および成形性に優れる半芳香族ポリアミド樹脂組成物、およびそれを含む成型品、例えばクイックコネクタ等が提供される。
 本明細書および請求の範囲において、「~」という表記は、中間値のみならずその境界の値も含む範囲を意味する。たとえば、「A~B」と表記されている場合、「A」、「B」および「AとBとの中間の値」を含む範囲を意味する。
1.半芳香族ポリアミド樹脂組成物
 本発明の半芳香族ポリアミド樹脂組成物は、半芳香族ポリアミド(A)、半芳香族ポリアミド(B)、オレフィン重合体(C)を含み、好ましくは繊維状充填材(D)、導電材(E)を含む。
 本発明者らは、本発明における半芳香族ポリアミド樹脂組成物において、低結晶性であるがガスバリア性に優れる半芳香族ポリアミド(B)を、半芳香族ポリアミド(A)に混合して使用することで、高いガスバリア性と成形性が両立することを見出した。その理由は定かではないが、半芳香族ポリアミド(B)を半芳香族ポリアミド(A)に混合して使用する場合、後述する成分比からわかるように半芳香族ポリアミド(A)が主要層を成し、その主要層中に半芳香族ポリアミド(B)が微分散するため、主要層である半芳香族ポリアミド(A)の優れた成形性を保ちつつ、半芳香族ポリアミド(B)の優れたガスバリア性向上効果が両立されるものと推察される。
 溶融重合や溶融成形時にポリマーや各種添加材の熱分解が生じることを防ぐため、本発明の半芳香族ポリアミド樹脂組成物は、融点が280℃~330℃であることが好ましい。
 1-1.半芳香族ポリアミド(A)
 半芳香族ポリアミド(A)は、示差走査熱量測定(以下、DSC)により得られる融点(Tm)が290℃以上340℃以下である、半芳香族ポリアミドである。半芳香族ポリアミドの融点は、290℃以上330℃以下であることがより好ましい。半芳香族ポリアミド(A)の融点を290℃以上とすることで、半芳香族ポリアミド樹脂組成物の耐熱性および機械強度を高めることができる。また、半芳香族ポリアミド(A)の融点を340℃以下とすることで、半芳香族ポリアミド樹脂組成物の融点が過剰に高まらなくして、溶融重合や溶融成形時にポリマーや各種添加材の熱分解が生じることを防ぐことができる。
 半芳香族ポリアミド(A)は、芳香族を有するポリアミドであれば特に限定されず、たとえば、テレフタル酸由来の構造単位またはイソフタル酸由来の構造単位等のジカルボン酸成分とジアミン成分とを有するポリアミドや、メタキシリレンジアミン等の芳香族を有するジアミンに由来する構造単位を有するポリアミドとすることができる。
 半芳香族ポリアミド(A)の融点は、組成を調節する等の方法により上記範囲にすることができる。たとえば、テレフタル酸、アジピン酸および1,6-ヘキサンジアミンのそれぞれに由来する構造単位を有するポリアミドの場合、テレフタル酸由来の構造単位/アジピン酸由来の構造単位のモル比を40/60~80/20とすることで、融点を上記範囲にすることができる。また、テレフタル酸、1,9-ノナンジアミンおよび2-メチル-1,8-オクタンジアミンのそれぞれに由来する構造単位を有するポリアミドの場合、ノナンジアミン由来の構造単位/2-メチル-1,8-オクタンジアミン由来の構造単位のモル比を70/30~90/10とすることで、融点を上記範囲にすることができる。また、テレフタル酸、1,6-ヘキサンジアミンおよび2-メチル-1,5-ペンタンジアミンのそれぞれに由来する構造単位を有するポリアミドの場合、1,6-ヘキサンジアミン由来の構造単位/2-メチル-1,5-ペンタンジアミン由来の構造単位のモル比を40/60~70/30とすることで、融点を上記範囲にすることができる。また、テレフタル酸、イソフタル酸および1,6-ヘキサンジアミンのそれぞれに由来する構造単位を有するポリアミドの場合、テレフタル酸由来の構造単位/イソフタル酸由来の構造単位のモル比を70/30~50/50とすることで、融点を上記範囲にすることができる。
 半芳香族ポリアミド(A)に含まれる各構成単位およびその比率は、半芳香族ポリアミド(A)を製造する際の仕込み比や、13C-NMR測定またはH-NMR測定などの公知の手段で特定することができる。
 これらのうち、本発明では、たとえば、テレフタル酸由来の構造単位およびアジピン酸由来の構造単位を含むジカルボン酸成分ならびにジアミン成分を有する半芳香族ポリアミド(以下、半芳香族ポリアミド(A’)という。)とすることができる。
 半芳香族ポリアミド(A’)は、ジカルボン酸成分としてテレフタル酸由来の構造単位およびアジピン酸由来の構造単位を有することで、優れた成形性を有し、且つ脂肪族ポリアミドに比べて優れたガスバリア性を有するポリアミド樹脂組成物を得ることができる。この理由は明らかではないが、次のように推測することができる。
 一般に、テレフタル酸を用いたPA6TやPA9Tのような半芳香族ポリアミドは、芳香族基を有するため、脂肪族ポリアミドに比べガスバリア性に優れる。しかしながら、PA6TやPA9Tは、ホモポリマーで用いると融点が高すぎるために、溶融重合や溶融成形時にポリマーや各種添加材の熱分解が生じてしまう場合がある。そこで、実用化にあたっては、アジピン酸やイソフタル酸などのジカルボン酸成分、あるいは2-メチル-1,5-ペンタンジアミンなどの脂肪族ジアミンを共重合することにより、融点を280℃~330℃程度まで下げることが行われている。たとえば、特許文献1に記載のPA9Tでは、2-メチル-1,8-オクタンジアミンを共重合して融点を下げている。しかし、半芳香族ポリアミドが、2-メチル-1,8-オクタンジアミンのような側鎖を有する化合物に由来する構成単位を有する化合物である場合、ポリアミド鎖の屈曲性が増して結晶性が損なわれる場合があった。
 一方、半芳香族ポリアミド(A’)では、ジカルボン酸としてアジピン酸をテレフタル酸と共重合させているため、生じるポリマーの直線性が高い。さらに、半芳香族ポリアミド(A’)は、テレフタル酸由来の構造単位とアジピン酸由来の構造単位の分子鎖方向の長さが類似している同型置換共重合体である。これらはいずれも結晶性を高める特徴であるため、半芳香族ポリアミド(A’)は、テレフタル酸を用いたポリアミドの特徴である高い結晶性を損なうことなく低融点化できる。これにより、金型離型性などの成形性に優れるポリアミド樹脂組成物を得ることができると考えられる。
 半芳香族ポリアミド(A’)に含まれるテレフタル酸由来の構造単位とアジピン酸由来の構造単位の含有率の比は、テレフタル酸由来の構造単位/アジピン酸由来の構造単位のモル比が40/60~80/20であることが好ましく、更に好ましくは40/60~70/30であり、更に好ましくは50/50~70/30であり、更に好ましくは60/40~70/30である。テレフタル酸由来の構造単位/アジピン酸由来の構造単位のモル比がこの範囲にあると、ポリアミド樹脂組成物が十分な耐熱性や耐薬品性を有する。且つ、モル比が上記範囲にあると、射出成形時の成形温度が下がることで、オレフィン重合体(C)などの分解による成形時の発生ガス量を減少できる。そのため、ガス焼け等による金型汚れを抑制でき、成形性に優れるという効果がある。
 また、半芳香族ポリアミド(A’)は、テレフタル酸またはアジピン酸以外に由来するジカルボン酸成分を有していてもよい。ただし、半芳香族ポリアミド(A’)に含まれるテレフタル酸またはアジピン酸以外に由来するジカルボン酸成分のモル数は、テレフタル酸由来の構造単位とアジピン酸由来の構造単位の合計モル数に対して、5%以下であることが好ましい。半芳香族ポリアミド(A’)に含まれるテレフタル酸またはアジピン酸以外に由来するジカルボン酸の例には、イソフタル酸、2-メチルテレフタル酸およびナフタレンジカルボン酸などの芳香族ジカルボン酸;2,5-フランジカルボン酸などのフランジカルボン酸、1,4-シクロヘキサンジカルボン酸および1,3-シクロヘキサンジカルボン酸などの脂環族ジカルボン酸;マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライン酸、セバシン酸およびスベリン酸などの脂肪族ジカルボン酸;ならびに炭素原子数11以上の脂肪族ジカルボン酸;ならびにこれらの任意の混合物に由来する構造単位などが含まれる。
 半芳香族ポリアミド(A’)を構成するジアミン成分は炭素原子数4~10の直鎖脂肪族ジアミン由来の構成成分であることが好ましい。この範囲の直鎖脂肪族ジアミンを単独で用いることにより、低吸水率で高い耐熱性を有し、且つ高結晶性の半芳香族ポリアミドが得られるからである。半芳香族ポリアミド(A’)を構成する全ジアミン成分のうち、80~100モル%が炭素原子数4~10の直鎖脂肪族ジアミン由来の構成成分であることが好ましい。
 炭素原子数4~10の直鎖脂肪族ジアミンの例には、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミンおよび1,10-デカンジアミンなどが含まれる。これらは単独で用いても良いし、混合して用いても良い。これらのうち、半芳香族ポリアミド(A’)を構成するジアミン成分は1,6-ヘキサンジアミン由来の構成成分であることが好ましく、半芳香族ポリアミド(A’)を構成する全ジアミン成分のうち、80~100モル%が炭素原子数1,6-ヘキサンジアミン由来の構成成分であることが好ましく、90~100モル%が炭素原子数1,6-ヘキサンジアミン由来の構成成分であることが好ましい。
 半芳香族ポリアミド(A’)は、ジアミン成分として、上記炭素原子数4~10の脂肪族ジアミン以外のジアミン成分を有しても良いが、上記ジアミン以外のジアミンのモル数は、半芳香族ポリアミド(A’)に含まれる全ジアミン成分の5%以下であることが好ましい。上記ジアミン以外のジアミンとしては、1,11-ウンデカンジアミンおよび1,12-ドデカンジアミンなどの炭素原子数11以上の直鎖脂肪族ジアミン;2-メチル-1,5-ペンタンジアミン、2-メチル-1,6-ヘキサンジアミン、2-メチル-1,7-ヘプタンジアミン、2-メチル-1,8-オクタンジアミン、2-メチル-1,9-ノナンジアミン、2-メチル-1,10-デカンジアミンおよび2-メチル-1,11-ウンデカンジアミンなどの側鎖を有する鎖状脂肪族ジアミン;メタキシレンジアミンなどの芳香族ジアミン;ならびに1,4-シクロヘキサンジアミンおよび1,3-シクロヘキサンジアミンなどの脂環族ジアミンなどが含まれる。
 半芳香族ポリアミド(A)の極限粘度[η]は0.7~1.6dl/gであることが好ましく、0.8~1.2であることがより好ましい。極限粘度[η]は、温度25℃、96.5%硫酸中で測定される。極限粘度[η]が上記の範囲であると、樹脂組成物の成形時の流動性を高めることができ、且つ得られる成形物の機械的特性も良くなる。
 半芳香族ポリアミド(A)は、その末端アミノ基含量が、10~400μ当量であることが好ましく、50~400μ当量であることがより好ましく、100~400μ当量であることが更に好ましい。10μ当量以上の末端アミノ基が存在することで、オレフィン重合体(C)との相溶性や樹脂界面の強度が増し、また、繊維状充填材(D)や導電材(E)との密着性を高くすることができるため、耐衝撃性などの機械物性が向上する傾向があるためである。また末端アミノ基量が400μ当量以下であれば、吸水率が低く抑えられ、また長期耐熱性に優れる傾向がある。
 半芳香族ポリアミド(A)の末端アミノ基量[NH]は以下の方法で測定される。半芳香族ポリアミド(A)0.5~0.7 gを精秤し、m-クレゾール30mLに溶解し、指示薬である0.1%チモルブルー/m-クレゾール溶液を1~2滴加えて試料溶液とする。0.02規定のp-トルエンスルホン酸溶液で黄色から青紫色になるまで滴定を実施し、末端アミノ基含量([NH]、単位:μ当量/g)を測定する。
 半芳香族ポリアミド(A)は、従来の半芳香族ポリアミドと同様に公知の製造方法に基づいて製造することができる。例えば、ジカルボン酸とジアミンとを均一溶液中で重縮合させて製造することができる。より具体的には、ジカルボン酸とジアミンとを、国際公開第03/085029号パンフレットに記載されているように触媒の存在下で加熱することにより低次縮合物を得て、次いでこの低次縮合物の溶融物にせん断応力を付与することにより重縮合させて製造することができる。
 1-2.半芳香族ポリアミド(B)
 本発明の半芳香族ポリアミド樹脂組成物に含まれる半芳香族ポリアミド(B)は、示差走査熱量測定(以下、DSC)により得られる、昇温過程(昇温速度:10℃/min)における融解熱量(ΔH)0J/g以上5J/g以下である。融解熱量はポリアミド樹脂の結晶性の指標となり、融解熱量が大きい程結晶性が高いことを示し、融解熱量が小さい程結晶性が低いことを示す。半芳香族ポリアミド(B)の融解熱量(ΔH)が5J/g以下であり、結晶性が低いと、半芳香族ポリアミド(A)との相溶性に優れ、また、樹脂組成物の成形品の外観が優れる点で好ましい。半芳香族ポリアミド(B)の融解熱量(ΔH)は、0J/gであることが好ましい。また、半芳香族ポリアミド(B)は非晶性の樹脂であることが好ましい。
 ここでいう融解熱量(ΔH)とは、JIS K7122に準じて求められる値であり、すなわち、昇温速度10℃/minで走査した時に得られる示差走査熱量測定チャートにおいて、結晶化に伴う発熱ピークの面積より求めた値である。なお、本発明における融解熱量(ΔH)は、履歴を消さない1回目の昇温における値のことである。
 半芳香族ポリアミド(B)は、芳香族を有するポリアミドであれば特に限定されず、たとえば、テレフタル酸由来の構造単位またはイソフタル酸由来の構造単位等のジカルボン酸成分とジアミン成分とを含むポリアミドや、メタキシリレンジアミン等の芳香族を有するジアミンに由来する構造単位を含むポリアミドとすることができる。
 半芳香族ポリアミド(B)の融解熱量が上述の範囲内になる実質的に非晶性のポリアミド、コポリアミドとしては、イソフタル酸/テレフタル酸/1,6-ヘキサンジアミン/ビス(3-メチル-4-アミノシクロヘキシル)メタンの重縮合体、テレフタル酸/2,2,4-トリメチル-1,6-ヘキサンジアミン/2,4,4-トリメチル-1,6-ヘキサンジアミンの重縮合体、イソフタル酸/ビス(3-メチル-4-アミノシクロヘキシル)メタン/ω-ラウロラクタムの重縮合体、イソフタル酸/テレフタル酸/1,6-ヘキサンジアミンの重縮合体、イソフタル酸/2,2,4-トリメチル-1,6-ヘキサンジアミン/2,4,4-トリメチル-1,6-ヘキサンジアミンの重縮合体、イソフタル酸/テレフタル酸/2,2,4-トリメチル-1,6-ヘキサンジアミン/2,4,4-トリメチル-1,6-ヘキサンジアミンの重縮合体、イソフタル酸/ビス(3-メチル-4-アミノシクロヘキシル)メタン/ω-ラウロラクタムの重縮合体、イソフタル酸/テレフタル酸/その他ジアミン成分の重縮合体等が挙げられる。これらのポリアミドまたはコポリアミドは、ベンゼン環を有する構成単位を含むため、ガスバリア性に優れるという特徴がある。また、半芳香族ポリアミド(B)には、これらの重縮合体を構成するテレフタル酸成分および/またはイソフタル酸成分のベンゼン環が、アルキル基やハロゲン原子で置換されたものも含まれる。これらの中で、得られる成形体のガスバリア性や表面外観の向上効果が高い点で、イソフタル酸/テレフタル酸/1,6-ヘキサンジアミンの重縮合体をより好ましく用いることができる。これらの半芳香族ポリアミド(B)は2種以上併用することもできる。
 半芳香族ポリアミド(B)の融解熱量は、公知の方法で上記範囲にすることができる。たとえば、イソフタル酸由来の構造単位を有するポリアミドでは、イソフタル酸由来の構造単位のモル比をポリアミド全体のモル量に対して50%以上、好ましくは60%以上とすることで、半芳香族ポリアミド(B)の融解熱量を上記範囲とすることができる。
 半芳香族ポリアミド(B)に含まれる各構成単位およびその比率は、半芳香族ポリアミド(B)を製造する際の仕込み比や、13C-NMR測定またはH-NMR測定などの公知の手段で特定することができる。
 これらのうち、本発明では、たとえば、ジカルボン酸成分としてイソフタル酸由来の構造単位を含み、ジアミン成分として炭素原子数4~15の脂肪族ジアミン由来の構造単位を含む半芳香族ポリアミド(以下、半芳香族ポリアミド(B’)という。)とすることができる。
 半芳香族ポリアミド(B’)は、ジカルボン酸成分としてイソフタル酸由来の構造単位を含むため、低結晶性であるがガスバリア性に優れる。
 半芳香族ポリアミド(B’)は、本発明の効果を損なわない範囲でイソフタル酸由来の構造単位以外の別のジカルボン酸成分を含んでいても良い。他のジカルボン酸の例には、テレフタル酸、2-メチルテレフタル酸およびナフタレンジカルボン酸などの芳香族ジカルボン酸;2,5-フランジカルボン酸などのフランジカルボン酸、1,4-シクロヘキサンジカルボン酸および1,3-シクロヘキサンジカルボン酸などの脂環族ジカルボン酸;マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライン酸、セバシン酸およびスベリン酸などの脂肪族ジカルボン酸;ならびに炭素原子数11以上の脂肪族ジカルボン酸;ならびにこれらの任意の混合物由来の構造単位などが含まれる。その中でも、好ましくは芳香族ジカルボン酸由来の構造単位であり、特に好ましくはテレフタル酸由来の構造単位である。
 半芳香族ポリアミド(B’)中のイソフタル酸由来の構造単位とテレフタル酸由来の構造単位の含有率の比は、イソフタル酸由来の構造単位/テレフタル酸由来の構造単位のモル比が60/40~100/0であることが好ましく、更に好ましくは60/40~90/10である。イソフタル酸由来の構造単位/テレフタル酸由来の構造単位のモル比がこの範囲にあることで、半芳香族ポリアミド(B’)は非晶性となり、且つ半芳香族ポリアミド(A)との相溶性を高く出来るため、ポリアミド樹脂組成物の耐衝撃性やガスバリア性を高めることが出来るという効果がある。
 半芳香族ポリアミド(B’)中の全ジカルボン酸成分に対するイソフタル酸由来の構造単位の含有量は、好ましくは40モル%以上、更に好ましくは50モル%以上である。半芳香族ポリアミド(B’)中の全ジカルボン酸成分に対するイソフタル酸由来の構造単位の含有量が40モル%以上であると、成形品の外観やガスバリア性が優れるという効果がある。
 半芳香族ポリアミド(B’)は、ジアミン成分として炭素原子数4~15の脂肪族ジアミンを含む。炭素原子数4~15の脂肪族ジアミンとしては、例えば、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカジアミン、1,12-ドデカンジアミン、1,13-トリデカンジアミン、1,14-テトラデカンジアミンおよび1,15-ペンタデカンジアミンなどの直鎖脂肪族ジアミン;2-メチル-1,5-ペンタンジアミン、2-メチル-1,6-ヘキサンジアミン、2-メチル-1,7-ヘプタンジアミン、2-メチル-1,8-オクタンジアミン、2-メチル-1,9-ノナンジアミン、2-メチル-1,10-デカンジアミンおよび2-メチル-1,11-ウンデカンジアミンなどの側鎖を有する鎖状脂肪族ジアミン;ならびに1,4-シクロヘキサンジアミンおよび1,3-シクロヘキサンジアミンなどの脂環族ジアミンなどが含まれる。これらは単独で用いても良いし、混合して用いても良い。
 上記の炭素数4~15の脂肪族ジアミン単位としては、炭素数4~9の脂肪族ジアミンであることがより好ましい。特に好ましくは、1,6-ヘキサンジアミンである。その全ジアミン成分に対する1,6-ヘキサンジアミンの含有量は、40モル%~100モル%であり、好ましくは60モル%~100モル%である。ジアミン成分として、1,6-ヘキサンジアミンが40モル%以上含まれると、低吸水率で且つガスバリア性に優れる半芳香族ポリアミド(B’)が得られるからである。
 半芳香族ポリアミド(B)の極限粘度[η]は0.7~1.6dl/gであることが好ましく、0.8~1.2であることがより好ましい。極限粘度[η]は、温度25℃、96.5%硫酸中で測定される。極限粘度[η]が上記の範囲であると、樹脂組成物の成形時の流動性を高めることができ、且つ得られる成形物の機械的特性も良くなる。
 半芳香族ポリアミド(B)は、その末端アミノ基含量が、10~400μ当量であることが好ましく、50~400μ当量であることがより好ましく、100~400μ当量であることが更に好ましい。10μ当量以上の末端アミノ基が存在することで、オレフィン重合体(C)との相溶性や樹脂界面の強度が増し、また、繊維状充填材(D)や導電材(E)との密着性を高くすることができるため、耐衝撃性などの機械物性が向上する傾向があるためである。また末端アミノ基量が400μ当量以下であれば、吸水率が低く抑えられ、また長期耐熱性に優れる傾向がある。
 半芳香族ポリアミド(B)の末端アミノ基量[NH]は以下の方法で測定される。半芳香族ポリアミド(B)0.5~0.7 gを精秤し、m-クレゾール30mLに溶解し、指示薬である0.1%チモルブルー/m-クレゾール溶液を1~2滴加えて試料溶液とする。0.02規定のp-トルエンスルホン酸溶液で黄色から青紫色になるまで滴定を実施し、末端アミノ基含量([NH]、単位:μ当量/g)を測定する。
 半芳香族ポリアミド(B)は、従来の半芳香族ポリアミドと同様に公知の製造方法に基づいて製造することができる。例えば、ジカルボン酸とジアミンとを均一溶液中で重縮合させて製造することができる。より具体的には、ジカルボン酸とジアミンとを、国際公開第03/085029号に記載されているように触媒の存在下で加熱することにより低次縮合物を得て、次いでこの低次縮合物の溶融物にせん断応力を付与することにより重縮合させて製造することができる。
 1-3.オレフィン重合体(C)
 オレフィン重合体(C)は、オレフィン重合体(C)100質量部に対して、ヘテロ原子を含む官能基(以下、単に「官能基」ともいう。)を有する構造単位を0.1~1.5質量部、好ましくは0.5~1.2質量部含む。これらの官能基は、炭素、水素およびヘテロ原子である酸素を含む官能基が好ましい。官能基の具体的には、カルボン酸基(無水カルボン酸基を含む)、エステル基、エーテル基、アルデヒド基およびケトン基からなる群から選ばれる官能基などが含まれる。
 官能基を有する構造単位は、オレフィン重合体を変性反応させることで導入することができる。変性反応させるための化合物の特に好ましい例には、不飽和カルボン酸およびその誘導体等が含まれる。不飽和カルボン酸またはその誘導体の具体例には、アクリル酸、メタクリル酸、α-エチルアクリル酸、マレイン酸、フマール酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸およびエンドシス-ビシクロ〔2,2,1〕ヘプト-5-エン-2,3-ジカルボン酸(ナジック酸〔商標〕)等の不飽和カルボン酸または不飽和ジカルボン酸、ならびにこれらの酸ハライド、アミド、イミド、酸無水物およびエステル等の誘導体などが含まれる。これらの中では、不飽和ジカルボン酸もしくはその酸無水物が好適であり、特にマレイン酸、ナジック酸(商標)およびこれらの酸無水物が好適である。
 オレフィン重合体を変性反応させるための特に好ましい化合物は、無水マレイン酸である。無水マレイン酸は、変性前のオレフィン重合体との反応性が比較的高く、無水マレイン酸どうしの重合等が生じにくく、基本構造として安定な傾向がある。このため、安定した品質のオレフィン重合体(C)を得られるなどの様々な優位点がある。
 オレフィン重合体(C)のオレフィン重合体骨格部分の例には、エチレン系重合体、プロピレン系重合体およびブテン系重合体ならびにこれらのオレフィンの共重合体等の公知の重合体骨格が含まれる。特に好ましいオレフィン重合体骨格は、エチレンと炭素数3以上のオレフィンとの共重合体である。
 オレフィン重合体(C)は、例えば、変性前のオレフィン重合体を、対応する官能基を有する化合物と、特定の割合で変性反応させることによって得ることができる。変性前のオレフィン重合体として好ましい例の一つが、エチレン・α-オレフィン共重合体である。
 エチレン・α-オレフィン共重合体とは、エチレンと他のオレフィン、例えばプロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテンおよび1-デセン等の炭素数3~10のα-オレフィンとの共重合体である。エチレン・α-オレフィン共重合体の具体例には、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・1-ヘキセン共重合体、エチレン・1-オクテン共重合体およびエチレン・4-メチル-1-ペンテン共重合体等が含まれる。これらのうちでは、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・1-ヘキセン共重合体およびエチレン・1-オクテン共重合体が好ましい。
 エチレン・α-オレフィン共重合体は、エチレンから導かれる構造単位を70~99.5モル%、好ましくは80~99モル%含み、α-オレフィンから導かれる構造単位を0.5~30モル%、好ましくは1~20モル%含むことが好ましい。
 エチレン・α-オレフィン共重合体は、ASTM D1238による190℃、2.16kg荷重におけるメルトフローレート(MFR)が、0.01~20g/10分、好ましくは0.05~20g/10分であるものが望ましい。
 エチレン・α-オレフィン共重合体の製造方法は、特に限定されず、例えばチタン(Ti)やバナジウム(V)系、クロム(Cr)系、またはジルコニウム(Zr)系などの遷移金属触媒を用いて、公知の方法で調製することができる。より具体的には、V系化合物と有機アルミニウム化合物から構成されるチーグラー系触媒やメタロセン系触媒の存在下に、エチレンと1種以上の炭素数3~10のα-オレフィンとを共重合させることによって製造する方法を例示することができる。特には、メタロセン系触媒を用いて製造する方法が好適である。
 エチレン・α-オレフィン共重合体は、たとえば、官能基を有する化合物で所謂グラフト変性させる方法で、オレフィン重合体(C)とすることができる。
 エチレン・α-オレフィン共重合体のグラフト変性は、公知の方法で行うことができる。例えば、エチレン・α-オレフィン共重合体を有機溶媒に溶解し、得られた溶液に不飽和カルボン酸またはその誘導体およびラジカル開始剤などを加え、通常60~350℃、好ましくは80~190℃の温度で、0.5~15時間、好ましくは1~10時間反応させる方法を例示することができる。
 エチレン・α-オレフィン共重合体を溶解させる有機溶媒の例には、特に制限はないが、ベンゼン、トルエンおよびキシレン等の芳香族炭化水素系溶媒;ならびにペンタン、ヘキサンおよびヘプタン等の脂肪族炭化水素系溶媒などが含まれる。
 また、エチレン・α-オレフィン共重合体の別のグラフト変性方法の例には、好ましくは溶媒非存在下で、押出機などでエチレン・α-オレフィン共重合体と、不飽和カルボン酸もしくはその誘導体とを反応させる方法が含まれる。この場合の反応条件は、反応温度が、通常、エチレン・α-オレフィン共重合体の融点以上、具体的には100~350℃とすることができる。反応時間は、通常、0.5~10分間とすることができる。
 エチレン・α-オレフィン共重合体に、不飽和カルボン酸等の官能基を有する化合物を、効率よくグラフト変性反応させるために、ラジカル開始剤の存在下に変性反応を行うことが好ましい。ラジカル開始剤の例には、有機ペルオキシド、有機ペルエステルおよびアゾ化合物が含まれる。有機ペルオキシドおよび有機ペルエステルの例には、ベンゾイルペルオキシド、ジクロルベンゾイルペルオキシド、ジクミルペルオキシド、ジ-t-ブチルペルオキシド、2,5-ジメチル-2,5-ジ(ペルオキシドベンゾエート)ヘキシン-3,1,4-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、ラウロイルペルオキシド、t-ブチルペルアセテート、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキシン-3,2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、t-ブチルペルベンゾエート、t-ブチルペルフェニルアセテート、t-ブチルペルイソブチレート、t-ブチルペル-sec-オクトエート、t-ブチルペルピバレート、クミルペルピバレートおよびt-ブチルペルジエチルアセテートが含まれる。アゾ化合物の例には、アゾビスイソブチロニトリルおよびジメチルアゾイソブチレートなどが含まれる。これらの中では、ジクミルペルオキシド、ジ-t-ブチルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキシン-3,2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサンおよび1,4-ビス(t-ブチルペルオキシイソプロピル)ベンゼンなどのジアルキルペルオキシドが好ましい。ラジカル開始剤は、変性前のエチレン・α-オレフィン共重合体100重量部に対して、通常0.001~1重量部の割合で用いられる。
 変性されたエチレン・α-オレフィン共重合体は、JIS K7112で測定した密度が0.80~0.95g/cmであることが好ましく、0.85~0.90g/cmであることがより好ましい。
 さらに、変性されたエチレン・α-オレフィン共重合体の、135℃デカリン(デカヒドロナフタレン)溶液中で測定した極限粘度[η]は、好ましくは0.5~4.0dl/g、より好ましくは1.0~3dl/g、さらに好ましくは1.5~3dl/gである。[η]が上記の範囲内であれば、本発明の樹脂組成物の靱性と溶融流動性とを高いレベルで両立することができる。
 オレフィン重合体(C)の135℃デカリン中の極限粘度[η]は、常法に基づき、以下の様にして測定される。サンプル20mgをデカリン15mlに溶解し、ウベローデ粘度計を用い、135℃雰囲気にて比粘度(ηsp)を測定する。このデカリン溶液に更にデカリン5mlを加えて希釈後、同様の比粘度測定を行う。この希釈操作と粘度測定を更に2度繰り返した測定結果を基に、濃度(C)をゼロに外挿したときの「ηsp/C」値を極限粘度[η]とする。
 オレフィン重合体(C)に含まれる官能基を有する構造単位の含有率は、オレフィン重合体(C)100質量部に対して0.1~1.5質量部、好ましくは0.2~1.1質量部である。官能基を有する構造単位が少な過ぎると樹脂組成物の耐衝撃性の改善効果が低い場合がある。これは、半芳香族ポリアミド(A)及び半芳香族ポリアミド(B)の末端基とオレフィン重合体(C)の官能基との反応あるいは相互作用が無くなることにより、オレフィン重合体(C)が凝集しやすくなると共に、ポリアミド樹脂との界面強度が弱まることにより、十分な耐衝撃改良効果を示し難くなると推察できる。一方、官能基を有する構造単位が多過ぎると、半芳香族ポリアミド(A)及び半芳香族ポリアミド(B)との相互作用が強くなり過ぎて結晶性や溶融流動性が低下し、結果として成形性の低下を起こすことがある。
 オレフィン重合体(C)に含まれる官能基を有する構造単位の含有率は、変性前のオレフィン重合体と官能基を有する化合物とを反応させる際の仕込み比、13C-NMR測定またはH-NMR測定などの公知の手段で、特定することができる。
 具体的なNMR測定条件としては、以下の様な条件を例示できる。
 H-NMR測定の場合、日本電子(株)製ECX400型核磁気共鳴装置を用い、溶媒は重水素化オルトジクロロベンゼンとし、試料濃度は20mg/0.6mL、測定温度は120℃、観測核はH(400MHz)、シーケンスはシングルパルス、パルス幅は5.12μ秒(45°パルス)、繰り返し時間は7.0秒、積算回数は500回以上とする条件である。基準のケミカルシフトは、テトラメチルシランの水素を0ppmとするが、他にも、重水素化オルトジクロロベンゼンの残存水素由来のピークを7.10ppmとしてケミカルシフトの基準値とすることでも同様の結果を得ることができる。官能基含有化合物由来のHなどのピークは、常法によりアサインしうる。
 13C-NMR測定の場合、測定装置は日本電子(株)製ECP500型核磁気共鳴装置を用い、溶媒としてオルトジクロロベンゼン/重ベンゼン(80/20容量%)混合溶媒、測定温度は120℃、観測核は13C(125MHz)、シングルパルスプロトンデカップリング、45°パルス、繰り返し時間は5.5秒、積算回数は1万回以上、27.50ppmをケミカルシフトの基準値とする条件である。各種シグナルのアサインは常法を基にして行い、シグナル強度の積算値を基に定量を行うことができる。
 オレフィン重合体(C)に含まれる官能基を有する構造単位の含有率を、簡便に測定する方法として以下の手法もある。官能基含有率の異なる重合体の官能基含有率をNMR測定で決定し、官能基含有率を決定された重合体の赤外分光(IR)測定を行う。赤外分光(IR)スペクトルの特定のピークの強度比と、官能基含有率との検量線を作成する。検量線に基づいて、任意の重合体の官能基含有率を決定する。この方法は、前述のNMR測定に比して簡便な方法であるが、基本的にはベース樹脂や官能基の種類により、それぞれ対応する検量線を作成する必要がある。このような理由から、この方法は、例えば商用プラントでの樹脂生産における工程管理等に好ましく用いられる方法である。
 1-4.繊維状充填材(D)
 本発明の半芳香族ポリアミド樹脂組成物は、繊維状充填材(D)を含有することができる。繊維状充填剤(D)の例には、例えば、ガラス繊維、全芳香族ポリアミド繊維(例えば、ポリパラフェニレンテレフタルアミド繊維、ポリメタフェニレンテレフタルアミド繊維、ポリパラフェニレンイソフタルアミド繊維、ポリメタフェニレンイソフタルアミド繊維およびジアミノジフェニルエーテルとテレフタル酸またはイソフタル酸との縮合物から得られる繊維など)、ホウ素繊維、ならびに液晶ポリエステル繊維などが含まれる。繊維状充填剤(D)としては、これらのうちの1種または2種以上を用いることができる。上記した中でも、得られる成形品の機械的特性および耐熱性がより一層向上することから、繊維状充填剤(D)としては、ガラス繊維、全芳香族ポリアミド繊維から選ばれる少なくとも1種であることが好ましい。
 使用される繊維状充填剤(D)の平均長は、良好な成形性の保持および得られる成形品の機械的特性や耐熱性の向上の観点から、1μm~20mmの範囲内にあることが好ましく、5μm~10mmの範囲内がより好ましく、10μm~5mmの範囲内がさらに好ましい。また、繊維状充填剤(D)のアスペクト比は5~2000の範囲内にあることが好ましく、30~600の範囲内がより好ましい。
 繊維状充填剤(D)は、マトリックス樹脂との接着性、特にポリアミドとの接着性が改善され、得られるポリアミド樹脂組成物の機械的特性が大幅に向上することから、表面処理が施されていることが好ましい。該表面処理における表面処理剤の例には、シラン系カップリング剤、チタン系カップリング剤およびアルミネート系カップリング剤等のカップリング剤、ならびに集束剤などが含まれる。好適に使用されるカップリング剤の例には、アミノシラン、エポキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシランおよびビニルトリメトキシシランが含まれる。また、好適に使用される集束剤の例には、エポキシ系化合物、ウレタン系化合物、カルボン酸系化合物、ウレタン/マレイン酸変性化合物およびウレタン/アミン変性系化合物などが含まれる。これらの表面処理剤は、1種を単独で使用しても、2種以上を併用してもよい。特に、カップリング剤と集束剤とを併用すると、繊維状充填剤(D)とマトリックス樹脂、特にポリアミドとの接着性が一層改善され、得られる半芳香族ポリアミド樹脂組成物の機械的特性がより向上する。表面処理された繊維状充填剤(D)は、625±20℃で10分間以上加熱したときの質量減少が、表面処理された繊維状充填剤(D)100質量部に対して0.01~8.0質量部の範囲内であることが好ましく、0.1~5.0質量部の範囲内がより好ましい。
 1-5.導電材(E)
 本発明の半芳香族ポリアミド樹脂組成物は導電材(E)を含有することができる。導電材(E)を含有することにより、例えば、燃料系部品に成形した際に静電スパークの発生を抑制することができ、また自動車部品に成形し、さらに静電塗装を施す際に要求される導電性を付与することができる。本発明における導電材とは、体積固有抵抗が100Ω・cm以下であるものと定義する。
 導電材(E)の例には、例えば、炭素繊維、導電性カーボンブラック、カーボンフィブリル、カーボンナノチューブ、金属繊維、金属粉末、金属フレーク、金属酸化物粉末、金属被覆繊維などが含まれるが、低比重であり、導電性付与効果および補強効果のバランスに優れることから、導電材(E)は、炭素繊維、導電性カーボンブラック、カーボンフィブリルおよびカーボンナノチューブからなる群から選ばれる少なくとも1種であることが好ましい。
 なお、本発明においては上記繊維状充填剤(D)が導電材(E)を兼ねる場合がある。例えば、炭素繊維、カーボンフィブリル、カーボンナノチューブ、金属繊維、金属被覆繊維等は、繊維状充填剤(D)であると同時に導電材(E)でもある場合がある。
 上記の炭素繊維としては、ピッチ系、PAN系のいずれの炭素繊維でもよいが、弾性率、耐衝撃性の点で優れているため、PAN系炭素繊維が好ましい。炭素繊維の平均繊維長は、良好な成形性の保持、および得られる成形品の機械的特性や耐熱性の向上の観点から、溶融混練前の状態で1~20mmの範囲内であることが好ましく、3~10mmの範囲内がより好ましく、5~8mmの範囲内がさらに好ましい。炭素繊維のアスペクト比は100~5000の範囲内であることが好ましく、300~2000の範囲内がより好ましい。
 上記の導電性カーボンブラックとしては、例えば、国際公開第01/81473号パンフレットまたは特開2006-213798号公報において導電用カーボンブラックとして記載されているカーボンブラック等を使用することができる。また市販されている導電性カーボンブラックを使用することも可能であり、ケッチェンブラックインターナショナル株式会社から入手可能なケッチェンブラックEC600JD、EC300J;キャボット社から入手可能なバルカンXC-72、XC-305;デグッサ社から入手可能なPrintexXE2B;および東海カーボン株式会社から入手可能な#5500、#4500;三菱化学株式会社から入手可能な#5400B等を使用することができる。
 上記のカーボンフィブリルとしては、国際公開第94/23433号パンフレットに記載されている微細な炭素繊維等を使用することができる。また市販されているカーボンフィブリルを使用することも可能であり、ハイペリオン・キャタリシス・インターナショナル社から入手可能なBNフィブリル等を使用することができる。
 また、カーボンナノチューブとしては、特許第3761561号に記載されている多層カーボンナノチューブ等を使用することができる。
 導電材(E)の含有量は、導電性と機械的特性のバランスに優れることから、ポリアミド樹脂組成物100質量部に対して0.1~30質量部の範囲内であることが好ましく、0.2~25質量部がより好ましく、0.3~20質量部がさらに好ましい。
 1-6.任意の添加剤
 本発明の半芳香族ポリアミド樹脂組成物は、発明の効果を損なわない範囲で、用途に応じて、任意の添加剤を含有してもよい。任意の添加剤の例には、酸化防止剤(フェノール類、アミン類、イオウ類およびリン類等)、充填材(クレー、シリカ、アルミナ、タルク、カオリン、石英、マイカおよびグラファイト等)、耐熱安定剤(ラクトン化合物、ビタミンE類、ハイドロキノン類、ハロゲン化銅およびヨウ素化合物等)、光安定剤(ベンゾトリアゾール類、トリアジン類、ベンゾフェノン類、ベンゾエート類、ヒンダードアミン類およびオギザニリド類等)、他の重合体(ポリオレフィン類、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体等のオレフィン共重合体、プロピレン・1-ブテン共重合体等のオレフィン共重合体、ポリスチレン、ポリアミド、ポリカーボネート、ポリアセタール、ポリスルフォン、ポリフェニレンオキシド、フッ素樹脂、シリコーン樹脂およびLCP等)、難燃剤(臭素系、塩素系、リン系、アンチモン系および無機系等)蛍光増白剤、可塑剤、増粘剤、帯電防止剤、離型剤、顔料、結晶核剤ならびに種々公知の配合剤が含まれる。
 本発明のポリアミド樹脂組成物における任意の添加剤の含有量は、その成分の種類によって異なるが、半芳香族ポリアミド(A)、半芳香族ポリアミド(B)、オレフィン重合体(C)および繊維状充填材(D)の合計100質量部に対して0~10質量部が好ましく、より好ましくは0~5質量部、さらに好ましくは0~1質量部である。
 1-7.各成分の含有比
 本発明の半芳香族ポリアミド樹脂組成物は、半芳香族ポリアミド(A)、半芳香族ポリアミド(B)、オレフィン重合体(C)および繊維状充填材(D)を、半芳香族ポリアミド(A)、半芳香族ポリアミド(B)、オレフィン重合体(C)および繊維状充填材(D)の合計100質量部に対して半芳香族ポリアミド(A)が20~60質量部、半芳香族ポリアミド(B)が5~30質量部、オレフィン重合体(C)が1~30質量部、繊維状充填材(D)が0~60質量部、好ましくは繊維状充填材(D)が5~60質量部、さらに好ましくは繊維状充填材(D)が5~50質量部の比率で含有することが好ましい。
 この内、半芳香族ポリアミド(A)と半芳香族ポリアミド(B)の合計質量に対する半芳香族ポリアミド(B)の質量の割合、すなわち(B)/((A)+(B))は、0.05~0.5であることが好ましく、0.1~0.3であることがより好ましい。(B)の割合が0.05以下である場合、得られる樹脂組成物のガスバリア性向上効果が十分ではなくなる傾向がある。また、(B)の割合が0.5以上である場合、樹脂組成物のガスバリア性を高めることができるものの、射出流動性や離型性などの成形性を損なう場合がある。
 また、半芳香族ポリアミド(A)と半芳香族ポリアミド(B)の合計質量に対するオレフィン重合体(C)の質量の割合、すなわち(C)/((A)+(B))は、0.03~0.75であることが好ましく、0.07~0.5であることがより好ましい。(C)の割合が0.03以下である場合、得られる樹脂組成物の耐衝撃強度が十分ではない場合がある。また、(C)の割合が0.75以上である場合、ガスバリア性や耐熱性、機械物性、成形性を損なう傾向がある。
 2.半芳香族ポリアミド樹脂組成物の製造方法
 本発明の半芳香族ポリアミド樹脂組成物は、上記の比率の半芳香族ポリアミド(A)、半芳香族ポリアミド(B)、オレフィン重合体(C)、ならびに必要に応じて繊維状充填材(D)、導電材(E)およびその他の成分を、公知の方法、例えばヘンシェルミキサー、Vブレンダー、リボンブレンダーもしくはタンブラーブレンダーなどで混合する方法、または混合後さらに一軸押出機、多軸押出機、ニーダーもしくはバンバリーミキサーなどで溶融混練し、その後、造粒もしくは粉砕する方法により製造することができる。
 溶融混練方法としては、公知の方法を採用することができ、例えば、特許文献1に記載の方法を採用することができる。
 3.半芳香族ポリアミド樹脂組成物を含む成形品
 本発明のポリアミド樹脂組成物からなる成形品の例には、例えば、ラジエータグリル、リアスポイラー、ホイールカバー、ホイールキャップ、カウルベント・グリル、エアアウトレット・ルーバー、エアスクープ、フードバルジ、フェンダーおよびバックドア等の自動車用外装部品;シリンダーヘッド・カバー、エンジンマウント、エアインテーク・マニホールド、スロットルボディ、エアインテーク・パイプ、ラジエータタンク、ラジエータサポート、ウォーターポンプ・インレット、ウォーターポンプ・アウトレット、サーモスタットハウジング、クーリングファン、ファンシュラウド、オイルパン、オイルフィルター・ハウジング、オイルフィラー・キャップ、オイルレベル・ゲージ、タイミング・ベルト、タイミング・ベルトカバーおよびエンジン・カバー等の自動車用エンジンルーム内部品;フューエルキャップ、フューエルフィラー・チューブ、自動車用燃料タンク、フューエルセンダー・モジュール、フューエルカットオフ・バルブ、クイックコネクタ、キャニスター、フューエルデリバリー・パイプおよびフューエルフィラーネック等の自動車用燃料系部品;シフトレバー・ハウジングおよびプロペラシャフト等の自動車用駆動系部品;スタビライザーバー・リンケージロッド等の自動車用シャシー部品;ウインドーレギュレータ、ドアロック、ドアハンドル、アウトサイド・ドアミラー・ステー、アクセルペダル、ペダル・モジュール、シールリング、軸受、ベアリングリテーナー、ギアおよびアクチュエーター等の自動車用機能部品;ワイヤーハーネス・コネクター、リレーブロック、センサーハウジング、エンキャプシュレーション、イグニッションコイルおよびディストリビューター・キャップ等の自動車用エレクトロニクス部品;汎用機器(刈り払い機、芝刈り機およびチェーンソー等)用燃料タンク等の汎用機器用燃料系部品;ならびにコネクタおよびLEDリフレクタ等の電気電子部品などが含まれるが、本発明のポリアミド樹脂組成物は耐衝撃性、伸度等の靱性と、引張り強さ等の機械的特性の両特性に同時に優れ、しかも、耐熱性、低吸水性、耐薬品性、長期耐熱性などの特性にも優れることから、特に、自動車用燃料タンク、クイックコネクタ、ベアリングリテーナー、汎用機器用燃料タンク、フューエルキャップ、フューエルフィラーネック、フューエルセンダー・モジュール、ホイールキャップ、フェンダーまたはバックドアとして好ましく使用することができる。
 4.本発明の一態様に係る構成
 本発明の一態様として、以下の構成を挙げることができる。
 [1]ジカルボン酸成分としてテレフタル酸由来の構成単位およびアジピン酸由来の構成単位を含み、ジアミン成分として炭素原子数4~10の直鎖脂肪族ジアミン由来の構成単位を含む半芳香族ポリアミド(A’)20~60質量部と、
 ジカルボン酸成分としてイソフタル酸由来の構成単位を含み、ジアミン成分として炭素原子数4~15の脂肪族ジアミン由来の構成単位を含む半芳香族ポリアミド(B’)5~30質量部と、
 官能基を有する構造単位を0.1~1.5質量部含むオレフィン重合体(C)1~30質量部と、
 繊維状充填材(D)5~60質量部とを含み(ただし、(A’)、(B’)、(C)、および(D)の合計は100質量部である)、且つ、(A’)と(B’)の質量の割合((B’)/((A’)+(B’)))は0.05~0.5である半芳香族ポリアミド樹脂組成物。
 [2]前記半芳香族ポリアミド(A’)に含まれるテレフタル酸由来の構造単位とアジピン酸由来の構造単位の含有率の比は、テレフタル酸由来の構造単位/アジピン酸由来の構造単位のモル比が40/60~80/20である[1]記載の半芳香族ポリアミド樹脂組成物。
 [3]前記半芳香族ポリアミド(B’)に含まれる全ジカルボン酸成分の60~100モル%がイソフタル酸由来の構成単位、0~40モル%がテレフタル酸由来の構成単位である[1]または[2]に記載の半芳香族ポリアミド樹脂組成物。
 [4]前記半芳香族ポリアミド(A’)に含まれる全ジアミン成分の80~100モル%が1,6-ヘキサンジアミン由来の構成単位である[1]~[3]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
 [5]前記半芳香族ポリアミド(B’)に含まれる全ジアミン成分の60~100モル%が1,6-ヘキサンジアミンである[1]~[4]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
 [6]前記オレフィン重合体(C)が有する官能基が、カルボン酸、エステル、エーテル、アルデヒド、ケトンからなる群から選ばれる官能基である、[1]~[5]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
 [7]前記オレフィン重合体(C)が、無水マレイン酸由来の構造単位を含む、[6]に記載の半芳香族ポリアミド樹脂組成物。
 [8]導電材(E)をさらに含む[1]~[7]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
 [9]前記導電材(E)が炭素繊維、導電性カーボンブラック、カーボンフィブリルおよびカーボンナノチューブからなる群から選ばれる少なくとも1種である[8]に記載の半芳香族ポリアミド樹脂組成物。
 [10]前記[1]~[9]のいずれかに記載の半芳香族ポリアミド樹脂組成物を含む成形品。
 [11]前記[1]~[9]のいずれかに記載の半芳香族ポリアミド樹脂組成物を含むクイックコネクタ。
 以下、実施例を参照して本発明を更に具体的に説明するが、本発明の範囲は実施例の記載に限定されない。
 (ポリアミド樹脂の製造)
 ポリアミド(A-1)~(A-3)、(a-1)~(a-2)および(B-1)を、以下のようにして調整した。
 ポリアミド(A-1)
 テレフタル酸1787g(10.8モル)、1,6-ヘキサンジアミン2800g(24.1モル)、アジピン酸1921g(13.1モル)、次亜リン酸ナトリウム一水和物5.7g及び蒸留水554gを内容量13.6Lのオートクレーブに入れ、窒素置換した。190℃から攪拌を開始し、3時間かけて内部温度を250℃まで昇温した。このとき、オートクレーブの内圧を3.01MPaまで昇圧した。このまま1時間反応を続けた後、オートクレーブ下部に設置したスプレーノズルから大気放出して低縮合物を抜き出した。その後、室温まで冷却後、粉砕機で1.5mm以下の粒径まで粉砕し、110℃で24時間乾燥した。得られた低縮合物の水分量は3600ppm、極限粘度[η]は0.14dl/gであった。次に、この低縮合物を棚段式固相重合装置にいれ、窒素置換後、約1時間30分かけて220℃まで昇温した。その後、1時間反応し、室温まで降温した。得られたポリアミドの極限粘度[η]は0.48dl/gであった。その後、スクリュー径30mm、L/D=36の二軸押出機にて、バレル設定温度330℃、スクリュー回転数200rpm、6Kg/hの樹脂供給速度で溶融重合して、ポリアミド樹脂を調製した。得られたポリアミド樹脂の極限粘度[η]は0.9dl/g、融点Tmは295℃であった。また、末端アミン量は180μ当量であった。
 ポリアミド(A-2)
 テレフタル酸の量を2184g、アジピン酸の量を1572gに変更した以外は、A-1と同様にしてポリアミド樹脂を調製した。得られたポリアミド樹脂の極限粘度[η]は0.94dl/g、融点Tmは310℃であった。
 ポリアミド(A-3)
 テレフタル酸の量を2482g、アジピン酸の量を1310gに変更した以外は、A-1と同様にしてポリアミド樹脂を調製した。得られたポリアミド樹脂の極限粘度[η]は0.90dl/g、融点Tmは320℃であった。
 ポリアミド(a-1)
 テレフタル酸1708g(10.3モル)、1,6-ヘキサンジアミン2800g(24.1モル)、イソフタル酸516g(3.1モル)、アジピン酸1537g(10.5モル)、次亜リン酸ナトリウム一水和物5.7g及び蒸留水535gを内容量13.6Lのオートクレーブに入れ、窒素置換した。190℃から攪拌を開始し、3時間かけて内部温度を250℃まで昇温した。このとき、オートクレーブの内圧を3.02MPaまで昇圧した。このまま1時間反応を続けた後、オートクレーブ下部に設置したスプレーノズルから大気放出して低縮合物を抜き出した。その後、室温まで冷却後、粉砕機で1.5mm以下の粒径まで粉砕し、110℃で24時間乾燥した。得られた低縮合物の水分量は4000ppm、極限粘度[η]は0.15dl/gであった。次に、この低縮合物を棚段式固相重合装置にいれ、窒素置換後、約1時間30分かけて180℃まで昇温した。その後、1時間30分反応し、室温まで降温した。得られたポリアミドの極限粘度[η]は0.20dl/gであった。その後、スクリュー径30mm、L/D=36の二軸押出機にて、バレル設定温度330℃、スクリュー回転数200rpm、6Kg/hの樹脂供給速度で溶融重合して、ポリアミド樹脂を調製した。得られたポリアミド樹脂の極限粘度[η]は0.91dl/g、融点Tmは279℃であった。また、末端アミン量は170μ当量であった。
 ポリアミド(a-2)
 テレフタル酸3971g(23.9モル)、1,9-ノナンジアミン3051g(19.3モル)、2-メチル-1,8-オクタンジアミン763g(4.8モル)、安息香酸36.5g(0.3モル)、次亜リン酸ナトリウム-水和物5.7g及び蒸留水780gを内容量13.6Lのオートクレーブに入れ、窒素置換した。当該混合物を加熱して、190℃から攪拌を開始し、3時間かけて内部温度を250℃まで昇温させた。このとき、オートクレーブの内圧を3.03MPaまで昇圧させた。このまま1時間反応を続けた後、オートクレーブ下部に設置したスプレーノズルから大気放出して低縮合物を抜き出した。その後、室温まで冷却後、粉砕機で1.5mm以下の粒径まで粉砕し、110℃で24時間乾燥した。得られた低縮合物の水分量は4100ppm、極限粘度[η]は0.13dl/gであった。次に、この低縮合物を棚段式固相重合装置にいれ、窒素置換後、約1時間30分かけて180℃まで昇温した。その後、1時間30分反応し、室温まで降温した。得られたポリアミドの極限粘度[η]は0.17dl/gであった。その後、スクリュー径30mm、L/D=36の二軸押出機にて、バレル設定温度340℃、スクリュー回転数200rpm、5Kg/hの樹脂供給速度で溶融重合して、ポリアミド樹脂を調整した。得られたポリアミド樹脂の極限粘度[η]は1.09dl/g、融点Tmは302℃であった。また、末端アミン量は25μ当量であった。
 ポリアミド(B-1)
 テレフタル酸1390g(8.4モル)、1,6-ヘキサンジアミン2800g(24.1モル)、イソフタル酸2581g(15.5モル)、安息香酸109.5g(0.9モル)、次亜リン酸ナトリウム一水和物5.7g及び蒸留水545gを内容量13.6Lのオートクレーブに入れ、窒素置換した。190℃から攪拌を開始し、3時間かけて内部温度を250℃まで昇温した。このとき、オートクレーブの内圧を3.02MPaまで昇圧した。このまま1時間反応を続けた後、オートクレーブ下部に設置したスプレーノズルから大気放出して低縮合物を抜き出した。その後、室温まで冷却後、粉砕機で1.5mm以下の粒径まで粉砕し、110℃で24時間乾燥した。得られた低縮合物の水分量は3000ppm、極限粘度[η]は0.14dl/gであった。次に、この低縮合物を、スクリュー径30mm、L/D=36の二軸押出機にて、バレル設定温度330℃、スクリュー回転数200rpm、6Kg/hの樹脂供給速度で溶融重合して、ポリアミド樹脂を調製した。得られたポリアミド樹脂の融解熱量ΔHは0J/gだった。得られたポリアミド樹脂の極限粘度[η]は0.68dl/g、融点Tm1は観測されなかった。また、末端アミン量は270μ当量であった。
 〔水分量〕
 得られた低縮合物の水分量は、サンプル約0.2gを計量し、カールフィッシャー水分計にて200℃に加熱し、その際に発生する水分量を測定して求めた(固体気化法)。
 〔極限粘度[η]〕
 得られたポリアミドの極限粘度[η]は以下のようにして測定した。ポリアミド0.5gを96.5%硫酸溶液50mlに溶解させた。得られた溶液の、25℃±0.05℃の条件下での流下秒数を、ウベローデ粘度計を使用して測定し、「数式:[η]=ηSP/(C(1+0.205ηSP))」に基づき算出した。
 [η]:極限粘度(dl/g)
 ηSP:比粘度
 C:試料濃度(g/dl)
 t:試料溶液の流下秒数(秒)
 t:ブランク硫酸の流下秒数(秒)
 ηSP=(t-t)/t
 〔融点Tm
 また、得られたポリアミドの融点TmはJIS K7121に準じて以下のようにして測定した。ポリアミドを、PerkinElemer社製DSC7を用いて、350℃で5分間保持し、次いで10℃/分の速度で23℃まで降温させた後、10℃/分で昇温した。このときの融解に基づく吸熱ピ-クのピークトップを融点Tmとした。また、融解熱量ΔHはJIS K7122に準じて、結晶化の発熱ピークの面積より求めた。
 (オレフィン重合体)
 オレフィン重合体(C-1)~(C-2)および(c-1)を以下のように調整した。
 オレフィン重合体(C-1)
 十分に窒素置換したガラス製フラスコに、ビス(1,3-ジメチルシクロペンタジエニル)ジルコニウムジクロリドを0.63mg入れ、更にメチルアミノキサンのトルエン溶液(Al;0.13ミリモル/リットル)1.57ml、およびトルエン2.43mlを添加することにより触媒溶液を得た。
 次に、充分に窒素置換した内容積2リットルのステンレス製オートクレーブに、ヘキサン912ml、および1-ブテン320mlを導入し、系内の温度を80℃に昇温した。引き続き、トリイソブチルアルミニウム0.9ミリモルおよび上記で調製した触媒溶液2.0ml(Zrとして0.0005ミリモル)をエチレンで系内に圧入し、重合反応を開始させた。エチレンを連続的に供給することにより全圧を8.0kg/cm-Gに保ち、80℃で30分間重合を行った。
 少量のエタノールを系中に導入して重合を停止させた後、未反応のエチレンをパージした。得られた溶液を大過剰のメタノール中に投入することにより白色固体を析出させた。この白色固体を濾過により回収し、減圧下で一晩乾燥し、白色固体(エチレン・1-ブテン共重合体)を得た。得られたエチレン・1-ブテン共重合体の密度は0.865g/cm、MFR(ASTMD1238規格、190℃:2160g荷重)は0.5g/10分、1-ブテン構造単位含有率は4モル%だった。
 得られたエチレン・1-ブテン共重合体100重量部に、無水マレイン酸0.5重量部と過酸化物(パーヘキシン25B、日本油脂(株)製、商標)0.04重量部とを混合した。得られた混合物を230℃に設定した1軸押出機で溶融グラフト変性することによって変性エチレン・1-ブテン共重合体を得た。得られた変性エチレン・1-ブテン共重合体の無水マレイン酸グラフト変性量は0.46重量%であった。また135℃デカリン溶液中で測定した極限粘度[η]は1.98dl/gであった。
 オレフィン重合体(C-2)
 オレフィン重合体(C-1)の製造における変性処理前のエチレン・1-ブテン共重合体を変性する時に添加する無水マレイン酸の量を、1.0重量部に変更した以外は変性オレフィン重合体(C-1)と同様にして調製した。無水マレイン酸グラフト変性量は0.98重量%であった。また135℃デカリン溶液中で測定した極限粘度[η]は1.90dl/gであった。
 オレフィン重合体(c-1)
 オレフィン重合体(C-1)の製造における変性処理前のエチレン・1-ブテン共重合体を変性する時に添加する無水マレイン酸の量を、2.0重量部に変更した以外は変性オレフィン重合体(C-1)と同様にして調製した。無水マレイン酸グラフト変性量は1.89重量%であった。また135℃デカリン溶液中で測定した極限粘度[η]は1.78dl/gであった。
〔組成〕
 オレフィン重合体の組成、例えばエチレン及び炭素数3以上のα-オレフィンの含有率(モル%)や官能基構造単位の含有率(質量%)は、13C-NMRにより測定した。測定条件は、下記のとおりである。
 測定装置:核磁気共鳴装置(ECP500型、日本電子(株)製)
 観測核:13C(125MHz)
 シーケンス:シングルパルスプロトンデカップリング
 パルス幅:4.7μ秒(45°パルス)
 繰り返し時間:5.5秒
 積算回数:1万回以上
 溶媒:オルトジクロロベンゼン/重水素化ベンゼン(容量比:80/20)混合溶媒
 試料濃度:55mg/0.6mL
 測定温度:120℃
 ケミカルシフトの基準値:27.50ppm
 〔密度〕
 エチレン・1-ブテン共重合体の密度は、密度はJIS K7112に準拠して密度勾配管を用いて温度23℃で測定した。
 〔メルトフローレート(MFR)〕
 エチレン・1-ブテン共重合体のメルトフローレート(MFR:Melt Flow Rate)は、ASTM D1238に準拠し、190℃で2.16kgの荷重にて測定した。単位は、g/10minである。
 〔極限粘度[η]〕
 オレフィン重合体の極限粘度[η]はデカリン溶媒中、135℃で測定した。
 具体的には、約20mgの酸変性されたポリオレフィン樹脂(B)をデカリン25mlに溶解させた後、ウベローデ粘度計を用い、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリンを5ml加えて希釈した後、上記と同様にして比粘度ηspを測定した。この希釈操作を更に2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度[η](単位:dl/g)として求めた(下記式参照)。
  [η]=lim(ηsp/C)  (C→0)
 (樹脂組成物の調整)
 表1に示される組成比で、ポリアミド(A-1)~(A-3)、ポリアミド(a-1)~(a-2)、ポリアミド(B-1)、オレフィン重合体(C-1)~(C-2)、オレフィン重合体(c-1)と、ガラス繊維(オーウェンスコーニング社製、FT756D、ガラス繊維長3mm、アスペクト比300)および炭素繊維(東邦テナックス社製HT-C413、炭素繊維長6mm、アクペクト比1000)とを、タンブラーブレンダーを用いて混合し、二軸押出機((株)日本製鋼所製TEX30α)にて、シリンダー温度(Tm+15)℃で原料を溶融混錬後、ストランド状に押出し、水槽で冷却した。その後、ペレタイザーでストランドを引き取り、カットすることでペレット状組成物を得た。
 得られた各樹脂組成物について、以下の各試験項目について、以下の条件で試験片を調整し試験を行った。得られた結果を表1にまとめて示す。
 〔融点:Tm
 得られた樹脂組成物の融点Tmを以下のようにして測定した。樹脂組成物を、PerkinElemer社製DSC7を用いて、10℃/分の速度で昇温した。このときの融解に基づく吸熱ピ-クのピークトップを融点Tmとした。
 〔IZOD衝撃強度〕
 下記の射出成型機を用い、下記の成形条件で調整したノッチ付き、厚さ:3.2mmの試験片を作成して、ASTMD256に準拠して、温度23℃、相対湿度50%の雰囲気下でのIZOD衝撃強度で測定した。
   成型機:住友重機械工業(株)社製、SE50DU
   成型機シリンダー温度:(Tm+15)℃、金型温度:120℃
 〔曲げ試験(曲げ弾性率、曲げ強度)〕
 下記の射出成型機を用い、下記の成形条件で調整した長さ64mm、幅6mm、厚さ0.8mmの試験片を、温度23℃、窒素雰囲気下で24時間放置した。次いで、温度23℃、相対湿度50%の雰囲気下で曲げ試験機:NTESCO社製 AB5、スパン26mm、曲げ速度5mm/分で曲げ試験を行い、曲げ強度、弾性率を測定した。
   成型機:(株)ソディック プラスティック、ツパールTR40S3A
   成型機シリンダー温度:(Tm+15)℃、金型温度:120℃
 〔燃料透過性〕
 下記の射出成型機を用い、下記の成形条件で調整した100mm角、厚さ2mmの角板試験片から直径45mmの円盤状試験片を切り出した。模擬燃料であるCE10(トルエン/イソオクタン/エタノール=45/45/10容量%)が10mL入った、20mLの容積を有するSUS製容器(開放部面積77.07×10-4)の開放部に、円盤状試験片をセットして密閉することで、試験体とした。該試験体を恒温装置(60℃)に入れ、試験体の重量変化を測定し、燃料透過性を評価した。
   成型機:東芝機械(株)EC75N-2A
   成型機シリンダー温度:(Tm+15)℃、金型温度:120℃
 〔表面抵抗〕
 上記と同様にして成形した100mm角、厚さ2mmの角板試験片を、温度23℃、相対湿度50%の雰囲気下で24時間放置した。次いで、直流電圧・電流源/モニタ:(株)エーディーシー社製 6241A、ASP型(4探針)プローブを用い、試験片中央部の1点の表面低効率をJIS K7194に準じて測定した。
 〔射出流動性〕
 幅10mm、厚み0.5mmのバーフロー金型を使用して以下の条件で射出し、金型内の樹脂の流動長(mm)を測定した。なお、流動長が長いほど射出流動性が良好であることを示す。
   成型機:東芝機械(株)EC75N-2A
   射出設定圧力:2000kg/cm
   成型機シリンダー温度:(Tm+15)℃、金型温度:120℃
 〔離型性〕
 下記の射出成型機を用い、下記の成形条件にて調整した長さ64mm、幅6mm、厚さ0.8mmの試験片を射出成形した。この際、吐出ピンで成形品に対し変形を与えずに、且つ固定側や可動側の金型に付着することなく容易に取出しが可能な最短の冷却時間を決定し、最短の成形サイクル(1つの成形品を得るのに必要な時間)を測定した。この成形サイクルが16秒未満の場合の離型性を◎、16秒以上~20秒未満の場合を○、20秒以上の場合を×として評価した。
   成型機:(株)ソディック プラスティック、ツパールTR40S3A
   成型機シリンダー温度:(Tm+15)℃、金型温度:120℃
Figure JPOXMLDOC01-appb-T000001
 実施例1~8は、高い融点を持ち、IZOD衝撃強度、曲げ弾性率、曲げ強度、燃料透過性、射出流動性、金型離型性のいずれも優れた結果となっている。更に、実施例5は、導電材を含有することにより十分に低い抵抗値を示す。
 比較例1は、半芳香族ポリアミド(B)を含有しないため、燃料透過性が悪いことが分かる。比較例2は、半芳香族ポリアミド(B)の含有量が大きすぎるため、射出流動性、金型離型性が悪いことが分かる。比較例3は、半芳香族ポリアミド(A)、半芳香族ポリアミド(B)ともに含有しないため、融点が低く、射出流動性、金型離型性が悪いことが分かる。比較例4は、オレフィン重合体(C)を含有しないため、IZOD衝撃強度が小さいことがわかる。比較例5は、オレフィン重合体(C)中の官能基を有する構造単位の含有量が大きいため、射出流動性が悪いことが分かる。
 本発明の半芳香族ポリアミド樹脂組成物は、耐衝撃性、燃料バリア性、および成形性に優れているため、クイックコネクタなどの成形に特に好適に用いられる。

Claims (15)

  1.  示差走査熱量計(DSC)で測定した融点(Tm)が290℃以上340℃以下である半芳香族ポリアミド(A)20~60質量部と、
     示差走査熱量計(DSC)で測定した、昇温過程(昇温速度:10℃/min)における融解熱量(ΔH)が0J/g以上5J/g以下である半芳香族ポリアミド(B)5~30質量部と、
     ヘテロ原子を含む官能基構造単位0.1~1.5質量部を含むオレフィン重合体(C)1~30質量部と
     繊維状充填材(D)0~60質量部とを含む半芳香族ポリアミド樹脂組成物(ただし、(A)、(B)、(C)、および(D)の合計は100質量部である)。
  2.  前記半芳香族ポリアミド(A)が、ジカルボン酸成分としてテレフタル酸由来の構造単位およびアジピン酸由来の構造単位を含み、ジアミン成分として炭素原子数4~10の直鎖脂肪族由来の構造単位を含む、請求項1に記載の半芳香族ポリアミド樹脂組成物。
  3.  前記半芳香族ポリアミド(A)に含まれる前記テレフタル酸由来の構造単位と前記アジピン酸由来の構成単位との含有量の比が、テレフタル酸由来の構造単位/アジピン酸由来の構造単位のモル比が40/60~80/20である請求項2に記載の半芳香族ポリアミド樹脂組成物。
  4.  前記半芳香族ポリアミド(B)が、ジカルボン酸成分としてイソフタル酸由来の構造単位を含み、ジアミン成分として炭素原子数4~15の脂肪族由来の構造単位を含む、請求項1に記載の半芳香族ポリアミド樹脂組成物。
  5.  前記半芳香族ポリアミド(B)はテレフタル酸由来の構成単位を有してもよく、前記イソフタル酸由来の構造単位と前記テレフタル酸由来の構成単位との含有量の比が、イソフタル酸由来の構造単位/テレフタル酸由来の構造単位のモル比が60/40~100/0である請求項4に記載の半芳香族ポリアミド樹脂組成物。
  6.  前記半芳香族ポリアミド(A)と半芳香族ポリアミド(B)の質量の割合((B)/((A)+(B)))は0.05~0.5である請求項1に記載の半芳香族ポリアミド樹脂組成物。
  7.  前記半芳香族ポリアミド(A)に含まれる全ジアミン成分のうち、80~100モル%が1,6-ヘキサンジアミン由来の構造単位である請求項1に記載の半芳香族ポリミアド樹脂組成物。
  8.  前記半芳香族ポリアミド(B)に含まれる全ジアミン成分のうち、40~100モル%が1,6-ヘキサンジアミン由来の構造単位である請求項1に記載の半芳香族ポリミアド樹脂組成物。
  9.  前記オレフィン重合体(C)がポリオレフィン由来の骨格部分を含み、前記ポリオレフィン由来の骨格部分がエチレンと炭素数3以上のオレフィンとの共重合体である、請求項1に記載の半芳香族ポリアミド樹脂組成物。
  10.  前記オレフィン重合体(C)のヘテロ原子を含む官能基構造単位が、カルボン酸基、エステル基、エーテル基、アルデヒド基およびケトン基からなる群から選ばれる官能基を含む、請求項1に記載の半芳香族ポリアミド樹脂組成物。
  11.  前記オレフィン重合体(C)のヘテロ原子を含む官能基構造単位が無水マレイン酸により変性された構造単位である、請求項1に記載の半芳香族ポリアミド樹脂組成物。
  12.  さらに導電材(E)を含む請求項1に記載の半芳香族ポリアミド樹脂組成物。
  13.  前記導電材(E)が炭素繊維、導電性カーボンブラック、カーボンフィブリルおよびカーボンナノチューブからなる群から選ばれる少なくとも1種である請求項12に記載の半芳香族ポリアミド樹脂組成物。
  14.  請求項1に記載の半芳香族ポリアミド樹脂組成物を含む成形品。
  15.  クイックコネクタ用である、請求項14に記載の成形品。
PCT/JP2014/003943 2013-07-26 2014-07-25 半芳香族ポリアミド樹脂組成物およびそれを含む成型品 WO2015011935A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/906,990 US9732223B2 (en) 2013-07-26 2014-07-25 Semi-aromatic polyamide resin composition and molded article containing same
KR1020167000335A KR20160018696A (ko) 2013-07-26 2014-07-25 반방향족 폴리아미드 수지 조성물 및 그것을 포함하는 성형품
JP2015528159A JP6346181B2 (ja) 2013-07-26 2014-07-25 半芳香族ポリアミド樹脂組成物およびそれを含む成型品
CN201480038529.0A CN105377990A (zh) 2013-07-26 2014-07-25 半芳香族聚酰胺树脂组合物以及包含该组合物的成型品
EP14828822.8A EP3026084B1 (en) 2013-07-26 2014-07-25 Semi-aromatic polyamide resin composition and molded article containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013155562 2013-07-26
JP2013-155562 2013-07-26

Publications (1)

Publication Number Publication Date
WO2015011935A1 true WO2015011935A1 (ja) 2015-01-29

Family

ID=52392998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003943 WO2015011935A1 (ja) 2013-07-26 2014-07-25 半芳香族ポリアミド樹脂組成物およびそれを含む成型品

Country Status (6)

Country Link
US (1) US9732223B2 (ja)
EP (1) EP3026084B1 (ja)
JP (1) JP6346181B2 (ja)
KR (1) KR20160018696A (ja)
CN (1) CN105377990A (ja)
WO (1) WO2015011935A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093060A1 (ja) * 2013-12-20 2015-06-25 三井化学株式会社 半芳香族ポリアミド樹脂組成物およびその成型品
JP2017002205A (ja) * 2015-06-11 2017-01-05 三井化学株式会社 エンジン支持部材用樹脂組成物及びエンジン支持部材
JP2017155157A (ja) * 2016-03-03 2017-09-07 ダイセルポリマー株式会社 ポリアミド樹脂組成物
WO2018011131A1 (de) 2016-07-13 2018-01-18 Ems-Patent Ag Leitfähige thermoplastische polyamidformmasse
US11445934B2 (en) 2014-07-28 2022-09-20 Intuitive Surgical Operations, Inc. Systems and methods for intraoperative segmentation
WO2024048508A1 (ja) * 2022-09-02 2024-03-07 三井化学株式会社 ポリアミド樹脂組成物、金属樹脂接合体およびその製造方法、バスバーユニット、駆動ユニットならびに移動体

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869700B (zh) * 2010-04-29 2014-08-20 帝斯曼知识产权资产管理有限公司 半芳族聚酰胺
SG11202000892XA (en) 2017-09-28 2020-02-27 Dupont Polymers Inc Polymerization process
CN109776349B (zh) 2017-11-15 2022-02-22 财团法人工业技术研究院 二胺化合物、二胺二酸盐、与共聚物的形成方法
US11248582B2 (en) * 2017-11-21 2022-02-15 General Electric Company Multiple material combinations for printed reinforcement structures of rotor blades
JP7308859B2 (ja) * 2018-10-22 2023-07-14 クラレファスニング株式会社 耐熱性に優れた雄型成形面ファスナー、該雄型成形面ファスナーの製造方法、及び該雄型成形面ファスナーを用いた自動車用内装材の固定方法
JP7516378B2 (ja) 2018-12-06 2024-07-16 ビーエーエスエフ ソシエタス・ヨーロピア ポリアミド組成物
WO2020218209A1 (ja) * 2019-04-26 2020-10-29 ユニチカ株式会社 ポリアミド樹脂組成物およびそれを成形してなる成形体
CN112592582B (zh) * 2019-10-01 2024-01-02 尤尼吉可株式会社 聚酰胺树脂组合物和由其构成的成型体及车载照相机用部件
JPWO2021106850A1 (ja) * 2019-11-29 2021-06-03
EP4130140A4 (en) * 2020-03-31 2024-04-03 Mitsui Chemicals, Inc. SEMI-AROMATIC POLYAMIDE RESIN COMPOSITION AND MOLDED ARTICLES THEREOF
CN111440437A (zh) * 2020-04-29 2020-07-24 泉州永聚兴塑胶原料有限公司 一种耐酸碱高阻燃的聚酰胺复合材料及其制备方法
EP4298164A1 (en) * 2021-02-23 2024-01-03 Solvay Specialty Polymers USA, LLC Polyamide compositions with functionalized polyolefin and mobile electronic device components containing them
JP2023005732A (ja) * 2021-06-29 2023-01-18 旭化成株式会社 樹脂組成物及び成形品
CN115894900A (zh) * 2021-08-05 2023-04-04 上海凯赛生物技术股份有限公司 聚酰胺共聚物pa6it及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06119949A (ja) * 1992-10-05 1994-04-28 Mitsui Petrochem Ind Ltd コネクター
WO1994023433A1 (en) 1993-03-31 1994-10-13 Hyperion Catalysis International, Inc. High strength conductive polymers
JPH0790178A (ja) * 1993-09-21 1995-04-04 Mitsubishi Chem Corp ポリアミド樹脂組成物
JPH11222553A (ja) * 1998-02-06 1999-08-17 Ube Ind Ltd 芳香族ポリアミド樹脂組成物
JP2000129122A (ja) * 1998-10-23 2000-05-09 Yazaki Corp 成形用ポリアミド組成物
WO2001081473A1 (fr) 2000-04-26 2001-11-01 Asahi Kasei Kabushiki Kaisha Composition de resine conductrice et procede de production correspondant
JP2002294071A (ja) * 2001-03-15 2002-10-09 Ems Chemie Ag 熱可塑性充填ポリアミドの成形材料
WO2003085029A1 (fr) 2002-04-05 2003-10-16 Mitsui Chemicals, Inc. Composition de resine pour reflecteurs a diodes electroluminescentes
JP3761561B1 (ja) 2004-03-31 2006-03-29 株式会社物産ナノテク研究所 多様な構造を持つ微細な炭素繊維
JP2006213798A (ja) 2005-02-02 2006-08-17 Mitsubishi Chemicals Corp 導電性ポリアミド樹脂組成物
JP2007177208A (ja) * 2005-08-08 2007-07-12 Mitsubishi Gas Chem Co Inc バリア性に優れた熱可塑性樹脂組成物成形体
JP2008179753A (ja) 2006-12-26 2008-08-07 Kuraray Co Ltd ポリアミド樹脂組成物およびそれからなる成形品
WO2012098840A1 (ja) * 2011-01-17 2012-07-26 株式会社クラレ 樹脂組成物およびそれを含む成形品
JP2013067705A (ja) * 2011-09-21 2013-04-18 Unitika Ltd ポリアミド樹脂組成物およびそれを成形してなる成形体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405904A (en) * 1992-10-05 1995-04-11 Mitsui Petrochemical Industries, Ltd. Connectors
US20030134980A1 (en) 1998-10-23 2003-07-17 Ryuichi Hayashi Polyamide composition for molding
CA2600334C (en) 2005-03-18 2013-07-23 Kuraray Co., Ltd. Semi-aromatic polyamide resin
DE602006008866D1 (de) * 2005-08-08 2009-10-15 Mitsubishi Gas Chemical Co Brennstoffundurchlässige thermoplastische Harzzusammensetzungen und Artikel
EP2325260B1 (de) * 2009-11-23 2016-04-27 Ems-Patent Ag Teilaromatische Formmassen und deren Verwendungen

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06119949A (ja) * 1992-10-05 1994-04-28 Mitsui Petrochem Ind Ltd コネクター
WO1994023433A1 (en) 1993-03-31 1994-10-13 Hyperion Catalysis International, Inc. High strength conductive polymers
JPH0790178A (ja) * 1993-09-21 1995-04-04 Mitsubishi Chem Corp ポリアミド樹脂組成物
JPH11222553A (ja) * 1998-02-06 1999-08-17 Ube Ind Ltd 芳香族ポリアミド樹脂組成物
JP2000129122A (ja) * 1998-10-23 2000-05-09 Yazaki Corp 成形用ポリアミド組成物
WO2001081473A1 (fr) 2000-04-26 2001-11-01 Asahi Kasei Kabushiki Kaisha Composition de resine conductrice et procede de production correspondant
JP2002294071A (ja) * 2001-03-15 2002-10-09 Ems Chemie Ag 熱可塑性充填ポリアミドの成形材料
WO2003085029A1 (fr) 2002-04-05 2003-10-16 Mitsui Chemicals, Inc. Composition de resine pour reflecteurs a diodes electroluminescentes
JP3761561B1 (ja) 2004-03-31 2006-03-29 株式会社物産ナノテク研究所 多様な構造を持つ微細な炭素繊維
JP2006213798A (ja) 2005-02-02 2006-08-17 Mitsubishi Chemicals Corp 導電性ポリアミド樹脂組成物
JP2007177208A (ja) * 2005-08-08 2007-07-12 Mitsubishi Gas Chem Co Inc バリア性に優れた熱可塑性樹脂組成物成形体
JP2008179753A (ja) 2006-12-26 2008-08-07 Kuraray Co Ltd ポリアミド樹脂組成物およびそれからなる成形品
WO2012098840A1 (ja) * 2011-01-17 2012-07-26 株式会社クラレ 樹脂組成物およびそれを含む成形品
JP2013067705A (ja) * 2011-09-21 2013-04-18 Unitika Ltd ポリアミド樹脂組成物およびそれを成形してなる成形体

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093060A1 (ja) * 2013-12-20 2015-06-25 三井化学株式会社 半芳香族ポリアミド樹脂組成物およびその成型品
US10253182B2 (en) 2013-12-20 2019-04-09 Mitsui Chemicals, Inc. Semi-aromatic polyamide resin composition and molded article of same
US11445934B2 (en) 2014-07-28 2022-09-20 Intuitive Surgical Operations, Inc. Systems and methods for intraoperative segmentation
JP2017002205A (ja) * 2015-06-11 2017-01-05 三井化学株式会社 エンジン支持部材用樹脂組成物及びエンジン支持部材
JP2017155157A (ja) * 2016-03-03 2017-09-07 ダイセルポリマー株式会社 ポリアミド樹脂組成物
WO2018011131A1 (de) 2016-07-13 2018-01-18 Ems-Patent Ag Leitfähige thermoplastische polyamidformmasse
JP2019521226A (ja) * 2016-07-13 2019-07-25 エーエムエス−パテント アクチェンゲゼルシャフト 伝導性熱可塑性ポリアミド成形コンパウンド
US11041047B2 (en) 2016-07-13 2021-06-22 Ems-Patent Ag Conductive thermoplastic polyamide molding compound
JP7082605B2 (ja) 2016-07-13 2022-06-08 エーエムエス-パテント アクチェンゲゼルシャフト 伝導性熱可塑性ポリアミド成形コンパウンド
WO2024048508A1 (ja) * 2022-09-02 2024-03-07 三井化学株式会社 ポリアミド樹脂組成物、金属樹脂接合体およびその製造方法、バスバーユニット、駆動ユニットならびに移動体

Also Published As

Publication number Publication date
KR20160018696A (ko) 2016-02-17
EP3026084A1 (en) 2016-06-01
EP3026084A4 (en) 2017-03-29
JP6346181B2 (ja) 2018-06-20
CN105377990A (zh) 2016-03-02
EP3026084B1 (en) 2020-02-19
JPWO2015011935A1 (ja) 2017-03-02
US9732223B2 (en) 2017-08-15
US20160168381A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
JP6346181B2 (ja) 半芳香族ポリアミド樹脂組成物およびそれを含む成型品
JP6423365B2 (ja) 半芳香族ポリアミド樹脂組成物およびその成型品
KR102221899B1 (ko) 폴리아미드 조성물 및 성형품
JP2016138163A (ja) 半芳香族ポリアミド樹脂組成物、及びそれを含む成形品
JP5105563B2 (ja) ポリアミド及びポリアミド組成物
JPWO2013042541A1 (ja) 半芳香族ポリアミドおよびそれからなる成形体
JP5776368B2 (ja) ポリアミド樹脂組成物およびその製造方法
JP6834006B2 (ja) 半芳香族ポリアミド樹脂組成物、及びその成形体
JP5760405B2 (ja) ポリアミド樹脂組成物およびそれからなる成形品
JP5965230B2 (ja) ポリアミド樹脂組成物及び成形品
JP5997526B2 (ja) ポリアミド樹脂組成物及び成形品
JP5997525B2 (ja) 共重合ポリアミド組成物及び成形品
JP2016169290A (ja) 車両灯具のエイミングナット用ポリアミド樹脂組成物、及びそれを含むエイミングナット
JP2013060495A (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体
JP7370455B2 (ja) 半芳香族ポリアミド樹脂組成物、およびその成形体
JP6042121B2 (ja) ポリアミド樹脂組成物及び成形品
JP2020152821A (ja) 半芳香族ポリアミド樹脂組成物、およびそれを含む成形体
JP6013813B2 (ja) 共重合ポリアミド組成物及び成形品
JP2021161125A (ja) ポリアミド樹脂組成物、ペレットおよび成形体の製造方法
WO2022149436A1 (ja) ポリアミド組成物、成形体、及び装置の振動又は音の伝搬を抑制する方法
JP2018058969A (ja) ポリアミドイミド樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14828822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528159

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167000335

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014828822

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14906990

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE