WO2015011935A1 - 半芳香族ポリアミド樹脂組成物およびそれを含む成型品 - Google Patents
半芳香族ポリアミド樹脂組成物およびそれを含む成型品 Download PDFInfo
- Publication number
- WO2015011935A1 WO2015011935A1 PCT/JP2014/003943 JP2014003943W WO2015011935A1 WO 2015011935 A1 WO2015011935 A1 WO 2015011935A1 JP 2014003943 W JP2014003943 W JP 2014003943W WO 2015011935 A1 WO2015011935 A1 WO 2015011935A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semi
- aromatic polyamide
- structural unit
- resin composition
- acid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/265—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/06—Elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/06—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/24—Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
Definitions
- the present invention relates to a semi-aromatic polyamide resin composition and a molded article containing the same.
- Polyamides typified by nylon 6, nylon 66, etc. are excellent in molding processability, mechanical properties and chemical resistance, so various types for automobiles, industrial materials, clothing, electrical / electronic or industrial use. Widely used as part material.
- there has been a demand for drastic reduction in the amount of transpiration of automobile fuel mainly in the United States, and in the fuel system parts such as fuel tubes and joints that are their joints, transpiration of automobile fuel from the fuel tubes or joints is required. There is a need to significantly reduce the amount.
- the joints are required to have high impact strength so that they are not broken by a stepping stone or an impact caused by an accident.
- Patent Document 1 discloses a polyamide resin composition containing specific PA9T, a maleic anhydride-modified ethylene-butene copolymer, which is a modified olefin polymer, and glass fibers.
- PA9T used in the resin composition described in Patent Document 1 uses 2-methyl-1,8-octanediamine in addition to 1,9-nonanediamine as a diamine component. For this reason, the crystallinity is impaired, the crystallization speed is lowered, and moldability such as mold releasability at the time of injection molding may not be sufficient.
- PA9T has a problem that the toughness such as impact resistance in the molded product is lower than that of the conventional aliphatic polyamide such as nylon 12.
- impact strength is improved by mix
- the present inventors show good moldability in such cases, such as the resin composition does not exhibit sufficient mold releasability, or the viscosity increases and injection fluidity decreases. Found that there may not be.
- An object of the present invention is to provide a semi-aromatic polyamide resin composition excellent in impact resistance, fuel barrier property, and moldability, and a molded product including the same.
- the present invention relates to the semi-aromatic polyamide resin composition shown below.
- Tm melting point
- DSC differential scanning calorimeter
- the semi-aromatic polyamide (A) includes a structural unit derived from terephthalic acid and a structural unit derived from adipic acid as the dicarboxylic acid component, and a structure derived from a linear aliphatic having 4 to 10 carbon atoms as the diamine component.
- the ratio of the content of the structural unit derived from terephthalic acid and the structural unit derived from adipic acid contained in the semi-aromatic polyamide (A) is a structural unit derived from terephthalic acid / a structural unit derived from adipic acid
- the semi-aromatic polyamide (B) includes a structural unit derived from isophthalic acid as a dicarboxylic acid component, and includes a structural unit derived from an aliphatic group having 4 to 15 carbon atoms as a diamine component.
- the semi-aromatic polyamide (B) may have a structural unit derived from terephthalic acid, and the ratio of the content of the structural unit derived from isophthalic acid and the structural unit derived from terephthalic acid is isophthalic acid.
- the mass ratio ((B) / ((A) + (B))) of the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B) is 0.05 to 0.5 [1] ]
- the semi-aromatic polyamide resin composition according to any one of [5] to [5].
- 80 to 100 mol% of all diamine components contained in the semiaromatic polyamide (A) are structural units derived from 1,6-hexanediamine.
- the olefin polymer (C) includes a skeleton portion derived from a polyolefin, and the skeleton portion derived from the polyolefin is a copolymer of ethylene and an olefin having 3 or more carbon atoms.
- the semi-aromatic polyamide resin composition according to any one of the above.
- the functional group structural unit containing a hetero atom of the olefin polymer (C) contains a functional group selected from the group consisting of a carboxylic acid group, an ester group, an ether group, an aldehyde group, and a ketone group.
- the semi-aromatic polyamide resin composition according to any one of to [9].
- a semi-aromatic polyamide resin composition excellent in impact resistance, fuel barrier property, and moldability and a molded product including the same, such as a quick connector.
- ⁇ means a range including not only the intermediate value but also the boundary value.
- a to B means a range including “A”, “B”, and “an intermediate value between A and B”.
- the semi-aromatic polyamide resin composition of the present invention comprises a semi-aromatic polyamide (A), a semi-aromatic polyamide (B), and an olefin polymer (C), preferably a fibrous filler.
- (D) includes a conductive material (E).
- the present inventors use a semi-aromatic polyamide (B) that is low in crystallinity but excellent in gas barrier properties and mixed with the semi-aromatic polyamide (A).
- a semi-aromatic polyamide (B) that is low in crystallinity but excellent in gas barrier properties and mixed with the semi-aromatic polyamide (A).
- the semi-aromatic polyamide (A) comprises the main layer as can be seen from the component ratio described later.
- the semi-aromatic polyamide (B) is finely dispersed in the main layer, the semi-aromatic polyamide (B) is excellent while maintaining the excellent moldability of the semi-aromatic polyamide (A) as the main layer. It is presumed that the effect of improving gas barrier properties is compatible.
- the semi-aromatic polyamide resin composition of the present invention preferably has a melting point of 280 ° C. to 330 ° C.
- the semi-aromatic polyamide (A) is a semi-aromatic polyamide having a melting point (Tm) obtained by differential scanning calorimetry (hereinafter DSC) of 290 ° C. or higher and 340 ° C. or lower.
- the melting point of the semi-aromatic polyamide is more preferably 290 ° C. or higher and 330 ° C. or lower.
- the semi-aromatic polyamide (A) is not particularly limited as long as it is an aromatic polyamide.
- a polyamide having a dicarboxylic acid component such as a structural unit derived from terephthalic acid or a structural unit derived from isophthalic acid and a diamine component
- a polyamide having a structural unit derived from an aromatic diamine such as metaxylylenediamine.
- the melting point of the semi-aromatic polyamide (A) can be within the above range by adjusting the composition.
- the molar ratio of structural units derived from terephthalic acid / structural units derived from adipic acid is 40/60 to 80 / By setting it to 20, the melting point can be in the above range.
- the melting point can be set in the above range.
- the melting point can be within the above range.
- the molar ratio of the structural unit derived from terephthalic acid to the structural unit derived from isophthalic acid is 70/30 to 50 / By setting it to 50, the melting point can be in the above range.
- Each structural unit contained in the semi-aromatic polyamide (A) and the ratio thereof are known ratios such as a charging ratio for producing the semi-aromatic polyamide (A), 13 C-NMR measurement or 1 H-NMR measurement. Can be specified.
- semi-aromatic polyamide (hereinafter referred to as semi-aromatic polyamide (A ′)) having a dicarboxylic acid component containing a structural unit derived from terephthalic acid and a structural unit derived from adipic acid and a diamine component. ).
- the semi-aromatic polyamide (A ′) has a structural unit derived from terephthalic acid and a structural unit derived from adipic acid as a dicarboxylic acid component, and thus has excellent moldability and an excellent gas barrier compared to aliphatic polyamide.
- a polyamide resin composition having properties can be obtained. The reason for this is not clear, but can be estimated as follows.
- semi-aromatic polyamides such as PA6T and PA9T using terephthalic acid have an aromatic group, and thus have better gas barrier properties than aliphatic polyamides.
- PA6T and PA9T have a melting point that is too high when used as a homopolymer, the polymer and various additives may be thermally decomposed during melt polymerization or melt molding. Therefore, in practical use, the melting point is about 280 ° C. to 330 ° C. by copolymerizing a dicarboxylic acid component such as adipic acid or isophthalic acid or an aliphatic diamine such as 2-methyl-1,5-pentanediamine. Lowering is done.
- the semi-aromatic polyamide (A ′) since adipic acid is copolymerized with terephthalic acid as a dicarboxylic acid, the linearity of the resulting polymer is high. Furthermore, the semi-aromatic polyamide (A ′) is an isomorphous substituted copolymer in which the structural units derived from terephthalic acid and the structural units derived from adipic acid have similar molecular chain lengths. Since these are characteristics that enhance crystallinity, the semi-aromatic polyamide (A ′) can have a low melting point without impairing the high crystallinity that is characteristic of polyamides using terephthalic acid. Thereby, it is considered that a polyamide resin composition excellent in moldability such as mold releasability can be obtained.
- the content ratio of the structural unit derived from terephthalic acid and the structural unit derived from adipic acid contained in the semi-aromatic polyamide (A ′) is such that the molar ratio of the structural unit derived from terephthalic acid / the structural unit derived from adipic acid is 40 / It is preferably 60 to 80/20, more preferably 40/60 to 70/30, still more preferably 50/50 to 70/30, and further preferably 60/40 to 70/30.
- the polyamide resin composition has sufficient heat resistance and chemical resistance.
- the molding temperature at the time of injection molding is lowered, so that the amount of gas generated at the time of molding due to decomposition of the olefin polymer (C) can be reduced. For this reason, it is possible to suppress mold contamination due to gas burning and the like, and there is an effect of excellent moldability.
- the semi-aromatic polyamide (A ′) may have a dicarboxylic acid component derived from other than terephthalic acid or adipic acid.
- the number of moles of the dicarboxylic acid component derived from other than terephthalic acid or adipic acid contained in the semi-aromatic polyamide (A ′) is based on the total number of moles of structural units derived from terephthalic acid and structural units derived from adipic acid. 5% or less is preferable.
- dicarboxylic acids derived from other than terephthalic acid or adipic acid contained in the semi-aromatic polyamide (A ′) include aromatic dicarboxylic acids such as isophthalic acid, 2-methylterephthalic acid and naphthalenedicarboxylic acid; Flanged carboxylic acid such as furandicarboxylic acid, alicyclic dicarboxylic acid such as 1,4-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid; malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, 2-methyladipic acid Aliphatic dicarboxylic acids such as trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinic acid, azelaic acid, sebacic acid and suberic acid; and aliphatic dicarboxylic acids having 11 or more carbon atoms As well as structural units derived from any
- the diamine component constituting the semi-aromatic polyamide (A ′) is preferably a component derived from a linear aliphatic diamine having 4 to 10 carbon atoms. This is because by using a linear aliphatic diamine within this range alone, a semi-aromatic polyamide having low water absorption and high heat resistance and high crystallinity can be obtained. Of all the diamine components constituting the semi-aromatic polyamide (A ′), 80 to 100 mol% is preferably a component derived from a linear aliphatic diamine having 4 to 10 carbon atoms.
- straight chain aliphatic diamines having 4 to 10 carbon atoms examples include 1,4-butanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, and 1,9-nonanediamine. And 1,10-decanediamine and the like. These may be used alone or in combination.
- the diamine component constituting the semi-aromatic polyamide (A ′) is preferably a component derived from 1,6-hexanediamine, and among the total diamine components constituting the semi-aromatic polyamide (A ′) 80 to 100 mol% is preferably a component derived from 1,6-hexanediamine having carbon atoms, and 90 to 100 mol% is preferably a component derived from 1,6-hexanediamine having carbon atoms. .
- the semi-aromatic polyamide (A ′) may have a diamine component other than the aliphatic diamine having 4 to 10 carbon atoms as the diamine component, but the number of moles of the diamine other than the diamine may be semi-aromatic. It is preferably 5% or less of the total diamine component contained in the polyamide (A ′).
- diamines other than the above diamines include linear aliphatic diamines having 11 or more carbon atoms such as 1,11-undecanediamine and 1,12-dodecanediamine; 2-methyl-1,5-pentanediamine, 2-methyl- 1,6-hexanediamine, 2-methyl-1,7-heptanediamine, 2-methyl-1,8-octanediamine, 2-methyl-1,9-nonanediamine, 2-methyl-1,10-decanediamine and Chain aliphatic diamines having side chains such as 2-methyl-1,11-undecanediamine; aromatic diamines such as metaxylenediamine; and alicyclics such as 1,4-cyclohexanediamine and 1,3-cyclohexanediamine Examples include diamines.
- the intrinsic viscosity [ ⁇ ] of the semi-aromatic polyamide (A) is preferably 0.7 to 1.6 dl / g, more preferably 0.8 to 1.2.
- the intrinsic viscosity [ ⁇ ] is measured in a temperature of 25 ° C. and 96.5% sulfuric acid.
- the semi-aromatic polyamide (A) has a terminal amino group content of preferably 10 to 400 ⁇ equivalent, more preferably 50 to 400 ⁇ equivalent, and still more preferably 100 to 400 ⁇ equivalent.
- the presence of a terminal amino group of 10 ⁇ equivalent or more increases compatibility with the olefin polymer (C) and the strength of the resin interface, and also adheres to the fibrous filler (D) and the conductive material (E). This is because the mechanical properties such as impact resistance tend to be improved.
- the amount of terminal amino groups is 400 micro equivalents or less, a water absorption rate will be low and there exists a tendency which is excellent in long-term heat resistance.
- the terminal amino group amount [NH 2 ] of the semi-aromatic polyamide (A) is measured by the following method. Weigh 0.5-0.7 g of semi-aromatic polyamide (A), dissolve in 30 mL of m-cresol, add 1-2 drops of 0.1% thymol blue / m-cresol, which is an indicator, and sample solution And Titration is carried out with a 0.02 N p-toluenesulfonic acid solution until the color changes from yellow to blue-violet, and the terminal amino group content ([NH 2 ], unit: ⁇ equivalent / g) is measured.
- Semi-aromatic polyamide (A) can be produced based on a known production method in the same manner as conventional semi-aromatic polyamide.
- dicarboxylic acid and diamine can be produced by polycondensation in a uniform solution. More specifically, a low-order condensate is obtained by heating dicarboxylic acid and diamine in the presence of a catalyst as described in WO 03/085029, and then this low-order condensation. It can be produced by polycondensation by applying shear stress to the melt of the product.
- Semi-aromatic polyamide (B) The semi-aromatic polyamide (B) contained in the semi-aromatic polyamide resin composition of the present invention is melted in a temperature raising process (temperature raising rate: 10 ° C./min) obtained by differential scanning calorimetry (hereinafter referred to as DSC).
- the amount of heat ( ⁇ H) is from 0 J / g to 5 J / g.
- the heat of fusion becomes an index of the crystallinity of the polyamide resin, and the higher the heat of fusion, the higher the crystallinity, and the lower the heat of fusion, the lower the crystallinity.
- the semi-aromatic polyamide (A) is excellent in compatibility with the semi-aromatic polyamide (A). It is preferable in that the appearance is excellent.
- the heat of fusion ( ⁇ H) of the semi-aromatic polyamide (B) is preferably 0 J / g.
- the semi-aromatic polyamide (B) is preferably an amorphous resin.
- the heat of fusion ( ⁇ H) here is a value obtained according to JIS K7122, ie, in the differential scanning calorimetry chart obtained when scanning at a heating rate of 10 ° C./min, an exothermic peak accompanying crystallization. It is the value calculated from the area.
- the heat of fusion ( ⁇ H) in the present invention is a value at the first temperature increase without erasing the history.
- the semi-aromatic polyamide (B) is not particularly limited as long as it is an aromatic polyamide.
- a polyamide containing a dicarboxylic acid component such as a structural unit derived from terephthalic acid or a structural unit derived from isophthalic acid and a diamine component
- a polyamide containing a structural unit derived from an aromatic diamine such as metaxylylenediamine.
- the semi-aromatic polyamide (B) includes those in which the benzene ring of the terephthalic acid component and / or isophthalic acid component constituting these polycondensates is substituted with an alkyl group or a halogen atom.
- a polycondensate of isophthalic acid / terephthalic acid / 1,6-hexanediamine can be more preferably used because the resulting molded article has a high effect of improving the gas barrier properties and surface appearance.
- Two or more of these semiaromatic polyamides (B) can be used in combination.
- the heat of fusion of the semi-aromatic polyamide (B) can be within the above range by a known method.
- the molar ratio of the structural unit derived from isophthalic acid is 50% or more, preferably 60% or more with respect to the molar amount of the whole polyamide, so that a semi-aromatic polyamide ( The heat of fusion of B) can be in the above range.
- Each structural unit contained in the semi-aromatic polyamide (B) and the ratio thereof are known ratios for producing the semi-aromatic polyamide (B), known means such as 13 C-NMR measurement or 1 H-NMR measurement. Can be specified.
- semi-aromatic polyamide containing a structural unit derived from isophthalic acid as a dicarboxylic acid component and a structural unit derived from an aliphatic diamine having 4 to 15 carbon atoms as a diamine component.
- Aromatic polyamide (B ′) a semi-aromatic polyamide containing a structural unit derived from isophthalic acid as a dicarboxylic acid component and a structural unit derived from an aliphatic diamine having 4 to 15 carbon atoms as a diamine component.
- Semi-aromatic polyamide (B ') contains a structural unit derived from isophthalic acid as a dicarboxylic acid component, and thus has low crystallinity but excellent gas barrier properties.
- the semi-aromatic polyamide (B ′) may contain another dicarboxylic acid component other than the structural unit derived from isophthalic acid as long as the effects of the present invention are not impaired.
- dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, 2-methylterephthalic acid and naphthalenedicarboxylic acid; furandicarboxylic acids such as 2,5-furandicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and 1 Alicyclic dicarboxylic acids such as 1,3-cyclohexanedicarboxylic acid; malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid Aliphatic dicarboxylic acids such as 3,3-diethylsuccinic acid, azelaic acid, sebacic acid and suberic acid
- the molar ratio of the structural unit derived from isophthalic acid and the structural unit derived from terephthalic acid in the semi-aromatic polyamide (B ′) is such that the molar ratio of the structural unit derived from isophthalic acid / the structural unit derived from terephthalic acid is 60/40. It is preferably ⁇ 100 / 0, more preferably 60/40 to 90/10.
- the semi-aromatic polyamide (B ′) becomes amorphous and is compatible with the semi-aromatic polyamide (A). Therefore, the impact resistance and gas barrier properties of the polyamide resin composition can be improved.
- the content of the structural unit derived from isophthalic acid with respect to the total dicarboxylic acid component in the semi-aromatic polyamide (B ′) is preferably 40 mol% or more, more preferably 50 mol% or more.
- the content of the structural unit derived from isophthalic acid with respect to the total dicarboxylic acid component in the semi-aromatic polyamide (B ′) is 40 mol% or more, the appearance and gas barrier properties of the molded product are excellent.
- Semi-aromatic polyamide (B ') contains an aliphatic diamine having 4 to 15 carbon atoms as a diamine component.
- the aliphatic diamine having 4 to 15 carbon atoms include 1,4-butanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, Linear aliphatic diamines such as 1,10-decanediamine, 1,11-undecanadiamine, 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine and 1,15-pentadecanediamine; 2-methyl-1,5-pentanediamine, 2-methyl-1,6-hexanediamine, 2-methyl-1,7-heptanediamine, 2-methyl-1,8-octanediamine, 2-methyl-1, Has side chains such as 9-nonanediamine, 2-methyl-1,10-decanediamine and 2-methyl-1,11-undecanediamine
- the aliphatic diamine unit having 4 to 15 carbon atoms is more preferably an aliphatic diamine having 4 to 9 carbon atoms.
- Particularly preferred is 1,6-hexanediamine.
- the content of 1,6-hexanediamine with respect to the total diamine component is 40 mol% to 100 mol%, preferably 60 mol% to 100 mol%. This is because when the 1,6-hexanediamine is contained in an amount of 40 mol% or more as the diamine component, a semi-aromatic polyamide (B ′) having a low water absorption and excellent gas barrier properties can be obtained.
- the intrinsic viscosity [ ⁇ ] of the semi-aromatic polyamide (B) is preferably 0.7 to 1.6 dl / g, more preferably 0.8 to 1.2.
- the intrinsic viscosity [ ⁇ ] is measured in a temperature of 25 ° C. and 96.5% sulfuric acid.
- the semi-aromatic polyamide (B) has a terminal amino group content of preferably 10 to 400 ⁇ equivalent, more preferably 50 to 400 ⁇ equivalent, and still more preferably 100 to 400 ⁇ equivalent.
- the presence of a terminal amino group of 10 ⁇ equivalent or more increases compatibility with the olefin polymer (C) and the strength of the resin interface, and also adheres to the fibrous filler (D) and the conductive material (E). This is because the mechanical properties such as impact resistance tend to be improved.
- the amount of terminal amino groups is 400 micro equivalents or less, a water absorption rate will be low and there exists a tendency which is excellent in long-term heat resistance.
- the terminal amino group amount [NH 2 ] of the semi-aromatic polyamide (B) is measured by the following method. Weigh 0.5-0.7 g of semi-aromatic polyamide (B), dissolve in 30 mL of m-cresol, and add 1-2 drops of 0.1% thymol blue / m-cresol solution as an indicator solution. And Titration is carried out with a 0.02 N p-toluenesulfonic acid solution until the color changes from yellow to blue-violet, and the terminal amino group content ([NH 2 ], unit: ⁇ equivalent / g) is measured.
- Semi-aromatic polyamide (B) can be produced based on a known production method in the same manner as conventional semi-aromatic polyamide.
- dicarboxylic acid and diamine can be produced by polycondensation in a uniform solution. More specifically, a low-order condensate is obtained by heating dicarboxylic acid and diamine in the presence of a catalyst as described in WO 03/085029, and then this low-order condensate. It can be produced by polycondensation by applying shear stress to the melt.
- Olefin polymer (C) In the olefin polymer (C), structural units having a functional group containing a hetero atom (hereinafter, also simply referred to as “functional group”) with respect to 100 parts by mass of the olefin polymer (C) are 0.1 to 1. 5 parts by mass, preferably 0.5 to 1.2 parts by mass. These functional groups are preferably functional groups containing carbon, hydrogen, and oxygen which is a hetero atom. Specific examples of the functional group include a carboxylic acid group (including a carboxylic anhydride group), an ester group, an ether group, an aldehyde group, and a functional group selected from the group consisting of a ketone group.
- functional group include a carboxylic acid group (including a carboxylic anhydride group), an ester group, an ether group, an aldehyde group, and a functional group selected from the group consisting of a ketone group.
- the structural unit having a functional group can be introduced by modifying the olefin polymer.
- the compound for the modification reaction include unsaturated carboxylic acids and derivatives thereof.
- Specific examples of the unsaturated carboxylic acid or derivative thereof include acrylic acid, methacrylic acid, ⁇ -ethylacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid and endocis-bicyclo [ 2,2,1] hept-5-ene-2,3-dicarboxylic acid (Nadic acid [trademark]) and other unsaturated carboxylic acids or unsaturated dicarboxylic acids, and their acid halides, amides, imides, acid anhydrides And derivatives such as esters.
- unsaturated dicarboxylic acids or acid anhydrides thereof are preferable, and maleic acid, Nadic acid (trademark) and acid anhydrides thereof are particularly preferable.
- a particularly preferred compound for modifying the olefin polymer is maleic anhydride.
- Maleic anhydride has a relatively high reactivity with the olefin polymer before modification, hardly causes polymerization of maleic anhydride, and tends to be stable as a basic structure. For this reason, there are various advantages such as obtaining a stable quality olefin polymer (C).
- Examples of the olefin polymer skeleton portion of the olefin polymer (C) include known polymer skeletons such as ethylene polymers, propylene polymers, butene polymers, and copolymers of these olefins.
- a particularly preferred olefin polymer skeleton is a copolymer of ethylene and an olefin having 3 or more carbon atoms.
- the olefin polymer (C) can be obtained, for example, by subjecting the olefin polymer before modification to a compound having a corresponding functional group at a specific ratio.
- One preferred example of the olefin polymer before modification is an ethylene / ⁇ -olefin copolymer.
- the ethylene / ⁇ -olefin copolymer refers to ethylene and other olefins such as propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene and 1-decene.
- a copolymer with an ⁇ -olefin include an ethylene / propylene copolymer, an ethylene / 1-butene copolymer, an ethylene / 1-hexene copolymer, an ethylene / 1-octene copolymer, and an ethylene / propylene copolymer. 4-methyl-1-pentene copolymer and the like are included. Of these, ethylene / propylene copolymers, ethylene / 1-butene copolymers, ethylene / 1-hexene copolymers and ethylene / 1-octene copolymers are preferred.
- the ethylene / ⁇ -olefin copolymer contains 70 to 99.5 mol%, preferably 80 to 99 mol%, of structural units derived from ethylene, and 0.5 to 30 mol% of structural units derived from ⁇ -olefin. , Preferably 1 to 20 mol%.
- the ethylene / ⁇ -olefin copolymer has a melt flow rate (MFR) at 190 ° C. and a load of 2.16 kg according to ASTM D1238 of 0.01 to 20 g / 10 minutes, preferably 0.05 to 20 g / 10 minutes. Things are desirable.
- MFR melt flow rate
- the method for producing the ethylene / ⁇ -olefin copolymer is not particularly limited.
- a transition metal catalyst such as titanium (Ti), vanadium (V), chromium (Cr), or zirconium (Zr) is used.
- the method of manufacturing can be illustrated. In particular, a production method using a metallocene catalyst is suitable.
- the ethylene / ⁇ -olefin copolymer can be converted to an olefin polymer (C) by a so-called graft modification method using a compound having a functional group, for example.
- the graft modification of the ethylene / ⁇ -olefin copolymer can be carried out by a known method.
- an ethylene / ⁇ -olefin copolymer is dissolved in an organic solvent, and an unsaturated carboxylic acid or a derivative thereof and a radical initiator are added to the obtained solution, and the temperature is usually 60 to 350 ° C., preferably 80 to 190 ° C. Examples thereof include a method of reacting at a temperature for 0.5 to 15 hours, preferably 1 to 10 hours.
- organic solvent for dissolving the ethylene / ⁇ -olefin copolymer are not particularly limited, but are aromatic hydrocarbon solvents such as benzene, toluene and xylene; and aliphatic hydrocarbons such as pentane, hexane and heptane. System solvents and the like.
- Another example of the graft modification method for ethylene / ⁇ -olefin copolymer is preferably an ethylene / ⁇ -olefin copolymer and an unsaturated carboxylic acid or derivative thereof using an extruder or the like in the absence of a solvent. And reacting with.
- the reaction conditions in this case are such that the reaction temperature is usually not lower than the melting point of the ethylene / ⁇ -olefin copolymer, specifically 100 to 350 ° C.
- the reaction time can usually be 0.5 to 10 minutes.
- radical initiators include organic peroxides, organic peresters and azo compounds.
- organic peroxides and organic peroxides examples include benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (peroxide benzoate) hexyne-3,1 , 4-bis (t-butylperoxyisopropyl) benzene, lauroyl peroxide, t-butylperacetate, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3,2,5-dimethyl-2 , 5-di (t-butylperoxy) hexane, t-butylperbenzoate, t-butylperphenylacetate, t-butylperisobutyrate, t-butylper-sec-octoate, t-butylperpivalate, cumyl Perpivalate and t-butylper
- azo compound examples include azobisisobutyronitrile and dimethylazoisobutyrate.
- dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3,2,5-dimethyl-2,5-di (t Dialkyl peroxides such as -butylperoxy) hexane and 1,4-bis (t-butylperoxyisopropyl) benzene are preferred.
- the radical initiator is usually used in a proportion of 0.001 to 1 part by weight based on 100 parts by weight of the ethylene / ⁇ -olefin copolymer before modification.
- the modified ethylene / ⁇ -olefin copolymer preferably has a density measured by JIS K7112 of 0.80 to 0.95 g / cm 3 and preferably 0.85 to 0.90 g / cm 3. More preferred.
- the intrinsic viscosity [ ⁇ ] of the modified ethylene / ⁇ -olefin copolymer measured in a 135 ° C. decalin (decahydronaphthalene) solution is preferably 0.5 to 4.0 dl / g, more preferably 1.0 to 3 dl / g, more preferably 1.5 to 3 dl / g. If [ ⁇ ] is within the above range, the toughness and melt fluidity of the resin composition of the present invention can be compatible at a high level.
- the intrinsic viscosity [ ⁇ ] in 135 ° C. decalin of the olefin polymer (C) is measured as follows based on a conventional method. 20 mg of a sample is dissolved in 15 ml of decalin, and the specific viscosity ( ⁇ sp) is measured in an atmosphere of 135 ° C. using an Ubbelohde viscometer. After adding 5 ml of decalin to the decalin solution and diluting, the same specific viscosity is measured. Based on the measurement result obtained by repeating this dilution operation and viscosity measurement twice more, the “ ⁇ sp / C” value when the concentration (C) is extrapolated to zero is defined as the intrinsic viscosity [ ⁇ ].
- the content of the structural unit having a functional group contained in the olefin polymer (C) is 0.1 to 1.5 parts by mass, preferably 0.2 to 1 part by mass with respect to 100 parts by mass of the olefin polymer (C). 1 part by mass. If there are too few structural units having a functional group, the effect of improving the impact resistance of the resin composition may be low. This is because the reaction or interaction between the end groups of the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B) and the functional group of the olefin polymer (C) is eliminated, whereby the olefin polymer (C) is agglomerated.
- the content of the structural unit having a functional group contained in the olefin polymer (C) is determined by a charge ratio when the olefin polymer before modification and the compound having a functional group are reacted, 13 C-NMR measurement or 1 H- It can be specified by a known means such as NMR measurement.
- 1 H-NMR measurement an ECX400 type nuclear magnetic resonance apparatus manufactured by JEOL Ltd. is used, the solvent is deuterated orthodichlorobenzene, the sample concentration is 20 mg / 0.6 mL, the measurement temperature is 120 ° C., the observation nucleus Is 1 H (400 MHz), the sequence is a single pulse, the pulse width is 5.12 ⁇ s (45 ° pulse), the repetition time is 7.0 seconds, and the number of integration is 500 times or more.
- the standard chemical shift is 0 ppm for tetramethylsilane hydrogen, but the same result can also be obtained by setting the peak derived from the residual hydrogen of deuterated orthodichlorobenzene to 7.10 ppm as the standard value for chemical shift. Can be obtained.
- a peak such as 1 H derived from the functional group-containing compound can be assigned by a conventional method.
- an ECP500 type nuclear magnetic resonance apparatus manufactured by JEOL Ltd. is used as a measurement apparatus, a mixed solvent of orthodichlorobenzene / heavy benzene (80/20 vol%), a measurement temperature is 120 ° C.,
- the observation nucleus is a condition of 13 C (125 MHz), single pulse proton decoupling, 45 ° pulse, repetition time of 5.5 seconds, integration number of 10,000 times or more, and 27.50 ppm as a reference value for chemical shift. Assignment of various signals is performed based on a conventional method, and quantification can be performed based on an integrated value of signal intensity.
- the functional group content of polymers having different functional group contents is determined by NMR measurement, and infrared spectroscopy (IR) measurement is performed on the polymer whose functional group content is determined.
- IR infrared spectroscopy
- a calibration curve between the intensity ratio of a specific peak of the infrared spectroscopy (IR) spectrum and the functional group content is created. Based on the calibration curve, the functional group content of any polymer is determined.
- This method is simpler than the NMR measurement described above, but basically, it is necessary to prepare a corresponding calibration curve depending on the type of base resin and functional group. For this reason, this method is preferably used for process management in resin production at a commercial plant, for example.
- Fibrous filler (D) The semi-aromatic polyamide resin composition of the present invention can contain a fibrous filler (D).
- the fibrous filler (D) include glass fiber, wholly aromatic polyamide fiber (for example, polyparaphenylene terephthalamide fiber, polymetaphenylene terephthalamide fiber, polyparaphenylene isophthalamide fiber, polymetaphenylene isophthalate). Amide fibers and fibers obtained from condensates of diaminodiphenyl ether and terephthalic acid or isophthalic acid), boron fibers, and liquid crystal polyester fibers.
- the fibrous filler (D) one or more of these can be used.
- the fibrous filler (D) is at least one selected from glass fibers and wholly aromatic polyamide fibers. Is preferred.
- the average length of the fibrous filler (D) used is preferably in the range of 1 ⁇ m to 20 mm from the viewpoint of maintaining good moldability and improving the mechanical properties and heat resistance of the obtained molded product.
- a range of 5 ⁇ m to 10 mm is more preferable, and a range of 10 ⁇ m to 5 mm is more preferable.
- the aspect ratio of the fibrous filler (D) is preferably in the range of 5 to 2000, more preferably in the range of 30 to 600.
- the fibrous filler (D) is subjected to a surface treatment since the adhesion to the matrix resin, particularly the adhesion to the polyamide, is improved, and the mechanical properties of the resulting polyamide resin composition are greatly improved.
- the surface treatment agent in the surface treatment include coupling agents such as a silane coupling agent, a titanium coupling agent and an aluminate coupling agent, and a sizing agent.
- suitably used coupling agents include aminosilane, epoxy silane, methyltrimethoxysilane, methyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane and vinyltrimethoxysilane. .
- sizing agents examples include epoxy compounds, urethane compounds, carboxylic acid compounds, urethane / maleic acid modified compounds, and urethane / amine modified compounds. These surface treatment agents may be used alone or in combination of two or more. In particular, when a coupling agent and a sizing agent are used in combination, the adhesion between the fibrous filler (D) and the matrix resin, particularly polyamide, is further improved, and the mechanical properties of the resulting semi-aromatic polyamide resin composition are further improved. improves.
- the surface-treated fibrous filler (D) has a mass reduction when heated at 625 ⁇ 20 ° C. for 10 minutes or more with respect to 100 parts by mass of the surface-treated fibrous filler (D). It is preferably in the range of 8.0 parts by mass, more preferably in the range of 0.1 to 5.0 parts by mass.
- the semi-aromatic polyamide resin composition of the present invention can contain a conductive material (E).
- a conductive material (E) for example, it is possible to suppress the occurrence of electrostatic sparks when molded into fuel system parts, and is required when molding into automobile parts and further applying electrostatic coating. Conductivity can be imparted.
- the conductive material in the present invention is defined as having a volume resistivity of 100 ⁇ ⁇ cm or less.
- the conductive material (E) examples include, for example, carbon fiber, conductive carbon black, carbon fibril, carbon nanotube, metal fiber, metal powder, metal flake, metal oxide powder, and metal-coated fiber. Since the specific gravity is excellent and the balance between the conductivity imparting effect and the reinforcing effect is excellent, the conductive material (E) is at least one selected from the group consisting of carbon fiber, conductive carbon black, carbon fibril and carbon nanotube. Is preferred.
- the fibrous filler (D) may also serve as the conductive material (E).
- the conductive material (E) For example, carbon fibers, carbon fibrils, carbon nanotubes, metal fibers, metal-coated fibers, and the like may be not only the fibrous filler (D) but also the conductive material (E).
- the carbon fiber may be either pitch-based or PAN-based carbon fiber, but is preferably PAN-based carbon fiber because of its excellent elasticity and impact resistance.
- the average fiber length of the carbon fibers is preferably in the range of 1 to 20 mm in the state before melt-kneading from the viewpoint of maintaining good moldability and improving the mechanical properties and heat resistance of the obtained molded product. A range of 3 to 10 mm is more preferable, and a range of 5 to 8 mm is more preferable.
- the aspect ratio of the carbon fiber is preferably in the range of 100 to 5000, more preferably in the range of 300 to 2000.
- conductive carbon black for example, carbon black described as conductive carbon black in International Publication No. 01/81473 pamphlet or Japanese Patent Laid-Open No. 2006-213798 can be used. Commercially available conductive carbon black can also be used. Ketjen Black EC600JD and EC300J available from Ketjen Black International Co., Ltd .; Vulcan XC-72 and XC-305 available from Cabot Corporation; PrintexXE2B available from Degussa, # 5500, # 4500 available from Tokai Carbon Co., Ltd., # 5400B available from Mitsubishi Chemical Corporation, etc. can be used.
- carbon fibril fine carbon fibers described in International Publication No. 94/23433 pamphlet can be used.
- Commercially available carbon fibrils can also be used, and BN fibrils available from Hyperion Catalysis International can be used.
- carbon nanotubes multi-walled carbon nanotubes described in Japanese Patent No. 3761561 can be used.
- the content of the conductive material (E) is preferably in the range of 0.1 to 30 parts by mass with respect to 100 parts by mass of the polyamide resin composition because the balance between conductivity and mechanical properties is excellent. 2 to 25 parts by mass is more preferable, and 0.3 to 20 parts by mass is even more preferable.
- the semi-aromatic polyamide resin composition of the present invention may contain an optional additive depending on the application within a range not impairing the effects of the invention.
- optional additives include antioxidants (phenols, amines, sulfurs and phosphorus, etc.), fillers (clay, silica, alumina, talc, kaolin, quartz, mica, graphite, etc.), heat resistant stability Agents (lactone compounds, vitamin Es, hydroquinones, copper halides and iodine compounds, etc.), light stabilizers (benzotriazoles, triazines, benzophenones, benzoates, hindered amines, oxanilides, etc.), other polymers (Olefins such as polyolefins, ethylene / propylene copolymer, ethylene / 1-butene copolymer, olefin copolymers such as propylene / 1-butene copolymer, polystyrene, polyamide,
- the content of the optional additive in the polyamide resin composition of the present invention varies depending on the type of the component, but the semiaromatic polyamide (A), the semiaromatic polyamide (B), the olefin polymer (C), and the fibrous form
- the amount is preferably 0 to 10 parts by mass, more preferably 0 to 5 parts by mass, and still more preferably 0 to 1 part by mass with respect to 100 parts by mass of the filler (D).
- the semi-aromatic polyamide resin composition of the present invention comprises a semi-aromatic polyamide (A), a semi-aromatic polyamide (B), an olefin polymer (C) and a fibrous filler (D), 20-60 parts by mass of semi-aromatic polyamide (A) with respect to 100 parts by mass in total of aromatic polyamide (A), semi-aromatic polyamide (B), olefin polymer (C) and fibrous filler (D)
- the semi-aromatic polyamide (B) is 5 to 30 parts by mass
- the olefin polymer (C) is 1 to 30 parts by mass
- the fibrous filler (D) is 0 to 60 parts by mass, preferably the fibrous filler (D 5) to 60 parts by mass, more preferably 5 to 50 parts by mass of the fibrous filler (D).
- the ratio of the mass of the semi-aromatic polyamide (B) to the total mass of the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B), that is, (B) / ((A) + (B)) is It is preferably 0.05 to 0.5, and more preferably 0.1 to 0.3.
- the ratio of (B) is 0.05 or less, the effect of improving the gas barrier property of the obtained resin composition tends to be insufficient.
- the ratio of (B) is 0.5 or more, although the gas barrier property of the resin composition can be improved, moldability such as injection fluidity and mold release property may be impaired.
- the ratio of the mass of the olefin polymer (C) to the total mass of the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B), that is, (C) / ((A) + (B)) is 0. It is preferably from 03 to 0.75, more preferably from 0.07 to 0.5. When the ratio of (C) is 0.03 or less, the resulting resin composition may not have sufficient impact strength. Moreover, when the ratio of (C) is 0.75 or more, gas barrier properties, heat resistance, mechanical properties, and moldability tend to be impaired.
- the semi-aromatic polyamide resin composition of the present invention comprises a semi-aromatic polyamide (A), a semi-aromatic polyamide (B), an olefin polymer (C) in the above ratio, and If necessary, the fibrous filler (D), the conductive material (E) and other components are mixed by a known method, for example, a Henschel mixer, a V blender, a ribbon blender or a tumbler blender, or further uniaxial after mixing. It can be produced by a method of melt-kneading with an extruder, a multi-screw extruder, a kneader or a Banbury mixer, and thereafter granulating or pulverizing.
- a known method for example, a Henschel mixer, a V blender, a ribbon blender or a tumbler blender, or further uniaxial after mixing. It can be produced by a method of melt-kneading with an extruder, a multi-screw extru
- melt-kneading method a known method can be employed, for example, the method described in Patent Document 1 can be employed.
- molded articles containing a semi-aromatic polyamide resin composition examples include, for example, a radiator grill, a rear spoiler, a wheel cover, a wheel cap, a cowl vent grill, an air outlet louver, Automotive exterior parts such as air scoop, hood bulge, fender and back door; cylinder head cover, engine mount, air intake manifold, throttle body, air intake pipe, radiator tank, radiator support, water pump inlet, water Pump outlet, thermostat housing, cooling fan, fan shroud, oil pan, oil filter housing, oil filler cap, oil level gauge, tie Automotive engine compartment components such as mining belts, timing belt covers and engine covers; fuel caps, fuel filler tubes, automotive fuel tanks, fuel sender modules, fuel cut-off valves, quick connectors, canisters, Automobile fuel system parts such as fuel delivery pipes and fuel filler necks; Automobile drive system parts such as shift lever housings and propeller shafts; Automobile chassis parts such as stabilizer bars and linkage rods;
- Automotive functional parts automotive electronics parts such as wire harnesses / connectors, relay blocks, sensor housings, encapsulations, ignition coils and distributor caps; general-purpose equipment (mowers, lawn mowers, chainsaws, etc.) Fuel system parts for general equipment such as fuel tanks; and electrical and electronic parts such as connectors and LED reflectors, etc., but the polyamide resin composition of the present invention has toughness such as impact resistance and elongation, tensile strength, etc.
- the ratio of the content ratio of the structural unit derived from terephthalic acid and the structural unit derived from adipic acid contained in the semi-aromatic polyamide (A ′) is the molar ratio of the structural unit derived from terephthalic acid / the structural unit derived from adipic acid.
- a conductive material (E) is at least one selected from the group consisting of carbon fiber, conductive carbon black, carbon fibril, and carbon nanotube.
- a molded article comprising the semi-aromatic polyamide resin composition according to any one of [1] to [9].
- a quick connector comprising the semi-aromatic polyamide resin composition according to any one of [1] to [9].
- Polyamides (A-1) to (A-3), (a-1) to (a-2) and (B-1) were prepared as follows.
- Polyamide (A-1) 1787 g (10.8 mol) of terephthalic acid, 2800 g (24.1 mol) of 1,6-hexanediamine, 1921 g (13.1 mol) of adipic acid, 5.7 g of sodium hypophosphite monohydrate and 554 g of distilled water was placed in an autoclave with an internal volume of 13.6 L and purged with nitrogen. Stirring was started from 190 ° C., and the internal temperature was raised to 250 ° C. over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.01 MPa. The reaction was continued for 1 hour as it was, and then discharged from the spray nozzle installed at the bottom of the autoclave to extract the low condensate.
- the obtained low condensate had a water content of 3600 ppm and an intrinsic viscosity [ ⁇ ] of 0.14 dl / g.
- this low condensate was placed in a shelf type solid phase polymerization apparatus and heated to 220 ° C. over about 1 hour and 30 minutes after nitrogen substitution. Then, it reacted for 1 hour and cooled to room temperature.
- the intrinsic viscosity [ ⁇ ] of the obtained polyamide was 0.48 dl / g.
- the obtained polyamide resin had an intrinsic viscosity [ ⁇ ] of 0.9 dl / g and a melting point Tm 1 of 295 ° C.
- the amount of terminal amine was 180 ⁇ equivalent.
- Polyamide (A-2) A polyamide resin was prepared in the same manner as in A-1, except that the amount of terephthalic acid was changed to 2184 g and the amount of adipic acid was changed to 1572 g.
- the obtained polyamide resin had an intrinsic viscosity [ ⁇ ] of 0.94 dl / g and a melting point Tm 1 of 310 ° C.
- Polyamide (A-3) A polyamide resin was prepared in the same manner as in A-1, except that the amount of terephthalic acid was changed to 2482 g and the amount of adipic acid was changed to 1310 g.
- the obtained polyamide resin had an intrinsic viscosity [ ⁇ ] of 0.90 dl / g and a melting point Tm 1 of 320 ° C.
- Polyamide (a-1) 1708 g (10.3 mol) of terephthalic acid, 2800 g (24.1 mol) of 1,6-hexanediamine, 516 g (3.1 mol) of isophthalic acid, 1537 g (10.5 mol) of adipic acid, sodium hypophosphite 5.7 g of hydrate and 535 g of distilled water were placed in an autoclave with an internal volume of 13.6 L and purged with nitrogen. Stirring was started from 190 ° C., and the internal temperature was raised to 250 ° C. over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.02 MPa.
- the reaction was continued for 1 hour as it was, and then discharged from the spray nozzle installed at the bottom of the autoclave to extract the low condensate. Then, after cooling to room temperature, it grind
- the obtained low condensate had a water content of 4000 ppm and an intrinsic viscosity [ ⁇ ] of 0.15 dl / g.
- this low condensate was put into a shelf type solid phase polymerization apparatus, and after the nitrogen substitution, the temperature was raised to 180 ° C. over about 1 hour 30 minutes. Thereafter, the reaction was performed for 1 hour 30 minutes, and the temperature was lowered to room temperature.
- the obtained polyamide resin had an intrinsic viscosity [ ⁇ ] of 0.91 dl / g and a melting point Tm 1 of 279 ° C. Moreover, the amount of terminal amines was 170 micro equivalents.
- Polyamide (a-2) 3971 g (23.9 mol) terephthalic acid, 3051 g (19.3 mol) 1,9-nonanediamine, 763 g (4.8 mol) 2-methyl-1,8-octanediamine, 36.5 g (0.3 mol) benzoic acid Mol), sodium hypophosphite-hydrate (5.7 g) and distilled water (780 g) were placed in an autoclave having an internal volume of 13.6 L and purged with nitrogen. The mixture was heated and stirring was started from 190 ° C., and the internal temperature was raised to 250 ° C. over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.03 MPa.
- the reaction was continued for 1 hour as it was, and then discharged from the spray nozzle installed at the bottom of the autoclave to extract the low condensate. Then, after cooling to room temperature, it grind
- the obtained low condensate had a water content of 4100 ppm and an intrinsic viscosity [ ⁇ ] of 0.13 dl / g.
- this low condensate was put into a shelf type solid phase polymerization apparatus, and after the nitrogen substitution, the temperature was raised to 180 ° C. over about 1 hour 30 minutes. Thereafter, the reaction was performed for 1 hour 30 minutes, and the temperature was lowered to room temperature.
- the obtained polyamide resin had an intrinsic viscosity [ ⁇ ] of 1.09 dl / g and a melting point Tm 1 of 302 ° C. Moreover, the amount of terminal amines was 25 micro equivalents.
- Polyamide (B-1) 1390 g (8.4 mol) of terephthalic acid, 2800 g (24.1 mol) of 1,6-hexanediamine, 2581 g (15.5 mol) of isophthalic acid, 109.5 g (0.9 mol) of benzoic acid, hypophosphorous acid Sodium monohydrate (5.7 g) and distilled water (545 g) were placed in an autoclave having an internal volume of 13.6 L and purged with nitrogen. Stirring was started from 190 ° C., and the internal temperature was raised to 250 ° C. over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.02 MPa.
- the reaction was continued for 1 hour as it was, and then discharged from the spray nozzle installed at the bottom of the autoclave to extract the low condensate. Then, after cooling to room temperature, it grind
- the obtained low condensate had a water content of 3000 ppm and an intrinsic viscosity [ ⁇ ] of 0.14 dl / g.
- a polyamide resin was prepared.
- the heat of fusion ⁇ H of the obtained polyamide resin was 0 J / g.
- the obtained polyamide resin had an intrinsic viscosity [ ⁇ ] of 0.68 dl / g and no melting point Tm1.
- the amount of terminal amines was 270 micro equivalents.
- the water content of the obtained low condensate was determined by weighing about 0.2 g of a sample, heating to 200 ° C. with a Karl Fischer moisture meter, and measuring the amount of water generated at that time (solid vaporization method). .
- the intrinsic viscosity [ ⁇ ] of the obtained polyamide was measured as follows. 0.5 g of polyamide was dissolved in 50 ml of a 96.5% sulfuric acid solution. The number of seconds flowing down under the condition of 25 ° C. ⁇ 0.05 ° C.
- the melting point Tm 1 of the obtained polyamide was measured as follows in accordance with JIS K7121.
- the polyamide was held at 350 ° C. for 5 minutes using a PerkinElmer DSC7, then cooled to 23 ° C. at a rate of 10 ° C./min, and then heated at 10 ° C./min.
- Endothermic peak based on melting at this time - the peak of click top was defined as the melting point Tm 1.
- the heat of fusion ⁇ H was determined from the area of the exothermic peak of crystallization according to JIS K7122.
- Olefin polymer Olefin polymers (C-1) to (C-2) and (c-1) were prepared as follows.
- Olefin polymer (C-1) 0.63 mg of bis (1,3-dimethylcyclopentadienyl) zirconium dichloride is placed in a glass flask thoroughly purged with nitrogen, and 1.57 ml of a toluene solution of methylaminoxan (Al; 0.13 mmol / liter). And 2.43 ml of toluene were added to obtain a catalyst solution.
- ethylene / 1-butene copolymer 100 parts by weight of the obtained ethylene / 1-butene copolymer was mixed with 0.5 parts by weight of maleic anhydride and 0.04 parts by weight of peroxide (Perhexin 25B, trade name, manufactured by NOF Corporation). .
- the obtained mixture was melt graft modified with a single screw extruder set at 230 ° C. to obtain a modified ethylene / 1-butene copolymer.
- the amount of maleic anhydride graft modification of the obtained modified ethylene / 1-butene copolymer was 0.46% by weight.
- the intrinsic viscosity [ ⁇ ] measured in a 135 ° C. decalin solution was 1.98 dl / g.
- Olefin polymer (C-2) Modified olefin polymer except that the amount of maleic anhydride added when modifying the ethylene / 1-butene copolymer before the modification treatment in the production of the olefin polymer (C-1) was changed to 1.0 part by weight Prepared in the same manner as (C-1). The amount of maleic anhydride graft modification was 0.98% by weight. The intrinsic viscosity [ ⁇ ] measured in a 135 ° C. decalin solution was 1.90 dl / g.
- Olefin polymer (c-1) Modified olefin polymer except that the amount of maleic anhydride added when modifying the ethylene / 1-butene copolymer before the modification treatment in the production of the olefin polymer (C-1) was changed to 2.0 parts by weight Prepared in the same manner as (C-1). The amount of maleic anhydride graft modification was 1.89% by weight.
- the intrinsic viscosity [ ⁇ ] measured in a 135 ° C. decalin solution was 1.78 dl / g.
- composition of the olefin polymer for example, the content (mol%) of ethylene and ⁇ -olefin having 3 or more carbon atoms and the content (mass%) of the functional group structural unit were measured by 13 C-NMR.
- the measurement conditions are as follows.
- Measuring apparatus Nuclear magnetic resonance apparatus (ECP500 type, manufactured by JEOL Ltd.) Observation nucleus: 13 C (125 MHz) Sequence: Single pulse proton decoupling Pulse width: 4.7 ⁇ sec (45 ° pulse) Repeat time: 5.5 seconds Accumulated number: 10,000 times or more Solvent: Orthodichlorobenzene / deuterated benzene (volume ratio: 80/20) mixed solvent Sample concentration: 55 mg / 0.6 mL Measurement temperature: 120 ° C Standard value of chemical shift: 27.50ppm
- the density of the ethylene / 1-butene copolymer was measured at a temperature of 23 ° C. using a density gradient tube in accordance with JIS K7112.
- melt flow rate (MFR) The melt flow rate (MFR) of the ethylene / 1-butene copolymer was measured at 190 ° C. under a load of 2.16 kg in accordance with ASTM D1238. The unit is g / 10 min.
- the intrinsic viscosity [ ⁇ ] of the olefin polymer was measured at 135 ° C. in a decalin solvent. Specifically, about 20 mg of the acid-modified polyolefin resin (B) was dissolved in 25 ml of decalin, and then the specific viscosity ⁇ sp was measured in an oil bath at 135 ° C. using an Ubbelohde viscometer. After 5 ml of decalin was added to the decalin solution for dilution, the specific viscosity ⁇ sp was measured in the same manner as described above.
- Tm 2 The melting point Tm 2 of the resulting resin composition was measured as follows. The resin composition was heated at a rate of 10 ° C./min using DSC7 manufactured by PerkinElmer. Endothermic peak based on melting at this time - the peak of click top was defined as the melting point Tm 2.
- IZOD impact strength Using the following injection molding machine, a test piece with a notch and a thickness of 3.2 mm adjusted under the following molding conditions was prepared, and in accordance with ASTM D256, in an atmosphere of a temperature of 23 ° C. and a relative humidity of 50% The IZOD impact strength was measured. Molding machine: SE50DU, manufactured by Sumitomo Heavy Industries, Ltd. Molding machine cylinder temperature: (Tm 2 +15) ° C., mold temperature: 120 ° C.
- injection fluidity A bar flow mold having a width of 10 mm and a thickness of 0.5 mm was used for injection under the following conditions, and the flow length (mm) of the resin in the mold was measured. In addition, it shows that injection
- Molding machine Toshiba Machine Co., Ltd.
- Examples 1 to 8 have a high melting point and excellent results in all of IZOD impact strength, flexural modulus, flexural strength, fuel permeability, injection fluidity, and mold releasability. Furthermore, Example 5 shows a sufficiently low resistance value by containing a conductive material.
- Comparative Example 1 does not contain the semi-aromatic polyamide (B), it can be seen that the fuel permeability is poor. It can be seen that Comparative Example 2 has poor injection fluidity and mold releasability because the content of the semi-aromatic polyamide (B) is too large. Since Comparative Example 3 contains neither semi-aromatic polyamide (A) nor semi-aromatic polyamide (B), it can be seen that the melting point is low, and injection fluidity and mold releasability are poor. Since the comparative example 4 does not contain an olefin polymer (C), it turns out that IZOD impact strength is small. It can be seen that Comparative Example 5 has poor injection fluidity because the content of the structural unit having a functional group in the olefin polymer (C) is large.
- the semi-aromatic polyamide resin composition of the present invention is excellent in impact resistance, fuel barrier properties, and moldability, it is particularly suitably used for molding quick connectors and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Chemical & Material Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
Abstract
Description
[1]示差走査熱量計(DSC)で測定した融点(Tm)が290℃以上340℃以下である半芳香族ポリアミド(A)20~60質量部と、
示差走査熱量計(DSC)で測定した、昇温過程(昇温速度:10℃/min)における融解熱量(ΔH)が0J/g以上5J/g以下である半芳香族ポリアミド(B)5~30質量部と、
ヘテロ原子を含む官能基構造単位0.1~1.5質量部を含むオレフィン重合体(C)1~30質量部と
繊維状充填材(D)0~60質量部とを含む半芳香族ポリアミド樹脂組成物(ただし、(A)、(B)、(C)、および(D)の合計は100質量部である)。
[2]前記半芳香族ポリアミド(A)が、ジカルボン酸成分としてテレフタル酸由来の構造単位およびアジピン酸由来の構造単位を含み、ジアミン成分として炭素原子数4~10の直鎖脂肪族由来の構造単位を含む、[1]に記載の半芳香族ポリアミド樹脂組成物。
[3]前記半芳香族ポリアミド(A)に含まれる前記テレフタル酸由来の構造単位と前記アジピン酸由来の構成単位との含有量の比が、テレフタル酸由来の構造単位/アジピン酸由来の構造単位のモル比が40/60~80/20である[2]に記載の半芳香族ポリアミド樹脂組成物。
[4]前記半芳香族ポリアミド(B)が、ジカルボン酸成分としてイソフタル酸由来の構造単位を含み、ジアミン成分として炭素原子数4~15の脂肪族由来の構造単位を含む、[1]~[3]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
[5]前記半芳香族ポリアミド(B)はテレフタル酸由来の構成単位を有してもよく、前記イソフタル酸由来の構造単位と前記テレフタル酸由来の構成単位との含有量の比が、イソフタル酸由来の構造単位/テレフタル酸由来の構造単位のモル比が60/40~100/0である[4]に記載の半芳香族ポリアミド樹脂組成物。
[6]前記半芳香族ポリアミド(A)と半芳香族ポリアミド(B)の質量の割合((B)/((A)+(B)))は0.05~0.5である[1]~[5]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
[7]前記半芳香族ポリアミド(A)に含まれる全ジアミン成分のうち、80~100モル%が1,6-ヘキサンジアミン由来の構造単位である[1]~[6]のいずれかに記載の半芳香族ポリミアド樹脂組成物。
[8]前記半芳香族ポリアミド(B)に含まれる全ジアミン成分のうち、40~100モル%が1,6-ヘキサンジアミン由来の構造単位である[1]~[7]のいずれかに記載の半芳香族ポリミアド樹脂組成物。
[9]前記オレフィン重合体(C)がポリオレフィン由来の骨格部分を含み、前記ポリオレフィン由来の骨格部分がエチレンと炭素数3以上のオレフィンとの共重合体である、[1]~[8]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
[10]前記オレフィン重合体(C)のヘテロ原子を含む官能基構造単位が、カルボン酸基、エステル基、エーテル基、アルデヒド基およびケトン基からなる群から選ばれる官能基を含む、[1]~[9]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
[11]前記オレフィン重合体(C)のヘテロ原子を含む官能基構造単位が無水マレイン酸により変性された構造単位である、[1]~[10]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
[12]さらに導電材(E)を含む[1]~[11]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
[13]前記導電材(E)が炭素繊維、導電性カーボンブラック、カーボンフィブリルおよびカーボンナノチューブからなる群から選ばれる少なくとも1種である[12]に記載の半芳香族ポリアミド樹脂組成物。
[14][1]~[13]のいずれかに記載の半芳香族ポリアミド樹脂組成物を含む成形品。
[15]クイックコネクタ用である、[14]に記載の成形品。
本発明の半芳香族ポリアミド樹脂組成物は、半芳香族ポリアミド(A)、半芳香族ポリアミド(B)、オレフィン重合体(C)を含み、好ましくは繊維状充填材(D)、導電材(E)を含む。
半芳香族ポリアミド(A)は、示差走査熱量測定(以下、DSC)により得られる融点(Tm)が290℃以上340℃以下である、半芳香族ポリアミドである。半芳香族ポリアミドの融点は、290℃以上330℃以下であることがより好ましい。半芳香族ポリアミド(A)の融点を290℃以上とすることで、半芳香族ポリアミド樹脂組成物の耐熱性および機械強度を高めることができる。また、半芳香族ポリアミド(A)の融点を340℃以下とすることで、半芳香族ポリアミド樹脂組成物の融点が過剰に高まらなくして、溶融重合や溶融成形時にポリマーや各種添加材の熱分解が生じることを防ぐことができる。
本発明の半芳香族ポリアミド樹脂組成物に含まれる半芳香族ポリアミド(B)は、示差走査熱量測定(以下、DSC)により得られる、昇温過程(昇温速度:10℃/min)における融解熱量(ΔH)0J/g以上5J/g以下である。融解熱量はポリアミド樹脂の結晶性の指標となり、融解熱量が大きい程結晶性が高いことを示し、融解熱量が小さい程結晶性が低いことを示す。半芳香族ポリアミド(B)の融解熱量(ΔH)が5J/g以下であり、結晶性が低いと、半芳香族ポリアミド(A)との相溶性に優れ、また、樹脂組成物の成形品の外観が優れる点で好ましい。半芳香族ポリアミド(B)の融解熱量(ΔH)は、0J/gであることが好ましい。また、半芳香族ポリアミド(B)は非晶性の樹脂であることが好ましい。
オレフィン重合体(C)は、オレフィン重合体(C)100質量部に対して、ヘテロ原子を含む官能基(以下、単に「官能基」ともいう。)を有する構造単位を0.1~1.5質量部、好ましくは0.5~1.2質量部含む。これらの官能基は、炭素、水素およびヘテロ原子である酸素を含む官能基が好ましい。官能基の具体的には、カルボン酸基(無水カルボン酸基を含む)、エステル基、エーテル基、アルデヒド基およびケトン基からなる群から選ばれる官能基などが含まれる。
本発明の半芳香族ポリアミド樹脂組成物は、繊維状充填材(D)を含有することができる。繊維状充填剤(D)の例には、例えば、ガラス繊維、全芳香族ポリアミド繊維(例えば、ポリパラフェニレンテレフタルアミド繊維、ポリメタフェニレンテレフタルアミド繊維、ポリパラフェニレンイソフタルアミド繊維、ポリメタフェニレンイソフタルアミド繊維およびジアミノジフェニルエーテルとテレフタル酸またはイソフタル酸との縮合物から得られる繊維など)、ホウ素繊維、ならびに液晶ポリエステル繊維などが含まれる。繊維状充填剤(D)としては、これらのうちの1種または2種以上を用いることができる。上記した中でも、得られる成形品の機械的特性および耐熱性がより一層向上することから、繊維状充填剤(D)としては、ガラス繊維、全芳香族ポリアミド繊維から選ばれる少なくとも1種であることが好ましい。
本発明の半芳香族ポリアミド樹脂組成物は導電材(E)を含有することができる。導電材(E)を含有することにより、例えば、燃料系部品に成形した際に静電スパークの発生を抑制することができ、また自動車部品に成形し、さらに静電塗装を施す際に要求される導電性を付与することができる。本発明における導電材とは、体積固有抵抗が100Ω・cm以下であるものと定義する。
本発明の半芳香族ポリアミド樹脂組成物は、発明の効果を損なわない範囲で、用途に応じて、任意の添加剤を含有してもよい。任意の添加剤の例には、酸化防止剤(フェノール類、アミン類、イオウ類およびリン類等)、充填材(クレー、シリカ、アルミナ、タルク、カオリン、石英、マイカおよびグラファイト等)、耐熱安定剤(ラクトン化合物、ビタミンE類、ハイドロキノン類、ハロゲン化銅およびヨウ素化合物等)、光安定剤(ベンゾトリアゾール類、トリアジン類、ベンゾフェノン類、ベンゾエート類、ヒンダードアミン類およびオギザニリド類等)、他の重合体(ポリオレフィン類、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体等のオレフィン共重合体、プロピレン・1-ブテン共重合体等のオレフィン共重合体、ポリスチレン、ポリアミド、ポリカーボネート、ポリアセタール、ポリスルフォン、ポリフェニレンオキシド、フッ素樹脂、シリコーン樹脂およびLCP等)、難燃剤(臭素系、塩素系、リン系、アンチモン系および無機系等)蛍光増白剤、可塑剤、増粘剤、帯電防止剤、離型剤、顔料、結晶核剤ならびに種々公知の配合剤が含まれる。
本発明の半芳香族ポリアミド樹脂組成物は、半芳香族ポリアミド(A)、半芳香族ポリアミド(B)、オレフィン重合体(C)および繊維状充填材(D)を、半芳香族ポリアミド(A)、半芳香族ポリアミド(B)、オレフィン重合体(C)および繊維状充填材(D)の合計100質量部に対して半芳香族ポリアミド(A)が20~60質量部、半芳香族ポリアミド(B)が5~30質量部、オレフィン重合体(C)が1~30質量部、繊維状充填材(D)が0~60質量部、好ましくは繊維状充填材(D)が5~60質量部、さらに好ましくは繊維状充填材(D)が5~50質量部の比率で含有することが好ましい。
本発明の半芳香族ポリアミド樹脂組成物は、上記の比率の半芳香族ポリアミド(A)、半芳香族ポリアミド(B)、オレフィン重合体(C)、ならびに必要に応じて繊維状充填材(D)、導電材(E)およびその他の成分を、公知の方法、例えばヘンシェルミキサー、Vブレンダー、リボンブレンダーもしくはタンブラーブレンダーなどで混合する方法、または混合後さらに一軸押出機、多軸押出機、ニーダーもしくはバンバリーミキサーなどで溶融混練し、その後、造粒もしくは粉砕する方法により製造することができる。
本発明のポリアミド樹脂組成物からなる成形品の例には、例えば、ラジエータグリル、リアスポイラー、ホイールカバー、ホイールキャップ、カウルベント・グリル、エアアウトレット・ルーバー、エアスクープ、フードバルジ、フェンダーおよびバックドア等の自動車用外装部品;シリンダーヘッド・カバー、エンジンマウント、エアインテーク・マニホールド、スロットルボディ、エアインテーク・パイプ、ラジエータタンク、ラジエータサポート、ウォーターポンプ・インレット、ウォーターポンプ・アウトレット、サーモスタットハウジング、クーリングファン、ファンシュラウド、オイルパン、オイルフィルター・ハウジング、オイルフィラー・キャップ、オイルレベル・ゲージ、タイミング・ベルト、タイミング・ベルトカバーおよびエンジン・カバー等の自動車用エンジンルーム内部品;フューエルキャップ、フューエルフィラー・チューブ、自動車用燃料タンク、フューエルセンダー・モジュール、フューエルカットオフ・バルブ、クイックコネクタ、キャニスター、フューエルデリバリー・パイプおよびフューエルフィラーネック等の自動車用燃料系部品;シフトレバー・ハウジングおよびプロペラシャフト等の自動車用駆動系部品;スタビライザーバー・リンケージロッド等の自動車用シャシー部品;ウインドーレギュレータ、ドアロック、ドアハンドル、アウトサイド・ドアミラー・ステー、アクセルペダル、ペダル・モジュール、シールリング、軸受、ベアリングリテーナー、ギアおよびアクチュエーター等の自動車用機能部品;ワイヤーハーネス・コネクター、リレーブロック、センサーハウジング、エンキャプシュレーション、イグニッションコイルおよびディストリビューター・キャップ等の自動車用エレクトロニクス部品;汎用機器(刈り払い機、芝刈り機およびチェーンソー等)用燃料タンク等の汎用機器用燃料系部品;ならびにコネクタおよびLEDリフレクタ等の電気電子部品などが含まれるが、本発明のポリアミド樹脂組成物は耐衝撃性、伸度等の靱性と、引張り強さ等の機械的特性の両特性に同時に優れ、しかも、耐熱性、低吸水性、耐薬品性、長期耐熱性などの特性にも優れることから、特に、自動車用燃料タンク、クイックコネクタ、ベアリングリテーナー、汎用機器用燃料タンク、フューエルキャップ、フューエルフィラーネック、フューエルセンダー・モジュール、ホイールキャップ、フェンダーまたはバックドアとして好ましく使用することができる。
本発明の一態様として、以下の構成を挙げることができる。
[1]ジカルボン酸成分としてテレフタル酸由来の構成単位およびアジピン酸由来の構成単位を含み、ジアミン成分として炭素原子数4~10の直鎖脂肪族ジアミン由来の構成単位を含む半芳香族ポリアミド(A’)20~60質量部と、
ジカルボン酸成分としてイソフタル酸由来の構成単位を含み、ジアミン成分として炭素原子数4~15の脂肪族ジアミン由来の構成単位を含む半芳香族ポリアミド(B’)5~30質量部と、
官能基を有する構造単位を0.1~1.5質量部含むオレフィン重合体(C)1~30質量部と、
繊維状充填材(D)5~60質量部とを含み(ただし、(A’)、(B’)、(C)、および(D)の合計は100質量部である)、且つ、(A’)と(B’)の質量の割合((B’)/((A’)+(B’)))は0.05~0.5である半芳香族ポリアミド樹脂組成物。
[2]前記半芳香族ポリアミド(A’)に含まれるテレフタル酸由来の構造単位とアジピン酸由来の構造単位の含有率の比は、テレフタル酸由来の構造単位/アジピン酸由来の構造単位のモル比が40/60~80/20である[1]記載の半芳香族ポリアミド樹脂組成物。
[3]前記半芳香族ポリアミド(B’)に含まれる全ジカルボン酸成分の60~100モル%がイソフタル酸由来の構成単位、0~40モル%がテレフタル酸由来の構成単位である[1]または[2]に記載の半芳香族ポリアミド樹脂組成物。
[4]前記半芳香族ポリアミド(A’)に含まれる全ジアミン成分の80~100モル%が1,6-ヘキサンジアミン由来の構成単位である[1]~[3]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
[5]前記半芳香族ポリアミド(B’)に含まれる全ジアミン成分の60~100モル%が1,6-ヘキサンジアミンである[1]~[4]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
[6]前記オレフィン重合体(C)が有する官能基が、カルボン酸、エステル、エーテル、アルデヒド、ケトンからなる群から選ばれる官能基である、[1]~[5]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
[7]前記オレフィン重合体(C)が、無水マレイン酸由来の構造単位を含む、[6]に記載の半芳香族ポリアミド樹脂組成物。
[8]導電材(E)をさらに含む[1]~[7]のいずれかに記載の半芳香族ポリアミド樹脂組成物。
[9]前記導電材(E)が炭素繊維、導電性カーボンブラック、カーボンフィブリルおよびカーボンナノチューブからなる群から選ばれる少なくとも1種である[8]に記載の半芳香族ポリアミド樹脂組成物。
[10]前記[1]~[9]のいずれかに記載の半芳香族ポリアミド樹脂組成物を含む成形品。
[11]前記[1]~[9]のいずれかに記載の半芳香族ポリアミド樹脂組成物を含むクイックコネクタ。
ポリアミド(A-1)~(A-3)、(a-1)~(a-2)および(B-1)を、以下のようにして調整した。
テレフタル酸1787g(10.8モル)、1,6-ヘキサンジアミン2800g(24.1モル)、アジピン酸1921g(13.1モル)、次亜リン酸ナトリウム一水和物5.7g及び蒸留水554gを内容量13.6Lのオートクレーブに入れ、窒素置換した。190℃から攪拌を開始し、3時間かけて内部温度を250℃まで昇温した。このとき、オートクレーブの内圧を3.01MPaまで昇圧した。このまま1時間反応を続けた後、オートクレーブ下部に設置したスプレーノズルから大気放出して低縮合物を抜き出した。その後、室温まで冷却後、粉砕機で1.5mm以下の粒径まで粉砕し、110℃で24時間乾燥した。得られた低縮合物の水分量は3600ppm、極限粘度[η]は0.14dl/gであった。次に、この低縮合物を棚段式固相重合装置にいれ、窒素置換後、約1時間30分かけて220℃まで昇温した。その後、1時間反応し、室温まで降温した。得られたポリアミドの極限粘度[η]は0.48dl/gであった。その後、スクリュー径30mm、L/D=36の二軸押出機にて、バレル設定温度330℃、スクリュー回転数200rpm、6Kg/hの樹脂供給速度で溶融重合して、ポリアミド樹脂を調製した。得られたポリアミド樹脂の極限粘度[η]は0.9dl/g、融点Tm1は295℃であった。また、末端アミン量は180μ当量であった。
テレフタル酸の量を2184g、アジピン酸の量を1572gに変更した以外は、A-1と同様にしてポリアミド樹脂を調製した。得られたポリアミド樹脂の極限粘度[η]は0.94dl/g、融点Tm1は310℃であった。
テレフタル酸の量を2482g、アジピン酸の量を1310gに変更した以外は、A-1と同様にしてポリアミド樹脂を調製した。得られたポリアミド樹脂の極限粘度[η]は0.90dl/g、融点Tm1は320℃であった。
テレフタル酸1708g(10.3モル)、1,6-ヘキサンジアミン2800g(24.1モル)、イソフタル酸516g(3.1モル)、アジピン酸1537g(10.5モル)、次亜リン酸ナトリウム一水和物5.7g及び蒸留水535gを内容量13.6Lのオートクレーブに入れ、窒素置換した。190℃から攪拌を開始し、3時間かけて内部温度を250℃まで昇温した。このとき、オートクレーブの内圧を3.02MPaまで昇圧した。このまま1時間反応を続けた後、オートクレーブ下部に設置したスプレーノズルから大気放出して低縮合物を抜き出した。その後、室温まで冷却後、粉砕機で1.5mm以下の粒径まで粉砕し、110℃で24時間乾燥した。得られた低縮合物の水分量は4000ppm、極限粘度[η]は0.15dl/gであった。次に、この低縮合物を棚段式固相重合装置にいれ、窒素置換後、約1時間30分かけて180℃まで昇温した。その後、1時間30分反応し、室温まで降温した。得られたポリアミドの極限粘度[η]は0.20dl/gであった。その後、スクリュー径30mm、L/D=36の二軸押出機にて、バレル設定温度330℃、スクリュー回転数200rpm、6Kg/hの樹脂供給速度で溶融重合して、ポリアミド樹脂を調製した。得られたポリアミド樹脂の極限粘度[η]は0.91dl/g、融点Tm1は279℃であった。また、末端アミン量は170μ当量であった。
テレフタル酸3971g(23.9モル)、1,9-ノナンジアミン3051g(19.3モル)、2-メチル-1,8-オクタンジアミン763g(4.8モル)、安息香酸36.5g(0.3モル)、次亜リン酸ナトリウム-水和物5.7g及び蒸留水780gを内容量13.6Lのオートクレーブに入れ、窒素置換した。当該混合物を加熱して、190℃から攪拌を開始し、3時間かけて内部温度を250℃まで昇温させた。このとき、オートクレーブの内圧を3.03MPaまで昇圧させた。このまま1時間反応を続けた後、オートクレーブ下部に設置したスプレーノズルから大気放出して低縮合物を抜き出した。その後、室温まで冷却後、粉砕機で1.5mm以下の粒径まで粉砕し、110℃で24時間乾燥した。得られた低縮合物の水分量は4100ppm、極限粘度[η]は0.13dl/gであった。次に、この低縮合物を棚段式固相重合装置にいれ、窒素置換後、約1時間30分かけて180℃まで昇温した。その後、1時間30分反応し、室温まで降温した。得られたポリアミドの極限粘度[η]は0.17dl/gであった。その後、スクリュー径30mm、L/D=36の二軸押出機にて、バレル設定温度340℃、スクリュー回転数200rpm、5Kg/hの樹脂供給速度で溶融重合して、ポリアミド樹脂を調整した。得られたポリアミド樹脂の極限粘度[η]は1.09dl/g、融点Tm1は302℃であった。また、末端アミン量は25μ当量であった。
テレフタル酸1390g(8.4モル)、1,6-ヘキサンジアミン2800g(24.1モル)、イソフタル酸2581g(15.5モル)、安息香酸109.5g(0.9モル)、次亜リン酸ナトリウム一水和物5.7g及び蒸留水545gを内容量13.6Lのオートクレーブに入れ、窒素置換した。190℃から攪拌を開始し、3時間かけて内部温度を250℃まで昇温した。このとき、オートクレーブの内圧を3.02MPaまで昇圧した。このまま1時間反応を続けた後、オートクレーブ下部に設置したスプレーノズルから大気放出して低縮合物を抜き出した。その後、室温まで冷却後、粉砕機で1.5mm以下の粒径まで粉砕し、110℃で24時間乾燥した。得られた低縮合物の水分量は3000ppm、極限粘度[η]は0.14dl/gであった。次に、この低縮合物を、スクリュー径30mm、L/D=36の二軸押出機にて、バレル設定温度330℃、スクリュー回転数200rpm、6Kg/hの樹脂供給速度で溶融重合して、ポリアミド樹脂を調製した。得られたポリアミド樹脂の融解熱量ΔHは0J/gだった。得られたポリアミド樹脂の極限粘度[η]は0.68dl/g、融点Tm1は観測されなかった。また、末端アミン量は270μ当量であった。
得られた低縮合物の水分量は、サンプル約0.2gを計量し、カールフィッシャー水分計にて200℃に加熱し、その際に発生する水分量を測定して求めた(固体気化法)。
得られたポリアミドの極限粘度[η]は以下のようにして測定した。ポリアミド0.5gを96.5%硫酸溶液50mlに溶解させた。得られた溶液の、25℃±0.05℃の条件下での流下秒数を、ウベローデ粘度計を使用して測定し、「数式:[η]=ηSP/(C(1+0.205ηSP))」に基づき算出した。
[η]:極限粘度(dl/g)
ηSP:比粘度
C:試料濃度(g/dl)
t:試料溶液の流下秒数(秒)
t0:ブランク硫酸の流下秒数(秒)
ηSP=(t-t0)/t0
また、得られたポリアミドの融点Tm1はJIS K7121に準じて以下のようにして測定した。ポリアミドを、PerkinElemer社製DSC7を用いて、350℃で5分間保持し、次いで10℃/分の速度で23℃まで降温させた後、10℃/分で昇温した。このときの融解に基づく吸熱ピ-クのピークトップを融点Tm1とした。また、融解熱量ΔHはJIS K7122に準じて、結晶化の発熱ピークの面積より求めた。
オレフィン重合体(C-1)~(C-2)および(c-1)を以下のように調整した。
十分に窒素置換したガラス製フラスコに、ビス(1,3-ジメチルシクロペンタジエニル)ジルコニウムジクロリドを0.63mg入れ、更にメチルアミノキサンのトルエン溶液(Al;0.13ミリモル/リットル)1.57ml、およびトルエン2.43mlを添加することにより触媒溶液を得た。
オレフィン重合体(C-1)の製造における変性処理前のエチレン・1-ブテン共重合体を変性する時に添加する無水マレイン酸の量を、1.0重量部に変更した以外は変性オレフィン重合体(C-1)と同様にして調製した。無水マレイン酸グラフト変性量は0.98重量%であった。また135℃デカリン溶液中で測定した極限粘度[η]は1.90dl/gであった。
オレフィン重合体(C-1)の製造における変性処理前のエチレン・1-ブテン共重合体を変性する時に添加する無水マレイン酸の量を、2.0重量部に変更した以外は変性オレフィン重合体(C-1)と同様にして調製した。無水マレイン酸グラフト変性量は1.89重量%であった。また135℃デカリン溶液中で測定した極限粘度[η]は1.78dl/gであった。
オレフィン重合体の組成、例えばエチレン及び炭素数3以上のα-オレフィンの含有率(モル%)や官能基構造単位の含有率(質量%)は、13C-NMRにより測定した。測定条件は、下記のとおりである。
測定装置:核磁気共鳴装置(ECP500型、日本電子(株)製)
観測核:13C(125MHz)
シーケンス:シングルパルスプロトンデカップリング
パルス幅:4.7μ秒(45°パルス)
繰り返し時間:5.5秒
積算回数:1万回以上
溶媒:オルトジクロロベンゼン/重水素化ベンゼン(容量比:80/20)混合溶媒
試料濃度:55mg/0.6mL
測定温度:120℃
ケミカルシフトの基準値:27.50ppm
エチレン・1-ブテン共重合体の密度は、密度はJIS K7112に準拠して密度勾配管を用いて温度23℃で測定した。
エチレン・1-ブテン共重合体のメルトフローレート(MFR:Melt Flow Rate)は、ASTM D1238に準拠し、190℃で2.16kgの荷重にて測定した。単位は、g/10minである。
オレフィン重合体の極限粘度[η]はデカリン溶媒中、135℃で測定した。
具体的には、約20mgの酸変性されたポリオレフィン樹脂(B)をデカリン25mlに溶解させた後、ウベローデ粘度計を用い、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリンを5ml加えて希釈した後、上記と同様にして比粘度ηspを測定した。この希釈操作を更に2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度[η](単位:dl/g)として求めた(下記式参照)。
[η]=lim(ηsp/C) (C→0)
表1に示される組成比で、ポリアミド(A-1)~(A-3)、ポリアミド(a-1)~(a-2)、ポリアミド(B-1)、オレフィン重合体(C-1)~(C-2)、オレフィン重合体(c-1)と、ガラス繊維(オーウェンスコーニング社製、FT756D、ガラス繊維長3mm、アスペクト比300)および炭素繊維(東邦テナックス社製HT-C413、炭素繊維長6mm、アクペクト比1000)とを、タンブラーブレンダーを用いて混合し、二軸押出機((株)日本製鋼所製TEX30α)にて、シリンダー温度(Tm1+15)℃で原料を溶融混錬後、ストランド状に押出し、水槽で冷却した。その後、ペレタイザーでストランドを引き取り、カットすることでペレット状組成物を得た。
得られた樹脂組成物の融点Tm2を以下のようにして測定した。樹脂組成物を、PerkinElemer社製DSC7を用いて、10℃/分の速度で昇温した。このときの融解に基づく吸熱ピ-クのピークトップを融点Tm2とした。
下記の射出成型機を用い、下記の成形条件で調整したノッチ付き、厚さ:3.2mmの試験片を作成して、ASTMD256に準拠して、温度23℃、相対湿度50%の雰囲気下でのIZOD衝撃強度で測定した。
成型機:住友重機械工業(株)社製、SE50DU
成型機シリンダー温度:(Tm2+15)℃、金型温度:120℃
下記の射出成型機を用い、下記の成形条件で調整した長さ64mm、幅6mm、厚さ0.8mmの試験片を、温度23℃、窒素雰囲気下で24時間放置した。次いで、温度23℃、相対湿度50%の雰囲気下で曲げ試験機:NTESCO社製 AB5、スパン26mm、曲げ速度5mm/分で曲げ試験を行い、曲げ強度、弾性率を測定した。
成型機:(株)ソディック プラスティック、ツパールTR40S3A
成型機シリンダー温度:(Tm2+15)℃、金型温度:120℃
下記の射出成型機を用い、下記の成形条件で調整した100mm角、厚さ2mmの角板試験片から直径45mmの円盤状試験片を切り出した。模擬燃料であるCE10(トルエン/イソオクタン/エタノール=45/45/10容量%)が10mL入った、20mLの容積を有するSUS製容器(開放部面積77.07×10-4m2)の開放部に、円盤状試験片をセットして密閉することで、試験体とした。該試験体を恒温装置(60℃)に入れ、試験体の重量変化を測定し、燃料透過性を評価した。
成型機:東芝機械(株)EC75N-2A
成型機シリンダー温度:(Tm2+15)℃、金型温度:120℃
上記と同様にして成形した100mm角、厚さ2mmの角板試験片を、温度23℃、相対湿度50%の雰囲気下で24時間放置した。次いで、直流電圧・電流源/モニタ:(株)エーディーシー社製 6241A、ASP型(4探針)プローブを用い、試験片中央部の1点の表面低効率をJIS K7194に準じて測定した。
幅10mm、厚み0.5mmのバーフロー金型を使用して以下の条件で射出し、金型内の樹脂の流動長(mm)を測定した。なお、流動長が長いほど射出流動性が良好であることを示す。
成型機:東芝機械(株)EC75N-2A
射出設定圧力:2000kg/cm2
成型機シリンダー温度:(Tm2+15)℃、金型温度:120℃
下記の射出成型機を用い、下記の成形条件にて調整した長さ64mm、幅6mm、厚さ0.8mmの試験片を射出成形した。この際、吐出ピンで成形品に対し変形を与えずに、且つ固定側や可動側の金型に付着することなく容易に取出しが可能な最短の冷却時間を決定し、最短の成形サイクル(1つの成形品を得るのに必要な時間)を測定した。この成形サイクルが16秒未満の場合の離型性を◎、16秒以上~20秒未満の場合を○、20秒以上の場合を×として評価した。
成型機:(株)ソディック プラスティック、ツパールTR40S3A
成型機シリンダー温度:(Tm2+15)℃、金型温度:120℃
Claims (15)
- 示差走査熱量計(DSC)で測定した融点(Tm)が290℃以上340℃以下である半芳香族ポリアミド(A)20~60質量部と、
示差走査熱量計(DSC)で測定した、昇温過程(昇温速度:10℃/min)における融解熱量(ΔH)が0J/g以上5J/g以下である半芳香族ポリアミド(B)5~30質量部と、
ヘテロ原子を含む官能基構造単位0.1~1.5質量部を含むオレフィン重合体(C)1~30質量部と
繊維状充填材(D)0~60質量部とを含む半芳香族ポリアミド樹脂組成物(ただし、(A)、(B)、(C)、および(D)の合計は100質量部である)。 - 前記半芳香族ポリアミド(A)が、ジカルボン酸成分としてテレフタル酸由来の構造単位およびアジピン酸由来の構造単位を含み、ジアミン成分として炭素原子数4~10の直鎖脂肪族由来の構造単位を含む、請求項1に記載の半芳香族ポリアミド樹脂組成物。
- 前記半芳香族ポリアミド(A)に含まれる前記テレフタル酸由来の構造単位と前記アジピン酸由来の構成単位との含有量の比が、テレフタル酸由来の構造単位/アジピン酸由来の構造単位のモル比が40/60~80/20である請求項2に記載の半芳香族ポリアミド樹脂組成物。
- 前記半芳香族ポリアミド(B)が、ジカルボン酸成分としてイソフタル酸由来の構造単位を含み、ジアミン成分として炭素原子数4~15の脂肪族由来の構造単位を含む、請求項1に記載の半芳香族ポリアミド樹脂組成物。
- 前記半芳香族ポリアミド(B)はテレフタル酸由来の構成単位を有してもよく、前記イソフタル酸由来の構造単位と前記テレフタル酸由来の構成単位との含有量の比が、イソフタル酸由来の構造単位/テレフタル酸由来の構造単位のモル比が60/40~100/0である請求項4に記載の半芳香族ポリアミド樹脂組成物。
- 前記半芳香族ポリアミド(A)と半芳香族ポリアミド(B)の質量の割合((B)/((A)+(B)))は0.05~0.5である請求項1に記載の半芳香族ポリアミド樹脂組成物。
- 前記半芳香族ポリアミド(A)に含まれる全ジアミン成分のうち、80~100モル%が1,6-ヘキサンジアミン由来の構造単位である請求項1に記載の半芳香族ポリミアド樹脂組成物。
- 前記半芳香族ポリアミド(B)に含まれる全ジアミン成分のうち、40~100モル%が1,6-ヘキサンジアミン由来の構造単位である請求項1に記載の半芳香族ポリミアド樹脂組成物。
- 前記オレフィン重合体(C)がポリオレフィン由来の骨格部分を含み、前記ポリオレフィン由来の骨格部分がエチレンと炭素数3以上のオレフィンとの共重合体である、請求項1に記載の半芳香族ポリアミド樹脂組成物。
- 前記オレフィン重合体(C)のヘテロ原子を含む官能基構造単位が、カルボン酸基、エステル基、エーテル基、アルデヒド基およびケトン基からなる群から選ばれる官能基を含む、請求項1に記載の半芳香族ポリアミド樹脂組成物。
- 前記オレフィン重合体(C)のヘテロ原子を含む官能基構造単位が無水マレイン酸により変性された構造単位である、請求項1に記載の半芳香族ポリアミド樹脂組成物。
- さらに導電材(E)を含む請求項1に記載の半芳香族ポリアミド樹脂組成物。
- 前記導電材(E)が炭素繊維、導電性カーボンブラック、カーボンフィブリルおよびカーボンナノチューブからなる群から選ばれる少なくとも1種である請求項12に記載の半芳香族ポリアミド樹脂組成物。
- 請求項1に記載の半芳香族ポリアミド樹脂組成物を含む成形品。
- クイックコネクタ用である、請求項14に記載の成形品。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/906,990 US9732223B2 (en) | 2013-07-26 | 2014-07-25 | Semi-aromatic polyamide resin composition and molded article containing same |
KR1020167000335A KR20160018696A (ko) | 2013-07-26 | 2014-07-25 | 반방향족 폴리아미드 수지 조성물 및 그것을 포함하는 성형품 |
JP2015528159A JP6346181B2 (ja) | 2013-07-26 | 2014-07-25 | 半芳香族ポリアミド樹脂組成物およびそれを含む成型品 |
CN201480038529.0A CN105377990A (zh) | 2013-07-26 | 2014-07-25 | 半芳香族聚酰胺树脂组合物以及包含该组合物的成型品 |
EP14828822.8A EP3026084B1 (en) | 2013-07-26 | 2014-07-25 | Semi-aromatic polyamide resin composition and molded article containing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013155562 | 2013-07-26 | ||
JP2013-155562 | 2013-07-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015011935A1 true WO2015011935A1 (ja) | 2015-01-29 |
Family
ID=52392998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/003943 WO2015011935A1 (ja) | 2013-07-26 | 2014-07-25 | 半芳香族ポリアミド樹脂組成物およびそれを含む成型品 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9732223B2 (ja) |
EP (1) | EP3026084B1 (ja) |
JP (1) | JP6346181B2 (ja) |
KR (1) | KR20160018696A (ja) |
CN (1) | CN105377990A (ja) |
WO (1) | WO2015011935A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015093060A1 (ja) * | 2013-12-20 | 2015-06-25 | 三井化学株式会社 | 半芳香族ポリアミド樹脂組成物およびその成型品 |
JP2017002205A (ja) * | 2015-06-11 | 2017-01-05 | 三井化学株式会社 | エンジン支持部材用樹脂組成物及びエンジン支持部材 |
JP2017155157A (ja) * | 2016-03-03 | 2017-09-07 | ダイセルポリマー株式会社 | ポリアミド樹脂組成物 |
WO2018011131A1 (de) | 2016-07-13 | 2018-01-18 | Ems-Patent Ag | Leitfähige thermoplastische polyamidformmasse |
US11445934B2 (en) | 2014-07-28 | 2022-09-20 | Intuitive Surgical Operations, Inc. | Systems and methods for intraoperative segmentation |
WO2024048508A1 (ja) * | 2022-09-02 | 2024-03-07 | 三井化学株式会社 | ポリアミド樹脂組成物、金属樹脂接合体およびその製造方法、バスバーユニット、駆動ユニットならびに移動体 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102869700B (zh) * | 2010-04-29 | 2014-08-20 | 帝斯曼知识产权资产管理有限公司 | 半芳族聚酰胺 |
SG11202000892XA (en) | 2017-09-28 | 2020-02-27 | Dupont Polymers Inc | Polymerization process |
CN109776349B (zh) | 2017-11-15 | 2022-02-22 | 财团法人工业技术研究院 | 二胺化合物、二胺二酸盐、与共聚物的形成方法 |
US11248582B2 (en) * | 2017-11-21 | 2022-02-15 | General Electric Company | Multiple material combinations for printed reinforcement structures of rotor blades |
JP7308859B2 (ja) * | 2018-10-22 | 2023-07-14 | クラレファスニング株式会社 | 耐熱性に優れた雄型成形面ファスナー、該雄型成形面ファスナーの製造方法、及び該雄型成形面ファスナーを用いた自動車用内装材の固定方法 |
JP7516378B2 (ja) | 2018-12-06 | 2024-07-16 | ビーエーエスエフ ソシエタス・ヨーロピア | ポリアミド組成物 |
WO2020218209A1 (ja) * | 2019-04-26 | 2020-10-29 | ユニチカ株式会社 | ポリアミド樹脂組成物およびそれを成形してなる成形体 |
CN112592582B (zh) * | 2019-10-01 | 2024-01-02 | 尤尼吉可株式会社 | 聚酰胺树脂组合物和由其构成的成型体及车载照相机用部件 |
JPWO2021106850A1 (ja) * | 2019-11-29 | 2021-06-03 | ||
EP4130140A4 (en) * | 2020-03-31 | 2024-04-03 | Mitsui Chemicals, Inc. | SEMI-AROMATIC POLYAMIDE RESIN COMPOSITION AND MOLDED ARTICLES THEREOF |
CN111440437A (zh) * | 2020-04-29 | 2020-07-24 | 泉州永聚兴塑胶原料有限公司 | 一种耐酸碱高阻燃的聚酰胺复合材料及其制备方法 |
EP4298164A1 (en) * | 2021-02-23 | 2024-01-03 | Solvay Specialty Polymers USA, LLC | Polyamide compositions with functionalized polyolefin and mobile electronic device components containing them |
JP2023005732A (ja) * | 2021-06-29 | 2023-01-18 | 旭化成株式会社 | 樹脂組成物及び成形品 |
CN115894900A (zh) * | 2021-08-05 | 2023-04-04 | 上海凯赛生物技术股份有限公司 | 聚酰胺共聚物pa6it及其制备方法 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06119949A (ja) * | 1992-10-05 | 1994-04-28 | Mitsui Petrochem Ind Ltd | コネクター |
WO1994023433A1 (en) | 1993-03-31 | 1994-10-13 | Hyperion Catalysis International, Inc. | High strength conductive polymers |
JPH0790178A (ja) * | 1993-09-21 | 1995-04-04 | Mitsubishi Chem Corp | ポリアミド樹脂組成物 |
JPH11222553A (ja) * | 1998-02-06 | 1999-08-17 | Ube Ind Ltd | 芳香族ポリアミド樹脂組成物 |
JP2000129122A (ja) * | 1998-10-23 | 2000-05-09 | Yazaki Corp | 成形用ポリアミド組成物 |
WO2001081473A1 (fr) | 2000-04-26 | 2001-11-01 | Asahi Kasei Kabushiki Kaisha | Composition de resine conductrice et procede de production correspondant |
JP2002294071A (ja) * | 2001-03-15 | 2002-10-09 | Ems Chemie Ag | 熱可塑性充填ポリアミドの成形材料 |
WO2003085029A1 (fr) | 2002-04-05 | 2003-10-16 | Mitsui Chemicals, Inc. | Composition de resine pour reflecteurs a diodes electroluminescentes |
JP3761561B1 (ja) | 2004-03-31 | 2006-03-29 | 株式会社物産ナノテク研究所 | 多様な構造を持つ微細な炭素繊維 |
JP2006213798A (ja) | 2005-02-02 | 2006-08-17 | Mitsubishi Chemicals Corp | 導電性ポリアミド樹脂組成物 |
JP2007177208A (ja) * | 2005-08-08 | 2007-07-12 | Mitsubishi Gas Chem Co Inc | バリア性に優れた熱可塑性樹脂組成物成形体 |
JP2008179753A (ja) | 2006-12-26 | 2008-08-07 | Kuraray Co Ltd | ポリアミド樹脂組成物およびそれからなる成形品 |
WO2012098840A1 (ja) * | 2011-01-17 | 2012-07-26 | 株式会社クラレ | 樹脂組成物およびそれを含む成形品 |
JP2013067705A (ja) * | 2011-09-21 | 2013-04-18 | Unitika Ltd | ポリアミド樹脂組成物およびそれを成形してなる成形体 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5405904A (en) * | 1992-10-05 | 1995-04-11 | Mitsui Petrochemical Industries, Ltd. | Connectors |
US20030134980A1 (en) | 1998-10-23 | 2003-07-17 | Ryuichi Hayashi | Polyamide composition for molding |
CA2600334C (en) | 2005-03-18 | 2013-07-23 | Kuraray Co., Ltd. | Semi-aromatic polyamide resin |
DE602006008866D1 (de) * | 2005-08-08 | 2009-10-15 | Mitsubishi Gas Chemical Co | Brennstoffundurchlässige thermoplastische Harzzusammensetzungen und Artikel |
EP2325260B1 (de) * | 2009-11-23 | 2016-04-27 | Ems-Patent Ag | Teilaromatische Formmassen und deren Verwendungen |
-
2014
- 2014-07-25 US US14/906,990 patent/US9732223B2/en active Active
- 2014-07-25 KR KR1020167000335A patent/KR20160018696A/ko active Search and Examination
- 2014-07-25 WO PCT/JP2014/003943 patent/WO2015011935A1/ja active Application Filing
- 2014-07-25 JP JP2015528159A patent/JP6346181B2/ja active Active
- 2014-07-25 EP EP14828822.8A patent/EP3026084B1/en active Active
- 2014-07-25 CN CN201480038529.0A patent/CN105377990A/zh active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06119949A (ja) * | 1992-10-05 | 1994-04-28 | Mitsui Petrochem Ind Ltd | コネクター |
WO1994023433A1 (en) | 1993-03-31 | 1994-10-13 | Hyperion Catalysis International, Inc. | High strength conductive polymers |
JPH0790178A (ja) * | 1993-09-21 | 1995-04-04 | Mitsubishi Chem Corp | ポリアミド樹脂組成物 |
JPH11222553A (ja) * | 1998-02-06 | 1999-08-17 | Ube Ind Ltd | 芳香族ポリアミド樹脂組成物 |
JP2000129122A (ja) * | 1998-10-23 | 2000-05-09 | Yazaki Corp | 成形用ポリアミド組成物 |
WO2001081473A1 (fr) | 2000-04-26 | 2001-11-01 | Asahi Kasei Kabushiki Kaisha | Composition de resine conductrice et procede de production correspondant |
JP2002294071A (ja) * | 2001-03-15 | 2002-10-09 | Ems Chemie Ag | 熱可塑性充填ポリアミドの成形材料 |
WO2003085029A1 (fr) | 2002-04-05 | 2003-10-16 | Mitsui Chemicals, Inc. | Composition de resine pour reflecteurs a diodes electroluminescentes |
JP3761561B1 (ja) | 2004-03-31 | 2006-03-29 | 株式会社物産ナノテク研究所 | 多様な構造を持つ微細な炭素繊維 |
JP2006213798A (ja) | 2005-02-02 | 2006-08-17 | Mitsubishi Chemicals Corp | 導電性ポリアミド樹脂組成物 |
JP2007177208A (ja) * | 2005-08-08 | 2007-07-12 | Mitsubishi Gas Chem Co Inc | バリア性に優れた熱可塑性樹脂組成物成形体 |
JP2008179753A (ja) | 2006-12-26 | 2008-08-07 | Kuraray Co Ltd | ポリアミド樹脂組成物およびそれからなる成形品 |
WO2012098840A1 (ja) * | 2011-01-17 | 2012-07-26 | 株式会社クラレ | 樹脂組成物およびそれを含む成形品 |
JP2013067705A (ja) * | 2011-09-21 | 2013-04-18 | Unitika Ltd | ポリアミド樹脂組成物およびそれを成形してなる成形体 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015093060A1 (ja) * | 2013-12-20 | 2015-06-25 | 三井化学株式会社 | 半芳香族ポリアミド樹脂組成物およびその成型品 |
US10253182B2 (en) | 2013-12-20 | 2019-04-09 | Mitsui Chemicals, Inc. | Semi-aromatic polyamide resin composition and molded article of same |
US11445934B2 (en) | 2014-07-28 | 2022-09-20 | Intuitive Surgical Operations, Inc. | Systems and methods for intraoperative segmentation |
JP2017002205A (ja) * | 2015-06-11 | 2017-01-05 | 三井化学株式会社 | エンジン支持部材用樹脂組成物及びエンジン支持部材 |
JP2017155157A (ja) * | 2016-03-03 | 2017-09-07 | ダイセルポリマー株式会社 | ポリアミド樹脂組成物 |
WO2018011131A1 (de) | 2016-07-13 | 2018-01-18 | Ems-Patent Ag | Leitfähige thermoplastische polyamidformmasse |
JP2019521226A (ja) * | 2016-07-13 | 2019-07-25 | エーエムエス−パテント アクチェンゲゼルシャフト | 伝導性熱可塑性ポリアミド成形コンパウンド |
US11041047B2 (en) | 2016-07-13 | 2021-06-22 | Ems-Patent Ag | Conductive thermoplastic polyamide molding compound |
JP7082605B2 (ja) | 2016-07-13 | 2022-06-08 | エーエムエス-パテント アクチェンゲゼルシャフト | 伝導性熱可塑性ポリアミド成形コンパウンド |
WO2024048508A1 (ja) * | 2022-09-02 | 2024-03-07 | 三井化学株式会社 | ポリアミド樹脂組成物、金属樹脂接合体およびその製造方法、バスバーユニット、駆動ユニットならびに移動体 |
Also Published As
Publication number | Publication date |
---|---|
KR20160018696A (ko) | 2016-02-17 |
EP3026084A1 (en) | 2016-06-01 |
EP3026084A4 (en) | 2017-03-29 |
JP6346181B2 (ja) | 2018-06-20 |
CN105377990A (zh) | 2016-03-02 |
EP3026084B1 (en) | 2020-02-19 |
JPWO2015011935A1 (ja) | 2017-03-02 |
US9732223B2 (en) | 2017-08-15 |
US20160168381A1 (en) | 2016-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6346181B2 (ja) | 半芳香族ポリアミド樹脂組成物およびそれを含む成型品 | |
JP6423365B2 (ja) | 半芳香族ポリアミド樹脂組成物およびその成型品 | |
KR102221899B1 (ko) | 폴리아미드 조성물 및 성형품 | |
JP2016138163A (ja) | 半芳香族ポリアミド樹脂組成物、及びそれを含む成形品 | |
JP5105563B2 (ja) | ポリアミド及びポリアミド組成物 | |
JPWO2013042541A1 (ja) | 半芳香族ポリアミドおよびそれからなる成形体 | |
JP5776368B2 (ja) | ポリアミド樹脂組成物およびその製造方法 | |
JP6834006B2 (ja) | 半芳香族ポリアミド樹脂組成物、及びその成形体 | |
JP5760405B2 (ja) | ポリアミド樹脂組成物およびそれからなる成形品 | |
JP5965230B2 (ja) | ポリアミド樹脂組成物及び成形品 | |
JP5997526B2 (ja) | ポリアミド樹脂組成物及び成形品 | |
JP5997525B2 (ja) | 共重合ポリアミド組成物及び成形品 | |
JP2016169290A (ja) | 車両灯具のエイミングナット用ポリアミド樹脂組成物、及びそれを含むエイミングナット | |
JP2013060495A (ja) | ポリアミド樹脂組成物およびそれを成形してなる成形体 | |
JP7370455B2 (ja) | 半芳香族ポリアミド樹脂組成物、およびその成形体 | |
JP6042121B2 (ja) | ポリアミド樹脂組成物及び成形品 | |
JP2020152821A (ja) | 半芳香族ポリアミド樹脂組成物、およびそれを含む成形体 | |
JP6013813B2 (ja) | 共重合ポリアミド組成物及び成形品 | |
JP2021161125A (ja) | ポリアミド樹脂組成物、ペレットおよび成形体の製造方法 | |
WO2022149436A1 (ja) | ポリアミド組成物、成形体、及び装置の振動又は音の伝搬を抑制する方法 | |
JP2018058969A (ja) | ポリアミドイミド樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14828822 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015528159 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20167000335 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014828822 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14906990 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |