WO2013145022A1 - 炭化珪素半導体装置の製造方法 - Google Patents
炭化珪素半導体装置の製造方法 Download PDFInfo
- Publication number
- WO2013145022A1 WO2013145022A1 PCT/JP2012/002223 JP2012002223W WO2013145022A1 WO 2013145022 A1 WO2013145022 A1 WO 2013145022A1 JP 2012002223 W JP2012002223 W JP 2012002223W WO 2013145022 A1 WO2013145022 A1 WO 2013145022A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon carbide
- semiconductor device
- oxide film
- manufacturing
- region
- Prior art date
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 91
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 42
- 239000004065 semiconductor Substances 0.000 title claims description 47
- 230000003647 oxidation Effects 0.000 claims abstract description 59
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 59
- 150000002500 ions Chemical class 0.000 claims description 20
- 239000012535 impurity Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 8
- 239000000758 substrate Substances 0.000 abstract description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 9
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 34
- 238000005468 ion implantation Methods 0.000 description 12
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 8
- 150000001722 carbon compounds Chemical class 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000004380 ashing Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/0455—Making n or p doped regions or layers, e.g. using diffusion
- H01L21/046—Making n or p doped regions or layers, e.g. using diffusion using ion implantation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/0223—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/048—Making electrodes
- H01L21/049—Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
- H01L21/26513—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30604—Chemical etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66053—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66053—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
- H01L29/66068—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7827—Vertical transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/0223—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
- H01L21/02233—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
- H01L21/02236—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/02252—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
Definitions
- SiC-MOSFET A general manufacturing method of this SiC-MOSFET will be described. First, an SiC epitaxial layer is formed on a SiC substrate, and an impurity serving as a dopant is ion-implanted into a drain region, a base region, and a source region. Next, activation annealing is performed on the implanted impurities. At the time of annealing, for example, a carbon film having excellent heat resistance is deposited as a cap material so that Si of the SiC substrate does not sublime, and heat treatment is performed at a temperature of 1600 ° C. or higher.
- the carbon layer of the cap material is removed by oxygen plasma ashing or heat treatment at, for example, about 900 ° C., in which the SiC substrate is hardly oxidized in an oxygen atmosphere.
- the cap material and the substrate react and the formed carbon compound cannot be completely removed.
- This carbon compound causes deterioration of the reliability of the gate insulating film. Therefore, the interface that forms the gate insulating film is thermally oxidized at a high temperature to form a silicon oxide film (sacrificial oxide film), and then the silicon oxide film is removed with diluted hydrofluoric acid, so-called sacrificial oxidation is performed.
- a method for removing the carbon compound is generally used.
- a SiC-MOSFET is completed through a gate insulating film process, a silicide electrode process, and an interlayer insulating film forming process.
- the threshold voltage (V th ) of the current Si-IGBT is about 5 to 5.5 V, and a threshold voltage (V th ) of 5 V or more is required to replace this with SiC-MOSFET.
- V th threshold voltage
- Non-Patent Document 1 there is a method in which a deposited oxide film is applied to a gate oxide film to perform an oxynitriding process (Non-Patent Document 1).
- the channel mobility is improved, but Vth is lowered.
- Vth is increased by performing plasma oxidation instead of high-temperature thermal oxidation. That is, by replacing the conventional sacrificial oxidation by thermal oxidation with plasma oxidation, Vth of 5 V or more can be obtained without reducing the channel mobility of the SiC-MOSFET.
- a silicon carbide substrate is oxidized by a low-temperature oxidation method typified by plasma oxidation to form a silicon oxide film.
- the silicon oxide film is removed.
- a gate insulating film is formed.
- FIG. 1 is a cross sectional view of a silicon carbide semiconductor device in Example 1.
- FIG. FIG. 6 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 1.
- FIG. 6 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 1.
- FIG. 6 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 1.
- FIG. 6 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 1.
- FIG. 6 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 1.
- FIG. 6 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 1.
- FIG. 6 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 1.
- FIG. 6 is a cross sectional view showing a part of the process for manufacturing
- FIG. 6 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 1.
- FIG. 6 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 1.
- FIG. 6 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 1.
- FIG. 6 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 1.
- FIG. 6 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 1. It is a figure which shows the gate voltage dependence of the drain current of the silicon carbide semiconductor device in Example 1 with a comparative example.
- FIG. 10 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 2.
- FIG. 10 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 2.
- FIG. 10 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 2.
- FIG. 10 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 2.
- FIG. 10 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 2.
- FIG. 10 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 2.
- FIG. 10 is a cross sectional view showing a part of the process for manufacturing the silicon carbide semiconductor device in Example 2.
- sacrificial oxidation the process of forming a silicon oxide film by oxidizing the interface that forms the gate insulating film, removing the silicon oxide film with diluted hydrofluoric acid, and repeating the above process one or more times is referred to as “sacrificial oxidation”. Call it.
- Example 1 and Example 2 describe a silicon carbide semiconductor device having a so-called MOS (Metal-Oxide-Semiconductor) structure as shown in FIGS.
- MOS Metal-Oxide-Semiconductor
- FIG. 1 and 6 show application examples to a semiconductor device having a MOS structure.
- FIG. 1 shows a structure in which a source 23 and a drain 24 are arranged in a direction parallel to the substrate surface (hereinafter referred to as a lateral MOS), and
- FIG. 6 shows a source 23 and a drain 26 arranged in a direction perpendicular to the substrate surface (hereinafter referred to as a vertical MOS). Structure.
- a silicon carbide MOSFET which is a silicon carbide semiconductor device includes a silicon carbide substrate 10, a silicon carbide layer 20 formed on silicon carbide substrate 10, an insulating film 32 formed on silicon carbide layer 20, Gate electrode 42 formed on insulating film 32, and source electrode 51, drain electrode 52, and base contact electrode 53 formed on silicon carbide layer 20 are included.
- the silicon carbide layer 20 is formed of a silicon carbide epitaxial layer 21, a base region 22 that is an ion implantation region or an epitaxial layer, a source region 23 that is an ion implantation region, a drain region 24, and a base contact region 25.
- N nitrogen
- B boron
- Al aluminum
- a gate insulating film 32 On the surface of the silicon carbide layer 20, a gate insulating film 32, a source electrode 51, a drain electrode 52, and a base contact electrode 53 are formed.
- the source electrode 51, the drain electrode 52, and the base contact electrode 53 are connected to the source region 23, the drain region 24, and the base contact region 25, respectively.
- a gate electrode 42 is formed so as to cover a part of the source region 23 and the drain region 24 via the gate insulating film 32 on the silicon carbide layer 20.
- Al ions were implanted into the surface layer portion of the silicon carbide epitaxial layer 21 to form a p-type base region 22.
- the ions implanted into base contact region 25 may be B ions, or a p-type silicon carbide epitaxial layer may be further formed on silicon carbide epitaxial layer 21 to form p-type base region 22.
- a carbon film 60 was deposited around the silicon carbide substrate 10 and the silicon carbide layer 20 as a cap material for impurity activation annealing.
- impurity activation annealing is performed at a temperature of 1600 to 1800 ° C., for example. In this example, impurity activation annealing was performed at 1700 ° C. for 60 seconds.
- the carbon layer of the cap material was removed by oxygen plasma ashing.
- sacrificial oxidation by plasma oxidation was performed.
- the surface of the silicon carbide layer 20 is plasma-oxidized to form an oxide film 31.
- the oxide film 31 is removed with diluted hydrofluoric acid. The above process, so-called sacrificial oxidation process, is repeated one or more times.
- the sacrificial oxidation step if the removal thickness of the silicon carbide layer 20 is thin, the carbon compound cannot be removed, and if it is thick, the impurity concentration in the ion implantation region is affected, so that the thickness is preferably 3 nm to 30 nm.
- the source region 23, the drain region 24, the base contact region 25, and the silicon carbide epitaxial layer 21 which are ion implantation regions have different oxidation rates.
- a step is generated at the interface of 32. This level difference leads to device characteristic deterioration such as electric field concentration on the gate insulating film.
- the oxide film 31 is formed by plasma oxidation using an ICP (Inductive-Coupled-Plasma) method at a temperature of 500 ° C. or lower.
- ICP Inductive-Coupled-Plasma
- the above-described process, so-called sacrificial oxidation was repeatedly performed so that the thickness of the silicon carbide layer 20 removed by sacrificial oxidation was, for example, 10 nm.
- the gate material film 41 was etched using the resist as a mask to form a gate electrode 42 of the MOS transistor.
- FIGS. 3 to 5 show specifications using plasma oxidation for sacrificial oxidation (hereinafter abbreviated as plasma oxidation specifications) and specifications using conventional thermal oxidation for sacrificial oxidation (hereinafter abbreviated as thermal oxidation specifications). ) SiC-MOSFET device evaluation results are shown.
- FIG. 3 shows the gate voltage dependency (I d V g characteristic) of the drain current of the silicon carbide semiconductor device in Example 1.
- “Thermal Oxidation” uses a thermal oxide film
- “Plasma Oxidation” is a characteristic line when a plasma oxide film is used.
- the Vth of the plasma oxidation specification was higher than the thermal oxidation specification.
- FIG. 4 shows the gate voltage dependence of the channel mobility ⁇ of the silicon carbide semiconductor device in Example 1.
- “Thermal Oxidation” uses a thermal oxide film
- “Plasma Oxidation” is a characteristic line when a plasma oxide film is used.
- the horizontal axis of FIG. 4 is a value obtained by subtracting the gate threshold voltage Vth from the gate voltage Vg.
- FIG. 5 shows a table summarizing the values of Vth and channel mobility ⁇ .
- “Thermal Oxidation” is data when a thermal oxide film is used
- “Plasma Oxidation” is data when a plasma oxide film is used.
- the channel mobility is almost the same as in the thermal oxidation specification, and V th is about 2.3 V higher.
- the conventional sacrificial oxide film by thermal oxidation is replaced with a plasma oxide film without changing the channel mobility of the SiC-MOSFET (same as the thermal oxide film). It can be seen that Vth can be increased by maintaining a certain degree of mobility.
- silicon carbide MOSFET which is a silicon carbide semiconductor device is formed on silicon carbide substrate 10, back contact region 26 which is an ion implantation region formed inside silicon carbide substrate 10, and back contact region 26.
- a source-base contact common electrode 55 formed on the silicon carbide layer 20.
- Silicon carbide layer 20 is formed of a silicon carbide epitaxial layer 21, a base region 22 that is an ion implantation region, and a source region 23.
- N nitrogen
- B boron
- Al aluminum
- a gate insulating film 32 and a source-base contact common electrode 55 are formed on the surface of the silicon carbide layer 20.
- a drain electrode 54 is formed on the back surface of the silicon carbide layer 20.
- the source base contact common electrode 55 is connected to the base region 22 and the source region 23.
- the drain electrode 54 is connected to the back contact region 26.
- a gate electrode 40 is formed so as to cover a part of the n-type source region 23 via the gate insulating film 32 on the silicon carbide layer 20.
- annealing for impurity activation is performed at a temperature of 1600 to 1800 ° C., for example. It was.
- the carbon layer of the cap material was removed by oxygen plasma ashing.
- sacrificial oxidation by plasma oxidation was performed as shown in FIG. Specifically, after performing predetermined cleaning, the surface of the silicon carbide layer 20 is subjected to plasma oxidation to form an oxide film 31, and the oxide film 31 is removed with diluted hydrofluoric acid.
- the front surface is oxidized and the back surface is also oxidized.
- the ion implantation has to be performed in consideration of the thickness removed by the sacrificial oxidation when the ion implantation is performed on the back contact region 26.
- sacrificial oxidation by the plasma oxidation there is almost no oxidation on the back surface. Therefore, there is no need to consider removal by sacrificial oxidation when ion implantation is performed on the back contact region 26, and it is sufficient to perform ion implantation at a concentration at which contact with the electrode is desired in the vicinity of the outermost surface of the back surface. This effect facilitates making good contact with the electrode.
- a gate oxide film 32 is formed on the semiconductor substrate.
- a deposited oxide film having a thickness of 50 nm was formed, and oxynitriding was performed at 1300 ° C. for 30 minutes.
- a gate material film 41 was deposited, and the gate material film 41 was etched to form a gate electrode 42 of the MOS transistor.
- a through hole is formed at the boundary between the base region 22 and the source region 23, and the source base contact is made to the boundary between the base region 22 and the source region 23 and the back contact region 26, respectively.
- a process for forming a contact for the common electrode 55 and the drain electrode 54 (including a silicidation process) and a process for forming a wiring are performed to complete the semiconductor device of FIG.
- SYMBOLS 10 Silicon carbide substrate, 20 ... Silicon carbide layer, 21 ... Silicon carbide epitaxial layer, 22 ... Base region, 23 ... Source region, 24 ... Drain region, 25 ... Base contact region, 26 ... Back contact region, 31 ... Sacrificial oxidation Films 32... Gate insulating film 41. Gate material film 42. Gate electrode 51. Source electrode 52. Drain electrode 53. Base contact electrode 54. Drain electrode 55 55 Source-base contact common electrode 60. Carbon film
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- High Energy & Nuclear Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Plasma & Fusion (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
図1において、炭化珪素半導体装置である炭化珪素MOSFETは、炭化珪素基板10と、炭化珪素基板10上に形成された炭化珪素層20と、炭化珪素層20上に形成された絶縁膜32と、絶縁膜32上に形成されたゲート電極42と、炭化珪素層20上に形成されたソース電極51およびドレイン電極52およびベースコンタクト電極53とを有する。
次に上記横MOS構造の製造方法について説明する。
まず、図2(a)に示すように、n型炭化珪素基板10の上に炭化珪素エピタキシャル層21を積層した。
図3~5に、犠牲酸化にプラズマ酸化を用いた仕様(以下、プラズマ酸化仕様と略す。)と、参考として犠牲酸化に従来の熱酸化法を用いた仕様(以下、熱酸化仕様と略す。)のSiC-MOSFETのデバイス評価結果を示す。
図6において、炭化珪素半導体装置である炭化珪素MOSFETは、炭化珪素基板10と、炭化珪素基板10の内部に形成されたイオン注入領域である裏面コンタクト領域26と、裏面コンタクト領域26上に形成されたドレイン電極54と、炭化珪素基板10上に形成されたドレイン電極54及び炭化珪素層20と、炭化珪素層20上に形成された絶縁膜32と、絶縁膜32上に形成されたゲート電極42と、炭化珪素層20上に形成されたソースベースコンタクト共通電極55を有する。炭化珪素層20は、炭化珪素エピタキシャル層21と、イオン注入領域であるベース領域22、ソース領域23から形成される。
次に上記縦MOS構造の製造方法について説明する。ただし、実施例1に示した製造方法と同一の製造方法の繰り返しの詳細な説明は省略する。図7(a)から図7(j)は、本実施例2の縦MOSトランジスタを製造する際の各工程における断面図である。なお、前記断面図は、煩雑さを避けるため、当該工程における主要部位の構成のみを示すもので、正確な断面図には相当しない。
まず、図7(a)に示すように、炭化珪素エピタキシャル層21を積層した。
Claims (6)
- 炭化珪素層の上にゲート酸化膜を備えた炭化珪素半導体装置の製造方法において、
前記炭化珪素層上にキャップ材を形成した後、アニールをする工程と、
前記キャップ材を除去した後に熱酸化温度よりも低温の酸化法による犠牲酸化膜を形成する工程と、
前記犠牲酸化膜を除去した後に、ゲート酸化膜を形成する工程とを備えた炭化珪素半導体装置の製造方法。 - 請求項1において、
前記キャップ材は炭素膜であることを特徴とする炭化珪素半導体装置の製造方法。 - 請求項2において、
前記キャップ材を形成する前に、不純物イオンを注入する工程を備え、
前記アニールは、前記不純物イオンを活性する温度以上でなされることを特徴とする炭化珪素半導体装置の製造方法。 - 請求項3において、
前記ソース領域の不純物濃度と前記ベース領域の不純物濃度とが異なるように前記不純物イオンが注入され、
前記犠牲酸化膜の膜厚が3nm以上30nm以下であることを特徴とする炭化珪素半導体装置の製造方法。 - 請求項2において、
前記犠牲酸化膜は500度以下で形成することを特徴とする炭化珪素半導体装置の製造方法。 - 請求項5において、
前記犠牲酸化膜はプラズマ酸化で形成することを特徴とする炭化珪素半導体装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201211005837 DE112012005837T5 (de) | 2012-03-30 | 2012-03-30 | Verfahren zur Herstellung einer Siliziumkarbid-Halbleitervorrichtung |
PCT/JP2012/002223 WO2013145022A1 (ja) | 2012-03-30 | 2012-03-30 | 炭化珪素半導体装置の製造方法 |
US14/381,597 US20150044840A1 (en) | 2012-03-30 | 2012-03-30 | Method for producing silicon carbide semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/002223 WO2013145022A1 (ja) | 2012-03-30 | 2012-03-30 | 炭化珪素半導体装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013145022A1 true WO2013145022A1 (ja) | 2013-10-03 |
Family
ID=49258395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/002223 WO2013145022A1 (ja) | 2012-03-30 | 2012-03-30 | 炭化珪素半導体装置の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20150044840A1 (ja) |
DE (1) | DE112012005837T5 (ja) |
WO (1) | WO2013145022A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016110990A1 (ja) * | 2015-01-09 | 2017-06-22 | 株式会社日立製作所 | パワー半導体素子、パワーモジュール、および電力変換装置 |
JP2019169486A (ja) * | 2018-03-21 | 2019-10-03 | 株式会社東芝 | 半導体装置及びその製造方法 |
CN111554572A (zh) * | 2020-04-17 | 2020-08-18 | 深圳方正微电子有限公司 | 半导体器件制备方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015065318A (ja) * | 2013-09-25 | 2015-04-09 | 住友電気工業株式会社 | 炭化珪素半導体装置の製造方法 |
JP2015065289A (ja) * | 2013-09-25 | 2015-04-09 | 住友電気工業株式会社 | 炭化珪素半導体装置の製造方法 |
JP5970004B2 (ja) * | 2014-01-09 | 2016-08-17 | 東京エレクトロン株式会社 | 半導体装置の製造方法 |
US10128082B2 (en) | 2015-07-24 | 2018-11-13 | Varian Semiconductor Equipment Associates, Inc. | Apparatus and techniques to treat substrates using directional plasma and point of use chemistry |
US9706634B2 (en) * | 2015-08-07 | 2017-07-11 | Varian Semiconductor Equipment Associates, Inc | Apparatus and techniques to treat substrates using directional plasma and reactive gas |
US10141161B2 (en) | 2016-09-12 | 2018-11-27 | Varian Semiconductor Equipment Associates, Inc. | Angle control for radicals and reactive neutral ion beams |
CN108257855B (zh) * | 2016-12-28 | 2021-09-10 | 全球能源互联网研究院 | 高k栅介质层的制备方法及碳化硅MOS功率器件 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002093800A (ja) * | 2000-09-14 | 2002-03-29 | Nissan Motor Co Ltd | 炭化珪素半導体装置の製造方法 |
JP2008243919A (ja) * | 2007-03-26 | 2008-10-09 | Mitsubishi Electric Corp | 半導体装置の製造方法 |
JP2011023431A (ja) * | 2009-07-14 | 2011-02-03 | Mitsubishi Electric Corp | 炭化珪素半導体装置の製造方法 |
WO2011158533A1 (ja) * | 2010-06-16 | 2011-12-22 | 住友電気工業株式会社 | 炭化珪素半導体装置の製造方法および炭化珪素半導体装置の製造装置 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5972776A (en) * | 1995-12-22 | 1999-10-26 | Stmicroelectronics, Inc. | Method of forming a planar isolation structure in an integrated circuit |
US20040121545A1 (en) * | 2002-12-23 | 2004-06-24 | Taiwan Semiconductor Manufacturing Company | Method to fabricate a square word line poly spacer |
US7122488B2 (en) * | 2004-03-15 | 2006-10-17 | Sharp Laboratories Of America, Inc. | High density plasma process for the formation of silicon dioxide on silicon carbide substrates |
ATE496392T1 (de) * | 2004-02-06 | 2011-02-15 | Panasonic Corp | Herstellungsverfahren für ein siliziumcarbidhalbleiterbauelement |
US7626257B2 (en) * | 2006-01-18 | 2009-12-01 | Infineon Technologies Ag | Semiconductor devices and methods of manufacture thereof |
JP4961805B2 (ja) * | 2006-04-03 | 2012-06-27 | 株式会社デンソー | 炭化珪素半導体装置の製造方法 |
JP5046083B2 (ja) * | 2006-08-24 | 2012-10-10 | 独立行政法人産業技術総合研究所 | 炭化珪素半導体装置の製造方法 |
JP4600438B2 (ja) * | 2007-06-21 | 2010-12-15 | 株式会社デンソー | 炭化珪素半導体装置の製造方法 |
JP4483900B2 (ja) * | 2007-06-21 | 2010-06-16 | 株式会社デンソー | 炭化珪素半導体装置の製造方法 |
US7820534B2 (en) * | 2007-08-10 | 2010-10-26 | Mitsubishi Electric Corporation | Method of manufacturing silicon carbide semiconductor device |
JP2009212366A (ja) * | 2008-03-05 | 2009-09-17 | Oki Semiconductor Co Ltd | 半導体装置の製造方法 |
JP5207939B2 (ja) * | 2008-12-09 | 2013-06-12 | 三菱電機株式会社 | 炭化珪素半導体装置の製造方法 |
JP5518326B2 (ja) * | 2008-12-26 | 2014-06-11 | 昭和電工株式会社 | 炭化珪素半導体装置の製造方法 |
CN102396069B (zh) * | 2009-04-16 | 2014-05-07 | 三菱电机株式会社 | 碳化硅肖特基二极管的制造方法 |
JP5823294B2 (ja) * | 2009-09-07 | 2015-11-25 | ローム株式会社 | 半導体装置およびその製造方法 |
FR2974446A1 (fr) * | 2011-04-19 | 2012-10-26 | St Microelectronics Crolles 2 | Procédé de réalisation de l'isolant de grille d'un transistor mos |
JP5759293B2 (ja) * | 2011-07-20 | 2015-08-05 | 住友電気工業株式会社 | 半導体装置の製造方法 |
JP5827063B2 (ja) * | 2011-08-03 | 2015-12-02 | ローム株式会社 | 半導体装置およびその製造方法 |
JP5751113B2 (ja) * | 2011-09-28 | 2015-07-22 | 住友電気工業株式会社 | 炭化珪素半導体装置の製造方法 |
JP2014220322A (ja) * | 2013-05-07 | 2014-11-20 | 株式会社東芝 | 半導体装置の製造方法及び製造装置 |
-
2012
- 2012-03-30 DE DE201211005837 patent/DE112012005837T5/de not_active Withdrawn
- 2012-03-30 WO PCT/JP2012/002223 patent/WO2013145022A1/ja active Application Filing
- 2012-03-30 US US14/381,597 patent/US20150044840A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002093800A (ja) * | 2000-09-14 | 2002-03-29 | Nissan Motor Co Ltd | 炭化珪素半導体装置の製造方法 |
JP2008243919A (ja) * | 2007-03-26 | 2008-10-09 | Mitsubishi Electric Corp | 半導体装置の製造方法 |
JP2011023431A (ja) * | 2009-07-14 | 2011-02-03 | Mitsubishi Electric Corp | 炭化珪素半導体装置の製造方法 |
WO2011158533A1 (ja) * | 2010-06-16 | 2011-12-22 | 住友電気工業株式会社 | 炭化珪素半導体装置の製造方法および炭化珪素半導体装置の製造装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016110990A1 (ja) * | 2015-01-09 | 2017-06-22 | 株式会社日立製作所 | パワー半導体素子、パワーモジュール、および電力変換装置 |
JP2019169486A (ja) * | 2018-03-21 | 2019-10-03 | 株式会社東芝 | 半導体装置及びその製造方法 |
CN111554572A (zh) * | 2020-04-17 | 2020-08-18 | 深圳方正微电子有限公司 | 半导体器件制备方法 |
Also Published As
Publication number | Publication date |
---|---|
DE112012005837T5 (de) | 2014-10-30 |
US20150044840A1 (en) | 2015-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013145022A1 (ja) | 炭化珪素半導体装置の製造方法 | |
JP5584823B2 (ja) | 炭化珪素半導体装置 | |
WO2014155651A1 (ja) | 炭化珪素半導体装置及びその製造方法 | |
TWI502741B (zh) | 具有高性能通道之半導體裝置 | |
JP2006066439A (ja) | 半導体装置およびその製造方法 | |
JP2009054765A (ja) | 炭化珪素半導体装置およびその製造方法 | |
WO2015015672A1 (ja) | 炭化珪素半導体装置及びその製造方法 | |
JP2017175115A (ja) | 炭化珪素半導体素子および炭化珪素半導体素子の製造方法 | |
JP4842527B2 (ja) | 半導体装置の製造方法 | |
EP2325872A1 (en) | Bipolar semiconductor device and method for manufacturing same | |
JP2009194197A (ja) | 半導体装置及びその製造方法 | |
JP6068042B2 (ja) | 炭化珪素半導体装置およびその製造方法 | |
WO2014102994A1 (ja) | 炭化珪素半導体装置及びその製造方法 | |
JP2014120641A (ja) | 炭化珪素半導体装置及びその製造方法 | |
WO2015015629A1 (ja) | 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 | |
JP5070935B2 (ja) | 炭化珪素半導体装置の製造方法 | |
JP5036399B2 (ja) | 炭化珪素半導体装置の製造方法 | |
JP6582537B2 (ja) | 半導体装置および半導体装置の製造方法 | |
JP6253518B2 (ja) | 炭化珪素半導体装置の製造方法 | |
JPWO2013145022A1 (ja) | 炭化珪素半導体装置の製造方法 | |
JP2017168676A (ja) | 炭化珪素半導体素子および炭化珪素半導体素子の製造方法 | |
JP5026801B2 (ja) | 半導体装置の製造方法 | |
JP5437592B2 (ja) | 半導体装置およびその製造方法 | |
JP6133939B2 (ja) | 半導体装置およびその製造方法 | |
JP2014060272A (ja) | 炭化珪素半導体装置およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12872675 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014507014 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14381597 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112012005837 Country of ref document: DE Ref document number: 1120120058372 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12872675 Country of ref document: EP Kind code of ref document: A1 |