[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012133856A1 - ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂ペレットおよび延伸フィルム - Google Patents

ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂ペレットおよび延伸フィルム Download PDF

Info

Publication number
WO2012133856A1
WO2012133856A1 PCT/JP2012/058748 JP2012058748W WO2012133856A1 WO 2012133856 A1 WO2012133856 A1 WO 2012133856A1 JP 2012058748 W JP2012058748 W JP 2012058748W WO 2012133856 A1 WO2012133856 A1 WO 2012133856A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
reactor
dihydroxy compound
reaction
group
Prior art date
Application number
PCT/JP2012/058748
Other languages
English (en)
French (fr)
Inventor
慎悟 並木
小田 康裕
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Publication of WO2012133856A1 publication Critical patent/WO2012133856A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • B01F27/701Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms comprising two or more shafts, e.g. in consecutive mixing chambers
    • B01F27/706Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms comprising two or more shafts, e.g. in consecutive mixing chambers with all the shafts in the same receptacle
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/112Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
    • B01F27/1125Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades with vanes or blades extending parallel or oblique to the stirrer axis
    • B01F27/11251Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades with vanes or blades extending parallel or oblique to the stirrer axis having holes in the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • B01F27/701Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms comprising two or more shafts, e.g. in consecutive mixing chambers
    • B01F27/702Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms comprising two or more shafts, e.g. in consecutive mixing chambers with intermeshing paddles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • B01F27/708Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms characterised by the shape of the stirrer as a whole, i.e. of Z- or S-shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1862Stationary reactors having moving elements inside placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00083Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00085Plates; Jackets; Cylinders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Definitions

  • the present invention relates to a method for efficiently and stably producing a polycarbonate resin excellent in optical characteristics, hue and thermal stability and having few foreign matters, and a stretched film obtained therefrom.
  • Polycarbonate resins generally contain bisphenols as monomer components and take advantage of transparency, heat resistance, mechanical strength, etc., so-called electrical / electronic parts, automotive parts, optical recording media, lenses, and other optical fields. Widely used as engineering plastic.
  • Patent Document 4 discloses that a retardation film made of a polycarbonate resin containing a fluorene structure has a low photoelastic coefficient and a reverse wavelength dispersion that decreases as the retardation becomes shorter. It is disclosed that it is useful for optical applications such as films.
  • the copolymer polycarbonate resin using the dihydroxy compound having the above fluorene structure is produced, it is produced by a method called a transesterification method or a melting method in which various dihydroxy compounds can be used as raw materials.
  • a dihydroxy compound and a carbonic acid diester such as diphenyl carbonate are transesterified in the presence of a polymerization catalyst at a high temperature of 200 ° C. or higher, and polymerization is advanced by removing by-product phenol out of the system to obtain a polycarbonate resin. It was.
  • a dihydroxy compound having a fluorene structure has poor heat stability, and particularly has a problem of coloring when a copolymerization reaction with a bisphenol compound or the aliphatic dihydroxy compound is performed.
  • the aliphatic dihydroxy compound has a problem that the thermal stability is lower than that of bisphenols, and the resin is easily colored by thermal decomposition during the polycondensation reaction performed at a high temperature.
  • the present invention solves the above-described problems in the production of a polycarbonate resin using a dihydroxy compound having a fluorene structure, and produces a polycarbonate resin having excellent characteristics such as optical properties and mechanical properties with little coloring.
  • the object is to produce a product with stable quality and high yield, and in particular, to solve the above problems even when an aliphatic dihydroxy compound having lower thermal stability than bisphenols is used in combination.
  • the present invention is as follows. 1.
  • the final polymerization reactor is a horizontal stirring reactor having a plurality of horizontal rotation shafts therein, and the reaction conditions satisfy the following formula (3): Method. 500 ⁇ ⁇ ⁇ 20000 (3) [ ⁇ : stirring blade rotation speed (rpm), ⁇ : melt viscosity (Pa ⁇ s) of the reaction liquid at the outlet of the horizontal reactor] 4). 4.
  • the amount of the monohydroxy compound in the reaction liquid at the outlet of the reactor immediately before the final polymerization reactor is 10 ppm or more and 3 wt% or less, and the monohydroxy compound in the reaction liquid at the outlet of the final polymerization reactor 9.
  • R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon group having 6 to 20 carbon atoms, It represents a cycloalkyl group or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and the same or different groups are arranged as each of the four substituents on each benzene ring.
  • X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 6 to 20 carbon atoms, or a substituted or unsubstituted carbon group having 6 to 20 carbon atoms.
  • m and n are each independently an integer of 0 to 5.
  • 13 In addition to the dihydroxy compound having a fluorene moiety represented by the formula (1), a dihydroxy compound containing a specific dihydroxy compound having a moiety represented by the following formula (5) in a part of the structure is used for the reaction.
  • the method for producing a polycarbonate resin according to any one of the above.
  • the stretched film according to any one of items 23 to 28, wherein the dihydroxy compound having a fluorene structure is a compound represented by the following formula (1).
  • R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon group having 6 to 20 carbon atoms, It represents a cycloalkyl group or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and the same or different groups are arranged as each of the four substituents on each benzene ring.
  • X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 6 to 20 carbon atoms, or a substituted or unsubstituted carbon group having 6 to 20 carbon atoms.
  • m and n are each independently an integer of 0 to 5. ] 30. Any of 23 to 29 above, wherein a dihydroxy compound containing a specific dihydroxy compound having a site represented by the following formula (5) as a part of the structure in addition to the dihydroxy compound having a fluorene site represented by the formula (1) is used. 2.
  • the site represented by the formula (5) is a site constituting a part of —CH 2 —OH and the case where it is a site constituting a part of the dihydroxy compound having the fluorene structure are excluded.
  • the polycarbonate resin is molded into an unstretched film having a thickness of 100 ⁇ m ⁇ 10 ⁇ m, and stretched to break when subjected to a tensile test at a glass transition temperature of + 6 ° C. and a tensile speed of 625% / min. 35.
  • the stretched film according to any one of items 23 to 34, wherein the degree (tensile elongation at break) is 220% or more.
  • the polycarbonate resin production method of the present invention it is possible not only to efficiently and stably produce a polycarbonate resin excellent in optical characteristics, hue, heat resistance, thermal stability and mechanical strength, but also to have a specific birefringence. It is possible to obtain a stretched film useful for applications such as a phase difference film having a thickness of.
  • the method for producing a polycarbonate resin of the present invention it is possible to produce a polycarbonate resin having a small amount of foreign matter and suitably used for optical applications such as a retardation film with a high yield.
  • FIG. 1 is an overall process diagram showing an example of a method for producing a polycarbonate resin according to the present invention.
  • FIG. 2 is a perspective view of a biaxial glasses-type stirring blade.
  • FIG. 3 is a schematic plan view showing an example of a horizontal stirring reactor.
  • the method for producing a polycarbonate resin of the present invention is a method for producing a polycarbonate resin by continuously supplying a dihydroxy compound containing a dihydroxy compound having a fluorene structure, a carbonic acid diester, and a polymerization catalyst to a reactor and performing polycondensation.
  • a plurality of the reactors are connected in series, and the internal temperature of the reactor immediately before the final polymerization reactor is 200 ° C. or higher and lower than 225 ° C., and is one of the final polymerization reactors.
  • the melt viscosity of the reaction liquid at the outlet of the previous reactor is 20 Pa ⁇ s or more and 1000 Pa ⁇ s or less.
  • the production method of the polycarbonate resin of the present invention may be referred to as “the production method of the present invention”.
  • the first reactor is referred to as the first reactor
  • the second reactor is referred to as the second reactor
  • the third reactor is referred to as the third reactor, respectively.
  • the reactor is also called similarly.
  • the “reactor” is a device having a heating device for heating to a reaction temperature described later in a step after mixing a dihydroxy compound and a carbonic acid diester, and causing an intentional transesterification reaction.
  • the dissolution tank whose main purpose is to mix and dissolve the raw materials in advance, or the piping for transferring the reaction liquid, even if the reaction proceeds slightly, Not included in the reactor.
  • the “final polymerization reactor” is a reactor provided on the most downstream side, and the reduced viscosity of the reaction solution at the outlet of the reactor is the reaction preceding the reactor. That which is 1.5 times or more the reduced viscosity of the reaction solution in the vessel.
  • an extruder or the like is regarded as a final polymerization reactor.
  • the polymerization process is divided into two stages, a pre-stage reaction and a post-stage reaction.
  • the pre-reaction is preferably carried out at a temperature of 130 to 225 ° C., more preferably 150 to 220 ° C., preferably 0.1 to 10 hours, more preferably 0.5 to 3 hours.
  • a temperature of 130 to 225 ° C. more preferably 150 to 220 ° C., preferably 0.1 to 10 hours, more preferably 0.5 to 3 hours.
  • the pressure in the reaction system is gradually lowered from the previous stage reaction, the reaction temperature is gradually increased, and the monohydroxy compound generated at the same time is removed from the reaction system, and the pressure in the reaction system is preferably reduced to the final reaction.
  • the polycondensation reaction is performed under a temperature range of 2 kPa or less, preferably 200 to 260 ° C., more preferably 210 to 250 ° C., to produce a polycarbonate resin.
  • the pressure in this specification refers to what is called an absolute pressure expressed on the basis of a vacuum.
  • the reactor used in this polymerization step is one in which at least two reactors are connected in series, and the reaction product from the outlet of the first reactor enters the second reactor.
  • the number of reactors to be connected is not particularly limited, but is preferably 2 to 7, more preferably 3 to 5, and still more preferably 3 to 4.
  • the type of the reactor is not particularly limited, but the reactor for the first stage reaction preferably has one or more vertical stirring reactors, and the reactor for the second stage reaction preferably has one or more horizontal stirring reactors. .
  • the reaction conditions of the horizontal stirring reactor in the final stage can have an important influence not only from the quality of the resin obtained, but also from various viewpoints such as the production yield or the amount of foreign matter in the resin.
  • the connection between the reactor and the next reactor may be performed by direct piping only, or may be performed through a preheater or the like as necessary.
  • the pipe is preferably a double pipe type that can transfer the reaction liquid without cooling and solidifying, has no gas phase on the polymer side, and does not cause a dead space.
  • the temperature of the heating medium for heating each of the reactors is preferably 260 ° C. or higher, more preferably 255 ° C. or higher, and particularly preferably 250 ° C. or higher. If the temperature of the heating medium is too high, thermal deterioration on the reactor wall surface is promoted, which may lead to problems such as an increase in different structures or decomposition products, or deterioration in color tone.
  • the temperature of the heating medium in the reactor before the final polymerization reactor is preferably less than 230 ° C.
  • the lower limit of the temperature of the heating medium is not particularly limited as long as the reaction temperature can be maintained.
  • Any known reactor may be used in the present invention.
  • a jacket type reactor using hot oil or steam as a heating medium a reactor having a coiled heat transfer tube inside, and the like can be mentioned.
  • the reaction method of the production method according to the present invention is preferably a continuous method.
  • a plurality of vertical stirring reactors and then at least one horizontal stirring reactor are used as the reactor. These reactors are installed in series and processed continuously.
  • By continuously producing using a horizontal stirring reactor it becomes possible to efficiently produce a polycarbonate resin having a stable molecular weight and composition, and the orientation when producing a stretched film becomes uniform.
  • a stretched film having a stable retardation can be obtained.
  • the obtained polycarbonate resin is formed into pellets having a predetermined particle size. Further, a step of devolatilizing and removing an unreacted raw material or a reaction byproduct monohydroxy compound in the polycarbonate resin, a step of adding a heat stabilizer, a release agent, or the like may be appropriately added.
  • Monohydroxy compounds such as phenol generated in the reactor are collected in a tank and, after effective recovery from the viewpoint of effective resource utilization, recovered and reused as raw materials such as DPC or bisphenol A. It is preferable to do.
  • the purification method of the by-product monohydroxy compound is not particularly limited, but a distillation method is preferably used.
  • the production method of the present invention comprises a dihydroxy compound containing a dihydroxy compound having a fluorene structure (fluorene-based dihydroxy compound) such as 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene (BHEPF) as a raw material monomer; , Diphenyl carbonate (DPC) and other carbonic acid diesters are each melted to prepare a raw material mixed melt (raw material preparation step), and these compounds are melted in the presence of a polymerization catalyst in a plurality of reactors.
  • the polycondensation reaction is performed in multiple stages (polycondensation step).
  • the monohydroxy compound is removed from the reaction system to advance the reaction and produce a polycarbonate resin.
  • DPC is used as the carbonic acid diester
  • the monohydroxy compound becomes phenol, and the reaction proceeds by removing the phenol under reduced pressure.
  • the dihydroxy compound including the fluorene-based dihydroxy compound used as a raw material for the polycarbonate resin and the carbonic acid diester are a batch type, semi-batch type or continuous type stirring tank type apparatus in an atmosphere of an inert gas such as nitrogen or argon. Use to prepare as raw material mixed melt or drop them independently into the reactor.
  • the temperature of the melt mixing is 80 ° C. to 180 ° C. Preferably, it is selected from the range of 90 ° C to 130 ° C.
  • an antioxidant may be added to the raw material mixed melt.
  • a hindered phenolic antioxidant and / or a phosphorus-based antioxidant that is generally known, by improving the storage stability of the raw material in the raw material preparation step, and suppressing coloring during polymerization, The hue of the resulting resin can be improved.
  • the polymerization catalyst to be used is usually preferably prepared in advance as an aqueous solution.
  • concentration of the catalyst aqueous solution is not particularly limited, and is adjusted to an arbitrary concentration according to the solubility of the catalyst in water. Moreover, it can replace with water and can also select other solvents, such as acetone, alcohol, toluene, or phenol.
  • the property of water used for dissolving the polymerization catalyst is not particularly limited as long as the kind and concentration of impurities contained are constant, but usually distilled water or deionized water is preferably used.
  • Pre-stage reaction process First, the mixture of the dihydroxy compound and the carbonic acid diester is supplied to a vertical reactor while being melted, and a polycondensation reaction is performed at a temperature of 130 ° C. to 230 ° C.
  • the reaction is preferably carried out continuously in a multi-tank system of 1 tank or more, more preferably 2 to 6 tanks, and 40% to 95% of the theoretical amount of monohydroxy compound produced as a by-product is distilled off.
  • the reaction temperature is preferably 130 ° C. to 225 ° C., more preferably 150 ° C. to 220 ° C., and the pressure is preferably 40 kPa to 1 kPa.
  • the temperature of each tank is sequentially increased within the above range, and the pressure of each tank is sequentially decreased within the above range.
  • the average residence time is preferably from 0.1 to 10 hours, more preferably from 0.5 to 5 hours, still more preferably from 0.5 to 3 hours.
  • the temperature is too high, thermal decomposition is promoted, the generation of different structures or colored components increases, and the quality of the resin may be deteriorated.
  • the temperature is too low, the reaction rate is lowered, and thus productivity may be lowered.
  • the melt polycondensation reaction used in the present invention is an equilibrium reaction, the reaction is promoted by removing the by-product monohydroxy compound from the reaction system, and therefore it is preferable to use a reduced pressure.
  • the pressure is preferably 1 kPa or more and 40 kPa or less, more preferably 5 kPa or more and 30 kPa or less.
  • the pressure is too high, the monohydroxy compound will not be distilled and the reactivity will be lowered. If it is too low, raw materials such as unreacted dihydroxy compound and / or carbonic acid diester will be distilled, so that the molar ratio of the raw materials will be shifted and desired Control of the reaction becomes difficult, for example, the molecular weight is not reached, and the raw material basic unit may be deteriorated.
  • the oligomer obtained in the preceding polycondensation step is supplied to a horizontal stirring reactor, and a polycondensation reaction is performed at an internal temperature of 200 ° C. to 250 ° C. to obtain a polycarbonate resin.
  • This reaction is preferably carried out continuously in one or more horizontal stirring reactors, more preferably 1 to 3 horizontal stirring reactors.
  • the reaction temperature is preferably 210 to 260 ° C, more preferably 220 to 250 ° C.
  • the pressure is preferably 13.3 kPa to 10 Pa, more preferably 1 kPa to 20 Pa.
  • the pressure is preferably 2 kPa to 10 Pa, more preferably 1 kPa to 20 Pa.
  • the average residence time is preferably 0.1 to 10 hours, more preferably 0.5 to 5 hours, and further preferably 0.5 to 2 hours.
  • ⁇ Reactor> In the present invention in which the polycondensation process is performed in a multi-tank system using at least two reactors, a plurality of reactors including a vertical stirring reactor are provided to increase the average molecular weight (reduced viscosity) of the polycarbonate resin.
  • Examples of the reactor include a vertical stirring reactor and a horizontal stirring reactor.
  • Specific examples include a stirred tank reactor, a thin film reactor, a centrifugal thin film evaporation reactor, a surface renewal type biaxial kneading reactor, a biaxial horizontal type stirred reactor, a wet wall reactor, and polymerizing while freely dropping.
  • Examples thereof include a perforated plate reactor, and a perforated plate reactor with a wire that polymerizes while dropping along a wire.
  • it is preferable to use a vertical stirring reactor in the former reaction step and it is preferable to use a horizontal stirring reactor in the latter reaction step.
  • the parts constituting the reaction apparatus the parts contacting the raw material monomer or the polymerization liquid of the components such as piping (hereinafter referred to as “wetted part”)
  • the surface material of the wetted part is composed of the above-mentioned substance, and a bonding material composed of the above-described substance and another substance, or a material obtained by plating the substance on another substance is used as the surface material. Can be used.
  • the vertical stirring reactor is a reactor having a vertical rotating shaft and a stirring blade attached to the vertical rotating shaft.
  • types of the stirring blades include turbine blades, paddle blades, fiddler blades, anchor blades, full-zone blades (manufactured by Shinko Pantech Co., Ltd.), Sunmeler blades (manufactured by Mitsubishi Heavy Industries, Ltd.), Max blend blades (Sumitomo Shigeki). Machine Industries Co., Ltd.], helical ribbon blades and twisted lattice blades [manufactured by Hitachi, Ltd.].
  • the horizontal stirring reactor mentioned above has a plurality of stirring blades extending in a substantially vertical direction with respect to the rotation axis of a plurality of stirring blades provided in the horizontal direction (horizontal direction).
  • the stirring blades provided on the respective horizontal rotation shafts are preferably arranged so as to have self-cleaning properties.
  • a uniaxial stirring blade such as a disk type and a paddle type, HVR, SCR, N-SCR [manufactured by Mitsubishi Heavy Industries, Ltd.], Vivolak [manufactured by Sumitomo Heavy Industries, Ltd.] ],
  • a biaxial type stirring blade such as a spectacle blade and a lattice blade [manufactured by Hitachi, Ltd.].
  • stirring blades such as a wheel shape, a saddle shape, a rod shape, and a window frame shape may be mentioned.
  • Such stirring blades are installed in at least two or more stages per rotating shaft, and the reaction solution is scraped up or spread by the stirring blades to update the surface of the reaction solution. Further, when the length of the horizontal rotation axis of the horizontal reactor is L and the rotation diameter of the stirring blade is D, L / D is preferably 1 to 15, more preferably 2 to 14.
  • reaction conditions of the final polymerization reactor affect not only the quality of the polycarbonate resin but also the production yield, both the quality and the yield are taken into account based on the above conditions. It is preferable to set the reaction conditions in consideration.
  • the polycarbonate resin produced in the present invention also increases the viscosity of the reaction solution as the reaction proceeds, as in the case of ordinary polycarbonate resins. Therefore, in each multi-tank reactor, the by-product is produced as the polycondensation reaction proceeds. In order to more effectively remove the monohydroxy compound (which becomes phenol when DPC is used) out of the system and to ensure the fluidity of the reaction solution, the reaction conditions are increased stepwise. It is preferable to set a higher temperature and a higher vacuum.
  • the reaction temperature is lowered, the melt viscosity becomes high and the fluidity of the reaction liquid is lowered.
  • the reaction liquid may be entangled with the stirring shaft and may not sag.
  • the reaction liquid charged into the final polymerization reactor Is preferably as low as possible and has a high molecular weight (high viscosity).
  • the internal temperature of the reactor at the outlet of the reactor immediately before the final polymerization reactor is less than 225 ° C, preferably 220 ° C or less, more preferably 215 ° C or less.
  • the internal temperature of the reactor immediately before the final polymerization reactor is 200 ° C. or higher, preferably 210 ° C. or higher. .
  • the melt viscosity of the reaction liquid at the outlet of the reactor immediately before the final polymerization reactor is 20 Pa ⁇ s or more, preferably 50 Pa ⁇ s or more, more preferably 100 Pa ⁇ s or more. On the other hand, it is 1000 Pa ⁇ s or less, preferably 800 Pa ⁇ s or less.
  • the degree of vacuum of the final polymerization reactor is as high as possible.
  • the viscosity of the reaction solution is too low, the reaction solution foams violently and is ideal. The plug flow property cannot be obtained, and the molecular weight cannot be controlled.
  • the viscosity is too high, the fluidity in the final polymerization reactor is lowered, the residence time becomes excessive, and the quality of the obtained polycarbonate resin is deteriorated.
  • the melt viscosity of the reaction liquid at the outlet of the reactor immediately before the final polymerization reactor can be controlled to a desired viscosity by appropriately adjusting the temperature or pressure of the previous reaction, the amount of catalyst, or the like.
  • the melt viscosity means a melt viscosity at a shear rate of 91.2 s ⁇ 1 measured at a temperature equal to the temperature of the reaction solution using a capillary rheometer [manufactured by Toyo Seiki Co., Ltd.].
  • the temperature of the heating medium in the final polymerization reactor is preferably 260 ° C. or lower, more preferably 255 ° C. or lower, and further preferably 250 ° C. or lower.
  • the temperature of the heating medium is preferably 220 ° C or higher, more preferably 230 ° C or higher.
  • the amount of the compound is preferably 3 wt% or less, more preferably 2 wt% or less, and particularly preferably 1.5 wt% or less.
  • the amount of the monohydroxy compound contained is preferably as small as possible, it is impossible in practice, but it is ideally 0 wt%. However, it is impossible in practice, and it is usually preferably 500 ppm or more.
  • the melt viscosity of the reaction liquid at the outlet of the final polymerization reactor is 1800 Pa ⁇ s or more. More preferably, it is 2000 Pa ⁇ s or more, and particularly preferably 2200 Pa ⁇ s or more.
  • the melt viscosity is preferably 5000 Pa ⁇ s or less, and preferably 4000 Pa ⁇ s or less. It is more preferable.
  • the melt viscosity of the reaction liquid at the outlet of the final polymerization reactor should be controlled by adjusting the reaction conditions such as the temperature, pressure or residence time of the final polymerization reactor or the amount of catalyst, or adjusting the end group balance. Can do.
  • the end group balance is adjusted by controlling the charged molar ratio of the carbonic diester and the dihydroxy compound, or the amount of unreacted monomer distilled in the previous reaction.
  • Q / P is preferably 1.5 or more, more preferably 1.6 or more, still more preferably 1.7 or more, and on the other hand, it is preferably 3.0 or less, more preferably 2.9. Hereinafter, it is more preferably 2.8 or less.
  • Q / P When Q / P is 3.0 or less, it is possible to suppress an excessive heat history in the final polymerization reactor and to prevent the color tone of the resulting resin from deteriorating. Therefore, Q / P is preferably 2.5 or less, more preferably 2.2 or less, and particularly preferably 2.0 or less. Further, by setting Q / P to 1.5 or more, it is possible to suppress an excessive increase in the heat history before the final polymerization reactor, and to prevent deterioration of the color tone of the resin obtained in the same manner. Further, the molecular weight does not increase more than the target in the final polymerization reactor, and the reaction can be easily controlled. Therefore, Q / P is preferably 1.6 or more, more preferably 1.7 or more, and particularly preferably 1.8 or more.
  • Q and P can be adjusted by adjusting temperature, pressure, residence time, catalyst amount or end group balance, etc., and Q / P can be controlled by appropriately combining these conditions. can do.
  • the temperature is decreased, the pressure is increased, the residence time is shortened, P is decreased, and as it is, Q is simultaneously decreased.
  • the Q / P can be increased by decreasing the pressure in the reactor and keeping Q constant.
  • the amount of liquid in the reactor is increased / decreased according to the amount of reaction liquid processed (resin production volume) to control the appropriate residence time. To do.
  • the final polymerization reactor has a very high melt viscosity of the reaction liquid, it is difficult to control the amount of liquid in the reactor, so the final polymerization reactor is suitable for the throughput of the reaction liquid. It is preferable to set a large capacity.
  • the liquid volume is more easily decomposed than bisphenols used in a normal polycarbonate resin, so that the liquid volume is more severely adjusted.
  • V / A is preferably 2 or more, more preferably 3 or more, and on the other hand, it is preferably 13 or less, more preferably 10 or less.
  • V Horizontal reactor volume (L)
  • A Reaction liquid throughput (kg / hr)
  • V / A By setting V / A to 13 or less, it is possible to prevent the capacity of the reactor from becoming excessive with respect to the amount of the reaction solution, and to reduce the amount of solution in the reactor when shortening the residence time. It is possible to suppress the reaction liquid from flowing into the outlet of the reactor and improve the pelletization yield. In addition, if the amount of liquid is increased beyond an appropriate amount, the residence time becomes too long, the color tone of the resulting resin is deteriorated, and the molecular weight is excessively higher than the target, making it difficult to control the reaction. Tend to be.
  • V / A the residence time will not be too short, and the molecular weight can be improved to a desired level. Further, the surface renewability of the reaction solution is improved, residual low molecular components such as monohydroxy compounds (for example, phenol) can be reduced, and the quality of the resulting resin can be improved.
  • V / A is reduced by increasing the reaction solution throughput A, and V is reduced by reducing the reaction solution throughput A. / A increases.
  • the polycarbonate resin of the present invention is produced using a substituted diphenyl carbonate such as diphenyl carbonate or ditolyl carbonate as the carbonic acid diester, phenol or substituted phenol as a monohydroxy compound is by-produced, and the polycarbonate resin It is inevitable that it remains.
  • a substituted diphenyl carbonate such as diphenyl carbonate or ditolyl carbonate
  • the polycarbonate resin obtained by a normal batch reaction not the continuous type as in the present invention, contains a monohydroxy compound having an aromatic ring such as by-product phenol of 1500 ppm or more.
  • these monohydroxy compounds may have a substituent depending on the raw material used, and may have, for example, an alkyl group having 5 or less carbon atoms.
  • the aliphatic polycarbonate resin using the fluorene dihydroxy compound or the dihydroxy compound having a cyclic ether structure as a monomer has a larger reaction equilibrium constant than the conventional aromatic polycarbonate resin using bisphenol A as a monomer.
  • the molecular weight increase rate in the latter reaction is fast. For this reason, if the pressure is lowered too much, the reaction is promoted too much, so that the reaction tends to be difficult to control.
  • the reaction rate is usually maximized when the amount of the hydroxy terminal is equal to the amount of the phenyl carbonate terminal represented by the following structural formula (8).
  • the balance of such end groups can be controlled by the molar ratio of the total dihydroxy compound used in the reaction and the carbonic acid diester when charged to the first reactor.
  • the molar ratio of the carbonic acid diester is preferably 0.990 or more and 1.030 or less.
  • the molar ratio of the diester carbonate charge to the total dihydroxy compound is more preferably 0.995 or more, while more preferably 1.025 or less.
  • the pressure in the final polymerization reactor is preferably 2 kPa or less, more preferably 1.5 kPa or less, and still more preferably 1.0 kPa or less. In addition, although it is so preferable that it is low, in many cases, it will become the limit of pressure reduction substantially at 10 Pa.
  • the amount of hydroxy end groups of the polycarbonate resin obtained by polycondensation according to the present invention is preferably such that the amount of all hydroxy end groups in the reaction solution at the outlet of the final polymerization reactor is 1000 ppm or less. . More preferably, it is 900 ppm or less, Most preferably, it is 800 ppm or less.
  • the amount of all hydroxy end groups in the reaction solution at the outlet of the final polymerization reactor is preferably 50 ppm or more.
  • the amount of the monohydroxy compound contained in the polycarbonate resin obtained by polycondensation in the present invention is preferably 1500 ppm or less, more preferably 1000 ppm or less, at the reactor outlet immediately before the final polymerization reactor. Especially preferably, it is 500 ppm or less. However, it is difficult to remove completely industrially, and the lower limit of the content of the monohydroxy compound is usually 1 ppm.
  • the amount of the monohydroxy compound contained in the polycarbonate resin is preferably 10 ppm or more and 3 wt% or less in the reaction solution at the outlet of the reactor immediately before the final polymerization reactor.
  • 1500 ppm or less is preferable at the exit of the final polymerization reactor, more preferably 1000 ppm or less, and particularly preferably 500 ppm or less.
  • the lower limit of the content of the monohydroxy compound is usually 1 ppm.
  • Monohydroxy compounds at the outlet of these reactors are removed by making the reactor pressure as low as possible. Furthermore, the monohydroxy compound in resin can further be reduced by supplying a reaction liquid to an extruder after a polymerization reaction and performing vacuum devolatilization.
  • the polycarbonate resin obtained by polycondensation of the dihydroxy compound containing the dihydroxy compound having the fluorene structure according to the present invention is lower in thermal stability than the conventional aromatic polycarbonate resin, so that the reaction temperature is as low as possible. Although it is necessary to set low, the viscosity of a reaction liquid becomes higher than the conventional polycarbonate resin for that purpose.
  • the reaction liquid may wrap around the stirring shaft and not sag.
  • the number of revolutions of the stirring blade is set according to the melt viscosity of the reaction solution. It is necessary to set appropriately, and it is preferable to set in the range of the following formula (3).
  • is preferably 500 or more, on the other hand, preferably 20000 or less, more preferably 15000 or less.
  • 20000 or less, it is possible to suppress the reaction liquid from being wound around the stirring shaft, to improve the yield in the pelletizing step, and to prevent an increase in foreign matters in the resin.
  • 500 or more, the stirring efficiency becomes sufficient, the amount of residual low molecular components in the reaction solution is suppressed from increasing, and the reaction solution is prevented from staying on the reactor wall surface and deteriorating in color. be able to.
  • can be kept within a preferable range by reducing the stirring blade rotational speed ⁇ with increasing molecular weight.
  • the stirring blade rotational speed ⁇ is preferably less than 5 rpm, more preferably less than 4 rpm, and particularly preferably 3. Less than 5 rpm, especially less than 3 rpm is optimal.
  • stirring blade rotational speed ⁇ is too small, the interface renewability is deteriorated, the increase in molecular weight is hindered, and a polycarbonate resin having a molecular weight suitable for a stretched film may not be obtained.
  • the polycarbonate resin obtained by polycondensation according to the present invention may be subjected to the polycondensation reaction described above, and then passed through a filter in a molten state to filter foreign matters.
  • the resin obtained by polycondensation is introduced into an extruder, and then the resin discharged from the extruder is It is preferable to filter using a filter.
  • examples of the method for filtering the polycarbonate resin obtained by polycondensation using a filter include the following methods.
  • the final polymerization reactor is extracted in a molten state using a gear pump or a screw, and filtered through a filter, and the final polymerization reactor is melted and uniaxially or biaxially extruded.
  • the resin is supplied to the machine, melt-extruded, filtered through a filter, cooled and solidified in the form of a strand, and pelletized with a rotary cutter, etc., uniaxial or biaxial in the molten state from the final polymerization reactor
  • the resin is supplied to the extruder and melt-extruded, it is once cooled and solidified in the form of strands, pelletized, the pellets are again introduced into the extruder, filtered through a filter, cooled and solidified in the form of strands, and pellets From the final polymerization reactor in a molten state, and cooled and solidified in the form of strands without passing through an extruder, and then once pellets
  • the resin is supplied from the final polymerization reactor to the uniaxial or biaxial extruder in the molten state.
  • a method of directly filtering with a filter, cooling and solidifying in the form of a strand, and pelletizing with a rotary cutter or the like is preferable. This will be specifically described below.
  • the form of the extruder is not limited, but it is usually preferable to use a single or twin screw extruder.
  • a twin screw extruder is preferable for improving the devolatilization performance described later or for uniform kneading of the additive.
  • the rotation direction of the shaft may be different or the same, but the same direction is preferable from the viewpoint of kneading performance.
  • the use of an extruder can stabilize the supply of polycarbonate resin to the filter.
  • the hue or heat stability, and further, the secondary monomer in the transesterification reaction which may adversely affect the product due to bleed out, etc.
  • the resulting monohydroxy compound or low molecular weight compound such as polycarbonate resin oligomer remains, but these are reduced by using an extruder having a vent port, preferably by reducing the pressure from the vent port using a vacuum pump or the like. It is also possible to devolatilize and remove. Moreover, volatile liquids, such as water, can be introduce
  • the number of vent ports may be one or plural, but preferably two or more.
  • a heat stabilizer a neutralizing agent, an ultraviolet absorber, a release agent, a colorant, an antistatic agent, a lubricant, a lubricant, a plasticizer, a compatibilizing agent or Flame retardants can be added and kneaded.
  • the polycarbonate resin is extruded with the above extruder and then filtered with a filter. It is preferable.
  • Examples of the form of the filter include known ones such as a candle type, a pleat type, and a leaf disc type.
  • a leaf disk type that can provide a large filtration area with respect to the storage container of the filter is preferable, and a plurality of combinations are preferably used so that a large filtration area can be obtained.
  • the filter used in the present invention is configured by combining a holding member (also referred to as a retainer) with a filtering member (hereinafter sometimes referred to as a medium), and these filters are stored (in some cases, a plurality or plural). It is used in the form of a unit (sometimes called a filter unit) stored in a container.
  • a type in which a plurality of aperture media are overlapped so that the differential pressure (pressure loss) of the filter is small and the apertures become finer in order from the resin intrusion direction is preferable.
  • a type obtained by sintering metal powder it is also possible to use a type obtained by sintering metal powder.
  • the material of the filter medium is not limited as long as it has the strength and heat resistance necessary for filtration of the obtained polycarbonate resin, but stainless steel such as SUS316 or SUS316L with a low iron content is particularly preferable. .
  • a nonwoven fabric type can be used in addition to a regular weaving portion of the foreign matter, such as a plain weave, a twill weave, a plain tatami mat or a twill mat weave.
  • a non-woven fabric type having a high gel-capturing ability particularly a type in which steel wires constituting the non-woven fabric are sintered and fixed is preferable.
  • the opening of the filter is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, still more preferably 20 ⁇ m or less, and 10 ⁇ m or less when it is particularly desired to reduce foreign matter, as 99% filtration accuracy.
  • the filtration accuracy of 99% is 1 ⁇ m or more. Preferably there is.
  • the aperture defined as 99% filtration accuracy is the value of ⁇ when the ⁇ value represented by the following formula (9) determined in accordance with ISO 16889 (2008) is 1000.
  • Passivation treatment includes, for example, a method in which a filter is immersed in an acid such as nitric acid or an acid is passed through the filter to form a passivated surface, and roasted (heated) in the presence of water vapor or oxygen. ) The method of processing, the method of using these together, etc. are mentioned. Among them, it is preferable to perform both nitric acid treatment and roasting.
  • the roasting temperature is preferably 350 ° C. to 500 ° C., more preferably 350 ° C. to 450 ° C., and the roasting time is preferably 3 hours to 200 hours, more preferably 5 hours to 100 hours. If the roasting temperature is too low or the time is too short, the formation of the passive state becomes insufficient, and the polycarbonate resin tends to deteriorate during filtration. On the other hand, if the temperature of roasting is too high or the time is too long, the filter media may be severely damaged and the required filtration accuracy may not be achieved.
  • the concentration of nitric acid in the treatment with nitric acid is preferably 5 to 50% by weight, more preferably 10 to 30% by weight, and the treatment temperature is preferably 5 to 100 ° C. More preferably, it is 50 ° C. to 90 ° C., and the treatment time is preferably 5 minutes to 120 minutes, more preferably 10 minutes to 60 minutes.
  • the concentration of nitric acid is too low, the processing temperature is too low, or the processing time is too short, the formation of passives will be insufficient, the concentration of nitric acid will be too high, the processing temperature will be too high, or the processing time will be If it is too long, the filter media will be severely damaged and the required filtration accuracy may not be achieved.
  • the material of the containment vessel of the filter used in the production method of the present invention is not limited as long as it has strength and heat resistance that can withstand resin filtration, but preferably SUS316 with a low iron content. Alternatively, it is a stainless steel such as SUS316L.
  • the storage container of the filter may be arranged such that the supply port and the discharge port of the polycarbonate resin are arranged substantially horizontally, arranged substantially vertically, or arranged obliquely.
  • the polycarbonate resin supply port is disposed at the bottom of the filter storage container and the discharge port is disposed at the top. .
  • a gear pump between the extruder and the filter in order to stabilize the supply amount of the polycarbonate resin to the filter.
  • a gear pump there is no restriction
  • sticker part is preferable from a viewpoint of foreign material reduction.
  • class 7 as defined in JIS B 9920 (2002), more preferably, in order to prevent foreign matter from being mixed from the outside air. It is preferable to carry out in a clean room with higher cleanliness than class 6.
  • the polycarbonate resin filtered by the filter is cooled and solidified and pelletized by a rotary cutter or the like, and it is preferable to use a cooling method such as air cooling or water cooling when pelletizing.
  • a cooling method such as air cooling or water cooling when pelletizing.
  • air cooling it is preferable to use air from which foreign matters in the air have been removed in advance with a hepa filter or the like to prevent reattachment of foreign matters in the air.
  • the aperture of the water filter to be used is preferably 10 to 0.45 ⁇ m in terms of 99% removal filtration accuracy.
  • a raw material filter it is also effective to filter the raw material monomer through a filter before polycondensation in order to further reduce foreign matters.
  • this filter is referred to as a raw material filter.
  • the shape of the raw material filter at that time may be any type such as a basket type, a disc type, a leaf disc type, a tube type, a flat cylindrical type or a pleated cylindrical type.
  • a pleated type having a large filtration area is preferable.
  • the filter medium constituting the raw material filter may be any one of metal wind, laminated metal mesh, metal nonwoven fabric, porous metal plate, and the like. From the viewpoint of filtration accuracy, a laminated metal mesh or a metal nonwoven fabric is preferred, and among them, a type in which a metal nonwoven fabric is sintered and fixed is preferred.
  • metal or resin ceramics can be used.
  • a metal filter having an iron content of 80% or less is used.
  • stainless steel such as SUS304, SUS316, SUS316L, or SUS310S is preferable.
  • the opening of the filter in the upstream unit is preferably C ⁇ m.
  • the aperture of the filter in the downstream unit is D ⁇ m, C is preferably larger than D (C> D) in at least one combination.
  • the opening of the raw material filter is not particularly limited, but at least one filter preferably has a filtration accuracy of 99% of 10 ⁇ m or less, and is preferably on the most upstream side when a plurality of filters are arranged. Is 8 or more, more preferably 10 or more, and preferably 2 or less, more preferably 1 or less on the most downstream side.
  • the opening of the said raw material filter said here is also determined based on the above-mentioned ISO16889 (2008).
  • the temperature of the raw material fluid when the raw material is passed through the raw material filter is not limited. However, if the raw material is too low, the raw material is solidified. If the raw material is too high, there is a problem such as thermal decomposition.
  • the temperature is preferably 200 ° C, more preferably 100 ° C to 150 ° C.
  • any of the raw materials to be used may be filtered, or all of the raw materials may be filtered.
  • the method is not limited, and the dihydroxy compound and the carbonic acid diester are not limited.
  • the raw material mixture may be filtered, or may be mixed after separately filtering.
  • the reaction liquid in the middle of a polycondensation reaction can also be filtered with a filter.
  • FIG. 1 is a diagram showing an example of a manufacturing apparatus used in the manufacturing method of the present invention.
  • the polycarbonate resin of the present invention comprises a raw material preparation step for preparing the raw material dihydroxy compound and carbonic acid diester, and a polycondensation reaction of these raw materials in a molten state using a plurality of reactors. It is manufactured through a condensation process.
  • the distillate produced in the polycondensation step is liquefied by the condensers 12a, 12b, 12c and 12d and collected in the distillate collection tank 14a.
  • a step of devolatilizing and removing unreacted raw materials or reaction by-products in the polymerization reaction solution a step of adding a heat stabilizer, a release agent, a colorant, or the like, or a polycarbonate resin with pellets having a predetermined particle size
  • a step of forming a pellet of polycarbonate resin is formed.
  • BHEPF 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene
  • ISB specific dihydroxy compound
  • PEG1000 polyethylene glycol 1000
  • a DPC melt prepared at a predetermined temperature in a nitrogen gas atmosphere is supplied from the raw material supply port 1a to the raw material mixing tank 2a.
  • the powdered BHEPF is supplied from the raw material supply port 1b, and then the ISB melt and the PEG 1000 melt measured in a nitrogen gas atmosphere are supplied from the raw material supply ports 1c and 1d to the raw material mixing tank 2a. Continuously supplied. And these are mixed within the raw material mixing tank 2a, and a raw material mixing melt is obtained.
  • the obtained raw material mixed melt is continuously supplied to the first vertical stirring reactor 6a via the raw material supply pump 4a and the raw material filter 5a. Moreover, magnesium acetate aqueous solution is continuously supplied as a raw material catalyst from the catalyst supply port 1e in the middle of the transfer piping of the raw material mixed melt.
  • a first vertical stirring reactor 6a, a second vertical stirring reactor 6b, a third vertical stirring reactor 6c, and a fourth horizontal stirring reactor 6d are provided in series. It is done. In each reactor, the liquid level is kept constant and a polycondensation reaction is performed, and the polymerization reaction liquid discharged from the bottom of the first vertical stirring reactor 6a passes to the second vertical stirring reactor 6b. The third vertical stirring reactor 6c is successively supplied to the fourth horizontal stirring reactor 6d, and the polycondensation reaction proceeds.
  • the reaction conditions in each reactor are preferably set so that the high temperature, high vacuum, and low stirring speed are achieved as the polycondensation reaction proceeds.
  • the fourth horizontal stirring reactor 6d corresponds to the final polymerization reactor in the present invention
  • the third vertical stirring reactor 6c corresponds to the reactor immediately before the final polymerization reactor. To do.
  • the first vertical stirring reactor 6a, the second vertical stirring reactor 6b, and the third vertical stirring reactor 6c are provided with Max Blend blades 7a, 7b, 7c, respectively.
  • the fourth horizontal stirring reactor 6d is provided with a biaxial glasses-type stirring blade 7d.
  • a gear pump 4b is provided after the third vertical stirring reactor 6c because the transferred reaction liquid has a high viscosity.
  • the internal heat exchanger 8a may be used so that the temperature of the heating medium does not become excessively high. 8b is provided.
  • distilling tubes 11a, 11b, 11c, and 11d for discharging by-products generated by the polycondensation reaction are attached to these four reactors, respectively.
  • reflux condensers 9a and 9b and reflux pipes 10a and 10b are provided in order to return a part of the distillate to the reaction system.
  • the reflux ratio can be controlled by appropriately adjusting the pressure of the reactor and the temperature of the heating medium of the reflux condenser.
  • the distillation pipes 11a, 11b, 11c, and 11d are connected to condensers 12a, 12b, 12c, and 12d, respectively, and each reactor is in a predetermined depressurized state by a decompression device 13a, 13b, 13c, and 13d. To be kept.
  • by-products such as phenol (monohydroxy compound) are continuously liquefied and recovered from the condensers 12a, 12b, 12c, and 12d attached to each reactor.
  • a cold trap (not shown) is provided downstream of the condensers 12c and 12d attached to the third vertical stirring reactor 6c and the fourth horizontal stirring reactor 6d, respectively, so that by-products are continuously present. Solidified and recovered.
  • the reaction liquid raised to a predetermined molecular weight is extracted from the fourth horizontal stirring reactor 6d and transferred to the twin screw extruder 15a by the gear pump 4c.
  • the twin screw extruder is equipped with a vacuum vent to remove residual low molecular components in the polycarbonate resin. Further, an antioxidant, a light stabilizer, a colorant, a release agent, or the like is added as necessary.
  • Resin is supplied from the twin screw extruder 15a to the polymer filter 15b by the gear pump 4d, and foreign matter is filtered.
  • the resin that has passed through the filter is extracted in the form of a strand from the die head, cooled with water in the strand cooling tank 16a, and then pelletized by the strand cutter 16b.
  • the pellets are pneumatically transported by an air blower 16c and sent to a product hopper 16d. A predetermined amount of product is packed in a product bag by the measuring instrument 16e.
  • polycondensation based on a transesterification reaction between a dihydroxy compound and a carbonic acid diester is started according to the following procedure.
  • first vertical stirring reactor 6a second vertical stirring reactor 6b, third vertical stirring reactor 6c, The four horizontal stirring reactors 6d
  • the internal temperature of each reactor and the temperature and pressure of the heating medium are not particularly limited, but are preferably set as follows.
  • the dihydroxy compound and the carbonic acid diester are mixed at a predetermined molar ratio in a raw material mixing tank 2a in a nitrogen gas atmosphere to obtain a raw material mixed melt.
  • the raw material mixed melt prepared in the raw material mixing tank 2a is separately added to the first reactor. Continuously fed into the vertical stirring reactor 6a. Simultaneously with the start of the supply of the raw material mixed melt, the catalyst is continuously supplied from the catalyst supply port 1d into the first vertical stirring reactor 6a to start the transesterification reaction.
  • the liquid level of the polymerization reaction solution is kept constant so as to have a predetermined average residence time.
  • a valve (not shown) provided in a polymer discharge line at the bottom of the tank while detecting the liquid level with a liquid level gauge or the like.
  • a method for controlling the opening degree may be mentioned.
  • the polymerization reaction liquid is discharged from the tank bottom of the first vertical stirring reactor 6a, discharged to the second vertical stirring reactor 6b, and subsequently discharged from the tank bottom of the second vertical stirring reactor 6b, Sequentially and continuously supplied to the third vertical stirring reactor 6c.
  • 50% to 95% of the theoretical amount of phenol produced as a by-product is distilled off to produce oligomers.
  • the oligomer obtained in the preceding reaction step is transferred by the gear pump 4b, supplied to the fourth horizontal stirring reactor 6d, and under temperature and pressure conditions suitable for performing the latter reaction as described later,
  • the by-produced phenol and partially unreacted monomer are removed out of the system through the distillation pipe 11d to produce a polycarbonate resin.
  • the fourth horizontal stirring reactor 6d has one or more horizontal rotation shafts, and extends from the horizontal rotation shaft in the vertical direction, a disk shape, a wheel shape, a saddle shape, a rod shape, or a window frame shape.
  • One or two or more kinds of stirring blades such as those described above are combined, and at least two stages are installed in the horizontal direction per rotation axis.
  • the stirring blades provided on each horizontal rotation shaft are arranged to have self-cleaning properties. It is easy to stably obtain a polycarbonate resin having a reduced viscosity suitable for a stretched film by renewing the surface of the reaction solution by rolling up or spreading the reaction solution with such a stirring blade.
  • reaction solution surface renewal means that the reaction solution on the liquid surface is replaced with the reaction solution on the lower surface of the liquid surface.
  • FIG. 2 is a perspective view of the biaxial glasses-type stirring blade 7d
  • FIG. 3 is a schematic view of the horizontal stirring reactor 6d containing the same, as viewed from above.
  • the stirring blades 21A and 21B are in a phase difference of 90 degrees from each other, and the respective shafts 22A and 22B are rotated in reverse. As a result, the tip portions of the respective stirring blades 21A and 21B rotate while scraping off the resin adhered to the other stirring blades 21B and 21A.
  • a plurality of such stirring blades 21A, 21B are connected in the axial direction.
  • the reaction temperature in the latter reaction step is usually preferably 200 to 260 ° C., more preferably 210 to 250 ° C.
  • the reaction pressure is usually preferably 13.3 kPa to 10 Pa, more preferably. Is 2 kPa to 30 Pa, more preferably 1 kPa to 50 Pa.
  • the residence time of the reaction liquid can be appropriately set by using the fourth horizontal stirring reactor 6d having a larger hold-up than the twin-screw vent type extruder in terms of the device structure.
  • the temperature can be lowered, and it becomes possible to obtain a polycarbonate resin with improved color tone and excellent mechanical properties.
  • the horizontal stirring reactor is a device having a horizontal axis and mutually discontinuous stirring blades mounted substantially at right angles to the horizontal axis, and does not have a screw portion unlike an extruder. In the production method of the present invention, it is preferable to use at least one such horizontal stirring reactor.
  • the raw material mixed melt and the catalyst are continuously supplied to perform the transesterification reaction. Based melt polycondensation is started.
  • the average residence time of the polymerization reaction liquid in each reactor becomes equal to that in the steady operation immediately after the start of the melt polycondensation.
  • the polymerization reaction liquid does not receive an excessive heat history, and foreign matters such as gel or burns generated in the obtained polycarbonate resin are reduced. Also, the color tone is good.
  • the dihydroxy compound used for the production of the polycarbonate resin of the present invention includes a dihydroxy compound having a fluorene structure (fluorene-based dihydroxy compound). From the viewpoint of heat resistance, mechanical strength, optical properties, or polymerization reactivity of the obtained polycarbonate resin, those represented by the following formula (1) having a 9,9-diphenylfluorene structure are preferable.
  • R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon group having 6 to 20 carbon atoms. It represents a cycloalkyl group or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and the same or different groups are arranged as each of the four substituents on each benzene ring.
  • X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 6 to 20 carbon atoms, or a substituted or unsubstituted carbon group having 6 to 20 carbon atoms.
  • m and n are each independently an integer of 0 to 5.
  • R 1 to R 4 are each independently a hydrogen atom or an unsubstituted or ester group, an ether group, a carboxylic acid, an amide group, or a halogen substituted alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a carbon number More preferred are 1 to 6 alkyl groups.
  • X is unsubstituted or substituted by an ester group, an ether group, a carboxylic acid, an amide group, or a halogen-substituted alkylene group having 2 to 10 carbon atoms, unsubstituted or an ester group, an ether group, a carboxylic acid, an amide group, or a halogen.
  • a cycloalkylene group having 6 to 20 carbon atoms, an unsubstituted or ester group, an ether group, a carboxylic acid, an amide group, or an arylene group having 6 to 20 carbon atoms substituted with halogen is preferable. More preferably, it is an alkylene group of ⁇ 6.
  • M and n are each independently preferably an integer of 0 to 2, with 0 or 1 being particularly preferred.
  • 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-2-) Methylphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-bis [4- (2-hydroxypropoxy) phenyl] fluorene, 9,9-bis [4- (2 -Hydroxyethoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (2-hydroxypropoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (2-hydroxyethoxy) -3 -Isopropylphenyl] fluorene, 9,9-bis [4- (2-hydroxyethoxy) -3-isobutylphenyl] fluorene, 9,9-bis 4- (2-hydroxyethoxy) -3-tert-butylphen
  • 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-bis [4- (2) is preferable from the viewpoint of optical performance, handling, availability, and the like.
  • the polycarbonate resin of the present invention is preferably obtained by using 18 mol% or more of a fluorene-based dihydroxy compound having a structural unit represented by the above general formula (1) as a raw material monomer, based on the total dihydroxy compound, More preferably, it is 20 mol% or more, Most preferably, it is 25 mol% or more. Moreover, it is preferably 90 mol% or less, more preferably 70 mol% or less, and particularly preferably 50 mol% or less.
  • the obtained polycarbonate resin may not exhibit the desired optical performance. If the amount is too large, the melt viscosity of the obtained polycarbonate resin becomes excessively high, and it may not be able to be stably discharged due to wrapping around the stirring blade of the horizontal stirring reactor. May cause deterioration of the polycarbonate resin. Moreover, the fluidity
  • the polycarbonate resin of the present invention preferably contains a structural unit derived from a dihydroxy compound other than the fluorene-based dihydroxy compound in order to adjust the desired optical properties.
  • a dihydroxy compound (specific dihydroxy compound) having a portion represented by the above formula (5) in a part of the structure is provided. preferable.
  • Specific examples include oxyalkylene glycols, dihydroxy compounds having an ether group bonded to an aromatic group in the main chain, and dihydroxy compounds having a cyclic ether structure.
  • Specific examples of the specific dihydroxy compound having a site represented by the above formula (5) in a part of the structure include, for example, oxyalkylene glycols and dihydroxy compounds having an ether group bonded to an aromatic group in the main chain. And dihydroxy compounds having a cyclic ether structure.
  • Examples of the oxyalkylene glycols include diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, and polypropylene glycol.
  • Examples of the dihydroxy compound having an ether group bonded to an aromatic group in the main chain include 2,2-bis [4- (2-hydroxyethoxy) phenyl] propane and 2,2-bis [4- (2 -Hydroxypropoxy) phenyl] propane, 1,3-bis (2-hydroxyethoxy) benzene, 4,4′-bis (2-hydroxyethoxy) biphenyl, bis [4- (2-hydroxyethoxy) phenyl] sulfone, etc. Can be mentioned.
  • dihydroxy compound having the cyclic ether structure examples include a dihydroxy compound represented by the following formula (10) and a spiro glycol represented by the following formula (11) or the following formula (12).
  • cyclic ether structure of the “dihydroxy compound having a cyclic ether structure” means an organic compound having an ether group in the cyclic structure and a structure in which the carbon constituting the cyclic chain is an aliphatic carbon. To do.
  • examples of the dihydroxy compound represented by the formula (10) include isosorbide (ISB), isomannide and isoidet which are in a stereoisomeric relationship. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the hydroxy compounds represented by the formula (10), (11) or (12) are preferred from the viewpoints of availability, handling, reactivity during polymerization, and hue of the obtained polycarbonate resin.
  • a representative dihydroxy compound having a cyclic ether structure is preferable, and a dihydroxy compound represented by the above formula (10) or a dihydroxy compound having two cyclic ether structures such as spiroglycol represented by the following formula (11) is further included.
  • an anhydrous sugar alcohol which is a dihydroxy compound having two sugar-derived cyclic ether structures, such as a dihydroxy compound represented by the following formula (10), is particularly preferable.
  • dihydroxy compounds having no aromatic ring structure are preferably used from the viewpoint of optical properties of the polycarbonate resin.
  • anhydrous sugar alcohols such as dihydroxy compounds represented by the above formula (10) obtained by dehydrating condensation of sorbitol produced from various starches that are abundant as plant-derived resources are available. And most preferable from the viewpoints of ease of production, light resistance, optical properties, moldability, heat resistance and carbon neutral.
  • the dihydroxy compound represented by the above formula (10), (11) or (12) when used as a raw material monomer, it is preferably used in an amount of 10 mol% or more, more preferably 30 mol% or more, especially with respect to the total dihydroxy compound. Preferably it is 40 mol% or more.
  • the upper limit is preferably 80 mol% or less, more preferably 60 mol% or less, and particularly preferably 50 mol% or less. If the amount of the dihydroxy compound used is too small or too large, the obtained polycarbonate resin may not exhibit the desired optical performance.
  • These specific dihydroxy compounds may be used alone or in combination of two or more depending on the required performance of the polycarbonate resin to be obtained.
  • the dihydroxy compound having the bond structure of the formula (2) may contain a stabilizer such as a reducing agent, an antioxidant, an oxygen scavenger, a light stabilizer, an antacid, a pH stabilizer or a heat stabilizer. .
  • a stabilizer such as a reducing agent, an antioxidant, an oxygen scavenger, a light stabilizer, an antacid, a pH stabilizer or a heat stabilizer.
  • a basic stabilizer since the specific dihydroxy compound of the present invention is easily altered under acidic conditions, it is preferable to include a basic stabilizer.
  • Examples of the basic stabilizer include hydroxides, carbonates, phosphates, phosphites, and hypophosphites of group 1 or group 2 metals in the long-period periodic table (Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005).
  • Acid salts, borates and fatty acid salts tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylphenylammonium hydroxide, Triethylmethylammonium hydroxide, triethylbenzylammonium hydroxide, triethylphenyl Basic ammonium compounds such as ammonium hydroxide, tributylbenzylammonium hydroxide, tributylphenylammonium hydroxide, tetraphenylammonium hydroxide, benzyltriphenylammonium hydroxide, methyltriphenylammonium hydroxide and butyltriphenylammonium hydroxide, diethylamine , Dibutylamine,
  • the content of these basic stabilizers in the dihydroxy compound is not particularly limited.
  • the dihydroxy compound having the structure represented by the formula (2) used in the present invention is unstable in an acidic state, and thus the above-mentioned stability. It is preferable to add a stabilizer so that the pH of the aqueous solution of the dihydroxy compound containing the agent is 7 or more.
  • the amount is usually preferably 0.0001% by weight to 1% by weight, more preferably 0.001% by weight to 0.1% by weight, based on each dihydroxy compound used in the present invention.
  • the specific dihydroxy compound having the structure represented by the formula (2) is apt to be gradually oxidized by oxygen, moisture is not mixed to prevent decomposition by oxygen during storage or handling during manufacture.
  • an oxygen scavenger it is preferable to use an oxygen scavenger or to have a nitrogen atmosphere.
  • the polycarbonate resin of the present invention may contain a structural unit derived from a dihydroxy compound other than the fluorene-based dihydroxy compound and the specific dihydroxy compound (hereinafter may be referred to as “other dihydroxy compound”).
  • Examples of the other dihydroxy compounds include linear aliphatic hydrocarbon dihydroxy compounds, linear branched aliphatic hydrocarbon dihydroxy compounds, alicyclic hydrocarbon dihydroxy compounds, and aromatic bisphenols.
  • straight-chain aliphatic hydrocarbon dihydroxy compound examples include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,3-butanediol, 1,2 -Butanediol, 1,5-heptanediol, 1,6-hexanediol, 1,10-decanediol, 1,12-dodecanediol and the like.
  • dihydroxy compound of the linear branched aliphatic hydrocarbon examples include neopentyl glycol and hexylene glycol.
  • Examples of the alicyclic hydrocarbon dihydroxy compound include 1,2-cyclohexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, and tricyclodecanedi.
  • aromatic bisphenols examples include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and 2,2-bis (4 -Hydroxy-3,5-diethylphenyl) propane, 2,2-bis (4-hydroxy- (3,5-diphenyl) phenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) Propane, 2,2-bis (4-hydroxyphenyl) pentane, 2,4'-dihydroxy-diphenylmethane, bis (4-hydroxyphenyl) methane, bis (4-hydroxy-5-nitrophenyl) methane, 1,1- Bis (4-hydroxyphenyl) ethane, 3,3-bis (4-hydroxyphenyl) pentane, 1,1-bis (4-hydroxy) Enyl) cyclohexane, bis (4-hydroxyphenyl) sulfone, 2,4′-dihydroxydiphenylsulfone, bis (4-hydroxyphen
  • dihydroxy compounds may be used alone or in combination with the specific dihydroxy compound depending on the required performance of the polycarbonate resin to be obtained, and after combining two or more kinds, the fluorene-based dihydroxy compound or the specific dihydroxy compound. You may use together with a compound. Above all, in order to obtain the desired optical performance, to stabilize production, and to obtain a polycarbonate resin having characteristics suitable for a stretched film, two or more kinds of dihydroxy compounds are copolymerized in addition to the fluorene-based dihydroxy compound. Is preferred.
  • a dihydroxy compound having no aromatic ring structure in the molecular structure that is, an aliphatic hydrocarbon dihydroxy compound or an alicyclic hydrocarbon dihydroxy compound is preferable. May be.
  • the aliphatic hydrocarbon dihydroxy compounds suitable for the polycarbonate resin of the present invention include 1,3-propanediol, 1,4-butanediol, 1,5-heptanediol, and 1,6-hexanediol.
  • a straight-chain aliphatic hydrocarbon dihydroxy compound having 3 to 6 carbon atoms and having hydroxy groups at both ends is preferred.
  • 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol or tricyclodecane dimethanol is particularly preferable, and 1,2-cyclohexanedimethanol is more preferable.
  • It is a dihydroxy compound having a cyclohexane structure such as 2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol or 1,4-cyclohexanedimethanol.
  • the polycarbonate resin of the present invention can be obtained by polycondensation by a transesterification reaction using a dihydroxy compound containing the fluorene-based dihydroxy compound and a carbonic acid diester as raw materials.
  • Examples of the carbonic acid diester used usually include those represented by the following formula (13). These carbonic acid diesters may be used alone or in combination of two or more.
  • a 1 and A 2 are each a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 18 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon group, and A 1 and A 2 May be the same or different.
  • a preferable example of A 1 and A 2 is a substituted or unsubstituted aromatic hydrocarbon group, and a more preferable example is an unsubstituted aromatic hydrocarbon group.
  • Examples of the carbonic acid diester represented by the formula (13) include substituted diphenyl carbonate such as diphenyl carbonate (DPC) and ditolyl carbonate, dimethyl carbonate, diethyl carbonate, and di-t-butyl carbonate. Among them, preferred is diphenyl carbonate or substituted diphenyl carbonate, and particularly preferred is diphenyl carbonate.
  • DPC diphenyl carbonate
  • ditolyl carbonate dimethyl carbonate
  • diethyl carbonate diethyl carbonate
  • di-t-butyl carbonate diphenyl carbonate
  • Carbonic acid diesters may contain impurities such as chloride ions, which may hinder the polymerization reaction or worsen the hue of the resulting polycarbonate resin. It is preferable to use what was done.
  • the polycarbonate resin of the present invention is produced by transesterifying the dihydroxy compound containing the specific dihydroxy compound and the carbonic acid diester represented by the formula (13) as described above. More specifically, it can be obtained by transesterification and removing by-product monohydroxy compounds and the like out of the system.
  • transesterification reaction polycondensation is performed in the presence of a transesterification reaction catalyst.
  • the transesterification reaction catalyst (hereinafter simply referred to as a catalyst or a polymerization catalyst) that can be used in the production of the polycarbonate resin of the present invention may be used. ) Can greatly affect the reaction rate or the color tone of the polycarbonate resin obtained by polycondensation.
  • the catalyst used is not limited as long as it can satisfy the transparency, hue, heat resistance, thermal stability, and mechanical strength of the produced polycarbonate resin.
  • metal compounds of Group 1 or Group 2 (hereinafter simply referred to as “Group 1” or “Group 2”) in the long-period periodic table, as well as basic boron compounds, basic phosphorus compounds, and basic ammonium compounds And basic compounds such as amine compounds.
  • Group 1 metal compounds and / or Group 2 metal compounds are used.
  • Examples of the Group 1 metal compound include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, cesium hydrogen carbonate, sodium carbonate, potassium carbonate, and carbonic acid. Lithium, cesium carbonate, sodium acetate, potassium acetate, lithium acetate, cesium acetate, sodium stearate, potassium stearate, lithium stearate, cesium stearate, sodium borohydride, potassium borohydride, lithium borohydride, hydrogenated Cesium boron, sodium borohydride, potassium phenyl boronate, lithium phenyl boronide, cesium phenyl borohydride, sodium benzoate, potassium benzoate, lithium benzoate, cesium benzoate, hydrogen phosphate Sodium, 2 potassium hydrogen phosphate, 2 lithium hydrogen phosphate, 2 cesium hydrogen phosphate, 2 sodium phenyl phosphate, 2 potassium phenyl phosphate, 2 lithium
  • Examples of the Group 2 metal compound include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, magnesium hydrogen carbonate, strontium hydrogen carbonate, calcium carbonate, barium carbonate, carbonic acid.
  • Examples thereof include magnesium, strontium carbonate, calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, and strontium stearate.
  • magnesium compounds, calcium compounds, and barium compounds are preferred, and magnesium compounds and / or calcium compounds are more preferred from the viewpoint of polymerization activity and the hue of the polycarbonate resin obtained.
  • a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, and an amine compound can be used in combination with the aforementioned Group 1 metal compound and / or Group 2 metal compound.
  • a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, and an amine compound
  • Examples of the basic phosphorus compound include triethylphosphine, tri-n-propylphosphine, triisopropylphosphine, tri-n-butylphosphine, triphenylphosphine, tributylphosphine, and quaternary phosphonium salts.
  • Examples of the basic ammonium compound include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylphenylammonium hydroxide.
  • Triethylmethylammonium hydroxide triethylbenzylammonium hydroxide, triethylphenylammonium hydroxide, tributylbenzylammonium hydroxide, tributylphenylammonium hydroxide, tetraphenylammonium hydroxide, benzyltriphenylammonium hydroxide, methyltriphenylammonium Hydroxide and butyltriphenyl ammonium hydroxide, and the like.
  • Examples of the amine compound include 4-aminopyridine, 2-aminopyridine, N, N-dimethyl-4-aminopyridine, 4-diethylaminopyridine, 2-hydroxypyridine, 2-methoxypyridine, and 4-methoxypyridine.
  • the amount of the polymerization catalyst used is generally preferably 0.1 ⁇ mol to 300 ⁇ mol, more preferably 0.5 ⁇ mol to 100 ⁇ mol, per 1 mol of all dihydroxy compounds used in the polymerization.
  • the amount of metal is The amount is preferably 0.1 ⁇ mol or more, more preferably 0.3 ⁇ mol or more, particularly preferably 0.5 ⁇ mol or more per 1 mol of the dihydroxy compound.
  • 40 micromol or less is preferable, More preferably, it is 30 micromol or less, More preferably, it is 20 micromol or less.
  • the specific dihydroxy compound having a fluorene moiety used in the present invention may contain sulfur impurities derived from the catalyst used in the synthesis, and has the effect of deactivating the polymerization catalyst.
  • the polymerization catalyst to be added is preferably used in excess of the above range by the amount deactivated.
  • the polymerization temperature must be increased by that much. Therefore, there is a high possibility that the hue of the resulting polycarbonate resin will deteriorate, and the unreacted raw material may volatilize during the polymerization, causing the molar ratio of the dihydroxy compound and the carbonic acid diester to collapse and not reaching the desired molecular weight. There is.
  • the amount of the polymerization catalyst used is too large, undesirable side reactions may occur, and the hue of the resulting polycarbonate resin may be deteriorated or the resin may be colored during molding.
  • Group 1 metals sodium, potassium, and cesium may adversely affect the hue if they are contained in a large amount in the polycarbonate resin. And these metals may mix not only from the catalyst to be used but from a raw material or a reaction apparatus.
  • the total amount of the compound of the metal in the polycarbonate resin is preferably 2 ⁇ mol or less, more preferably 1 ⁇ mol or less, still more preferably 0.5 ⁇ mol or less, per 1 mol of the total dihydroxy compound as the metal amount.
  • the molecular weight of the polycarbonate resin of the present invention obtained by polycondensation in this way can be expressed by reduced viscosity, preferably 0.20 dL / g or more, more preferably 0.30 dL / g or more. Preferably, it is 0.35 dL / g or more, more preferably 0.40 or more. On the other hand, it is preferably 1.20 dL / g or less, more preferably 0.80 dL / g or less, further preferably 0.60 dL / g or less, and 0.50 dL / g or less. Particularly preferred, most preferred is 0.45 dL / g or less.
  • the reduced viscosity is a value measured using an Ubbelohde viscometer at a temperature of 20.0 ° C. ⁇ 0.1 ° C., prepared precisely using a methylene chloride as a solvent and a polycarbonate resin concentration of 0.6 g / dL. It is.
  • the glass transition temperature of the polycarbonate resin in the present invention is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher, and particularly preferably 125 ° C. or higher. If the glass transition temperature is excessively low, after the polycarbonate resin of the present invention is formed into a film, it tends to deteriorate the heat resistance when stretched into a retardation film, etc. There is a possibility that the phase difference changes with time. On the other hand, the glass transition temperature is preferably 160 ° C. or less, more preferably 150 ° C. or less, still more preferably 140 ° C. or less, and particularly preferably 135 ° C. or less.
  • the melt viscosity during the production of the polycarbonate resin becomes high, and there is a possibility that it will not be able to be discharged stably by wrapping around the stirring blade of the horizontal stirring reactor. As a result, it tends to be difficult to increase the molecular weight (reduced viscosity) which greatly affects the fracture at the time of stretching. Furthermore, when molding into a film, the molding stability may be deteriorated, such as uneven thickness. If the molding temperature is set high in order to suppress this, the resin will be deteriorated and the film may be stretched or machined. Strength may be reduced.
  • a resin with little coloring and less foreign matter can be obtained while being a polycarbonate resin having the structure of the above formula (1).
  • a foreign matter having a maximum length of 20 ⁇ m or more contained in a film having a thickness of 30 ⁇ m ⁇ 5 ⁇ m formed from the polycarbonate resin of the present invention is preferably 1000 / m 2 or less, more preferably 500 / m 2.
  • it can be most preferably 200 pieces / m 2 or less.
  • the polycarbonate resin of the present invention is optionally provided with a heat stabilizer, a neutralizing agent, an ultraviolet absorber, a release agent, an antistatic agent, a lubricant, a lubricant, a plasticizer, or a compatibilizing agent.
  • Additives such as agents can also be mixed with a tumbler, super mixer, floater, V-type blender, nauter mixer, Banbury mixer or extruder.
  • melt extrusion method As a method for producing a film using the polycarbonate resin of the present invention, a melt extrusion method is preferable from the viewpoint of productivity.
  • a method of extruding a resin using a T die and sending it to a cooling roll is preferably used.
  • the melting temperature at this time is determined from the molecular weight of the polycarbonate resin, Tg, melt flow characteristics, etc., but is preferably in the range of 150 ° C. to 300 ° C., more preferably in the range of 170 ° C. to 280 ° C.
  • the retardation value of the formed film is preferably 20 nm or less, more preferably 10 nm or less.
  • the retardation value of the film is larger than this, it is not preferable because when the film is stretched to obtain a retardation film, the dispersion of the retardation value in the film surface increases.
  • the solution casting method can also be used as a method for producing the film.
  • the solvent for example, methylene chloride, chloroform, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, dioxolane, dioxane, tetrahydrofuran, toluene, methyl ethyl ketone and the like are preferable.
  • the amount of residual solvent in the film obtained by the solution casting method is preferably 2% by weight or less, more preferably 1% by weight or less. By setting it to 2% by weight or less, it is possible to prevent a decrease in the glass transition temperature of the film due to a large amount of residual solvent, which is preferable in terms of heat resistance.
  • the thickness of the unstretched film is preferably in the range of 20 ⁇ m to 400 ⁇ m, more preferably 30 ⁇ m to 300 ⁇ m, still more preferably 50 ⁇ m to 200 ⁇ m, and particularly preferably 80 ⁇ m to 150 ⁇ m.
  • the film may be appropriately determined within the above range in consideration of a desired retardation value and thickness of the retardation film.
  • the polycarbonate resin of the present invention was molded into an unstretched film having a thickness of 100 ⁇ m ⁇ 10 ⁇ m, and the elongation (tension) until breaking when a tensile test was conducted at a glass transition temperature of + 6 ° C. and a tensile speed of 625% / min. (Elongation at break) is preferably 120% or more, more preferably 150% or more, still more preferably 200% or more, and particularly preferably 220% or more.
  • the upper limit is Usually, it is 400% or less, preferably 300% or less.
  • Polycarbonate resins made from dihydroxy compounds having a fluorene structure have a rigid fluorene structure, so if the molecular structure is copolymerized with a flexible dihydroxy compound or the molecular weight is increased, the tensile elongation at break tends to increase.
  • the dihydroxy compound having a fluorene structure is excessively reduced, the desired optical performance will not be exhibited, and attempts to increase the reduced viscosity may lead to degradation of the polycarbonate resin and manufacturing problems as described above. It is not easy to satisfy all of the plurality of performances.
  • a retardation film can be obtained by stretching and orienting the unstretched film thus obtained.
  • the stretching method include known methods such as longitudinal uniaxial stretching and lateral uniaxial stretching using a tenter, and simultaneous biaxial stretching and sequential biaxial stretching in combination thereof.
  • Stretching may be performed batchwise, but it is preferable in terms of productivity to be performed continuously. Further, a continuous retardation film with less variation in retardation within the film surface can be obtained compared to a batch system.
  • the stretching temperature is preferably in the range of (Tg ⁇ 20 ° C.) to (Tg + 30 ° C.), more preferably in the range of (Tg ⁇ 10 ° C.) to (Tg + 20 ° C.) with respect to the glass transition temperature of the polycarbonate resin. It is. If the stretching temperature is excessively low, the film may be broken at the time of stretching, and if it is excessively high, the birefringence of the stretched film may be reduced and a desired phase difference may not be obtained.
  • the draw ratio is determined by the target retardation value, but is preferably 1.05 to 4 times, more preferably 1.1 to 3 times, still more preferably 1.5 to 2.5 times. It is.
  • the stretching direction may be the longitudinal direction (longitudinal stretching) of the unstretched film, or may be the perpendicular direction (lateral stretching).
  • the birefringence when the film formed by molding the polycarbonate resin in the present invention is stretched is usually 0.0010 or more, preferably 0.0014 or more, more preferably 0.0016 or more, still more preferably 0.0018 or more, Particularly preferred is 0.0020.
  • 0.0010 or more preferably 0.0014 or more, more preferably 0.0016 or more, still more preferably 0.0018 or more, Particularly preferred is 0.0020.
  • the birefringence is excessively increased, it is necessary to set the stretching ratio high and the stretching temperature low, and orientation relaxation after stretching tends to occur, and the change in phase difference may increase.
  • it is 0.0060 or less, preferably 0.0050 or less, more preferably 0.0040 or less, and particularly preferably 0.0035 or less.
  • the thickness of the stretched film according to the present invention is preferably in the range of 10 ⁇ m to 200 ⁇ m, more preferably 20 ⁇ m to 150 ⁇ m, still more preferably 30 ⁇ m to 100 ⁇ m, and particularly preferably 40 ⁇ m to 80 ⁇ m.
  • the stretched film is excessively thick, the thickness when assembled as a retardation plate is increased, and a display having a desired thickness cannot be obtained. On the other hand, if it is too small, it may cause breakage during stretching or assembly.
  • the retardation of the stretched film (retardation film) according to the present invention is represented by the product of in-plane birefringence and the film thickness, and is usually 30 nm to 400 nm as a value when measured at a measurement wavelength of 590 nm.
  • the thickness is preferably 50 nm to 300 nm, particularly preferably 100 nm to 200 nm. If the retardation is excessively small, the performance as a retardation film tends to be inferior. If the retardation is excessively large, it is necessary to increase the thickness of the film, so that the retardation plate cannot be reduced in weight and size.
  • the stretched film (retardation film) according to the present invention is laminated and bonded via a known iodine-based or dye-based polarizing plate and an adhesive, thereby being used for various liquid crystal display devices or organic EL display devices. It can be used as a phase difference plate.
  • the ratio (Re450 / Re550) of the retardation (Re450) measured at a wavelength of 450 nm to the retardation (Re550) measured at a wavelength of 550 nm is preferably 0.5 or more and 1.0 or less. 0.70 or more and 1.0 or less is more preferable, 0.80 or more and 0.95 or less is further preferable, and 0.85 or more and 0.93 or less is particularly preferable.
  • phase difference characteristics can be obtained at each wavelength in the visible region.
  • a retardation film having such wavelength dependency is prepared as a quarter wavelength plate, and a circularly polarizing plate or the like can be manufactured by laminating with a polarizing plate, and polarization with less hue wavelength dependency.
  • a board and a display device can be realized.
  • film refers to a thin and flat product whose thickness is extremely small compared to the length and width and whose maximum thickness is arbitrarily limited, and is usually supplied in the form of a roll.
  • sheet refers to a product that is thin by definition in JIS and whose thickness is small and flat for the length and width.
  • the boundary between the “sheet” and the “film” is not clear and it is not necessary to distinguish the two in terms of the present invention, even if the term “film” is used in this specification, the “sheet” As a concept including “
  • the transparent film according to the present invention preferably has a photoelastic coefficient of 50 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and more preferably 40 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less.
  • a photoelastic coefficient of 50 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and more preferably 40 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less.
  • the stretched film of the present invention is used as a retardation film for viewing angle compensation of various displays (for example, liquid crystal display devices, organic EL display devices, plasma display devices, FED field emission display devices, SED surface electric field display devices), and reflection of external light. It can be used for prevention, color compensation, or conversion of linearly polarized light into circularly polarized light. Especially, it can use suitably in the organic electroluminescence display which plays the role of a reflecting plate with a back electrode being a metal.
  • a reflective liquid crystal display device including a reflective liquid crystal panel is preferable.
  • a reflective liquid crystal display device comprising a polarizing film, a quarter-wave plate, and a liquid crystal cell including a liquid crystal layer between two substrates having transparent electrodes in this order.
  • a display device with excellent image quality can be obtained by using it for a display device, particularly a polarizing film single-reflection type liquid crystal display device.
  • a polarizing film, a retardation film, a substrate with a transparent electrode, a liquid crystal layer and a substrate with a scattering reflection electrode, a polarizing film, a scattering plate, a retardation film, and a transparent electrode A substrate, a liquid crystal layer, and a substrate with a specular reflective electrode, a polarizing film, a retardation film, a substrate with a transparent electrode, a liquid crystal layer, a substrate with a transparent electrode, and a reflective layer.
  • the quarter-wave plate can be used in a liquid crystal display device having both a transmission type and a reflection type.
  • Examples of the configuration of the liquid crystal display device include a polarizing film, a retardation film, a substrate with a transparent electrode, a liquid crystal layer, a substrate with a reflection / transmission electrode, a retardation film, a polarizing film, and a backlight system.
  • a reflective polarizing film made of cholesteric liquid crystal that reflects only the left or right circularly polarized light if it is used as an element for converting circularly polarized light into linearly polarized light, good linearly polarized light can be obtained in a wide band.
  • the polycarbonate resin according to the present invention is excellent in heat resistance and moldability, and further has little transparency and high transparency. Therefore, it can be used for other optical films, optical discs, optical prisms, pickup lenses, and the like.
  • the present invention will be described in more detail with reference to examples.
  • the present invention is not limited to the following examples unless it exceeds the gist.
  • the value of various manufacturing conditions and evaluation results in the following examples has a meaning as a preferable value of the upper limit or the lower limit in the embodiment of the present invention, and the preferable range is the above-described upper limit or lower limit value.
  • a range defined by a combination of values of the following examples or values of the examples may be used.
  • Hydroxy terminal group amount [ppm] ( ⁇ ) integral value ⁇ 17.01 / ⁇ ( ⁇ integral value / 2 ⁇ 464.51 + ( ⁇ ) /3 ⁇ 172.14+ ( ⁇ ) /82.3 ⁇ 1025.99 ⁇ ⁇ 1000000
  • Glass transition temperature (Tg) Using a differential scanning calorimeter (DSC220, manufactured by SII Nanotechnology Inc.), about 10 mg of polycarbonate resin was heated at a temperature increase rate of 20 ° C./min, and measured according to JIS-K7121 (1987). Extrapolated glass transition start temperature, which is the temperature at the intersection of the straight line that extends the low-temperature base line to the high-temperature side and the tangent line drawn at the point where the slope of the step change portion of the glass transition is maximized was determined as the glass transition temperature.
  • L * is 99.40 ⁇ 0.05, a * is 0.03 ⁇ 0.01, b * is ⁇ 0.43 ⁇ 0.01, YI is ⁇ It was confirmed to be 0.58 ⁇ 0.01.
  • the pellets were measured by packing them into a cylindrical glass container having an inner diameter of 30 mm and a height of 50 mm to a depth of about 40 mm. The operation of taking out the pellet from the glass container and then performing the measurement again was repeated twice, and the average value of the measurement values of three times in total was used. The smaller the YI value, the less yellow the resin is, and the better the color tone.
  • the sample was uniaxially stretched by a batch type biaxial stretching apparatus [manufactured by Toyo Seiki Sangyo Co., Ltd.] at a stretching speed of 720 mm / min (strain speed of 1200% / min) at a stretching ratio of 2.0 times. At this time, it extended
  • the stretching temperature is gradually lowered from the glass transition temperature of the polycarbonate resin + 20 ° C., the stretched film is made 3 times, and a stretched film is created at a temperature 2 ° C. higher than the temperature at which the breakage occurs three times. Used for measurement.
  • Example preparation> A polycarbonate resin sample (4.0 g), which was vacuum-dried at 80 ° C. for 5 hours, was heated with a hot press at a hot press temperature of 250 ° C. using a spacer having a width of 8 cm, a length of 8 cm, and a thickness of 0.5 mm. After pressurizing under the condition of 20 MPa for 1 minute, the entire spacer was taken out and cooled with a water tube cooling press at a pressure of 20 MPa for 3 minutes, and a sample having a width of 5 mm and a length of 20 mm was cut out.
  • the cut sample was fixed to a viscoelasticity measuring apparatus, and the storage elastic modulus E ′ was measured at a frequency of 96 Hz at a room temperature of 25 ° C.
  • the emitted laser light is passed through the polarizer, sample, compensator, and analyzer in this order, picked up by a photodetector (photodiode), and passed through a lock-in amplifier with respect to the amplitude and distortion of the waveform of angular frequency ⁇ or 2 ⁇ .
  • the phase difference was determined, and the strain optical coefficient 0 ′ was determined.
  • the directions of the polarizer and the analyzer were orthogonal to each other, and each was adjusted so as to form an angle of ⁇ / 4 with respect to the extending direction of the sample.
  • Example 1-1 As shown in FIG. 1 described above, a polycarbonate resin was produced under the following conditions using a continuous production apparatus having three vertical stirring reactors and one horizontal stirring reactor.
  • each reactor was previously set to an internal temperature and pressure according to the reaction conditions.
  • this raw material mixed melt is continuously supplied into the first vertical stirring reactor 6a controlled within the range of ⁇ 5% of the above-mentioned predetermined temperature and pressure through the raw material introduction pipe heated to 140 ° C. And the liquid level was kept constant, controlling the opening degree of the valve
  • a magnesium acetate aqueous solution as a catalyst was continuously supplied into the first vertical stirring reactor 6a from the catalyst supply port 1d at a ratio of 19 ⁇ mol with respect to 1 mol of all dihydroxy components.
  • the capacity of the fourth horizontal stirring reactor 6d was 250 L, the temperature of the heating medium was 240 ° C., and the reaction solution was supplied at a treatment rate of 40 kg / hr.
  • the third vertical stirring reactor 6c corresponds to the reactor immediately before the final polymerization reactor. That is, the internal temperature of the reactor immediately before the final polymerization reactor is 220 ° C.
  • the reaction liquid extracted from the fourth horizontal stirring reactor 6d was transferred to the extruder 15a by the gear pump 4c.
  • a gear pump 4c is arranged on the resin discharge side of the extruder 16d, and further downstream, a leaf disk filter (made by Nippon Pole Co., Ltd.) having an outer diameter of 112 mm, an inner diameter of 38 mm, and a filtration accuracy of 99% within the containment vessel.
  • the polymer filter 15b equipped with 10 sheets) was disposed.
  • a die for forming a strand was attached to the discharge side of the polymer filter.
  • the discharged resin was cooled with water in the form of a strand and solidified, and then pelletized with a rotary cutter. The process from stranding to pelletization was performed in a clean room. Subsequently, the pellets were sent to the product hopper 16d by pneumatic transfer.
  • the reaction solution corresponding to the outlet of the reactor immediately before the final polymerization reactor from the valve attached after the gear pump 4b is sent from the valve attached after the gear pump 4c to the final polymerization reactor outlet.
  • the polycarbonate resin pellets were sampled after the strand cutter 16b, and various analyzes were performed by the above-described analysis methods.
  • Example 1-2 The pressure in the third vertical stirring reactor 6c was 22 kPa, and the molecular weight and melt viscosity at the outlet of the third vertical stirring reactor 6c were lower than in Example 1-1.
  • Example 1-1 when the conditions of the fourth horizontal stirring reactor 6d were adjusted so that the reduced viscosity at the outlet of the fourth horizontal stirring reactor 6d was in the range of 0.39 to 0.41, the pressure was The average residence time was 0.6 kPa and 120 minutes. Items not mentioned were the same as in Example 1-1.
  • the pressure was 1.5 kPa and the average residence time was 100 minutes. Items not mentioned were the same as in Example 1-1.
  • Example 1-4 The same operation as in Example 1-1 was performed except that the stirring rotation speed of the fourth horizontal stirring reactor 6d was changed to 6 rpm. The reaction liquid was entangled with the stirring shaft and it was difficult for the reaction liquid to sag to the outlet of the reactor, and the pelletization process was stopped 12 times during the 24-hour operation. The amount of foreign matter in the obtained polycarbonate resin pellets was remarkably increased. The monohydroxy compound content was lower than in Example 1-1, and the color tone was good.
  • Example 1-5 The same operation as in Example 1-1 was performed, except that the stirring rotation speed of the fourth horizontal stirring reactor 6d was changed to 0.5 rpm. Although the operation could be continued stably, compared with Example 1-1, the stirring efficiency was lowered, and therefore the phenol content in the obtained polycarbonate resin was increased. The amount of foreign matter has become very small. Moreover, the color tone of the pellet YI was also favorable.
  • the raw materials were continuously supplied to the reactor so that the throughput of the final polymerization reactor was 50 kg / hr.
  • the reaction conditions were adjusted so that the reduced viscosity at the outlet of the fourth horizontal stirring reactor 6d was in the range of 0.41 to 0.44, and the conditions of each reactor were also adjusted appropriately according to the progress of the reaction. Unless otherwise specified, the same procedure as in Example 1-1 was performed. A polycarbonate resin having a good color tone and a very small content of monohydroxy compound in the polycarbonate resin and foreign matter was obtained.
  • the raw materials were continuously supplied to the reactor so that the throughput of the final polymerization reactor was 50 kg / hr.
  • the reaction conditions were adjusted so that the reduced viscosity at the outlet of the fourth horizontal stirring reactor 6d was in the range of 0.57 to 0.60, and the conditions of each reactor were also adjusted appropriately according to the progress of the reaction. Unless otherwise specified, the same procedure as in Example 1-1 was performed. A polycarbonate resin having a good color tone and a very small content of monohydroxy compound in the polycarbonate resin and foreign matter was obtained.
  • Example 1-1 The internal temperature of the third vertical stirring reactor 6c was raised to 230 ° C.
  • the pressure was 1.1 kPa and the average residence time was 100 minutes. Items not mentioned were the same as in Example 1-1.
  • the obtained polycarbonate resin deteriorated in color tone and the monohydroxy compound content also increased.
  • Example 1-6 the internal temperature of the third vertical stirring reactor 6c was raised to 230 ° C.
  • the pressure was 0.9 kPa, and the average residence time was 100 minutes. Items not mentioned were the same as in Example 1-6.
  • the obtained polycarbonate resin deteriorated in color tone and the monohydroxy compound content also increased.
  • Example 1-7 the internal temperature of the third vertical stirring reactor 6c was raised to 230 ° C.
  • the pressure was 0.8 kPa and the average residence time was 100 minutes. Items not mentioned were the same as in Example 1-7.
  • the obtained polycarbonate resin deteriorated in color tone and the monohydroxy compound content also increased.
  • Table 2 shows the results of Examples 1-1 to 1-7 and Comparative Examples 1-1 to 1-3.
  • Example 2-1 As shown in FIG. 1 described above, a polycarbonate resin was produced under the following conditions using a continuous production apparatus having three vertical stirring reactors and one horizontal stirring reactor.
  • this raw material mixed melt is continuously supplied into the first vertical stirring reactor 6a controlled within the range of ⁇ 5% of the above-mentioned predetermined temperature and pressure through the raw material introduction pipe heated to 140 ° C. And the liquid level was kept constant, controlling the opening degree of the valve
  • a magnesium acetate aqueous solution as a catalyst was continuously supplied into the first vertical stirring reactor 6a from the catalyst supply port 1d at a ratio of 10 ⁇ mol with respect to 1 mol of all dihydroxy components.
  • the capacity of the fourth horizontal stirring reactor 6d was 250 L, the temperature of the heating medium was 242 ° C., the stirring rotation speed was 2 rpm, and the reaction solution was supplied at a throughput of 60 kg / hr.
  • the reaction liquid extracted from the fourth horizontal stirring reactor 6d was transferred to the extruder 15a by the gear pump 4c.
  • a gear pump 4c is arranged on the resin discharge side of the extruder 16d, and further downstream, a leaf disk filter (made by Nippon Pole Co., Ltd.) having an outer diameter of 112 mm, an inner diameter of 38 mm, and a filtration accuracy of 99% within the containment vessel.
  • the polymer filter 15b equipped with 10 sheets) was disposed.
  • a die for forming a strand was attached to the discharge side of the polymer filter.
  • the discharged resin was cooled with water in the form of a strand and solidified, and then pelletized with a rotary cutter. The process from stranding to pelletization was performed in a clean room. Subsequently, the pellets were sent to the product hopper 16d by pneumatic transfer.
  • Example 2-2 A polycarbonate resin having a higher molecular weight than that of Example 2-1 was produced by lowering the pressure in the fourth horizontal stirring reactor 6d.
  • the fluidity of the molten resin has decreased, and it has stopped dripping down to the outlet at the bottom of the tank, so that the molten resin can be stably extracted by lowering the rotation speed of stirring to 1 rpm.
  • Became When a film was prepared from the obtained polycarbonate resin and stretched, stretching was possible at a stretching temperature lower than that of Example 2-1, and higher in-plane birefringence was obtained.
  • the stretched film had a wavelength difference (Re450 / Re550) of retardation of 0.892, which was stronger than that of Example 2-1. It is possible to obtain desired wavelength dispersion by appropriately adjusting the copolymer composition.
  • Example 2-5 BHEPF, ISB, and PEG # 1000 were used as dihydroxy compounds.
  • BHEPF / ISB / PEG # 1000 / DPC 0.357 / 0.632 / 0.011 / 1.010 Went to.
  • the glass transition temperature was improved as compared with the polycarbonate resins of Example 2-1 and Example 2-6, the glass transition temperature was easily broken during stretching, and the film could be stretched only at a high temperature. The in-plane retardation of the stretched film was 0.0009, which was a low value.
  • Example 2-8 BHEPF and ISB were used as dihydroxy compounds.
  • the glass transition temperature was improved as compared with the polycarbonate resins of Example 2-1 and Example 2-6, the glass transition temperature was easily broken during stretching, and the film could be stretched only at a high temperature.
  • the in-plane retardation of the stretched film was 0.0008, which was a low value.
  • the reduced viscosity of the obtained polycarbonate resin was 0.356 dL / g, and the molecular weight was lower than that of Example 2-1.
  • the various analysis was implemented for the obtained polycarbonate resin by the above-mentioned analysis method. Compared to Examples 2-1 and 2-2, the tensile elongation at break was low, and stretching could not be performed unless the stretching temperature was high. The in-plane birefringence of the obtained stretched film was 0.0012, which was a low value.
  • Comparative Example 2-2 Polymerization was performed using a batch polymerization apparatus in the same manner as in Comparative Example 2-1. The same operation as in Comparative Example 2-1 was performed except that the temperature of the second reactor was changed to 255 ° C. The reduced viscosity, tensile elongation at break, and in-plane birefringence of the stretched film of the obtained polycarbonate resin were almost the same as those of Example 2-1, but the color tone of the polycarbonate resin deteriorated because the reaction temperature was increased.
  • the polycarbonate resin of the present invention allows the reaction to proceed to a high molecular weight by using a continuous polymerization method, and the tensile breaking elongation is higher than that of the polycarbonate resin obtained by batch polymerization. The degree improved. Therefore, it was possible to perform stretching at a lower temperature, and high in-plane birefringence can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 フルオレン構造を有するジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、重縮合してポリカーボネート樹脂を製造するポリカーボネート樹脂の製造方法であって、前記反応器は少なくとも直列に複数器接続されるものであり、最終重合反応器の一つ前の反応器の内温が200℃以上225℃未満であり、かつ最終重合反応器の1つ前の反応器の出口における反応液の溶融粘度が20Pa・s以上、1000Pa・s以下であることを特徴とするポリカーボネート樹脂の製造方法に関する。

Description

ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂ペレットおよび延伸フィルム
 本発明は、光学特性、色相及び熱安定性に優れ、かつ異物の少ないポリカーボネート樹脂を、効率的かつ安定的に製造する方法、およびそれより得られる延伸フィルムに関する。
 ポリカーボネート樹脂は一般的にビスフェノール類をモノマー成分とし、透明性、耐熱性または機械的強度等の優位性を生かし、電気・電子部品、自動車用部品、光学記録媒体またはレンズ等の光学分野等でいわゆるエンジニアリングプラスチックとして広く利用されている。
 近年、フルオレン構造を側鎖に有するジヒドロキシ化合物から誘導された共重合ポリカーボネート樹脂が報告されており、特に脂肪族ジヒドロキシ化合物との共重合ポリカーボネート樹脂は光弾性係数が小さいなど、優れた光学特性を有することが示されている(特許文献1~3)。
 また、特許文献4には、このフルオレン構造を含有するポリカーボネート樹脂からなる位相差フィルムは、光弾性係数が低い上、位相差が短波長になるほど小さくなる逆波長分散性を示すことから、位相差フィルムなどの光学用途に有用であることが開示されている。
 上記のフルオレン構造を有するジヒドロキシ化合物を用いた共重合ポリカーボネート樹脂を製造する際には、様々なジヒドロキシ化合物を原料として用いることが可能なエステル交換法または溶融法と呼ばれる方法で製造される。
 前記方法では、ジヒドロキシ化合物とジフェニルカーボネート等の炭酸ジエステルを重合触媒の存在下、200℃以上の高温でエステル交換し、副生するフェノールを系外に取り除くことにより重合を進行させてポリカーボネート樹脂を得ていた。
 ところが、フルオレン構造を有するジヒドロキシ化合物は、熱安定性に乏しく、特にビスフェノール化合物、または前記の脂肪族ジヒドロキシ化合物との共重合反応を行う場合、着色するという問題があった。中でも、脂肪族ジヒドロキシ化合物は、ビスフェノール類に比べると熱安定性が低く、高温下で行う重縮合反応中の熱分解により樹脂が着色しやすいという問題があった。
 この問題を解決する方法の一つとして、横型攪拌反応器を用いて反応液の表面積をかせいで、反応効率を高めることによって、より少ない熱履歴で重合反応を行い、得られるポリマーの色調を改善する方法が提案されている(特許文献5、6参照)が、延伸フィルムに要求される色調や強度を満足するには不十分であった。
日本国特開平10-101786号公報 日本国特開2004-67990号公報 日本国特開2008-111047号公報 国際公開第2006/41190号 日本国特開2009-161745号公報 日本国特開2007-70392号公報
 本発明者らの検討により、フルオレン構造を有するジヒドロキシ化合物を用いてポリカーボネート樹脂をエステル交換法で製造するにあたり、樹脂に十分な成形加工性および機械強度を備えるには、反応工程において、分子量を高くする必要があり、特にフィルムに加工した後、延伸して位相差フィルムを製造する際には、分子量が低いと延伸破断の原因となり、延伸破断を抑制するために延伸倍率や延伸温度等の延伸条件を緩和すると、所望の位相差が発現しないという問題があった。一方で、樹脂の着色を低減するためには反応温度を極力低下させることが重要であり、それらを両立させようとすると、反応工程の終盤において、溶融樹脂が非常に高い粘度になってしまう問題が顕在化した。
 また、溶融樹脂の粘度が高くなりすぎると、反応器において攪拌軸に溶融樹脂が巻きついて垂れ落ちてこなくなってしまうために、反応器から溶融樹脂を一定の流量で抜き出すことが難しくなり、ペレット化工程が途中で途切れてしまい、製造の歩留まりが悪化する課題が見出された。
 さらに、このようにペレット化が停止すると、再びペレット化を復旧するための作業を行う際に、ペレット化工程をクリーンルームで隔離していても、作業後は一時的に樹脂に含有される異物量が増加する問題も見出された。
 特にポリカーボネート樹脂が光学材料に用いられる場合は、異物は製品の致命的な欠陥になり中でも得られたポリカーボネート樹脂が位相差フィルム等、光学フィルムの用途に用いられる場合は、フィルムの製膜時や延伸時、または部材の組み立ての段階での製品歩留まりも悪化することにつながる。
 そこで本発明は、フルオレン構造を有するジヒドロキシ化合物を用いたポリカーボネート樹脂の製造にあたり、以上のような複数の問題を解決し、着色が少なく、光学特性および機械物性などの優れた特性を持つポリカーボネート樹脂を、安定した品質で、かつ高い歩留まりで製造することを目的とし、特に、ビスフェノール類に比べて熱安定性が低い脂肪族ジヒドロキシ化合物を併用した場合でも上記の課題を解決することを目的とする。
 すなわち、本発明は以下の通りである。
1.フルオレン構造を有するジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、重縮合してポリカーボネート樹脂を製造するポリカーボネート樹脂の製造方法であって、前記反応器は少なくとも直列に複数器接続されるものであり、最終重合反応器の一つ前の反応器の内温が200℃以上225℃未満であり、かつ最終重合反応器の1つ前の反応器の出口における反応液の溶融粘度が20Pa・s以上、1000Pa・s以下であることを特徴とするポリカーボネート樹脂の製造方法。
2.前記最終重合反応器の1つ前の反応器の出口における反応液の還元粘度をP、前記最終重合反応器の出口における反応液の還元粘度をQとした場合に下記式(2)を満たすことを特徴とする前項1に記載のポリカーボネート樹脂の製造方法。
 1.5 ≦ Q/P ≦ 3.0   (2)
3.前記最終重合反応器が、内部に複数の水平回転軸を有する横型攪拌反応器であって、反応条件が下記式(3)を満たすことを特徴とする前項1又は2に記載のポリカーボネート樹脂の製造方法。
 500 ≦ ωμ ≦ 20000   (3)
[ω:攪拌翼回転数(rpm)、μ:横型反応器出口における反応液の溶融粘度(Pa・s)]
4.前記横型攪拌反応器の反応条件が下記式(4)を満たすことを特徴とする前項3に記載のポリカーボネート樹脂の製造方法。
 2 ≦ V/A ≦ 13   (4)
[V:横型反応器容積(L)、A:反応液処理量(kg/hr)]
5.前記最終重合反応器の出口における反応液の溶融粘度が1800Pa・s以上5000Pa・s以下である前項1乃至4のいずれか1に記載のポリカーボネート樹脂の製造方法。
6.前記最終重合反応器の加熱媒体の温度が220℃以上、260℃以下である前項1乃至5のいずれか1に記載のポリカーボネート樹脂の製造方法。
7.最初の前記反応器に投入する際の反応に用いる全ジヒドロキシ化合物に対する炭酸ジエステルの仕込みのモル比が0.990以上1.030以下である前項1乃至6のいずれか1に記載のポリカーボネート樹脂の製造方法。
8.前記最終重合反応器の出口における反応液中の全ヒドロキシ末端基の量が50ppm以上1000ppm以下である前項1乃至7のいずれか1に記載のポリカーボネート樹脂の製造方法。
9.前記最終重合反応器の1つ前の反応器の出口における反応液中のモノヒドロキシ化合物の量が10ppm以上3wt%以下であり、かつ前記最終重合反応器の出口における反応液中のモノヒドロキシ化合物の量が1ppm以上1500ppm以下である前項1乃至8のいずれか1に記載のポリカーボネート樹脂の製造方法。
10.前記最終重合反応器の圧力が10Pa以上2kPa以下であることを特徴とする前項1乃至9のいずれか1に記載のポリカーボネート樹脂の製造方法。
11.前記重合触媒が、長周期型周期表第2族の金属からなる群及びリチウムより選ばれる少なくとも1種の金属化合物である前項1乃至10のいずれか1に記載のポリカーボネート樹脂の製造方法。
12.前記のフルオレン構造を有するジヒドロキシ化合物が、下記式(1)で表される化合物である前項1乃至11のいずれか1に記載のポリカーボネート樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000007
 [一般式(1)中、R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6~炭素数20のアリール基を表し、それぞれのベンゼン環に4つある置換基のそれぞれとして、同一の又は異なる基が配されている。Xは置換若しくは無置換の炭素数2~炭素数10のアルキレン基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6~炭素数20のアリーレン基を表す。m及びnはそれぞれ独立に0~5の整数である。]
13.前記式(1)で表されるフルオレン部位を有するジヒドロキシ化合物以外に、構造の一部に下記式(5)で表される部位を有する特定ジヒドロキシ化合物を含むジヒドロキシ化合物を反応に用いる前項1乃至12のいずれか1に記載のポリカーボネート樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000008
[但し、式(5)で表される部位が-CH-OHの一部を構成する部位である場合、および前記フルオレン構造を有するジヒドロキシ化合物の一部を構成する部位である場合を除く。]
14.前記式(5)で表される部位を有する特定ジヒドロキシ化合物が、環状構造を有し、かつエーテル構造を有する化合物である前項1乃至13のいずれか1に記載のポリカーボネート樹脂の製造方法。
15.前記式(5)の結合構造を有する特定ジヒドロキシ化合物が、下記構造式(6)で表される複素環基を有する化合物である前項14に記載のポリカーボネート樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000009
16.重縮合により得られたポリカーボネート樹脂を、固化させることなく溶融状態のままフィルターに供給して濾過する工程を含む前項1乃至15のいずれか1に記載のポリカーボネート樹脂の製造方法。
17.重縮合により得られたポリカーボネート樹脂、又は、それを上記フィルターで濾過した樹脂を、ダイスヘッドからストランドの形態で吐出し、冷却後、カッターを用いてペレット化する工程を含む前項1乃至16のいずれか1に記載のポリカーボネート樹脂の製造方法。
18.前項17に記載の製造方法により製造されたポリカーボネート樹脂ペレット。
19.厚さ30μm±5μmのフィルムとしたときに含まれる、最大長が20μm以上の異物が1000個/m以下である前項18に記載のポリカーボネート樹脂ペレット。
20.前項1乃至17のいずれか1に記載の製造方法で得られたポリカーボネート樹脂を製膜して得られることを特徴とする透明フィルム。
21.前項20に記載の透明フィルムを、少なくとも一方向に延伸して得られることを特徴とする延伸フィルム。
22.波長450nmで測定した位相差(Re450)と波長550nmで測定した位相差(Re550)の比が下記式(7)を満足することを特徴とする前項20又は21に記載の延伸フィルム。
 0.5 ≦ Re450/Re550 ≦ 1.0  (7)
23.フルオレン構造を有するジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、連続的に重縮合して得られたポリカーボネート樹脂からなる延伸フィルムであって、測定波長590nmにおける面内複屈折が0.0010以上であることを特徴とする延伸フィルム。
24.前記延伸フィルムの波長450nmで測定した位相差(Re450)と波長550nmで測定した位相差(Re550)の比が下記式(8)を満足する前項23に記載の延伸フィルム。
 0.80 ≦ Re450/Re550 ≦ 0.95  (8)
25.厚みが80μm以下である前項23または前項24に記載の延伸フィルム。
26.前記反応器は少なくとも直列に複数器接続されるものであり、最終重合反応器が、内部に複数の水平回転軸を有する横型攪拌反応器である前項23乃至25のいずれか1に記載の延伸フィルム。
27.前記最終重合反応器において、攪拌翼回転数をω(rpm)、該反応器出口における反応液の溶融粘度をμ(Pa・s)とした場合に、下記式(3)を満たす前項23乃至26のいずれか1に記載の延伸フィルム。
 500 ≦ ωμ ≦ 20000   (3)
28.前記ωが5rpm未満である前項23乃至27のいずれか1に記載の延伸フィルム。
29.前記フルオレン構造を有するジヒドロキシ化合物が、下記式(1)で表される化合物である前項23乃至28のいずれか1に記載の延伸フィルム。
Figure JPOXMLDOC01-appb-C000010
[一般式(1)中、R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6~炭素数20のアリール基を表し、それぞれのベンゼン環に4つある置換基のそれぞれとして、同一の又は異なる基が配されている。Xは置換若しくは無置換の炭素数2~炭素数10のアルキレン基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6~炭素数20のアリーレン基を表す。m及びnはそれぞれ独立に0~5の整数である。]
30.前記式(1)で表されるフルオレン部位を有するジヒドロキシ化合物以外に、構造の一部に下記式(5)で表される部位を有する特定ジヒドロキシ化合物を含むジヒドロキシ化合物を用いる前項23乃至29のいずれか1に記載の延伸フィルム。
Figure JPOXMLDOC01-appb-C000011
[但し、式(5)で表される部位が-CH-OHの一部を構成する部位である場合、および前記フルオレン構造を有するジヒドロキシ化合物の一部を構成する部位である場合を除く。]
31.前記式(5)で表される部位を有する特定ジヒドロキシ化合物が、環状構造を有し、かつエーテル構造を有する化合物である前項23乃至30のいずれか1に記載の延伸フィルム。
32.前記式(5)の結合構造を有する特定ジヒドロキシ化合物が、下記構造式(6)で表される複素環基を有する化合物である前項23乃至31のいずれか1に記載の延伸フィルム。
Figure JPOXMLDOC01-appb-C000012
33.前記ポリカーボネート樹脂のガラス転移温度が120℃以上150℃以下である前項23乃至32のいずれか1に記載の延伸フィルム。
34.前記ポリカーボネート樹脂の還元粘度が0.38dL/g以上0.50dL/g以下である前項23乃至33のいずれか1に記載の延伸フィルム。
35.前記ポリカーボネート樹脂が、前記ポリカーボネート樹脂を厚さ100μm±10μmの未延伸フィルムに成型し、ガラス転移温度+6℃の条件下、引張速度625%/分で引張試験をした際の破断に至るまでの伸度(引張破断伸度)が220%以上であることを特徴とする前項23乃至34のいずれか1に記載の延伸フィルム。
 本発明のポリカーボネート樹脂の製造方法により、光学特性、色相、耐熱性、熱安定性および機械的強度などに優れたポリカーボネート樹脂を、効率的かつ安定に製造することができるだけでなく、特定の複屈折を有する位相差フィルム等の用途に有用な延伸フィルムを得ることができる。特に、本発明のポリカーボネート樹脂の製造方法によれば、異物が少なく、位相差フィルム等の光学用途に好適に用いられるポリカーボネート樹脂を高い歩留まりで生産することが可能となる。
図1は、本発明にかかるポリカーボネート樹脂の製造方法の例を示す全体工程図である。 図2は、2軸メガネ型攪拌翼の斜視図である。 図3は、横型攪拌反応器の例を示す平面模式図である。
 以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。なお、本明細書において、「~」という表現を用いた場合、その前後の数値または物理値を含む意味で用いることとする。また、本明細書において、“wt%”と“重量%”は同義であって、単に“ppm”と記載した場合は、“重量ppm”のことを示す。
 本発明のポリカーボネート樹脂の製造方法は、フルオレン構造を有するジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、重縮合してポリカーボネート樹脂を製造する方法であって、前記反応器は少なくとも直列に複数器接続されるものであり、最終重合反応器の一つ前の反応器の内温が200℃以上225℃未満であり、かつ最終重合反応器の1つ前の反応器の出口における反応液の溶融粘度が20Pa・s以上、1000Pa・s以下であることを特徴とする。以下、本発明のポリカーボネート樹脂の製造方法を「本発明の製造方法」と称することがある。
<ポリカーボネート樹脂の製造工程概要>
 本発明の製造方法においては、少なくとも2器の反応器を用いる2段階以上の多段工程で、上記特定ジヒドロキシ化合物を含むジヒドロキシ化合物と、炭酸ジエステルとを、重合触媒の存在下で反応させる(溶融重縮合)ことによりポリカーボネート樹脂が製造される。
 なお、以下において、1器目の反応器を第1反応器、2器目の反応器を第2反応器、3器目の反応器を第3反応器、とそれぞれ称し、4器目以降の反応器も同様に呼称する。
 また、本明細書において「反応器」とは、ジヒドロキシ化合物と炭酸ジエステルを混合した後の工程で、後述する反応温度まで加熱する加熱装置を有し、意図的なエステル交換反応を起こすための装置をいい、原料を事前に混合したり溶解させたりすることを主な目的とする溶解槽、または反応液を移送するための配管は、たとえそこでわずかながら反応が進行していたとしても、前記の反応器に含まれない。
 なお、本明細書において、「最終重合反応器」とは、最も下流に備えられた反応器であって、その反応器の出口における反応液の還元粘度が、その反応器の1つ前の反応器における反応液の還元粘度の1.5倍以上となるものをいう。ただし、還元粘度が上記の条件を満たすものであれば、押し出し機等であっても、最終重合反応器とみなされる。
 重合工程は前段反応と後段反応の2段階に分けられる。前段反応は好ましくは130~225℃、より好ましくは150~220℃の温度で、好ましくは0.1~10時間、より好ましくは0.5~3時間実施され、副生するモノヒドロキシ化合物を留出させ、オリゴマーを生成させる。
 後段反応は、反応系の圧力を前段反応から徐々に下げ、反応温度も徐々に上げていき、同時に発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力を好ましくは2kPa以下とし、好ましくは200~260℃、より好ましくは210~250℃の温度範囲のもとで重縮合反応を行い、ポリカーボネート樹脂を生成させる。
 なお、本明細書における圧力とは、真空を基準に表した、いわゆる絶対圧力を指す。
 この重合工程で用いる反応器は、上記のとおり、少なくとも2器が直列に連結されたものであり、第1反応器の出口から出た反応物は第2反応器に入るものが用いられる。連結する反応器の数は特に限定されないが、2~7器が好ましく、3~5器がより好ましく、3~4器が更に好ましい。
 反応器の種類も特に限定されないが、前段反応の反応器は竪型攪拌反応器が1器以上であることが好ましく、後段反応の反応器は横型攪拌反応器が1器以上であることが好ましい。
 本発明の製造方法においては、最終段の横型攪拌反応器の反応条件が、得られる樹脂の品質だけでなく、製造の歩留まりまたは樹脂中の異物量など様々な観点から重要な影響を与え得る。また、前段と後段との関係だけでなく、前段の反応器同士、後段の反応器同士の間でも、後の反応器になるほど、段階的に温度を上昇させ、段階的に圧力を減少させた設定とすることが好ましい。
 前記の反応器と次の反応器との連結は、直接配管のみで連結してもよいし、必要に応じて、予熱器等を介して行ってもよい。配管は二重管式等で反応液を冷却固化させることなく移送ができ、ポリマー側に気相がなく、かつデッドスペースを生じないものが好ましい。
 前記のそれぞれの反応器を加熱する加熱媒体の温度は、260℃以上であることが好ましく、より好ましくは255℃以上、中でも250℃以上が好ましい。加熱媒の温度が高すぎると、反応器壁面での熱劣化が促進され、異種構造若しくは分解生成物の増加、または色調の悪化等の不具合を招くことがある。
 特に未反応のジヒドロキシ化合物が熱分解によって着色物を生成しやすいため、最終重合反応器より前の反応器の加熱媒体の温度は230℃未満であることが好ましい。加熱媒体の温度の下限は、上記反応温度が維持可能な温度であれば特に制限されない。
 本発明で使用する反応器は公知のいかなるものでもよい。例えば、熱油またはスチームを加熱媒体とした、ジャケット形式の反応器および内部にコイル状の伝熱管を有する反応器等が挙げられる。
 本発明にかかる製造方法の反応方式は、連続式であることが好ましい。反応器は、複数器の竪型攪拌反応器、及びこれに続く少なくとも1器の横型攪拌反応器が用いられる。これらの反応器は直列に設置され、連続的に処理が行われる。横型攪拌反応器を用いて連続的に製造することにより、安定した分子量や組成を有するポリカーボネート樹脂を効率よく製造することが可能になり、ひいては延伸フィルムを製造する際の配向性が均一になって、位相差の安定した延伸フィルムを得ることができる。
 重縮合工程後、得られたポリカーボネート樹脂を所定の粒径のペレットに形成される。また、ポリカーボネート樹脂中の未反応原料若しくは反応副生物であるモノヒドロキシ化合物を脱揮除去する工程、または熱安定剤若しくは離型剤等を添加する工程等を適宜追加してもよい。
 前記の反応器で発生するフェノール等のモノヒドロキシ化合物は、タンクに収集しておき、資源有効活用の観点から、必要に応じ精製を行って回収した後、DPCまたはビスフェノールA等の原料として再利用することが好ましい。本発明の製造方法において、副生モノヒドロキシ化合物の精製方法に特に制限はないが、蒸留法を用いることが好ましい。
 次に、本発明の製造方法にかかる製造方法の各工程について説明する。本発明の製造方法は、原料モノマーとして、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BHEPF)などのフルオレン構造を有するジヒドロキシ化合物(フルオレン系ジヒドロキシ化合物)を含むジヒドロキシ化合物と、ジフェニルカーボネート(DPC)等の炭酸ジエステルをそれぞれ溶融状態にて、原料混合溶融液を調製し(原料調製工程)、これらの化合物を、重合触媒の存在下、溶融状態で複数の反応器を用いて多段階で重縮合反応をさせる(重縮合工程)ことによって行われる。
 前記反応ではモノヒドロキシ化合物が副生するため、このモノヒドロキシ化合物を反応系から除去することにより、反応を進行させ、ポリカーボネート樹脂を生成させる。炭酸ジエステルとしてDPCを用いた場合、前記モノヒドロキシ化合物はフェノールとなり、減圧下でこのフェノールを除去して反応を進行させる。
<原料調製工程>
 ポリカーボネート樹脂の原料として使用する上記フルオレン系ジヒドロキシ化合物を含むジヒドロキシ化合物、及び炭酸ジエステルは、窒素またはアルゴン等の不活性ガスの雰囲気下、バッチ式、半回分式または連続式の攪拌槽型の装置を用いて、原料混合溶融液として調製するか、又は、反応器にこれらを独立に投下する。
 溶融混合の温度は、例えば、上記フルオレン系ジヒドロキシ化合物としてBHEPFを用いるとともに、後述するISBのような環状エーテル構造を有するジヒドロキシ化合物を用い、炭酸ジエステルとしてDPCを用いる場合は、80℃~180℃が好ましく、より好ましくは90℃~130℃の範囲から選択される。
 また、前記原料混合溶融液に酸化防止剤を添加してもよい。通常知られるヒンダードフェノール系酸化防止剤および/またはリン系酸化防止剤を添加することで、原料調製工程での原料の保存安定性を向上するとともに、重合中での着色を抑制することにより、得られる樹脂の色相を改善することができる。
 使用する重合触媒は、通常、予め水溶液として準備することが好ましい。触媒水溶液の濃度は特に限定されず、触媒の水に対する溶解度に応じて任意の濃度に調整される。また、水に代えて、アセトン、アルコール、トルエンまたはフェノール等の他の溶媒を選択することもできる。
 なお、重合触媒の具体例については、後記する。この重合触媒の溶解に使用する水の性状は、含有される不純物の種類ならびに濃度が一定であれば特に限定されないが、通常、蒸留水または脱イオン水等が好ましく用いられる。
 前記反応器での反応について説明する。
<前段反応工程>
 先ず、上記ジヒドロキシ化合物と炭酸ジエステルとの混合物を、溶融下に、竪型反応器に供給して、温度130℃~230℃で重縮合反応を行う。
 前記反応は、好ましくは1槽以上、より好ましくは2槽~6槽の多槽方式で連続的に行われ、副生するモノヒドロキシ化合物の理論量の40%から95%を留出させることが好ましい。反応温度は、130℃~225℃であることが好ましく、より好ましくは150℃~220℃であり、圧力は40kPa~1kPaであることが好ましい。
 多槽方式の連続反応の場合、各槽の温度を、上記範囲内で順次上げ、各槽の圧力を、上記範囲内で順次下げることが好ましい。平均滞留時間は、0.1~10時間が好ましく、より好ましくは0.5~5時間、さらに好ましくは0.5~3時間である。
 温度が高すぎると熱分解が促進され、異種構造または着色成分の生成が増加し、樹脂の品質の悪化を招くことがある。一方、温度が低すぎると反応速度が低下するために生産性が低下するおそれがある。
 本発明で用いる溶融重縮合反応は平衡反応であるため、副生するモノヒドロキシ化合物を反応系外に除去することで反応が促進されるので、減圧状態にすることが好ましい。圧力は1kPa以上、40kPa以下であることが好ましく、より好ましくは5kPa以上、30kPa以下である。
 圧力が高すぎるとモノヒドロキシ化合物が留出しないために反応性が低下し、低すぎると未反応のジヒドロキシ化合物および/または炭酸ジエステルなどの原料が留出するため、原料モル比がずれて所望の分子量まで到達しないなど、反応の制御が難しくなり、また、原料原単位が悪化してしまうおそれがある。
<後段反応工程>
 次に、前段の重縮合工程で得られたオリゴマーを横型攪拌反応器に供給して、反応器の内温200℃~250℃で重縮合反応を行い、ポリカーボネート樹脂を得る。この反応は好ましくは1器以上、より好ましくは1~3器の横型攪拌反応器で連続的に行われる。
 反応温度は、好ましくは210~260℃、より好ましくは220~250℃である。圧力は、13.3kPa~10Paが好ましく、より好ましくは1kPa~20Paである。特に最終重合反応器においては、圧力は2kPa~10Paが好ましく、より好ましくは1kPa~20Paである。平均滞留時間は、0.1~10時間が好ましくは、より好ましくは0.5~5時間、さらに好ましくは0.5~2時間である。
<反応器>
 少なくとも2器の反応器により重縮合工程を多槽方式で行う本発明では、竪型攪拌反応器を含む複数器の反応器を設けて、ポリカーボネート樹脂の平均分子量(還元粘度)を増大させる。
 反応器としては、例えば、竪型攪拌反応器および横型撹拌反応器が挙げられる。具体例としては、攪拌槽型反応器、薄膜反応器、遠心式薄膜蒸発反応器、表面更新型二軸混練反応器、二軸横型攪拌反応器、濡れ壁式反応器、自由落下させながら重合する多孔板型反応器、およびワイヤーに沿わせて落下させながら重合するワイヤー付き多孔板型反応器等が挙げられる。上記の通り、前段反応工程では竪型攪拌反応器を用いるのが好ましく、後段反応工程では横型攪拌反応器を用いることが好ましい。
 本発明における反応器においては前段と後段とに関わらず、ポリカーボネート樹脂の色調の観点から、反応装置を構成する機器、配管などの構成部品の原料モノマーまたは重合液に接する部分(以下「接液部」と称する)の表面材料は、接液部の全表面積の少なくとも90%以上を占める割合で、ニッケル含有量10重量%以上のステンレス、ガラス、ニッケル、タンタル、クロムおよびテフロン(登録商標)のうち1種または2種以上から構成されていることが好ましい。
 本発明においては、接液部の表面材料が上記物質から構成されていればよく、上記物質と他の物質とからなる張り合わせ材料、または前記物質を他の物質にメッキした材料などを表面材料として用いることができる。
 前記の竪型攪拌反応器とは、垂直回転軸と、該垂直回転軸に取り付けられた攪拌翼とを具備した反応器である。攪拌翼の形式としては、例えば、タービン翼、パドル翼、ファウドラー翼、アンカー翼、フルゾーン翼[神鋼パンテック(株)製]、サンメラー翼[三菱重工業(株)製]、マックスブレンド翼[住友重機械工業(株)製]、ヘリカルリボン翼およびねじり格子翼[(株)日立製作所製]等が挙げられる。
 また、前記の横型攪拌反応器とは、内部に複数本設けられた攪拌翼の回転軸が横型(水平方向)で、当該回転軸に対してほぼ垂直に延びる複数枚の攪拌翼を有しており、それぞれの水平回転軸に設けられた攪拌翼は、好ましくはセルフクリーニング性を持つように配されたものである。
 攪拌翼の形式としては、例えば、円板型およびパドル型等の一軸タイプの攪拌翼、並びにHVR、SCR、N-SCR[三菱重工業(株)製]、バイボラック[住友重機械工業(株)製]、メガネ翼および格子翼[(株)日立製作所製]等の二軸タイプの攪拌翼が挙げられる。その他、例えば、車輪型、櫂型、棒型および窓枠型などの攪拌翼が挙げられる。
 このような攪拌翼が、回転軸あたり少なくとも2段以上設置されており、該攪拌翼により反応溶液をかき上げ、又は押し広げて反応溶液の表面更新を行う。また、横型反応器の水平回転軸の長さをLとし、攪拌翼の回転直径をDとしたときにL/Dが1~15であることが好ましく、より好ましくは2~14である。
 本発明の製造方法においては、最終重合反応器の反応条件がポリカーボネート樹脂の品質だけでなく、製造の歩留まりにも影響を及ぼすため、上記の条件を踏まえた上で、品質と歩留まりとの両方を考慮した反応条件に設定することが好ましい。
 本発明で製造するポリカーボネート樹脂も、通常のポリカーボネート樹脂と同様に、反応の進行とともに反応液の粘度が上昇してくるため、多槽方式の各反応器においては、重縮合反応の進行とともに副生するモノヒドロキシ化合物(DPCを用いた場合はフェノールとなる。)をより効果的に系外に除去し、また、反応液の流動性を確保するために、上記の反応条件内で、段階的により高温、より高真空に設定することが好ましい。
 得られるポリカーボネート樹脂の色調等の品質低下を防止するためには、できるだけ低温および短滞留時間の設定が好ましい。しかし、反応温度を低下させると、溶融粘度が高くなって反応液の流動性が低下し、特に横型攪拌反応器の場合、攪拌軸に反応液がからみついて垂れ落ちなくなる場合がある。
 反応液が反応器出口に定量的に流れなくなると、反応液中に気泡をかみこんで、ペレット化工程において、気泡を含有するストランドが切れて、ペレット化が停止する事態を招く。さらには、ペレット化を復旧するためにストランドをカッターにつなぐ作業が発生するため、衣服の繊維または砂埃などに起因する異物が製品中に混入するおそれがある。このため、単純に反応温度を下げればよいわけではない。
 一方で、得られるポリカーボネート樹脂の色調の観点からは、反応温度が最も高温となる最終重合反応器での滞留時間を必要最低限とする必要があるため、最終重合反応器に投入される反応液が極力低温、かつ高分子量(高粘度)であることが好ましい。
 このため最終重合反応器の一つ前の反応器の出口における反応器の内温は225℃未満であり、好ましくは220℃以下、より好ましくは215℃以下である。一方で、温度が低すぎると十分に反応が進行せず、粘度も上がりすぎてしまうため、最終重合反応器の一つ前の反応器の内温は200℃以上であり、210℃以上が好ましい。
 また、最終重合反応器の一つ前の反応器の出口における反応液の溶融粘度は20Pa・s以上であり、好ましくは50Pa・s以上、より好ましくは100Pa・s以上である。一方、1000Pa・s以下であり、好ましくは800Pa・s以下である。
 ポリマー中に残存するモノヒドロキシ化合物などの低分子成分を除去するため、最終重合反応器の真空度は極力高い方が好ましいが、反応液の粘度が低すぎると、反応液が激しく発泡し、理想的なプラグフロー性が得られず、分子量の制御ができなくなってしまうおそれがある。また、粘度が高すぎると、最終重合反応器での流動性が低下してしまい、滞留時間が過剰になってしまい、得られるポリカーボネート樹脂の色調などの品質が悪化する。
 最終重合反応器の一つ前の反応器の出口における反応液の溶融粘度は、前段反応の温度若しくは圧力、または触媒量などを適宜調節することで、所望の粘度に制御にすることができる。なお、本明細書において溶融粘度とは、キャピラリーレオメーター[東洋精機(株)製]を用いて反応液の温度と同じ温度で測定された、剪断速度91.2s-1における溶融粘度を示す。
 最終重合反応器の加熱媒体の温度は260℃以下であることが好ましく、より好ましくは255℃以下、さらに好ましいのは250℃以下である。一方で、低すぎると粘度が上がりすぎてしまうので、加熱媒体の温度は220℃以上が好ましく、230℃以上がより好ましい。
 また、前記最終重合反応器において、反応液から効率的に低分子成分を除去するためには、最終重合反応器の一つ前の反応器の出口における反応液に含有されるフェノールなどのモノヒドロキシ化合物の量は3wt%以下が好ましく、より2wt%以下が好ましく、特に1.5wt%以下が好ましい。
 モノヒドロキシ化合物の含有量を低減するには、最終重合反応器の前段の反応器において、圧力を低下させる方法、滞留時間を長くするなどの方法があるが、反応液の粘度が上昇しすぎないように、反応条件を調節することが好ましい。
 なお、含まれるモノヒドロキシ化合物の量は少ないほど好ましく、実際には不可能であるが、0wt%であるのが理想である。しかし、実際には不可能であり、通常は500ppm以上であることが好ましい。
 一方、前記最終重合反応器では得られる樹脂が十分な機械的特性を有する程度に分子量を向上させる必要があるため、前記最終重合反応器の出口における反応液の溶融粘度は1800Pa・s以上であることが好ましく、さらに好ましくは2000Pa・s以上、特に好ましくは2200Pa・s以上である。
 一方で、溶融粘度を上げすぎると、反応液の流動性が損なわれ、また、攪拌機モーターの負荷が増大することから、溶融粘度は5000Pa・s以下であることが好ましく、4000Pa・s以下であることがより好ましい。
 最終重合反応器の出口における反応液の溶融粘度は、最終重合反応器の温度、圧力若しくは滞留時間などの反応条件または触媒量を調節したり、末端基バランスを調節したりすることにより制御することができる。末端基バランスは、炭酸ジエステルとジヒドロキシ化合物との仕込みモル比、または前段反応での未反応モノマーの留出量を制御することにより調節される。
 前記の反応条件において、最終重合反応器における分子量の上昇の度合いを還元粘度で表すと、下記(2)式の範囲が好ましい。Q/Pは1.5以上であることが好ましく、より好ましくは1.6以上、更に好ましくは1.7以上であり、一方、3.0以下であることが好ましく、より好ましくは2.9以下、さらに好ましくは2.8以下である。
 1.5 ≦ Q/P ≦ 3.0   (2)
(P:最終重合反応器の一つ前の反応器の出口における反応液の還元粘度、Q:最終重合反応器の出口における反応液の還元粘度)
 Q/Pを3.0以下とすることにより、前記最終重合反応器において熱履歴が過大となるのを抑制し、得られる樹脂の色調が悪化するのを防ぐことができる。そのためQ/Pは、2.5以下であることが好ましく、より好ましくは2.2以下であって、特には2.0以下が好ましい。また、Q/Pを1.5以上とすることにより、前記最終重合反応器以前の熱履歴が過大となるのを抑制し、同様に得られる樹脂の色調が悪化するのを防ぐ。また、前記最終重合反応器で分子量が目標よりも上昇しすぎてしまうことがなく、反応を制御し易くなる。そのためQ/Pは、1.6以上であることが好ましく、より好ましくは1.7以上であって、特には1.8以上が好ましい。
 QとPは前述のとおり、温度、圧力、滞留時間、触媒量または末端基バランスなどを調節することにより、それぞれ調整することが可能であり、これらの条件を適宜組み合わせることによってQ/Pを制御することができる。
 例えば、最終反応器の一つ前の反応器までにおいて、温度を低下させたり、圧力を上げたり、滞留時間を短くしたりしてPを低下させ、そのままではQも同時に低下するので、最終重合反応器の圧力を低下させてQを一定に保持することで、Q/Pを大きくすることができる。
 通常のポリカーボネート樹脂の重合においては、竪型攪拌反応器の場合は、反応液の処理量(樹脂の生産量)に応じて反応器内の液量を増減することによって、適切な滞留時間に制御する。しかし、最終重合反応器は反応液の溶融粘度が非常に高くなるために、反応器内の液量を制御することは困難であるので、最終重合反応器は反応液の処理量に対して適切な容量に設定することが好ましい。
 本発明で用いるフルオレン系ジヒドロキシ化合物を用いたポリカーボネート樹脂の場合は、通常のポリカーボネート樹脂に用いるビスフェノール類よりも分解しやすいため、前記液量の調整はより厳しい条件が課せられる。
 このため、本発明における前記最終重合反応器は下記式(4)を満たすことが好ましい。V/Aは2以上であること好ましく、より好ましくは3以上であり、一方、13以下であることが好ましく、より好ましくは10以下である。
 2 ≦ V/A ≦ 13   (4)
[V:横型反応器容積(L)、A:反応液処理量(kg/hr)]
 V/Aを13以下とすることにより、反応液量に対して反応器の容量が過大となるのを防ぎ、滞留時間を短くしようとする場合に、反応器内の液量の減少が抑えられ、反応器の出口に反応液が流れ込まなくなるのを抑制し、ペレット化の歩留まりを向上させることができる。また、液量を適切な量を超えて増やすと、滞留時間が長くなりすぎて、得られる樹脂の色調が悪化し、また、分子量が目標よりも上がりすぎてしまうなど、反応の制御が困難となる傾向にある。
 一方、V/Aを2以上とすることにより、滞留時間が短くなりすぎることがなく、所望の分子量まで向上させることができる。また、反応液の表面更新性が向上し、モノヒドロキシ化合物(例えばフェノール)などの残存低分子成分を低減させることができ、得られる樹脂の品質を向上させることができる。
 V/Aを調節するには、例えば、使用する横型反応器容器Vを決めた上では、反応液処理量Aを増やすことでV/Aは小さくなり、反応液処理量Aを減らすことでV/Aは大きくなる。
 ところで、前記炭酸ジエステルとして、ジフェニルカーボネートまたはジトリルカーボネート等の置換ジフェニルカーボネートを用い、本発明のポリカーボネート樹脂を製造する場合は、モノヒドロキシ化合物であるフェノールまたは置換フェノールが副生し、ポリカーボネート樹脂中に残存することは避けられない。
 しかし、これらのフェノール、置換フェノールといったモノヒドロキシ化合物は成形加工時の臭気の原因となる場合がある。本発明のような連続式ではなく、通常のバッチ反応で得られるポリカーボネート樹脂中には、1500ppm以上の副生フェノール等の芳香環を有するモノヒドロキシ化合物が含まれている。なお、これらモノヒドロキシ化合物は、用いる原料により、置換基を有していてもよく、例えば、炭素数が5以下であるアルキル基などを有していてもよい。
 このようなモノヒドロキシ化合物をはじめとする、樹脂中の残存低分子成分を低減するには、前記最終重合反応器の圧力を極力低くして、留去することが効果的である。しかし、上記フルオレン系ジヒドロキシ化合物または環状エーテル構造を有するジヒドロキシ化合物をモノマーに用いた脂肪族ポリカーボネート樹脂は、従来のビスフェノールAをモノマーに用いた芳香族ポリカーボネート樹脂と比べて、反応の平衡定数が大きいために、後段反応における分子量上昇速度が速い。そのため、圧力を低下させ過ぎると反応が促進されすぎるために反応の制御が難しくなる傾向にある。
 本発明の製造方法においては、通常、ヒドロキシ末端の量と、下記構造式(8)で表されるフェニルカーボネート末端の量とが等量の時に反応速度は最大となるが、あえてヒドロキシ末端の量を減らし、フェニルカーボネート末端の量を増やすことで、粘度上昇速度を緩やかにして、最終重合反応器の圧力を低下させることが可能となる。さらに、ヒドロキシ末端が少ないほど、樹脂を溶融滞留させた時の着色が低減するなど、得られるポリカーボネート樹脂の熱安定性が向上する効果もある。
Figure JPOXMLDOC01-appb-C000013
 このような末端基のバランスは、反応に用いられる全ジヒドロキシ化合物と炭酸ジエステルとの、最初の第1反応器へ投下する際の仕込みのモル比により制御することが可能であり、全ジヒドロキシ化合物に対して、炭酸ジエステルのモル比が0.990以上1.030以下であることが好ましい。全ジヒドロキシ化合物に対する炭酸ジエステルの仕込みのモル比は、より好ましくは0.995以上であり、一方、より好ましくは1.025以下である。
 炭酸ジエステルのモル比を0.990以上とすることにより、後段反応においてヒドロキシ末端が消失するのを抑制し、所望の分子量まで到達させることができる。炭酸ジエステルのモル比を1.030以下とすることにより、ヒドロキシ末端が増加するのを抑制し、得られる樹脂の熱安定性が向上する。
 このように末端バランスを制御することで、前記最終重合反応器における粘度上昇速度を制御することが可能となり、前記最終重合反応器の圧力を低下できる。前記最終重合反応器の圧力は2kPa以下が好ましく、より好ましくは1.5kPa以下、さらに好ましくは1.0kPa以下である。なお、低いほど好ましいが、実質的には10Paで減圧の限界となることが多い。
 このようにして、本発明で重縮合して得られるポリカーボネート樹脂のヒドロキシ末端基の量は、前記最終重合反応器の出口における反応液中において全ヒドロキシ末端基の量が1000ppm以下であることが好ましい。さらに好ましくは900ppm以下、特に好ましくは800ppm以下である。
 得られるポリカーボネート樹脂が有するヒドロキシ末端基の量は少ないほど熱安定性の観点からは好ましいが、ヒドロキシ末端が完全に消失すると、反応が頭打ちとなって所望の分子量に到達しないおそれもあるため、前記最終重合反応器の出口における反応液中における全ヒドロキシ末端基の量は50ppm以上であることが好ましい。
 また、本発明で重縮合して得られるポリカーボネート樹脂中に含まれるモノヒドロキシ化合物の量は、前記最終重合反応器の一つ前の反応器出口において、1500ppm以下が好ましく、さらに好ましくは1000ppm以下、特に好ましくは500ppm以下である。ただし、工業的に完全に除去することは困難であり、モノヒドロキシ化合物の含有量の下限は通常1ppmである。
 更に、ポリカーボネート樹脂中に含まれるモノヒドロキシ化合物の量は、前記最終重合反応器の1つ前の反応器の出口における反応液中において10ppm以上3wt%以下であることが好ましい。また、前記最終重合反応器の出口において、1500ppm以下が好ましく、さらに好ましくは1000ppm以下、特に好ましくは500ppm以下である。ただし、工業的に完全に除去することは困難であり、モノヒドロキシ化合物の含有量の下限は通常1ppmである。
 これらの反応器の出口におけるモノヒドロキシ化合物は、反応器の圧力を可能な限り低圧にすることによって除去される。さらに、重合反応後に反応液を押出機に供給し、真空脱揮を行うことで、樹脂中のモノヒドロキシ化合物をさらに低減することができる。
 上記のとおり、本発明にかかる前記フルオレン構造を有するジヒドロキシ化合物を含むジヒドロキシ化合物を重縮合して得られるポリカーボネート樹脂は、従来の芳香族ポリカーボネート樹脂よりも熱安定性が低いことから、反応温度を極力低く設定する必要があるが、そのために従来のポリカーボネート樹脂よりも反応液の粘度が高くなる。
 反応液の粘度が高くなると、反応液が攪拌軸に巻きついて垂れ落ちなくなる場合がある。最終重合反応器内部に複数の水平回転軸を有する横型反応器を用いた場合に、反応器から安定的に反応液を抜き出すには、反応液の溶融粘度に応じて、攪拌翼の回転数を適切に設定する必要があり、下記式(3)の範囲に設定することが好ましい。
 500≦ωμ≦20000   (3)
[ω:攪拌翼回転数(rpm)、μ:横型反応器出口における反応液の溶融粘度(Pa・s)]
 なお、前記条件は攪拌翼の軸径に依存しないため、反応スケールに関わらない。ωμは好ましくは500以上であり、一方、好ましくは20000以下、より好ましくは15000以下である。
 ωμを20000以下とすることにより、攪拌軸に反応液が巻きつくのを抑制し、ペレット化工程において歩留まりを向上させることができるとともに、樹脂中の異物が増加するのを防ぐことができる。ωμを500以上とすることにより、攪拌効率が十分となり、反応液中の残存低分子成分の量が増大するのを抑制し、反応液が反応器壁面に滞留して色調が悪化するのを防ぐことができる。
 ωμを制御する方法としては、例えば、横型反応器の温度を一定のまま、圧力を低下させて、反応液の分子量を大きくする場合は、反応液の溶融粘度μが上昇し、ωμが大きくなるため、分子量の上昇に伴って攪拌翼回転数ωを低下させることで、ωμを好ましい範囲に収めることができる。
 分子量の高いポリカーボネート樹脂を色調等の品質を悪化させることなく安定的に製造するためには、攪拌翼回転数ωは、5rpm未満であることが好ましく、より好ましくは4rpm未満、特に好ましくは3.5rpm未満、中でも3rpm未満が最適である。
 攪拌翼回転数が過度に高いと、攪拌による局所剪断発熱が台頭し、ポリカーボネート樹脂の品質を悪化させるだけでなく、ポリカーボネート樹脂の攪拌翼へのからみつきが強くなり、横型反応器からのポリカーボネート樹脂の排出が安定しなくなって、分子量の安定化を阻害したり、ペレット化の際のストランドが途中で切れたりするトラブルの原因となる可能性がある。
 一方、攪拌翼回転数ωが小さすぎると、界面更新性が悪化し、分子量の上昇が阻害され、延伸フィルムに適した分子量のポリカーボネート樹脂が得られなくなる可能性があるため、好ましくは0.2rpm以上、更に好ましくは0.5rpm以上、特に好ましくは0.8rpm以上である。
 本発明で重縮合して得られるポリカーボネート樹脂は、上述の重縮合反応を行った後、溶融状態のまま、フィルターに通して異物を濾過するとよい。特に、樹脂中に含まれる低分子量成分の除去、または熱安定剤等の添加混練を実施するため、重縮合で得られた樹脂を押出機に導入し、次いで押出機から排出された樹脂を、フィルターを用いて濾過することが好ましい。
<重縮合反応以降の工程>
 本発明の製造方法において、重縮合して得られるポリカーボネート樹脂を、フィルターを用いて濾過する方法としては、例えば、次のような方法が挙げられる。濾過に必要な圧力を発生させるために、前記最終重合反応器からギアポンプまたはスクリュー等を用いて溶融状態で抜き出し、フィルターで濾過する方法、前記最終重合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出した後、フィルターで濾過し、ストランドの形態で冷却固化させて、回転式カッター等でペレット化する方法、前記最終重合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、一旦ストランドの形態で冷却固化させてペレット化し、該ペレットを再度押出機に導入してフィルターで濾過し、ストランドの形態で冷却固化させて、ペレット化する方法、および最終重合反応器から溶融状態で抜き出し、押出機を通さずにストランドの形態で冷却固化させて一旦ペレット化させた後に、一軸または二軸の押出機にペレットを供給し、溶融押出しした後、フィルターで濾過し、ストランドの形態で冷却固化させてペレット化させる方法等である。
 中でも、熱履歴を最小限に抑え、色相の悪化若しくは分子量の低下等、または熱劣化を抑制するためには、前記最終重合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、直接フィルターで濾過し、ストランドの形態で冷却固化させて、回転式カッター等でペレット化する方法が好ましい。以下、具体的に説明する。
 本発明において押出機の形態は限定されるものではないが、通常一軸または二軸の押出機が用いられることが好ましい。中でも後述の脱揮性能の向上または添加剤の均一な混練のためには二軸の押出機が好ましい。この場合、軸の回転方向は異方向であっても同方向であってもよいが、混練性能の観点からは同方向が好ましい。押出機の使用によりフィルターへのポリカーボネート樹脂の供給を安定させることができる。
 また、上記の通り重縮合させて得られたポリカーボネート樹脂中には、通常、色相または熱安定性、さらにはブリードアウト等により製品に悪影響を与える可能性のある、原料モノマー、エステル交換反応で副生するモノヒドロキシ化合物、またはポリカーボネート樹脂オリゴマー等の低分子量化合物が残存しているが、ベント口を有する押出機を用い、好ましくはベント口から真空ポンプ等を用いて減圧にすることにより、これらを脱揮除去することも可能である。また、押出機内に水等の揮発性液体を導入して、脱揮を促進することもできる。ベント口は1つであっても複数であってもよいが、好ましくは2つ以上である。
 さらに、前記の押出機中で、通常知られている、熱安定剤、中和剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤または難燃剤等を添加、混練することも出来る。
 本発明においては、重縮合して得られたポリカーボネート樹脂中のヤケまたはゲル等の異物を除去するためフィルターで濾過するとよい。中でも、残存モノマーまたは副生フェノール等を減圧脱揮により除去し、熱安定剤または離型剤等の添加剤を混合するために、ポリカーボネート樹脂を前記の押出機で押出した後、フィルターで濾過することが好ましい。
 前記フィルターの形態としては、例えば、キャンドル型、プリーツ型またはリーフディスク型等公知のものが挙げられる。中でもフィルターの格納容器に対する濾過面積が大きく取れるリーフディスク型が好ましく、また、濾過面積が大きく取れるように複数組み合わせて用いるのが好ましい。
 本発明において用いるフィルターは、保持部材(リテイナーとも言う)に、濾過部材(以下、メディアと言うことがある)を組合せて構成されており、それらフィルターが(場合によっては複数枚・複数個)格納容器に格納されたユニット(フィルターユニットと言うこともある)の形式で用いられる。
 本発明においては、前記フィルターの差圧(圧力損失)が小さくなるように、複数の目開きのメディアを重ね合わせ、樹脂の侵入方向から順に目開きが細かくなっているタイプが好ましく、フィルター表面にゲルを破砕する目的で金属製のパウダーを焼結したタイプのものを使用することもできる。
 前記のフィルターのメディアの材質としては、得られるポリカーボネート樹脂の濾過に必要な強度と耐熱性を有している限り制限はないが、中でも鉄の含有量が少ないSUS316またはSUS316L等のステンレス系が好ましい。
 織りの種類としては、平織、綾織、平畳織または綾畳織等、異物の捕集部分が規則正しい織り状になっているものの他、不織布タイプも用いることができる。本発明においては、ゲルの捕集能力の高い不織布タイプ、中でも不織布を構成する鋼線どうしを焼結させて固定したタイプが好ましい。
 本発明において前記のフィルターの目開きは、99%の濾過精度として、好ましくは50μm以下、より好ましくは40μm以下、更に好ましくは20μm以下、異物を特に低減させたい場合には10μm以下が好ましい。
 また、目開きが小さくなるとフィルターでの圧力損失が増大して、フィルターの破損を招いたり、剪断発熱によりポリカーボネート樹脂が劣化したりする可能性があるため、99%の濾過精度として、1μm以上であることが好ましい。
 尚、ここで99%の濾過精度として定義される目開きとは、ISO16889(2008年)に準拠して決定された下記式(9)で表されるβχ値が1000の場合のχの値を言う。
 βχ=(χμmより大きい1次側の粒子数)/(χμmより大きい2次側の粒子数)……(9)
(ここで1次側とはフィルターでの濾過前、2次側とは濾過後を示す。)
 なお、前記したフィルターのうち、ステンレス等の鉄製分を含むフィルターは、200℃を超える高温での濾過の際に樹脂を劣化させる傾向があるため、使用前に不動態化処理しておくことが好ましい。不動態化処理としては、例えば、フィルターを硝酸等の酸に浸漬させたり、フィルターに酸を通液させたりして表面に不動態を形成させる方法、および水蒸気または酸素存在下で焙焼(加熱)処理する方法、並びにこれらを併用する方法等が挙げられる。中でも硝酸処理と焙焼の両方を実施することが好ましい。
 前記焙焼の温度は350℃~500℃が好ましく、より好ましくは350℃~450℃であり、焙焼時間は3時間~200時間が好ましく、より好ましくは5時間~100時間である。焙焼の温度が低すぎたり、時間が短すぎたりすると不動態の形成が不充分になり、濾過時にポリカーボネート樹脂を劣化させる傾向がある。一方、焙焼の温度が高すぎたり、時間が長すぎたりすると、フィルターメディアの損傷が激しくなり、必要な濾過精度が出なくなる可能性がある。
 また、前記の硝酸で処理する際の硝酸の濃度は、5重量%~50重量%が好ましく、より好ましくは10重量%~30重量%、処理時の温度は、5℃~100℃が好ましく、より好ましくは50℃~90℃、処理時間は、5分~120分が好ましく、より好ましくは10分~60分である。
 硝酸の濃度が低すぎたり、処理温度が低すぎたり、処理時間が短すぎたりすると不動態の形成が不充分になり、硝酸の濃度が高すぎたり、処理温度が高すぎたり、処理時間が長すぎたりするとフィルターメディアの損傷が激しくなり、必要な濾過精度が出なくなる可能性がある。
 尚、本発明の製造方法で使用される前記フィルターの格納容器の材質は、樹脂の濾過に耐えられる強度と耐熱性を有している限り制限はないが、好ましくは鉄の含有量が少ないSUS316またはSUS316L等のステンレス系である。
 また、前記のフィルターの格納容器は、ポリカーボネート樹脂の供給口と排出口が実質的に水平に配置されていても、実質的に垂直に配置されていても、斜めに配置されていてもよいが、フィルター格納容器内でのガスおよびポリカーボネート樹脂の滞留を抑制し、ポリカーボネート樹脂の劣化を防ぐためには、ポリカーボネート樹脂の供給口がフィルター格納容器の下部、排出口が上部に配置されていることが好ましい。
 更には、本発明の製造方法においては、前記フィルターへのポリカーボネート樹脂の供給量を安定化させるために、前記押出機と前記フィルターの間にギアポンプを配置するのが好ましい。ギアポンプの種類についての制限はないが、中でもシール部にグランドパッキンを用いない自己循環型が異物低減の観点から好ましい。
 本発明において、ポリカーボネート樹脂が直接外気と触れるストランド化、ペレット化の際には、外気からの異物混入を防止するために、好ましくはJISB 9920(2002年)に定義されるクラス7、更に好ましくはクラス6より清浄度の高いクリーンルーム中で実施することが好ましい。
 前記フィルターで濾過されたポリカーボネート樹脂は、冷却固化させ、回転式カッター等でペレット化されるが、そのペレット化の際、空冷または水冷等の冷却方法を使用するのが好ましい。空冷の際に使用する空気は、へパフィルター等で空気中の異物を事前に取り除いた空気を使用し、空気中の異物の再付着を防ぐのが好ましい。
 水冷を使用する際は、イオン交換樹脂等で水中の金属分を取り除き、さらに水用フィルターにて、水中の異物を取り除いた水を使用することが好ましい。用いる水用フィルターの目開きは、99%除去の濾過精度として10~0.45μmであることが好ましい。
<重縮合反応より前の工程>
 一方、本発明の製造方法においては、異物をより低減させるために、原料モノマーを、重縮合前にフィルターで濾過するのも有効である。以下、該フィルターを原料フィルターとする。
 尚、その際の前記原料フィルターの形状としては、バスケットタイプ、ディスクタイプ、リーフディスクタイプ、チューブタイプ、フラット型円筒タイプまたはプリーツ型円筒タイプ等のいずれの型式であってもよいが、中でもコンパクトで濾過面積が大きく取れるプリーツタイプのものが好ましい。
 また、前記原料フィルターを構成する濾材としては、金属ワインド、積層金属メッシュ、金属不織布または多孔質金属板等のいずれでもよい。濾過精度の観点から積層金属メッシュまたは金属不織布が好ましく、中でも金属不織布を焼結して固定したタイプのものが好ましい。
 前記原料フィルターの材質についての制限は特になく、金属製または樹脂製セラミック製等を使用することができるが、耐熱性または着色低減の観点からは、鉄含有量80%以下である金属製フィルターが好ましく、中でもSUS304、SUS316、SUS316LまたはSUS310S等のステンレス鋼製が好ましい。
 前記原料モノマーの濾過の際には、濾過性能を確保しながら前記原料フィルターの寿命を延ばすためには、複数のフィルターユニットを用いることが好ましく、中でも上流側のユニット中のフィルターの目開きをCμm、下流側のユニット中のフィルターの目開きをDμmとした場合に、少なくとも1つの組み合わせにおいて、CはDより大きい(C>D)ことが好ましい。当該条件を満たした場合は、フィルターがより閉塞しにくくなり、前記原料フィルターの交換頻度の低減を図ることができる。
 前記原料フィルターの目開きは特に制限はないが、少なくとも1つのフィルターにおいては、99%の濾過精度として10μm以下であることが好ましく、フィルターが複数配置されている場合には、最上流側において好ましくは8以上、更に好ましくは10以上であり、その最下流側において好ましくは2以下、更に好ましくは1以下である。尚、ここで言う前記原料フィルターの目開きも、上述したISO16889(2008年)に準拠して決定されるものである。
 また、本発明において、原料を前記原料フィルターに通過させる際の原料流体の温度に制限はないが、低すぎると原料が固化し、高すぎると熱分解等の不具合があるため、通常100℃~200℃であることが好ましく、より好ましくは100℃~150℃である。
 さらに、本発明においては、複数種用いる原料のうち、いずれの原料を濾過してもよいし、全てを濾過してもよく、その方法は、限定されるものではなく、ジヒドロキシ化合物と炭酸ジエステルの原料混合物を濾過してもよいし、別々に濾過した後に混合してもよい。また、本発明の製造法においては、重縮合反応の途中の反応液をフィルターで濾過することもできる。
<製造装置の一例>
 次に、図1を用いて、本実施の形態が適用される本発明の製造方法の一例を具体的に説明する。以下に説明する製造装置、原料または触媒は本発明の実施態様の一例であり、本発明は以下に説明する例に限定されるものではない。
 図1は、本発明の製造方法で用いる製造装置の一例を示す図である。図1に示す製造装置において、本発明のポリカーボネート樹脂は、原料の前記ジヒドロキシ化合物及び炭酸ジエステルを調製する原料調製工程と、これらの原料を溶融状態で複数の反応器を用いて重縮合反応させる重縮合工程を経て製造される。重縮合工程で生成した留出液は凝縮器12a、12b、12c、12dにて液化して留出液回収タンク14aに回収される。
 重縮合工程後、重合反応液中の未反応原料若しくは反応副生物を脱揮除去する工程、熱安定剤、離型剤若しくは色剤等を添加する工程、またはポリカーボネート樹脂を所定の粒径のペレットに形成する工程を経て、ポリカーボネート樹脂のペレットが成形される。
 尚、以下は、原料のジヒドロキシ化合物としてBHEPF(9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン)とISB(特定ジヒドロキシ化合物)とポリエチレングリコール1000(PEG1000)を、原料の炭酸ジエステルとしてDPCをそれぞれ用い、また、触媒として酢酸マグネシウムを用いた場合を例示して説明する。
 まず、原料調製工程において、窒素ガス雰囲気下、所定の温度で調製されたDPCの溶融液が、原料供給口1aから原料混合槽2aに供給される。そこに粉体のBHEPFが原料供給口1bから供給され、続いて、窒素ガス雰囲気下で計量されたISBの溶融液、PEG1000の溶融液が、それぞれ原料供給口1c、1dから、原料混合槽2aに連続的に供給される。そして、原料混合槽2a内でこれらは混合され、原料混合溶融液が得られる。
 次に、得られた原料混合溶融液は、原料供給ポンプ4a、原料フィルター5aを経由して第1竪型攪拌反応器6aに連続的に供給される。また、原料触媒として、酢酸マグネシウム水溶液が、原料混合溶融液の移送配管途中の触媒供給口1eから連続的に供給される。
 図1の製造装置の重縮合工程においては、第1竪型攪拌反応器6a、第2竪型攪拌反応器6b、第3竪型攪拌反応器6c、第4横型攪拌反応器6dが直列に設けられる。各反応器では液面レベルを一定に保ち、重縮合反応が行われ、第1竪型攪拌反応器6aの槽底より排出された重合反応液は第2竪型攪拌反応器6bへ、続いて、第3竪型攪拌反応器6cへ、第4横型攪拌反応器6dへと順次連続供給され、重縮合反応が進行する。
 各反応器における反応条件は、重縮合反応の進行とともに高温、高真空、低攪拌速度となるようにそれぞれ設定することが好ましい。図1の装置を用いた場合、第4横型攪拌反応器6dが本発明における最終重合反応器に相当し、第3竪型攪拌反応器6cが最終重合反応器の一つ前の反応器に相当する。
 第1竪型攪拌反応器6a、第2竪型攪拌反応器6b及び第3竪型攪拌反応器6cには、マックスブレンド翼7a、7b、7cがそれぞれ設けられる。また、第4横型攪拌反応器6dには、2軸メガネ型攪拌翼7dが設けられる。第3竪型攪拌反応器6cの後には移送する反応液が高粘度になるため、ギアポンプ4bが設けられる。
 第1竪型攪拌反応器6aと第2竪型攪拌反応器6bは、供給熱量が特に大きくなることがあるため、加熱媒体の温度が過剰に高温にならないように、それぞれ内部熱交換器8a、8bが設けられる。
 なお、これらの4器の反応器には、それぞれ、重縮合反応により生成する副生物等を排出するための留出管11a、11b、11c、11dが取り付けられる。第1竪型攪拌反応器6aと第2竪型攪拌反応器6bについては留出液の一部を反応系に戻すために、還流冷却器9a、9bと還流管10a、10bがそれぞれ設けられる。還流比は反応器の圧力と、還流冷却器の加熱媒体の温度とをそれぞれ適宜調整することにより制御可能である。
 前記の留出管11a、11b、11c、11dは、それぞれ凝縮器12a、12b、12c、12dに接続し、また、各反応器は、減圧装置13a、13b、13c、13dにより、所定の減圧状態に保たれる。
 尚、本実施の形態においては、各反応器にそれぞれ取り付けられた凝縮器12a、12b、12c、12dから、フェノール(モノヒドロキシ化合物)等の副生物が連続的に液化回収される。また、第3竪型攪拌反応器6cと第4横型攪拌反応器6dにそれぞれ取り付けられた凝縮器12c、12dの下流側にはコールドトラップ(図示せず)が設けられ、副生物が連続的に固化回収される。
 所定の分子量まで上昇させた反応液は第4横型攪拌反応器6dから抜き出され、ギアポンプ4cにより二軸押出機15aに移送される。二軸押出機には真空ベントが具備されており、ポリカーボネート樹脂中の残存低分子成分を除去する。また、必要に応じて酸化防止剤、光安定剤、着色剤または離型剤などが添加される。
 二軸押出機15aからギアポンプ4dによりポリマーフィルター15bに樹脂が供給され、異物が濾過される。フィルターを通った樹脂はダイスヘッドからストランド状に抜き出され、ストランド冷却槽16aで水により樹脂を冷却した後、ストランドカッター16bでペレットにされる。ペレットは空送ブロワー16cにより、気力輸送されて、製品ホッパー16dに送られる。計量器16eで所定量の製品が製品袋に梱包される。
<連続製造装置における溶融重縮合の開始>
 本実施の形態では、ジヒドロキシ化合物と炭酸ジエステルとのエステル交換反応に基づく重縮合は、以下の手順に従い開始される。
 先ず、図1に示す連続製造装置において、直列に接続された4器の反応器(第1竪型攪拌反応器6a、第2竪型攪拌反応器6b、第3竪型攪拌反応器6c、第4横型攪拌反応器6d)を、予め、所定の内温と圧力とにそれぞれ設定する。ここで、各反応器の内温、加熱媒体の温度と圧力とは、特に限定されないが、以下のように設定することが好ましい。
 (第1竪型攪拌反応器6a)
 内温:130℃~230℃、圧力:40kPa~10kPa、加熱媒体の温度140℃~240℃、還流比0.01~10
(第2竪型攪拌反応器6b)
 内温:150℃~230℃、圧力:40kPa~8kPa、加熱媒体の温度160℃~240℃、還流比0.01~5
(第3竪型攪拌反応器6c)
 内温:170℃~230℃、圧力:10kPa~1kPa、加熱媒体の温度180℃~240℃
(第4横型攪拌反応器6d)
 内温:210℃~260℃、圧力:2kPa~10Pa、加熱媒体の温度210~260℃
 次に、別途、原料混合槽2aにて窒素ガス雰囲気下、前記ジヒドロキシ化合物と炭酸ジエステルとを、所定のモル比で混合し、原料混合溶融液を得る。
 続いて、前述した4器の反応器の内温と圧力が、それぞれの設定値の±5%の範囲内に達した後に、別途、原料混合槽2aで調製した原料混合溶融液を、第1竪型攪拌反応器6a内に連続供給する。また、原料混合溶融液の供給開始と同時に、第1竪型攪拌反応器6a内に触媒供給口1dから触媒を連続供給し、エステル交換反応を開始する。
 エステル交換反応が行われる第1竪型攪拌反応器6aでは、重合反応液の液面レベルは、所定の平均滞留時間になるように一定に保たれる。第1竪型攪拌反応器6a内の液面レベルを一定に保つ方法としては、通常、液面計等で液レベルを検知しながら槽底部のポリマー排出ラインに設けたバルブ(図示せず)の開度を制御する方法が挙げられる。
 続いて、重合反応液は、第1竪型攪拌反応器6aの槽底から排出され、第2竪型攪拌反応器6bへ、続いて第2竪型攪拌反応器6bの槽底から排出され、第3竪型攪拌反応器6cへ逐次連続供給される。この前段反応工程において、副生するフェノールの理論量に対して50%から95%が留出され、オリゴマーが生成する。
 次に、前記前段反応工程で得られたオリゴマーをギアポンプ4bにより移送し、第4横型攪拌反応器6dに供給して、後述するような後段反応を行なうのに適した温度・圧力条件下で、副生するフェノールおよび一部未反応モノマーを、留出管11dを介して系外に除去してポリカーボネート樹脂を生成させる。本発明では、前記横型攪拌反応器6dの一つ前の反応器である第3竪型攪拌反応器6cの内温を、200℃以上225℃未満とすることが必要となる。
 前記第4横型攪拌反応器6dは、1本または2本以上の水平な回転軸を有し、該水平回転軸から垂直方向に延びる円板型、車輪型、櫂型、棒型または窓枠型などの攪拌翼を1種または2種以上組合わせて、回転軸あたり少なくとも水平方向に2段以上設置されている。
 水平回転軸が2本以上ある場合、それぞれの水平回転軸に設けられた攪拌翼は、セルフクリーニング性を持たせた配置となっている。このような攪拌翼により反応溶液をかき上げ、または押し広げて反応溶液の表面更新を行なうことにより、延伸フィルムに適した還元粘度のポリカーボネート樹脂を安定的に得ることが容易になる。
 その形状は、それら水平回転軸の長さをLとし、攪拌翼の回転直径をDとしたときにL/Dが1~15である。なお、本明細書中、上記「反応溶液の表面更新」という語は、液表面の反応溶液が液表面下部の反応溶液と入れ替わることを意味する。
 前記第4横型攪拌反応器6dとして、2軸メガネ型攪拌翼7dを有する攪拌機の例を図2及び図3に示す。図2は2軸メガネ型攪拌翼7dの斜視図であり、図3はそれを収めた横型攪拌反応器6dを上から見た模式図である。
 攪拌翼21A、21Bは互いに90度の位相差の関係にあり、それぞれの軸22A、22Bは逆回転している。これにより、それぞれの攪拌翼21A、21Bの先端部分が、相手方の攪拌翼21B、21Aに密着した樹脂をこそげ落としながら回転していく。このような攪拌翼21A、21Bが、軸方向に複数枚連ねられている。
 前記後段反応工程における反応温度は、通常200~260℃であることが好ましく、より好ましくは210~250℃の範囲であり、反応圧力は、通常13.3kPa~10Paであることが好ましく、より好ましくは2kPa~30Pa、さらに好ましくは1kPa~50Paである。
 本発明の製造方法において、第4横型攪拌反応器6dを、装置構造上、2軸ベント式押出機と比較してホールドアップが大きいものを用いることにより、反応液の滞留時間を適切に設定でき、かつ剪断発熱を抑制されることによって温度を下げることができ、より色調の改良された、機械的性質の優れたポリカーボネート樹脂を得ることが可能となる。
 なお、横型攪拌反応器は、水平軸と、該水平軸にほぼ直角に取り付けられた相互に不連続な攪拌翼とを有する装置であり、押出機と異なりスクリュー部分を有していない。本発明の製造方法においては、このような横型攪拌反応器を少なくとも1器用いることが好ましい。
 本実施の形態では、図1に示す連続製造装置において、4器の反応器の内温と圧力が所定の数値に達した後に、原料混合溶融液と触媒とが連続供給され、エステル交換反応に基づく溶融重縮合が開始される。
 これにより、各反応器における重合反応液の平均滞留時間は、溶融重縮合の開始直後から定常運転時と同等となる。その結果、重合反応液は必要以上の熱履歴を受けることがなく、得られるポリカーボネート樹脂中に生じるゲルまたはヤケ等の異物が低減する。また色調も良好となる。
<原料と触媒>
 以下、本発明のポリカーボネート樹脂に使用可能な原料、触媒について説明する。
(ジヒドロキシ化合物)
 本発明のポリカーボネート樹脂の製造に用いられるジヒドロキシ化合物は、フルオレン構造を有するジヒドロキシ化合物(フルオレン系ジヒドロキシ化合物)を含む。得られるポリカーボネート樹脂の耐熱性若しくは機械強度、光学特性または重合反応性の観点から9,9-ジフェニルフルオレンの構造を有する下記式(1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000014
 前記一般式(1)中、R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6~炭素数20のアリール基を表し、それぞれのベンゼン環に4つある置換基のそれぞれとして、同一の又は異なる基が配されている。Xは置換若しくは無置換の炭素数2~炭素数10のアルキレン基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6~炭素数20のアリーレン基を表す。m及びnはそれぞれ独立に0~5の整数である。
 R~Rはそれぞれ独立に水素原子又は無置換若しくはエステル基、エーテル基、カルボン酸、アミド基、ハロゲンが置換した炭素数1~6のアルキル基であるのが好ましく、水素原子又は炭素数1~6のアルキル基であるのがより好ましい。Xは無置換若しくはエステル基、エーテル基、カルボン酸、アミド基、ハロゲンが置換した炭素数2~炭素数10のアルキレン基、無置換若しくはエステル基、エーテル基、カルボン酸、アミド基、ハロゲンが置換した炭素数6~炭素数20のシクロアルキレン基、または、無置換若しくはエステル基、エーテル基、カルボン酸、アミド基、ハロゲンが置換した炭素数6~炭素数20のアリーレン基が好ましく、炭素数2~6のアルキレン基であるのがより好ましい。又、m及びnはそれぞれ独立に0~2の整数であるのが好ましく、中でも0又は1が好ましい。
 具体的には、例えば、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-2-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス[4-(2-ヒドロキシプロポキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシプロポキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-イソプロピルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-イソブチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-tert-ブチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-tert-ブチル-6-メチルフェニル]フルオレンおよび9,9-ビス[4-(3-ヒドロキシ-2,2-ジメチルプロポキシ)フェニル]フルオレンなどが挙げられる。
 この中でも、光学的性能の発現、ハンドリング性、入手のしやすさ等から、好ましくは、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレンであり、特に好ましくは、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンである。
 本発明のポリカーボネート樹脂は、原料モノマーとして上記一般式(1)で表される構造単位を有するフルオレン系ジヒドロキシ化合物を全ジヒドロキシ化合物に対して18mol%以上用いて得られたものであることが好ましく、さらに好ましくは20mol%以上、特に好ましくは25mol%以上である。また、好ましくは90mol%以下であり、更に好ましくは70mol%以下であり、特に好ましくは50mol%以下である。
 前記構造単位を有するモノマーの使用量が少な過ぎたり多すぎたりすると、得られたポリカーボネート樹脂が所望の光学的性能を示さなくなる可能性がある。また多すぎると得られたポリカーボネート樹脂の溶融粘度が過度に高くなり、前記横型攪拌反応器の攪拌翼に巻き付いて安定的な排出ができなくなる可能性があるだけでなく、攪拌翼の局所剪断発熱によるポリカーボネート樹脂の劣化を招く可能性がある。また、フィルム等に成形する際の流動性が低下し、生産性または成形性を低下させる傾向がある。
 本発明のポリカーボネート樹脂は、所望の光学物性に調節するために、上記のフルオレン系ジヒドロキシ化合物以外のジヒドロキシ化合物に由来する構造単位を含んでいることが好ましい。中でも適度な複屈折若しくは低光弾性係数などの光学特性、耐熱性または機械強度などの観点から、構造の一部に前記式(5)で表される部位を有するジヒドロキシ化合物(特定ジヒドロキシ化合物)が好ましい。
 具体的には、例えば、オキシアルキレングリコール類、主鎖に芳香族基に結合したエーテル基を有するジヒドロキシ化合物および環状エーテル構造を有するジヒドロキシ化合物等が挙げられる。
 構造の一部に前記式(5)で表される部位を有する特定ジヒドロキシ化合物としては、具体的には、例えば、オキシアルキレングリコール類、主鎖に芳香族基に結合したエーテル基を有するジヒドロキシ化合物および環状エーテル構造を有するジヒドロキシ化合物等が挙げられる。
 前記のオキシアルキレングリコール類としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコールおよびポリプロピレングリコール等が挙げられる。
 前記の主鎖に芳香族基に結合したエーテル基を有するジヒドロキシ化合物としては、例えば、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、2,2-ビス[4-(2-ヒドロキシプロポキシ)フェニル]プロパン、1,3-ビス(2-ヒドロキシエトキシ)ベンゼン、4,4’-ビス(2-ヒドロキシエトキシ)ビフェニルおよびビス[4-(2-ヒドロキシエトキシ)フェニル]スルホン等が挙げられる。
 前記の環状エーテル構造を有するジヒドロキシ化合物としては、例えば、下記式(10)で表されるジヒドロキシ化合物、および下記式(11)または下記式(12)で表されるスピログリコール等が挙げられる。
 なお、前記の「環状エーテル構造を有するジヒドロキシ化合物」の「環状エーテル構造」とは、環状構造中にエーテル基を有し、環状鎖を構成する炭素が脂肪族炭素である構造からなるものを意味する。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 ただし、前記式(10)で表されるジヒドロキシ化合物としては、例えば、立体異性体の関係にある、イソソルビド(ISB)、イソマンニドおよびイソイデットが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらのジヒドロキシ化合物の中でも、入手のし易さ、ハンドリング、重合時の反応性および得られるポリカーボネート樹脂の色相の観点から、式(10)、(11)または(12)で表されるヒドロキシ化合物に代表される、環状エーテル構造を有するジヒドロキシ化合物が好ましく、上記式(10)で表されるジヒドロキシ化合物または下記式(11)で表されるスピログリコール等の環状エーテル構造を2つ有するジヒドロキシ化合物がさらに好ましく、下記式(10)で表されるジヒドロキシ化合物等の、糖由来の環状エーテル構造を2つ有するジヒドロキシ化合物である無水糖アルコールが特に好ましい。
 これらの特定ジヒドロキシ化合物のうち、芳香環構造を有しないジヒドロキシ化合物を用いることがポリカーボネート樹脂の光学特性の観点から好ましい。中でも植物由来の資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られる上記式(10)で表されるジヒドロキシ化合物等の無水糖アルコールが、入手及び製造のし易さ、耐光性、光学特性、成形性、耐熱性およびカーボンニュートラルの面から最も好ましい。
 中でも原料モノマーとして上記式(10)、(11)または(12)で表されるジヒドロキシ化合物を用いる場合は、全ジヒドロキシ化合物に対して10mol%以上用いることが好ましく、さらに好ましくは30mol%以上、特に好ましくは40mol%以上である。また、その上限としては、好ましくは80mol%以下であり、更に好ましくは60mol%以下、特に好ましくは50mol%以下である。該ジヒドロキシ化合物の使用量が少な過ぎたり、多すぎたりすると、得られたポリカーボネート樹脂が所望の光学的性能を示さなくなる可能性がある。
 これらの特定ジヒドロキシ化合物は、得られるポリカーボネート樹脂の要求性能に応じて、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記式(2)の結合構造を有するジヒドロキシ化合物は、還元剤、抗酸化剤、脱酸素剤、光安定剤、制酸剤、pH安定剤または熱安定剤等の安定剤を含んでいてもよい。特に酸性下で本発明の特定ジヒドロキシ化合物は変質しやすいことから、塩基性安定剤を含むことが好ましい。
 塩基性安定剤としては、例えば、長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations2005)における1族または2族の金属の水酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硼酸塩および脂肪酸塩、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等の塩基性アンモニウム化合物、ジエチルアミン、ジブチルアミン、トリエチルアミン、モルホリン、N-メチルモルホリン、ピロリジン、ピペリジン、3-アミノ-1-プロパノール、エチレンジアミン、N-メチルジエタノールアミン、ジエチルエタノールアミン、4-アミノピリジン、2-アミノピリジン、N,N-ジメチル-4-アミノピリジン、4-ジエチルアミノピリジン、2-ヒドロキシピリジン、2-メトキシピリジン、4-メトキシピリジン、2-ジメチルアミノイミダゾール、2-メトキシイミダゾール、イミダゾール、2-メルカプトイミダゾール、2-メチルイミダゾールおよびアミノキノリン等のアミン系化合物、並びにジ-(tert-ブチル)アミン、2,2,6,6-テトラメチルピペリジン等のヒンダードアミン系化合物が挙げられる。安定剤の中でも安定化の効果からはテトラメチルアンモニウムヒドロキシド、イミダゾールまたはヒンダードアミン系安定剤が好ましい。
 これら塩基性安定剤のジヒドロキシ化合物中の含有量に特に制限はないが、本発明で用いる前記式(2)で表される構造を有するジヒドロキシ化合物は酸性状態では不安定であるので、上記の安定剤を含むジヒドロキシ化合物の水溶液のpHが7以上となるように安定剤を添加することが好ましい。
 少なすぎると本発明のフルオレン系ジヒドロキシ化合物または上記特定ジヒドロキシ化合物の変質を防止する効果が得られない可能性があり、多すぎてもフルオレン系ジヒドロキシ化合物または上記特定ジヒドロキシ化合物の変性を招く場合があるので、通常、本発明で用いるそれぞれのジヒドロキシ化合物に対して、0.0001重量%~1重量%であることが好ましく、より好ましくは0.001重量%~0.1重量%である。
 また、前記式(2)で表される構造を有する特定ジヒドロキシ化合物は、酸素によって徐々に酸化されやすいので、保管または製造時の取り扱いの際には、酸素による分解を防ぐため、水分が混入しないようにし、また、脱酸素剤を用いたり、窒素雰囲気下にしたりすることが好ましい。
 イソソルビドが酸化されると、蟻酸をはじめとする分解物が発生する。例えば、これら分解物を含むイソソルビドを用いてポリカーボネート樹脂を製造すると、得られるポリカーボネート樹脂の着色を招いたり、物性を著しく劣化させたりするだけでなく、重合反応に影響を与え、高分子量の重合体が得られないこともあり、好ましくない。
 本発明のポリカーボネート樹脂は、上記のフルオレン系ジヒドロキシ化合物及び特定ジヒドロキシ化合物以外のジヒドロキシ化合物(以下「その他のジヒドロキシ化合物」と称す場合がある。)に由来する構造単位を含んでいてもよい。
 前記その他のジヒドロキシ化合物としては、例えば、直鎖脂肪族炭化水素のジヒドロキシ化合物、直鎖分岐脂肪族炭化水素のジヒドロキシ化合物、脂環式炭化水素のジヒドロキシ化合物および芳香族ビスフェノール類等が挙げられる。
 前記の直鎖脂肪族炭化水素のジヒドロキシ化合物としては、例えば、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、1,5-ヘプタンジオール、1,6-ヘキサンジオール、1,10-デカンジオールおよび1,12-ドデカンジオール等が挙げられる。
 前記の直鎖分岐脂肪族炭化水素のジヒドロキシ化合物としては、およびネオペンチルグリコールおよびヘキシレングリコール等が挙げられる。
 前記の脂環式炭化水素のジヒドロキシ化合物としては、例えば、1,2-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、2,6-デカリンジメタノール、1,5-デカリンジメタノール、2,3-デカリンジメタノール、2,3-ノルボルナンジメタノール、2,5-ノルボルナンジメタノール、1,3-アダマンタンジメタノールおよびリモネンなどのテルペン化合物から誘導されるジヒドロキシ化合物等が挙げられる。
 前記の芳香族ビスフェノール類としては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-(3,5-ジフェニル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,4’-ジヒドロキシ-ジフェニルメタン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-5-ニトロフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)スルホン、2,4’-ジヒドロキシジフェニルスルホン、ビス(4-ヒドロキシフェニル)スルフィド、4,4’-ジヒドロキシジフェニルエーテルおよび4,4’-ジヒドロキシ-3,3’-ジクロロジフェニルエーテル等が挙げられる。
 これらの前記その他のジヒドロキシ化合物も、得られるポリカーボネート樹脂の要求性能に応じて、単独で前記特定ジヒドロキシ化合物と併用してもよく、2種以上を組み合わせた上で前記フルオレン系ジヒドロキシ化合物または前記特定ジヒドロキシ化合物と併用してもよい。中でも、所望の光学的性能を発現させ、かつ生産を安定させ、延伸フィルムに見合うような特性のポリカーボネート樹脂を得るには、前記フルオレン系ジヒドロキシ化合物以外に2種以上のジヒドロキシ化合物を共重合させることが好ましい。
 中でも、ポリカーボネート樹脂の光学特性の観点からは、分子構造内に芳香環構造を有しないジヒドロキシ化合物、即ち脂肪族炭化水素のジヒドロキシ化合物、または脂環式炭化水素のジヒドロキシ化合物が好ましく、これらを併用してもよい。
 前記したうち、本発明のポリカーボネート樹脂に適した脂肪族炭化水素のジヒドロキシ化合物としては、特に1,3-プロパンジオール、1,4-ブタンジオール、1,5-ヘプタンジオール、1,6-ヘキサンジオール等の炭素数3~6で両末端にヒドロキシ基を有する直鎖脂肪族炭化水素のジヒドロキシ化合物が好ましい。
 脂環式炭化水素のジヒドロキシ化合物としては、特に1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノールまたはトリシクロデカンジメタノールが好ましく、より好ましいのは1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノールまたは1,4-シクロヘキサンジメタノールなどのシクロヘキサン構造を有するジヒドロキシ化合物である。
(炭酸ジエステル)
 本発明のポリカーボネート樹脂は、上述したフルオレン系ジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとを原料として、エステル交換反応により重縮合させて得ることができる。
 用いられる炭酸ジエステルとしては、通常、下記式(13)で表されるものが挙げられる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
Figure JPOXMLDOC01-appb-C000018
 前記式(13)において、AおよびAは、それぞれ置換もしくは無置換の炭素数1~18の脂肪族炭化水素基または置換もしくは無置換の芳香族炭化水素基であり、AとAとは同一であっても異なっていてもよい。AおよびAの好ましいものは置換もしくは無置換の芳香族炭化水素基であり、より好ましいのは無置換の芳香族炭化水素基である。
 前記式(13)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート(DPC)、ジトリルカーボネート等の置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート及びジ-t-ブチルカーボネート等が挙げられる。中でも、好ましくはジフェニルカーボネートまたは置換ジフェニルカーボネートであり、特に好ましくはジフェニルカーボネートである。
 なお、炭酸ジエステルは、塩化物イオンなどの不純物を含む場合があり、重合反応を阻害したり、得られるポリカーボネート樹脂の色相を悪化させたりする場合があるため、必要に応じて、蒸留などにより精製したものを使用することが好ましい。
(エステル交換反応触媒)
 本発明のポリカーボネート樹脂は、上述のように特定ジヒドロキシ化合物を含むジヒドロキシ化合物と前記式(13)で表される炭酸ジエステルをエステル交換反応させて製造する。より詳細には、エステル交換させ、副生するモノヒドロキシ化合物等を系外に除去することによって得られる。
 前記エステル交換反応の際には、エステル交換反応触媒存在下で重縮合を行うが、本発明のポリカーボネート樹脂の製造時に使用し得るエステル交換反応触媒(以下、単に触媒、重合触媒と言うことがある)は、反応速度または重縮合して得られるポリカーボネート樹脂の色調に非常に大きな影響を与え得る。
 用いられる触媒としては、製造されたポリカーボネート樹脂の透明性、色相、耐熱性、熱安定性、及び機械的強度を満足させ得るものであれば限定されない。例えば、長周期型周期表における1族または2族(以下、単に「1族」、「2族」と表記する。)の金属化合物、並びに塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物およびアミン系化合物等の塩基性化合物が挙げられる。好ましくは1族金属化合物及び/又は2族金属化合物が使用される。
 前記の1族金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩および2セシウム塩等が挙げられる。中でも重合活性と得られるポリカーボネート樹脂の色相の観点から、リチウム化合物が好ましい。
 前記の2族金属化合物としては、例えば、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウムおよびステアリン酸ストロンチウム等が挙げられる。中でもマグネシウム化合物、カルシウム化合物、バリウム化合物が好ましく、重合活性と得られるポリカーボネート樹脂の色相の観点から、マグネシウム化合物及び/又はカルシウム化合物が更に好ましい。
 なお、前記の1族金属化合物及び/又は2族金属化合物と共に、補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、1族金属化合物及び/又は2族金属化合物のみを使用することが特に好ましい。
 前記の塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ-n-プロピルホスフィン、トリイソプロピルホスフィン、トリ-n-ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィンおよび四級ホスホニウム塩等が挙げられる。
 前記の塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。
 前記のアミン系化合物としては、例えば、4-アミノピリジン、2-アミノピリジン、N,N-ジメチル-4-アミノピリジン、4-ジエチルアミノピリジン、2-ヒドロキシピリジン、2-メトキシピリジン、4-メトキシピリジン、2-ジメチルアミノイミダゾール、2-メトキシイミダゾール、イミダゾール、2-メルカプトイミダゾール、2-メチルイミダゾール、アミノキノリンおよびグアニジン等が挙げられる。
 上記重合触媒の使用量は、通常、重合に使用した全ジヒドロキシ化合物1mol当たり0.1μmol~300μmolが好ましく、より好ましくは0.5μmol~100μmolである。
 中でも長周期型周期表における2族からなる群及びリチウムより選ばれた少なくとも1種の金属を含む化合物を用いる場合、特にはマグネシウム化合物及び/またはカルシウム化合物を用いる場合は、金属量として、前記全ジヒドロキシ化合物1mol当たり、0.1μmol以上が好ましく、より好ましくは0.3μmol以上、特に好ましくは0.5μmol以上とする。また上限としては、40μmol以下が好ましく、より好ましくは30μmol以下、さらに好ましくは20μmol以下である。
 ただし、本発明で用いるフルオレン部位を有する特定ジヒドロキシ化合物は、合成する際に用いられる触媒に由来する硫黄不純物が含有されている場合があり、前記重合触媒を失活させる作用があるため、実際に添加する重合触媒は、失活される分だけ前記の範囲よりも余分に使用することが好ましい。
 反応に用いる全ジヒドロキシ化合物1mol当たりの全硫黄元素含有量をAμmol、重合触媒の金属元素量をBμmolとした時に、下記式(14)の範囲になることが好ましい。
 0.1 ≦ B/A ≦ 2 (14)
 触媒量が少なすぎると、重合速度が遅くなるため、所望の分子量のポリカーボネート樹脂を得ようとするにはその分だけ重合温度を高くせざるを得なくなる。そのために、得られるポリカーボネート樹脂の色相が悪化する可能性が高くなり、また、未反応の原料が重合途中で揮発してジヒドロキシ化合物と炭酸ジエステルのモル比率が崩れ、所望の分子量に到達しない可能性がある。
 一方、重合触媒の使用量が多すぎると、好ましくない副反応を併発し、得られるポリカーボネート樹脂の色相の悪化または成形加工時の樹脂の着色を招く可能性がある。
 1族金属の中でもナトリウム、カリウムおよびセシウムは、ポリカーボネート樹脂中に多く含まれると色相に悪影響を及ぼす可能性がある。そして、これらの金属は使用する触媒からのみではなく、原料または反応装置から混入する場合がある。
 出所にかかわらず、ポリカーボネート樹脂中の前記金属の化合物の合計量は、金属量として、前記全ジヒドロキシ化合物1mol当たり、2μmol以下が好ましく、より好ましくは1μmol以下、さらに好ましくは0.5μmol以下である。
<ポリカーボネート樹脂の物性および用途>
 このようにして重縮合して得られる本発明のポリカーボネート樹脂の分子量は、還元粘度で表すことができ、0.20dL/g以上であることが好ましく、0.30dL/g以上であることがより好ましく、0.35dL/g以上であることが更に好ましく、0.40以上であることが特に好ましい。一方、1.20dL/g以下であることが好ましく、0.80dL/g以下であることがより好ましく、0.60dL/g以下であることがさらに好ましく、0.50dL/g以下であることが特に好ましく、最も好ましくは0.45dL/g以下である。
 ポリカーボネート樹脂の還元粘度が低すぎると成形品の機械強度が低くなって、延伸フィルムに加工する際に破断を招く可能性があり、破断を抑制しようとして延伸温度を高く設定したり、延伸倍率を小さくしたりすると、位相差フィルムに必要な複屈折が得られない場合がある。一方、還元粘度が大きすぎると、前記横型攪拌反応器の攪拌翼に巻き付いて安定的な排出ができなくなる可能性があるだけでなく、フィルム等に成形する際の流動性が低下し、生産性または成形性を低下させる傾向がある。尚、前記の還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート樹脂濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度計を用いて測定した値である。
 本発明におけるポリカーボネート樹脂のガラス転移温度は100℃以上であることが好ましく、より好ましくは110℃以上、更に好ましくは120℃以上、特には125℃以上が好ましい。ガラス転移温度が過度に低いと、本発明のポリカーボネート樹脂をフィルムに成形した後、延伸して位相差フィルム等にした場合に耐熱性が悪くなる傾向にあり、使用環境によっては変形が生じたり、位相差が時間とともに変化したりする可能性がある。一方、ガラス転移温度は、160℃以下であることが好ましく、より好ましくは150℃以下、更に好ましくは140℃以下、特に好ましくは135℃以下である。
 ガラス転移温度が過度に高いと、ポリカーボネート樹脂を製造する際の溶融粘度が高くなって、前記横型攪拌反応器の攪拌翼に巻き付いて安定的な排出ができなくなる可能性があり、安定的な生産を図ろうとすると結果的に延伸時の破断に大きく影響する分子量(還元粘度)を上げにくくなる傾向にある。更に、フィルムに成形する際に厚みのムラが生じる等、成形安定性が悪化する場合があり、これを抑制するために成形温度の設定を高くすると、樹脂の劣化を招き、フィルムの延びや機械的強度が低下する可能性がある。
 本発明の製造方法により、上記式(1)の構造を有するポリカーボネート樹脂でありながら、着色が少なく、異物の少ない樹脂が得られる。具体的には、本発明のポリカーボネート樹脂から成形された厚さ30μm±5μmのフィルムに含まれる最大長が20μm以上の異物が、好ましくは1000個/m以下、より好ましくは500個/m以下、最も好ましくは200個/m以下とすることができる。
 本発明のポリカーボネート樹脂は、種々の成形を行う前に、必要に応じて、熱安定剤、中和剤、紫外線吸収剤、離型剤、帯電防止剤、滑剤、潤滑剤、可塑剤または相溶化剤等の添加剤を、タンブラー、スーパーミキサー、フローター、V型ブレンダー、ナウターミキサー、バンバリーミキサーまたは押出機などで混合することもできる。
 本発明のポリカーボネート樹脂を用いたフィルムの製造法としては、溶融押出法が生産性の点から好ましい。溶融押出法においては、Tダイを用いて樹脂を押し出し、冷却ロールに送る方法が好ましく用いられる。この時の溶融温度はポリカーボネート樹脂の分子量、Tg、溶融流動特性などから決められるが、150℃~300℃の範囲であることが好ましく、170℃~280℃の範囲がより好ましい。
 前記温度が高すぎると熱劣化による着色、異物若しくはシルバーの発生による外観不良、またはTダイからのダイラインなどの問題が起きやすくなる。前記温度が低すぎると粘度が高くなり、ポリマーの配向または応力歪みが残りやすい。
 製膜されたフィルム(未延伸フィルム)の位相差値は、20nm以下が好ましく、より好ましくは10nm以下である。フィルムの位相差値がこれ以上大きいと、延伸して位相差フィルムとした際に位相差値のフィルム面内のばらつきが大きくなるので好ましくない。
 前記のフィルムの製造法としては溶液キャスト法を用いることもできる。溶媒としては、例えば、塩化メチレン、クロロホルム、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、ジオキソラン、ジオキサン、テトラヒドロフラン、トルエンまたはメチルエチルケトンなどが好ましい。
 溶液キャスト法で得られるフィルム中の残留溶媒量は2重量%以下であることが好ましく、より好ましくは1重量%以下である。2重量%以下とすることにより、残留溶媒量が多いことによるフィルムのガラス転移温度の低下を防ぐことができ、耐熱性の点で好ましい。
 前記の未延伸フィルムの厚みとしては、20μm~400μmの範囲が好ましく、より好ましくは30μm~300μm、更に好ましくは50μm~200μm、特に好ましくは80μm~150μmの範囲である。かかるフィルムをさらに延伸して位相差フィルムとする場合には、該位相差フィルムの所望の位相差値および厚みを勘案して前記範囲内で適宜決めればよい。
 本発明のポリカーボネート樹脂を厚さ100μm±10μmの未延伸フィルムに成型し、ガラス転移温度+6℃の条件下、引張速度625%/分で引張試験をした際の破断に至るまでの伸度(引張破断伸度)は、120%以上であることが好ましく、より好ましくは150%以上、更に好ましくは200%以上、特に好ましくは220%以上である。
 引張破断伸度が大きいほど延伸時の破断が抑制されるが、一般的には破断伸度が大きくなるほど延伸時の応力が小さくなり、位相差の発現が弱くなる傾向にあるため、その上限は通常400%以下、好ましくは300%以下である。
 フルオレン構造を有するジヒドロキシ化合物を原料とするポリカーボネート樹脂は、フルオレン構造が剛直であるため、分子構造が柔軟なジヒドロキシ化合物と共重合させたり、分子量を上げたりすると、引張破断伸度が大きくなる傾向にあるが、フルオレン構造を有するジヒドロキシ化合物を過度に減らすと所望の光学的性能が発現しなくなり、還元粘度を上げようとすると前記のようにポリカーボネート樹脂の劣化や製造上のトラブルを招く場合があるため、これら複数の性能を全て満足させるのは容易ではない。
 かくして得られた未延伸フィルムを延伸して配向させることにより、位相差フィルムを得ることができる。延伸方法としては、例えば、縦一軸延伸およびテンター等を用いる横一軸延伸、並びにそれらを組み合わせた同時二軸延伸および逐次二軸延伸など公知の方法が挙げられる。
 延伸はバッチ式で行ってもよいが、連続で行うことが生産性において好ましい。さらにバッチ式に比べて、連続の方がフィルム面内の位相差のばらつきの少ない位相差フィルムが得られる。延伸温度はポリカーボネート樹脂のガラス転移温度に対して、(Tg-20℃)~(Tg+30℃)の範囲内であることが好ましく、より好ましくは(Tg-10℃)~(Tg+20℃)の範囲内である。延伸温度が過度に低いと延伸時にフィルムの破断を招く可能性があり、過度に高いと延伸フィルムの複屈折が小さくなって所望の位相差が得られなくなる可能性がある。
 延伸倍率は目的とする位相差値により決められるが、1.05倍~4倍であることが好ましく、より好ましくは1.1倍~3倍、更に好ましくは1.5倍~2.5倍である。延伸方向は、未延伸フィルムの長尺方向(縦延伸)であってもよいし、その直角方向(横延伸)であってもよい。
 本発明におけるポリカーボネート樹脂を成形してなるフィルムを延伸した際の複屈折は、通常0.0010以上、好ましくは0.0014以上、より好ましくは0.0016以上、更に好ましくは0.0018以上、中でも0.0020であることが特に好ましい。複屈折が過度に小さいと位相差フィルムとした場合、同じ位相差を発現させるためには、フィルム厚みを厚くしなければならず、薄型の機器には適合できない可能性がある。
 また、複屈折を過度に大きくしようとすると、延伸倍率を高く、延伸温度を低く設定する必要があり、延伸後の配向緩和が起きやすくなって、位相差の変化が大きくなる可能性があるため、通常0.0060以下、好ましくは0.0050以下、より好ましくは0.0040以下、特に好ましくは0.0035以下である。
 本発明にかかる前記延伸フィルムの厚みは、10μm~200μmの範囲が好ましく、より好ましくは20μm~150μm、更に好ましくは30μm~100μm、特に好ましくは40μm~80μmの範囲である。延伸フィルムの厚みが過度に大きいと、位相差板として組み立てた際の厚みが大きくなり、所望の薄さのディスプレイが得られなくなる。一方、過度に小さいと、延伸時や組み立て時の破断を招く可能性がある。
 本発明にかかる前記延伸フィルム(位相差フィルム)の位相差は、面内複屈折とフィルムの厚みの積で表されるが、測定波長590nmで測定した場合の値として、通常30nm~400nmであり、好ましくは50nm~300nm、特に好ましくは100nm~200nmである。位相差が過度に小さいと位相差フィルムとしての性能に劣る傾向にあり、過度に大きいとフィルムを厚くする必要があるため、位相差板の軽量化やコンパクト化が図れなくなる。
 本発明にかかる前記延伸フィルム(位相差フィルム)は、公知のヨウ素系または染料系の偏光板と粘着剤を介して積層貼合することにより、各種液晶表示装置、または有機EL表示装置用などの位相差板として用いることができる。
 本発明にかかる前記延伸フィルムは、波長450nmで測定した位相差(Re450)の、波長550nmで測定した位相差(Re550)に対する比(Re450/Re550)は、0.5以上1.0以下が好ましく、0.70以上1.0以下がより好ましく、0.80以上0.95以下が更に好ましく、0.85以上0.93以下が特に好ましい。
 前記比率が前記範囲であれば、可視領域の各波長において理想的な位相差特性を得ることができる。例えば、1/4波長板としてこのような波長依存性を有する位相差フィルムを作製し、偏光板と貼り合わせることにより、円偏光板等を作製することができ、色相の波長依存性が少ない偏光板および表示装置の実現が可能である。
 一方、前記比率が前記範囲外の場合には、色相の波長依存性が大きくなる傾向にあり、可視領域のすべての波長において光学補償がなされなくなったり、偏光板または表示装置に光が通り抜けることによる着色またはコントラストの低下などの問題が生じたりする場合がある。
 なお、一般的に「フィルム」とは、長さ及び幅に比べて厚さが極めて小さく、最大厚さが任意に限定されている薄く平らな製品をいい、通常はロールの形で供給されるものであり、一般的に「シート」とは、JISにおける定義上、薄く、その厚さが長さと幅のわりには小さく平らな製品をいう。しかしながら、「シート」と「フィルム」との間の境界は定かではなく、本発明において文言上両者を区別する必要はないので、本明細書において「フィルム」と称する場合であっても、「シート」をも含む概念として用いることとする。
 本発明にかかる前記透明フィルムは、光弾性係数が50×10-12Pa-1以下であることが好ましく、40×10-12Pa-1以下であることが更に好ましい。光弾性係数が過度に大きいと、位相差フィルムとした場合、偏光板と張り合わせると、画面の周囲が白くぼやけるような画像品質の低下が起きる可能性がある。特に大型の表示装置に用いられる場合にはこの問題が顕著に現れる傾向にある。
 本発明の延伸フィルムは位相差フィルムとして各種ディスプレイ(例えば、液晶表示装置、有機EL表示装置、プラズマ表示装置、FED電界放出表示装置、SED表面電界表示装置)の視野角補償用、外光の反射防止用、色補償用または直線偏光の円偏光への変換用などに用いることができる。中でも、背面電極が金属で反射板の役割を担う有機EL表示装置において、好適に用いることができる。
 前記液晶表示装置としては、反射型表示方式の液晶パネルを備える反射型液晶表示装置が好ましい。偏光フィルム、1/4波長板、及び透明電極を有する2枚の基板間に液晶層を含む液晶セルをこの順で具備する反射型液晶表示装置であって、かかる1/4波長板として、液晶表示装置、特に偏光フィルム1枚型反射型液晶表示装置に用いることにより、画質に優れた表示装置を得ることが出来る。
 前記反射型液晶表示装置としては、偏光フィルム、位相差フィルム、透明電極付基板、液晶層および散乱反射電極付基板の順に構成されているもの、偏光フィルム、散乱板、位相差フィルム、透明電極付基板、液晶層および鏡面反射電極付基板の順に構成されているもの、偏光フィルム、位相差フィルム、透明電極付基板、液晶層、透明電極付基板および反射層の順に構成されているもの等である。
 さらに、前記1/4波長板は透過型と反射型の両方を兼ね備えた液晶表示装置においても使用し得る。該液晶表示装置の構成としては例えば、偏光フィルム、位相差フィルム、透明電極付基板、液晶層、反射透過兼用電極付基板、位相差フィルム、偏光フィルムおよびバックライトシステム等が挙げられる。
 さらに、例えば、コレステリック液晶よりなる左右どちらかの円偏光のみ反射する反射型偏光フィルムにおいて、円偏光を直線偏光に変換する素子として使用すれば、広帯域で良好な直線偏光が得られる。
 本発明にかかるポリカーボネート樹脂は、耐熱性および成形性にも優れ、さらに着色が少なく高い透明性を兼ね備えているため、その他の光学フィルム、光ディスク、光学プリズムまたはピックアップレンズ等にも用いることもできる。
 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。なお、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。
 以下の実施例の記載の中で用いた化合物の略号は次の通りである。
・BHEPF:9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン [大阪ガスケミカル(株)製]……硫黄元素含有量は5ppmから7ppmのものを用いた。
・ISB:イソソルビド[ロケットフルーレ社製、商品名:POLYSORB]
・PEG#1000:ポリエチレングリコール 数平均分子量1000 [三洋化成工業(株)製]
・DEG:ジエチレングリコール [三菱化学(株)製]
・CHDM:1,4-シクロヘキサンジメタノール [新日本理化(株)製、商品名:SKY CHDM]
・DPC:ジフェニルカーボネート[三菱化学(株)製]
 ポリカーボネート樹脂の組成分析と物性の評価は次の1)~8)の方法により行った。
 1)反応液中のモノヒドロキシ化合物(フェノール)含有量
 試料約0.5gを精秤し、塩化メチレン5mLに溶解した後、総量が25mLになるようにアセトンを添加した。溶液を0.2μmディスクフィルターでろ過して、液体クロマトグラフィーにてフェノールの定量を行った後、含有量を算出した。用いた装置または条件は、次のとおりである。
・装置:(株)島津製作所製
  システムコントローラ:CBM-20A
  ポンプ:LC-10AD
  カラムオーブン:CTO-10ASvp
  検出器:SPD-M20A
  分析カラム:Cadenza CD-18 4.6mmΦ×250mm
  オーブン温度:40℃
・検出波長:260nm
・溶離液:A液:0.1%リン酸水溶液、B液:アセトニトリル
A/B=40/60(vol%)からA/B=0/100(vol%)まで
10分間でグラジエント
・流量:1mL/min
・試料注入量:10μL
 2)ポリカーボネート樹脂中の全ヒドロキシ末端基量の測定
 ポリカーボネート樹脂30mgを秤取し、重クロロホルム約0.7mLに溶解し、これを内径5mmのNMR用チューブに入れ、H NMRスペクトルを測定した。ポリカーボネート樹脂を構成する各ジヒドロキシ化合物に由来するヒドロキシ末端基、および各ジヒドロキシ化合物に由来する構造単位に基づくシグナルの強度比より全ヒドロキシ末端基の量を定量した。用いた装置または条件は、次のとおりである。
・装置:日本電子社製JNM-AL400(共鳴周波数400MHz)
・測定温度:常温
・緩和時間:6秒
・積算回数:512回
また、計算方法は次の通りである。
 本発明で例示するBHEPFとISBとPEG#1000の共重合ポリカーボネート樹脂の場合のH NMRの解析は以下のとおり行う。次のピークの積分値を算出する。
(α):8.0-7.6ppm:全BHEPF構造単位由来(プロトン数:2、分子量:464.51)
(β):5.6-4.8ppm:全ISB構造単位由来(プロトン数:3、分子量:172.14)
(γ):3.7-3.5ppm:全PEG#1000構造単位由来(プロトン数:82.3、分子量:1025.99)
(δ):2.8-1.0ppm:ヒドロキシ末端基由来(プロトン数:1、分子量:17.01)
 ヒドロキシ末端基量[ppm]=(δ)積分値×17.01/{(α}積分値/2×464.51+(β)/3×172.14+(γ)/82.3×1025.99}×1000000
 3)還元粘度
 溶媒として塩化メチレンを用い、0.6g/dLの濃度のポリカーボネート樹脂溶液を調製した。森友理化工業社製ウベローデ型粘度管を用いて、温度20.0℃±0.1℃で測定を行い、溶媒の通過時間tと溶液の通過時間tから次式より相対粘度ηrelを求め、
ηrel=t/t
相対粘度から次式より比粘度ηspを求めた。
ηsp=(η-η)/η=ηrel-1
比粘度を濃度C(g/dL)で割って、還元粘度ηsp/Cを求めた。この値が高いほど分子量が大きい。
 4)ガラス転移温度(Tg)
 示差走査熱量計(エスアイアイ・ナノテクノロジー社製、DSC220)を用いて、ポリカーボネート樹脂約10mgを20℃/minの昇温速度で加熱して測定し、JIS-K7121(1987)に準拠して、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点の温度である、補外ガラス転移開始温度を求め、それをガラス転移温度とした。
 5)ポリカーボネート樹脂のペレットYI値
 ポリカーボネート樹脂の色相は、ASTM D1925に準拠して、ペレットの反射光におけるYI値(イエローインデックス値)を測定して評価した。装置はコニカミノルタ社製分光測色計CM-5を用い、測定条件は測定径30mm、SCEを選択した。シャーレ測定用校正ガラスCM-A212を測定部にはめ込み、その上からゼロ校正ボックスCM-A124をかぶせてゼロ校正を行い、続いて内蔵の白色校正板を用いて白色校正を行った。
 白色校正板CM-A210を用いて測定を行い、L*が99.40±0.05、a*が0.03±0.01、b*が-0.43±0.01、YIが-0.58±0.01となることを確認した。ペレットの測定は、内径30mm、高さ50mmの円柱ガラス容器にペレットを40mm程度の深さまで詰めて測定を行った。ガラス容器からペレットを取り出してから再度測定を行う操作を2回繰り返し、計3回の測定値の平均値を用いた。YI値が小さいほど樹脂の黄色味が少なく、色調に優れることを意味する。
 6)ポリカーボネート樹脂中の異物の定量
 Tダイを具備した20mm径の一軸押出機のバレル設定温度を、ペレットの供給側から220℃、230℃、240℃、240℃、230℃とし、冷却ロールを用いて厚さ30μm±5μmのフィルムを成形し、Optical Control System社製、Film Quality Testing System(型式FSA100)を使用し、1m当たりの25μm以上の異物数を測定した。24時間運転中に3時間おきにポリカーボネート樹脂ペレットをサンプリングし、8回測定した平均値を用いた。
 7)ポリカーボネート樹脂中の硫黄元素量の測定
 ポリカーボネート樹脂試料を白金製ボートに採取し、石英管管状炉(三菱化学(株)製AQF-100型)で加熱し、燃焼ガス中の硫黄分を0.03%の過酸化水素水溶液で吸収した。吸収液中のSO 2-をイオンクロマトグラフ(Dionex社製ICS-1000型)で測定した。
 8)延伸フィルムの位相差の波長分散性
 80℃で5時間真空乾燥をしたポリカーボネート樹脂を、単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅200mm、設定温度:220℃)、チルロール(設定温度:120~130℃)及び巻取機を備えたフィルム製膜装置を用いて、厚み100μm±10μmの未延伸フィルムを作製した。このフィルムから幅6cm、長さ6cmの試料を切り出した。
 前記試料を、バッチ式二軸延伸装置[東洋精機産業(株)製]で、延伸速度を720mm/分(ひずみ速度1200%/min)で、延伸倍率2.0倍の一軸延伸を行った。このとき延伸方向に対して垂直方向は、保持した状態(延伸倍率1.0)で延伸を行った。延伸温度はポリカーボネート樹脂のガラス転移温度+20℃から徐々に温度を下げていき、延伸を3回行って3回とも破断する温度よりも2℃高い温度で延伸フィルムを作成し、後述の光学物性の測定に用いた。
 延伸された試料より幅4cm、長さ4cmに切り出し、位相差測定装置[王子計測機器(株)製KOBRA-WPR]を用いて測定波長450、500、550、590、630nmで位相差を測定し、波長分散性を測定した。波長分散性は、450nmと550nmで測定した位相差Re450とRe550の比(Re450/Re550)を計算した。位相差比が1より大きいと波長分散は正であり、1未満では負となる。それぞれの位相差の比が、1未満で小さい程、負の波長分散性が強いことを示している。
 9)(光弾性係数)
 <サンプル作製>
 80℃で5時間真空乾燥したポリカーボネート樹脂サンプル4.0gを、幅8cm、長さ8cm、厚さ0.5mmのスペーサーを用いて、熱プレスにて熱プレス温度250℃で、予熱1分、圧力20MPaの条件で1分間加圧後、スペーサーごと取り出し、水管冷却式プレスで、圧力20MPaで3分間加圧冷却し、幅5mm、長さ20mmのサンプルを切り出した。
 <測定>
 He-Neレーザー、偏光子、補償板、検光子、及び光検出器からなる複屈折測定装置と振動型粘弾性測定装置(レオロジー社製「DVE-3」)を組み合わせた装置を用いて測定した。(詳細は、日本レオロジー学会誌Vol.19、p93-97(1991)を参照。)
 切り出したサンプルを粘弾性測定装置に固定し、25℃の室温で貯蔵弾性率E'を周波数96Hzにて測定した。同時に、出射されたレーザー光を偏光子、試料、補償板、検光子の順に通し、光検出器(フォトダイオード)で拾い、ロックインアンプを通して角周波数ω又は2ωの波形について、その振幅とひずみに対する位相差を求め、ひずみ光学係数0'を求めた。このとき、偏光子と検光子の方向は直交し、またそれぞれ、試料の伸長方向に対してπ/4の角度をなすように調整した。
 光弾性係数は、貯蔵弾性率E'とひずみ光学係数0'を用いて次式より求めた。
 光弾性係数=0'/E' 
 10)延伸フィルムの複屈折
 上記8)で作成した延伸フィルムから幅4cm、長さ4cmに切り出したサンプルを、位相差測定装置(王子計測機器社製KOBRA-WPR)を用いて波長590nmの位相差(Re590)を測定した。前記位相差(Re590)を前記サンプルの厚み(t)で除し、下記式に従い、複屈折を求めた。
 複屈折=Re590/t
 11)未延伸フィルムの引張破断伸度
 上記8)で作成した未延伸フィルムを、幅20mm、長さ150mmの短冊状に安全かみそりを用いて切り出し、恒温槽つきの引張試験機[東洋精機産業(株)製、ストログラフ]を用いて、初期のチャック間距離は80mm、チャック間の移動速度(引張速度)は500mm/分(625%/分)として、恒温槽の温度をガラス転移温度+6℃に設定し、下記式で引張破断伸度を求めた。
 引張破断伸度(%)=破断に至るまで伸びた長さ(mm)/チャック間距離(mm)×100+100
 12)溶融粘度の測定
 80℃で5時間、真空乾燥した試料を用いて、キャピラリーレオメーター〔東洋精機(株)製〕で測定を行った。反応温度と同じ温度に加熱して、剪断速度9.12~1824sec-1間で溶融粘度を測定し、91.2sec-1における溶融粘度の値を用いた。第3竪型攪拌反応器出口の試料はダイス径1mmφ×40mmLのオリフィスを使用し、第4横型攪拌反応器出口の試料はダイス径1mmφ×10mmLのオリフィスを使用した。
[実施例1-1]
 前述した図1に示すように、竪型攪拌反応器3器及び横型攪拌反応器1器を有する連続製造装置により、以下の条件でポリカーボネート樹脂を製造した。
 先ず、各反応器を表-1のとおり、予め反応条件に応じた内温・圧力に設定した。
次に別途、原料調製工程にて窒素ガス雰囲気下、BHEPFとISBとPEG#1000とDPCとを一定のモル比(BHEPF/ISB/PEG#1000/DPC=0.432/0.556/0.0120/1.010)で混合し、120℃に加熱して、原料混合溶融液を得た。
Figure JPOXMLDOC01-appb-T000019
 続いて、この原料混合溶融液を、140℃に加熱した原料導入管を介して、前述した所定温度・圧力の±5%の範囲内に制御した第1竪型攪拌反応器6a内に連続供給し、平均滞留時間が90分になるように、槽底部のポリマー排出ラインに設けたバルブ(図示せず)の開度を制御しつつ、液面レベルを一定に保った。
 上記原料混合溶融液の供給開始と同時に、第1竪型攪拌反応器6a内に触媒供給口1dから触媒として酢酸マグネシウム水溶液を、全ジヒドロキシ成分1molに対し、19μmolの割合で連続供給した。
 第1竪型攪拌反応器6aの槽底から排出された重合反応液は、引き続き、第2竪型攪拌反応器6b、第3竪型攪拌反応器6c、第4横型攪拌反応器6d(2軸メガネ翼、L/D=4)に、逐次、連続供給された。これらの反応器での実際の運転条件を表-2に記載する。
 第1竪型攪拌反応器6aの槽底から排出された重合反応液は、引き続き、第2竪型攪拌反応器6b、第3竪型攪拌反応器6c、第4横型攪拌反応器6d(2軸メガネ翼、L/D=4)に、逐次、連続供給された。重合反応の間、表-1に示した平均滞留時間となるように各反応器の液面レベルを制御した。
 第4横型攪拌反応器6dの容量は250L、加熱媒体の温度は240℃であり、40kg/hrの処理量で反応液を供給した。第3竪型攪拌反応器6cが最終重合反応器の一つ前の反応器に対応する。すなわち、最終重合反応器の一つ前の反応器の内温は220℃である。
 第4横型攪拌反応器6dの出口の還元粘度が0.39から0.41の範囲となるように反応条件を合わせ込んだところ、圧力は0.8kPa、平均滞留時間は100分となった。攪拌軸の回転数は1rpmとなるように設定した。
 第4横型攪拌反応器6dから抜き出された反応液は、ギアポンプ4cにより押出機15aに移送された。該押出機[(株)日本製鋼所製:2軸押出機LABOTEX30HSS-32:L/D=32]は2つのベント口を有し、真空ポンプを用いてベント口より脱揮を行った。この時のベント部の圧力は絶対圧力で1kPa以下であった。
 押出機16dの樹脂の排出側にギアポンプ4cを配置し、さらにその下流に、格納容器内部に外径112mm、内径38mm、99%の濾過精度として20μmであるリーフディスクフィルター(日本ポール(株)製)を10枚装着したポリマーフィルター15bを配置した。ポリマーフィルターの排出側には、ストランド化するためのダイを装着した。
 排出される樹脂はストランドの形態で水冷、固化させた後、回転式カッターでペレット化した。ストランド化からペレット化までの工程はクリーンルーム内で実施された。続いて、ペレットは気力移送によって、製品ホッパー16dに送られた。
 ポリカーボネート樹脂の製造中に、ギアポンプ4bの後に取り付けられたバルブから最終重合反応器の1つ前の反応器の出口に該当する反応液を、ギアポンプ4cの後に取り付けられたバルブから最終重合反応器出口に該当する反応液を、ストランドカッター16bの後でポリカーボネート樹脂ペレットをそれぞれサンプリングし、前述の分析方法により各種分析を実施した。
 上記の反応条件にて、24時間運転を実施したところ、24時間中にストランドが切断し、ペレット化が停止した回数は2回であった。これらの結果をまとめて表-2に示す。
[実施例1-2]
 第3竪型攪拌反応器6cの圧力を22kPaとし、実施例1-1よりも第3竪型攪拌反応器6cの出口の分子量および溶融粘度を低下させた。実施例1-1と同様に第4横型攪拌反応器6dの出口の還元粘度が0.39から0.41の範囲となるように第4横型攪拌反応器6dの条件を調節したところ、圧力は0.6kPa、平均滞留時間は120分となった。言及していない項目については実施例1-1と同様に行った。
 反応器の中で最も高温となる第4横型攪拌反応器6dの反応時間が長くなったために、得られたポリカーボネート樹脂の色調は実施例1-1よりも若干悪化したもののペレット化工程における24時間中ペレット化停止回数は1回であり、良好であった。
[実施例1-3]
 原料の仕込みモル比をBHEPF/ISB/PEG#1000/DPC=0.432/0.556/0.0120/0.995とした。実施例1-1と同様に第4横型攪拌反応器6dの条件を調節したところ、圧力は1.5kPa、平均滞留時間は100分となった。言及していない項目については実施例1-1と同様に行った。
 ヒドロキシ末端とフェニルカーボネート末端の量がバランスしたために、第4横型攪拌反応器6d内の分子量上昇速度が速くなり、圧力が高くなったためにポリカーボネート樹脂中のモノヒドロキシ化合物含有量が増加した。
色調は良好であった。
[実施例1-4]
 第4横型攪拌反応器6dの攪拌回転数を6rpmとした以外は実施例1-1と同様に実施した。攪拌軸に反応液がからみついて反応器出口に垂れ落ちにくい状況となり、24時間運転中にペレット化工程が12回停止した。得られたポリカーボネート樹脂ペレットの異物量は著しく増大した。モノヒドロキシ化合物含有量は実施例1-1よりも低減し、色調は良好であった。
[実施例1-5]
 第4横型攪拌反応器6dの攪拌回転数を0.5rpmとした以外は実施例1-1と同様に実施した。安定して運転が継続可能であったが、実施例1-1と比較して、攪拌効率が低下したために、得られたポリカーボネート樹脂中のフェノール含有量が増加した。異物量は非常に少なくなった。また、ペレットYIが色調も良好であった。
[実施例1-6]
 ジヒドロキシ化合物にBHEPFとISBとDEGを用いた(仕込みモル比:BHEPF/ISB/DEG/DPC/酢酸マグネシウム=0.349/0.495/0.156/1.005/1.50×10-5)。最終重合反応器の処理量が50kg/hrとなるように、反応器に原料を連続的に供給した。第4横型攪拌反応器6dの出口の還元粘度が0.41から0.44の範囲となるように反応条件を合わせ込み、各反応器の条件も反応の進行具合に合わせて適宜調節した。特に言及しないことについては実施例1-1と同様に行った。
 ポリカーボネート樹脂中のモノヒドロキシ化合物の含有量や異物も非常に少なく、色調も良好なポリカーボネート樹脂が得られた。
[実施例1-7]
 ジヒドロキシ化合物にBHEPFとCHDMを用いた(仕込みモル比:BHEPF/CHDM/DPC/酢酸マグネシウム=0.355/0.645/1.005/1.50×10-5)。最終重合反応器の処理量が50kg/hrとなるように、反応器に原料を連続的に供給した。第4横型攪拌反応器6dの出口の還元粘度が0.57から0.60の範囲となるように反応条件を合わせ込み、各反応器の条件も反応の進行具合に合わせて適宜調節した。特に言及しないことについては実施例1-1と同様に行った。
 ポリカーボネート樹脂中のモノヒドロキシ化合物の含有量や異物も非常に少なく、色調も良好なポリカーボネート樹脂が得られた。
[比較例1-1]
 第3竪型攪拌反応器6cの内温を230℃まで上昇させた。実施例1-1と同様に第4横型攪拌反応器6dの条件を調節したところ、圧力は1.1kPa、平均滞留時間は100分となった。言及していない項目については実施例1-1と同様に行った。実施例1-1と比較して、得られたポリカーボネート樹脂は色調が悪化し、モノヒドロキシ化合物含有量も増加した。
[比較例1-2]
 実施例1-6において、第3竪型攪拌反応器6cの内温を230℃まで上昇させた。実施例1-6と同様に第4横型攪拌反応器6dの条件を調節したところ、圧力は0.9kPa、平均滞留時間は100分となった。言及していない項目については実施例1-6と同様に行った。実施例1-6と比較して、得られたポリカーボネート樹脂は色調が悪化し、モノヒドロキシ化合物含有量も増加した。
[比較例1-3]
 実施例1-7において、第3竪型攪拌反応器6cの内温を230℃まで上昇させた。実施例1-7と同様に第4横型攪拌反応器6dの条件を調節したところ、圧力は0.8kPa、平均滞留時間は100分となった。言及していない項目については実施例1-7と同様に行った。実施例1-7と比較して、得られたポリカーボネート樹脂は色調が悪化し、モノヒドロキシ化合物含有量も増加した。
 以上の実施例1-1~1-7及び比較例1-1~1-3の結果をそれぞれ表-2に示す。
Figure JPOXMLDOC01-appb-T000020
[まとめ1]
 表-2に示すように、本発明の製造方法に規定するように、最終重合反応器の反応器の反応条件を適切に設定することで、ポリカーボネート樹脂の品質を向上できるとともに、運転が安定し、歩留まりが向上する利点も得られることがわかった。特に実施例1-1~1-5はいずれも比較例1-1よりもペレットYIが低く、色調が良好であった。また、実施例1-6及び1-7はそれぞれ比較例1-2及び1-3に対してペレットYIが低く、色調が良好であり、また、モノヒドロキシ化合物の含有量も少なかった。
[実施例2-1]
 前述した図1に示すように、竪型攪拌反応器3器及び横型攪拌反応器1器を有する連続製造装置により、以下の条件でポリカーボネート樹脂を製造した。
原料調製工程にて窒素ガス雰囲気下、BHEPFとISBとDEGとDPCとを一定のモル比(BHEPF/ISB/DEG/DPC=0.348/0.490/0.162/1.005)で混合し、120℃に加熱して、原料混合溶融液を得た。
 続いて、この原料混合溶融液を、140℃に加熱した原料導入管を介して、前述した所定温度・圧力の±5%の範囲内に制御した第1竪型攪拌反応器6a内に連続供給し、平均滞留時間が90分になるように、槽底部のポリマー排出ラインに設けたバルブ(図示せず)の開度を制御しつつ、液面レベルを一定に保った。
 上記原料混合溶融液の供給開始と同時に、第1竪型攪拌反応器6a内に触媒供給口1dから触媒として酢酸マグネシウム水溶液を、全ジヒドロキシ成分1molに対し、10μmolの割合で連続供給した。
 第1竪型攪拌反応器6aの槽底から排出された重合反応液は、引き続き、第2竪型攪拌反応器6b、第3竪型攪拌反応器6c、第4横型攪拌反応器6d(2軸メガネ翼、L/D=4)に、逐次、連続供給された。重合反応の間、所定の平均滞留時間となるように各反応器の液面レベルを制御した。これらの反応器での実際の運転条件を表-3に記載する。
 第4横型攪拌反応器6dの容量は250L、加熱媒体の温度は242℃であり、攪拌回転数を2rpmとし、60kg/hrの処理量で反応液を供給した。
 第4横型攪拌反応器6dから抜き出された反応液は、ギアポンプ4cにより押出機15aに移送された。該押出機[(株)日本製鋼所製:2軸押出機LABOTEX30HSS-32:L/D=32]は2つのベント口を有し、真空ポンプを用いてベント口より脱揮を行った。この時のベント部の圧力は絶対圧力で1kPa以下であった。
 押出機16dの樹脂の排出側にギアポンプ4cを配置し、さらにその下流に、格納容器内部に外径112mm、内径38mm、99%の濾過精度として20μmであるリーフディスクフィルター(日本ポール(株)製)を10枚装着したポリマーフィルター15bを配置した。ポリマーフィルターの排出側には、ストランド化するためのダイを装着した。
 排出される樹脂はストランドの形態で水冷、固化させた後、回転式カッターでペレット化した。ストランド化からペレット化までの工程はクリーンルーム内で実施された。続いて、ペレットは気力移送によって、製品ホッパー16dに送られた。
 ポリカーボネート樹脂の製造中に、ギアポンプ4cの後に取り付けられたバルブから最終重合反応器出口に該当する反応液を、ストランドカッター16bの後でポリカーボネート樹脂ペレットをそれぞれサンプリングし、前述の分析方法により各種分析を実施した。これらの結果をまとめて表-2に示す。
[実施例2-2]
 第4横型攪拌反応器6dの圧力を低くすることで、実施例2-1よりも高い分子量のポリカーボネート樹脂を製造した。第4横型攪拌反応器6dにおいて、溶融樹脂の流動性が低下し、槽底の出口に垂れ落ちなくなってしまったので、攪拌回転数を1rpmに下げることで、安定的に溶融樹脂を抜き出せるようになった。得られたポリカーボネート樹脂からフィルムを作成し、延伸したところ、実施例2-1よりも低い延伸温度で延伸が可能となり、より高い面内複屈折が得られた。
[実施例2-3]
 BHEPFとISBとDEGとDPCの仕込み比をBHEPF/ISB/DEG/DPC=0.373/0.471/0.156/1.005とした以外は、実施例2-1と同様に行った。延伸フィルムの位相差の波長分散性(Re450/Re550)は0.892であり、実施例2-1よりも強い波長分散性を示した。共重合組成を適宜調節することで、所望の波長分散性を得ることが可能である。
[実施例2-4]
 BHEPFとISBとDEGとDPCの仕込み比をBHEPF/ISB/DEG/DPC=0.373/0.523/0.104/1.005とした以外は、実施例2-1と同様に行った。実施例2-1よりもDEGの含量を減らすことで、ポリカーボネート樹脂のガラス転移温度は向上したが、延伸可能な温度が高くなり、延伸フィルムの面内位相差は若干低下した。
[実施例2-5]
 ジヒドロキシ化合物としてBHEPFとISBとPEG#1000を用いた。仕込み比はBHEPF/ISB/PEG#1000/DPC=0.432/0.556/0.012/1.010とした。それ以外は実施例2-1と同様に行った。
[実施例2-6]
 BHEPFとISBとPEG#1000とDPCの仕込み比をBHEPF/ISB/PEG#1000/DPC=0.357/0.632/0.011/1.010とした以外は、実施例2-6と同様に行った。実施例2-6よりもBHEPFの含量を減らすことで、延伸フィルムの位相差の波長分散性は弱くなったが、面内位相差は向上した。
[実施例2-7]
 BHEPFとISBとPEG#1000とDPCの仕込み比をBHEPF/ISB/PEG#1000/DPC=0.445/0.552/0.003/1.010とした以外は、実施例2-6と同様に行った。実施例2-1と実施例2-6のポリカーボネート樹脂と比較して、ガラス転移温度は向上したが、延伸時に破断しやすく、高い温度でしか延伸ができなかった。延伸フィルムの面内位相差は0.0009であり、低い値となった。
[実施例2-8]
 ジヒドロキシ化合物としてBHEPFとISBを用いた。仕込み比はBHEPF/ISB/DPC=0.413/0.587/1.010とした。それ以外は実施例2-1と同様に行った。実施例2-1と実施例2-6のポリカーボネート樹脂と比較して、ガラス転移温度は向上したが、延伸時に破断しやすく、高い温度でしか延伸ができなかった。延伸フィルムの面内位相差は0.0008であり、低い値となった。
Figure JPOXMLDOC01-appb-T000021
[比較例2-1]
 撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。BHEPFとISB、DEG、DPC、および酢酸マグネシウムを、モル比率でBHEPF/ISB/DEG/DPC/酢酸マグネシウム=0.348/0.490/0.162/1.005/1.00×10-5になるように仕込んだ。反応器内を十分に窒素置換した後(酸素濃度0.0005~0.001vol%)、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。
 第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、反応液を反応器から抜き出し可能な最大限の溶融粘度まで重合を進行させた。(溶融粘度は攪拌翼の撹拌動力の値で制御できる。)所定動力に到達した時点で反応器に窒素を導入して復圧し、反応液をストランドの形態で抜出し、回転式カッターでペレットにした。
 得られたポリカーボネート樹脂の還元粘度は0.356dL/gであり、実施例2-1と比較して分子量は低かった。
 得られたポリカーボネート樹脂を前述の分析方法により各種分析を実施した。実施例2-1や2-2と比較して、引張破断伸度が低く、高い延伸温度でなければ延伸ができなかった。得られた延伸フィルムの面内複屈折は0.0012であり、低い値となった。
[比較例2-2]
 比較例2-1と同様にバッチ重合装置を用いて重合を行った。第2反応器の温度を255℃とした以外は比較例2-1と同様に行った。得られたポリカーボネート樹脂の還元粘度や引張破断伸度、および延伸フィルムの面内複屈折は実施例2-1と同程度となったが、反応温度を高くしたため、ポリカーボネート樹脂の色調は悪化した。
[比較例2-3]
 ジヒドロキシ化合物としてBHEPFとISBとPEG#1000を用いた。仕込み比はBHEPF/ISB/PEG#1000/DPC=0.432/0.556/0.012/1.010とした。それ以外は比較例2-1と同様に行った。得られたポリカーボネート樹脂は実施例2-5と比較して、還元粘度や引張破断伸度が低くなり、より高い温度でしか延伸ができなかったために、延伸フィルムの面内複屈折は0.0009と低い値になった。
[比較例2-4]
 ジヒドロキシ化合物としてBHEPFとISBを用いた。仕込み比はBHEPF/ISB/DPC=0.413/0.587/1.010とした。それ以外は比較例2-1と同様に行った。得られたポリカーボネート樹脂は実施例2-8と比較して、還元粘度や引張破断伸度が低くなり、より高い温度でしか延伸ができなかったために、延伸フィルムの面内複屈折は0.0008と低い値になった。
Figure JPOXMLDOC01-appb-T000022
[まとめ2] 
 表-3及び表-4に示すように、本発明のポリカーボネート樹脂は、連続重合法を用いることで高い分子量まで反応を進めることが可能となり、バッチ重合で得られたポリカーボネート樹脂よりも引張破断伸度が向上した。そのため、より低温で延伸を行うことが可能となり、高い面内複屈折が得られるようになった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2011年3月31日付で出願された日本特許出願(特願2011-080053)に基づいており、その全体が引用により援用される。
1a 原料(炭酸ジエステル)供給口
1b、1c、1d 原料(ジヒドロキシ化合物)供給口
1e 触媒供給口
2a 原料混合槽
3a アンカー型攪拌翼
4a 原料供給ポンプ
4b、4c、4d ギアポンプ
5a 原料フィルター
6a 第1竪型攪拌反応器
6b 第2竪型攪拌反応器
6c 第3竪型攪拌反応器
6d 第4横型攪拌反応器
7a、7b、7c マックスブレンド翼
7d 2軸メガネ型攪拌翼
8a、8b 内部熱交換器
9a、9b 還流冷却器
10a、10b 還流管
11a、11b、11c、11d 留出管
12a、12b、12c、12d 凝縮器
13a、13b、13c、13d 減圧装置
14a 留出液回収タンク
15a 二軸押出機
15b ポリマーフィルター
16a ストランド冷却槽
16b ストランドカッター
16c 空送ブロワー
16d 製品ホッパー
16e 計量器
16f 製品袋(紙袋、フレキシブルコンテナーバッグなど)

Claims (35)

  1.  フルオレン構造を有するジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、重縮合してポリカーボネート樹脂を製造するポリカーボネート樹脂の製造方法であって、前記反応器は少なくとも直列に複数器接続されるものであり、最終重合反応器の一つ前の反応器の内温が200℃以上225℃未満であり、かつ最終重合反応器の1つ前の反応器の出口における反応液の溶融粘度が20Pa・s以上、1000Pa・s以下であることを特徴とするポリカーボネート樹脂の製造方法。
  2.  前記最終重合反応器の1つ前の反応器の出口における反応液の還元粘度をP、前記最終重合反応器の出口における反応液の還元粘度をQとした場合に下記式(2)を満たすことを特徴とする請求項1に記載のポリカーボネート樹脂の製造方法。
     1.5 ≦ Q/P ≦ 3.0   (2)
  3.  前記最終重合反応器が、内部に複数の水平回転軸を有する横型攪拌反応器であって、反応条件が下記式(3)を満たすことを特徴とする請求項1又は2に記載のポリカーボネート樹脂の製造方法。
     500 ≦ ωμ ≦ 20000   (3)
    [ω:攪拌翼回転数(rpm)、μ:横型反応器出口における反応液の溶融粘度(Pa・s)]
  4.  前記横型攪拌反応器の反応条件が下記式(4)を満たすことを特徴とする請求項3に記載のポリカーボネート樹脂の製造方法。
     2 ≦ V/A ≦ 13   (4)
    [V:横型反応器容積(L)、A:反応液処理量(kg/hr)]
  5.  前記最終重合反応器の出口における反応液の溶融粘度が1800Pa・s以上5000Pa・s以下である請求項1乃至4のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  6.  前記最終重合反応器の加熱媒体の温度が220℃以上、260℃以下である請求項1乃至5のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  7.  最初の前記反応器に投入する際の反応に用いる全ジヒドロキシ化合物に対する炭酸ジエステルの仕込みのモル比が0.990以上1.030以下である請求項1乃至6のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  8.  前記最終重合反応器の出口における反応液中の全ヒドロキシ末端基の量が50ppm以上1000ppm以下である請求項1乃至7のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  9.  前記最終重合反応器の1つ前の反応器の出口における反応液中のモノヒドロキシ化合物の量が10ppm以上3wt%以下であり、かつ前記最終重合反応器の出口における反応液中のモノヒドロキシ化合物の量が1ppm以上1500ppm以下である請求項1乃至8のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  10.  前記最終重合反応器の圧力が10Pa以上2kPa以下であることを特徴とする請求項1乃至9のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  11.  前記重合触媒が、長周期型周期表第2族の金属からなる群及びリチウムより選ばれる少なくとも1種の金属化合物である請求項1乃至10のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  12.  前記のフルオレン構造を有するジヒドロキシ化合物が、下記式(1)で表される化合物である請求項1乃至11のいずれか1項に記載のポリカーボネート樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6~炭素数20のアリール基を表し、それぞれのベンゼン環に4つある置換基のそれぞれとして、同一の又は異なる基が配されている。Xは置換若しくは無置換の炭素数2~炭素数10のアルキレン基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6~炭素数20のアリーレン基を表す。m及びnはそれぞれ独立に0~5の整数である。]
  13.  前記式(1)で表されるフルオレン部位を有するジヒドロキシ化合物以外に、構造の一部に下記式(5)で表される部位を有する特定ジヒドロキシ化合物を含むジヒドロキシ化合物を反応に用いる請求項1乃至12のいずれか1項に記載のポリカーボネート樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000002

    [但し、式(5)で表される部位が-CH-OHの一部を構成する部位である場合、および前記フルオレン構造を有するジヒドロキシ化合物の一部を構成する部位である場合を除く。]
  14.  前記式(5)で表される部位を有する特定ジヒドロキシ化合物が、環状構造を有し、かつエーテル構造を有する化合物である請求項1乃至13のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  15.  前記式(5)の結合構造を有する特定ジヒドロキシ化合物が、下記構造式(6)で表される複素環基を有する化合物である請求項14に記載のポリカーボネート樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000003
  16.  重縮合により得られたポリカーボネート樹脂を、固化させることなく溶融状態のままフィルターに供給して濾過する工程を含む請求項1乃至15のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  17.  重縮合により得られたポリカーボネート樹脂、又は、それを上記フィルターで濾過した樹脂を、ダイスヘッドからストランドの形態で吐出し、冷却後、カッターを用いてペレット化する工程を含む請求項1乃至16のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  18.  請求項17に記載の製造方法により製造されたポリカーボネート樹脂ペレット。
  19.  厚さ30μm±5μmのフィルムとしたときに含まれる、最大長が20μm以上の異物が1000個/m以下である請求項18に記載のポリカーボネート樹脂ペレット。
  20.  請求項1乃至17のいずれか1項に記載の製造方法で得られたポリカーボネート樹脂を製膜して得られることを特徴とする透明フィルム。
  21.  請求項20に記載の透明フィルムを、少なくとも一方向に延伸して得られることを特徴とする延伸フィルム。
  22.  波長450nmで測定した位相差(Re450)と波長550nmで測定した位相差(Re550)の比が下記式(7)を満足することを特徴とする請求項20又は21に記載の延伸フィルム。
     0.5 ≦ Re450/Re550 ≦ 1.0  (7)
  23.  フルオレン構造を有するジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、連続的に重縮合して得られたポリカーボネート樹脂からなる延伸フィルムであって、測定波長590nmにおける面内複屈折が0.0010以上であることを特徴とする延伸フィルム。
  24.  前記延伸フィルムの波長450nmで測定した位相差(Re450)と波長550nmで測定した位相差(Re550)の比が下記式(8)を満足する請求項23に記載の延伸フィルム。
     0.80 ≦ Re450/Re550 ≦ 0.95  (8)
  25.  厚みが80μm以下である請求項23または請求項24に記載の延伸フィルム。
  26.  前記反応器は少なくとも直列に複数器接続されるものであり、最終重合反応器が、内部に複数の水平回転軸を有する横型攪拌反応器である請求項23乃至25のいずれか1項に記載の延伸フィルム。
  27.  前記最終重合反応器において、攪拌翼回転数をω(rpm)、該反応器出口における反応液の溶融粘度をμ(Pa・s)とした場合に、下記式(3)を満たす請求項23乃至26のいずれか1項に記載の延伸フィルム。
     500 ≦ ωμ ≦ 20000   (3)
  28.  前記ωが5rpm未満である請求項23乃至27のいずれか1項に記載の延伸フィルム。
  29.  前記フルオレン構造を有するジヒドロキシ化合物が、下記式(1)で表される化合物である請求項23乃至28のいずれか1項に記載の延伸フィルム。
    Figure JPOXMLDOC01-appb-C000004
    [一般式(1)中、R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6~炭素数20のアリール基を表し、それぞれのベンゼン環に4つある置換基のそれぞれとして、同一の又は異なる基が配されている。Xは置換若しくは無置換の炭素数2~炭素数10のアルキレン基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6~炭素数20のアリーレン基を表す。m及びnはそれぞれ独立に0~5の整数である。]
  30.  前記式(1)で表されるフルオレン部位を有するジヒドロキシ化合物以外に、構造の一部に下記式(5)で表される部位を有する特定ジヒドロキシ化合物を含むジヒドロキシ化合物を用いる請求項23乃至29のいずれか1項に記載の延伸フィルム。
    Figure JPOXMLDOC01-appb-C000005

    [但し、式(5)で表される部位が-CH-OHの一部を構成する部位である場合、および前記フルオレン構造を有するジヒドロキシ化合物の一部を構成する部位である場合を除く。]
  31.  前記式(5)で表される部位を有する特定ジヒドロキシ化合物が、環状構造を有し、かつエーテル構造を有する化合物である請求項23乃至30のいずれか1項に記載の延伸フィルム。
  32.  前記式(5)の結合構造を有する特定ジヒドロキシ化合物が、下記構造式(6)で表される複素環基を有する化合物である請求項23乃至31のいずれか1項に記載の延伸フィルム。
    Figure JPOXMLDOC01-appb-C000006
  33.  前記ポリカーボネート樹脂のガラス転移温度が120℃以上150℃以下である請求項23乃至32のいずれか1項に記載の延伸フィルム。
  34.  前記ポリカーボネート樹脂の還元粘度が0.38dL/g以上0.50dL/g以下である請求項23乃至33のいずれか1項に記載の延伸フィルム。
  35.  前記ポリカーボネート樹脂が、前記ポリカーボネート樹脂を厚さ100μm±10μmの未延伸フィルムに成型し、ガラス転移温度+6℃の条件下、引張速度625%/分で引張試験をした際の破断に至るまでの伸度(引張破断伸度)が220%以上であることを特徴とする請求項23乃至34のいずれか1項に記載の延伸フィルム。
PCT/JP2012/058748 2011-03-31 2012-03-30 ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂ペレットおよび延伸フィルム WO2012133856A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-080053 2011-03-31
JP2011080053 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133856A1 true WO2012133856A1 (ja) 2012-10-04

Family

ID=46931548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058748 WO2012133856A1 (ja) 2011-03-31 2012-03-30 ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂ペレットおよび延伸フィルム

Country Status (2)

Country Link
JP (1) JP5857852B2 (ja)
WO (1) WO2012133856A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153738A1 (ja) * 2011-05-09 2012-11-15 三菱化学株式会社 ポリカーボネート樹脂及びそれよりなる透明フィルム
JP5445652B1 (ja) * 2012-10-03 2014-03-19 三菱化学株式会社 ポリカーボネート樹脂の製造方法
JP6146151B2 (ja) * 2013-06-14 2017-06-14 三菱化学株式会社 ポリカーボネート樹脂の製造方法
JP6861569B2 (ja) * 2016-04-28 2021-04-21 三井化学株式会社 ポリカーボネート樹脂、その製造方法および光学成形体
TW202426537A (zh) 2017-12-28 2024-07-01 日商帝人股份有限公司 聚(酯)碳酸酯
KR20230051196A (ko) 2020-10-27 2023-04-17 신닛폰 리카 가부시키가이샤 환식 디올 화합물, 해당 화합물의 제조 방법 및 해당 화합물의 용도
JPWO2022163684A1 (ja) 2021-01-27 2022-08-04

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003167121A (ja) * 2001-11-30 2003-06-13 Fuji Photo Film Co Ltd ポリカーボネート系位相差フィルムおよびその製造方法
WO2006041190A1 (ja) * 2004-10-14 2006-04-20 Teijin Limited 光弾性定数の低いポリカーボネート及びそれからなるフィルム
WO2009075305A1 (ja) * 2007-12-13 2009-06-18 Mitsubishi Chemical Corporation ポリカーボネートの製造方法
JP2012031369A (ja) * 2009-11-17 2012-02-16 Mitsubishi Chemicals Corp ポリカーボネート樹脂
JP2012031370A (ja) * 2009-11-19 2012-02-16 Mitsubishi Chemicals Corp ポリカーボネート樹脂フィルム並びに透明フィルム及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2893134B2 (ja) * 1990-10-16 1999-05-17 旭化成工業株式会社 末端ヒドロキシル基を有するポリカーボネートの製造方法
JP5532531B2 (ja) * 2006-06-19 2014-06-25 三菱化学株式会社 ポリカーボネート共重合体及びその製造方法
JP5875747B2 (ja) * 2008-11-28 2016-03-02 三菱化学株式会社 ポリカーボネート原料用ジヒドロキシ化合物の保存方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003167121A (ja) * 2001-11-30 2003-06-13 Fuji Photo Film Co Ltd ポリカーボネート系位相差フィルムおよびその製造方法
WO2006041190A1 (ja) * 2004-10-14 2006-04-20 Teijin Limited 光弾性定数の低いポリカーボネート及びそれからなるフィルム
WO2009075305A1 (ja) * 2007-12-13 2009-06-18 Mitsubishi Chemical Corporation ポリカーボネートの製造方法
JP2012031369A (ja) * 2009-11-17 2012-02-16 Mitsubishi Chemicals Corp ポリカーボネート樹脂
JP2012031370A (ja) * 2009-11-19 2012-02-16 Mitsubishi Chemicals Corp ポリカーボネート樹脂フィルム並びに透明フィルム及びその製造方法

Also Published As

Publication number Publication date
JP2012214803A (ja) 2012-11-08
JP5857852B2 (ja) 2016-02-10

Similar Documents

Publication Publication Date Title
JP5857425B2 (ja) ポリカーボネートの製造方法
TWI503349B (zh) 聚碳酸酯樹脂及由其所構成之透明薄膜
JP6015071B2 (ja) ポリカーボネートの製造方法および透明フィルム
WO2012133856A1 (ja) ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂ペレットおよび延伸フィルム
JP6823899B2 (ja) 位相差フィルム、円偏光板及び画像表示装置
JP5962148B2 (ja) ポリカーボネートの製造方法およびポリカーボネートペレット
JP5948878B2 (ja) ポリカーボネートの製造方法
JP6911972B2 (ja) 重縮合系樹脂及びそれよりなる光学フィルム
WO2012133236A1 (ja) ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂、ポリカーボネート樹脂製フィルムおよびポリカーボネート樹脂ペレットの製造方法
WO2012133855A1 (ja) ポリカーボネート樹脂の製造方法
JP2014074106A (ja) ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂ペレットおよび延伸フィルム
JP2015007188A (ja) ポリカーボネートの製造方法
WO2014054311A1 (ja) ポリカーボネート樹脂の製造方法
JP5939012B2 (ja) ポリカーボネート樹脂の製造方法
JP5974682B2 (ja) ポリカーボネートの製造方法
JP6089626B2 (ja) ポリカーボネートの製造方法
JP2015183086A (ja) ポリカーボネート樹脂の製造方法
JP5928120B2 (ja) ポリカーボネートの製造方法
JP5929427B2 (ja) ポリカーボネートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763385

Country of ref document: EP

Kind code of ref document: A1