[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012133236A1 - ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂、ポリカーボネート樹脂製フィルムおよびポリカーボネート樹脂ペレットの製造方法 - Google Patents

ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂、ポリカーボネート樹脂製フィルムおよびポリカーボネート樹脂ペレットの製造方法 Download PDF

Info

Publication number
WO2012133236A1
WO2012133236A1 PCT/JP2012/057619 JP2012057619W WO2012133236A1 WO 2012133236 A1 WO2012133236 A1 WO 2012133236A1 JP 2012057619 W JP2012057619 W JP 2012057619W WO 2012133236 A1 WO2012133236 A1 WO 2012133236A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
filter
temperature
polycarbonate
producing
Prior art date
Application number
PCT/JP2012/057619
Other languages
English (en)
French (fr)
Inventor
正志 横木
智亮 金政
義隆 白石
慎悟 並木
剛一 永尾
山本 正規
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to KR1020137025523A priority Critical patent/KR101944129B1/ko
Priority to CN201280016791.6A priority patent/CN103476561B/zh
Publication of WO2012133236A1 publication Critical patent/WO2012133236A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/10Conditioning or physical treatment of the material to be shaped by grinding, e.g. by triturating; by sieving; by filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a method for efficiently and stably producing a polycarbonate resin which is excellent in thermal stability, hue, and mechanical strength and has few foreign matters.
  • Polycarbonate resins generally contain bisphenols as monomer components and take advantage of transparency, heat resistance, mechanical strength, etc., so-called electrical / electronic parts, automotive parts, optical recording media, lenses, and other optical fields. Widely used as engineering plastics.
  • Patent Document 1 a method for obtaining a polycarbonate resin while using a special dihydroxy compound as a monomer component and distilling off a monohydroxy compound by-produced by transesterification with a carbonic acid diester under reduced pressure.
  • the polycarbonate resin obtained in this way has a problem that foreign matters are mixed in during its production process, etc., and foreign matters are mixed into a molded body molded using the resin, and the commercial value is remarkably lowered. there were. In particular, in optical applications and the like, contamination or coloring of foreign matters has been a particularly serious problem.
  • Patent Documents 7 and 8 As a method for reducing the mixing of foreign substances, a method of filtering a resin obtained by polycondensation using a filter is proposed for polycarbonate resins containing bisphenols as monomer components (for example, Patent Documents 7 and 8). .
  • a polycarbonate resin containing a special dihydroxy compound other than bisphenol as a monomer component starts to decompose at a lower temperature than a polycarbonate resin containing bisphenol as a monomer component.
  • An object of the present invention is to provide a method for efficiently and stably producing a polycarbonate resin that solves the above-mentioned conventional problems and is excellent in thermal stability, hue, and mechanical strength and has few foreign matters. is there.
  • the present inventor polycondensed by a transesterification reaction using a catalyst, a specific dihydroxy compound and a carbonic acid diester as raw material monomers, and obtained polycarbonate resin.
  • the inventors have found a method for stably producing polycarbonate resin pellets that are excellent in mechanical strength and hue and have few foreign matters by filtering the polycarbonate resin under specific conditions.
  • the gist of the present invention resides in the following [1] to [23].
  • [1] A method for producing a polycarbonate resin in which a polycarbonate resin obtained by polycondensation of a dihydroxy compound and a carbonic acid diester is filtered using a filter and then solidified by cooling. It contains at least a dihydroxy compound having a site represented by the general formula (1), the mesh opening of the filter is 50 ⁇ m or less, and the temperature of the polycarbonate resin after filtration using the filter is 200 ° C. or more and less than 280 ° C.
  • a method for producing a polycarbonate resin, comprising filtering the polycarbonate resin as described above.
  • the melt viscosity at a shear rate of 91.2 sec ⁇ 1 measured at 240 ° C. is 500 Pa ⁇ s to 3000 Pa ⁇ s [1] to [4] ]
  • the filter is stored in a container, and a value obtained by dividing the internal volume (m 3 ) of the storage container by the flow rate (m 3 / min) of the polycarbonate resin to be filtered is 2 to 10 minutes.
  • the polycarbonate resin before filtration is supplied from the lower part of the storage container of the filter, and the polycarbonate resin after filtration is discharged from the upper part of the storage container. Of producing a polycarbonate resin.
  • the polycondensation is performed using a catalyst, and the catalyst is at least one metal compound selected from the group consisting of a metal of Group 2 of the long-period periodic table and lithium [1]. Thru
  • the screw of the extruder is composed of a plurality of elements, and at least one of the elements is a kneading disk, and the total length of the kneading disk is 20% of the total length of the screw.
  • a polycarbonate resin having a yellow index value of 30 or less obtained by the production method according to any one of [1] to [20].
  • the present invention is excellent in mechanical strength and hue, and has a small amount of foreign matter, such as an injection molding field such as an electric / electronic part or an automobile part, a film or sheet field, a bottle or container field, and a camera lens or a finder lens.
  • Lens applications such as CCD or CMOS lenses, retardation films used for liquid crystal or plasma displays, diffusion sheets, films such as polarizing films, sheets, optical disks, optical materials, optical components, dyes or charge transfer agents, etc. It is possible to efficiently and stably produce polycarbonate resin pellets having performance applicable to a wide range of fields such as binder use for fixing the resin.
  • FIG. 1 is a process diagram showing an example of a manufacturing process according to the present invention.
  • the method for producing a polycarbonate resin pellet of the present invention is a method for producing a polycarbonate resin in which a polycarbonate resin obtained by polycondensation of a dihydroxy compound and a carbonic acid diester is filtered using a filter and then solidified by cooling.
  • the compound includes at least a dihydroxy compound having a site represented by the following general formula (1) in a part of the structure, the opening of the filter is 50 ⁇ m or less, and the temperature of the resin after filtration using the filter is It is characterized by filtering so as to be 200 ° C. or higher and lower than 280 ° C.
  • ⁇ Raw material monomers and polymerization catalyst> (Dihydroxy compound)
  • a carbonic acid diester and a dihydroxy compound are used as raw material monomers, but at least one of the dihydroxy compounds has a part of the structure having a site represented by the above general formula (1) It is a dihydroxy compound (hereinafter sometimes referred to as “the dihydroxy compound of the present invention”). That is, the dihydroxy compound of the present invention refers to a compound containing at least two hydroxyl groups and at least the structural unit of the general formula (1).
  • the dihydroxy compound of the present invention is not particularly limited as long as it has a site represented by the above general formula (1) in a part of its structure.
  • oxyalkylene glycols such as diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol; 9,9-bis [4- (2-hydroxyethoxy) phenyl] Fluorene, 9,9-bis [4- (2-hydroxyethoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (2-hydroxyethoxy) -3-isopropylphenyl] fluorene, 9,9- Bis [4- (2-hydroxyethoxy) -3-isobutylphenyl] fluorene, 9,9-bis [4- (2-hydroxyethoxy) -3-tert-butylphenyl] fluorene, 9,9-bis [4- (2-Hydroxyethoxy) -3
  • diethylene glycol, triethylene glycol, or polyethylene glycol is preferable from the viewpoints of availability, handling, reactivity during polymerization, and hue of the obtained polycarbonate resin.
  • cyclic sugar structures such as anhydrous sugar alcohols represented by the dihydroxy compound represented by the following general formula (5) or spiroglycol represented by the following general formula (6) [preferably, A compound having a moiety represented by the general formula (1) that is part of a cyclic ether structure] is preferred.
  • examples of the dihydroxy compound represented by the general formula (5) include isosorbide, isomannide, and isoide which are related to stereoisomers. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • dihydroxy compounds it is preferable to use a dihydroxy compound having no aromatic ring structure from the viewpoint of the hue of the polycarbonate resin.
  • isosorbide obtained by dehydrating and condensing sorbitol produced from various starches that are abundant as plant-derived resources is easy to obtain and manufacture, light resistance, optical properties, moldability From the viewpoint of heat resistance and carbon neutral, it is most preferable.
  • a constituent unit derived from a dihydroxy compound other than the above-described dihydroxy compound of the present invention (hereinafter sometimes referred to as “other dihydroxy compound”) is included as a raw material monomer. Good.
  • dihydroxy compounds from the viewpoint of the hue of the polycarbonate resin, it is selected from the group consisting of dihydroxy compounds having no aromatic ring structure in the molecular structure, that is, aliphatic dihydroxy compounds and alicyclic dihydroxy compounds. It is preferred to use at least one compound.
  • 1,3-propanediol, 1,4-butanediol or 1,6-hexanediol is particularly preferable.
  • 1,4-cyclohexanedimethanol or tricyclodecane dimethanol is particularly preferable. Among these, 1,4-cyclohexanedimethanol is preferable from the viewpoint of improving the polymerization reactivity and toughness.
  • the ratio of the structural unit derived from the dihydroxy compound of the present invention to the structural unit derived from all dihydroxy compounds is preferably 20 mol% or more, more preferably 30 mol% or more, and particularly preferably 50 mol% or more. Preferably there is.
  • the proportion of structural units derived from other dihydroxy compounds is preferably less than 80 mol%, more preferably 70 mol% or less, with respect to structural units derived from all dihydroxy compounds. It is particularly preferred that
  • the dihydroxy compound of the present invention may contain a stabilizer such as a reducing agent, antioxidant, oxygen scavenger, light stabilizer, antacid, pH stabilizer or heat stabilizer.
  • a stabilizer such as a reducing agent, antioxidant, oxygen scavenger, light stabilizer, antacid, pH stabilizer or heat stabilizer.
  • a basic stabilizer since the dihydroxy compound of the present invention is easily altered under acidic conditions, it is preferable to contain a basic stabilizer when stored before use.
  • Examples of the basic stabilizer include hydroxides, carbonates, phosphates, phosphites, hypophosphites of group 1 or group 2 metals in the long-period periodic table (Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005).
  • Phosphate, borate and fatty acid salt tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylphenylammonium hydroxide , Triethylmethylammonium hydroxide, triethylbenzylammonium hydroxide, triethylpheny Basic ammonium compounds such as ammonium hydroxide, tributylbenzylammonium hydroxide, tributylphenylammonium hydroxide, tetraphenylammonium hydroxide, benzyltriphenylammonium hydroxide, methyltriphenylammonium hydroxide, and butyltriphenylammonium hydroxide; and 4-aminopyridine, 2-amino
  • the content of these stabilizers in the dihydroxy compound of the present invention is not particularly limited, but if it is too small, the effect of preventing alteration of the dihydroxy compound of the present invention may not be obtained. It may lead to modification of the compound. Therefore, the stabilizer content is usually preferably 0.0001% by weight to 1% by weight, more preferably 0.001% by weight to 0.1% by weight, based on the dihydroxy compound of the present invention. .
  • the dihydroxy compound of the present invention has a cyclic ether structure such as isosorbide, it is easily oxidized by oxygen. Therefore, during storage or production, in order to prevent decomposition by oxygen, water should not be mixed, and It is preferable to use an oxygen scavenger or handle under a nitrogen atmosphere.
  • decomposition products such as formic acid may be generated. If isosorbide containing these decomposition products is used as a raw material for the production of polycarbonate resin, it may lead to coloration of the resulting polycarbonate resin, and may not only significantly deteriorate the physical properties but also affect the polymerization reaction. In some cases, a high molecular weight polymer cannot be obtained.
  • a polycarbonate resin can be obtained by polycondensation by a transesterification reaction using a dihydroxy compound containing the dihydroxy compound of the present invention described above and a carbonic acid diester as raw materials.
  • Examples of the carbonic acid diester used in the present invention include those represented by the following general structural formula (7). These carbonic acid diesters may be used alone or in combination of two or more.
  • a 1 and A 2 are substituted or unsubstituted aliphatic groups having 1 to 18 carbon atoms or substituted or unsubstituted aromatic groups, and A 1 and A 2 are the same. May be different.
  • a 1 and A 2 are preferably a substituted or unsubstituted aromatic hydrocarbon group, more preferably an unsubstituted aromatic hydrocarbon group.
  • substituent of the aliphatic hydrocarbon group include an ester group, an ether group, a carboxylic acid, an amide group, and a halogen.
  • substituent of the aromatic hydrocarbon group include alkyl groups such as a methyl group and an ethyl group.
  • Examples of the carbonic acid diester represented by the general formula (7) include substituted diphenyl carbonates such as diphenyl carbonate and ditolyl carbonate, dimethyl carbonate, diethyl carbonate, and di-t-butyl carbonate. Among them, preferred is diphenyl carbonate or substituted diphenyl carbonate, and particularly preferred is diphenyl carbonate.
  • Carbonic acid diesters may contain impurities such as chloride ions, which may hinder the polymerization reaction or worsen the hue of the resulting polycarbonate resin. It is preferable to use what was done.
  • a polycarbonate resin can be obtained by polycondensing a dihydroxy compound containing the dihydroxy compound of the present invention and a carbonic acid diester by a transesterification reaction.
  • the dihydroxy compound and carbonic acid diester as raw materials can be transesterified even if they are dropped independently into the reaction vessel, but they can also be mixed uniformly before the transesterification.
  • the mixing temperature is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, and the upper limit is preferably 250 ° C. or lower, more preferably 200 ° C. or lower, still more preferably 150 ° C. or lower. Among these, 100 ° C. or higher and 130 ° C. or lower is preferable.
  • the mixing temperature is too low, the dissolution rate may be slow or the solubility may be insufficient, often causing problems such as solidification. If the mixing temperature is too high, the dihydroxy compound may be thermally deteriorated, resulting in deterioration of the hue of the polycarbonate resin obtained, which may adversely affect light resistance or heat resistance.
  • the oxygen concentration in the operating environment in which the dihydroxy compound containing the dihydroxy compound of the present invention as a raw material and the carbonic acid diester are mixed is preferably 10 vol% or less, more preferably 0.0001 vol% to 10 vol%, and in particular 0 It is preferable to carry out in an atmosphere of 0.0001 vol% to 5 vol%, particularly 0.0001 vol% to 1 vol% from the viewpoint of preventing hue deterioration.
  • the carbonic acid diester is preferably used in a molar ratio of 0.90 to 1.20, more preferably 0.95 to 1, based on all dihydroxy compounds including the dihydroxy compound of the present invention used in the reaction. .10, more preferably 0.97 to 1.03, particularly preferably 0.99 to 1.02.
  • the molar ratio When the molar ratio is decreased, the terminal hydroxyl group of the produced polycarbonate resin is increased, the thermal stability of the polymer is deteriorated, coloring is caused at the time of molding, the rate of the transesterification reaction is decreased, and the desired high molecular weight.
  • the body may not be obtained.
  • the rate of transesterification decreases, the production of polycarbonate having a desired molecular weight becomes difficult, the amount of residual carbonic diester in the polycarbonate resin increases, and during extrusion or molding In some cases, gas may be generated.
  • the decrease in the transesterification reaction rate may increase the thermal history during the polymerization reaction and may deteriorate the hue of the resulting polycarbonate resin.
  • the amount of residual carbonic diester in the obtained polycarbonate resin increases, which becomes a gas at the time of molding and causes molding defects. Bleed out from the product, which is not preferable.
  • the concentration of the diester carbonate remaining in the polycarbonate resin pellet obtained by the method of the present invention is preferably 200 ppm by weight or less, more preferably 100 ppm by weight or less, particularly preferably 60 ppm by weight or less, and particularly preferably 30 ppm by weight or less.
  • a transesterification catalyst (hereinafter simply referred to as “catalyst”). Or “polymerization catalyst”) can be present.
  • the transesterification catalyst can particularly affect the thermal stability of the polycarbonate resin, or the yellow index (YI) value representing the hue.
  • the transesterification catalyst used is not limited as long as it satisfies the thermal stability and hue of the polycarbonate resin.
  • a metal compound, a basic boron compound, a basic phosphorus compound, a basic ammonium compound, and a group 1 or group 2 in the long-period periodic table
  • Examples include basic compounds such as amine compounds.
  • Group 1 metal compounds and / or Group 2 metal compounds are used. More preferably, it is a metal compound of a metal selected from the group consisting of a long-period group 2 metal and lithium.
  • the group 1 metal compound and / or the group 2 metal compound is usually used in the form of a hydroxide or a salt such as carbonate, carboxylate or phenol salt. From the viewpoint of easiness, a hydroxide, carbonate or acetate is preferred, and acetate is preferred from the viewpoint of hue and polymerization activity.
  • group 1 metal compound examples include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, cesium hydrogen carbonate, sodium carbonate, and carbonic acid.
  • Group 2 metal compound examples include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, magnesium hydrogen carbonate, strontium hydrogen carbonate, calcium carbonate.
  • a magnesium compound, a calcium compound or a barium compound is preferable, and at least one metal compound selected from the group consisting of a magnesium compound and a calcium compound is further preferable, and most preferably calcium, from the viewpoint of polymerization activity and the hue of the polycarbonate resin obtained.
  • a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, or an amine compound can be used in combination with the group 1 metal compound and / or the group 2 metal compound.
  • a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, or an amine compound can be used in combination with the group 1 metal compound and / or the group 2 metal compound.
  • a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, or an amine compound can be used in combination with the group 1 metal compound and / or the group 2 metal compound.
  • it since it may volatilize during the polymerization reaction and cause trouble, it is particularly preferable to use only the Group 1 metal compound and / or the Group 2 metal compound.
  • Examples of the basic boron compound that can be used in combination include tetramethylboron, tetraethylboron, tetrapropylboron, tetrabutylboron, trimethylethylboron, trimethylbenzylboron, trimethylphenylboron, triethylmethylboron, triethylbenzylboron, and triethyl.
  • Sodium salt, potassium salt, lithium salt, calcium salt, barium salt, magnesium salt and strontium such as phenylboron, tributylbenzylboron, tributylphenylboron, tetraphenylboron, benzyltriphenylboron, methyltriphenylboron and butyltriphenylboron Examples include salts.
  • Examples of the basic phosphorus compound that can be used in combination include triethylphosphine, tri-n-propylphosphine, triisopropylphosphine, tri-n-butylphosphine, triphenylphosphine, tributylphosphine, and quaternary phosphonium salts. .
  • Examples of the basic ammonium compound that can be used in combination include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylbenzylammonium hydroxide, and trimethyl.
  • Phenylammonium hydroxide triethylmethylammonium hydroxide, triethylbenzylammonium hydroxide, triethylphenylammonium hydroxide, tributylbenzylammonium hydroxide, tributylphenylammonium hydroxide, tetraphenylammonium hydroxide, benzyltriphenylammonium hydroxide, methyltrimethyl Phenyl Nmo onium hydroxide and butyltriphenyl ammonium hydroxide, and the like.
  • Examples of the amine compounds that can be used in combination include 4-aminopyridine, 2-aminopyridine, N, N-dimethyl-4-aminopyridine, 4-diethylaminopyridine, 2-hydroxypyridine, 2-methoxypyridine, 4 -Methoxypyridine, 2-dimethylaminoimidazole, 2-methoxyimidazole, imidazole, 2-mercaptoimidazole, 2-methylimidazole, aminoquinoline and the like.
  • the amount of the catalyst used is preferably from 0.1 ⁇ mol to 300 ⁇ mol, more preferably from 0.5 ⁇ mol to 100 ⁇ mol, still more preferably from 0.5 ⁇ mol to 50 ⁇ mol, and even more preferably from 0.1 ⁇ mol to 300 ⁇ mol per 1 mol of all dihydroxy compounds used.
  • the amount is 5 ⁇ mol to 20 ⁇ mol, and particularly preferably 1 ⁇ mol to 5 ⁇ mol.
  • the amount of metal is preferably usually 0.1 ⁇ mol or more per 1 mol of all dihydroxy compounds used, Preferably it is 0.5 ⁇ mol or more, particularly preferably 0.7 ⁇ mol or more.
  • the upper limit is usually preferably 20 ⁇ mol, more preferably 10 ⁇ mol, still more preferably 3 ⁇ mol, particularly preferably 1.5 ⁇ mol, and most preferably 1.0 ⁇ mol.
  • the total amount of these compounds in the polycarbonate resin is usually preferably 1 ppm by weight or less, more preferably 0.8 ppm by weight or less, and even more preferably 0.7 ppm by weight or less as the amount of metal. .
  • the amount of metal in the polycarbonate resin can be measured using a method such as atomic emission, atomic absorption, or Inductively Coupled Plasma (ICP) after recovering the metal in the polycarbonate resin by a method such as wet ashing. I can do it.
  • a method such as atomic emission, atomic absorption, or Inductively Coupled Plasma (ICP) after recovering the metal in the polycarbonate resin by a method such as wet ashing. I can do it.
  • ICP Inductively Coupled Plasma
  • the catalyst may be added directly to the reactor, or may be added to a raw material adjusting tank in which a dihydroxy compound and a carbonic acid diester are mixed in advance, and then present in the reactor. You may add in the piping which supplies a raw material.
  • the method for obtaining a polycarbonate resin by polycondensation of the dihydroxy compound and the carbonic acid diester may be carried out in multiple stages using a plurality of reactors in the presence of the catalyst.
  • the reaction format may be any of batch, continuous, or a combination of batch and continuous.
  • the continuous type is preferable from the viewpoint of stabilizing the quality.
  • the unreacted monomer will be distilled, causing the molar ratio of the dihydroxy compound and the carbonic acid diester to change, resulting in a decrease in the polymerization rate.
  • a polymer having a predetermined molecular weight or terminal group cannot be obtained, and as a result, the object of the present invention may not be achieved.
  • a reflux condenser for the polymerization reactor in order to suppress the amount of monomer to be distilled off, and the effect is particularly great in a reactor in the early stage of polymerization where there are many unreacted monomer components.
  • the temperature of the refrigerant introduced into the reflux condenser can be appropriately selected according to the monomer used.
  • the temperature of the refrigerant introduced into the reflux condenser is preferably 45 to 180 ° C. at the inlet of the reflux condenser, more preferably 80 to 150 ° C., and particularly preferably 100 to 140 ° C.
  • the temperature of the refrigerant is too high, the amount of reflux is reduced and the effect is reduced. On the other hand, if the temperature is too low, the distillation efficiency of the monohydroxy compound that should be distilled off tends to be reduced.
  • the refrigerant include warm water, steam, and heat medium oil, and steam or heat medium oil is preferable.
  • the catalyst is used for polymerization in multiple stages using a plurality of reactors.
  • the reason for carrying out the polymerization in a plurality of reactors is that at the initial stage of the polymerization reaction, since there are many monomers contained in the reaction liquid, it is important to suppress the volatilization of the monomers while maintaining the necessary polymerization rate. In the latter stage of the polymerization reaction, it is important to sufficiently distill off the by-produced monohydroxy compound in order to shift the equilibrium to the polymerization side, and desirable polymerization reaction conditions differ between the initial stage and the latter stage. Thus, in order to set different polymerization reaction conditions, it is preferable from the viewpoint of production efficiency to use a plurality of polymerization reactors arranged in series.
  • the number of reactors used in the polymerization in the present invention is preferably at least two, more preferably three or more, and still more preferably 3 to 5 from the viewpoint of production efficiency. And particularly preferably four.
  • reaction conditions can be set in each reactor, and the temperature and pressure are continuously changed in each reactor. May be.
  • the polymerization catalyst can be added to the raw material preparation tank, the raw material storage tank, or directly to the polymerization tank. From the viewpoint of supply stability and polymerization control, the polymerization catalyst is added to the polymerization tank.
  • a catalyst supply pipe may be installed in the middle of the raw material pipe before being supplied, and is preferably supplied as an aqueous solution.
  • the productivity is lowered or the thermal history of the product is increased. If the temperature is too high, not only the monomer is volatilized but also decomposition or coloring of the polycarbonate resin may be promoted. .
  • the maximum internal temperature of the polymerization reactor is preferably 140 to 270 ° C., more preferably 170 to 240 ° C., still more preferably 180 to 210 ° C., and preferably 110 to 1 kPa, more
  • the monohydroxy compound produced as a by-product is removed from the reaction system under a pressure of 70 to 5 kPa, more preferably 30 to 10 kPa (absolute pressure), preferably 0.1 to 10 hours, more preferably 0.5 to 3 hours. Carried out while distilling.
  • the reaction in the first stage in the present invention refers to a reaction in a reactor at the uppermost stream of the process in a reactor in which 5% by weight or more of a monohydroxy compound distilled through the entire polymerization reaction is distilled. .
  • the pressure in the reaction system is gradually reduced from the pressure in the first stage, and the monohydroxy compound that is subsequently generated is removed from the reaction system.
  • it is 2 kPa or less, more preferably 1 kPa or less, preferably 210 ° C. or more, more preferably 220 ° C. or more, preferably 270 ° C. or less, more preferably 250 ° C. or less, more preferably 240 ° C. or less, preferably 0 1-10 hours, more preferably 1-6 hours, particularly preferably 0.5-3 hours.
  • the maximum internal temperature in all reaction steps is preferably less than 260 ° C, more preferably less than 250 ° C, In particular, the temperature is preferably less than 245 ° C.
  • the internal temperature indicates the temperature of the process liquid, and is usually measured by a thermometer using a thermocouple or the like provided in the reactor.
  • a thermometer using a thermocouple or the like provided in the reactor.
  • the yellow index (YI) value representing the hue tends to increase when the polymerization temperature is increased and the polymerization time is excessively prolonged.
  • the monohydroxy compound distilled off as a by-product in the reaction is preferably used as a raw material for fuel or chemicals from the viewpoint of effective utilization of resources.
  • the polycarbonate resin of the present invention is filtered using a filter after performing the above-mentioned polycondensation reaction.
  • the polycarbonate resin obtained by polycondensation is introduced into an extruder and then discharged from the extruder in order to remove low molecular weight components contained in the polycarbonate resin or to add and knead a heat stabilizer or the like. Is preferably filtered using a filter.
  • Examples of the method for filtering the polycarbonate resin obtained by polycondensation as described above using a filter include the following methods.
  • a polycarbonate resin is extracted from the final polymerization reactor in a molten state using a gear pump or a screw, and filtered through the filter.
  • Polycarbonate resin is supplied from a final polymerization reactor to a uniaxial or biaxial extruder in a molten state, melt extruded, filtered through the filter, cooled and solidified in the form of a strand, and pelletized with a rotary cutter or the like.
  • Polycarbonate resin is supplied to a single-screw or twin-screw extruder in a molten state without being solidified from the final polymerization reactor, melt-extruded, then cooled and solidified in the form of a strand, pelletized, and the pellet is extruded again.
  • the polycarbonate resin is extracted from the final polymerization reactor in a molten state, cooled and solidified in the form of strands without passing through an extruder, and once pelletized, then the pellets are supplied to a single or twin screw extruder and melted. After extruding, it is filtered by the filter, cooled and solidified in the form of a strand, and pelletized.
  • the resin in order to minimize the heat history and suppress thermal degradation such as deterioration of hue or molecular weight, the resin is put into a single or twin screw extruder in a molten state without solidifying from the final polymerization reactor.
  • a method of feeding, melting and extruding, feeding to the filter using a gear pump, filtering, discharging from a die, cooling and solidifying in the form of a strand, and pelletizing with a rotary cutter or the like is preferable.
  • Isosorbide is used as a dihydroxy compound of the present invention as a raw material monomer
  • 1,4-cyclohexanedimethanol (CHDM) is used as another dihydroxy compound
  • diphenyl carbonate (DPC) is used as a carbonic acid diester
  • calcium acetate is used as a polymerization catalyst. It shall be.
  • a DPC melt prepared at a predetermined temperature in a nitrogen gas atmosphere is continuously supplied from the raw material supply port 1a to the raw material mixing tank 2a.
  • the ISB melt and the CHDM melt measured in a nitrogen gas atmosphere are continuously supplied to the raw material mixing tank 2a from the raw material supply ports 1b and 1c, respectively. And these are mixed by the stirring blade 3a within the raw material mixing tank 2a, and a raw material mixing melt is obtained.
  • the obtained raw material mixture melt is continuously supplied to the first vertical stirring reaction tank 6a via the raw material supply pump 4a and the raw material filtration filter 5a. Further, the raw material catalyst is continuously supplied as an aqueous solution from the catalyst supply port 1d in the middle of the raw material mixed melt transfer pipe.
  • a first vertical stirring reaction tank 6a, a second vertical stirring reaction tank 6b, a third vertical stirring reaction tank 6c, and a fourth horizontal stirring reaction tank 6d are provided in series. It is done. In each reactor, the liquid level is kept constant, a polycondensation reaction is performed, and the polymerization reaction liquid discharged from the bottom of the first vertical stirring reaction tank 6a continues to the second vertical stirring reaction tank 6b.
  • the third vertical stirring reaction tank 6c is successively supplied to the fourth horizontal stirring reaction tank 6d in order, and the polycondensation reaction proceeds.
  • the reaction conditions in each reactor are preferably set so as to become high temperature, high vacuum, and low stirring speed as the polycondensation reaction proceeds.
  • Max blend blades 7a, 7b and 7c are provided in the first vertical stirring reaction tank 6a, the second vertical stirring reaction tank 6b and the third vertical stirring reaction tank 6c, respectively.
  • the fourth horizontal stirring reaction tank 6d is provided with a biaxial glasses-type stirring blade 7d. Since the reaction liquid to be transferred becomes highly viscous after the third vertical stirring reaction tank 6c, a gear pump 4b is provided.
  • the amount of supplied heat may be particularly large, so that the internal heat exchangers 8a and 8b are respectively provided so that the heat medium temperature does not become excessively high. Is provided.
  • distilling tubes 11a, 11b, 11c, and 11d for discharging by-products generated by the polycondensation reaction are attached to these four reactors, respectively.
  • reflux condensers 9a and 9b and reflux pipes 10a and 10b are provided in order to return a part of the distillate to the reaction system.
  • the reflux ratio can be controlled by appropriately adjusting the pressure of the reactor and the heat medium temperature of the reflux condenser.
  • the distillation pipes 11a, 11b, 11c, and 11d are connected to condensers 12a, 12b, 12c, and 12d, respectively, and each reactor is in a predetermined depressurized state by a decompression device 13a, 13b, 13c, and 13d. To be kept.
  • by-products such as phenol (monohydroxy compound) are continuously liquefied and recovered from the condensers 12a, 12b, 12c, and 12d attached to the respective reactors.
  • a cold trap (not shown) is provided downstream of the condensers 12c and 12d attached to the third vertical stirring reaction tank 6c and the fourth horizontal stirring reactor 6d, respectively, so that by-products are continuously present. Solidified and recovered.
  • the reaction liquid raised to a predetermined molecular weight is extracted from the fourth horizontal stirring reaction tank 6d and transferred to the extruder 15a by the gear pump 4c.
  • the extruder 15a is equipped with a vacuum vent to remove residual low molecular components in the polycarbonate. Further, an antioxidant, a light stabilizer, a colorant, a release agent, or the like is added as necessary.
  • Resin is supplied to the filter 15b by the gear pump 4d from the extruder 15a, and foreign matter is filtered.
  • the resin that has passed through the filter 15b is extracted in a strand form from the die 15c, cooled with water in the strand cooling tank 16a, and then pelletized by the strand cutter 16b.
  • the polycarbonate resin pellets thus obtained are pneumatically transported by the air blower 16c and sent to the product hopper 16d.
  • a predetermined amount of product is packed in the product bag 16f by the measuring instrument 16e.
  • the form of the extruder is not limited, but a uniaxial or biaxial extruder is used. Among them, a twin screw extruder is preferable for improving the devolatilization performance described later or for uniform kneading of the additive. In this case, the rotation direction of the shaft may be different or the same, but the same direction is preferable from the viewpoint of kneading performance. Not only can the supply of polycarbonate resin to the filter be stabilized by the use of an extruder, but also devolatilization or kneading of additives can be carried out simultaneously.
  • vent ports may be one or plural, but preferably two or more.
  • additives such as a thermal stabilizer, a release agent, or a colorant, which will be described later, can be kneaded using the extruder.
  • the rotational speed of a shaft (hereinafter sometimes referred to as a screw) provided in the extruder is preferably 300 rpm or less, more preferably 250 rpm or less, More preferably, it is 200 rpm or less.
  • the number of rotations of the screw is too small, not only may the devolatilization performance deteriorate, or the additive kneading performance deteriorates, but the throughput per unit time decreases, resulting in deterioration of productivity. Therefore, it is preferably 50 rpm or more, more preferably 70 rpm or more.
  • the peripheral speed of the screw is appropriately determined by the screw diameter and the rotational speed of the extruder, but in order to suppress thermal deterioration such as coloring or molecular weight reduction due to heat generated by shearing of the polycarbonate resin, Usually, it is preferably 1.0 m / second or less, more preferably 0.6 m / second or less, and particularly preferably 0.4 m / second or less.
  • the peripheral speed becomes too small, venting up during vacuum devolatilization tends to occur, or devolatilization performance or additive dispersion performance tends to decrease. Therefore, it is usually preferably 0.05 m / second or more. More preferably, it is 0.1 m / second or more.
  • the screw of an extruder is composed of a plurality of elements (screw elements) in order to give various functions, and generally only a spiral screw (flight) mainly for the purpose of transporting resin.
  • Consists of a full flight consisting of a kneading disk for resin kneading, a seal ring for resin sealing, etc., depending on the purpose, reverse flight with a screw in the direction opposite to the resin transport direction is also used It is done.
  • the configuration of these screw elements is not limited, but it is preferable to have a kneading disk.
  • the total length of the kneading disk is 20% of the total length of the screw. % Or less, more preferably 15% or less, and most preferably 10% or less.
  • the total length of the kneading disk is too short, the performance during devolatilization or kneading of the additive may be deteriorated. It is preferably 3% or more of the length, and more preferably 5% or more.
  • the kneading disk includes a forward feed type, an orthogonal type, and a reverse feed type with respect to the resin transport direction, and can be appropriately selected according to the viscosity of the resin used or the required performance.
  • the material of the screw element it is preferable to increase the surface nickel content or the like to keep the iron content low, or to treat the surface hardness with TiN or CrN.
  • the temperature of the resin when the polycarbonate resin is supplied in the molten state to the extruder is preferably 200 ° C. or higher, particularly 210 ° C. or higher, particularly 220 ° C. or higher. Further, the upper limit is preferably less than 250 ° C., more preferably less than 245 ° C., particularly preferably less than 240 ° C.
  • the temperature of the polycarbonate resin supplied to the extruder is too low, not only the melt viscosity of the polycarbonate resin becomes too high and the supply may become unstable, but also the shear heat generation in the extruder increases and the polycarbonate resin When the temperature is too high, the polycarbonate resin is likely to be deteriorated, and the hue or molecular weight is decreased, or the mechanical strength is accordingly decreased.
  • the temperature of the polycarbonate resin supplied to the extruder is controlled by a method such as controlling the internal temperature of the final polymerization reactor, controlling the temperature of the piping supplying the polycarbonate resin to the extruder, or installing a heat exchanger. can do.
  • the temperature of the polycarbonate resin discharged from the extruder is preferably less than 280 ° C, more preferably less than 270 ° C, and particularly preferably less than 260 ° C.
  • the polycarbonate resin discharged from the extruder is 280 ° C. or higher, the polycarbonate resin is likely to be deteriorated, which tends to cause a deterioration in hue, a decrease in molecular weight, or a decrease in mechanical strength associated therewith.
  • the temperature of the polycarbonate resin discharged from the extruder becomes too low, the melt viscosity of the polycarbonate resin is high, the load on the extruder increases, screw rotation becomes unstable, and the motor is overloaded. Therefore, it is preferably 220 ° C. or higher, more preferably 230 ° C. or higher, and particularly preferably 240 ° C. or higher.
  • the melt viscosity will decrease, and the shearing heat generation will tend to be suppressed accordingly.However, if the temperature of the polycarbonate resin itself is high, the deterioration tends to occur, the hue deteriorates or the molecular weight decreases, or accompanying it. Since there is a tendency to cause a decrease in mechanical strength, it is not easy to perform extrusion by preventing deterioration of a polycarbonate resin having high viscosity that is inferior in thermal stability.
  • the temperature of the polycarbonate resin discharged from the extruder is usually controlled by the temperature of the polycarbonate resin to be supplied or the temperature of the heater attached to the barrel, but the amount of polycarbonate resin supplied to the extruder or the temperature of the extruder Since this may vary depending on the number of screw rotations, it is preferable to control these conditions together.
  • filter In the present invention, filtration is performed with a filter in order to remove foreign matters such as burns or gels in the polycarbonate resin obtained by polycondensation. Among them, it is possible to remove residual monomers or by-product phenol by decompression devolatilization, and to extrude polycarbonate resin with an extruder and filter with a filter in order to mix additives such as heat stabilizer or mold release agent. preferable.
  • Examples of the form of the filter include known ones such as a candle type, a pleat type, and a leaf disk type.
  • a leaf disk type that can provide a large filtration area with respect to the storage container of the filter is preferable, and a plurality of combinations are preferably used so that a large filtration area can be obtained.
  • the leaf disk type filter is configured by combining a holding member (also referred to as a retainer) with a filtering member (hereinafter also referred to as a medium), and the filters (in some cases, a plurality or a plurality of filters). ) Used in the form of a unit (sometimes called a filter unit) stored in a containment vessel.
  • a type in which a plurality of aperture media are overlapped so that the differential pressure (pressure loss) of the filter is small and the apertures become finer in order from the resin intrusion direction is preferable.
  • a type obtained by sintering metal powder it is also possible to use a type obtained by sintering metal powder.
  • the opening of the filter is 50 ⁇ m or less as a 99% filtration accuracy, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the filtration accuracy of 99% is 1 ⁇ m or more. Is preferred.
  • the aperture defined as 99% filtration accuracy is the value of ⁇ when the ⁇ value represented by the following formula (8) determined in accordance with ISO 16889 (2008) is 100.
  • (number of particles on the primary side larger than ⁇ ⁇ m) / (number of particles on the secondary side larger than ⁇ ⁇ m) (8) (Here, the primary side is before filtration with a filter, and the secondary side is after filtration.)
  • the material of the filter media is not limited as long as it has the strength and heat resistance necessary for resin filtration, but stainless steel such as SUS316 or SUS316L with a low iron content is particularly preferable.
  • non-woven fabric type can be used in addition to regular weaving portions such as plain weave, twill weave, plain tatami mat or twill mat weave.
  • a non-woven fabric type having a high gel-capturing ability, particularly a type in which steel wires constituting the non-woven fabric are sintered and fixed is preferable.
  • the filter contains an iron component
  • the resin tends to deteriorate during filtration at a high temperature exceeding 200 ° C. Therefore, as described above, in the case of stainless steel, the iron content is small. In addition, it is preferable to passivate it before use.
  • the passivation treatment for example, a method in which the filter is immersed in an acid such as nitric acid, or an acid is passed through the filter to form a passivated surface, roasting in the presence of water vapor or oxygen ( Heating), a method using these in combination, and the like are mentioned, and it is preferable to perform both nitric acid treatment and roasting.
  • the temperature when the filter is roasted is preferably 350 ° C. to 500 ° C., more preferably 350 ° C. to 450 ° C., and the roasting time is usually preferably 3 hours to 200 hours, More preferably, it is 5 hours to 100 hours.
  • the temperature of roasting is too low or the time is too short, the formation of passivity is insufficient, and the polycarbonate resin tends to deteriorate during filtration.
  • the temperature of roasting is too high or the time is too long, the filter media may be severely damaged and the required filtration accuracy may not be achieved.
  • the concentration of nitric acid when the filter is treated with nitric acid is usually preferably 5 to 50% by weight, more preferably 10 to 30% by weight, and the temperature during the treatment is usually 5 ° C. It is preferably from -100 ° C, more preferably from 50 ° C to 90 ° C, and the treatment time is usually preferably from 5 minutes to 120 minutes, more preferably from 10 minutes to 60 minutes.
  • the concentration of nitric acid is too low, the processing temperature is too low, or the processing time is too short, the formation of passives will be insufficient, the concentration of nitric acid will be too high, the processing temperature will be too high, or the processing time will be If it is too long, the filter media will be severely damaged and the required filtration accuracy may not be achieved.
  • the filter is stored in a containment container because it facilitates filtration under pressure.
  • the material of the storage container is not limited as long as it has strength and heat resistance that can withstand resin filtration, but is preferably a stainless steel such as SUS316 or SUS316L with a low iron content. If the iron content is large, the polycarbonate resin may be deteriorated as described above.
  • the storage container of the filter may be arranged such that the supply port and the discharge port of polycarbonate resin are arranged substantially horizontally, arranged substantially vertically, or arranged obliquely.
  • the supply port of the polycarbonate resin is disposed at the lower part of the filter storage container and the discharge port is disposed at the upper part.
  • the differential pressure of the filter may increase and the filter may be damaged. If it is too large, the polycarbonate resin will be deteriorated during filtration, so it is preferably 1 minute to 20 minutes, more preferably 2 minutes to 10 minutes, and even more preferably 2 minutes to 5 minutes.
  • the temperature of the polycarbonate resin before filtration supplied to the filter is preferably less than 280 ° C, more preferably less than 270 ° C, particularly preferably less than 265 ° C, and particularly preferably less than 260 ° C. .
  • the temperature before filtration with the filter becomes too low, the melt viscosity of the polycarbonate resin is high, the load on the filter increases, and the filter may be damaged.
  • ° C or higher more preferably 230 ° C or higher, particularly preferably 240 ° C or higher.
  • the temperature of the polycarbonate resin after filtration is 200 ° C. or higher, preferably 220 ° C. or higher, more preferably 230 ° C. or higher. If the temperature of the polycarbonate resin after filtration using the filter is too low, the melt viscosity becomes high and the extruded strands are not stable and tend to be difficult to be pelletized with a rotary cutter or the like. There is.
  • the temperature of the polycarbonate resin after filtration is less than 280 ° C, preferably less than 270 ° C, more preferably less than 265 ° C, and still more preferably less than 260 ° C. If the temperature of the polycarbonate resin after filtration using the filter is too high, the polycarbonate resin is likely to be thermally deteriorated, which tends to cause a deterioration in hue, a molecular weight, or a mechanical strength associated therewith.
  • Examples of the resin temperature after the filtration include a method in which the resin discharged from the filter is taken out and directly measured, and a method in which a sensor is installed inside the pipe of the filter outlet channel and the like.
  • the temperature of the discharged resin may be the resin temperature after filtration according to the present invention.
  • a sensor is installed inside the pipe of the filter outlet channel, and the temperature of the resin discharged from a die installed near the filter outlet is measured. Both methods can also be implemented.
  • the filter unit is usually provided with a heater composed of a plurality of blocks on the outside thereof for temperature control, but if the set temperature is too high, the polycarbonate resin may be deteriorated. It is set to 280 ° C. or lower, more preferably 260 ° C. or lower, particularly preferably 250 ° C. or lower.
  • the melt viscosity becomes high and it is difficult to filter with a filter. Therefore, it is usually preferably 150 ° C. or higher, more preferably 180 ° C. or higher, particularly preferably 200 ° C. or higher.
  • a pipe for guiding the polycarbonate resin discharged from the filter unit to the die is usually provided with a heater outside thereof, but since the polycarbonate resin may be deteriorated if its set temperature is too high, it is usually preferable. It is set to 280 ° C. or lower, more preferably 260 ° C. or lower, particularly preferably 250 ° C. or lower.
  • the melt viscosity becomes high and the pressure loss in the piping increases, so that it is usually preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and particularly preferably 200 ° C. or higher.
  • the residence time of the polycarbonate resin from the outlet of the filter unit to the die is long, the polycarbonate resin may be deteriorated. Therefore, it is usually preferably 1 to 30 minutes, more preferably 3 to 20 minutes.
  • the temperature of the polycarbonate resin discharged from the die through filtration with the filter is preferably 200 ° C. or higher, more preferably 220 ° C. or higher, further preferably 230 ° C. or higher,
  • the upper limit is preferably less than 280 ° C, more preferably less than 270 ° C, even more preferably less than 265 ° C, and particularly preferably less than 260 ° C.
  • the melt viscosity becomes high and the extruded strands are not stable and may be difficult to pelletize with a rotary cutter or the like There is sex.
  • the temperature is too high, thermal degradation of the polycarbonate resin is likely to occur, which may lead to a deterioration in hue, a decrease in molecular weight, or a decrease in mechanical strength associated therewith.
  • the temperature is usually preferably 280 ° C. or less, more preferably 260 ° C. or less, particularly preferably. Set to 250 ° C or lower.
  • the melt viscosity becomes high and the pressure loss in the piping increases, so that it is usually preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and particularly preferably 200 ° C. or higher.
  • the processing amount of the polycarbonate resin in the extruder, the rotational speed or peripheral speed of the screw, or the configuration of the element or the like can be selected as described above. Become important.
  • the difference between the temperature of the polycarbonate resin before being filtered by the filter and the temperature of the polycarbonate resin after the filtration is preferably within 50 ° C, more preferably within 30 ° C, most preferably Preferably it is within 10 degreeC.
  • the terminal double bond of the polycarbonate resin obtained by polycondensation by the transesterification reaction before being supplied to the filter is filtered using the filter at X ⁇ eq / g.
  • the terminal double bond of the polycarbonate resin constituting the polycarbonate resin pellet obtained by discharging in the form of a strand and cooling using a cutter is Y ⁇ eq / g
  • the following formula (2) is preferably satisfied.
  • YX ⁇ 8 More preferably, YX ⁇ 8, particularly preferably YX ⁇ 5.
  • YX By setting YX to 10 or less, it is possible to suppress the generation of coloring components that are considered to be derived from the double bond, and to suppress the generation of gas in or around the filter, so that the strand discharge is stable. It is preferable because it is easy to be pelletized with a cutter.
  • Y is preferably 50 ⁇ eq / g or less, more preferably 30 ⁇ eq / g, and particularly preferably 20 ⁇ eq / g. If Y is too large, the polycarbonate resin pellets may be colored.
  • the reduced viscosity ( ⁇ sp / c) of the polycarbonate resin before being supplied to the filter is filtered using A, the filter, discharged from the die in the form of a strand, and cooled. Thereafter, when the reduced viscosity ( ⁇ sp / c) of the polycarbonate resin pellet obtained using a cutter is B, it is preferable to satisfy the following formula (3). 0.8 ⁇ B / A ⁇ 1.1 (3)
  • B / A By setting B / A to more than 0.8, it is possible to suppress the generation of a coloring component or a coloring precursor that is considered to be generated by a side reaction, which is preferable.
  • B / A ⁇ 1.0 when the reduced viscosity rises in the polymer filter, the generation of foreign matters such as gel or burnt rises, and therefore it is more preferable that B / A ⁇ 1.0. A method for measuring the reduced viscosity will be described later.
  • B / a it is possible to suppress the generation of a coloring component or a coloring precursor that is considered to be generated by a side reaction, which is preferable.
  • B / a ⁇ 1.0 it is more preferable that B / a ⁇ 1.0.
  • the temperature of the polycarbonate resin in the final reactor In order to bring the change in the reduced viscosity in the polymer filter or the extruder into the above range, the temperature of the polycarbonate resin in the final reactor, the temperature of the polycarbonate resin entering the polymer filter, the temperature of the polycarbonate resin discharged from the polymer filter, Selection of throughput per unit time or opening of polymer filter, temperature control or residence time from polymer filter to die, when using an extruder, temperature of polycarbonate resin supplied to the extruder, discharge from the extruder It is important to select the temperature of the polycarbonate resin to be used, the devolatilization pressure, the presence or absence of water injection, the amount of water injection, the rotation speed or peripheral speed of the screw, or the element configuration.
  • class 7 as defined in JIS B 9920 (2002), more preferably, in order to prevent foreign matter from being mixed from the outside air. It is preferable to carry out in a clean room with higher cleanliness than class 6.
  • the polycarbonate resin filtered by the filter is cooled and solidified, and pelletized by a rotary cutter or the like, and it is preferable to use a cooling method such as air cooling or water cooling when pelletizing.
  • the air used for air cooling is preferably air from which foreign matter in the air has been removed in advance with a hepa filter or the like to prevent reattachment of foreign matter in the air.
  • water cooling it is preferable to use water from which metal in water has been removed with an ion exchange resin or the like, and further, foreign matter in water has been removed with the filter.
  • the opening of the filter to be used is preferably 10 to 0.45 ⁇ m in terms of filtration accuracy with 99.9% removal.
  • a heat stabilizer a neutralizing agent, an ultraviolet absorber, a release agent, a colorant, an antistatic agent, a lubricant, a lubricant, a plasticizer, a phase, which are generally known in the extruder.
  • a solubilizer or a flame retardant may be added and kneaded.
  • the shape of the raw material filtration filter may be any type such as basket type, disk type, leaf disk type, tube type, flat cylindrical type, or pleated cylindrical type, among which compact and has a large filtration area.
  • a pleated type that can be taken is preferred.
  • the filter medium constituting the raw material filter may be any of metal wind, laminated metal mesh, metal nonwoven fabric, porous metal plate, etc., but from the viewpoint of filtration accuracy, a laminated metal mesh or metal nonwoven fabric is preferred, and metal A type in which a nonwoven fabric is sintered and fixed is preferable.
  • metal or resin ceramics can be used. From the viewpoint of heat resistance and color reduction, a metal filter having an iron content of 80% or less. Among them, stainless steel such as SUS304, SUS316, SUS316L, or SUS310S is preferable.
  • the filter in the unit on the upstream side is preferably used.
  • C is preferably larger than D (C> D) in at least one combination.
  • the opening of the raw material filtration filter is not particularly limited, but in at least one of the raw material filtration filters, the filtration accuracy of 99.9% is preferably 10 ⁇ m or less, and the filter unit constituting the raw material filtration filter includes In the case of a plurality of arrangements, it is preferably 8 ⁇ m or more, more preferably 10 ⁇ m or more on the most upstream side, and preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less on the most downstream side.
  • the opening of the said raw material filtration filter said here is determined based on the above-mentioned ISO16889 (2008).
  • the temperature of the raw material fluid when the raw material is passed through the raw material filtration filter there is no restriction on the temperature of the raw material fluid when the raw material is passed through the raw material filtration filter, but if it is too low, the raw material is solidified, and if it is too high, there is a problem such as thermal decomposition. ⁇ 200 ° C., more preferably 100 ° C. to 150 ° C.
  • any of the raw materials to be used may be filtered, or all of the raw materials may be filtered.
  • the method is not limited, and the dihydroxy compound and the carbonic acid diester are not limited.
  • the raw material mixture may be filtered, or may be mixed after separately filtering.
  • the reaction liquid in the middle of a polycondensation reaction can also be filtered with the filter similar to the said raw material filtration filter.
  • the yellow index value of the polycarbonate resin pellet obtained by the method of the present invention is preferably 70 or less, more preferably 30 or less, particularly preferably 15 or less, and most preferably 10 or less. In order to lower the yellow index value, as described above, it is necessary to appropriately select the monomer preparation conditions, the polymerization reaction conditions, the filtration conditions, and the extrusion conditions or screw elements when using an extruder.
  • the reduced viscosity measured using the Ubbelohde viscosity tube at a concentration of 0.6 g / dL and a temperature of 20.0 ° C. ⁇ 0.1 ° C. in methylene chloride using the polycarbonate resin pellet of the present invention is 0.3 dL / g or more. Preferably, it is 0.35 dL / g or more, more preferably 0.4 or more.
  • the upper limit of the reduced viscosity is preferably 1.2 dL / g or less, more preferably 0.8 dL / g or less, and particularly preferably 0.7 dL / g or less.
  • the mechanical strength of the molded product may be small, and if it is too large, the fluidity during molding tends to decrease, which tends to reduce productivity or moldability, as well as filtration or Deterioration during extrusion may be severe.
  • the melt viscosity at a shear rate of 91.2 sec ⁇ 1 measured at 240 ° C. is preferably 500 Pa ⁇ s or more, more preferably 800 Pa ⁇ s or more, particularly Preferably, it is 1000 Pa ⁇ s or more, and the upper limit thereof is preferably 3000 Pa ⁇ s or less, more preferably 2000 Pa ⁇ s or less.
  • melt viscosity is too low, the mechanical strength of the molded product tends to be inferior. If it is too high, as described above, shear heat generation in the filter or the extruder increases, and the deterioration during filtration or extrusion may become severe. There is. In addition, since the melt viscosity varies depending on the molecular structure in addition to the molecular weight, it is important to select these according to the required performance and control them within the above range.
  • the glass transition temperature when measured with a differential scanning calorimeter (DSC) using the polycarbonate resin pellets obtained by the method of the present invention is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, more preferably 90 ° C. or higher. If the glass transition temperature is too low, the heat resistance is inferior, so the use as a molded product is limited.
  • the melt viscosity at the time of filtration with a filter becomes too high, and may cause deterioration of the polycarbonate resin. Therefore, it is preferably less than 160 ° C, more preferably less than 145 ° C, Preferably it is less than 140 degreeC, Most preferably, it is less than 130 degreeC.
  • the glass transition temperature of the present invention means that the temperature is raised from room temperature to a temperature sufficiently exceeding the glass transition temperature at a heating rate of 20 ° C./min in a nitrogen stream, and after maintaining the temperature for 3 minutes, it is 20 ° C. to 30 ° C. Obtained by heating at a rate of 20 ° C./min to a temperature well above the glass transition temperature (obtained by the second temperature increase). This refers to the extrapolated glass transition start temperature obtained from DSC data.
  • the concentration of the terminal group represented by the following structural formula (9) of the polycarbonate resin constituting the polycarbonate resin pellet obtained in the present invention is preferably 20 ⁇ eq / g or more, more preferably 40 ⁇ eq / g or more, particularly preferably. It is 50 ⁇ eq / g or more.
  • the concentration of the end group is too low, coloring tends to increase during filtration. If it is too high, gas tends to be generated at the time of filtration, and there is a possibility of causing problems such as running out of gas in the strand. Therefore, it is preferably 200 ⁇ eq / g or less, more preferably 150 ⁇ eq / g or less, particularly preferably. 100 ⁇ eq / g or less.
  • Examples of the method for controlling the concentration of the terminal group represented by the structural formula (9) include a method for controlling the molar ratio of the dihydroxy compound containing the dihydroxy compound of the present invention and the diester carbonate, or a transesterification reaction.
  • polymerization temperature of time, the temperature of a reflux condenser, etc. according to the easiness of volatilization of a monomer is mentioned.
  • the use of a reactor having a reflux condenser at the initial stage of polymerization is effective for stabilizing the terminal group concentration.
  • the polycarbonate resin of the present invention is produced using a substituted diphenyl carbonate such as diphenyl carbonate or ditolyl carbonate as the carbonic acid diester represented by the general formula (7), Alternatively, it is inevitable that aromatic monohydroxy compounds such as substituted phenols are by-produced and remain in the polycarbonate resin.
  • the content of the compound in the polycarbonate resin obtained by cooling and solidifying is determined by extrusion with a vacuum vent. It is preferable that the content is less than 0.1% by mass, more preferably less than 0.05% by mass, and particularly preferably less than 0.03% by mass. However, it is difficult to remove these compounds completely industrially, and the lower limit of the content of the aromatic monohydroxy compound is usually 0.0001% by mass.
  • aromatic monohydroxy compounds may naturally have a substituent depending on the raw material to be used, and may have, for example, an alkyl group having 5 or less carbon atoms.
  • diphenyl carbonate is used as the carbonic acid diester, the aromatic monohydroxy compound is phenol.
  • the polycarbonate resin pellet obtained by the method of the present invention can be formed into a molded product by a generally known method such as an injection molding method, an extrusion molding method or a compression molding method. Also, before performing various moldings, if necessary, the resin is heat stabilizer, neutralizer, UV absorber, mold release agent, colorant, antistatic agent, lubricant, lubricant, plasticizer, compatibilizing Additives such as additives or flame retardants can also be mixed with a tumbler, super mixer, floater, V-type blender, nauter mixer, Banbury mixer or extruder.
  • the foreign matter having a thickness of 25 ⁇ m or more contained in a 30 ⁇ m ⁇ 5 ⁇ m-thick film formed from the resin is preferably 1000 / m 2.
  • Polycarbonate resin pellets obtained by the method of the present invention are, for example, aromatic polycarbonate, aromatic polyester, aliphatic polyester, polyamide, polystyrene, polyolefin, acrylic resin, amorphous polyolefin, synthetic resin such as ABS or AS, polylactic acid or It can also be used as a polymer alloy by kneading with one or more of biodegradable resins such as polybutylene succinate or rubber.
  • polycarbonate resin pellets that are excellent in thermal stability, hue, and mechanical strength and have few foreign substances.
  • the barrel set temperature of a 20 mm diameter single screw extruder equipped with a T die is 210 ° C, 220 ° C, 230 ° C, 230 ° C, 220 ° C from the pellet supply side, and polycarbonate resin pellets are melt extruded.
  • a film having a thickness of 35 ⁇ m ⁇ 5 ⁇ m was formed using a cooling roll, and the number of foreign matters of 25 ⁇ m or more per 1 m 2 was measured using an optical control system (Film Quality Testing System (model FSA100)).
  • Example 1 (First stage reaction) In a polymerization reactor equipped with a heat medium jacket and a stirring blade using oil as a heat medium, a distillation pipe connected to a vacuum pump and a condenser, the molar ratio of ISB / TCDDM / DPC is 70/30/100.
  • the cesium carbonate in the aqueous solution was charged to 2.5 ⁇ 10 ⁇ 6 mol (converted to cesium metal atoms) per 1 mol of all dihydroxy compounds, and then sufficiently substituted with nitrogen (oxygen concentration 0.0005 vol% to 0.001 vol%).
  • the DPC used was purified by distillation to have a chloride ion concentration of 10 ppb or less.
  • a heated heat medium is circulated through the heat medium jacket of the reactor, and stirring is started when the reaction liquid (that is, the internal temperature) reaches 100 ° C., and the contents are kept while maintaining the internal temperature at 100 ° C. Thaw and homogenize.
  • the temperature rise is started, the internal temperature is set to 220 ° C. in 40 minutes, the pressure reduction is started when the internal temperature reaches 220 ° C., and 13.3 kPa (absolute pressure, the same applies hereinafter) in 90 minutes.
  • the temperature of the oil introduced into the heat medium jacket (heat medium jacket inlet temperature) is appropriately adjusted so that the vapor of phenol generated by the reaction starts to distill and the internal temperature is controlled to be constant at 220 ° C. It was adjusted.
  • the temperature of the heat medium oil was set at 242 ° C., and other time periods were set at less than 242 ° C.
  • the polycarbonate oligomer obtained in the first stage was transferred to a polymerization reactor equipped with a heat medium jacket using oil as a heat medium, a stirring blade, and a distillation pipe connected to a vacuum pump under a nitrogen atmosphere.
  • a condenser using hot water (inlet temperature 45 ° C.) as a refrigerant and a cold trap using dry ice as a refrigerant were installed downstream of the condenser.
  • the resulting pellet had a reduced viscosity of 0.362, a terminal phenyl group concentration of 66 ⁇ eq / g, a terminal double bond of 7.5 ⁇ eq / g, a YI of 25.4, a phenol content of 965 ppm, a DPC content of 19 ppm, The amount of foreign matter of 25 ⁇ m or more was 3035 / m 2 .
  • a leaf disk filter [manufactured by Nippon Seisen Co., Ltd.] [materials made of stainless steel (with an outer diameter of 112 mm, an inner diameter of 38 mm, and a filtration accuracy of 99%] in a containment container having an internal volume of 0.91 (L) downstream thereof.
  • a filter unit equipped with four SUS304, SUS316)] was arranged. Prior to use, the filter was roasted at 310 ° C.
  • the inlet side and outlet side of the filter unit were set to be horizontal, and a die for forming a strand was attached to the outlet side of the filter unit.
  • the kneading disk length (kneading element ratio) in the length of the elements constituting the entire screw of the extruder was 13.9%.
  • Sensors for measuring the resin temperature are installed in the outlet channel of the extruder, the inlet channel of the filter unit, and the outlet channel of the filter unit.
  • the barrel temperature of the extruder is set to 220 from the pellet supply side. C, 230 ° C, 230 ° C, 235 ° C, 240 ° C, 240 ° C, 240 ° C, 240 ° C, 240 ° C.
  • the polycarbonate resin pellets obtained above were supplied to this at 10 kg / h, and at the same time, the screw rotation of the extruder was set to 100 rpm, and devolatilization was performed from the vent port using a vacuum pump. At this time, the pressure in the vent portion was 300 Pa or less in absolute pressure.
  • the temperature of the polycarbonate resin discharged from the die through the filter unit was measured using a thermometer, and it was 257 ° C.
  • the discharged polycarbonate resin was cooled with water in the form of a strand, solidified, and then rotated with a rotary cutter. Pelletized.
  • the reduced viscosity of the pellets was 0.332, YI was 59.6, the phenol content was 427 ppm, and the DPC content was 25 ppm. Further, the pellet was dried at 110 ° C. for 12 hours using a clean oven, a film was formed by the method described above, and the amount of foreign matter was measured. These results are shown in Table 1.
  • the above kneading element ratio is a value calculated from the following formula.
  • Kneading element ratio (%) (total length of kneading disc / total length of screw) x 100
  • Example 2 The same procedure as in Example 1 was performed except that the amount of resin supplied to the extruder was 15 kg / h and the screw rotation speed was 130 rpm.
  • the temperature of the polycarbonate resin discharged from the die was 264 ° C., the reduced viscosity was 0.334, the YI of the pellet was 63.2, the phenol content was 476 ppm, and the DPC content was 27 ppm.
  • Example 3 The same procedure as in Example 1 was performed except that the amount of resin supplied to the extruder was 20 kg / h and the screw rotation speed was 150 rpm.
  • the temperature of the polycarbonate resin discharged from the die was 269 ° C., the reduced viscosity was 0.328, the YI of the pellet was 65.6, the phenol content was 482 ppm, and the DPC content was 29 ppm.
  • Example 4 The same operation as in Example 1 was performed except that a leaf disk filter having a filtration accuracy of 99% of 40 ⁇ m was used.
  • the YI of the pellet was 55.3, which was better than that of Example 1, but the amount of foreign matter slightly increased to 1710 / m 2 .
  • Example 5 In the raw material preparation tank sufficiently substituted with nitrogen (oxygen concentration 0.0005 vol% to 0.001 vol%), the raw material prepared so that the ISB / CHDM / DPC molar ratio is 50/50/100 is used as the heat medium.
  • the raw material preparation tank sufficiently substituted with nitrogen (oxygen concentration 0.0005 vol% to 0.001 vol%), the raw material prepared so that the ISB / CHDM / DPC molar ratio is 50/50/100 is used as the heat medium.
  • a raw material supply pipe From the connected catalyst supply pipe, calcium acetate monohydrate in an aqueous solution was continuously supplied so as to be 1.25 ⁇ 10 ⁇ 6 mol (calcium metal atom equivalent) per 1 mol of all dihydroxy compounds.
  • the upstream raw material filtration filter opening is 10 ⁇ m, downstream The mesh opening was 1 ⁇ m.
  • the distillation pipe is provided with a reflux condenser using oil (inlet temperature 130 ° C.) as a refrigerant, and phenol and the like that are not condensed in the reflux condenser.
  • a condenser using warm water (inlet temperature 45 ° C.) as a refrigerant was disposed.
  • the internal temperature is controlled to be constant at 185 ° C.
  • the pressure is 25 kPa
  • the residence time is 1.5 hours, and the reaction solution is continuously extracted from the bottom of the reaction tank.
  • the second polymerization reactor includes a heat medium jacket, a heat medium internal coil, a stirring blade, a distillation pipe connected to a vacuum pump, and a distillation pipe having a reflux condenser and a condenser.
  • the inner temperature was 213 ° C.
  • the pressure was 14 kPa
  • the residence time was controlled to be constant at 1 hour, and the reaction solution was continuously withdrawn from the bottom of the reaction vessel and supplied to the third polymerization reactor.
  • the third polymerization reactor is controlled so as to be constant at an internal temperature of 229 ° C., a pressure of 6 kPa, and a residence time of 1 hour.
  • the polycondensation reaction proceeds while distilling off the by-produced phenol, and the reaction solution is transferred to the reaction vessel. It was continuously extracted from the bottom and supplied to a horizontal stirring reactor (fourth polymerization reactor) having two horizontal rotating shafts and mutually discontinuous stirring blades mounted substantially perpendicular to the horizontal shaft.
  • the fourth polymerization reactor was controlled so that the internal temperature near the inlet was 228 ° C., the internal temperature near the outlet was 240 ° C., the pressure was 0.07 kPa, and the residence time was 2 hours, and the polycondensation reaction was further advanced. .
  • the extruder 0.1% of water was supplied to the polycarbonate resin to be treated, and the vent port was connected to a vacuum pump to remove volatile components contained in the polycarbonate resin.
  • the barrel temperature of the extruder was set to 245 ° C. for the 4 blocks upstream, 225 ° C. for the 6 blocks downstream, and the screw rotation speed was 250 rotations.
  • the polycarbonate resin processed by the extruder was supplied to a filter unit having a resin inlet at the bottom and an outlet at the top through a gear pump installed at the outlet.
  • Table 2 shows the temperature of the resin sampled before the filter unit and various measured values.
  • a leaf disk filter manufactured by Nippon Pole Co., Ltd. having a mesh size of 7 ⁇ m was mounted inside the filter unit to remove foreign substances in the polycarbonate resin.
  • the filter Prior to use, the filter was roasted at 310 ° C. for 40 hours in a water vapor atmosphere and then at 420 ° C. for 52 hours in an air atmosphere, cooled to room temperature, and then immersed in a 30 wt% nitric acid aqueous solution for 30 minutes. Then, an oxide film was formed, washed and dried.
  • the filter unit was equipped with a heater composed of a plurality of blocks, and each temperature was set to 230 to 240 ° C.
  • a die On the outlet side of the filter unit, a die was installed through a polymer pipe equipped with a heater composed of a plurality of blocks. The set temperature of the polymer pipe heater was set to 220 to 230 ° C, and the heater of the dice was set to 220 ° C.
  • the filter outlet resin temperature and the die outlet resin temperature were measured in the same manner as in Example 1.
  • the polycarbonate resin was extracted in the form of a strand in a room maintained at a class 10000 cleanness from the die, solidified in a water tank, and pelletized with a rotary cutter.
  • the analytical values are shown in Table 2.
  • Example 6 The internal temperature of the first polymerization reactor is 194 ° C., the pressure is 27 kPa, the internal temperature of the second polymerization reactor is 190 ° C., the pressure is 19 kPa, the internal temperature of the third polymerization reactor is 213 ° C., the pressure is 7.5 kPa, The same procedure as in Example 1 was performed except that the inner temperature near the inlet of the fourth polymerization reactor was 214 ° C., the inner temperature near the outlet was 228 ° C., the pressure was 0.7 kPa, and the die heater was set to 230 ° C. It was.
  • Example 7 The internal temperature of the first polymerization reactor is 190 ° C., the pressure is 25 kPa, the internal temperature of the second polymerization reactor is 196 ° C., the pressure is 17.7 kPa, the internal temperature of the third polymerization reactor is 215 ° C., and the pressure is 6. 9 kPa, the internal temperature near the inlet of the fourth polymerization reactor is 218 ° C., the internal temperature near the outlet is 232 ° C., the pressure is 0.9 kPa, the barrel temperature of the extruder is set to 240 ° C. for the upstream 4 blocks, and the downstream The same procedure as in Example 1 was conducted except that the above 6 blocks were changed to 185 ° C.
  • Example 8 In the raw material preparation tank, the molar ratio of ISB / CHDM / DPC is adjusted to 70/30/100, the internal temperature of the first polymerization reactor is 188 ° C., the pressure is 24.2 kPa, and the second polymerization reactor The internal temperature was 194 ° C., the pressure was 19.9 kPa, the internal temperature of the third polymerization reactor was 214 ° C., the pressure was 9.9 kPa, the internal temperature near the inlet of the fourth polymerization reactor was 218 ° C., and the internal temperature near the outlet Was 232 ° C., the pressure was 0.1 kPa, the barrel temperature of the extruder was set in the same manner as in Example 1 except that the upstream 4 blocks were 240 ° C. and the downstream 6 blocks were 195 ° C.
  • Example 9 The same operation as in Example 6 was performed except that the aperture of the filter was changed to 22 ⁇ m. The pressure loss in the polymer filter was reduced, the decrease in molecular weight and the increase in double bond ends tended to be suppressed, and the pellet color tone was improved, but the amount of foreign matter increased.
  • Example 10 The same operation as in Example 9 was performed except that the total length of the kneading disk of the extruder was 12% of the total length of the screw.
  • the internal temperature of the third polymerization reactor is 240 ° C.
  • the pressure is 4 kPa
  • the internal temperature near the inlet of the fourth polymerization reactor is 240 ° C.
  • the internal temperature near the outlet is 252 ° C.
  • the pressure is 0.02 kPa
  • the barrel temperature of the extruder The upstream 4 blocks are 250 ° C
  • the downstream 6 blocks are 260 ° C
  • the screw speed is 280rpm
  • the filter unit heater set temperature is 270 to 280 ° C
  • the polymer pipe heater set temperature is 270 to 280 ° C.
  • the same procedure as in Example 1 was performed except that the die heater was set at 280 ° C.
  • the pressure loss in the polymer filter tended to be suppressed, the temperature of the polycarbonate resin discharged from the die was 285 ° C., and it was markedly colored. Further, gas was generated from the die, the strands were disturbed, and pellets could not be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 本発明は、熱安定性、色相、及び機械的強度に優れ、かつ異物の少ないポリカーボネート樹脂を、効率的かつ安定的に製造するポリカーボネート樹脂の製造方法に関する。

Description

ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂、ポリカーボネート樹脂製フィルムおよびポリカーボネート樹脂ペレットの製造方法
 本発明は、熱安定性、色相、及び機械的強度に優れ、かつ異物の少ないポリカーボネート樹脂を、効率的かつ安定的に製造する方法に関する。
 ポリカーボネート樹脂は一般的にビスフェノール類をモノマー成分とし、透明性、耐熱性または機械的強度等の優位性を生かし、電気・電子部品、自動車用部品、光学記録媒体またはレンズ等の光学分野等でいわゆるエンジニアリングプラスチックスとして広く利用されている。
 しかしながら、最近急激に普及しつつあるフラットパネルディスプレー等の光学補償フィルム用途では、低複屈折または低光弾性係数等、さらに高度な光学的特性が要求されるようになり、従来のビスフェノール類をモノマー成分とした芳香族ポリカーボネート樹脂ではその要求に応えられなくなってきた。
 また、従来のポリカーボネート樹脂は、石油資源から誘導される原料を用いて製造されるが、近年、石油資源の枯渇が危惧されており、植物などのバイオマス資源から得られる原料を用いたポリカーボネート樹脂の提供が求められている。
 また、二酸化炭素排出量の増加または蓄積による地球温暖化が、気候変動などをもたらすことが危惧されていることからも、使用後の廃棄処分をしてもカーボンニュートラルな、植物由来モノマーを原料としたポリカーボネート樹脂の開発が求められている。
 かかる状況下、特殊なジヒドロキシ化合物をモノマー成分とし、炭酸ジエステルとのエステル交換により副生するモノヒドロキシ化合物を減圧下で留去しながら、ポリカーボネート樹脂を得る方法が提案されている(例えば特許文献1~6参照)。
 しかし、このようにして得られるポリカーボネート樹脂は、その製造過程などで異物が混入し、そのために、その樹脂を用いて成形した成形体に異物が混入し、その商品価値を著しく低下させるという問題があった。中でも光学用途等では、異物の混入または着色は特に深刻な問題であった。
 異物の混入を低減させる方法として、ビスフェノール類をモノマー成分とするポリカーボネート樹脂においては、重縮合で得られた樹脂を、フィルターを用いて濾過する方法が提案されている(例えば特許文献7、8)。
国際公開第04/111106号 日本国特開2006-232897号公報 日本国特開2006-28441号公報 日本国特開2008-24919号公報 日本国特開2009-91404号公報 日本国特開2009-91417号公報 日本国特開平5-239334号公報 日本国特開2000-219737号公報
 しかしながら、ビスフェノール類以外の特殊なジヒドロキシ化合物をモノマー成分とするポリカーボネート樹脂は、ビスフェノール類をモノマー成分とするポリカーボネート樹脂に比べ低温で分解が始まる。
 そのため、ポリカーボネート樹脂の分解が生じない温度で濾過しようとすると、粘度が高すぎて、通常の濾過面積ではフィルターでの圧力損失が大きくなって、フィルターの破損を招いたり、濾過時の剪断発熱によって樹脂の劣化を招くという問題があった。逆に、破損を避けようとすると、圧力損失が小さく濾過精度の低い(目開きの大きい)フィルターを用いなければならなかった。
 また、フィルターの破損または樹脂の剪断発熱による劣化を抑制しつつ濾過精度の高いフィルターを使おうとすると、濾過面積を過大にせざるを得ず、結果的に濾過処理に要する時間が長くなって、ポリカーボネート樹脂の劣化を招く等の問題が生じた。
 更には、フィルターでの圧力損失を抑制し、濾過処理に要する時間を短くするために、ポリカーボネート樹脂の溶融粘度を低くしようとすると、ポリカーボネート樹脂自体の分子量を下げたり、濾過温度を上げたりする必要がある。
 しかし、ポリカーボネート樹脂自体の分子量を下げると機械的強度または耐熱性の低下を招くという問題があった。また、濾過時の温度を高くすると、樹脂が分解・劣化し、機械的強度などの物性を満足する樹脂が得られなくなるだけでなく、着色を助長したり、分解ガスによってストランドのガス切れを招いて、ペレット化が安定的に得られないという問題があった。
 これらの問題は、フィルターの目開きを小さくし、より小さい異物を除去する際または分子量の高い樹脂を濾過する際には、特に顕著であった。フィルターの目開きを小さくするほどフィルターでの差圧が大きくなり、フィルターへのポリカーボネート樹脂の供給が不安定になるだけでなく、上記のようなフィルターの破損または剪断発熱によりポリカーボネート樹脂の劣化を招いてしまった。このため、色相が良好で、異物が少なく、機械的強度の充分なポリカーボネート樹脂を得るのは困難であった。
 本発明の目的は、上記従来の問題点を解消し、熱安定性、色相、及び機械的強度に優れ、かつ異物の少ないポリカーボネート樹脂を、効率的かつ安定的に製造する方法を提供することにある。
 本発明者は、上記課題を解決するべく、鋭意検討を重ねた結果、触媒及び、原料モノマーとして特定のジヒドロキシ化合物並びに炭酸ジエステルを用いて、エステル交換反応により重縮合させ、得られたポリカーボネート樹脂を製造する方法において、特定の条件でポリカーボネート樹脂を濾過することによって、機械的強度および色相に優れ、異物の少ないポリカーボネート樹脂ペレットを安定的に製造する方法を見出した。
 すなわち、本発明の要旨は下記[1]~[23]に存する。
 [1]ジヒドロキシ化合物および炭酸ジエステルを重縮合させて得られたポリカーボネート樹脂を、フィルターを用いて濾過した後に、冷却固化するポリカーボネート樹脂の製造方法であって、前記ジヒドロキシ化合物が構造の一部に下記一般式(1)で表される部位を有するジヒドロキシ化合物を少なくとも含み、前記フィルターの目開きが50μm以下であり、前記フィルターを用いて濾過した後のポリカーボネート樹脂の温度が200℃以上280℃未満となるようにポリカーボネート樹脂を濾過することを特徴とするポリカーボネート樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000003
[但し、上記一般式(1)で表される部位が-CH-O-Hの一部である場合を除く。]
 [2]前記重縮合させて得られた前記ポリカーボネート樹脂を、固化させることなく溶融状態のまま前記フィルターに供給し濾過する[1]に記載のポリカーボネート樹脂の製造方法。
 [3]前記ポリカーボネート樹脂の前記フィルターに供給される前の末端二重結合をXμeq/gとし、前記冷却固化して得られたポリカーボネート樹脂の末端二重結合をYμeq/gとした場合に、 下記式(2)を満たす[1]または[2]に記載のポリカーボネート樹脂の製造方法。
  Y-X≦10    (2)
 [4]前記ポリカーボネート樹脂の前記フィルターに供給される前の還元粘度(ηsp/c)をAとし、前記冷却固化して得られたポリカーボネート樹脂の還元粘度(ηsp/c)をBとした場合に、下記式(3)を満たす[1]乃至[3]の何れか1項に記載のポリカーボネート樹脂の製造方法。
  0.8<B/A<1.1 ・・・(3)
 [5]前記冷却固化して得られたポリカーボネート樹脂を用い、240℃で測定した剪断速度91.2sec-1での溶融粘度が、500Pa・s以上3000Pa・s以下である[1]乃至[4]の何れか1項に記載のポリカーボネート樹脂の製造方法。
 [6]前記冷却固化して得られたポリカーボネート樹脂を用い、示差走査型熱量計で測定した際のガラス転移温度が50℃以上160℃未満である[1]乃至[5]の何れか1項に記載のポリカーボネート樹脂の製造方法。
 [7]前記冷却固化して得られたポリカーボネート樹脂を用い、塩化メチレン中、濃度0.6g/dL、温度20.0℃±0.1℃で測定した還元粘度(ηsp/c)が、0.3dL/g以上1.2dL/g以下である[1]乃至[6]の何れか1項に記載のポリカーボネート樹脂の製造方法。
 [8]前記フィルターが容器に格納されており、該格納容器の内容積(m)を、濾過する前記ポリカーボネート樹脂の流量(m/分)で除した値が2分~10分である[1]乃至[7]の何れか1項に記載のポリカーボネート樹脂の製造方法。
 [9]前記冷却固化して得られたポリカーボネート樹脂中に含まれる芳香族モノヒドロキシ化合物含有量が0.0001質量%以上0.1質量%未満である[1]乃至[8]の何れか1項に記載のポリカーボネート樹脂の製造方法。
 [10]前記原料モノマーを、重縮合反応を行う前に原料濾過フィルターで濾過する[1]乃至[9]のいずれか1項に記載のポリカーボネート樹脂の製造方法。
 [11]前記フィルターが350℃以上500℃以下の温度であらかじめ焙焼処理を施した金属からなる[1]乃至[10]の何れか1項に記載のポリカーボネート樹脂の製造方法。
 [12]前記濾過前のポリカーボネート樹脂が前記フィルターの格納容器の下部から供給され、濾過後のポリカーボネート樹脂が該格納容器の上部から排出される[1]乃至[11]の何れか1項に記載のポリカーボネート樹脂の製造方法。
 [13]前記重縮合が触媒を用いて行われるものであり、前記触媒が、長周期型周期表第2族の金属及びリチウムからなる群より選ばれる少なくとも1種の金属化合物である[1]乃至[12]のいずれか1項に記載のポリカーボネート樹脂の製造方法。
 [14]前記構造の一部に前記一般式(1)で表される部位を有するジヒドロキシ化合物が、イソソルビドである[1]乃至[13]の何れか1項に記載のポリカーボネート樹脂の製造方法。
 [15]前記重縮合させて得られたポリカーボネート樹脂を、ベント口を有する二軸を有する押出機で脱揮する操作を行った後、前記フィルターに供給する[1]乃至[14]の何れか1項に記載のポリカーボネート樹脂の製造方法。
 [16]前記押出機のスクリューが複数のエレメントから構成されており、該エレメントの少なくとも1つがニーディングディスクであり、該ニーディングディスクの合計の長さが、前記スクリュー全体の長さの20%以下であることを特徴とする[15]に記載のポリカーボネート樹脂の製造方法。
 [17]前記押出機に供給されるポリカーボネート樹脂の温度が200℃以上250℃未満である[15]または[16]に記載のポリカーボネート樹脂の製造方法。
 [18]前記フィルターに供給されるポリカーボネート樹脂の温度が220℃以上280℃未満である[15]乃至[17]のいずれか1項に記載のポリカーボネート樹脂の製造方法。
 [19]前記押出機に供給されるポリカーボネート樹脂の還元粘度(ηsp/c)をa、前記冷却固化して得られたポリカーボネート樹脂の還元粘度(ηsp/c)をBとした場合に、下記式(4)を満たす[15]乃至[18]の何れか1項に記載のポリカーボネート樹脂の製造方法。
  0.8<B/a<1.1・・(4)
 [20]前記押出機と前記フィルターの間に、ギアポンプを配置する[15]乃至[19]の何れか1項に記載のポリカーボネート樹脂の製造方法。
 [21][1]乃至[20]のいずれか1項に記載の製造方法によって得られたイエローインデックス値が30以下であるポリカーボネート樹脂。
 [22][1]乃至[20]のいずれかに1項に記載の製造方法によって得られたポリカーボネート樹脂、又は[21]に記載のポリカーボネート樹脂を押出成形して得られる厚さ20μm~200μmのフィルムであって、該フィルムに含まれる最大長が25μm以上の異物が1000個/m以下であるポリカーボネート樹脂製フィルム。
 [23]触媒及び、原料モノマーとしてジヒドロキシ化合物並びに炭酸ジエステルを用いて、エステル交換反応により重縮合させ、得られたポリカーボネート樹脂を、フィルターを用いて濾過して、ダイスからストランドの形態で吐出し、冷却後、カッターを用いて、ポリカーボネート樹脂ペレットを製造する方法であって、前記ジヒドロキシ化合物が構造の一部に下記一般式(1)で表される部位を有するジヒドロキシ化合物を少なくとも含み、前記フィルターの目開きが50μm以下であり、前記ダイスから吐出される樹脂の温度が200℃以上280℃未満であることを特徴とするポリカーボネート樹脂ペレットの製造方法。
Figure JPOXMLDOC01-appb-C000004
[但し、上記一般式(1)で表される部位が-CH-O-Hの一部である場合を除く。]
 本発明によれば、機械的強度および色相に優れ、かつ異物の少ない電気・電子部品若しくは自動車用部品等の射出成形分野、フィルム若しくはシート分野、ボトル若しくは容器分野、さらには、カメラレンズ、ファインダーレンズ、CCD若しくはCMOS用レンズなどのレンズ用途、液晶若しくはプラズマディスプレイなどに利用される位相差フィルム、拡散シート、偏光フィルムなどのフィルム、シート、光ディスク、光学材料、光学部品、または色素若しくは電荷移動剤等を固定化するバインダー用途といった幅広い分野へ適用可能な性能を有するポリカーボネート樹脂ペレットを、効率的にかつ安定して製造することが可能になる。
図1は、本発明にかかる製造工程の例を示す工程図である。
 以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。
 本発明のポリカーボネート樹脂ペレットの製造方法は、ジヒドロキシ化合物および炭酸ジエステルを重縮合させて得られたポリカーボネート樹脂を、フィルターを用いて濾過した後に、冷却固化するポリカーボネート樹脂の製造方法であって、前記ジヒドロキシ化合物が構造の一部に下記一般式(1)で表される部位を有するジヒドロキシ化合物を少なくとも含み、前記フィルターの目開きが50μm以下であり、前記フィルターを用いて濾過した後の樹脂の温度が200℃以上280℃未満となるように濾過することを特徴とするものである。
Figure JPOXMLDOC01-appb-C000005
 但し、上記一般式(1)で表される部位が-CH-O-Hの一部である場合を除く。
 <原料モノマーと重合触媒>
 (ジヒドロキシ化合物)
 本発明のポリカーボネート樹脂の製法においては、原料モノマーとして、炭酸ジエステル及びジヒドロキシ化合物を用いるが、ジヒドロキシ化合物の少なくとも1種が、構造の一部に上記一般式(1)で表される部位を有する特定ジヒドロキシ化合物であることを特徴とする(以下、「本発明のジヒドロキシ化合物」と称することがある。)。即ち、本発明のジヒドロキシ化合物は、2つのヒドロキシル基と、更に上記一般式(1)の構造単位を少なくとも含むものを言う。
 前記した本発明のジヒドロキシ化合物としては、構造の一部に上記一般式(1)で表される部位を有するものであれば特に限定されるものではない。具体的には、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどのオキシアルキレングリコール類;9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-イソプロピルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-イソブチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-tert-ブチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-tert-ブチル-6-メチルフェニル]フルオレンおよび9,9-ビス[4-(3-ヒドロキシ-2,2-ジメチルプロポキシ)フェニル]フルオレン等、側鎖に芳香族基を有し、主鎖に芳香族基に結合したエーテル基を有する化合物;下記一般式(5)で表されるジヒドロキシ化合物に代表される無水糖アルコール、および下記一般式(6)で表されるスピログリコール等の環状エーテル構造を有する化合物が挙げられる。
 中でも、入手のし易さ、ハンドリング、重合時の反応性および得られるポリカーボネート樹脂の色相の観点から、ジエチレングリコール、トリエチレングリコールまたはポリエチレングリコールが好ましい。
 また、耐熱性の観点からは、下記一般式(5)で表されるジヒドロキシ化合物に代表される無水糖アルコールまたは下記一般式(6)で表されるスピログリコール等の環状エーテル構造[好ましくは、上記一般式(1)で表される部位が環状エーテル構造の一部であるもの]を有する化合物が好ましい。
 これらは得られるポリカーボネート樹脂の要求性能に応じて、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 なお、上記一般式(5)で表されるジヒドロキシ化合物としては、例えば、立体異性体の関係にある、イソソルビド、イソマンニドおよびイソイデットが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらのジヒドロキシ化合物のうち、芳香環構造を有しないジヒドロキシ化合物を用いることがポリカーボネート樹脂の色相の観点から好ましい。中でも植物由来の資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られるイソソルビドが、入手及び製造のし易さ、耐光性、光学特性、成形性、耐熱性およびカーボンニュートラルの面から最も好ましい。
 本発明のポリカーボネート樹脂の製造方法においては、原料モノマーとして、上記本発明のジヒドロキシ化合物以外のジヒドロキシ化合物(以下「その他のジヒドロキシ化合物」と称す場合がある。)に由来する構成単位を含んでいてもよい。
 その他のジヒドロキシ化合物としては、例えば、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、1,5-ヘプタンジオールおよび1,6-ヘキサンジオールのなどの脂肪族ジヒドロキシ化合物、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、2,6-デカリンジメタノール、1,5-デカリンジメタノール、2,3-デカリンジメタノール、2,3-ノルボルナンジメタノール、2,5-ノルボルナンジメタノールおよび1,3-アダマンタンジメタノール等の脂環式ジヒドロキシ化合物、並びに2,2-ビス(4-ヒドロキシフェニル)プロパン[=ビスフェノールA]、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、2,2-ビス[4-ヒドロキシ-(3,5-ジフェニル)フェニル]プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,4’-ジヒドロキシ-ジフェニルメタン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-5-ニトロフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)スルホン、2,4’-ジヒドロキシジフェニルスルホン、ビス(4-ヒドロキシフェニル)スルフィド、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジクロロジフェニルエーテル、9,9-ビス[4-(2-ヒドロキシエトキシ-2-メチル)フェニル]フルオレン、9,9-ビス(4-ヒドロキシフェニル)フルオレンおよび9,9-ビス(4-ヒドロキシ-2-メチルフェニル)フルオレン等の芳香族ビスフェノール類が挙げられる。
 これらのようなその他のジヒドロキシ化合物の中でも、ポリカーボネート樹脂の色相の観点からは、分子構造内に芳香環構造を有しないジヒドロキシ化合物、即ち脂肪族ジヒドロキシ化合物及び脂環式ジヒドロキシ化合物からなる群より選ばれる少なくとも1種の化合物を用いることが好ましい。
 脂肪族ジヒドロキシ化合物としては、特に1,3-プロパンジオール、1,4-ブタンジオールまたは1,6-ヘキサンジオールが好ましい。また、脂環式ジヒドロキシ化合物としては、特に1,4-シクロヘキサンジメタノールまたはトリシクロデカンジメタノールが好ましい。中でも、重合反応性と靭性改良の観点からは、1,4-シクロヘキサンジメタノールが好ましい。
 これらのその他のジヒドロキシ化合物を用いることにより、ポリカーボネート樹脂の柔軟性の改善、耐熱性の向上または成形性の改善などの効果を得ることも可能であるが、その他のジヒドロキシ化合物に由来する構造単位の含有割合が多過ぎると、機械的物性の低下または耐熱性の低下を招くことがある。
 そのため、全ジヒドロキシ化合物に由来する構造単位に対する本発明のジヒドロキシ化合物に由来する構造単位の割合が、20モル%以上であることが好ましく、より好ましくは30モル%以上、特には50モル%以上であることが好ましい。
 すなわち、その他のジヒドロキシ化合物に由来する構造単位の割合が、全ジヒドロキシ化合物に由来する構造単位に対して80モル%未満であることが好ましく、70モル%以下であることがより好ましく、50モル%以下であることが特に好ましい。
 本発明のジヒドロキシ化合物は、還元剤、抗酸化剤、脱酸素剤、光安定剤、制酸剤、pH安定剤または熱安定剤等の安定剤を含んでいてもよい。特に酸性下において、本発明のジヒドロキシ化合物は変質しやすいことから、使用前に保存するにあたっては塩基性安定剤を含むことが好ましい。
 塩基性安定剤としては、例えば、長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005)における1族または2族の金属の水酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硼酸塩および脂肪酸塩、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等の塩基性アンモニウム化合物、並びに4-アミノピリジン、2-アミノピリジン、N,N-ジメチル-4-アミノピリジン、4-ジエチルアミノピリジン、2-ヒドロキシピリジン、2-メトキシピリジン、4-メトキシピリジン、2-ジメチルアミノイミダゾール、2-メトキシイミダゾール、イミダゾール、2-メルカプトイミダゾール、2-メチルイミダゾールおよびアミノキノリン等のアミン系化合物が挙げられる。その中でも、その効果と後述する蒸留除去のしやすさから、Na若しくはKのリン酸塩または亜リン酸塩が好ましく、中でもリン酸水素2Naまたは亜リン酸水素2Naが好ましい。
 これら安定剤の本発明のジヒドロキシ化合物中の含有量に特に制限はないが、少なすぎると本発明のジヒドロキシ化合物の変質を防止する効果が得られない可能性があり、多すぎると本発明のジヒドロキシ化合物の変性を招く場合がある。そのため、安定剤の含有量は、本発明のジヒドロキシ化合物に対して、通常0.0001重量%~1重量%であることが好ましく、より好ましくは0.001重量%~0.1重量%である。
 また、本発明のジヒドロキシ化合物がイソソルビド等、環状エーテル構造を有する場合には、酸素によって徐々に酸化されやすいので、保管時または製造時には、酸素による分解を防ぐため、水分が混入しないようにし、かつ、脱酸素剤等を用いたり、窒素雰囲気下で取り扱うことが好ましい。
 特に、イソソルビドが酸化されると、蟻酸等の分解物が発生する場合がある。これら分解物を含むイソソルビドをポリカーボネート樹脂の製造原料として使用すると、得られるポリカーボネート樹脂の着色を招く可能性があり、又、物性を著しく劣化させる可能性があるだけではなく、重合反応に影響を与え、高分子量の重合体が得られない場合もあり、好ましくない。
(炭酸ジエステル)
 本発明においては、上述した本発明のジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとを原料として、エステル交換反応により重縮合させてポリカーボネート樹脂を得ることができる。
 本発明で用いられる炭酸ジエステルとしては、下記一般構造式(7)で表されるものが挙げられる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
Figure JPOXMLDOC01-appb-C000008
 一般構造式(7)において、A、Aは、置換または無置換の炭素数1~18の脂肪族または置換または無置換の芳香族基であり、AとAは同一であっても異なっていてもよい。
 A及びAは置換または無置換の芳香族炭化水素基が好ましく、無置換の芳香族炭化水素基がより好ましい。尚、脂肪族炭化水素基の置換基としては、例えば、エステル基、エーテル基、カルボン酸、アミド基およびハロゲンが挙げられる。芳香族炭化水素基の置換基としては、例えば、メチル基およびエチル基等のアルキル基が挙げられる。
 上記一般式(7)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネートおよびジトリルカーボネート等の置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート並びにジ-t-ブチルカーボネート等が挙げられる。中でも、好ましくはジフェニルカーボネートまたは置換ジフェニルカーボネートであり、特に好ましくはジフェニルカーボネートである。
 なお、炭酸ジエステルは、塩化物イオンなどの不純物を含む場合があり、重合反応を阻害したり、得られるポリカーボネート樹脂の色相を悪化させたりする場合があるため、必要に応じて、蒸留などにより精製したものを使用することが好ましい。
 本発明の方法において、本発明のジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとをエステル交換反応により重縮合させることによって、ポリカーボネート樹脂を得られる。原料であるジヒドロキシ化合物と炭酸ジエステルは、反応槽に独立に投下してもエステル交換反応をさせることは可能であるが、エステル交換反応前に均一に混合することもできる。
 前記混合の温度は80℃以上が好ましく、より好ましくは90℃以上であり、その上限は250℃以下が好ましく、より好ましくは200℃以下、更に好ましくは150℃以下である。中でも100℃以上130℃以下が好ましい。
 前記混合の温度が低すぎると溶解速度が遅かったり、溶解度が不足したりする可能性があり、しばしば固化等の不具合を招く。前記混合の温度が高すぎるとジヒドロキシ化合物の熱劣化を招く場合があり、結果的に得られるポリカーボネート樹脂の色相が悪化し、耐光性または耐熱性に悪影響を及ぼす可能性がある。
 本発明の方法において、原料である本発明のジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとを混合する操作環境の酸素濃度は、10vol%以下が好ましく、更には0.0001vol%~10vol%、中でも0.0001vol%~5vol%、特には0.0001vol%~1vol%の雰囲気下で行うことが、色相悪化防止の観点から好ましい。
 本発明において、炭酸ジエステルは、反応に用いる本発明のジヒドロキシ化合物を含む全ジヒドロキシ化合物に対して、0.90~1.20のモル比率で用いることが好ましく、より好ましくは、0.95~1.10、更に好ましくは0.97~1.03、特に好ましくは0.99~1.02である。
 前記モル比率が小さくなると、製造されたポリカーボネート樹脂の末端水酸基が増加して、ポリマーの熱安定性が悪化し、成形時に着色を招いたり、エステル交換反応の速度が低下したり、所望する高分子量体が得られない可能性がある。
 一方、前記モル比率が大きくなると、エステル交換反応の速度が低下したり、所望とする分子量のポリカーボネートの製造が困難となったり、ポリカーボネート樹脂中の残存炭酸ジエステル量が増加し、押出時または成型時にガスの発生を招いたりする場合がある。エステル交換反応速度の低下は、重合反応時の熱履歴を増大させ、結果的に得られたポリカーボネート樹脂の色相を悪化させる可能性がある。
 更には、本発明のジヒドロキシ化合物を含む全ジヒドロキシ化合物に対して、炭酸ジエステルのモル比率が増大すると、得られるポリカーボネート樹脂中の残存炭酸ジエステル量が増加し、これが成形時にガスとなり成形不良を招いたり、製品からブリードアウトしたりする場合があり、好ましくない。
 本発明の方法で得られるポリカーボネート樹脂ペレットに残存する炭酸ジエステルの濃度は、好ましくは200重量ppm以下、更に好ましくは100重量ppm以下、特に好ましくは60重量ppm以下、中でも30重量ppm以下が好ましい。
(触媒)
 本発明の方法においては、上述のように本発明のジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとをエステル交換反応により重縮合させてポリカーボネート樹脂を製造する際に、エステル交換触媒(以下、単に「触媒」又は「重合触媒」とも言う。)を存在させることができる。
 本発明の方法において、エステル交換触媒(触媒)は、特にポリカーボネート樹脂の熱安定性、または色相を表すイエローインデックス(YI)値に影響を与え得る。用いられるエステル交換触媒としては、ポリカーボネート樹脂の熱安定性および色相を満足するものであれば、限定されるものではない、
 例えば、長周期型周期表における1族または2族(以下、単に「1族」、「2族」と表記する。)の金属化合物、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物およびアミン系化合物等の塩基性化合物が挙げられる。
 好ましくは1族金属化合物及び/又は2族金属化合物が使用される。より好ましくは、長周期型周期表2族の金属及びリチウムからなる群より選ばれる金属の金属化合物である。
 前記の1族金属化合物及び/又は2族金属化合物の形態としては通常、水酸化物、又は炭酸塩、カルボン酸塩若しくはフェノール塩といった塩の形態で用いられるが、入手のし易さおよび取扱いの容易さから、水酸化物、炭酸塩または酢酸塩が好ましく、色相と重合活性の観点からは酢酸塩が好ましい。
 具体的な前記の1族金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩および2セシウム塩等が挙げられる。中でもリチウム化合物が好ましい。
 また、具体的な前記の2族金属化合物としては、例えば、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウムおよびステアリン酸ストロンチウム等が挙げられる。
 中でもマグネシウム化合物、カルシウム化合物またはバリウム化合物が好ましく、重合活性と得られるポリカーボネート樹脂の色相の観点から、マグネシウム化合物及びカルシウム化合物からなる群より選ばれる少なくとも1種の金属化合物が更に好ましく、最も好ましくはカルシウム化合物である。
 なお、前記の1族金属化合物及び/又は2族金属化合物と共に、補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物またはアミン系化合物等の塩基性化合物を併用することも可能であるが、重合反応中に揮発してトラブルの原因となる可能性があるため、1族金属化合物及び/又は2族金属化合物のみを使用することが特に好ましい。
 前記の併用可能な塩基性ホウ素化合物としては、例えば、テトラメチルホウ素、テトラエチルホウ素、テトラプロピルホウ素、テトラブチルホウ素、トリメチルエチルホウ素、トリメチルベンジルホウ素、トリメチルフェニルホウ素、トリエチルメチルホウ素、トリエチルベンジルホウ素、トリエチルフェニルホウ素、トリブチルベンジルホウ素、トリブチルフェニルホウ素、テトラフェニルホウ素、ベンジルトリフェニルホウ素、メチルトリフェニルホウ素およびブチルトリフェニルホウ素等のナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、バリウム塩、マグネシウム塩並びにストロンチウム塩等が挙げられる。
 前記の併用可能な塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ-n-プロピルホスフィン、トリイソプロピルホスフィン、トリ-n-ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィンおよび四級ホスホニウム塩等が挙げられる。
 前記の併用可能な塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。
 前記の併用可能なアミン系化合物としては、例えば、4-アミノピリジン、2-アミノピリジン、N,N-ジメチル-4-アミノピリジン、4-ジエチルアミノピリジン、2-ヒドロキシピリジン、2-メトキシピリジン、4-メトキシピリジン、2-ジメチルアミノイミダゾール、2-メトキシイミダゾール、イミダゾール、2-メルカプトイミダゾール、2-メチルイミダゾールおよびアミノキノリン等が挙げられる。
 前記触媒の使用量は、用いた全ジヒドロキシ化合物1mol当たり0.1μmol~300μmolが好ましく、より好ましくは0.5μmol~100μmolであり、さらに好ましくは0.5μmol~50μmolであり、よりさらに好ましくは0.5μmol~20μmolであり、特に好ましくは1μmol~5μmolである。
 中でも長周期型周期表第2族の金属及びリチウムから選ばれる少なくとも1種の金属化合物を用いる場合、用いた全ジヒドロキシ化合物1mol当たり、金属量として、通常0.1μmol以上であることが好ましく、より好ましくは0.5μmol以上、特に好ましくは0.7μmol以上とする。また上限としては、通常20μmolであることが好ましく、より好ましくは10μmol、さらに好ましくは3μmol、特に好ましくは1.5μmol、中でも1.0μmolが好ましい。
 一方、前記触媒の使用量が多すぎると、望まざる副反応によって得られるポリカーボネート樹脂の色相または熱安定性等が悪化する可能性がある。
 また、1族金属、中でもナトリウム、カリウム及びセシウム、特にナトリウムは、ポリカーボネート樹脂中に多く含まれると色相に悪影響を及ぼす可能性があり、該金属は使用する触媒からのみではなく、原料または反応装置から混入する場合がある。そのため、ポリカーボネート樹脂中のこれらの化合物の合計量は、金属量として、通常1重量ppm以下であることが好ましく、より好ましくは0.8重量ppm以下、さらに好ましくは0.7重量ppm以下である。
 なお、ポリカーボネート樹脂中の金属量は、湿式灰化などの方法でポリカーボネート樹脂中の金属を回収した後、原子発光、原子吸光またはInductively Coupled Plasma(ICP)等の方法を使用して測定することが出来る。
 尚、上記触媒は、反応器に直接添加してもよいし、ジヒドロキシ化合物と炭酸ジエステルを予め混合する原料調整槽に添加し、その後、反応器に存在させる方法を取ってもよいし、反応器に原料を供給する配管中で添加してもよい。
 触媒の使用量が少なすぎると、十分な重合活性が得られず重合反応の進行が遅くなるため、所望の分子量のポリカーボネート樹脂が得られにくく、また、長時間の熱履歴を受けることになり色相が悪化する可能性がある。
 <製造方法>
(重縮合方法)
 本発明の方法において、前記のジヒドロキシ化合物と前記の炭酸ジエステルとを重縮合させてポリカーボネート樹脂を得る方法は、上述の触媒存在下、複数の反応器を用いて多段階で実施されるとよい。
 反応の形式は、バッチ式、連続式、あるいはバッチ式と連続式の組み合わせのいずれの方法でもよい。中でも品質の安定化の観点からは連続式が好ましい。重合初期においては、相対的に低温、低真空でプレポリマーを得、重合後期においては相対的に高温、高真空で所定の値まで分子量を上昇させることが好ましいが、各分子量段階でのジャケット温度と内温、反応系内の圧力を適切に選択することが色相または熱安定性の観点から好ましい。
 例えば、重合反応が所定の値に到達する前に温度、圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが留出し、ジヒドロキシ化合物と炭酸ジエステルのモル比率を狂わせ、重合速度の低下を招いたり、所定の分子量または末端基を持つポリマーが得られなかったりして結果的に本願発明の目的を達成することができない可能性がある。
 更には、留出するモノマーの量を抑制するために、重合反応器に還流冷却器を用いることは有効であり、特に未反応モノマー成分が多い重合初期の反応器でその効果は大きい。還流冷却器に導入される冷媒の温度は使用するモノマーに応じて適宜選択することができる。
 通常、還流冷却器に導入される冷媒の温度は該還流冷却器の入口において45~180℃であることが好ましく、より好ましくは80~150℃、特に好ましくは100~140℃である。
 冷媒の温度が高すぎると還流量が減り、その効果が低下し、逆に低すぎると、本来留去すべきモノヒドロキシ化合物の留去効率が低下する傾向にある。冷媒としては、例えば、温水、蒸気および熱媒オイル等が挙げられ、蒸気または熱媒オイルが好ましい。
 前記重合の速度を適切に維持し、モノマーの留出を抑制しながら、最終的なポリカーボネート樹脂の異物発生を抑制し、色相または熱安定性を損なわないようにするためには、前述の触媒の種類と量の選定が重要である。
 本発明では、前記の触媒を用いて、複数の反応器を用いて多段階で重合させて製造することが好ましい。重合を複数の反応器で実施する理由は、重合反応初期においては、反応液中に含まれるモノマーが多いために、必要な重合速度を維持しつつ、モノマーの揮散を抑制してやることが重要であり、重合反応後期においては、平衡を重合側にシフトさせるために、副生するモノヒドロキシ化合物を十分留去させることが重要になり、初期と後期では望ましい重合反応条件が異なるためである。このように、異なった重合反応条件を設定するには、直列に配置された複数の重合反応器を用いることが、生産効率の観点から好ましい。
 本発明で前記重合の際に使用される反応器は、上述の通り、少なくとも2つ以上であることが好ましく、生産効率などの観点からは、より好ましくは3つ以上、さらに好ましくは3~5つ、特に好ましくは4つである。
 本発明において、反応器が2つ以上であれば、それぞれの反応器中で、条件の異なる反応条件を設定することができ、それぞれの反応器で連続的に温度・圧力を変えていくなどしてもよい。
 本発明において、前記の重合触媒は原料調製槽、原料貯槽に添加することもできるし、重合槽に直接添加することもできるが、供給の安定性および重合の制御の観点からは、重合槽に供給される前の原料配管の途中に触媒供給配管を設置するとよく、好ましくは水溶液で供給する。
 前記重合反応の温度は、低すぎると生産性の低下または製品への熱履歴の増大を招き、高すぎるとモノマーの揮散を招くだけでなく、ポリカーボネート樹脂の分解または着色を助長する可能性がある。
 具体的な前記温度は次の通りである。第1段目の反応は、重合反応器の内温の最高温度として、140~270℃が好ましく、より好ましくは170~240℃、更に好ましくは180~210℃で、110~1kPaが好ましく、より好ましくは70~5kPa、更に好ましくは30~10kPa(絶対圧力)の圧力下、好ましくは0.1~10時間、より好ましくは0.5~3時間、副生するモノヒドロキシ化合物を反応系外へ留去しながら実施される。
 本発明における第1段目の反応とは、重合反応全体を通じて留出するモノヒドロキシ化合物の5重量%以上が留出する反応器の中で、プロセスの最上流にある反応器での反応を指す。
 第2段目以降は、反応系の圧力を第1段目の圧力から徐々に下げ、引き続き発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力(絶対圧力)を好ましくは2kPa以下、より好ましくは1kPa以下にして、好ましくは210℃以上、より好ましくは220℃以上、好ましくは270℃以下、より好ましくは250℃以下、さらに好ましくは240℃以下で、好ましくは0.1~10時間、より好ましくは1~6時間、特に好ましくは0.5~3時間行う。
 特にポリカーボネート樹脂の着色または熱劣化を抑制し、色相または熱安定性の良好なポリカーボネート樹脂を得るには、全反応段階における内温の最高温度が好ましくは260℃未満、より好ましくは250℃未満、特には245℃未満であることが好ましい。
 ここでいう内温とはプロセス液の温度を示し、通常、反応器に具備された熱電対等を用いた温度計によって測定される。また、重合反応後段の重合速度の低下を抑止し、熱履歴による劣化を最小限に抑えるためには、重合の最終段階でプラグフロー性と界面更新性に優れた横型反応器を使用することが好ましい。
 ただし、所定の分子量のポリカーボネート樹脂を得るために、重合温度を高く、重合時間を長くし過ぎると、色相を表すイエローインデックス(YI)値は大きくなる傾向にある点に留意する必要がある。
 前記の反応中で副生され留去したモノヒドロキシ化合物は、資源有効活用の観点から、燃料または化学品の原料として用いることが好ましい。特には必要に応じ精製を行った後、炭酸ジフェニルまたはビスフェノールA等の原料として再利用することが好ましい。
(重縮合反応以降の工程)
 本発明のポリカーボネート樹脂は、上述の重縮合反応を行った後、フィルターを用いて濾過する。中でもポリカーボネート樹脂中に含まれる低分子量成分の除去、または熱安定剤等の添加混練を実施するため、重縮合で得られたポリカーボネート樹脂を押出機に導入し、次いで押出機から排出されたポリカーボネート樹脂を、フィルターを用いて濾過することが好ましい。
 前記のようにして重縮合で得られたポリカーボネート樹脂を、フィルターを用いて濾過する方法としては、例えば、次の方法が挙げられる。
 濾過に必要な圧力を発生させるために、最終重合反応器からギアポンプまたはスクリュー等を用いて溶融状態でポリカーボネート樹脂を抜き出し、前記フィルターで濾過する方法、
 最終重合反応器から溶融状態で一軸または二軸の押出機にポリカーボネート樹脂を供給し、溶融押出しした後、前記フィルターで濾過し、ストランドの形態で冷却固化させて、回転式カッター等でペレット化する方法、
 最終重合反応器から固化させることなく溶融状態のままで一軸または二軸の押出機にポリカーボネート樹脂を供給し、溶融押出しした後、一旦ストランドの形態で冷却固化させてペレット化し、該ペレットを再度押出機に導入して前記フィルターで濾過し、ストランドの形態で冷却固化させて、ペレット化する方法、
 又は、最終重合反応器から溶融状態でポリカーボネート樹脂を抜き出し、押出機を通さずにストランドの形態で冷却固化させて一旦ペレット化させた後に、一軸または二軸の押出機にペレットを供給し、溶融押出しした後、前記フィルターで濾過し、ストランドの形態で冷却固化させてペレット化させる方法等である。
 中でも熱履歴を最小限に抑え、色相の悪化または分子量の低下等の熱劣化を抑制するためには、最終重合反応器から固化させることなく溶融状態のまま一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、ギアポンプを用いて前記フィルターに供給、濾過し、ダイスから吐出させてストランドの形態で冷却固化させて、回転式カッター等でペレット化する方法が好ましい。
<製造装置の一例>
 以上に記載した原料モノマーから冷却固化して得られたポリカーボネート樹脂(以下、「冷却固化されたポリカーボネート樹脂」を単に「ポリカーボネート樹脂」と称する場合がある。)のペレットを得る本発明を実施する装置の一例を、図1の工程図に示す。
 原料モノマーである本発明のジヒドロキシ化合物としてイソソルビド(ISB)を、その他のジヒドロキシ化合物として1,4-シクロヘキサンジメタノール(CHDM)を、炭酸ジエステルとしてジフェニルカーボネート(DPC)を、重合触媒として酢酸カルシウムを用いたものとする。
 まず、原料調製工程において、窒素ガス雰囲気下、所定の温度で調製されたDPCの溶融液が、原料供給口1aから原料混合槽2aに連続的に供給される。また、窒素ガス雰囲気下で計量されたISBの溶融液、CHDMの溶融液が、それぞれ原料供給口1b、1cから、原料混合槽2aに連続的に供給される。そして、原料混合槽2a内で攪拌翼3aによりこれらは混合され、原料混合溶融液が得られる。
 次に、得られた原料混合溶融液は、原料供給ポンプ4a、原料濾過フィルター5aを経由して第1竪型撹拌反応槽6aに連続的に供給される。また、原料触媒は水溶液として、原料混合溶融液の移送配管途中の触媒供給口1dから連続的に供給される。
 図1の製造装置の重縮合工程においては、第1竪型撹拌反応槽6a、第2竪型撹拌反応槽6b、第3竪型撹拌反応槽6c、第4横型撹拌反応槽6dが直列に設けられる。各反応器では液面レベルを一定に保ち、重縮合反応が行われ、第1竪型撹拌反応槽6aの槽底より排出された重合反応液は第2竪型撹拌反応槽6bへ、続いて、第3竪型撹拌反応槽6cへ、第4横型撹拌反応槽6dへと順次連続供給され、重縮合反応が進行する。各反応器における反応条件は、重縮合反応の進行とともに高温、高真空、低攪拌速度となるようにそれぞれ設定することが好ましい。
 第1竪型撹拌反応槽6a、第2竪型撹拌反応槽6b及び第3竪型撹拌反応槽6cには、マックスブレンド翼7a、7b、7cがそれぞれ設けられる。また、第4横型撹拌反応槽6dには、2軸メガネ型攪拌翼7dが設けられる。第3竪型攪拌反応槽6cの後には移送する反応液が高粘度になるため、ギアポンプ4bが設けられる。
 第1竪型撹拌反応槽6aと第2竪型撹拌反応槽6bは、供給熱量が特に大きくなることがあるため、熱媒温度が過剰に高温にならないように、それぞれ内部熱交換器8a、8bが設けられる。
 なお、これらの4器の反応器には、それぞれ、重縮合反応により生成する副生物等を排出するための留出管11a、11b、11c、11dが取り付けられる。第1竪型撹拌反応槽6aと第2竪型撹拌反応槽6bについては留出液の一部を反応系に戻すために、還流冷却器9a、9bと還流管10a、10bがそれぞれ設けられる。還流比は反応器の圧力と、還流冷却器の熱媒温度とをそれぞれ適宜調整することにより制御可能である。
 前記の留出管11a、11b、11c、11dは、それぞれ凝縮器12a、12b、12c、12dに接続し、また、各反応器は、減圧装置13a、13b、13c、13dにより、所定の減圧状態に保たれる。
 また、各反応器にそれぞれ取り付けられた凝縮器12a、12b、12c、12dから、フェノール(モノヒドロキシ化合物)等の副生物が連続的に液化回収される。また、第3竪型撹拌反応槽6cと第4横型攪拌反応器6dにそれぞれ取り付けられた凝縮器12c、12dの下流側にはコールドトラップ(図示せず)が設けられ、副生物が連続的に固化回収される。
 所定の分子量まで上昇させた反応液は第4横型撹拌反応槽6dから抜き出され、ギアポンプ4cにより押出機15aに移送される。押出機15aには真空ベントが具備されており、ポリカーボネート中の残存低分子成分を除去する。また、必要に応じて酸化防止剤、光安定剤、着色剤または離型剤などが添加される。
 押出機15aからギアポンプ4dによりフィルター15bに樹脂が供給され、異物が濾過される。フィルター15bを通った樹脂はダイス15cからストランド状に抜き出され、ストランド冷却槽16aで水により樹脂を冷却した後、ストランドカッター16bでペレットにされる。こうして得られたポリカーボネート樹脂ペレットは空送ブロワー16cにより、気力輸送されて、製品ホッパー16dに送られる。計量器16eで所定量の製品が製品袋16fに梱包される。
<重合反応後のペレット製造工程の詳細>
(押出機)
 本発明において前記押出機の形態は限定されるものではないが、一軸または二軸の押出機が用いられる。中でも後述の脱揮性能の向上または添加剤の均一な混練のためには、二軸の押出機が好ましい。この場合、軸の回転方向は異方向であっても同方向であってもよいが、混練性能の観点からは同方向が好ましい。押出機の使用により前記フィルターへのポリカーボネート樹脂の供給を安定させることができるだけでなく、脱揮または添加剤の混練を同時に実施することができる。
 また、上記の通り重縮合させて得られたポリカーボネート樹脂中には、色相または熱安定性、さらにはブリードアウト等により製品に悪影響を与える可能性のある原料モノマー、エステル交換反応で副生するモノヒドロキシ化合物、またはポリカーボネートオリゴマー等の低分子量化合物が残存していることが多い。
 前記押出機としてベント口を有するものを用い、好ましくはベント口から真空ポンプ等を用いて減圧にすることにより、前記低分子量化合物を脱揮除去することも可能である。また、前記押出機内に水等の揮発性液体を導入して、脱揮を促進することもできる。ベント口は1つであっても複数であってもよいが、好ましくは2つ以上である。
 さらに、前記押出機を用いて後述する熱安定剤、離型剤または着色剤等の添加剤を混練することもできる。
 さらにまた、押出機内でのポリカーボネート樹脂の熱劣化を抑制するために、押出機に備えられた軸(以下、スクリューと呼ぶことがある)の回転数を好ましくは300rpm以下、より好ましくは250rpm以下、さらに好ましくは200rpm以下にする。前記スクリューの回転数を300rpm以下とすることによりポリカーボネート樹脂の剪断発熱を抑え、色相の悪化または分子量の低下を防ぐことができる。
一方、前記スクリューの回転数が小さすぎると脱揮性能の悪化、または添加剤の混練性能の悪化を招く可能性があるだけでなく、単位時間当たりの処理量が低下し、生産性の悪化を招くため、好ましくは50rpm以上、より好ましくは70rpm以上である。
 そして、前記スクリューの周速は、前記押出機のスクリュー径と回転数により適宜決定されるが、ポリカーボネート樹脂の剪断による発熱に起因する着色または分子量の低下等の熱劣化を抑制するためには、通常1.0m/秒以下であることが好ましく、より好ましくは0.6m/秒以下、特に好ましくは0.4m/秒以下である。
 一方、周速が小さくなりすぎると、真空脱揮時のベントアップを招いたり、脱揮性能または添加剤の分散性能が低下する傾向があるため、通常0.05m/秒以上であることが好ましく、より好ましくは0.1m/秒以上である。
 通常、押出機のスクリューは、様々な機能を持たせるために、複数のエレメント(スクリューエレメント)から構成されており、一般的には、主に樹脂の搬送を目的とした螺旋ねじ(フライト)のみからなるフルフライト、樹脂の混練を目的としたニーディングディスク、樹脂のシールを目的としたシールリング等から構成され、目的に応じて樹脂の搬送方向と逆方向にねじを配した逆フライトも用いられる。
 またねじの切り方によって二条型または三条型があるが、本発明においては、前記押出機のスクリュー径に対して処理量が大きく取れ、スクリュー回転により発生する剪断発熱を抑制できる二条型の深溝タイプが好ましい。
 本発明においては、これらスクリューエレメントの構成は限定されるものではないが、ニーディングディスクを有するものであることが好ましく、中でも該ニーディングディスクの合計の長さが、スクリュー全体の長さの20%以下であることが好ましく、より好ましくは15%以下、最も好ましくは10%以下である。
 該ニーディングディスクの合計の長さが長すぎると、樹脂の剪断による局所的な発熱が増大し、ポリカーボネート樹脂の色相の悪化または分子量の低下という問題が生じやすくなる。
 一方、該ニーディングディスクの合計の長さが短すぎると、上述した脱揮または添加剤の混練時の性能が低下する可能性があるため、該ニーディングディスクの合計の長さがスクリュー全体の長さの3%以上であることが好ましく、5%以上がより好ましい。
 前記ニーディングディスクとしては、樹脂の搬送方向に対して順送り型、直交型または逆送り型があるが、使用される樹脂の粘度または要求される性能に応じて適宜選択することができる。
 前記スクリューエレメントの材質としては、表面のニッケル等の含有量を高くして鉄含有量を低く抑えたり、TiNまたはCrNで表面硬度を高める処理を施したりすることが好ましい。
 本発明において、前記押出機に溶融状態のままでポリカーボネート樹脂を供給する場合の樹脂の温度は200℃以上であることが好ましく、中でも210℃以上、特には220℃以上が好適である。またその上限は、250℃未満であることが好ましく、中でも245℃未満、特には240℃未満であることが好ましい。
 前記押出機に供給するポリカーボネート樹脂の温度が低すぎると、ポリカーボネート樹脂の溶融粘度が高くなり過ぎて供給が不安定になる可能性があるだけでなく、押出機内での剪断発熱が大きくなりポリカーボネート樹脂の劣化を招く可能性があり、該温度が高すぎるとポリカーボネート樹脂の劣化が起こりやすくなり、色相の悪化若しくは分子量の低下、またはそれに伴う機械的強度の低下を招く傾向がある。
 前記押出機へ供給するポリカーボネート樹脂の温度は、最終重合反応器の内温を制御する他、押出機へポリカーボネート樹脂を供給する配管の温度を制御したり、熱交換器を設ける等の方法で制御することができる。
 さらに本発明において、前記押出機から排出されたポリカーボネート樹脂の温度は、280℃未満にするのが好ましく、より好ましくは270℃未満、特に好ましくは260℃未満である。前記押出機から排出されたポリカーボネート樹脂が280℃以上では、ポリカーボネート樹脂の劣化が起こりやすくなり、色相の悪化若しくは分子量の低下、またはそれに伴う機械的強度の低下を招く傾向がある。
 また逆に、押出機から排出されるポリカーボネート樹脂の温度が低くなりすぎると、ポリカーボネート樹脂の溶融粘度が高く、押出機への負荷が大きくなり、スクリュー回転が不安定になったり、モーターの過負荷を招いたりするため、好ましくは220℃以上、より好ましくは230℃以上、特に好ましくは240℃以上である。
 通常、押出機ではスクリューの回転に伴う樹脂の剪断による発熱があり、一般的には供給されるポリカーボネート樹脂の温度より排出されるポリカーボネート樹脂の温度の方が高くなる傾向にあり、特にポリカーボネート樹脂の分子量が高く溶融粘度が高い場合にこの傾向は顕著となる。
 ポリカーボネート樹脂の温度を上げれば溶融粘度は低下し、その分剪断発熱は抑えられる傾向にあるが、ポリカーボネート樹脂の温度自体が高ければ劣化が起こりやすくなり、色相の悪化若しくは分子量の低下、またはそれに伴う機械的強度の低下を招く傾向があるため、熱安定性に劣る高粘度のポリカーボネート樹脂の劣化を防ぎ、押出を行うことは容易ではない。
 前記押出機から排出されたポリカーボネート樹脂の温度は、通常、供給されるポリカーボネート樹脂の温度、またはバレルに付帯するヒーターの温度で制御するが、ポリカーボネート樹脂の前記押出機への供給量または押出機のスクリュー回転数によっても変わることがあるため、これらの条件も合わせて制御することが好ましい。
 特に粘度の高いポリカーボネート樹脂では、スクリュー回転による剪断発熱が大きくなり、供給される樹脂の温度に対し、排出される樹脂の温度が上がる傾向にあるため、添加剤の分散、脱揮性能または生産性等を維持しながら該剪断発熱によるポリカーボネート樹脂の劣化を抑制するには、スクリューの回転数または周速とエレメント構成の選択が重要である。
(フィルター)
 本発明においては、重縮合して得られたポリカーボネート樹脂中の焼けまたはゲル等の異物を除去するためフィルターで濾過する。中でも、残存モノマーまたは副生フェノール等を減圧脱揮により除去し、熱安定剤または離型剤等の添加剤を混合するために、ポリカーボネート樹脂を押出機で押出した後、フィルターで濾過することが好ましい。
 前記のフィルターの形態としては、例えば、キャンドル型、プリーツ型およびリーフディスク型等公知のものが挙げられる。中でもフィルターの格納容器に対する濾過面積が大きく取れるリーフディスク型が好ましく、また、濾過面積が大きく取れるように複数組み合わせて用いるのが好ましい。
 前記リーフディスク型フィルターは、保持部材(リテイナーとも言う。)に、濾過部材(以下、メディアと言うことがある。)を組合せて構成されており、それらフィルターが(場合によっては複数枚・複数個)格納容器に格納されたユニット(フィルターユニットと言うこともある)の形式で用いられる。
 本発明においては、前記フィルターの差圧(圧力損失)が小さくなるように、複数の目開きのメディアを重ね合わせ、樹脂の侵入方向から順に目開きが細かくなっているタイプが好ましく、フィルター表面にゲルを破砕する目的で金属製のパウダーを焼結したタイプのものを使用することもできる。
 本発明において前記フィルターの目開きは、99%の濾過精度として、50μm以下であり、好ましくは30μm以下、より好ましくは20μm以下、異物を特に低減させたい場合には15μm以下が好ましいが、目開きが小さくなると前記フィルターでの圧力損失が増大して、前記フィルターの破損を招いたり、剪断発熱によりポリカーボネート樹脂が劣化したりする可能性があるため、99%の濾過精度として、1μm以上であることが好ましい。
 尚、ここで99%の濾過精度として定義される目開きとは、ISO16889(2008年)に準拠して決定された下記式(8)で表されるβχ値が100の場合のχの値を言う。
 βχ=(χμmより大きい1次側の粒子数)/(χμmより大きい2次側の粒子数) (8)
(ここで1次側とはフィルターでの濾過前、2次側とは濾過後を示す)
 前記フィルターのメディアの材質としては、樹脂の濾過に必要な強度と耐熱性を有している限り制限はないが、中でも鉄の含有量が少ないSUS316またはSUS316L等のステンレス系が好ましい。また、織りの種類としては、平織、綾織、平畳織または綾畳織等、異物の捕集部分が規則正しい織り状になっているものの他、不織布タイプも用いることができる。本発明においては、ゲルの捕集能力の高い不織布タイプ、中でも不織布を構成する鋼線どうしを焼結させて固定したタイプが好ましい。
 また、前記フィルターに鉄製分が含まれていると、200℃を超える高温での濾過の際に樹脂を劣化させる傾向があるため、上記のように、ステンレスの場合は鉄製分の含有量が少ないことが好ましく、さらに、使用前に不動態化処理しておくことが好ましい。
 不動態化処理としては、例えば、前記フィルターを硝酸等の酸に浸漬させたり、前記フィルターに酸を通液させたりして表面に不動態を形成させる方法、水蒸気または酸素存在下で焙焼(加熱)処理する方法、これらを併用する方法等が挙げられるが、中でも硝酸処理と焙焼の両方を実施することが好ましい。
 前記フィルターについて焙焼処理を行う場合の温度は350℃~500℃であることが好ましく、より好ましくは350℃~450℃であり、焙焼時間は通常3時間~200時間であることが好ましく、より好ましくは5時間~100時間である。
 焙焼の温度が低すぎたり、時間が短すぎたりすると不動態の形成が不充分になり、濾過時にポリカーボネート樹脂を劣化させる傾向がある。一方、焙焼の温度が高すぎたり、時間が長すぎたりすると、フィルターメディアの損傷が激しくなり、必要な濾過精度が出なくなる可能性がある。
 また、前記フィルターを硝酸で処理する際の硝酸の濃度は、通常5重量%~50重量%であることが好ましく、より好ましくは10重量%~30重量%、処理時の温度は、通常5℃~100℃であることが好ましく、より好ましくは50℃~90℃、処理時間は、通常5分~120分であることが好ましく、より好ましくは10分~60分である。
 硝酸の濃度が低すぎたり、処理温度が低すぎたり、処理時間が短すぎたりすると不動態の形成が不充分になり、硝酸の濃度が高すぎたり、処理温度が高すぎたり、処理時間が長すぎたりするとフィルターメディアの損傷が激しくなり、必要な濾過精度が出なくなる可能性がある。
 前記フィルターは、格納容器に格納されていると、圧力をかけて濾過を進行させやすくなるので好ましい。この格納容器の材質についても、樹脂の濾過に耐えられる強度と耐熱性を有している限り制限はないが、好ましくは鉄の含有量が少ないSUS316またはSUS316L等のステンレス系である。鉄の含有量が多いと、上記と同様に、ポリカーボネート樹脂が劣化するおそれがある。
 前記フィルターの格納容器は、ポリカーボネート樹脂の供給口と排出口が実質的に水平に配置されていても、実質的に垂直に配置されていても、斜めに配置されていてもよいが、前記格納容器内でのガスおよびポリカーボネート樹脂の滞留を抑制し、ポリカーボネート樹脂の劣化を防ぐためには、ポリカーボネート樹脂の供給口がフィルター格納容器の下部、排出口が上部に配置されていることが好ましい。
 また、フィルター格納容器の内容積(m)を、ポリカーボネート樹脂流量(m/分)で除した値は、小さすぎるとフィルターの差圧が大きくなってフィルターの破損を招く可能性があり、大きすぎると濾過時にポリカーボネート樹脂の劣化を招くため、1分~20分が好ましく、より好ましくは2分~10分、さらに好ましくは2分~5分である。
 本発明の方法において、前記フィルターに供給される濾過前のポリカーボネート樹脂の温度は、280℃未満にするのが好ましく、より好ましくは270℃未満、特に好ましくは265℃未満、中でも260℃未満が好ましい。
 前記フィルターで濾過する前の温度を280℃未満とすることにより、フィルターユニット中での熱劣化を抑え、色相の悪化若しくは分子量の低下、またはそれに伴う機械的強度の低下を防ぐことができる。
 また逆に、前記フィルターで濾過する前の温度が低くなりすぎると、ポリカーボネート樹脂の溶融粘度が高く、前記フィルターへの負荷が大きくなり、前記フィルターの破損を招く可能性があるため、好ましくは220℃以上、より好ましくは230℃以上、特に好ましくは240℃以上である。
 また、本発明において、濾過後のポリカーボネート樹脂の温度は、200℃以上であり、好ましくは220℃以上、より好ましくは230℃以上である。前記フィルターを用いて濾過した後のポリカーボネート樹脂の温度が低すぎると、溶融粘度が高くなって押し出されて形成されるストランドが安定せず、回転式カッター等でペレット化することが困難になる傾向がある。
 一方、濾過後のポリカーボネート樹脂の温度は、280℃未満であり、好ましくは270℃未満であり、より好ましくは265℃未満であり、更にまた好ましくは260℃未満である。前記フィルターを用いて濾過した後のポリカーボネート樹脂の温度が高すぎると、ポリカーボネート樹脂の熱劣化が起こりやすくなり、色相の悪化若しくは分子量の低下、またはそれに伴う機械的強度の低下を招く傾向がある。
 前記の濾過後の樹脂温度としては、例えば、フィルターから排出された樹脂を取り出して直接測定する方法、およびフィルター出口流路の配管内部にセンサーを設置して測定する方法等が挙げられる。
 前記のフィルター出口流路の配管内部にセンサーを設置して測定する場合、センサー周辺の配管の外部に設置されたヒーターの影響により正しい樹脂温度を測定することが困難なときがある。フィルター出口の近くにダイス等の樹脂を吐出させる装置が設置されていて、そこから吐出される樹脂の温度が、フィルター出口側の樹脂温度と同等であるとみなせるような場合には、ダイス等から吐出される樹脂の温度を、本発明の濾過後の樹脂温度としてもよい。
 なお、濾過後の樹脂温度の精度を高める目的で、フィルター出口流路の配管内部にセンサーを設置して測定する方法と、フィルター出口の近くに設置されたダイス等から吐出される樹脂温度を測定する方法の両方を実施することもできる。
 本発明の方法において、前記フィルターユニットは通常その外側に複数のブロックからなるヒーターを設置し温度制御を行うが、その設定温度が高すぎるとポリカーボネート樹脂の劣化を招くことがあるため、通常好ましくは280℃以下、より好ましくは260℃以下、特に好ましくは250℃以下に設定する。
 一方、設定温度が低すぎると溶融粘度が高くなって、フィルターで濾過することが困難になるため、通常好ましくは150℃以上、より好ましくは180℃以上、特に好ましくは200℃以上とする。
 また、前記フィルターユニットから排出されたポリカーボネート樹脂をダイスに導くための配管も通常その外部にヒーターを設置するが、その設定温度が高すぎるとポリカーボネート樹脂の劣化を招くことがあるため、通常好ましくは280℃以下、より好ましくは260℃以下、特に好ましくは250℃以下に設定する。
 一方、設定温度が低すぎると溶融粘度が高くなって、配管での圧力損失が大きくなるため、通常好ましくは150℃以上、より好ましくは180℃以上、特に好ましくは200℃以上とする。
 さらにフィルターユニット出口からダイスまでのポリカーボネート樹脂の滞留時間が長いとポリカーボネート樹脂の劣化を招くことがあるため、通常好ましくは1~30分、より好ましくは3~20分とする。
 本発明の方法において、前記フィルターでの濾過を経て前記ダイスから吐出されるポリカーボネート樹脂の温度は、200℃以上であることが好ましく、より好ましくは220℃以上、さらに好ましくは230℃以上であり、上限は280℃未満であることが好ましく、より好ましくは270℃未満、さらに好ましくは265℃未満、特に好ましくは260℃未満である。
 濾過を経て前記ダイスから吐出されるポリカーボネート樹脂の温度が低すぎると、溶融粘度が高くなって押し出されて形成されるストランドが安定せず、回転式カッター等でペレット化することが困難になる可能性がある。一方、温度が高すぎるとポリカーボネート樹脂の熱劣化が起こりやすくなり、色相の悪化若しくは分子量の低下、またはそれに伴う機械的強度の低下を招く可能性がある。
 前記ダイスには、通常ヒーターを設置するが、その設定温度が高すぎるとポリカーボネート樹脂の劣化を招くことがあるため、通常280℃以下であることが好ましく、より好ましくは260℃以下、特に好ましくは250℃以下に設定する。
 一方、設定温度が低すぎると溶融粘度が高くなって、配管での圧力損失が大きくなるため、通常好ましくは150℃以上、より好ましくは180℃以上、特に好ましくは200℃以上とする。
 通常、ポリカーボネート樹脂を目開きの小さい前記フィルターで濾過すると剪断発熱により温度が上昇し、押出機を使用する場合には、スクリュー回転による剪断発熱も加わるため、濾過を経て前記ダイスから吐出されるポリカーボネート樹脂の温度を制御するには、前記フィルターの目開き、濾過面積、温度設定、ポリカーボネート樹脂の分子量、フィルターユニットの温度設定またはフィルター出口からダイスまでの温度設定等を総合的に制御することが重要になる。
 また、前記フィルターへの供給に前記押出機を使用する場合には、併せて前述のように前記押出機におけるポリカーボネート樹脂の処理量、スクリューの回転数若しくは周速、またはエレメントの構成等の選択が重要になる。
 また、本発明の方法においては、前記フィルターで濾過される前のポリカーボネート樹脂の温度と、濾過後のポリカーボネート樹脂の温度の差が50℃以内であることが好ましく、より好ましくは30℃以内、最も好ましくは10℃以内である。
 前記フィルターで濾過される前のポリカーボネート樹脂の温度と、濾過後のポリカーボネート樹脂の温度差が大きくなりすぎると、特に複数のリーフディスク型フィルターでフィルターユニットが構成されている場合、樹脂の供給側と排出側で圧力バランスが崩れて前記フィルターの破損を招く可能性がある。
 本発明の方法においては、前記エステル交換反応により重縮合させ得られたポリカーボネート樹脂の前記フィルターに供給される前の末端二重結合をXμeq/g、前記フィルターを用いて濾過して、前記ダイスからストランドの形態で吐出し、冷却後、カッターを用いて得られたポリカーボネート樹脂ペレットを構成するポリカーボネート樹脂の末端二重結合をYμeq/gとした場合に、下記式(2)を満たすことが好ましい。
 Y-X≦10    (2)
 より好ましくはY-X≦8、特に好ましくはY-X≦5である。Y-Xを10以下とすることにより、該二重結合から派生すると考えられる着色成分が生じるのを抑制するとともに、前記フィルター内またはその周辺でのガスの発生を抑制し、ストランドの吐出が安定し、カッターでペレット化し易くなるため好ましい。
 またYは、50μeq/g以下であることが好ましく、更に好ましくは30μeq/g、特に好ましくは20μeq/gである。Yが大きすぎるとポリカーボネート樹脂ペレットの着色を招く場合がある。
 また、本発明の方法においては、前記ポリカーボネート樹脂の前記フィルターに供給される前の還元粘度(ηsp/c)をA、前記フィルターを用いて濾過して、ダイスからストランドの形態で吐出し、冷却後、カッターを用いて得られたポリカーボネート樹脂ペレットの還元粘度(ηsp/c)をBとした場合に、下記式(3)を満たすことが好ましい。
 0.8<B/A<1.1     (3)
 より好ましくはB/A>0.85、さらに好ましくはB/A>0.9、特に好ましくはB/A>0.95である。B/Aを0.8超とすることにより、副反応により生成すると考えられる着色成分または着色の前駆体となる成分が生じるのを抑制することができ、好ましい。一方で、ポリマーフィルター内で還元粘度が上昇すると、ゲルまたはヤケ等の異物の生成が台頭してくるため、B/A≦1.0であることがより好ましい。還元粘度の測定法については後述する。
 尚、前記の重縮合反応器と前記フィルターの間に前記押出機を設置する場合には、前記押出機に供給されるポリカーボネート樹脂の還元粘度(ηsp/c)をaとした場合に、前記のBに対して、下記式(4)を満たすことが好ましい。
 0.8<B/a<1.1     (4)
 より好ましくはB/a>0.85、特に好ましくはB/a>0.9である。B/aを0.8超とすることにより、副反応により生成すると考えられる着色成分または着色の前駆体となる成分が生じるのを抑制することができ、好ましい。一方で、還元粘度が上昇すると、ゲルまたはヤケ等の異物の生成が台頭してくるため、B/a≦1.0であることがより好ましい。
 ポリマーフィルターまたは押出機での還元粘度の変化を前記範囲にするためには、最終反応器でのポリカーボネート樹脂の温度、ポリマーフィルターへ入るポリカーボネート樹脂の温度、ポリマーフィルターから吐出されるポリカーボネート樹脂の温度、ポリマーフィルターの単位時間当たりの処理量若しくは目開きの選択、ポリマーフィルターからダイスまでの温度制御若しくは滞留時間、押出機を使用する場合には、押出機へ供給するポリカーボネート樹脂の温度、押出機から吐出されるポリカーボネート樹脂の温度、脱揮圧力、注水の有無若しくは注水量、スクリューの回転数若しくは周速、またはエレメント構成の選択が重要である。
 更には、前記押出機を用いる場合、前記フィルターへのポリカーボネート樹脂の供給量を安定化させるために、前記押出機と前記フィルターの間に、ギアポンプを配置するのが好ましい。ギアポンプの種類についての制限はないが、中でもシール部にグランドパッキンを用いない自己循環型が異物低減の観点から好ましい。
 本発明において、ポリカーボネート樹脂が直接外気と触れるストランド化、ペレット化の際には、外気からの異物混入を防止するために、好ましくはJISB 9920(2002年)に定義されるクラス7、更に好ましくはクラス6より清浄度の高いクリーンルーム中で実施することが好ましい。
 また、前記フィルターで濾過されたポリカーボネート樹脂は、冷却固化させ、回転式カッター等でペレット化されるが、そのペレット化の際、空冷または水冷等の冷却方法を使用するのが好ましい。
 空冷の際に使用する空気は、へパフィルター等で空気中の異物を事前に取り除いた空気を使用し、空気中の異物の再付着を防ぐのが好ましい。水冷を使用する際は、イオン交換樹脂等で水中の金属分を取り除き、さらに前記フィルターにて、水中の異物を取り除いた水を使用することが好ましい。用いるフィルターの目開きは、99.9%除去の濾過精度として10~0.45μmであることが好ましい。
 さらに、本発明においては、前記押出機中で通常知られている、熱安定剤、中和剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤または難燃剤等を添加、混練することも出来る。
(重合前における濾過)
 一方、本発明の方法においては、最終的に得られるポリカーボネート樹脂ペレットに含まれる異物をより低減させるために、原料モノマーを重縮合させる前に、予め原料濾過フィルターで濾過するのも有効である。
 前記原料濾過フィルターの形状としては、バスケットタイプ、ディスクタイプ、リーフディスクタイプ、チューブタイプ、フラット型円筒タイプまたはプリーツ型円筒タイプ等のいずれの型式であってもよいが、中でもコンパクトで濾過面積が大きく取れるプリーツタイプのものが好ましい。
 また、前記原料濾過フィルターを構成する濾材としては、金属ワインド、積層金属メッシュ、金属不織布または多孔質金属板等のいずれでもよいが、濾過精度の観点から積層金属メッシュまたは金属不織布が好ましく、中でも金属不織布を焼結して固定したタイプのものが好ましい。
 前記原料濾過フィルターの材質についての制限は特になく、金属製または樹脂製セラミック製等を使用することができるが、耐熱性および着色低減の観点からは、鉄含有量80%以下である金属製フィルターが好ましく、中でもSUS304、SUS316、SUS316LまたはSUS310S等のステンレス鋼製が好ましい。
 また、原料モノマーの濾過の際には、濾過性能を確保しながら前記原料濾過フィルターの寿命を延ばすためには、複数のフィルターユニットを用いることが好ましく、中でも上流にある側のユニット中のフィルターの目開きをCμm、下流側にある側のユニット中のフィルターの目開きをDμmとした場合に、少なくとも1つの組み合わせにおいて、CはDより大きい(C>D)ことが好ましい。この条件を満たした場合は、前記原料濾過フィルターがより閉塞しにくくなり、前記原料濾過フィルターの交換頻度の低減を図ることができる。
 前記原料濾過フィルターの目開きは特に制限はないが、少なくとも1つの前記原料濾過フィルターにおいては、99.9%の濾過精度として10μm以下であることが好ましく、前記原料濾過フィルターを構成するフィルターユニットが複数配置されている場合には、最上流側において好ましくは8μm以上、更に好ましくは10μm以上であり、その最下流側において好ましくは2μm以下、更に好ましくは1μm以下である。尚、ここで言う前記原料濾過フィルターの目開きも、上述した、ISO16889(2008年)に準拠して決定されるものである。
 本発明において、原料を前記原料濾過フィルターに通過させる際の原料流体の温度に制限はないが、低すぎると原料が固化し、高すぎると熱分解等の不具合があるため、通常好ましくは100℃~200℃、より好ましくは100℃~150℃である。
 また、本発明においては、複数種用いる原料のうち、いずれの原料を濾過してもよいし、全てを濾過してもよく、その方法は、限定されるものではなく、ジヒドロキシ化合物と炭酸ジエステルの原料混合物を濾過してもよいし、別々に濾過した後に混合してもよい。また、本発明の製造法においては、重縮合反応の途中の反応液を前記原料濾過フィルターと同様のフィルターで濾過することもできる。
(得られるポリカーボネート樹脂)
 本発明の方法で得られるポリカーボネート樹脂ペレットのイエローインデックス値は、70以下であるのが好ましく、より好ましくは30以下、特に好ましくは15以下、最も好ましくは10以下である。イエローインデックス値を下げるには、前述のように、モノマー調製条件、重合反応条件、濾過条件、押出機を使用する場合には押出条件またはスクリューエレメント等の選択を適切に行う必要がある。
 また、本発明のポリカーボネート樹脂ペレットを用い塩化メチレン中、濃度0.6g/dL、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定した還元粘度は、0.3dL/g以上であることが好ましく、より好ましくは0.35dL/g以上、さらに好ましくは0.4以上である。還元粘度の上限は、1.2dL/g以下であることが好ましく、より好ましくは0.8dL/g以下であり、特に好ましくは0.7dL/g以下である。
 還元粘度が低すぎると成形品の機械的強度が小さい可能性があり、大きすぎると、成形する際の流動性が低下し、生産性または成形性を低下させる傾向があるだけでなく、濾過または押出時の劣化が激しくなる可能性がある。
 本発明の方法で得られるポリカーボネート樹脂ペレットを用い、240℃で測定した剪断速度91.2sec-1での溶融粘度は、500Pa・s以上であることが好ましく、より好ましくは800Pa・s以上、特に好ましくは1000Pa・s以上であり、その上限は3000Pa・s以下であることが好ましく、より好ましくは2000Pa・s以下である。
 溶融粘度が低すぎると成形品の機械的強度に劣る傾向があり、高すぎると前述のように、フィルターまたは押出機での剪断発熱が大きくなり、濾過時または押出時の劣化が激しくなる可能性がある。なお、溶融粘度は分子量の他、分子構造によっても変わるので、求められる性能に合わせてこれらを選択し、上記範囲に制御することが重要である。
 本発明の方法で得られるポリカーボネート樹脂ペレットを用い、示差走査型熱量計(DSC)で測定した際のガラス転移温度は、50℃以上であることが好ましく、より好ましくは80℃以上、さらに好ましくは90℃以上である。ガラス転移温度が低すぎると耐熱性に劣るため、成形品としての使用が限定される。
 一方、ガラス転移温度が高いとフィルターで濾過する際の溶融粘度が高くなりすぎ、ポリカーボネート樹脂の劣化を招く可能性があるため、160℃未満であることが好ましく、より好ましくは145℃未満、さらに好ましくは140℃未満、特に好ましくは130℃未満である。
 なお、本発明のガラス転移温度とは、窒素気流下、昇温速度20℃/分で室温からガラス転移温度を十分越える温度まで昇温し、3分間温度を保持した後、30℃まで20℃/分の速度で冷却し、30℃で3分保持し、再びガラス転移温度を十分越える温度まで20℃/分の速度で昇温して得られた(2回目の昇温で得られた)DSCデータより求めた、補外ガラス転移開始温度のことを言う。
 また、本発明で得られるポリカーボネート樹脂ペレットを構成するポリカーボネート樹脂の下記構造式(9)で表される末端基の濃度は、好ましくは20μeq/g以上、さらに好ましくは40μeq/g以上、特に好ましくは50μeq/g以上である。
 該末端基の濃度が低すぎると濾過時に着色が大きくなる傾向にある。また高すぎても濾過時にガスが発生しやすくなる傾向にあり、ストランドのガス切れ等の不具合を招く可能性があるため、好ましくは200μeq/g以下、さらに好ましくは150μeq/g以下、特に好ましくは100μeq/g以下である。
Figure JPOXMLDOC01-appb-C000009
 前記構造式(9)で表される末端基の濃度を制御する方法としては、例えば、原料である本発明のジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルのモル比率を制御する方法、あるいはエステル交換反応時の重合圧力若しくは重合温度、または還流冷却器の温度等をモノマーの揮散のし易さに応じて制御する方法が挙げられる。中でも重合初期において還流冷却器を有する反応器を用いることが上記末端基濃度の安定化に有効である。
 本発明で行うエステル交換反応では、前記の一般式(7)で表される炭酸ジエステルとして、ジフェニルカーボネートまたはジトリルカーボネート等の置換ジフェニルカーボネートを用いて本発明のポリカーボネート樹脂を製造する場合は、フェノールまたは置換フェノール等の芳香族モノヒドロキシ化合物が副生し、ポリカーボネート樹脂中に残存することは避けられない。
 芳香族モノヒドロキシ化合物は濾過時のガスの発生または成形時の臭気の原因となる可能性があるため、冷却固化して得られたポリカーボネート樹脂中の該化合物の含有量は、真空ベント付の押出機を用いて、好ましくは0.1質量%未満、更に好ましくは0.05質量%未満、特には0.03質量%未満にすることが好ましい。ただし、これらの化合物を工業的に完全に除去することは困難であり、芳香族モノヒドロキシ化合物の含有量の下限値は、通常0.0001質量%である。
 尚、これら芳香族モノヒドロキシ化合物は、用いる原料により、当然置換基を有していてもよく、例えば、炭素数が5以下であるアルキル基などを有していてもよい。炭酸ジエステルとしてジフェニルカーボネートを用いる場合、芳香族モノヒドロキシ化合物はフェノールとなる。
 本発明の方法で得られたポリカーボネート樹脂ペレットは、射出成形法、押出成形法または圧縮成形法等の通常知られている方法で成形物にすることができる。また、種々の成形を行う前に、必要に応じて、樹脂に熱安定剤、中和剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤または難燃剤等の添加剤を、タンブラー、スーパーミキサー、フローター、V型ブレンダー、ナウターミキサー、バンバリーミキサーまたは押出機などで混合することもできる。
 本発明の方法により、着色が少なく、異物の少ないポリカーボネート樹脂ペレットが得られるため、該樹脂から成形された厚さ30μm±5μmのフィルムに含まれる25μm以上の異物が、好ましくは1000個/m以下、より好ましくは500個/m以下、最も好ましくは200個/m以下とすることができる。
 本発明の方法で得られたポリカーボネート樹脂ペレットは、例えば、芳香族ポリカーボネート、芳香族ポリエステル、脂肪族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル樹脂、アモルファスポリオレフィン、ABS若しくはASなどの合成樹脂、ポリ乳酸若しくはポリブチレンスクシネートなどの生分解性樹脂、またはゴムなどの1種又は2種以上と混練して、ポリマーアロイとしても用いることもできる。
 本発明によれば、熱安定性、色相、及び機械的強度に優れ、かつ異物の少ないポリカーボネート樹脂ペレットを提供することができる。
 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。以下において、ポリカーボネートの物性ないし特性の評価は次の方法により行った。
(1)酸素濃度の測定
 重合反応装置内の酸素濃度を、酸素計(AMI社製:1000RS)を使用し、測定した。
(2)還元粘度の測定
 ポリカーボネート樹脂ペレットを、溶媒として塩化メチレンを用いて溶解し、0.6g/dLの濃度のポリカーボネート溶液を調製した。森友理化工業社製ウベローデ型粘度管を用いて、温度20.0℃±0.1℃で測定を行い、溶媒の通過時間t0と溶液の通過時間tから次式より相対粘度ηrelを求め、
  ηrel=t/t0
 相対粘度から次式より比粘度ηspを求めた。
  ηsp=(ηrel-η0)/η0=ηrel-1
 比粘度を濃度c(g/dL)で割って、還元粘度ηsp/cを求めた。この値が高いほど分子量が大きい。
(3)末端フェニル基濃度、末端二重結合濃度の測定
 ポリカーボネート樹脂ペレット約30mgを秤取し、重クロロホルム約0.7mLに溶解させ溶液とし、1,1,2,2-テトラブロモエタンを内標として既知量添加し、これを内径5mmのNMR用チューブに入れ、日本電子(株)製JNM-AL400(共鳴周波数400MHz)を用いて常温で1HNMRスペクトルを測定し、内標と末端フェニル基、末端二重結合に基づくシグナル強度比より求めた。
 ポリカーボネート30mgを秤取し、重クロロホルム約0.7mLに溶解し、これを内径5mmのNMR用チューブに入れ、H NMRスペクトルを測定した。各末端基と各ジヒドロキシ化合物に由来する構造単位に基づくシグナルの強度比より末端フェニル基、末端ヒドロキシ基、および末端二重結合の量を定量した。用いた装置または条件は、次のとおりである。
・装置:日本電子社製JNM-AL400(共鳴周波数400MHz)
・測定温度:常温
・緩和時間:6秒
・積算回数:512回
 本発明で例示するISBとCHDMの共重合ポリカーボネートの場合のH NMRの解析は以下のとおり行う。次のピークの積分値を算出する。
(a):5.6-4.8ppm:全ISB構造単位由来(プロトン数:3、分子量:172.14)
(b):2.2-0.5ppm:全CHDM構造単位由来(プロトン数:10、分子量:170.21)
(c):4.4ppm:ISBの末端ヒドロキシ基由来(プロトン数:1、分子量:173.14)
(d):3.6-3.5ppm:ISBの末端ヒドロキシ基由来(プロトン数:1、分子量:173.14)とCHDMの末端ヒドロキシ基由来(プロトン数:2、分子量:171.21)
(e):3.5-3.4ppm:CHDMの末端ヒドロキシ基由来(プロトン数:2、分子量:171.21)とISBの末端二重結合由来(プロトン数:1、分子量:155.13)
(f):2.6ppm:ISBの末端ヒドロキシ基由来(プロトン数:1、分子量:173.14)
(g):6.7-6.5ppm:ISBの末端二重結合由来(プロトン数:1、分子量:155.13)
(h)2.3ppm:CHDMの末端二重結合由来(プロトン数:2、分子量:153.20)
(i):7.5-7.3ppm:末端フェニル基由来(プロトン数:2、分子量:93.10)
<各構造のモル数に相当する値>
・全ISB構造単位:(a)積分値/3=(a´)
・全CHDM構造単位:(b)積分値/10=(b´)
・ISBの末端ヒドロキシ基:(c)積分値+(f)積分値=(c´)
・CHDMの末端ヒドロキシ基:{(d)積分値-(f)積分値}/2+{(e)積分値-(g)積分値)}/2=(d´)
・ISBの末端二重結合:(g)積分値=(e´)
・CHDMの末端二重結合:(h)積分値/2=(f´)
・末端フェニル基:(i)積分値/2=(g´)
<各末端基の量(単位:μeq/g)>
・ISBの末端ヒドロキシ基量:(c´)/(i´)×1000000
・CHDMの末端ヒドロキシ基量:(δ´)/(i´)×1000000
・ISBの末端二重結合量:(e´)/(i´)×1000000
・CHDMの末端二重結合量:(f´)/(i´)×1000000
・末端フェニル基量:(g´)/(i´)×1000000
ただし、(i´)=(a´)×172.14+(b´)×170.21とする。
(4)ガラス転移温度の測定
 示差走査熱量計(エスアイアイ・ナノテクノロジー社製DSC6220)を用い、ポリカーボネート樹脂ペレットを適当な大きさに切ったもの約10mgを同社製アルミパンに入れて密封し、50mL/分の窒素気流下、昇温速度20℃/分で室温から250℃まで昇温した。3分間温度を保持した後、30℃まで20℃/分の速度で冷却した。30℃で3分保持し、再び200℃まで20℃/分の速度で昇温した。2回目の昇温で得られたDSCデータより、補外ガラス転移開始温度を求めた。
(5)ポリカーボネート樹脂ペレット中のフェノール含有量、DPC含有量の測定
 ポリカーボネート樹脂ペレット試料約1.25gを精秤し、塩化メチレン7mlに溶解し溶液とした後、総量が25mlになるようにアセトンを添加して再沈殿処理を行った。次いで、該処理液を0.2μmディスクフィルターでろ過して、液体クロマトグラフィーにて定量を行った。
(6)ポリカーボネート樹脂ペレットの色相
 1cmセルに得られたペレットを詰め、反射光におけるイエローインデックス(YI)値をカラーテスタ(コニカミノルタ社製CM-3700d)を用いて3回測定し、平均値を算出した。YI値が小さい程、黄色味がなく品質が優れることを示す。
(7)異物の定量
 Tダイスを具備した20mm径の一軸押出機のバレル設定温度を、ペレットの供給側から210℃、220℃、230℃、230℃、220℃とし、ポリカーボネート樹脂ペレットを溶融押出し、冷却ロールを用いて厚さ35μm±5μmのフィルムを成形し、Optical Control System社製、Film Quality Testing System(型式FSA100)を使用し、1m当たりの25μm以上の異物数を測定した。
(8)溶融粘度(Pa・s)の測定
 120℃で、6hr乾燥した試料を、ダイス径1mmφ×10mmLを具備したキャピラリーレオメーター[東洋精機(株)製]を用いて、一定温度に加熱して剪断速度γ=9.12~1824(sec-1)間で測定し、91.2sec-1での溶融粘度を読み取った。
 以下の実施例の記載の中で用いた化合物の略号は次の通りである。 
・ISB:イソソルビド (ロケットフルーレ社製、商品名POLYSORB)
・TCDDM:トリシクロデカンジメタノール (オクセア社製)
・CHDM:1,4-シクロヘキサンジメタノール [新日本理化(株)製 商品名SKY CHDM]
・DPC:ジフェニルカーボネート [三菱化学(株)製]
[実施例1]
(第1段階の反応)
 オイルを熱媒体とした熱媒体ジャケットおよび撹拌翼、真空ポンプに連結された留出管および凝縮器を具備した重合反応器に、ISB/TCDDM/DPCのモル比が70/30/100になるように仕込み、水溶液にした炭酸セシウムを、全ジヒドロキシ化合物1mol当たり2.5×10-6mol(セシウム金属原子換算)になるように仕込んだ後、十分に窒素置換した(酸素濃度0.0005vol%~0.001vol%)。この時、DPCは、蒸留精製して塩化物イオン濃度を10ppb以下にしたものを用いた。続いて該反応器の熱媒体ジャケットに加温した熱媒体を流通させ、反応液(即ち内温)が100℃になった時点で撹拌を開始し、内温を100℃に保ちながら内容物を融解させ均一にした。
 その後、昇温を開始して、40分で内温を220℃にし、内温が220℃になった時点で減圧を開始して、90分で13.3kPa(絶対圧力、以下同様)になるように制御した。減圧を開始すると、速やかに反応で生成したフェノールの蒸気が留出し始め、内温を220℃に一定に制御するように、熱媒体ジャケットに導入するオイルの温度(熱媒体ジャケット入口温度)を適宜調整した。フェノールの留出量が多くなった時間帯は熱媒体オイルの温度を242℃とし、それ以外の時間帯は242℃未満とした。
 13.3kPaに到達した後、この圧力を保ったまま、さらに60分間保持し、ポリカーボネートオリゴマーを得た。この段階で留出したフェノールは、理論留出量の94%であった。
(第2段階の反応)
 オイルを熱媒とした熱媒体ジャケットおよび撹拌翼、真空ポンプに連結された留出管を具備した重合反応器に、窒素雰囲気下、第1段階で得られたポリカーボネートオリゴマーを移送した。留出管には、冷媒として温水(入口温度45℃)を用いた凝縮器、更にその下流にドライアイスを冷媒としたコールドトラップを設置した。
 オリゴマー移送後、減圧を開始し、60分で内温220℃、圧力200Paにした。その後、20分かけて内温230℃、圧力133Pa以下にして、所定撹拌動力になった時点で復圧し、内容物をストランドの形態で抜出し、回転式カッターでペレットにした。
 得られたペレットの還元粘度は0.362、末端フェニル基濃度は66μeq/g、末端二重結合は7.5μeq/g、YIは25.4、フェノール含有量は965ppm、DPC含有量は19ppm、25μm以上の異物量は3035個/mであった。
 2つのベント口を有する日本製鋼所社製2軸押出機(LABOTEX30HSS-32:L/D=32)の樹脂の排出側に日本ダイスニスコ株式会社製ギアポンプ(EPG-28/20)を配置し、さらにその下流に内容積0.91(L)の格納容器内部に、外径112mm、内径38mm、99%の濾過精度として10μmであるリーフディスクフィルター[日本精線(株)製][材質はステンレス(SUS304、SUS316)]を4枚装着したフィルターユニットを配置した。該フィルターは、使用前に水蒸気雰囲気下、310℃で40時間、続いて空気雰囲気下420℃で52時間、焙焼処理を行い室温まで冷却した後、30重量%の硝酸水溶液に30分間浸漬し、酸化皮膜を形成させ、水洗および乾燥を行った。
 フィルターユニットの入口側と排出側は、水平になるようにセッティングし、フィルターユニットの排出側には、ストランド化するためのダイスを装着した。押出機のスクリュー全体を構成するエレメントの長さに占めるニーディングディスクの長さ(ニーディングエレメント比率)は13.9%であった。押出機の出口流路およびフィルターユニットの入口流路、およびフィルターユニットの出口流路に樹脂温度を測定するためのセンサーを設置し、押出機のバレル温度の設定は、ペレットの供給側から、220℃、230℃、230℃、235℃、240℃、240℃、240℃、240℃、240℃とした。
 これに上記で得られたポリカーボネート樹脂ペレットを10kg/hで供給すると同時に、押出機のスクリュー回転数を100rpmとし、真空ポンプを用いてベント口より脱揮を行った。この時のベント部の圧力は絶対圧力で300Pa以下であった。
 フィルターユニットを通ってダイスから排出されたポリカーボネート樹脂の温度を、温度計を用いて測定したところ257℃であり、排出されるポリカーボネート樹脂はストランドの形態で水冷、固化させた後、回転式カッターでペレット化した。
 該ペレットの還元粘度は0.332、YIは59.6、フェノール含有量は427ppm、DPC含有量は25ppmであった。さらに該ペレットを、クリーンオーブンを用いて110℃で12時間乾燥し、上述した方法でフィルムを成形し、異物量を測定した。これらの結果を表1に示す。
 なお、上記ニーディングエレメント比率は、下記式から計算される値をいう。
 ニーディングエレメント比率(%)=(ニーディングディスクの合計の長さ/スクリュー全体の長さ)×100
Figure JPOXMLDOC01-appb-T000010
 
[実施例2]
 押出機への樹脂供給量を15kg/h、スクリュー回転数を130rpmとした以外は実施例1と同様に行った。ダイスから排出されたポリカーボネート樹脂の温度は264℃であり、還元粘度は0.334、ペレットのYIは63.2、フェノール含有量は476ppm、DPC含有量は27ppmであった。
[実施例3]
 押出機への樹脂供給量を20kg/h、スクリュー回転数を150rpmとした以外は実施例1と同様に行った。ダイスから排出されたポリカーボネート樹脂の温度は269℃であり、還元粘度は0.328、ペレットのYIは65.6、フェノール含有量は482ppm、DPC含有量は29ppmであった。
[実施例4]
 99%の濾過精度として40μmであるリーフディスクフィルターを用いた以外は実施例1と同様に行った。ペレットのYIは55.3と実施例1より良好だったが、異物量は1710個/mと若干増加した。
[比較例1]
 押出機のバレル温度の設定を、ペレットの供給側から、260℃、270℃、270℃、275℃、280℃、280℃、280℃、280℃、280℃とし、押出機のスクリュー回転数を250rpmとした以外は、実施例1と同様に行った。ダイスから排出されたポリカーボネート樹脂の温度は282℃であり、還元粘度は0.275にまで低下した。またペレットのYIは81.1と悪化した。
[実施例5]
 十分に窒素置換した(酸素濃度0.0005vol%~0.001vol%)原料調製槽において、ISB/CHDM/DPCのモル比が50/50/100になるように調製した原料を、オイルを熱媒体とした熱媒体ジャケット、熱媒体内部コイル、および撹拌翼、真空ポンプに連結された留出管および凝縮器を具備した第1重合反応器に、連続的に一定量供給すると同時に、原料供給配管に連結した触媒供給配管より、水溶液にした酢酸カルシウム1水和物を、全ジヒドロキシ化合物1mol当たり1.25×10-6mol(カルシウム金属原子換算)になるように連続的に供給した。
 原料と触媒水溶液を配管で混合した後、第1反応器に入るまでの流路にプリーツ型円筒タイプの原料濾過フィルターを2器設置し、上流側の原料濾過フィルターの目開きを10μm、下流側の目開きを1μmとした。第1重合反応器の留出管には、冷媒としてオイル(入口温度130℃)を用いた還流冷却器、更に還流冷却器で凝縮されないフェノール等を凝縮させるため、還流冷却器と真空ポンプの間に冷媒として温水(入口温度45℃)を用いた凝縮器を配置した。
 第1重合反応器の撹拌翼の回転数を一定にしながら、内温185℃、圧力25kPa、滞留時間1.5時間で一定となるよう制御し、反応液を反応槽槽底から連続的に抜き出し、第2重合反応器に供給した。
 第2重合反応器は、第1重合反応器と同様、熱媒体ジャケット、熱媒体内部コイル、撹拌翼、真空ポンプに連結された留出管および留出管には還流冷却器、凝縮器を具備しており、内温213℃、圧力14kPa、滞留時間1時間で一定となるよう制御し、反応液を反応槽槽底から連続的に抜き出し、第3重合反応器に供給した。
 第3重合反応器は、内温229℃、圧力6kPa、滞留時間1時間で一定となるよう制御し、引き続き副生するフェノールを留去しながら重縮合反応を進行させ、反応液を反応槽槽底から連続的に抜き出し、2本の水平な回転軸とこの水平軸にほぼ直角に取り付けられた相互に不連続な攪拌翼とを有する横型攪拌反応器(第4重合反応器)に供給した。
 第4重合反応器は、入口付近の内温を228℃、出口付近の内温を240℃、圧力を0.07kPa、滞留時間を2時間になるよう制御し、さらに重縮合反応を進行させた。
 得られたポリカーボネート樹脂は、添加剤供給口および3つのベント口を有し、L/D=42、押出機のスクリュー全体を構成するエレメントの長さに占めるニーディングディスクの長さが6%の二軸押出機に連続的に供給した。
 押出機内に、処理されるポリカーボネート樹脂に対して0.1%の水を供給し、ベント口は、真空ポンプに連結させ、ポリカーボネート樹脂中に含まれる揮発成分を除去した。押出機のバレル温度の設定は、上流の4ブロックを245℃、下流の6ブロックを225℃とし、スクリュー回転数は250回転とした。
 この時、押出機に供給するポリカーボネート樹脂を一時抜き出し、温度の測定と各種分析を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000011
 
 押出機で処理されたポリカーボネート樹脂は、その出口に設置したギアポンプを経て、樹脂の入口が下部、出口が上部にあるフィルターユニットに供給した。フィルターユニットの手前でサンプリングした樹脂の温度、および各種測定値を表2に示す。フィルターユニットの内部には、目開き7μmのリーフディスクフィルター[日本ポール(株)製]を装着し、ポリカーボネート樹脂中の異物を除去した。
 前記フィルターは、使用前に水蒸気雰囲気下、310℃で40時間、続いて空気雰囲気下420℃で52時間、焙焼処理を行い室温まで冷却した後、30重量%の硝酸水溶液に30分間浸漬し、酸化皮膜を形成させ、水洗および乾燥を行ったものを用いた。
 フィルターユニットは複数のブロックで構成されるヒーターが具備されており、それぞれの温度を230~240℃に設定した。フィルターユニットの出口側には、複数のブロックからなるヒーターを具備したポリマー配管を通じてダイスを設置し、ポリマー配管のヒーターの設定温度は220~230℃、ダイスのヒーターは220℃に設定した。
 フィルターの出口樹脂温度およびダイスの出口樹脂温度を実施例1と同様に測定した。該ダイスからクラス10000の清浄度に保持された部屋の中で、ポリカーボネート樹脂をストランドの形態で抜き出し、水槽で固化させて、回転式カッターでペレット化した。分析値を表2に示す。
[実施例6]
 第1重合反応器の内温を194℃、圧力を27kPa、第2重合反応器の内温を190℃、圧力を19kPa、第3重合反応器の内温を213℃、圧力を7.5kPa、第4重合反応器の入口付近の内温を214℃、出口付近の内温を228℃、圧力を0.7kPaとし、ダイスのヒーターを230℃に設定した以外は、実施例1と同様に行った。
[実施例7]
 第1重合反応器の内温を190℃、圧力を25kPa、第2重合反応器の内温を196℃、圧力を17.7kPa、第3重合反応器の内温を215℃、圧力を6.9kPa、第4重合反応器の入口付近の内温を218℃、出口付近の内温を232℃、圧力を0.9kPa、押出機のバレル温度の設定を、上流の4ブロックを240℃、下流の6ブロックを185℃とした以外は、実施例1と同様に行った。
[実施例8]
 原料調製槽において、ISB/CHDM/DPCのモル比が70/30/100になるように調製し、第1重合反応器の内温を188℃、圧力を24.2kPa、第2重合反応器の内温を194℃、圧力を19.9kPa、第3重合反応器の内温を214℃、圧力を9.9kPa、第4重合反応器の入口付近の内温を218℃、出口付近の内温を232℃、圧力を0.1kPa、押出機のバレル温度の設定を、上流の4ブロックを240℃、下流の6ブロックを195℃とした以外は、実施例1と同様に行った。
[実施例9]
 フィルターの目開きを22μmにした以外は実施例6と同様に行った。ポリマーフィルターでの圧力損失が小さくなり、分子量低下および二重結合末端増加は抑制傾向で、ペレット色調も改善されたが、異物量が増加した。
[実施例10]
 押出機のニーディングディスクの合計の長さをスクリュー全体の長さの12%にした以外は、実施例9と同様にして行った。
[比較例2]
 第3重合反応器の内温を240℃、圧力4kPa、第4重合反応器の入口付近の内温を240℃、出口付近の内温を252℃、圧力を0.02kPa、押出機のバレル温度の設定を、上流の4ブロックが250℃、下流の6ブロックが260℃、スクリュー回転数を280rpm、フィルターユニットのヒーター設定温度を270~280℃、ポリマー配管のヒーターの設定温度を270~280℃、ダイスのヒーターを280℃に設定した以外は実施例1と同様に行った。
 ポリマーフィルターでの圧力損失は抑制される傾向にあったが、ダイスから吐出されるポリカーボネート樹脂の温度は285℃であり、著しく着色していた。また、ダイスからガスが発生してストランドが乱れ、ペレットを取得することができなかった。
 なお、日本特許出願2011-77377号の明細書、特許請求の範囲、図面及び要約書の全内容、さらに本明細書に引用した特許文献等に開示された内容の一部又は全部をここに引用し、本発明の明細書の開示内容として、取り入れるものである。
1a 原料(炭酸ジエステル)供給口
1b、1c 原料(ジヒドロキシ化合物)供給口
1d 触媒供給口
2a 原料混合槽
3a アンカー型攪拌翼
4a 原料混合液移送ポンプ
4b、4c、4d ギアポンプ
5a 原料濾過フィルター
6a 第1竪型攪拌反応槽
6b 第2竪型攪拌反応槽
6c 第3竪型攪拌反応槽
6d 第4横型撹拌反応槽
7a、7b、7c マックスブレンド翼
7d 2軸メガネ型攪拌翼
8a、8b 内部熱交換器
9a、9b 還流冷却器
10a、10b 還流管
11a、11b、11c、11d 留出管
12a、12b、12c、12d 凝縮器
13a、13b、13c、13d 減圧装置
14a 留出液回収タンク
15a 押出機
15b (ポリマー)フィルター
15c ダイス
16a ストランド冷却槽
16b ストランドカッター
16c 空送ブロワー
16d 製品ホッパー
16e 計量器
16f 製品袋(紙袋、フレコンなど)

Claims (23)

  1.  ジヒドロキシ化合物および炭酸ジエステルを重縮合させて得られたポリカーボネート樹脂を、フィルターを用いて濾過した後に、冷却固化するポリカーボネート樹脂の製造方法であって、
     前記ジヒドロキシ化合物が構造の一部に下記一般式(1)で表される部位を有するジヒドロキシ化合物を少なくとも含み、前記フィルターの目開きが50μm以下であり、前記フィルターを用いて濾過した後のポリカーボネート樹脂の温度が200℃以上280℃未満となるようにポリカーボネート樹脂を濾過することを特徴とするポリカーボネート樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [但し、上記一般式(1)で表される部位が-CH-O-Hの一部である場合を除く。]
  2.  前記重縮合させて得られた前記ポリカーボネート樹脂を、固化させることなく溶融状態のまま前記フィルターに供給し濾過する請求項1に記載のポリカーボネート樹脂の製造方法。
  3.  前記ポリカーボネート樹脂の前記フィルターに供給される前の末端二重結合をXμeq/gとし、
     前記冷却固化して得られたポリカーボネート樹脂の末端二重結合をYμeq/gとした場合に、
     下記式(2)を満たす請求項1または2に記載のポリカーボネート樹脂の製造方法。
      Y-X≦10    (2)
  4.  前記ポリカーボネート樹脂の前記フィルターに供給される前の還元粘度(ηsp/c)をAとし、
     前記冷却固化して得られたポリカーボネート樹脂の還元粘度(ηsp/c)をBとした場合に、
     下記式(3)を満たす請求項1乃至3の何れか1項に記載のポリカーボネート樹脂の製造方法。
      0.8<B/A<1.1 ・・・(3)
  5.  前記冷却固化して得られたポリカーボネート樹脂を用い、240℃で測定した剪断速度91.2sec-1での溶融粘度が、500Pa・s以上3000Pa・s以下である請求項1乃至4の何れか1項に記載のポリカーボネート樹脂の製造方法。
  6.  前記冷却固化して得られたポリカーボネート樹脂を用い、示差走査型熱量計で測定した際のガラス転移温度が50℃以上160℃未満である請求項1乃至5の何れか1項に記載のポリカーボネート樹脂の製造方法。
  7.  前記冷却固化して得られたポリカーボネート樹脂を用い、塩化メチレン中、濃度0.6g/dL、温度20.0℃±0.1℃で測定した還元粘度(ηsp/c)が、0.3dL/g以上1.2dL/g以下である請求項1乃至6の何れか1項に記載のポリカーボネート樹脂の製造方法。
  8.  前記フィルターが容器に格納されており、該格納容器の内容積(m)を、濾過する前記ポリカーボネート樹脂の流量(m/分)で除した値が2分~10分である請求項1乃至7の何れか1項に記載のポリカーボネート樹脂の製造方法。
  9.  前記冷却固化して得られたポリカーボネート樹脂中に含まれる芳香族モノヒドロキシ化合物含有量が0.0001質量%以上0.1質量%未満である請求項1乃至8の何れか1項に記載のポリカーボネート樹脂の製造方法。
  10.  前記原料モノマーを、重縮合反応を行う前に原料濾過フィルターで濾過する請求項1乃至9のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  11.  前記フィルターが350℃以上500℃以下の温度であらかじめ焙焼処理を施した金属からなる請求項1乃至10の何れか1項に記載のポリカーボネート樹脂の製造方法。
  12.  前記濾過前のポリカーボネート樹脂が前記フィルターの格納容器の下部から供給され、濾過後のポリカーボネート樹脂が該格納容器の上部から排出される請求項1乃至11の何れか1項に記載のポリカーボネート樹脂の製造方法。
  13.  前記重縮合が触媒を用いて行われるものであり、
     前記触媒が、長周期型周期表第2族の金属及びリチウムからなる群より選ばれる少なくとも1種の金属化合物である請求項1乃至12のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  14.  前記構造の一部に前記一般式(1)で表される部位を有するジヒドロキシ化合物が、イソソルビドである請求項1乃至13の何れか1項に記載のポリカーボネート樹脂の製造方法。
  15.  前記重縮合させて得られたポリカーボネート樹脂を、ベント口を有する二軸を有する押出機で脱揮する操作を行った後、前記フィルターに供給する請求項1乃至14の何れか1項に記載のポリカーボネート樹脂の製造方法。
  16.  前記押出機のスクリューが複数のエレメントから構成されており、該エレメントの少なくとも1つがニーディングディスクであり、該ニーディングディスクの合計の長さが、前記スクリュー全体の長さの20%以下であることを特徴とする請求項15に記載のポリカーボネート樹脂の製造方法。
  17.  前記押出機に供給されるポリカーボネート樹脂の温度が200℃以上250℃未満である請求項15または16に記載のポリカーボネート樹脂の製造方法。
  18.  前記フィルターに供給されるポリカーボネート樹脂の温度が220℃以上280℃未満である請求項15乃至17のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  19.  前記押出機に供給されるポリカーボネート樹脂の還元粘度(ηsp/c)をa、
     前記冷却固化して得られたポリカーボネート樹脂の還元粘度(ηsp/c)をBとした場合に、
     下記式(4)を満たす請求項15乃至18の何れか1項に記載のポリカーボネート樹脂の製造方法。
      0.8<B/a<1.1・・(4)
  20.  前記押出機と前記フィルターの間に、ギアポンプを配置する請求項15乃至19の何れか1項に記載のポリカーボネート樹脂の製造方法。
  21.  請求項1乃至20のいずれか1項に記載の製造方法によって得られたイエローインデックス値が30以下であるポリカーボネート樹脂。
  22.  請求項1乃至20のいずれかに1項に記載の製造方法によって得られたポリカーボネート樹脂、又は請求項21に記載のポリカーボネート樹脂を押出成形して得られる厚さ20μm~200μmのフィルムであって、該フィルムに含まれる最大長が25μm以上の異物が1000個/m以下であるポリカーボネート樹脂製フィルム。
  23.  触媒及び、原料モノマーとしてジヒドロキシ化合物並びに炭酸ジエステルを用いて、エステル交換反応により重縮合させ、得られたポリカーボネート樹脂を、フィルターを用いて濾過して、ダイスからストランドの形態で吐出し、冷却後、カッターを用いて、ポリカーボネート樹脂ペレットを製造する方法であって、
     前記ジヒドロキシ化合物が構造の一部に下記一般式(1)で表される部位を有するジヒドロキシ化合物を少なくとも含み、
     前記フィルターの目開きが50μm以下であり、前記ダイスから吐出される樹脂の温度が200℃以上280℃未満であることを特徴とするポリカーボネート樹脂ペレットの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    [但し、上記一般式(1)で表される部位が-CH-O-Hの一部である場合を除く。]
PCT/JP2012/057619 2011-03-31 2012-03-23 ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂、ポリカーボネート樹脂製フィルムおよびポリカーボネート樹脂ペレットの製造方法 WO2012133236A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137025523A KR101944129B1 (ko) 2011-03-31 2012-03-23 폴리카보네이트 수지의 제조 방법, 폴리카보네이트 수지, 폴리카보네이트 수지제 필름 및 폴리카보네이트 수지 펠릿의 제조 방법
CN201280016791.6A CN103476561B (zh) 2011-03-31 2012-03-23 聚碳酸酯树脂的制造方法、聚碳酸酯树脂、聚碳酸酯树脂制膜及聚碳酸酯树脂颗粒的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-077377 2011-03-31
JP2011077377 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133236A1 true WO2012133236A1 (ja) 2012-10-04

Family

ID=46930958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057619 WO2012133236A1 (ja) 2011-03-31 2012-03-23 ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂、ポリカーボネート樹脂製フィルムおよびポリカーボネート樹脂ペレットの製造方法

Country Status (4)

Country Link
JP (1) JP6019652B2 (ja)
KR (1) KR101944129B1 (ja)
CN (1) CN103476561B (ja)
WO (1) WO2012133236A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017165892A (ja) * 2016-03-17 2017-09-21 三菱ケミカル株式会社 透明樹脂フィルム
JP2018036535A (ja) * 2016-08-31 2018-03-08 三菱ケミカル株式会社 厚み位相差(Rth)が負の値を有するフィルムの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150087804A1 (en) * 2012-04-18 2015-03-26 Teijin Limited Copolycarbonate
JP6006653B2 (ja) * 2013-02-04 2016-10-12 出光興産株式会社 ポリカーボネート樹脂用押出造粒装置およびポリカーボネート樹脂押出造粒方法
JP2015187204A (ja) * 2014-03-26 2015-10-29 三菱化学株式会社 ポリカーボネート樹脂からなる押出成形品
CN104893271B (zh) * 2015-05-27 2016-08-17 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
EP3438202B1 (en) * 2016-03-30 2023-06-14 Mitsubishi Gas Chemical Company, Inc. Manufacturing method of an aromatic polycarbonate resin composition
CN111993616A (zh) * 2020-08-10 2020-11-27 广西长科新材料有限公司 一种高效br和sbr橡胶的溶解设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083584A1 (fr) * 2000-04-13 2001-11-08 Teijin Limited Procede de production de polycarbonate et dispositif de filtration
JP2002265583A (ja) * 2001-03-09 2002-09-18 Mitsubishi Gas Chem Co Inc 芳香族−脂肪族共重合ポリカーボネートの製造方法
JP2002293913A (ja) * 2001-03-29 2002-10-09 Mitsubishi Gas Chem Co Inc 芳香族―脂肪族共重合ポリカーボネートの製造方法
JP2008247953A (ja) * 2007-03-29 2008-10-16 Mitsubishi Chemicals Corp 芳香族ポリカーボネートの製造方法
WO2009034680A1 (ja) * 2007-08-20 2009-03-19 Mitsubishi Chemical Corporation 芳香族ポリカーボネート樹脂の製造方法
JP2009161745A (ja) * 2007-12-13 2009-07-23 Mitsubishi Chemicals Corp ポリカーボネートの製造方法
JP2010058410A (ja) * 2008-09-04 2010-03-18 Fujifilm Corp 熱可塑性樹脂組成物、その製造方法、熱可塑性樹脂フィルム、その製造方法、偏光板および液晶表示装置
JP2010189581A (ja) * 2009-02-19 2010-09-02 Mitsubishi Chemicals Corp ポリカーボネートの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3103652B2 (ja) 1992-02-27 2000-10-30 日本ジーイープラスチックス株式会社 光学用ポリカーボネート組成物の製造方法
JP2000219737A (ja) 1999-01-29 2000-08-08 Teijin Ltd ポリカーボネート樹脂の製造方法および成形品
JP2000178355A (ja) * 1998-12-18 2000-06-27 Ge Plastics Japan Ltd ポリカーボネートの製造方法
JP5092182B2 (ja) * 2000-09-22 2012-12-05 三菱瓦斯化学株式会社 ポリカーボネートの製造法
JP4088762B2 (ja) * 2002-05-17 2008-05-21 三菱瓦斯化学株式会社 芳香族―脂肪族共重合ポリカーボネート樹脂組成物の製造方法
JP4196326B2 (ja) * 2002-06-12 2008-12-17 三菱瓦斯化学株式会社 ポリカーボネート共重合体
ATE455812T1 (de) 2003-06-16 2010-02-15 Teijin Ltd Polycarbonat und herstellungsverfahren dafür
JP2006028441A (ja) 2004-07-21 2006-02-02 Teijin Ltd 脂肪族ポリカーボネートからなる光学用フィルム
JP4626847B2 (ja) 2005-02-22 2011-02-09 三菱瓦斯化学株式会社 コポリカーボネート樹脂
JP2007070392A (ja) * 2005-09-05 2007-03-22 Mitsubishi Gas Chem Co Inc 芳香族−脂肪族ポリカーボネート樹脂共重合体
JP5532531B2 (ja) 2006-06-19 2014-06-25 三菱化学株式会社 ポリカーボネート共重合体及びその製造方法
JP5233203B2 (ja) * 2007-08-20 2013-07-10 三菱化学株式会社 精製芳香族ポリカーボネート樹脂の製造方法
JP2009091417A (ja) 2007-10-05 2009-04-30 Teijin Ltd 植物由来成分を有するポリカーボネートの製造方法
JP5415685B2 (ja) 2007-10-04 2014-02-12 帝人株式会社 植物由来成分を有するポリカーボネートおよびその製造法
JP5875747B2 (ja) * 2008-11-28 2016-03-02 三菱化学株式会社 ポリカーボネート原料用ジヒドロキシ化合物の保存方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083584A1 (fr) * 2000-04-13 2001-11-08 Teijin Limited Procede de production de polycarbonate et dispositif de filtration
JP2002265583A (ja) * 2001-03-09 2002-09-18 Mitsubishi Gas Chem Co Inc 芳香族−脂肪族共重合ポリカーボネートの製造方法
JP2002293913A (ja) * 2001-03-29 2002-10-09 Mitsubishi Gas Chem Co Inc 芳香族―脂肪族共重合ポリカーボネートの製造方法
JP2008247953A (ja) * 2007-03-29 2008-10-16 Mitsubishi Chemicals Corp 芳香族ポリカーボネートの製造方法
WO2009034680A1 (ja) * 2007-08-20 2009-03-19 Mitsubishi Chemical Corporation 芳香族ポリカーボネート樹脂の製造方法
JP2009161745A (ja) * 2007-12-13 2009-07-23 Mitsubishi Chemicals Corp ポリカーボネートの製造方法
JP2010058410A (ja) * 2008-09-04 2010-03-18 Fujifilm Corp 熱可塑性樹脂組成物、その製造方法、熱可塑性樹脂フィルム、その製造方法、偏光板および液晶表示装置
JP2010189581A (ja) * 2009-02-19 2010-09-02 Mitsubishi Chemicals Corp ポリカーボネートの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017165892A (ja) * 2016-03-17 2017-09-21 三菱ケミカル株式会社 透明樹脂フィルム
JP2018036535A (ja) * 2016-08-31 2018-03-08 三菱ケミカル株式会社 厚み位相差(Rth)が負の値を有するフィルムの製造方法

Also Published As

Publication number Publication date
JP6019652B2 (ja) 2016-11-02
KR20140015414A (ko) 2014-02-06
JP2012214728A (ja) 2012-11-08
CN103476561A (zh) 2013-12-25
KR101944129B1 (ko) 2019-01-30
CN103476561B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6019652B2 (ja) ポリカーボネート樹脂の製造方法
JP5229418B2 (ja) ポリカーボネート樹脂の製造方法
JP5962148B2 (ja) ポリカーボネートの製造方法およびポリカーボネートペレット
WO2012133854A1 (ja) ポリカーボネート樹脂の製造方法
JP5962129B2 (ja) ポリカーボネート樹脂の製造方法
WO2012133855A1 (ja) ポリカーボネート樹脂の製造方法
WO2012133851A1 (ja) ポリカーボネート樹脂の製造方法
JP5987406B2 (ja) ポリカーボネート樹脂の製造方法
JP5445652B1 (ja) ポリカーボネート樹脂の製造方法
JP5974583B2 (ja) ポリカーボネート樹脂の製造方法
JP6163794B2 (ja) ポリカーボネートの製造方法
JP5906885B2 (ja) ポリカーボネート樹脂の製造方法
JP2014080604A (ja) ポリカーボネート樹脂の製造方法
JP5974682B2 (ja) ポリカーボネートの製造方法
JP2014074106A (ja) ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂ペレットおよび延伸フィルム
JP5906887B2 (ja) ポリカーボネート樹脂の製造方法
JP6019667B2 (ja) ポリカーボネート樹脂の製造方法
JP5928120B2 (ja) ポリカーボネートの製造方法
JP2014114442A (ja) ポリカーボネート樹脂ペレットの製造方法
JP6281358B2 (ja) ポリカーボネート樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137025523

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765476

Country of ref document: EP

Kind code of ref document: A1