[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012133654A1 - リチウムイオン電池用の負極端子および蓋部材、並びにリチウムイオン電池 - Google Patents

リチウムイオン電池用の負極端子および蓋部材、並びにリチウムイオン電池 Download PDF

Info

Publication number
WO2012133654A1
WO2012133654A1 PCT/JP2012/058364 JP2012058364W WO2012133654A1 WO 2012133654 A1 WO2012133654 A1 WO 2012133654A1 JP 2012058364 W JP2012058364 W JP 2012058364W WO 2012133654 A1 WO2012133654 A1 WO 2012133654A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode terminal
lithium ion
ion battery
layer
Prior art date
Application number
PCT/JP2012/058364
Other languages
English (en)
French (fr)
Inventor
喜光 織田
石尾 雅昭
野澤 康人
Original Assignee
株式会社Neomaxマテリアル
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Neomaxマテリアル, 日立金属株式会社 filed Critical 株式会社Neomaxマテリアル
Priority to KR1020137019331A priority Critical patent/KR101900975B1/ko
Priority to JP2013507725A priority patent/JP6014837B2/ja
Priority to CN201280013478.7A priority patent/CN103443966B/zh
Publication of WO2012133654A1 publication Critical patent/WO2012133654A1/ja
Priority to US14/026,596 priority patent/US9627676B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a negative electrode terminal for a lithium ion battery in which a plurality of layers made of different metal materials are joined, a lid member for a lithium ion battery provided with the negative electrode terminal, and a lithium ion battery using the lid member. .
  • batteries examples include primary batteries, which are chemical batteries, secondary batteries, fuel cells, and solar batteries, which are physical batteries.
  • Primary batteries cannot be charged, and include dry batteries such as manganese batteries, lithium batteries, and button batteries.
  • Secondary batteries can be charged and include nickel-cadmium batteries, nickel-metal hydride batteries, and lithium-ion batteries. These various types of batteries are properly used depending on the application.
  • a lithium-ion battery has a high energy density (energy that can be taken out per unit mass or per unit volume) and a memory effect (when the secondary battery is not fully discharged, the capacity decreases when the battery is added and charged. It has a characteristic that there is almost no degradation phenomenon that is visible) and is widely used in mobile devices such as mobile phones and notebook computers.
  • bus bar inter-terminal connection component
  • the connection of the bus bar to the battery terminal is often mechanically fastened by bolts and nuts so that the battery can be easily replaced in consideration of variations in individual battery characteristics.
  • a recent lithium ion battery is disclosed in, for example, Japanese Patent Application Laid-Open No. 2011-210725 (Patent Document 1).
  • Al that can suppress a chemical reaction with a positive electrode active material is used as a positive electrode current collector
  • Cu having a low electrical resistance is used as a negative electrode current collector.
  • a material that can be easily welded to the current collector is selected for the terminal that is exposed outside the battery, and Al is used for the positive electrode portion and Cu is used for the negative electrode portion.
  • the material of each part in the lithium ion battery is exclusively selected in this way.
  • Patent Document 2 discloses a positive electrode portion.
  • a connection portion (lower terminal portion) with the current collector made of Al is Al
  • a connection portion with the bus bar (upper terminal portion) contains Cu.
  • Patent Document 1 a two-layer clad material made of Al and Cu is applied. However, it is a joined body of an Al-based material and a Cu-based material, although it is a clad material having a sufficient bonding strength in advance. For this reason, if the heat input at the time of welding is large and there is a heat transfer of about 500 ° C., the above-described reaction occurs at the bonding interface between the Al layer and the Cu layer of the clad material, and an intermetallic compound is generated, resulting in a bonding strength. There was a problem that decreased. In addition, the connection between the bus bar and the negative electrode part requires two parts, a terminal member (negative electrode terminal) and a clad material, and the production efficiency and manufacturing cost are reduced by the amount of these parts. There were problems such as affecting lightness.
  • An object of the present invention relates to a lithium ion battery in a form in which a positive electrode side and a negative electrode portion made of a Cu-based material are connected using a bus bar made of an Al-based material, and the negative electrode portion and the bus bar are mechanically connected with a screw or the like. It is possible to give sufficient bonding strength between the negative electrode part and the bus bar in the case of metallurgical bonding, for example, by resistance welding or laser welding, instead of fastening connection. It is to provide a negative electrode terminal for a lithium ion battery that can reduce the number of components required for improvement and improve productivity. And a lid member for a lithium ion battery including the negative electrode terminal, and a lithium ion battery using the lid member.
  • the inventors have applied a cladding structure of a Cu-based material and an Al-based material to the negative electrode terminal itself, and can suppress a metallographic reaction between the Cu-based material and the Al-based material at the negative electrode terminal. It has been found that the above-mentioned problems can be solved by providing the present invention, and the present invention has been achieved.
  • the negative electrode terminal for a lithium ion battery according to the present invention has a first metal layer made of Al or an Al alloy and a second metal layer made of Cu or a Cu alloy, and the first metal layer and the second metal layer
  • the metal layer is a negative electrode terminal for a lithium ion battery made of a clad material bonded via a reaction suppressing layer that suppresses the reaction.
  • the reaction suppression layer has an electrical resistance higher than that of Al or Cu and increases the electrical resistance of the negative electrode terminal, but is necessary for suppressing the reaction.
  • the reaction suppression layer is preferably made of Ni or Ni alloy, or Ti or Ti alloy.
  • the first metal layer and the second metal layer preferably have a flat surface.
  • a bonding layer may be provided on the negative electrode side of the second metal layer.
  • the joining layer is preferably made of any one of a brazing material containing Cu, Ni or Ni alloy, or Fe or Fe alloy.
  • the second metal layer can be a metal layer made of a brazing material containing Cu.
  • the thickness of the first metal layer is larger than the total thickness of the layers other than the first metal layer.
  • the thickness of the second metal layer is preferably larger than the sum of the thicknesses of layers other than the second metal layer excluding the first metal layer.
  • the bonding interface of the negative electrode terminal is subjected to an exposure prevention treatment.
  • a lid member for a lithium ion battery can be configured using the above-described negative electrode terminal for a lithium ion battery according to the present invention.
  • the lid member for a lithium ion battery according to the present invention includes any one of the above-described negative electrode terminals, and has a lid member made of a metal material provided with a hole, and the negative electrode terminal is electrically connected to the hole. It is the cover member for lithium ion batteries currently supported in the insulated state.
  • the negative terminal is preferably supported in a state protruding from the surface of the lid member.
  • a lithium ion battery can be configured using the above-described lid member for a lithium ion battery according to the present invention.
  • the lithium ion battery according to the present invention uses any one of the lid members described above, and a housing member that contains at least a negative electrode portion made of Cu or Cu alloy, a positive electrode portion made of Al or Al alloy, and an electrolytic solution.
  • the storage member is sealed by the lid member, and the negative electrode terminal is connected to the negative electrode portion.
  • the lithium ion battery described above is used, and the positive electrode side of the plurality of lithium ion batteries and the negative electrode terminal are electrically connected in series by a bus bar made of Al or an Al alloy. Can be obtained.
  • the reaction Since the metallurgical reaction between the Cu-based material and the Al-based material can be suppressed by the suppression layer, the negative electrode portion and the bus bar can be connected with sufficient bonding strength.
  • the first metal layer is made of Al or Al alloy similar to the bus bar, and the second metal layer is made of Cu or Cu alloy similar to the negative electrode portion. It is easier to obtain a stronger bonding state than direct connection.
  • the weight of the lithium ion battery can be reduced.
  • a bus bar and a negative electrode part can be connected by one negative electrode terminal according to the present invention, it can be expected that the lithium ion battery is reduced in weight and size, productivity is improved, and manufacturing cost is reduced.
  • the lid member for a lithium ion battery according to the present invention the above-described negative electrode terminal according to the present invention can be used in a simple form. Moreover, the lithium ion battery which concerns on this invention which has a simple structure, and the lithium ion battery which concerns on this invention weight-reduced conventionally compared with two or more by the Al-type bus bar can be obtained.
  • FIG. 7 is a cross-sectional view partially showing a cross section taken along line 700-700 shown in FIG. It is sectional drawing which shows partially the cross section containing an example of the negative electrode terminal which concerns on this invention shown in FIG. It is sectional drawing for demonstrating an example of the manufacturing process which attaches a negative electrode terminal to the structure shown in FIG. FIG.
  • FIG. 7 is a cross-sectional view for explaining the continuation of the manufacturing process shown in FIG. 6.
  • FIG. 8 is a cross-sectional view for explaining the continuation of the manufacturing process shown in FIG. 7.
  • FIG. 5 It is sectional drawing which concerns on 3rd Embodiment of this invention, and shows the cross section containing another example different from the negative electrode terminal which concerns on this invention shown in FIG. 5, FIG.
  • FIG. 12 is a cross-sectional view illustrating a cross section including another example different from the negative electrode terminal according to the present invention illustrated in FIGS. 5, 9, and 11 according to the fourth embodiment of the present invention. It is sectional drawing which shows the structure corresponded to the structure shown in FIG. 4 using the negative electrode terminal shown in FIG. It is sectional drawing for demonstrating an example of the manufacturing process which manufactures the structure shown in FIG. It is a perspective view which shows another example different from the structure shown in FIG. 1 about the lithium ion battery which concerns on 5th Embodiment of this invention and was connected with the bus-bar based on this invention.
  • FIG. 10 is a perspective view including another example different from one of the lithium ion batteries shown in FIG. 2 according to the sixth embodiment of the present invention.
  • the most important technical feature is that the first metal made of Al or Al alloy through a reaction suppression layer capable of suppressing the reaction between the Cu-based material and the Al-based material. It is to join the layer and the second metal layer made of Cu or Cu alloy.
  • the negative electrode terminal according to the present invention includes at least a first metal layer made of Al or an Al alloy and a second metal layer made of Cu or a Cu alloy, and the first metal layer and the first metal layer
  • the two metal layers are made of a clad material joined via a reaction suppression layer that suppresses the reaction.
  • a negative electrode portion made of Cu or Cu alloy and a bus bar made of Al or Al alloy are connected using a negative electrode terminal according to the present invention.
  • the bus bar and the first metal layer of the negative electrode terminal according to the present invention are made of a similar material such as Al or an Al alloy, the bus bar is attached to the first metal layer by, for example, resistance welding or laser welding. Even in the case of metallurgical joining, no intermetallic compound with weak mechanical strength is generated due to heat during welding, and the bus bar and the negative electrode terminal according to the present invention are not Can have a sufficient bonding strength.
  • both the negative electrode portion made of Cu or Cu alloy of the lithium ion battery and the second metal layer of the negative electrode terminal according to the present invention are made of a similar material called Cu or Cu alloy.
  • the negative electrode portion is metallurgically joined by, for example, resistance welding or laser welding, an intermetallic compound with weak mechanical strength is not generated due to heat during welding.
  • a sufficient bonding strength can be provided between the negative electrode portion and the negative electrode terminal according to the present invention.
  • the negative electrode portion and the bus bar are connected by, for example, resistance welding or laser welding using the negative electrode terminal according to the present invention
  • heat during welding is transferred from the first metal layer side to the second metal layer side. Or, it propagates from the second metal layer side to the first metal layer side. At this time, due to this heat transfer, for example, Al or Al alloy constituting the first metal layer tends to diffuse toward the second metal layer.
  • the reaction suppression layer is made of Al or Al alloy constituting the first metal layer. Stops diffusion and suppresses the formation of intermetallic compounds between Al-based materials and Cu-based materials.
  • the present invention By using the negative electrode terminal according to the above, it is possible to connect the negative electrode portion and the bus bar with sufficient bonding strength.
  • the negative electrode terminal according to the present invention employs a clad material in which at least the first metal layer and the second metal layer are bonded via the reaction suppression layer.
  • the respective layers are bonded with sufficient bonding strength by the pressure when the respective layers are bonded by a clad rolling mill or the like. Therefore, also in this respect, the negative electrode terminal according to the present invention made of the clad material is suitable for connecting the negative electrode portion and the bus bar with sufficient bonding strength.
  • the bus bar made of a Cu-based material having a high density (specific gravity) can be used according to the negative electrode terminal according to the present invention.
  • the weight can be sufficiently reduced as compared with the case of using.
  • the negative electrode and the bus bar can be connected without using mechanical connections such as screws, screw parts such as bolts, nuts, and washers can be reduced, and production efficiency can be improved through easier and more automated welding.
  • the effect that the fastening structure between the bus bar and the negative electrode portion can be made compact can be obtained.
  • the reaction suppression layer preferably has a higher melting point than that of the Al-based material, such as Ni or Ni alloy, or Ti or Ti alloy.
  • the Al-based material such as Ni or Ni alloy, or Ti or Ti alloy.
  • the first metal layer and the second metal layer have a flat surface.
  • the bus bar has a flat plate shape that can be easily and inexpensively processed. Therefore, when a flat bus bar is connected to the negative electrode terminal according to the present invention, if the surface of the first metal layer is formed in a flat shape, the connection between the two is facilitated by bringing the flat surfaces into close contact with each other. Can be connected to.
  • the negative electrode part of the lithium ion battery is also exclusively used in a flat plate shape that can be processed easily and inexpensively, if the surface of the second metal layer is formed in a flat shape, the flat plate negative electrode The portion can be easily connected to the negative electrode terminal according to the present invention.
  • the connection is made by a plane, the contact area is increased, and the electrical resistance (contact resistance) resulting from the contact area can be reduced.
  • a bonding layer may be provided on the negative electrode side of the second metal layer.
  • the heat capacity and heat dissipation area of the negative electrode terminal can be increased accordingly.
  • the heat capacity and the heat radiation area described above increase compared to welding the second metal layer directly during welding.
  • the heat transfer to the reaction suppression layer can be delayed or the temperature rise can be suppressed by that much.
  • a material having a lower thermal conductivity than the second metal layer is selected to suppress the amount of welding energy input, and a temperature increase in the vicinity of the bonding portion during welding is suppressed. It becomes possible.
  • a reaction due to heat may occur between the second metal layer and the reaction suppression layer or between the first metal layer and the reaction suppression. Therefore, in this invention, the effect which makes it difficult to produce the reaction mentioned above can be heightened by providing a joining layer further with respect to a 2nd metal layer.
  • the bonding layer is made of any one of a brazing material containing Cu, Ni or Ni alloy, or Fe or Fe alloy. Since the brazing material containing Cu is the same kind of material as Cu constituting the negative electrode part and the second metal layer, the electrical resistance (contact resistance) is smaller than that using a different material, and the joining is high. Can be easily done with strength. Further, Ni or Ni alloy reacts with Cu constituting the negative electrode part and the second metal layer to generate a Ni—Cu alloy that is a solid solution having mechanical strength.
  • a Ni—Cu alloy is formed between the bonding layer and the negative electrode portion, and between the bonding layer and the second metal layer, whereby the bonding layer is formed between the negative electrode portion and the second metal layer. And can be connected with high bonding strength.
  • the effectiveness of using Ni or Ni alloy can also be obtained by using Fe or Fe alloy.
  • the second metal layer may be a metal layer made of a brazing material containing Cu. Since the brazing material containing Cu is the same kind of material as Cu constituting the negative electrode portion, the same effect as that of the second metal layer can be obtained. And the 2nd metal layer comprised with the solder
  • the thickness of the first metal layer is larger than the sum of the thicknesses of layers other than the first metal layer.
  • the first layer made of Al or Al alloy having a lower density (specific gravity) than the reaction suppressing layer and the second metal layer made of Cu or Cu alloy having a higher density (specific gravity).
  • the proportion of the metal layer can be increased. Therefore, the weight of the negative electrode terminal according to the present invention can be reduced.
  • the thickness of the second metal layer is larger than the sum of the thicknesses of the layers other than the second metal layer excluding the first metal layer.
  • the bonding interface in the negative electrode terminal is subjected to an exposure prevention treatment.
  • the negative electrode terminal according to the present invention made of a clad material can be used after being formed into a rectangular flat plate by, for example, press punching. In this case, at the punched end face (side face) of the flat plate, the bonding interface of each layer is exposed and exposed to the outside air. In such a usage pattern, an exposure prevention process is preferably performed on the exposed joint interface.
  • the bonding interface is covered by adhesion of a rubber material or the like.
  • a lid member for a lithium ion battery can be configured using the above-described negative electrode terminal for a lithium ion battery according to the present invention.
  • the negative electrode terminal according to the present invention is provided, the lid member is made of a metal material provided with a hole, and the negative electrode terminal is supported in an electrically insulated state in the hole.
  • a lid member for a lithium ion battery Since the lid member according to the present invention includes the negative electrode terminal according to the present invention having the above-described excellent functions and effects, it is more reliable than the conventional lid member, and the structure around the negative electrode terminal is particularly simple and compact. This is preferable.
  • the lid material having a positive polarity generally does not electrically short-circuit the negative electrode terminal having a negative polarity.
  • a lithium ion battery can be configured using the above-described lid member for a lithium ion battery according to the present invention.
  • the lid member according to the present invention is used to have a housing member that contains at least a negative electrode portion made of Cu or Cu alloy, a positive electrode portion made of Al or Al alloy, and an electrolytic solution.
  • the member is a lithium ion battery that is sealed by the lid member, and the negative electrode terminal is connected to the negative electrode portion. Further, a special separator for separating the positive electrode portion and the negative electrode portion can be stored. Since the lithium ion battery according to the present invention uses the lid member including the negative electrode terminal according to the present invention having the above-described excellent functions and effects, the lithium ion battery is more reliable than the conventional lithium ion battery, and particularly the lid portion. This structure is suitable because it can be made simple and compact.
  • the lithium ion battery 1 has a substantially rectangular parallelepiped shape, a lid member 2 disposed on the upper side (Z1 side), and a lower side (Z2) of the lid member 2. And a battery case body 3 that accommodates the positive electrode portion 5, the negative electrode portion 6, and the separator 102.
  • the battery case body 3 is made of Al.
  • the lid member 2 here is an example of the “lid member for a lithium ion battery” of the present invention.
  • a plurality of lithium ions are arranged along the direction (Y direction) in which the short side of the lithium ion battery 1, that is, the short side of the lid member 20 extends, as viewed in a plan view.
  • the ion batteries 1 are arranged in alignment.
  • the positive electrode terminal 21 is located on one side (X1 side) in the X direction
  • the negative electrode terminal 4 is located on the other side (X2 side)
  • the positive electrode terminal 21 on the X2 side The lithium ion batteries 1 in which the negative electrode terminals 4 are located on the X1 side are alternately arranged along the Y direction.
  • the positive electrode terminal 21 of the predetermined lithium ion battery 1 is welded (joined) to the end portion of the bus bar 101 extending in the Y direction in the Y direction by resistance welding.
  • the negative electrode terminal 4 of the lithium ion battery 1 adjacent to the predetermined lithium ion battery 1 is welded to the end of the bus bar 101 in the Y direction by resistance welding. That is, the positive electrode terminal 21 of a predetermined lithium ion battery 1 is connected to the negative electrode terminal 4 of the adjacent lithium ion battery 1 via the bus bar 101.
  • a lithium ion battery connector 100 in which a plurality of lithium ion batteries 1 are connected in series by the bus bar 101 is configured.
  • the wire 102 is welded to the positive electrode terminal 21 and the negative electrode terminal 4 of the lithium ion battery 1 by ultrasonic welding. These wires 102 are connected to a region where the bus bar 101 of the positive electrode terminal 21 or the negative electrode terminal 4 is not joined. Note that the wire 102 is connected to a measurement device (not shown) for measuring the power generation state of the connected lithium ion battery 1 or a measurement unit attached to the lithium ion battery. In this way, since it is possible to measure and grasp the situation such as the degree of deterioration of the lithium ion battery 1, it is possible to monitor the charge / discharge amount in each lithium ion battery 1.
  • the lithium ion battery 1 includes a positive electrode portion 5 shown in FIG. 3, a negative electrode portion 6, a separator 103 that separates both, and an electrolytic solution (not shown).
  • the positive electrode unit 5 includes a positive electrode 50 made of an Al foil and in contact with the electrolytic solution, and a current collector 51 made of Al and electrically connected to the positive electrode 50.
  • the negative electrode portion 6 includes a negative electrode 60 made of Cu foil and in contact with the electrolytic solution, and a current collector 61 made of Cu and electrically connected to the negative electrode 60.
  • the positive electrode 50 and the negative electrode 60 are isolated by a separator 103 and are laminated in a roll shape in an insulating state.
  • the upper end surface 3b of the battery case main body 3 and the outer edge portion of the lower surface 20b of the lid member 20 are welded in a state where the positive electrode portion 5 and the negative electrode portion 6 and the electrolytic solution are stored in the storage portion 3a of the battery case main body 3. Has been. Thereby, leakage of the electrolyte from between the lid member 2 and the battery case main body 3 is prevented, and the storage portion 3a of the lithium ion battery 1 is configured in a sealed state.
  • the lid member 20 of the lid member 2 has a thickness t1 of about 1 mm in the thickness direction (Z direction).
  • the positive electrode terminal 21 is formed by projecting a part on the X1 side of the lid member 20 above the upper surface 20a of the lid member 20 (Z1 side) by pressing as described above. That is, the positive electrode terminal 21 is formed integrally with the lid member 20 and is made of Al.
  • a hole 20c penetrating in the thickness direction is formed on the X2 side of the lid member 20. As shown in FIG. 3, the hole 20c is formed in a quadrangular shape when seen in a plan view.
  • the intersection (center) of the diagonal line of the hole portion 20c and the intersection (center) of the diagonal line of the negative electrode terminal 4 are substantially matched so that the negative electrode terminal 4 is covered with the insulating member 46. 20 is supported.
  • the negative electrode terminal 4 has a rectangular shape smaller than the hole 20c of the lid member 20 when viewed in plan.
  • the negative electrode terminal 4 has a brazing material layer 41 (Cu—P), a Cu layer 42, and a Ni layer 43 in order from the negative electrode portion 6 (see FIG. 4) side (downward (Z2 side)).
  • the Al layer 44 is the Al layer 44
  • the layer corresponding to the second metal layer is the Cu layer 42
  • the layer corresponding to the reaction suppression layer is Ni.
  • a layer corresponding to a preferable bonding layer provided in the present invention is a brazing material layer 41.
  • the negative electrode terminal 4 has a function of the terminal portion 40 on the negative electrode side.
  • the Al layer 44 is exposed on the surface 44a above the terminal portion 40 (Z1 side), and the brazing material layer 41 is exposed on the surface 41a below the terminal portion 40 (Z2 side). It is configured.
  • the Al layer 44 of the terminal portion 40 is welded (joined) to the bus bar 101 with sufficient bonding strength, and the brazing material layer 41 is welded to the current collecting portion 61 of the negative electrode portion 6 with sufficient bonding strength ( Have been joined).
  • the Al layer 44 described above has a lower density (specific gravity) than the Cu-based material, and is made of Al having a lower density among the Al-based materials.
  • the Cu layer 42 is made of Cu having a smaller electrical resistance (electric resistance) than that of the Al-based material and having a smaller electrical resistance among Cu-based materials.
  • the Ni layer 43 is made of Ni, which hardly generates an intermetallic compound having weak mechanical strength with Al or Cu in a temperature range where an intermetallic compound of Al and Cu is generated.
  • the brazing material layer 41 is made of a phosphor copper brazing material (Cu—P) containing Cu and about 3 mass% of P, and has a melting point of about 710 ° C.
  • the terminal portion 40 has a thickness t2 of about 2 mm in the thickness direction (Z direction). That is, the thickness t2 of the terminal portion 40 is larger than the thickness t1 of the lid member 20 (about 1 mm, see FIG. 4).
  • the thickness t3 of the Al layer 44 is configured to be larger than the sum of the thicknesses obtained by adding the thickness t5 of the Cu layer 42, the thickness t6 of the Ni layer 43, and the thickness t4 of the brazing filler metal layer 41.
  • the thickness t5 of the Cu layer 42 is configured to be larger than the sum of the thicknesses obtained by adding the thickness t6 of the Ni layer 43 and the thickness t4 of the brazing material layer 41.
  • the surface 44a on the Z1 side of the Al layer 44 disposed so as to be exposed and the surface 41a on the Z2 side of the brazing filler metal layer 41 are both formed flat.
  • the surface on the Z2 side of the Cu layer 42 is formed on the clad material using a planar material.
  • the surface on the Z1 side of the positive electrode terminal 21 is formed in a planar shape, like the surface 44 a of the Al layer 44.
  • the negative electrode terminal 4 is a frame-shaped insulating portion 46 formed so as to cover a part of the side surface of the terminal portion 40 of the negative electrode terminal 4 in the thickness direction (Z direction). Is supported by the lid member 20. Specifically, as shown in FIG. 5, the insulating portion 46 covers the side surface of the Ni layer 43 and the side surface of the Cu layer 42 from the side surface of the Al layer 44 located on the Z1 side of the terminal portion 40, and the terminal portion 40. Covering the side surface of the brazing filler metal layer 41 located on the Z2 side. Further, as shown in FIG. 4, the insulating portion 46 is configured to surround the periphery of the negative electrode terminal 4 when viewed in plan. Thereby, as shown in FIG.
  • the insulating portion 46 includes a bonding interface 45 c between the Al layer 44 and the Ni layer 43, a bonding interface 45 b between the Ni layer 43 and the Cu layer 42, and the Cu layer 42 and the brazing material layer 41.
  • the junction interface 45a is covered so that the junction interface is not exposed on the side surface of the negative electrode terminal 4.
  • the insulating portion 46 described above is made of a resin having insulating properties and electrolyte solution resistance. Further, as shown in FIG. 4, the insulating portion 46 has a thickness substantially the same as the thickness t ⁇ b> 1 (about 1 mm) of the lid member 20. That is, the thickness of the insulating portion 46 is smaller than the thickness t2 (about 2 mm) of the terminal portion 40. Accordingly, the insulating portion 46 is configured to be flush with the upper surface 20 a and the lower surface 20 b of the lid member 20 in a state where the negative electrode terminal 4 is disposed in the hole 20 c of the lid member 20.
  • the outer surface of the insulating portion 46 and the inner peripheral surface of the hole 20c are configured to face each other. Accordingly, the negative electrode terminal 4 can be supported by the lid member 20 via the insulating portion 46. Further, in a state where the negative electrode terminal 4 is disposed in the hole 20c of the lid member 20, the Al layer 44 in the terminal portion 40 of the negative electrode terminal 4 protrudes upward (Z1 side) from the upper surface 20a of the lid member 20.
  • the brazing material layer 41 in the terminal portion 40 is configured to protrude downward (Z2 side) from the lower surface 20 b of the lid member 20.
  • the brazing material layer 41 of the negative electrode terminal 4 and the current collector 61 of the negative electrode portion 6 are joined by resistance welding on the lower surface 20 b side of the lid member 20.
  • the joining part 7a is formed between the brazing filler metal layer 41 and the current collecting part 61 corresponding to the welded region.
  • the joint 7a is generated mainly by melting a part of the brazing filler metal layer 41 made of a phosphor copper brazing filler metal. That is, the joining part 7a is formed as a metal layer containing Cu.
  • the positive electrode terminal 21 and the current collection part 51 of the positive electrode part 5 are joined by resistance welding.
  • a metal layer made of Al is formed as the joint 7b between the positive electrode terminal 21 and the current collector 51 corresponding to the welded region.
  • the Al layer 44 of the negative electrode terminal 4 and the bus bar 101 are joined by resistance welding.
  • the positive electrode terminal 21 and the bus bar 101 are joined by resistance welding.
  • a metal layer made of Al is formed as a joint 7c between the Al layer 44 and the bus bar 101 corresponding to the welded region, and between the positive electrode terminal 21 and the bus bar 101.
  • an Al plate (not shown) having a thickness t1 (see FIG. 4) of about 1 mm and made of Al is prepared. Then, as shown in FIG. 6, the positive electrode terminal 21 is formed by projecting the X1 side of the Al plate above the upper surface 20a of the Al plate (Z1 side) by pressing. Further, a hole 20c penetrating in the thickness direction (Z direction) is formed on the X2 side of the Al plate. Thereby, the lid member 20 for the lithium ion battery 1 is formed.
  • an Al plate, a Ni plate, a Cu plate, and a plate-like phosphorous copper brazing material are prepared.
  • the thickness of the Al plate is made larger than the sum of the thicknesses of the Ni plate, the Cu plate, and the plate-like phosphorous copper brazing material.
  • the board thickness of Cu board is made larger than the sum total of the board thickness which added the board thickness of Ni board, and the plate-like phosphorous copper brazing material.
  • an Al plate, an Ni plate, a Cu plate, and a plate-like phosphorous copper brazing material are sequentially laminated, and are joined by applying a predetermined pressure using a clad rolling mill, a press device, or the like. In this case, you may laminate
  • the Al layer 44, the Ni layer 43, the Cu layer 42, and the brazing filler metal layer 41 are laminated and bonded together with a thickness t2 of about 2 mm in the thickness direction (Z direction).
  • a four-layer clad material can be formed.
  • the Al layer 44 and the Ni layer 43 are the bonding interface 45c
  • the Cu layer 42 and the Ni layer 43 are the bonding interface 45b
  • the Cu layer 42 and the brazing material layer 41 are the bonding interface.
  • 45a is configured as a material for the negative electrode terminal 4 bonded with sufficient bonding strength.
  • the thickness t3 of the Al layer 44 is obtained by adding the thickness of the layer obtained by adding the thickness t5 of the Cu layer 42, the thickness t6 of the Ni layer 43, and the thickness t4 of the brazing material layer 41. Also grows. Further, the thickness t5 of the Cu layer 42 is larger than the total thickness of the layers obtained by adding the thickness t6 of the Ni layer 43 and the thickness t4 of the brazing filler metal layer 41.
  • the negative electrode terminal 4 is formed by processing into a quadrangular shape by press punching or the like so as to be smaller than the hole 20c of the lid member 20 (see FIG. 3) in plan view. can do.
  • the negative electrode terminal 4 is disposed in the hole 20c of the lid member 20.
  • the intersection (center) of the diagonal line of the hole portion 20c and the intersection point (center) of the diagonal line of the negative electrode terminal 4 are substantially matched so that the side surface of the negative electrode terminal 4 does not contact the inner peripheral surface of the hole portion 20c.
  • the negative electrode terminal 4 is disposed.
  • a resin for forming the insulating portion 46 is formed by injection molding in a state where the lid member 20 and the negative electrode terminal 4 are fixed to a mold (not shown) or the like. As a result, as shown in FIG.
  • the insulating portion 46 is formed between the hole 20 c of the lid member 20 and the negative electrode terminal 4 so as to have a thickness substantially the same as the thickness t ⁇ b> 1 (about 1 mm) of the lid member 20. Is done.
  • the insulating portion 46 includes the bonding interface 45 c between the Al layer 44 and the Ni layer 43, the bonding interface 45 b between the Cu layer 42 and the Ni layer 43, and the Cu layer 42 and the brazing material layer 41. It forms so that the side surface of the negative electrode terminal 4 corresponding to the junction interface 45a may be covered.
  • the insulating portion 46 is formed so that the outer surface of the insulating portion 46 and the inner peripheral surface of the hole portion 20c come into contact with each other. As a result, the lid member 2 including the negative electrode terminal 4 for the lithium ion battery 1 is formed.
  • the lithium ion battery 1 is manufactured using the lid member 2 provided with the negative electrode terminal 4 obtained by the manufacturing process described above, and the separately prepared positive electrode part 5 and negative electrode part 6 for the lithium ion battery 1 shown in FIG. be able to.
  • the surface 41a of the brazing filler metal layer 41 of the negative electrode terminal 4 and the current collector 61 of the negative electrode portion 6 are connected by resistance welding.
  • the electrode 104 a for resistance welding is connected to the current collector 61 from below (Z2 side).
  • the electrode 104b for resistance welding is brought into contact with the surface 44a of the Al layer 44 of the negative electrode terminal 4 from above (Z1 side) while being brought into contact with the lower surface.
  • the electrode 104a and the electrode 104b can be connected by energizing for a predetermined time.
  • the negative electrode terminal 4 diffusion of Cu to the Al layer 44 side (Z1 side) is suppressed by the Ni layer 43 existing between the Cu layer 42 and the Al layer 44. At the same time, the Ni layer 43 suppresses the diffusion of Al to the Cu layer 42 side (Z2 side). Accordingly, the reaction between Al and Cu is suppressed inside the negative electrode terminal 4, so that the bonding strength does not decrease.
  • the lower surface 20 b of the lid member 20 corresponding to the positive electrode terminal 21 and the current collector 51 of the positive electrode portion 5 are connected to the brazing material described above. Resistance welding is performed similarly to the case of the current collector 61 of the layer 41 and the negative electrode part 6. Thereby, the positive electrode terminal 21 and the current collection part 51 are joined via the junction part 7b formed as a metal layer which consists of Al.
  • the upper end surface 3 b of the battery case body 3 and the lower surface 20 b of the lid member 20 in a state where the positive electrode part 5, the negative electrode part 6, and the electrolyte are stored in the storage part 3 a of the battery case body 3. Weld and seal the outer edge of the. Thereby, the lithium ion battery 1 shown in FIG. 2 can be obtained.
  • a plurality of lithium ion batteries 1 are arranged along the Y direction.
  • the Al layer 44 of the terminal portion 40 of the predetermined lithium ion battery 1 and one end in the Y direction of the bus bar 101 are resistance-welded.
  • the predetermined layer Resistance welding is performed on the positive electrode terminal 21 of another lithium ion battery 1 adjacent to the lithium ion battery 1 and the other end in the Y direction of the bus bar 101.
  • the Al layer 44 of the negative electrode terminal 4 and the bus bar 101 are joined via the joint 7c formed as a metal layer made of Al, and the positive terminal 21 and the bus bar 101 are made of Al.
  • the wire 102 is welded to the remaining region other than the region where the bus bar 101 is connected to the positive electrode terminal 21 and the negative electrode terminal 4 of each lithium ion battery 1 by super-wave welding. Thereby, the lithium ion battery connector 100 can be obtained.
  • the second embodiment will be provided as a bonding layer in place of the Cu layer 42 provided as the second metal layer in the first embodiment in the terminal portion 240 of the negative electrode terminal 204.
  • the material layer 41 is a second metal layer. That is, the second metal layer made of Cu or Cu alloy in the negative electrode terminal according to the present invention is used as the brazing material layer 41 made of the brazing material containing Cu.
  • the negative electrode terminal 204 is an example of the “negative electrode terminal for a lithium ion battery” in the present invention.
  • the terminal portion 240 of the negative electrode terminal 204 is formed by laminating a brazing filler metal layer 41, an Ni layer 43, and an Al layer 44 sequentially from the lower side (Z2 side). It consists of a three-layer clad material joined in the state of being made.
  • the brazing filler metal layer 41 used here is made of the same phosphorous copper brazing material (Cu—P) containing Cu and about 3 mass% P as used in the first embodiment.
  • This clad material has a structure in which the function of the Cu layer 42 provided as the second metal layer and the brazing material layer 41 provided as the bonding layer in the first embodiment is provided in one brazing material layer 41. Therefore, according to the second embodiment, the configuration of the negative electrode terminal 4 described above as the first embodiment can be further simplified.
  • the brazing filler metal layer 41 and the Ni layer 43 described above are bonded (diffusion bonded) to each other at the interface 245d (see FIG. 9).
  • the Ni layer 43 has a function of preventing the diffusion of Al constituting the Al layer 44 and Cu constituting the negative electrode portion 6 and suppressing the reaction between Al and Cu. Note that in the second embodiment of the present invention, the configuration other than the above-described items is the same as that of the first embodiment, and thus the description thereof is omitted.
  • the manufacturing process related to the negative electrode terminal 204 described above as the second embodiment of the present invention is the same as that of the first embodiment except for the manufacturing process in which the Cu layer 42 is provided in the negative electrode terminal 4 in the first embodiment. Is abbreviated.
  • the third embodiment replaces the brazing material layer 41 provided as the bonding layer in the first embodiment with the Ni layer 341 as the bonding layer in the terminal portion 340 of the negative electrode terminal 304.
  • the negative electrode terminal 304 is an example of the “negative electrode terminal for a lithium ion battery” in the present invention.
  • a Ni layer 341, a Cu layer 42, a Ni layer 43, and an Al layer 44 are sequentially laminated from below (Z2 side). It consists of four layers of clad materials joined together.
  • the Ni layer 341 and the Cu layer 42 are bonded (diffusion bonded) at the bonding interface 345a.
  • the Ni layer 341 is made of Ni similarly to the Ni layer 43 which is a reaction suppression layer.
  • the thickness t7 of the Ni layer 341 is configured to be smaller than the thickness t3 of the Al layer 44 and the thickness t5 of the Cu layer 42.
  • the Ni layer 341 of the terminal part 340 and the current collecting part 61 of the negative electrode part 6 are joined by resistance welding.
  • a joint 307a is formed between the Ni layer 341 corresponding to the welded region and the current collector 61.
  • the joint 307 a is a metal layer made of a Ni—Cu alloy formed by a reaction between Ni constituting the Ni layer 341 and Cu constituting the current collector 61. Note that in the third embodiment of the present invention, the configuration other than the above-described items is the same as that of the first embodiment, and a description thereof will be omitted.
  • a plate-like first Ni plate, Cu plate, second Ni plate, and Al plate (not shown) are prepared.
  • the plate thickness of the Al plate is made larger than the sum of the plate thicknesses obtained by adding the plate thickness of the first Ni plate, the plate thickness of the Cu plate, and the plate thickness of the second Ni plate.
  • the thickness of the Cu plate is made larger than the sum of the thicknesses obtained by adding the thickness of the first Ni plate and the thickness of the second Ni plate.
  • the first Ni plate, the Cu plate, the second Ni plate, and the Al plate are sequentially laminated, and are joined by applying a predetermined pressure using a clad rolling mill or a press device.
  • a four-layer clad material in which the Ni layer 341, the Cu layer 42, the Ni layer 43, and the Al layer 44 are laminated and joined can be formed.
  • the Ni layer 341 and the Cu layer 42 are bonded (diffusion bonded) at the bonding interface 345a.
  • the thickness t7 of the Ni layer 341 is smaller than the total thickness of the layers obtained by adding the thickness t3 of the Al layer 44 and the thickness t5 of the Cu layer 42.
  • the negative electrode terminal 304 (terminal part 340) shown in FIG. 11 can be obtained by punching the formed clad material composed of four layers into a square shape of a predetermined size by press working or the like.
  • the cover member 302 provided with the positive electrode terminal 21 and the negative electrode terminal 304 is formed by the same manufacturing process as in the first embodiment, as shown in FIG. Then, on the lower surface 20b side of the lid member 20, the surface 341a of the Ni layer 341 in the negative electrode terminal 304 and the current collector 61 of the negative electrode portion 6 are connected by resistance welding. At this time, the heat (about 1100 ° C.) that melts the current collector 61 between the Ni layer 341 having a high contact resistance and the current collector 61 and on the Ni layer 341 side having a high electrical resistance before bonding. Will occur.
  • the molten Cu of the current collector 61 reacts with Ni of the Ni layer 341, and the Ni layer 341 of the negative electrode terminal 304 and the current collector 61 are formed as a metal layer made of a Ni—Cu alloy. It joins via the part 307a.
  • the other manufacturing process of 3rd Embodiment of this invention is the same as that of 1st Embodiment, description is abbreviate
  • the fourth embodiment has a configuration in which the brazing material layer 41 provided as the bonding layer in the first embodiment is not provided in the terminal portion 440 of the negative electrode terminal 404.
  • the negative electrode terminal 404 according to the fourth embodiment is the most basic configuration of the negative electrode terminal according to the present invention, and the material of each layer can be selected as necessary.
  • the terminal portion 440 of the negative electrode terminal 404 of the fourth embodiment of the present invention is joined in a state in which the Cu layer 42, the Ni layer 43, and the Al layer 44 are sequentially laminated from below (Z2 side). 3 layers of clad material. That is, unlike the first embodiment described above, the brazing filler metal layer 41 is not formed on the terminal portion 440 of the fourth embodiment.
  • the Cu layer 42 of the terminal portion 440 of the negative electrode terminal 404 and the current collecting portion 61 of the negative electrode portion 6 are joined by laser welding.
  • a joint portion 407e is formed between the Cu layer 42 and the current collector 61 corresponding to the welded region.
  • the joint portion 407e is a metal layer made of Cu formed by melting the current collecting portion 61 in the welded region.
  • a plate-like Cu plate, Ni plate, and Al plate (not shown) are prepared. Then, a Cu plate, a Ni plate, and an Al plate are sequentially laminated, and are joined by applying a predetermined pressure using a clad rolling mill or a press device. As a result, a three-layer clad material in which the Cu layer 42, the Ni layer 43, and the Al layer 44 are laminated and joined is formed. And the negative electrode terminal 404 (terminal part 440) shown in FIG. 13 can be obtained by punching the formed clad material into a square shape of a predetermined size by press working or the like.
  • the cover member 402 provided with the positive electrode terminal 21 and the negative electrode terminal 404 is formed by the same manufacturing process as in the first embodiment described above, as shown in FIG.
  • the laser welding machine 105 is used to laser weld the Cu layer 42 in the negative electrode terminal 404 and the current collector 61 of the negative electrode part 6.
  • a laser is applied from below (Z2 side) using the laser welding machine 105. Irradiate light.
  • Z2 side the laser welding machine 105.
  • the current collector 61 in the portion irradiated with the laser light is melted, so that the Cu layer 42 and the current collector 61 of the negative electrode terminal 404 are formed as a metal layer made of Cu. It joins via the joined part 407e.
  • description is abbreviate
  • the positive electrode terminal protruding from the upper surface 20a is not formed on the lid member 520 of the lid member 502 in the lithium ion battery 501.
  • the negative electrode terminal 4 in 1st Embodiment is used as a negative electrode terminal, and the cover member 2 is similarly used as a cover member.
  • the lithium ion battery 501 is an example of the “lithium ion battery” of the present invention
  • the lid member 502 is an example of the “lid member for a lithium ion battery” of the present invention.
  • the lid member 502 in the lithium ion battery 501 of the lithium ion battery connector 500, the lid member 502 is provided with a hole 520c at the approximate center in the X direction of the lid member 520 as shown in FIG.
  • the lid member 520 has a negative electrode terminal 4 disposed in the hole 520c. That is, unlike the first embodiment, the lid member 520 of the lid member 502 is not formed with a positive electrode terminal protruding upward (Z1 side) from the upper surface 20a.
  • the current collector 51 (see FIG. 3) of the positive electrode unit 5 is connected to the battery case body 503 made of Al or the lid member 520 made of Al.
  • a plurality of lithium ion batteries 501 are alternately arranged along the Y direction, and the lid member 502 is located above (Z1 side), and the lid member 502. Is located on the lower side (Z2 side).
  • the negative electrode terminal 4 of a predetermined lithium ion battery 501 is welded (joined) to one end of the bus bar 101 in the Y direction by resistance welding.
  • the other end in the Y direction of the bus bar 101 is welded to the bottom surface 3c of the battery case body 503 of another lithium ion battery 501 adjacent to the predetermined lithium ion battery 501 by resistance welding.
  • the negative electrode terminal 4 of the predetermined lithium ion battery 501 is connected to the bottom surface 3c of the battery case body 503 of another adjacent lithium ion battery 501 via the bus bar 101.
  • a lithium ion battery connector 500 in which a plurality of lithium ion batteries 501 are connected in series is configured.
  • the structure which welds not only the structure which welds the other side (positive electrode terminal side) of the bus-bar 101 to the bottom face 3c of the battery case main body 503 but the side surface of the battery case main body 503 and the cover material 520. It may be.
  • the positive electrode terminal 21 is provided at a specific position (X1 side of the lid member 20), and the other side of the bus bar 101 is welded at the position of the provided positive electrode terminal 21.
  • the degree of freedom of the position where the bus bar 101 is joined can be improved.
  • the other structure of 5th Embodiment of this invention is the same as that of 1st Embodiment, description is abbreviate
  • omitted since the other structure of 5th Embodiment of this invention is the same as that of 1st Embodiment, description is abbreviate
  • an Al plate (not shown) made of Al is prepared.
  • the hole part 520c penetrated in the thickness direction (Z direction) is formed in the approximate center of the X direction of the Al plate.
  • the lid member 520 shown in FIG. 16 is formed.
  • the lithium ion battery 501 is manufactured by the manufacturing process similar to 1st Embodiment.
  • the current collecting part 51 (see FIG. 3) of the positive electrode part 5 is welded to an arbitrary position of the battery case main body 503 or the lid member 520.
  • a plurality of lithium ion batteries 501 are arranged along the Y direction so that the adjacent lithium ion batteries 501 are upside down. Then, on one Z1 side in the Y direction, the negative electrode terminal 4 of the predetermined lithium ion battery 501 and one end in the Y direction of the bus bar 101 are resistance-welded. Further, on the other side in the Y direction, resistance welding is performed between the bottom surface 3c of the battery case body 503 of the lithium ion battery 501 adjacent to the predetermined lithium ion battery 501 and the other end in the Y direction of the bus bar 101.
  • the lithium ion battery connector 500 shown in FIG. 16 can be obtained by the same manufacturing process as in the first embodiment.
  • the sixth embodiment is configured such that the lid member 620 of the lid member 602 and the battery case body 603 are each made of a Ni-plated steel plate (Ni-plated Fe alloy).
  • the lithium ion battery 601 is an example of the “lithium ion battery” of the present invention
  • the lid member 602 is an example of the “lid member for a lithium ion battery” of the present invention.
  • the lithium ion battery 601 includes a cover member 620 of the cover member 602 and a battery case main body 603 that both have mechanical strength and are difficult to deform.
  • a positive electrode terminal 621 made of an Al plate material is welded to the X1 side of the upper surface 20a of the lid member 620.
  • a plate material made of the above-described Ni-plated steel plate is prepared. Then, the positive electrode terminal 621 made of an Al plate material is welded to the X1 side of the plate material, and the hole 20c is formed on the X2 side of the plate material. Thereby, the cover material 620 is formed.
  • 6th Embodiment of this invention is the same as that of 1st Embodiment except the point which uses the battery case main body 603 which consists of Ni plating steel plates, description is abbreviate
  • the Al layer 44 (first metal layer) of the negative electrode terminal 4 (204, 304, 404) is made of Al
  • the Cu layer 42 (second metal layer) is made of Cu
  • the Ni layer 43 Although a specific example in which the (reaction suppression layer) is made of Ni has been shown, the present invention is not limited to this.
  • the first metal layer of the negative electrode terminal may be made of an Al alloy such as an Al—Mn alloy
  • the second metal layer may be made of a Cu alloy such as a Cu—Ni alloy.
  • the material of the lid member, the battery case body, and the like can be appropriately selected as necessary without being limited to the above-described embodiment.
  • the insulating portion 46 has substantially the same thickness as the thickness t1 (about 1 mm) of the lid member 20 (520, 620) is shown, but the present invention is not limited to this.
  • the thickness t1 of the insulating portion is not particularly limited.
  • the thickness of an insulation part is more than the thickness t1 (about 1 mm) of a cover material.
  • the thickness of the insulating portion is preferably equal to or less than the thickness t2 (about 2 mm) of the terminal portion.
  • the positive electrode terminal 621 made of an Al plate material is welded to the upper surface 20a of the lid member 620 made of a Ni-plated steel plate is shown, but the present invention is not limited to this.
  • the positive electrode terminal 621 may be formed on the lid member 620 by plating Al on a predetermined position of the lid member 620 made of a Ni-plated steel plate, or Al may be formed on a predetermined position of the battery case body 603.
  • the positive electrode terminal 621 may be formed on the battery case main body 603 by plating.
  • cover material 620 and the battery case main body 603 both showed the example which consists of a Ni plating steel plate (Ni plating Fe) alloy, this invention is not limited to this.
  • the lid member 620 and the battery case body 603 may both be made of an Fe—Ni alloy.
  • the thickness t2 of the negative electrode terminal is not particularly limited.
  • the thickness t2 of the terminal portion of the negative electrode terminal is preferably about 1 mm or more and less than about 3 mm.
  • the thickness t2 of the terminal portion is preferably equal to or greater than the thickness t1 of the lid member.
  • the brazing filler metal layer 41 of the negative electrode terminal 4 is made of phosphorous copper brazing material (Cu—P) containing Cu and about 3 mass% P. Not limited to.
  • the brazing material layer 41 of the negative electrode terminal 4 only needs to be able to join the negative electrode terminal 4 and the current collector 61 of the negative electrode portion 6.
  • the brazing filler metal layer 41 of the negative electrode terminal 4 is preferable in that it contains Cu from the viewpoint of reducing electrical resistance and forming a bond between the same metals.
  • Ag brazing (Ag—Cu—Zn alloy) or Cu—Sn alloy may be used as the brazing material layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 正極側とCuまたはCu合金からなる負極部とをAlまたはAl合金からなるバスバーで接続して使用する形態のリチウムイオン電池に係り、負極部とバスバーとを例えば抵抗溶接などにより金属学的に接合するような場合に、負極部とバスバーとの間に十分な接合強度を持たせることができるリチウムイオン電池用の負極端子を提供する。このリチウムイオン電池用の負極端子は、AlまたはAl合金からなる第1金属層と、CuまたはCu合金からなる第2金属層とを有し、前記第1金属層と前記第2金属層とは反応を抑制する反応抑制層を介して接合されたクラッド材からなる。

Description

リチウムイオン電池用の負極端子および蓋部材、並びにリチウムイオン電池
 本発明は、異なる金属材料からなる複数の層が接合されたリチウムイオン電池用の負極端子、および該負極端子を備えたリチウムイオン電池用の蓋部材、並びに該蓋部材を用いたリチウムイオン電池に関する。
 電池には、化学電池とされる一次電池、二次電池、燃料電池、物理電池とされる太陽電池などがある。一次電池は充電できず、マンガン電池などの乾電池、リチウム電池、ボタン電池などがある。二次電池は充電でき、ニカド電池、ニッケル水素電池、リチウムイオン電池などがある。これら各種の電池は、用途に応じて使い分けられている。例えば、リチウムイオン電池は、高いエネルギー密度(単位質量当たり、または単位体積当たりの取り出せるエネルギー)や、メモリー効果(二次電池が十分に放電し切らないうちに、継ぎ足し充電すると、容量が減少したように見える劣化現象)がほとんどないという特性をもち、携帯電話やノートパソコンなどの携帯機器に広く用いられている。
 近年、電気自動車、ハイブリット自動車、スマートグリットなどの用途に、大型のリチウムイオン電池が使用されるようになってきた。このような分野では、大きな電流を得るために、複数のリチウムイオン電池を電気的に接続して使用する場合が多い。こうした電池の端子間接続には、電気抵抗が低くジュール熱の発生が少ないCu系材料からなる端子間接続部品(バスバー)が使用される。電池端子に対するバスバーの接続は、従来は個々の電池特性のバラツキを考慮して電池交換が容易にできるようボルトとナットなどにより機械的に締結されることが多かった。
 最近のリチウムイオン電池は、例えば特開2011-210725号公報(特許文献1)に開示される。この電池は、正極の集電体としては正極活物質との化学反応が抑制できるAlが、負極の集電体としては電気抵抗の低いCuが、使用される。また、電池の外部に露出して設けられる端子は、集電体に対して溶接が容易な材料が選定され、正極部にはAlが、負極部にはCuが、使用される。リチウムイオン電池における各部の材料は、専らこのように選定されている。また、Alからなる正極部と、Cu系材料からなるバスバーとの、接続に起因する抵抗(接触抵抗)を低減させるため、例えば特開2010-97769号公報(特許文献2)には、正極部において、Alからなる集電体との接続部分(端子下部)はAlとし、バスバーとの接続部分(端子上部)にはCuを含有させる構成が開示される。
 近年、リチウムイオン電池は、電気的な特性のバラツキが抑制されて品質が高まり、さらなる軽量化、コンパクト化(体積低減)、生産性向上などを図るため、電池端子に対してバスバーの接続に溶接を適用する検討がなされている。加えて、従来のCu系材料からなるバスバーに替えて、密度(比重)がより小さく軽量化が可能なAl系材料からなるバスバーの適用が検討されている。例えば前記特許文献2に開示される構成によれば、Al系材料からなるバスバーとAlからなる正極部との溶接は容易にできる。
 しかし、Al系材料からなるバスバーとCuからなる負極部との溶接は、溶接時の熱影響に起因して反応が起こり、接合界面においてAlとCuとが組成の傾斜によって機械的強度が脆弱な金属間化合物が生成し、これにより接合強度が低下してしまう。この問題を解決するため、例えば前記特許文献1には、Al系材料からなるバスバーをAlからなるターミナル部材(負極端子)に溶接し、該ターミナル部材をAlおよびCuからなる2層クラッド材を介してCuからなる負極部に溶接する構成が提案されている。
特開2011-210725号公報 特開2010-97769号公報
 上述した特許文献1では、AlおよびCuからなる2層クラッド材が適用される。しかし、予め十分な接合強度をもたせたクラッド材とはいえ、Al系材料とCu系材料との接合体である。このため、溶接時の入熱量が大きくなって500℃程度の伝熱があると、クラッド材のAl層とCu層の接合界面において、上述した反応が起こり、金属間化合物が生成して接合強度が低下する問題があった。加えて、バスバーと負極部との接続にターミナル部材(負極端子)とクラッド材という2つの部品を要し、これら部品を有する分だけ生産効率や製造コストが低下し、さらには電池のコンパクト性や軽量性に影響を与えるなどの問題があった。
 本発明の目的は、正極側とCu系材料からなる負極部とを、Al系材料からなるバスバーを用いて接続する形態のリチウムイオン電池に関して、負極部とバスバーとを、ねじなどで機械的に締結するような接続ではなく、例えば抵抗溶接やレーザー溶接などにより金属学的に接合するような場合に、負極部とバスバーとの間に十分な接合強度を持たせることが可能であって、接続に要する部品数の低減や生産性向上を可能とするリチウムイオン電池用の負極端子を提供することである。および、該負極端子を備えたリチウムイオン電池用の蓋部材、並びに該蓋部材を用いたリチウムイオン電池を提供することである。
 本発明者らは、負極端子自体にCu系材料とAl系材料のクラッド構造を適用し、かつ、該負極端子においてCu系材料とAl系材料との金属学的な反応を抑制できる反応抑制層を設けることにより、上述の課題が解決できることを見出して本発明に到達した。
 すなわち本発明に係るリチウムイオン電池用の負極端子は、AlまたはAl合金からなる第1金属層と、CuまたはCu合金からなる第2金属層とを有し、前記第1金属層と前記第2金属層とは反応を抑制する反応抑制層を介して接合されたクラッド材からなる、リチウムイオン電池用の負極端子である。前記反応抑制層は電気抵抗がAlやCuに比べて電気抵抗が高く、負極端子の電気抵抗を増加させるが、反応を抑制するために必要となる。
 本発明において、前記反応抑制層は、NiまたはNi合金、もしくはTiまたはTi合金のいずれかからなることが好ましい。
 また、前記第1金属層および前記第2金属層は、表面が平面状に形成されていることが好ましい。
 また、本発明においては、前記第2金属層の負極側には接合層を有することができる。
 また、前記接合層は、Cuを含有するろう材、NiまたはNi合金、もしくはFeまたはFe合金のいずれかからなることが好ましい。
 また、前記第2金属層は、Cuを含有するろう材からなる金属層にできる。
 また、本発明においては、前記第1金属層の厚みは、前記第1金属層以外の層の厚みの総和よりも大きいことが好ましい。
 また、前記第2金属層の厚みは、前記第1金属層を除く前記第2金属層以外の層の厚みの総和よりも大きいことが好ましい。
 また、本発明においては、前記負極端子における接合界面は露出防止処理が施されていることが好ましい。
 上述した本発明に係るリチウムイオン電池用の負極端子を用いて、リチウムイオン電池用の蓋部材を構成することができる。
 すなわち本発明に係るリチウムイオン電池用の蓋部材は、上述したいずれかの負極端子を備え、穴部が設けられた金属材料からなる蓋材を有し、前記穴部において、前記負極端子は電気的に絶縁した状態で支持されている、リチウムイオン電池用の蓋部材である。
 前記穴部において、前記負極端子は前記蓋材の表面よりも突出した状態で支持されていることが好ましい。
 また、上述した本発明に係るリチウムイオン電池用の蓋部材を用いて、リチウムイオン電池を構成することができる。
 すなわち本発明に係るリチウムイオン電池は、上述したいずれかの蓋部材を用い、CuまたはCu合金からなる負極部と、AlまたはAl合金からなる正極部と、電解液とが少なくとも収納された収納部材を有し、該収納部材は前記蓋部材により密閉されており、前記負極部には前記負極端子が接続されている、リチウムイオン電池である。
 また、本発明においては、上述したリチウムイオン電池を用い、複数のリチウムイオン電池の正極側と前記負極端子とがAlまたはAl合金からなるバスバーにより電気的に直列に接続されている、リチウムイオン電池を得ることができる。
 リチウムイオン電池において、CuまたはCu合金からなる負極部とAlまたはAl合金からなるバスバーとを溶接などにより金属学的に接続する場合、本発明に係るリチウムイオン電池用の負極端子によれば、反応抑制層によりCu系材料とAl系材料との金属学的な反応を抑制できるので、負極部とバスバーとを十分な接合強度をもって接続することができる。加えて、本発明に係る負極端子は、第1金属層がバスバーと同類のAlまたはAl合金からなり、第2金属層が負極部と同類のCuまたはCu合金からなるので、バスバーと負極部を直に接続するよりも強固な接合状態を得やすい。
 よって、本発明によれば、従来のCu系に替えてAl系のバスバーが使用できるため、リチウムイオン電池の軽量化が可能になる。また、本発明に係る1つの負極端子によりバスバーと負極部とを接続できるため、リチウムイオン電池の軽量化やコンパクト化、並びに生産性向上や製造コスト低減が期待できる。
 また、本発明に係るリチウムイオン電池用の蓋部材によれば、上述した本発明に係る負極端子を簡易な形態で使用することができる。また、簡易な構造を有する本発明に係るリチウムイオン電池や、Al系のバスバーにより複数連結された従来よりも軽量化された本発明に係るリチウムイオン電池を得ることができる。
本発明の第1実施形態に係り、バスバーで連結した本発明に係るリチウムイオン電池の一例を示す斜視図である。 図1に示す本発明に係るリチウムイオン電池の1つを取り出して示す斜視図である。 図2に示すリチウムイオン電池を分解して示す斜視図である。 図1に示す700-700線に沿った断面を部分的に示す断面図である。 図4に示す本発明に係る負極端子の一例を含む断面を部分的に示す断面図である。 図4に示す構成に負極端子を取り付ける製造プロセスの一例を説明するための断面図である。 図6に示す製造プロセスの続きを説明するための断面図である。 図7に示す製造プロセスの続きを説明するための断面図である。 本発明の第2実施形態に係り、図5に示す本発明に係る負極端子とは異なる別例を含む断面を示す断面図である。 図9に示す負極端子を用いた、図4に示す構成に相当する構成を示す断面図である。 本発明の第3実施形態に係り、図5、図9に示す本発明に係る負極端子とは異なる別例を含む断面を示す断面図である。 図11に示す負極端子を用いた、図4に示す構成に相当する構成を示す断面図である。 本発明の第4実施形態に係り、図5、図9、図11に示す本発明に係る負極端子とは異なる別例を含む断面を示す断面図である。 図13に示す負極端子を用いた、図4に示す構成に相当する構成を示す断面図である。 図14に示す構成を製造する製造プロセスの一例を説明するための断面図である。 本発明の第5実施形態に係り、バスバーで連結した本発明に係るリチウムイオン電池について、図1に示す構成とは異なる別例を示す斜視図である。 本発明の第6実施形態に係り、図2に示すリチウムイオン電池の1つとは異なる別例を含む斜視図である。
 本発明に係るリチウムイオン電池用の負極端子において、最も重要な技術的特徴は、Cu系材料とAl系材料との反応を抑制できる反応抑制層を介して、AlまたはAl合金からなる第1金属層と、CuまたはCu合金からなる第2金属層とを接合することにある。
 具体的には、本発明に係る負極端子は、少なくとも、AlまたはAl合金からなる第1金属層と、CuまたはCu合金からなる第2金属層とを有し、前記第1金属層と前記第2金属層とは反応を抑制する反応抑制層を介して接合されたクラッド材からなる。
 リチウムイオン電池において、CuまたはCu合金からなる負極部とAlまたはAl合金からなるバスバーとを、本発明に係る負極端子を使用して接続する。この場合、バスバーと、本発明に係る負極端子の第1金属層のいずれもがAlまたはAl合金という同類の材料からなることから、第1金属層に対してバスバーを例えば抵抗溶接やレーザー溶接などにより金属学的に接合した場合であっても、溶接時の熱に起因して、機械的強度が脆弱な金属間化合物が生成されることがなく、バスバーと本発明に係る負極端子との間に十分な接合強度を持たせることができる。
 同様に、リチウムイオン電池のCuまたはCu合金からなる負極部と、本発明に係る負極端子の第2金属層のいずれもがCuまたはCu合金という同類の材料からなることから、第2金属層に対して負極部を例えば抵抗溶接やレーザー溶接などにより金属学的に接合した場合であっても、溶接時の熱に起因して、機械的強度が脆弱な金属間化合物が生成されることがなく、負極部と本発明に係る負極端子との間に十分な接合強度を持たせることができる。
 また、上述のように本発明に係る負極端子を用いて負極部とバスバーとを例えば抵抗溶接やレーザー溶接などにより接続する場合、溶接時の熱が第1金属層側から第2金属層側へ、あるいは第2金属層側から第1金属層側へ伝搬する。このとき、この伝熱に起因して、例えば第1金属層を構成するAlまたはAl合金が第2金属層に向かって拡散しようとする。ところが、本発明に係る負極端子は、第1金属層と第2金属層とが反応抑制層を介して接合されているため、この反応抑制層が第1金属層を構成するAlまたはAl合金の拡散を食い止め、Al系材料とCu系材料との間の金属間化合物の生成を抑止する。よって、第1金属層を構成するAlまたはAl合金と第2金属層を構成するCuまたはCu合金との反応を生じ難くなり、機械的強度が脆弱な金属間化合物の生成が抑制され、本発明に係る負極端子内部では接合強度の低下防止を図ることができる。
 したがって、リチウムイオン電池において、CuまたはCu合金からなる負極部とAlまたはAl合金からなるバスバーとを接続する場合、例えば溶接などの発熱を伴う金属学的な接続方法を適用したとしても、本発明に係る負極端子を用いることにより、十分な接合強度をもって負極部とバスバーとを接続することができる。
 また、本発明に係る負極端子は、少なくとも第1金属層と第2金属層とが反応抑制層を介して接合されたクラッド材を適用している。クラッド材は、それぞれの層をクラッド圧延機などのよって接合するときの圧力により、それぞれの層間(接合界面)が十分な接合強度をもって接合される。よって、この点においてもクラッド材からなる本発明に係る負極端子は、負極部とバスバーとを十分な接合強度をもって接続するために好適である。
 よって、単体のリチウムイオン電池を複数連結する構成を得たい場合、本発明に係る負極端子によればAlまたはAl合金からなるバスバーが使用できるため、密度(比重)が大きいCu系材料からなるバスバーを用いるよりも十分な軽量化を図ることができる。さらには、負極部とバスバーとを、ねじなどの機械的な接続によらずに接続できるため、ボルト、ナット、ワッシャなどのねじ部品を削減できたり、より簡易で自動化しやすい溶接などにより生産効率を向上できたり、バスバーと負極部の締結構造をコンパクト化できたりといった効果も得られる。
 以下、本発明に係る負極端子について、発明者らが好ましいと考える構成を説明する。
 本発明に係る負極端子において、反応抑制層は、融点がAl系材料よりも高い、例えばNiまたはNi合金、もしくはTiまたはTi合金のいずれかからなることが好ましい。異種の金属材料が反応を起こして金属間化合物を生成する温度という観点をもって、Al系材料とCu系材料の組合せと、Al系材料とNi系材料の組合せとを比較した場合、前者は後者よりも低い温度で金属間化合物を生成する。このため、その温度差分だけ、後者は金属間化合物が生成し難いといえる。つまり、融点が高い分だけ、後者では反応が起こり難くなるのである。また、後者の場合、反応により生成し得ると考えられる金属間化合物はNi-Al化合物であろうが、これが機械的強度に不満のない化合物であることもNiまたはNi合金が好ましいとする理由である。
 上述したことは、Cu系材料とAl系材料の組合せと、Cu系材料とNi系材料の組合せとを比較した場合についても、同様にいえる。したがって、Al系材料とCu系材料とを直に接合するよりも、Ni系材料すなわちNiまたはNi合金を介して接合すると、機械的強度が脆弱な金属間化合物が生成され難くなるため、接合強度の低下防止には有効である。なお、このNiまたはNi合金を用いる有効性は、TiまたはTi合金を用いても得ることができる。
 また、本発明に係る負極端子において、前記第1金属層および前記第2金属層は、表面が平面状に形成されていることが好ましい。一般に、バスバーは、容易かつ安価に加工できる平板形状のものが専ら使用されている。よって、平板形状のバスバーを本発明に係る負極端子に対して接続する場合、第1金属層の表面が平面状に形成されていると、両者の接続は互いの平面を密着させるようにして容易に接続することができる。同様に、リチウムイオン電池の負極部もまた、容易かつ安価に加工できる平板形状のものが専ら使用されているため、第2金属層の表面が平面状に形成されていると、平板形状の負極部を本発明に係る負極端子に対して容易に接続することができる。さらに、平面による接続であるため接触面積が大きくなり、接触面積に起因する電気的な抵抗(接触抵抗)を小さくすることができる。加えて、電池の劣化の度合いなどの状況を計測するためのワイヤなどを設置しやすくなる。
 また、本発明に係る負極端子において、前記第2金属層の負極側には接合層を有することができる。接合層を有することにより、その分だけ負極端子の熱容量や放熱面積を増やすことができる。例えば、第2金属層に対して負極部を抵抗溶接やレーザー溶接などにより接続する場合を考えてみると、溶接時に、直に第2金属層に溶接するよりも上述した熱容量や放熱面積が増えた分だけ反応抑制層への伝熱を遅らせたり、温度上昇を抑制したりできる。また、接合層を設ける構成を選ぶ場合、例えば前記第2金属層よりも熱伝導率の低い材質を選定して溶接エネルギーの投入量を抑制し、溶接時の接合部近傍の温度上昇を抑制することも可能になる。上述したように温度が高い場合には、第2金属層と反応抑制層との間で、あるいは第1金属層と反応抑制との間で、熱に起因する反応が起こる可能性がある。したがって、本発明において、第2金属層に対してさらに接合層を設けることにより、上述した反応を生じ難くする作用効果を高めることができる。
 また、本発明に係る負極端子において、前記接合層は、Cuを含有するろう材、NiまたはNi合金、もしくはFeまたはFe合金のいずれかからなることが好ましい。Cuを含有するろう材は、負極部および第2金属層を構成するCuと同種の材料であるため、異種材料を用いるよりも電気的な抵抗(接触抵抗)が小さくなるとともに、接合が高い接合強度で容易にできる。また、NiまたはNi合金は、負極部および第2金属層を構成するCuと反応し、機械的強度を有する固溶体であるNi-Cu合金を生成する。この性質を利用して、接合層と負極部、および接合層と第2金属層の間に、Ni-Cu合金を生成し、これにより、負極部と第2金属層との間を接合層を介して高い接合強度で接続することができる。なお、このNiまたはNi合金を用いる有効性は、FeまたはFe合金を用いても得ることができる。
 また、本発明に係る負極端子において、前記第2金属層は、Cuを含有するろう材からなる金属層であってもよい。Cuを含有するろう材は、負極部を構成するCuと同種の材料であるため、第2金属層と同等の効果を得ることができる。そして、Cuを含有するろう材で構成した第2金属層は、上述した負極部との接続が容易にできるという接合層の有用性を備えることができる。
 また、本発明に係る負極端子において、前記第1金属層の厚みは、前記第1金属層以外の層の厚みの総和よりも大きいことが好ましい。このように負極端子を構成することにより、反応抑制層と密度(比重)のより大きいCuまたはCu合金からなる第2金属層よりも、密度(比重)のより小さいAlまたはAl合金からなる第1金属層の占める割合を大きくできる。よって、本発明に係る負極端子の軽量化を図ることができる。
 また、本発明に係る負極端子において、前記第2金属層の厚みは、前記第1金属層を除く前記第2金属層以外の層の厚みの総和よりも大きいことが好ましい。このように負極端子を構成することにより、材料に起因する電気的な抵抗(電気抵抗)のより小さいCuまたはCu合金からなる第2金属層の占める割合を大きくできる。よって、軽量性を損ねることなく、本発明に係る負極端子の内部の電気抵抗の低減を図ることができる。さらに反応抑制層を薄くすることで抵抗溶接時の反応抑制層における発熱を抑制できる。
 また、本発明に係る負極端子において、前記負極端子における接合界面は露出防止処理が施されていることが好ましい。クラッド材からなる本発明に係る負極端子は、例えばプレス打抜きなどにより四角形の平板状に加工して使用することができる。この場合、平板の打抜き端面(側面)において、それぞれの層の接合界面が露出して外気に曝されることになる。このような使用形態において、露出してしまう接合界面に対して露出防止処理を施こすとよい。つまり、第1金属層、第2金属層、および反応抑制層のそれぞれの側面に渡って覆うとともに、平面的に見て負極端子の側面の周囲を取り囲むように、例えば樹脂材料などの塗布や、ゴム材などの接着により、接合界面を被覆するのである。これにより、本発明に係る負極端子をリチウムイオン電池に適用した場合、一般に正極性を有する電池の蓋材に対して負極性を有する負極端子が電気的に短絡するようなことがない。また、電池の電解液の漏れや浸潤に起因する接合界面の損壊を防止でき、接合強度の低下防止を図ることができる。
 上述した本発明に係るリチウムイオン電池用の負極端子を用いて、リチウムイオン電池用の蓋部材を構成することができる。
 具体的には、本発明に係る負極端子を備え、穴部が設けられた金属材料からなる蓋材を有し、前記穴部において、前記負極端子は電気的に絶縁した状態で支持されている、リチウムイオン電池用の蓋部材である。本発明に係る蓋部材は、上述した優れた機能や効果を有する本発明に係る負極端子を備えているため、従来の蓋部材よりも信頼性が高く、特に負極端子周りの構造が簡易かつコンパクトにできるので好適である。また、蓋部材において、前記負極端子は電気的に絶縁した状態で支持されているため、一般に正極性を有する蓋材が負極性を有する負極端子と電気的に短絡するようなことがない。
 また、本発明に係る蓋部材は、前記蓋材に設けた穴部において、前記負極端子を前記蓋材の表面よりも突出した状態で支持することが好ましい。より具体的には、負極端子の第1金属層の表面が蓋材の表面よりも突出する位置で、負極端子を支持するように構成するのである。このように構成すれば、負極端子の第1金属層に対するバスバーの接続が容易化できるとともに、バスバーを直に接続しても蓋材との間で電気的に短絡することがない。また、上述した接合界面に対して露出防止処理が施されている負極端子を用い、負極端子の露出防止処理部に電気的な絶縁性と機械的弾性をもたすことにより、前記蓋材に設けた穴部に対して負極端子を嵌め込むといった簡易な方法により、簡易な構造の本発明に係る蓋部材を容易に得ることができる。加えて、負極端子におけるそれぞれの層の接合界面に電池の電解液が浸潤するようなこともない。
 上述した本発明に係るリチウムイオン電池用の蓋部材を用いて、リチウムイオン電池を構成することができる。
 具体的には、本発明に係る蓋部材を用い、CuまたはCu合金からなる負極部と、AlまたはAl合金からなる正極部と、電解液とが少なくとも収納された収納部材を有し、該収納部材は前記蓋部材により密閉されており、前記負極部には前記負極端子が接続されている、リチウムイオン電池である。また、正極部と負極部を隔てるための格別のセパレータを収納も可能である。本発明に係るリチウムイオン電池は、上述した優れた機能や効果を有する本発明に係る負極端子を備えた蓋部材を用いているため、従来のリチウムイオン電池よりも信頼性が高く、特に蓋部分の構造が簡易かつコンパクトにできるので好適である。
 また、本発明に係るリチウムイオン電池を用い、1つのリチウムイオン電池の正極側と、別のリチウムイオン電池の負極端子とを、AlまたはAl合金からなるバスバーにより電気的に直列に接続することにより、複数のリチウムイオン電池を連結した構成のリチウムイオン電池(リチウムイオン電池接続体)を得ることができる。このような構成からなるリチウムイオン電池接続体は、従来のCu系バスバーを用いたリチウムイオン電池接続体よりも軽量かつコンパクトにできる。また、Cu系材料よりも安価なAl系材料の使用により、材料に起因する製造コストを低減でき、より安価なリチウムイオン電池接続体の提供が可能になる。なお、本発明に係る負極端子の適用により、リチウムイオン電池の構造に係る品質や信頼性は、従来よりも高まるといえる。
 以下、本発明の幾つかの実施形態について、適宜、図面を用いて詳細に説明する。
(第1実施形態)
 まず、図1~図5を参照して、本発明の第1実施形態となる、リチウムイオン電池用の負極端子4、蓋部材2、リチウムイオン電池1、並びにリチウムイオン電池接続体100について、それぞれの構造を説明する。
 本発明の第1実施形態となるリチウムイオン電池接続体100は、電気自動車(EV、electric vehicle)や、ハイブリッド自動車(HEV、hybrid electric vehicle)、住宅蓄電システムなどに用いられる大型の電池システムに適用することができる。このリチウムイオン電池接続体100は、図1に示すように、単体のリチウムイオン電池1同士を平板状のバスバー101により電気的に直列に接続し、リチウムイオン電池1の集合体として構成されている。なお、ここでいうリチウムイオン電池1は本発明に係る「リチウムイオン電池」の一例である。
 具体的には、リチウムイオン電池1は、図2に示すように、略直方体形状を有しているとともに、上方(Z1側)に配置される蓋部材2と、該蓋部材2の下方(Z2側)に配置されて正極部5や負極部6やセパレータ102を収納する電池ケース本体3とを備えている。この電池ケース本体3はAlからなる。なお、ここでいう蓋部材2は本発明の「リチウムイオン電池用の蓋部材」の一例である。
 蓋部材2は、平面的に(上方から)見て長方形形状を有し、Alからなる板状の蓋材20と、蓋材20の長辺の延びる方向(X方向)の一方側(X1側)に配置された正極端子21と、蓋材20の長辺の延びる方向の他方側(X2側)に配置された負極端子4とを備えている。この蓋材20は、電池ケース本体3と同様にAlからなる。正極端子21は、蓋材20の上面20aから上方(Z1側)に突出するように、蓋材20をプレス加工することにより形成されている。負極端子4は、個別に形成されており、蓋材20の上面20aから上方(Z1側)に突出するように、蓋材20によって支持されている。なお、ここでいう負極端子4は本発明に係る「リチウムオン電池用の負極端子」の一例である。
 また、図1に示すように、リチウムイオン電池接続体100では、平面的に見てリチウムイオン電池1の短辺つまり蓋材20の短辺の延びる方向(Y方向)に沿って、複数のリチウムイオン電池1が整列配置されている。また、リチウムイオン電池接続体100では、X方向の一方側(X1側)に正極端子21、他方側(X2側)に負極端子4が位置するリチウムイオン電池1と、X2側に正極端子21、X1側に負極端子4が位置するリチウムイオン電池1とが、Y方向に沿って交互に配置されている。
 また、所定のリチウムイオン電池1の正極端子21は、Y方向に延びるバスバー101のY方向の端部に対して抵抗溶接により溶接(接合)されている。また、同様に、所定のリチウムイオン電池1と隣接するリチウムイオン電池1の負極端子4は、バスバー101のY方向の端部に対して抵抗溶接により溶接されている。すなわち、所定のリチウムイオン電池1の正極端子21は、バスバー101を介して、隣接するリチウムイオン電池1の負極端子4と接続されている。このようにして、複数のリチウムイオン電池1がバスバー101により直列に接続されたリチウムイオン電池接続体100が構成されている。
 また、リチウムイオン電池1の正極端子21および負極端子4には、各々、ワイヤ102が超音波溶接により溶接されている。これらのワイヤ102は、正極端子21または負極端子4のバスバー101が接合されていない領域に接続されている。なお、ワイヤ102は、各々接続されたリチウムイオン電池1の発電状態などを計測するための図示しない計測機器、またはリチウムイオン電池に付属する計測部に接続されている。このようにして、リチウムイオン電池1の劣化の度合いなどの状況の計測および把握が可能になるので、各々のリチウムイオン電池1における充放電量のモニタリングが可能になる。
 また、リチウムイオン電池1は、図3に示す正極部5と、負極部6と、両者を隔てるセパレータ103と、電解液(図示せず)とを備えている。正極部5は、Al箔からなり電解液と接触する正極50と、Alからなり正極50に電気的に接続されている集電部51とで構成されている。負極部6は、Cu箔からなり電解液と接触する負極60と、Cuからなり負極60に電気的に接続されている集電部61とで構成されている。この正極50と負極60とは、セパレータ103によって隔絶され、絶縁状態でロール状に積層されている。
 また、正極部5および負極部6と電解液とが電池ケース本体3の収納部3aに収納された状態で、電池ケース本体3の上端面3bと蓋材20の下面20bの外縁部とが溶接されている。これにより、蓋部材2と電池ケース本体3との間からの電解液の漏れが防止されるとともに、リチウムイオン電池1の収納部3aが密閉状態に構成される。
 また、図4に示すように、蓋部材2の蓋材20は、厚み方向(Z方向)に約1mmの厚みt1を有している。また、正極端子21は、上述したようにプレス加工により、蓋材20のX1側の一部を蓋材20の上面20aよりも上方(Z1側)に突出させることによって形成されている。つまり、正極端子21は、蓋材20と一体的に形成されているとともに、Alからなるように構成されている。また、蓋材20のX2側には、厚み方向に貫通する穴部20cが形成されている。穴部20cは、図3に示すように、平面的に見て四角形状に形成されている。また、穴部20cにおいては、穴部20cの対角線の交点(中心)と負極端子4の対角線の交点(中心)とを略一致させるようにして、負極端子4が絶縁部46を介して蓋材20により支持された構成になっている。
 ここで、第1実施形態では、負極端子4は、平面的に見て、蓋材20の穴部20cよりも小さな矩形の形状を有する。そして、図5に示すように、負極端子4は、負極部6(図4参照)側(下方(Z2側))から順次、ろう材層41(Cu-P)、Cu層42、Ni層43、およびAl層44の4層が、十分な接合強度をもって接合されたクラッド材からなる。この第1実施形態においては、本発明における第1金属層に対応する層はAl層44であり、第2金属層に対応する層はCu層42であり、反応抑制層に対応する層はNi層43である。加えて、本発明において設けると好ましい接合層に対応する層は、ろう材層41である。
 リチウムイオン電池1において、この負極端子4が負極側の端子部40の機能を有するものになる。この端子部40は、Al層44が端子部40の上方(Z1側)の表面44aに露出し、かつ、ろう材層41が端子部40の下方(Z2側)の表面41aに露出するように構成されている。そして、この端子部40のAl層44がバスバー101に対して十分な接合強度をもって溶接(接合)され、ろう材層41が負極部6の集電部61に対して十分な接合強度をもって溶接(接合)されている。
 上述したAl層44は、正極端子21およびバスバー101(図1参照)と同様に、Cu系材料よりも密度(比重)の小さく、Al系材料の中でもより密度の小さいAlからなる。また、Cu層42は、Al系材料よりも電気的な抵抗(電気抵抗)が小さく、Cu系材料の中でもより電気抵抗の小さいCuからなる。また、Ni層43は、AlとCuの金属間化合物が生成される温度域では、AlやCuとの間で機械的強度が脆弱な金属間化合物を生成し難い、Niからなる。また、ろう材層41は、Cuと約3質量%のPとを含有するリン銅ろう材(Cu-P)からなり、約710℃の融点を有している。
 また、端子部40は、厚み方向(Z方向)に約2mmの厚みt2を有している。つまり、端子部40の厚みt2は、蓋材20の厚みt1(約1mm、図4参照)よりも大きい。また、Al層44の厚みt3は、Cu層42の厚みt5、Ni層43の厚みt6、およびろう材層41の厚みt4を加算した厚みの総和よりも大きくなるように構成されている。また、Cu層42の厚みt5は、Ni層43の厚みt6とろう材層41の厚みt4を加算した厚みの総和よりも大きくなるように構成されている。
 また、露出するように配置されたAl層44のZ1側の表面44aと、ろう材層41のZ2側の表面41aは、両者ともに表面が平面状に形成されている。なお、この場合、Cu層42のZ2側の面が平面状の素材を用いてクラッド材に形成している。また、正極端子21のZ1側の表面は、Al層44の表面44aと同様に、表面が平面状に形成されている。
 また、負極端子4は、図3および図4に示すように、負極端子4の端子部40の側面の一部を厚み方向(Z方向)に覆うように形成された、枠状の絶縁部46を介して蓋材20に支持されている。具体的には、図5に示すように、絶縁部46は、端子部40のZ1側に位置するAl層44の側面から、Ni層43の側面およびCu層42の側面を覆い、端子部40のZ2側に位置するろう材層41の側面に渡って覆っている。さらに、絶縁部46は、図4に示すように、平面的に見て負極端子4の周囲を取り囲むように構成されている。これにより、絶縁部46は、図5に示すように、Al層44とNi層43との接合界面45c、Ni層43とCu層42との接合界面45b、およびCu層42とろう材層41との接合界面45aを被覆し、負極端子4の側面において接合界面が露出しないように構成されている。
 上述した絶縁部46は、絶縁性および耐電解液性を有する樹脂からなる。また、図4に示すように、絶縁部46は、蓋材20の厚みt1(約1mm)と略同一の厚みを有している。つまり、絶縁部46の厚みは、端子部40の厚みt2(約2mm)よりも小さい。これにより、負極端子4が蓋材20の穴部20cに配置された状態で、絶縁部46は、蓋材20の上面20aおよび下面20bと面一になるように構成されている。
 また、負極端子4が蓋材20の穴部20cに配置された状態で、絶縁部46の外側面と穴部20cの内周面とが互いに対向して当接するように構成されている。これにより、負極端子4を絶縁部46を介して蓋材20で支持できる。また、負極端子4が蓋材20の穴部20cに配置された状態で、負極端子4の端子部40におけるAl層44は、蓋材20の上面20aから上方(Z1側)に突出するように構成されているとともに、端子部40におけるろう材層41は、蓋材20の下面20bから下方(Z2側)に突出するように構成されている。
 また、図4に示すように、蓋材20の下面20b側において、負極端子4のろう材層41と負極部6の集電部61とが、抵抗溶接により接合されている。これにより、溶接された領域に対応するろう材層41と集電部61との間には、接合部7aが形成される。この接合部7aは、主に、リン銅ろう材からなるろう材層41の一部が溶融することによって生成される。つまり、接合部7aは、Cuを含有する金属層として形成されるのである。また、正極端子21と正極部5の集電部51とが、抵抗溶接により接合されている。これにより、溶接された領域に対応する正極端子21と集電部51との間には、Alからなる金属層が接合部7bとして形成されるのである。
 また、蓋材20の上面20a側において、負極端子4のAl層44とバスバー101とが、抵抗溶接により接合されている。また、正極端子21とバスバー101とが、抵抗溶接により接合されている。これにより、溶接された領域に対応するAl層44とバスバー101との間、および正極端子21とバスバー101との間には、Alからなる金属層が接合部7cとして形成されるのである。
 次いで、図1~図8を参照して、本発明の第1実施形態として上述した負極端子4、蓋部材2、リチウムイオン電池1、並びにリチウムイオン電池接続体100について、その製造プロセスの一例を詳細に説明する。
 まず、約1mmの厚みt1(図4参照)を有し、AlからなるAl板(図示せず)を準備する。そして、図6に示すように、プレス加工により、Al板のX1側をAl板の上面20aよりも上方(Z1側)に突出させて、正極端子21を形成する。また、Al板のX2側に、厚み方向(Z方向)に貫通する穴部20cを形成する。これにより、リチウムイオン電池1用の蓋材20が形成される。
 また、Al板、Ni板、Cu板、および板状のリン銅ろう材(いずれも図示せず)を準備する。この際、Al板の板厚を、Ni板の板厚、Cu板の板厚、および板状のリン銅ろう材の板厚を加算した板厚の総和よりも大きくする。かつ、Cu板の板厚を、Ni板の板厚と板状のリン銅ろう材の板厚を加算した板厚の総和よりも大きくする。そして、Al板、Ni板、Cu板、および板状のリン銅ろう材を順次積層し、クラッド圧延機やプレス装置などを用いて所定の圧力を加えて接合する。この場合、板状のリン銅ろう材からAl板へと順次積層してもよい。
 これにより、図5に示すように、厚み方向(Z方向)に約2mmの厚みt2を有し、Al層44、Ni層43、Cu層42、およびろう材層41が積層されて接合された4層のクラッド材を形成することができる。このようにクラッド材にすることで、Al層44とNi層43とが接合界面45cで、Cu層42とNi層43とが接合界面45bで、Cu層42とろう材層41とが接合界面45aで、それぞれ十分な接合強度をもって接合された、負極端子4用の素材として構成される。
 このようにして形成されたクラッド材は、Al層44の厚みt3が、Cu層42の厚みt5、Ni層43の厚みt6、およびろう材層41の厚みt4を加算した層の厚みの総和よりも大きくなる。また、Cu層42の厚みt5が、Ni層43の厚みt6とろう材層41の厚みt4を加算した層の厚みの総和よりも大きくなる。
 こうして得たクラッド材を用い、平面的に見て、蓋材20の穴部20cよりも小さくなる(図3参照)ように、プレス打抜きなどにより四角形状に加工することにより、負極端子4を形成することができる。
 得られた負極端子4(図6に端子部40として示す)を用い、該負極端子4を蓋材20の穴部20c内に配置する。このとき、負極端子4の側面が穴部20cの内周面に接触しないように、穴部20cの対角線の交点(中心)と負極端子4の対角線の交点(中心)とが略一致するように、負極端子4を配置する。そして、蓋材20および負極端子4を金型(図示せず)などに固定した状態で、絶縁部46を形成するための樹脂を射出成形によって形成する。これにより、図7に示すように、蓋材20の穴部20cと負極端子4との間に、蓋材20の厚みt1(約1mm)と略同一の厚みになるように絶縁部46が形成される。この際、絶縁部46は、図5に示すように、Al層44とNi層43との接合界面45c、Cu層42とNi層43との接合界面45b、およびCu層42とろう材層41との接合界面45aに対応する負極端子4の側面を覆うように形成しておく。また、絶縁部46の外側面と穴部20cの内周面とが互いに当接するように絶縁部46を形成しておく。この結果、リチウムイオン電池1用の負極端子4を備えた蓋部材2が形成される。
 上述した製造プロセスで得た負極端子4を備えた蓋部材2と、別途準備した図3に示すリチウムイオン電池1用の正極部5および負極部6とを用いて、リチウムイオン電池1を製造することができる。
 まず、蓋部材2における蓋材20の下面20b側において、負極端子4のろう材層41の表面41aと、負極部6の集電部61とを抵抗溶接により接続する。具体的には、図8に示すように、ろう材層41の表面41aと集電部61とを接触させた状態で、下方(Z2側)から抵抗溶接用の電極104aを集電部61の下面に接触させるとともに、上方(Z1側)から抵抗溶接用の電極104bを負極端子4のAl層44の表面44aに接触させる。そうして、電極104aと電極104bの間に、所定時間、通電することにより接続することができる。
 この抵抗溶接においては、接合前には接触抵抗が大きいろう材層41と集電部61との間で、ろう材層41を溶融させる程度の熱(約710℃)が発生する。この結果、ろう材層41と集電部61とがCuを含有する金属層を生成する。そうして、冷却して凝固すると、この金属層がCuを含有する接合部7aとして形成され、接合部7aを介してろう材層41と集電部61とが接合される。このとき、発生した約710℃の熱に起因して、集電部61のCu、ろう材層41のCu、およびCu層42のCuが拡散する。これに加え、Al層44のAlも拡散する。しかしながら、負極端子4に内部では、Cu層42とAl層44との間に存在するNi層43により、CuのAl層44側(Z1側)への拡散が抑制される。同時に、Ni層43により、AlのCu層42側(Z2側)への拡散が抑制される。したがって、負極端子4の内部では、AlとCuとの反応が抑制されるため、接合強度が低下することはない。
 負極部6に次いで、図4に示すように、蓋材20の下面20b側において、正極端子21に対応する蓋材20の下面20bと正極部5の集電部51とを、上述したろう材層41と負極部6の集電部61の場合と同様に、抵抗溶接する。これにより、正極端子21と集電部51とが、Alからなる金属層として形成された接合部7bを介して接合される。
 そして、図3に示すように、正極部5および負極部6と電解液とを電池ケース本体3の収納部3aに収納した状態で、電池ケース本体3の上端面3bと蓋材20の下面20bの外縁部とを溶接して密閉する。これにより、図2に示すリチウムイオン電池1を得ることができる。
 その後、図1に示すように、Y方向に沿って複数のリチウムイオン電池1を配置する。そして、Y方向の一方側においては、所定のリチウムイオン電池1の端子部40のAl層44と、バスバー101のY方向の一方端とを抵抗溶接し、Y方向の他方側においては、所定のリチウムイオン電池1に隣接する別のリチウムイオン電池1の正極端子21と、バスバー101のY方向の他方端とを抵抗溶接する。これにより、図4に示すように、負極端子4のAl層44とバスバー101とがAlからなる金属層として形成された接合部7cを介して接合され、正極端子21とバスバー101とがAlからなる金属層として形成された接合部7cを介して接合され、複数のリチウムイオン電池1が複数のバスバー101によって直列に接続された構成になる。最後に、各々のリチウムイオン電池1の正極端子21および負極端子4におけるバスバー101が接続されている領域以外の残りの領域に、ワイヤ102を超電波溶接により溶接する。これにより、リチウムイオン電池接続体100を得ることができる。
(第2実施形態)
 次に、図9および図10を参照して、本発明の第2実施形態となる、リチウムイオン電池用の負極端子204について、構造を説明する。この第2実施形態は、上述した第1実施形態とは異なり、負極端子204の端子部240において、第1実施形態において第2金属層として設けたCu層42に替えて、接合層として設けたろう材層41を第2金属層とした構成である。つまり、本発明に係る負極端子におけるCuまたはCu合金からなる第2金属層を、Cuを含有するろう材からなるろう材層41としたのである。なお、負極端子204は、本発明の「リチウムイオン電池用の負極端子」の一例である。
 本発明の第2実施形態となる負極端子204の端子部240は、図9および図10に示すように、下方(Z2側)から順次、ろう材層41、Ni層43およびAl層44が積層された状態で接合された3層のクラッド材からなる。ここで用いたろう材層41は、第1実施形態で用いたものと同じ、Cuと約3質量%のPとを含有するリン銅ろう材(Cu-P)からなる。このクラッド材は、第1実施形態において第2金属層として設けたCu層42および接合層として設けたろう材層41の機能を、1つのろう材層41に持たせた構成になる。よって、第2実施形態によれば、第1実施形態として上述した負極端子4の構成を、より簡素化することができる。
 上述したろう材層41とNi層43とは、界面245d(図9参照)において互いに接合(拡散接合)している。また、Ni層43は、Al層44を構成するAlおよび負極部6を構成するCuの拡散を食い止めて、AlとCuとの反応を抑制する機能を有する。なお、本発明の第2実施形態において、上述した事項を除く他の構成は、第1実施形態と同様であるので、説明を略す。
 本発明の第2実施形態として上述した負極端子204に係る製造プロセスについては、第1実施形態における負極端子4においてCu層42を設ける製造プロセスを除き、第1実施形態と同様であるので、説明を略す。
(第3実施形態)
 次に、図11と図12を参照して、本発明の第3実施形態となる、リチウムイオン電池用の負極端子304について、構造を説明する。この第3実施形態は、上述した第1実施形態とは異なり、負極端子304の端子部340において、第1実施形態において接合層として設けたろう材層41に替えて、Ni層341を接合層にした構成である。なお、負極端子304は、本発明の「リチウムイオン電池用の負極端子」の一例である。
 本発明の第3実施形態の負極端子304の端子部340は、図11に示すように、下方(Z2側)から順次、Ni層341、Cu層42、Ni層43およびAl層44が積層された状態で接合された4層のクラッド材からなる。そして、Ni層341とCu層42とは、接合界面345aにおいて接合(拡散接合)されている。また、Ni層341は、反応抑制層であるNi層43と同様に、Niからなる。また、Ni層341の厚みt7は、Al層44の厚みt3およびCu層42の厚みt5よりも小さくなるように構成されている。
 また、図12に示すように、蓋材20の下面20b側において、負極端子304における端子部340のNi層341と負極部6の集電部61とが、抵抗溶接により接合されている。これにより、溶接された領域に対応するNi層341と集電部61との間には、接合部307aが形成される。この接合部307aは、Ni層341を構成するNiと、集電部61を構成するCuとが反応して形成されたNi-Cu合金からなる金属層である。なお、本発明の第3実施形態において、上述した事項を除く他の構成は、第1実施形態と同様であるので、説明を略す。
 次いで、図11と図12を参照して、本発明の第3実施形態として上述した負極端子304と、これを備えた蓋部材302に係る製造プロセスについて説明する。
 まず、板状の第1Ni板、Cu板、第2Ni板、およびAl板(図示せず)を準備する。このとき、Al板の板厚を、第1Ni板の板厚と、Cu板の板厚と、第2Ni板の板厚とを加算した板厚の総和よりも大きくする。また、Cu板の板厚を、第1Ni板の板厚と第2Ni板の板厚とを加算した板厚の総和よりも大きくする。そして、第1Ni板、Cu板、第2Ni板、およびAl板を順次積層し、クラッド圧延機やプレス装置などを用いて所定の圧力を加えて接合する。これにより、Ni層341、Cu層42、Ni層43、およびAl層44が積層されて接合された4層のクラッド材を形成できる。このとき、Ni層341とCu層42とが、接合界面345aにおいて接合(拡散接合)されている。また、Ni層341の厚みt7が、Al層44の厚みt3とCu層42の厚みt5とを加算した層の厚みの総和よりも小さくなる。そして、形成された4層に構成されたクラッド材を、プレス加工などによって所定の大きさの四角形状に打ち抜くことにより、図11に示す負極端子304(端子部340)を得ることができる。
 そして、第1実施形態と同様の製造プロセスによって、図12に示すように、正極端子21と負極端子304とが設けられた蓋部材302が形成される。そして、蓋材20の下面20b側において、負極端子304におけるNi層341の表面341aと負極部6の集電部61とを抵抗溶接により接続する。このとき、接合前は接触抵抗が大きいNi層341と集電部61との間で、かつ、電気抵抗の大きいNi層341側で、集電部61を溶融させる程度の熱(約1100℃)が発生する。これにより、融解した集電部61のCuと、Ni層341のNiとが反応し、負極端子304のNi層341と集電部61とがNi-Cu合金からなる金属層として形成された接合部307aを介して接合される。なお、本発明の第3実施形態のその他の製造プロセスは、第1実施形態と同様であるので、説明を略す。
(第4実施形態)
 次に、図13~図15を参照して、本発明の第4実施形態となる、リチウムイオン電池用の負極端子404について、構造を説明する。この第4実施形態は、上述した第1実施形態とは異なり、負極端子404の端子部440において、第1実施形態において接合層として設けたろう材層41を設けない構成である。なお、この第4実施形態とした負極端子404は、本発明に係る負極端子の最も基本的な構成であって、それぞれの層の材質は必要に応じて選定することができる。
 本発明の第4実施形態の負極端子404の端子部440は、図13に示すように、下方(Z2側)から順次、Cu層42、Ni層43およびAl層44が積層された状態で接合された3層のクラッド材からなる。つまり、上述した第1実施形態とは異なり、第4実施形態の端子部440にはろう材層41が形成されていない。
 また、図14に示すように、蓋材20の下面20b側において、負極端子404における端子部440のCu層42と負極部6の集電部61とが、レーザー溶接により接合されている。これにより、溶接された領域に対応するCu層42と集電部61との間には、接合部407eが形成されている。この接合部407eは、溶接された領域の集電部61が溶融して形成されたCuからなる金属層である。なお、本発明の第4実施形態のその他の構造は、第1実施形態と同様であるので、説明を略す。
 次いで、図13~図15を参照して、本発明の第4実施形態として上述した負極端子404と、これを備えた蓋部材402に係る製造プロセスについて説明する。
 まず、板状のCu板、Ni板、およびAl板(図示せず)を準備する。そして、Cu板、Ni板、およびAl板を順次積層し、クラッド圧延機やプレス装置などを用いて所定の圧力を加えて接合する。これにより、Cu層42、Ni層43、およびAl層44が積層されて接合された3層のクラッド材が形成される。そして、形成されたクラッド材をプレス加工などにより所定の大きさの四角形状に打ち抜くことにより、図13に示す負極端子404(端子部440)を得ることができる。
 そして、上述した第1実施形態と同様の製造プロセスによって、図15に示すように、正極端子21と負極端子404とが設けられた蓋部材402が形成される。そして、蓋材20の下面20b側において、レーザー溶接機105を用いて、負極端子404におけるCu層42と負極部6の集電部61とをレーザー溶接する。具体的には、負極端子404における端子部440のCu層42の表面442aと負極部6の集電部61とを接触させた状態で、レーザー溶接機105を用いて下方(Z2側)からレーザー光を照射する。これにより、図14に示すように、レーザー光が照射された部分の集電部61が溶融することによって、負極端子404のCu層42と集電部61とがCuからなる金属層として形成された接合部407eを介して接合される。なお、本発明の第4実施形態のその他の製造プロセスは、第1実施形態と同様であるので、説明を略す。
(第5実施形態)
 次に、本発明の第5実施形態となる、リチウムイオン電池501、これを用いたリチウムイオン電池接続体500に係る構成について、図3、図4および図16を参照して説明する。この第5実施形態においては、上述した第1実施形態とは異なり、リチウムイオン電池501における蓋部材502の蓋材520に、上面20aから突出する正極端子を形成していない。また、負極端子としては第1実施形態における負極端子4を、蓋部材としては同様に蓋部材2を用いている。なお、リチウムイオン電池501は本発明の「リチウムイオン電池」の一例であり、蓋部材502は本発明の「リチウムイオン電池用の蓋部材」の一例である。
 本発明の第5実施形態では、リチウムイオン電池接続体500のリチウムイオン電池501において、蓋部材502は、図16に示すように、蓋材520のX方向の略中央に穴部520cを設けた蓋材520と、この穴部520cに配置された負極端子4とを有している。つまり、第1実施形態とは異なり、蓋部材502の蓋材520には、上面20aから上方(Z1側)に突出する正極端子が形成されていない。一方、正極部5の集電部51(図3参照)は、Alからなる電池ケース本体503またはAlからなる蓋材520に対して接続される構成である。
 また、リチウムイオン電池接続体500は、複数のリチウムイオン電池501がY方向に沿って交互に配置されており、蓋部材502が上方(Z1側)に位置するリチウムイオン電池501と、蓋部材502が下方(Z2側)に位置するリチウムイオン電池501とがある。また、Y方向の一方側において、所定のリチウムイオン電池501の負極端子4が、バスバー101のY方向の一方端に抵抗溶接により溶接(接合)されている。また、Y方向の他方側において、所定のリチウムイオン電池501と隣接する別のリチウムイオン電池501の電池ケース本体503の底面3cに対して、バスバー101のY方向の他方端が抵抗溶接により溶接されている。これにより、所定のリチウムイオン電池501の負極端子4が、バスバー101を介して、隣接する別のリチウムイオン電池501の電池ケース本体503の底面3cと接続された構成になる。
 このようにして、複数のリチウムイオン電池501が直列に接続されたリチウムイオン電池接続体500が構成される。ここで、第5実施形態においては、バスバー101の他方側(正極端子側)を電池ケース本体503の底面3cに溶接する構成に限らず、電池ケース本体503の側面や蓋材520に溶接する構成であってもよい。これにより、第1~第4実施形態のように特定の位置(蓋材20のX1側)に正極端子21を設け、設けられた正極端子21の位置でバスバー101の他方側を溶接する構成と比較して、バスバー101を接合する位置の自由度を向上させることができる。なお、本発明の第5実施形態のその他の構造は、第1実施形態と同様であるので、説明を略す。
 次いで、図3と図16を参照して、本発明の第5実施形態として上述したリチウムイオン電池501、これを用いたリチウムイオン電池接続体500に係る製造プロセスについて説明する。
 まず、AlからなるAl板(図示せず)を準備する。そして、Al板のX方向の略中央に、厚み方向(Z方向)に貫通する穴部520cを形成する。これにより、図16に示す蓋材520が形成される。そして、第1実施形態と同様の製造プロセスによって、リチウムイオン電池501が製造される。このとき、正極部5の集電部51(図3参照)は、電池ケース本体503または蓋材520の任意の位置に溶接される。
 その後、隣接するリチウムイオン電池501の上下方向が逆になるように、Y方向に沿って複数のリチウムイオン電池501を配置する。そして、Y方向の一方側のZ1側において、所定のリチウムイオン電池501の負極端子4と、バスバー101のY方向の一方端とを抵抗溶接する。また、Y方向の他方側において、所定のリチウムイオン電池501と隣接するリチウムイオン電池501の電池ケース本体503の底面3cと、バスバー101のY方向の他方端とを抵抗溶接する。同様にして、Z2側において、所定のリチウムイオン電池501の電池ケース本体503の底面3cと、バスバー101のY方向の他方端とを抵抗溶接し、Y方向の一方側で隣接するリチウムイオン電池501の負極端子4と、バスバー101のY方向の一方端とを抵抗溶接する。このようにして、第1実施形態と同様の製造プロセスによって、図16に示すリチウムイオン電池接続体500を得ることができる。
(第6実施形態)
 次に、本発明の第6実施形態となる、リチウムイオン電池601に係る構成について、図4と図17を参照して説明する。この第6実施形態は、上述した第1実施形態とは異なり、蓋部材602の蓋材620と電池ケース本体603とが、いずれもNiめっき鋼板(NiめっきFe合金)からなる構成である。なお、リチウムイオン電池601は本発明の「リチウムイオン電池」の一例であり、蓋部材602は本発明の「リチウムイオン電池用の蓋部材」の一例である。
 本発明の第6実施形態となるリチウムイオン電池601は、図17に示すように、蓋部材602の蓋材620と電池ケース本体603とが、いずれも機械的強度を有して変形し難いNiめっき鋼板からなる。また、蓋材620の上面20aのX1側には、Alの板材からなる正極端子621が溶接されている。なお、本発明の第6実施形態のその他の構造は、第1実施形態と同様であるので、説明を略す。
 次いでに、図17を参照して、本発明の第6実施形態として上述したリチウムイオン電池601に係る製造プロセスについて説明する。
 まず、上述したNiめっき鋼板からなる板材を準備する。そして、板材のX1側に、Alの板材からなる正極端子621を溶接するとともに、板材のX2側に穴部20cを形成する。これにより、蓋材620が形成される。なお、本発明の第6実施形態のその他の製造プロセスは、Niめっき鋼板からなる電池ケース本体603を用いる点を除いて、第1実施形態と同様であるので、説明を略す。
 以上、第1実施形態~第6実施形態として上述した本発明に係る実施例は、すべての点で本発明に係る技術的構成を例示したものに過ぎず、本発明に係る範囲を制限するものではないと解するべきである。すなわち、本発明の範囲は、上述した実施形態や実施例の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 例えば、上述した実施形態では、負極端子4(204、304、404)のAl層44(第1金属層)がAlからなり、Cu層42(第2金属層)がCuからなり、Ni層43(反応抑制層)がNiからなる具体例を示したが、本発明はこれに限られることがない。本発明では、負極端子の第1金属層がAl-Mn合金などのAl合金からなり、第2金属層がCu-Ni合金などのCu合金からなるように構成してもよい。同様に、蓋材や電池ケース本体などの材質についても、上述した実施形態に限ることなく、必要に応じて適宜選定することができる。
 また、上述した実施形態では、絶縁部46が、蓋材20(520、620)の厚みt1(約1mm)と略同一の厚みを有する例を示したが、本発明はこれに限られない。本発明では、絶縁部の厚みt1は特に限定されない。なお、端子部と蓋材の内周面とが接触することを抑制するために、絶縁部の厚みは蓋材の厚みt1(約1mm)以上である方が好ましい。一方、端子部のAl層とバスバーとを溶接する際、および、端子部のろう材層(Ni層およびCu層)と負極部の集電体とを溶接する際に、蓋材と絶縁体とが接触することを抑制するために、絶縁部の厚みは端子部の厚みt2(約2mm)以下である方が好ましい。
 また、上述した実施形態では、Niめっき鋼板からなる蓋材620の上面20aに、Alの板材からなる正極端子621を溶接した例を示したが、本発明はこれに限られない。本発明では、Niめっき鋼板からなる蓋材620の所定の位置にAlをメッキすることによって、蓋材620に正極端子621を形成してもよいし、電池ケース本体603の所定の位置にAlをメッキすることによって、電池ケース本体603に正極端子621を形成してもよい。また、蓋材620と電池ケース本体603とが、共にNiめっき鋼板(NiめっきFe)合金からなる例を示したが、本発明はこれに限られない。たとえば、蓋材620と電池ケース本体603とが、共にFe-Ni合金からなるように構成してもよい。
 また、上述した実施形態では、負極端子4(204、304、404)の端子部40(240、340、440)が約2mmの厚みt2を有する例を示したが、本発明はこれに限られない。本発明では、負極端子の厚みt2は特に限定されない。なお、負極端子の端子部の厚みt2は、約1mm以上約3mm未満であるのが好ましい。さらに、蓋材とバスバーとが接触しない状態で負極端子とバスバーとを接合するために、端子部の厚みt2は、蓋材の厚みt1以上である方が好ましい。
 また、上述した実施形態では、負極端子4のろう材層41がCuと約3質量%のPとを含有するリン銅ろう材(Cu-P)からなる例を示したが、本発明はこれに限られない。本発明では、負極端子4のろう材層41は、負極端子4と負極部6の集電部61とを接合可能なものであればよい。なお、負極端子4のろう材層41は、Cuが含有されている方が電気抵抗を減少させるとともに、同種金属間の接合を形成することが可能な点から好ましい。具体的には、Agろう(Ag-Cu-Zn合金)やCu-Sn合金をろう材層として用いてもよい。
1.リチウムイオン電池
2.蓋部材
3.電池ケース本体
4.負極端子
5.正極部
6.負極部
41.ろう材層
42.Cu層
43.Ni層
44.Al層
46.絶縁部
100.リチウムイオン電池接続体
101.バスバー

Claims (13)

  1.  AlまたはAl合金からなる第1金属層と、CuまたはCu合金からなる第2金属層とを有し、前記第1金属層と前記第2金属層とは反応を抑制する反応抑制層を介して接合されたクラッド材からなる、リチウムイオン電池用の負極端子。
  2.  前記反応抑制層は、NiまたはNi合金、もしくはTiまたはTi合金のいずれかからなる、請求項1に記載のリチウムイオン電池用の負極端子。
  3.  前記第1金属層および前記第2金属層は、表面が平面状に形成されている、請求項1または2のいずれかに記載のリチウムイオン電池用の負極端子。
  4.  前記第2金属層の負極側には接合層を有している、請求項1乃至3のいずれかに記載のリチウムイオン電池用の負極端子。
  5.  前記接合層は、Cuを含有するろう材、NiまたはNi合金、もしくはFeまたはFe合金のいずれかからなる、請求項4に記載のリチウムイオン電池用の負極端子。
  6.  前記第2金属層は、Cuを含有するろう材からなる、請求項1乃至5に記載のリチウムイオン電池用の負極端子。
  7.  前記第1金属層の厚みは、前記第1金属層以外の層の厚みの総和よりも大きい、請求項1乃至6のいずれかに記載のリチウムイオン電池用の負極端子。
  8.  前記第2金属層の厚みは、前記第1金属層を除く前記第2金属層以外の層の厚みの総和よりも大きい、請求項1乃至7のいずれかに記載のリチウムイオン電池用の負極端子。
  9.  前記負極端子における接合界面は露出防止処理が施されている、請求項1乃至8のいずれかに記載のリチウムイオン電池用の負極端子。
  10.  請求項1乃至9のいずれかに記載の負極端子を備えたリチウムイオン電池用の蓋部材であって、該蓋部材は、穴部が設けられた金属材料からなる蓋材を有し、前記穴部において、前記負極端子は電気的に絶縁した状態で支持されている、リチウムイオン電池用の蓋部材。
  11.  前記穴部において、前記負極端子は前記蓋材の表面よりも突出した状態で支持されている、請求項10に記載のリチウムイオン電池用の蓋部材。
  12.  請求項10または11に記載の蓋部材を用いたリチウムイオン電池であって、CuまたはCu合金からなる負極部と、AlまたはAl合金からなる正極部と、電解液とが少なくとも収納された収納部材を有し、該収納部材は前記蓋部材により密閉されており、前記負極部には前記負極端子が接続されている、リチウムイオン電池。
  13.  複数のリチウムイオン電池の正極側と前記負極端子とがAlまたはAl合金からなるバスバーにより電気的に直列に接続されている、請求項12に記載のリチウムイオン電池。
PCT/JP2012/058364 2011-03-30 2012-03-29 リチウムイオン電池用の負極端子および蓋部材、並びにリチウムイオン電池 WO2012133654A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137019331A KR101900975B1 (ko) 2011-03-30 2012-03-29 리튬 이온 전지용 부극 단자 및 덮개 부재 및 리튬 이온 전지
JP2013507725A JP6014837B2 (ja) 2011-03-30 2012-03-29 リチウムイオン電池用の負極端子および蓋部材、並びにリチウムイオン電池
CN201280013478.7A CN103443966B (zh) 2011-03-30 2012-03-29 锂离子电池用的负极端子和盖部件以及锂离子电池
US14/026,596 US9627676B2 (en) 2011-03-30 2013-09-13 Negative electrode terminal and cover member for lithium ion battery, and lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011073917 2011-03-30
JP2011-073917 2011-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/026,596 Continuation US9627676B2 (en) 2011-03-30 2013-09-13 Negative electrode terminal and cover member for lithium ion battery, and lithium ion battery

Publications (1)

Publication Number Publication Date
WO2012133654A1 true WO2012133654A1 (ja) 2012-10-04

Family

ID=46931356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058364 WO2012133654A1 (ja) 2011-03-30 2012-03-29 リチウムイオン電池用の負極端子および蓋部材、並びにリチウムイオン電池

Country Status (5)

Country Link
US (1) US9627676B2 (ja)
JP (1) JP6014837B2 (ja)
KR (1) KR101900975B1 (ja)
CN (1) CN103443966B (ja)
WO (1) WO2012133654A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076817A1 (ja) * 2012-11-16 2014-05-22 日立ビークルエナジー株式会社 単電池および組電池
JP2014203825A (ja) * 2013-04-08 2014-10-27 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 電池ユニット及びそれを用いた電池モジュール
JPWO2012169055A1 (ja) * 2011-06-10 2015-02-23 日立ビークルエナジー株式会社 二次電池
JPWO2012165567A1 (ja) * 2011-06-02 2015-02-23 株式会社Neomaxマテリアル 電池用負極端子および電池用負極端子の製造方法
JP2015056273A (ja) * 2013-09-11 2015-03-23 株式会社Neomaxマテリアル 電池用端子および電池用端子の製造方法
EP2860786A1 (en) * 2013-10-08 2015-04-15 Samsung SDI Co., Ltd. Case for secondary battery
JP2015088443A (ja) * 2013-09-25 2015-05-07 株式会社Neomaxマテリアル 電池用端子、電池用端子の製造方法および電池
CN104781948A (zh) * 2012-11-20 2015-07-15 罗伯特·博世有限公司 电的能量存储器模块和制造电的能量存储器模块的方法
JP2016085961A (ja) * 2014-10-24 2016-05-19 株式会社Neomaxマテリアル 電池用端子、電池用端子の製造方法および電池
CN105814242A (zh) * 2013-12-10 2016-07-27 Jx金属株式会社 表面处理铜箔、覆铜积层板、印刷配线板、电子机器及印刷配线板的制造方法
JP6014808B1 (ja) * 2015-08-17 2016-10-26 日立金属株式会社 電池用端子および電池用端子の製造方法
US10193126B2 (en) * 2014-10-24 2019-01-29 Hitachi Metals, Ltd. Battery terminal, method for manufacturing battery terminal, and battery
WO2020144904A1 (ja) * 2019-01-09 2020-07-16 ビークルエナジージャパン株式会社 異種金属接合体及びこれを用いた二次電池用負極外部端子及び二次電池
WO2021215426A1 (ja) * 2020-04-22 2021-10-28 ヤマハ発動機株式会社 ストラドルドビークル電池パック及びストラドルドビークル
JP2022178618A (ja) * 2021-05-20 2022-12-02 プライムプラネットエナジー&ソリューションズ株式会社 端子、二次電池および端子の製造方法
GB2608955A (en) * 2020-04-22 2023-01-18 Yamaha Motor Co Ltd Straddled vehicle battery pack and straddled vehicle

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5909985B2 (ja) * 2011-10-17 2016-04-27 ソニー株式会社 電池および電池の製造方法ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP6592946B2 (ja) * 2015-04-15 2019-10-23 日立金属株式会社 電池負極リード材用クラッド材および電池負極リード材用クラッド材の製造方法
US9917291B2 (en) 2015-05-05 2018-03-13 Johnson Controls Technology Company Welding process for a battery module
EP3279968B1 (en) 2016-08-02 2020-05-13 Robert Bosch GmbH Battery module
KR102026044B1 (ko) * 2017-03-24 2019-09-26 히타치 긴조쿠 가부시키가이샤 클래드재의 제조 방법
DE102017209971A1 (de) * 2017-06-13 2018-12-13 Lithium Energy and Power GmbH & Co. KG Flat Terminal Design für Energiespeicher
DE102017211112A1 (de) * 2017-06-30 2019-01-03 Robert Bosch Gmbh Batteriezelle
DE102017116891A1 (de) 2017-07-26 2019-01-31 Kolektor Group D.O.O. Abschlussstruktur einer elektrischen Batterie
DE102018203052A1 (de) * 2018-03-01 2019-09-05 Gs Yuasa International Ltd. Batterie und Verfahren zum Herstellen einer Batterie
DE102018208139A1 (de) * 2018-05-24 2019-11-28 Robert Bosch Gmbh Deckelbaugruppe für ein Gehäuse einer Batteriezelle
KR20210145776A (ko) 2019-03-22 2021-12-02 디엠씨 글로벌 아이엔씨. 변화하는 두께의 클래드 층을 갖는 클래딩된 물품
CN211017169U (zh) * 2019-11-15 2020-07-14 宁德时代新能源科技股份有限公司 二次电池、电池模块以及装置
DE112021002462T5 (de) * 2020-04-22 2023-02-09 Yamaha Hatsudoki Kabushiki Kaisha Spreizsitzfahrzeug-Batteriesatz und Spreizsitzfahrzeug
CN112072432B (zh) * 2020-09-17 2021-12-14 松山湖材料实验室 铜软连接结构和锂离子电池负极铜极耳结构以及制备方法
DE102020213431A1 (de) 2020-10-26 2022-04-28 Robert Bosch Gesellschaft mit beschränkter Haftung Deckelbaugruppe eines Batteriezellengehäuses, Verfahren zu derer Herstellung und Verwendung einer solchen
DE102020213433A1 (de) 2020-10-26 2022-04-28 Robert Bosch Gesellschaft mit beschränkter Haftung Deckelbaugruppe eines Batteriezellengehäuses, Verfahren zu derer Herstellung und Verwendung einer solchen
JP2022112412A (ja) * 2021-01-21 2022-08-02 プライムプラネットエナジー&ソリューションズ株式会社 端子部品、二次電池および組電池
CN218351672U (zh) * 2022-07-21 2023-01-20 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11156995A (ja) * 1997-09-25 1999-06-15 Daido Steel Co Ltd クラッド板とこれを用いた電池用ケース並びにこれらの製造方法
JP2002216716A (ja) * 2000-05-24 2002-08-02 Ngk Insulators Ltd リチウム二次単電池およびリチウム二次単電池の接続構造体
JP2007134233A (ja) * 2005-11-11 2007-05-31 Toyota Motor Corp 電池端子構造
JP2010097769A (ja) * 2008-10-15 2010-04-30 Mitsubishi Heavy Ind Ltd 電池端子、二次電池、電池端子の製造方法及び二次電池の製造方法
JP2010258003A (ja) * 2009-04-21 2010-11-11 Panasonic Corp 蓄電装置及びその製造方法
WO2010137353A1 (ja) * 2009-05-29 2010-12-02 株式会社Neomaxマテリアル クラッド板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03154310A (ja) * 1989-11-11 1991-07-02 Toshiba Corp 薄板導体の結合方法
US6844110B2 (en) 2000-05-24 2005-01-18 Ngk Insulators, Ltd. Lithium secondary cell and assembly thereof
JP2001357834A (ja) 2000-06-16 2001-12-26 Japan Storage Battery Co Ltd 電 池
JP4590938B2 (ja) * 2004-05-26 2010-12-01 トヨタ自動車株式会社 ラミネート型リチウムイオン電池,組電池および電池間接続継ぎ手
US7892674B2 (en) * 2005-09-09 2011-02-22 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery module
US8956753B2 (en) 2010-03-30 2015-02-17 Samsung Sdi Co., Ltd. Secondary battery and secondary battery module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11156995A (ja) * 1997-09-25 1999-06-15 Daido Steel Co Ltd クラッド板とこれを用いた電池用ケース並びにこれらの製造方法
JP2002216716A (ja) * 2000-05-24 2002-08-02 Ngk Insulators Ltd リチウム二次単電池およびリチウム二次単電池の接続構造体
JP2007134233A (ja) * 2005-11-11 2007-05-31 Toyota Motor Corp 電池端子構造
JP2010097769A (ja) * 2008-10-15 2010-04-30 Mitsubishi Heavy Ind Ltd 電池端子、二次電池、電池端子の製造方法及び二次電池の製造方法
JP2010258003A (ja) * 2009-04-21 2010-11-11 Panasonic Corp 蓄電装置及びその製造方法
WO2010137353A1 (ja) * 2009-05-29 2010-12-02 株式会社Neomaxマテリアル クラッド板

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012165567A1 (ja) * 2011-06-02 2015-02-23 株式会社Neomaxマテリアル 電池用負極端子および電池用負極端子の製造方法
JPWO2012169055A1 (ja) * 2011-06-10 2015-02-23 日立ビークルエナジー株式会社 二次電池
WO2014076817A1 (ja) * 2012-11-16 2014-05-22 日立ビークルエナジー株式会社 単電池および組電池
JPWO2014076817A1 (ja) * 2012-11-16 2017-01-05 日立オートモティブシステムズ株式会社 単電池および組電池
CN104781948A (zh) * 2012-11-20 2015-07-15 罗伯特·博世有限公司 电的能量存储器模块和制造电的能量存储器模块的方法
US9595704B2 (en) * 2012-11-20 2017-03-14 Robert Bosch Gmbh Electrical energy storage module and method for producing an electrical energy storage module
US20150303431A1 (en) * 2012-11-20 2015-10-22 Robert Bosch Gmbh Electrical energy storage module and method for producing an electrical energy storage module
JP2014203825A (ja) * 2013-04-08 2014-10-27 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 電池ユニット及びそれを用いた電池モジュール
JP2015056273A (ja) * 2013-09-11 2015-03-23 株式会社Neomaxマテリアル 電池用端子および電池用端子の製造方法
JP2015088443A (ja) * 2013-09-25 2015-05-07 株式会社Neomaxマテリアル 電池用端子、電池用端子の製造方法および電池
KR101758431B1 (ko) * 2013-09-25 2017-07-14 히타치 긴조쿠 가부시키가이샤 전지용 단자, 전지용 단자의 제조 방법 및 전지
CN104518193B (zh) * 2013-10-08 2019-06-11 三星Sdi株式会社 二次电池
CN104518193A (zh) * 2013-10-08 2015-04-15 三星Sdi株式会社 二次电池
EP2860786A1 (en) * 2013-10-08 2015-04-15 Samsung SDI Co., Ltd. Case for secondary battery
US9761859B2 (en) 2013-10-08 2017-09-12 Samsung Sdi Co., Ltd. Secondary battery
CN105814242A (zh) * 2013-12-10 2016-07-27 Jx金属株式会社 表面处理铜箔、覆铜积层板、印刷配线板、电子机器及印刷配线板的制造方法
JP2016085961A (ja) * 2014-10-24 2016-05-19 株式会社Neomaxマテリアル 電池用端子、電池用端子の製造方法および電池
US10193126B2 (en) * 2014-10-24 2019-01-29 Hitachi Metals, Ltd. Battery terminal, method for manufacturing battery terminal, and battery
JP2017041299A (ja) * 2015-08-17 2017-02-23 日立金属株式会社 電池用端子および電池用端子の製造方法
US10026947B2 (en) 2015-08-17 2018-07-17 Hitachi Metals, Ltd. Battery terminal and method for manufacturing battery
JP6014808B1 (ja) * 2015-08-17 2016-10-26 日立金属株式会社 電池用端子および電池用端子の製造方法
WO2020144904A1 (ja) * 2019-01-09 2020-07-16 ビークルエナジージャパン株式会社 異種金属接合体及びこれを用いた二次電池用負極外部端子及び二次電池
JPWO2020144904A1 (ja) * 2019-01-09 2021-11-04 ビークルエナジージャパン株式会社 リチウムイオン電池用負極外部端子及び二次電池
JP7160947B2 (ja) 2019-01-09 2022-10-25 ビークルエナジージャパン株式会社 リチウムイオン電池用負極外部端子、二次電池、及びリチウムイオン電池用負極外部端子の製造方法
WO2021215426A1 (ja) * 2020-04-22 2021-10-28 ヤマハ発動機株式会社 ストラドルドビークル電池パック及びストラドルドビークル
GB2608955A (en) * 2020-04-22 2023-01-18 Yamaha Motor Co Ltd Straddled vehicle battery pack and straddled vehicle
JP2022178618A (ja) * 2021-05-20 2022-12-02 プライムプラネットエナジー&ソリューションズ株式会社 端子、二次電池および端子の製造方法
JP7373523B2 (ja) 2021-05-20 2023-11-02 プライムプラネットエナジー&ソリューションズ株式会社 端子、二次電池および端子の製造方法

Also Published As

Publication number Publication date
KR20140004687A (ko) 2014-01-13
JPWO2012133654A1 (ja) 2014-07-28
US9627676B2 (en) 2017-04-18
US20140011074A1 (en) 2014-01-09
KR101900975B1 (ko) 2018-09-20
CN103443966A (zh) 2013-12-11
CN103443966B (zh) 2015-12-09
JP6014837B2 (ja) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6014837B2 (ja) リチウムイオン電池用の負極端子および蓋部材、並びにリチウムイオン電池
JP5656592B2 (ja) 二次電池
US7008720B2 (en) Battery having a terminal lead surface covering layer and related method
JP5481178B2 (ja) 組電池および単電池
EP2674999B1 (en) Secondary battery with enhanced contact resistance
US9559347B2 (en) Negative electrode terminal for battery and method for producing negative electrode terminal for battery
JP6038802B2 (ja) 組電池及びこの組電池に使用するための角形二次電池
US9017871B2 (en) Negative-electrode terminal for cell
CN104752670A (zh) 电池组件及电池组件的制造方法
CN103594662B (zh) 二次电池
JP7045576B2 (ja) バッテリーモジュール
JP2013105567A (ja) 電極リード接続体及び非水電解質蓄電装置並びにその製造方法
US9034500B2 (en) Laminated electrode-type battery, manufacturing method therefor, vehicle, and device
JP4211769B2 (ja) 自動車用電池
JP2022049726A (ja) 二次電池用端子および該端子を備えた二次電池
JP6398602B2 (ja) 蓄電素子とその製造方法、および蓄電装置
KR20220030823A (ko) 전기차용 배터리 모듈
JP5454649B1 (ja) 蓄電装置及び溶接方法
KR100994954B1 (ko) 보호회로기판이 접속되는 이차전지
JP2011100661A (ja) 組電池
JP6807494B1 (ja) 組電池パックの入出力構造とその製造方法
JP2023161114A (ja) バスバー及びそれを備えた組電池
JP2014170614A (ja) 電気化学素子用電極板および電気化学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507725

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137019331

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764335

Country of ref document: EP

Kind code of ref document: A1