WO2011145754A1 - 건설기계용 유압제어밸브 - Google Patents
건설기계용 유압제어밸브 Download PDFInfo
- Publication number
- WO2011145754A1 WO2011145754A1 PCT/KR2010/003095 KR2010003095W WO2011145754A1 WO 2011145754 A1 WO2011145754 A1 WO 2011145754A1 KR 2010003095 W KR2010003095 W KR 2010003095W WO 2011145754 A1 WO2011145754 A1 WO 2011145754A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- passage
- hydraulic pump
- boom
- hydraulic
- actuator
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/04—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
- E02F9/2239—Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2264—Arrangements or adaptations of elements for hydraulic drives
- E02F9/2267—Valves or distributors
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2282—Systems using center bypass type changeover valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/04—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
- F15B13/0401—Valve members; Fluid interconnections therefor
- F15B13/0402—Valve members; Fluid interconnections therefor for linearly sliding valves, e.g. spool valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/20576—Systems with pumps with multiple pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/3056—Assemblies of multiple valves
- F15B2211/30565—Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/86493—Multi-way valve unit
Definitions
- the present invention relates to a hydraulic control valve for a construction machine on which a boom, an arm, or the like is mounted.
- the present invention relates to a hydraulic control valve for a construction machine, in which, when driving a work device such as a boom or an arm, the hydraulic oil supplied to the actuator is joined to increase the driving speed of the work device.
- a hydraulic control valve is used to control the hydraulic oil supplied from the hydraulic pump to an actuator that drives a work device such as a boom, arm, etc. of a construction machine such as an excavator.
- the driving speed can be increased by joining hydraulic oils supplied from a plurality of hydraulic pumps to drive a working device such as a boom or an arm.
- Boom 1 block (1) is formed with a supply passage to supply the hydraulic oil of the first hydraulic pump (P1) to the boom cylinder (6),
- a boom 2 block (2) which is in close contact with the boom 1 block (1) so as to be symmetrical and has a supply passage so as to supply the hydraulic oil of the second hydraulic pump (P2) to the boom cylinder (6);
- a boom 1 spool (3) installed in the supply passage (16) of the first hydraulic pump (P1) so as to be switchable and controlling the start, stop, and direction change of the boom cylinder (6) during switching;
- a poppet 9 elastically supported by a spring 8 to open and close the supply passage 16 of the first hydraulic pump P1 and the supply passage 31 of the second hydraulic pump P2.
- reference numerals 12 and 15 are fixed to one ends of the boom 1 spool 3 and the boom 2 spool 4 and are springs 13 that elastically support the boom 1 spool 3 and the boom 2 spool 4.
- the limiting stopper is a guide on which the boom 1 spool (3) and the boom 2 spool (4) are arranged between the guides (12) and (15) and the stroke of the boom 1 spool (3) and the boom 2 spool (4).
- the high pressure oil of the supply passage 16 of the first hydraulic pump P1 pushes the poppet 9 elastically supported by the spring 8 upwards and is supplied to the bridge passage 17, thereby switching to the left side. It is supplied to the cylinder passage 19 through the notches 18 (notch) of the boom 1 spool (3).
- the high pressure oil of the supply passage 31 of the second hydraulic pump P2 pushes the poppet 9 elastically supported by the spring 8 downward and is supplied to the bridge passage 32 so as to be switched to the left side. It is supplied to the cylinder passage 34 through the notch 33 of the boom 2 spool 4 that has been used.
- the hydraulic oil supplied to the above-described cylinder passage 34 is joined to the cylinder passage 19 on the boom 1 block 1 side via the block connecting port 35, and then the actuator B port 20 and the boom large chamber passage ( It is supplied to the large chamber of the boom cylinder 6 via 21). This causes the boom to rise.
- the high pressure oil of the supply passage 16 of the first hydraulic pump P1 pushes the poppet 9 elastically supported by the spring 8 upwards and is supplied to the bridge passage 17, thereby switching to the right. It is supplied to the cylinder passage 24 via the notch 38 of the boom 1 spool 3 that has been used.
- the high pressure oil of the supply passage 31 of the second hydraulic pump P2 pushes the poppet 9 elastically supported by the spring 8 downward and is supplied to the bridge passage 32.
- the notch communicating with the bridge passage 32 is not formed in the boom 2 spool 4 that is switched to the right side, and the high pressure oil of the supply passage 31 of the second hydraulic pump P2 is the boom 2 spool 4. It is not supplied to the cylinder passage 39 through.
- the hydraulic oil returned from the large chamber of the hydraulic cylinder 6 passes through the boom large chamber passage 21-the actuator B port 20-the cylinder passage 19 in turn, and then the boom 1 spool 3 switched to the right side. Dispersion is carried out through the notch 40 formed in the c) and the notch 41 formed in the boom 2 spool 4 and returned to the tank passage 42 and the tank passage 43, respectively. This causes the boom to lower.
- FIG. 2 is a hydraulic circuit diagram of a hydraulic control valve for a construction machine according to the prior art.
- the working oil returned from the large chamber of the boom cylinder (6) is supplied to the passages (57, 56), and communicates with the tank passage (60) via the inner passage of the boom 1 spool (3) switched to the left.
- the conventional hydraulic control valve as described above slides on the boom 1 block 1 and the boom 2 block 2 and the boom 1 block 1 and the boom 2 block 2 to raise or lower the boom, respectively.
- the compact size of the control valve for controlling the hydraulic fluid supplied to the actuator can be easily mounted on the construction equipment, the control valve, the hydraulic control valve for construction machinery to reduce the cost cost Related to.
- Hydraulic control valve for construction machinery according to an embodiment of the present invention
- a boom spool coupled to the valve block and controlling the hydraulic oil supplied to the actuator from the first hydraulic pump and the second hydraulic pump during switching, and having an internal passage formed in an axial direction;
- a supply passage of the first hydraulic pump and a second passage of the hydraulic pump which are formed symmetrically about the boom spool;
- a cylinder passage for supplying the hydraulic oil from the first hydraulic pump to the actuator when the bridge passage is connected by boomspool switching
- It includes a connecting passage for supplying the hydraulic oil from the second hydraulic pump to the internal passage of the boom pool when communicating with the bridge passage by boomspool switching.
- the hydraulic fluid is supplied from the supply passage of the first hydraulic pump and the supply passage of the second hydraulic pump, including a check valve elastically supported to open and close both openings of the inner passage of the boom spool, respectively.
- the check valve at the opening of the cylinder passage is opened to supply hydraulic oil to the actuator, and the check valve at the other opening is kept closed.
- a plug having a passage communicating with a supply passage of the first hydraulic pump
- a plug having a passage communicating with a supply passage of the second hydraulic pump
- a poppet which is elastically supported by a spring to open and close the passage, and slots are formed on both sides sliding with respect to the plug.
- the check valve for opening and closing the opening of the inner passage of the boom spool
- a back chamber formed to communicate with both openings of the inner passage of the boom spool;
- a poppet slidingly coupled in the back chamber and supported to open and close the opening of the inner passage
- It includes a plug fixed to the boom spool to maintain the set pressure of the spring.
- the actuator described above is a boom cylinder or an arm cylinder.
- Hydraulic control valve for a construction machine according to an embodiment of the present invention configured as described above has the following advantages.
- the control valve used in the case of boom up or boom down is made small, so that the control valve can be easily installed in small turning construction equipment, etc., and the cost cost is reduced.
- FIG. 1 is a cross-sectional view of a hydraulic control valve for a construction machine according to the prior art
- FIG. 2 is a hydraulic circuit diagram of a hydraulic control valve for a construction machine according to the prior art
- FIG. 3 is a cross-sectional view of a hydraulic control valve for a construction machine according to an embodiment of the present invention
- FIG. 4 is a view showing the operation when the boom in the hydraulic control valve for construction machinery according to an embodiment of the present invention
- FIG. 5 is a view showing the operation when the boom lowers in the hydraulic control valve for construction machinery according to an embodiment of the present invention.
- the inner passage 125 is formed in the axial direction Boom pool 102,
- Supply passage 118 of the first hydraulic pump (P1) and the second hydraulic pump (P2) of the supply passage 116 which is formed symmetrically about the boom spool 102,
- the boom spool 102 is symmetrically formed left, right, up and down with respect to the passage 122 formed on the sliding surface of the valve block 101 to be switched, the supply passage 118 of the first hydraulic pump (P1) And bridge passages 119 and 117 for supplying the hydraulic oil from the supply passage 116 of the second hydraulic pump P2 to the actuator 6, respectively.
- connection passage 120 When connected to the bridge passage 117 by switching of the boom spool 102, includes a connection passage 120 for supplying the hydraulic oil from the second hydraulic pump (P2) to the inner passage 125 of the boom spool 102 do.
- the first hydraulic pump ( The check valves of the openings of the cylinder passages 19 and 24 through which the operating oil is supplied from the supply passage 118 of P1 and the supply passage 116 of the second hydraulic pump P2 are opened to supply hydraulic oil to the actuator.
- the check valve in the other opening remains closed.
- the hydraulic fluid of excess pressure is provided in the actuator ports 20 and 23 which communicate with the above-mentioned actuator 6 and the cylinder passages 19 and 24, respectively, and when the pressure exceeding the set pressure is generated in the actuator 6 It includes a relief valve (5) for maintaining the set pressure as the return to the hydraulic tank (not shown).
- a plug 103 formed with a passage 128 communicating with the supply passage 118 of the first hydraulic pump P1,
- a poppet 104 which is elastically supported by a spring 105 to open and close the passage 128, and slots 129 are formed on both sides sliding with respect to the plug 103,
- a poppet which is slid relative to the poppet 104 and is elastically supported by the spring 105 to open and close a passage 122 formed in the sliding surface of the valve block 101 to which the boom spool 102 is switched. 106).
- a plug 107 having a passage 131 communicating with the supply passage 116 of the second hydraulic pump P2;
- a poppet 108 which is elastically supported by the spring 109 to open and close the passage 131 and in which slots 132 are formed on both sides sliding with respect to the plug 107.
- Back chambers 135 and 136 which are formed to communicate with each of both openings of the inner passage 125 of the boom spool 102,
- Poppets 110 and 113 which are slidably coupled to the back chambers 135 and 136 and are supported to open and close the openings of the inner passage 125,
- the above-mentioned operating oil of the supply passage 118 of the first hydraulic pump P1 and the supply passage 116 of the second hydraulic pump P2 is connected to the actuator 6 via the inner passage 125 of the boom spool 102. It is formed on the left and right sides of the boom spool 102 so as to be in communication with the back chambers 135, 136, so that the back chambers 135, 136 when switching the boom spool 102, the tank passage 121 ( And drain passages 143 and 137 in communication with 124 to open the poppets 110 and 113 from both openings of the inner passage 125.
- the pilot signal pressure for boom raising (referring to the pressure exceeding the setting pressure of the spring 13) is supplied to the pilot b port 28 of the cover 10 to raise the boom. If so, the boomspool 102 slidingly coupled in the valve block 101 is switched to the left. At this time, the boom spool 102 is moved within a distance until the stopper 14 fixed to the outer circumference thereof comes into close contact with the guides 12 and 15.
- the hydraulic oil supplied to the passage 128 passes through a slot 129 formed on the side sliding surface of the poppet 104 and is supplied to the bridge passage 119, and then the left side of the boom spool 102 is switched. It is supplied to the cylinder passage 19 via the notch 130 of (denoted by the arrow curve in Figure 4). At this time, the poppet 106 elastically supported by the spring 105 to open and close the passage 122 is moved upward, and the hydraulic oil toward the passage 122 is supplied to the bridge passage 119.
- the hydraulic oil supplied to the passage 131 passes through the slot 132 formed on the side sliding surface of the poppet 108 and is supplied to the bridge passage 117, and then the notch of the boomspool 102 switched to the left side. It is supplied to the connection passage 120 via 133.
- connection passage 120 The hydraulic oil supplied to the aforementioned connection passage 120 is supplied to the inner passage 125 via the passage 134 vertically formed to communicate with the inner passage 125 of the boom spool 102. At this time, since the drain passage 143 formed in the back chamber 135 is blocked, the poppet 110 is pressed to the right by the pressure formed in the poppet 110.
- the hydraulic oil supplied to the inner passage 125 of the boom spool 102 moves to the right along the inner passage 125.
- the drain passage 137 is in communication with the drain passage 124 formed in the valve block 101, the pressure in the back chamber 136 is lowered, it is elastically supported by the spring 114 in the right opening of the inner passage 125
- the poppet 113 is pushed to the right.
- the hydraulic oil of the inner passage 125 joins the cylinder passage 19 via the passage 138 vertically formed to communicate with the inner passage 125.
- the hydraulic oil joined in the cylinder passage 19 is supplied to the large chamber of the boom cylinder 6 via the actuator B port 20 and the boom large chamber passage 21.
- the pilot signal pressure for lowering the boom (referring to the pressure exceeding the setting pressure of the spring 13) is supplied to the pilot a port 27 of the cover 140 to lower the boom. If so, the boomspool 102 slidingly coupled to the valve block 101 is switched to the right. At this time, the boom spool 102 is moved within a distance until the stopper 14 fixed to the outer circumference thereof comes into close contact with the guides 12 and 15.
- the hydraulic oil supplied to the passage 128 passes through the slot 129 formed on the side sliding surface of the poppet 104 and is supplied to the bridge passage 119, and then the inner passage of the boom spool 102 switched to the right side. It is supplied to the inner passage 125 via the passage 142 vertically formed to communicate with the 125.
- the pressure formed in the inner passage 125 pushes the poppet 110 elastically supported by the spring 111 in the left opening to the left. Therefore, the working oil of the inner passage 125 is supplied to the cylinder passage 24 via the passage 144 vertically formed to communicate with the inner passage 125.
- the hydraulic oil of the supply passage 116 of the second hydraulic pump P2 is supplied to the bridge passage 117 via the slot 132 formed on the side sliding surface of the poppet 108.
- the bridge passage 117 is blocked by the spool land 145 of the boom spool 102, when the boom is lowered, the hydraulic oil supplied from the second hydraulic pump P2 is not supplied to the hydraulic cylinder 6.
- the hydraulic oil returned from the large chamber of the boom cylinder 6 passes through the boom large chamber passage 21-the actuator B port 20-the cylinder passage 19 in turn, and then the right side of the boom spool 102 switched to the right side. It returns via the tank passage 123 via the notch 146. This causes the boom to lower.
- the first and second in the mono-type valve block The supply passage of the hydraulic pump is formed. For this reason, when the boom is raised, only the partial flow rate of the first hydraulic pump may be used so as to increase the boom driving speed by joining the hydraulic fluids of the first and second hydraulic pumps and lowering the weight when the boom is down. Therefore, it is possible to reduce the cost of the control valve by reducing the size of the control valve and easily mount the control valve to the small swing construction equipment.
- control valve By reducing the size of the control valve used when the boom of a construction machine is boomed up or down, the control valve can be easily mounted on small turning construction equipment, and the cost can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Fluid-Pressure Circuits (AREA)
- Operation Control Of Excavators (AREA)
- Valve Housings (AREA)
Abstract
Description
Claims (8)
- 액츄에이터에 공급되는 작동유를 제어하는 건설기계용 유압제어밸브에 있어서:모노형 밸브블록;상기 밸브블록 내에 슬라이딩 결합되고, 절환시 제1유압펌프 및 제2유압펌프로부터 액츄에이터에 공급되는 작동유를 제어하며, 내부 통로가 축방향으로 형성되는 붐스풀;상기 붐스풀을 중심으로 상하 대칭되게 형성되는 제1유압펌프의 공급통로 및 제2유압펌프의 공급통로;상기 제1유압펌프의 공급통로 및 제2유압펌프의 공급통로를 각각 개폐시키도록 탄성지지되는 체크밸브;상기 붐스풀이 절환되는 밸브블록의 슬라이딩면에 형성되는 통로에 대해 좌,우 및 상,하로 대칭되게 형성되며, 상기 제1유압펌프의 공급통로 및 제2유압펌프의 공급통로로부터의 작동유를 상기 액츄에이터에 공급하는 브리지통로;상기 붐스풀 절환으로 상기 브리지통로에 연통될 경우, 상기 제1유압펌프로부터의 작동유를 상기 액츄에이터에 공급하는 실린더통로; 및상기 붐스풀 절환으로 상기 브리지통로에 연통될 경우, 상기 제2유압펌프로부터의 작동유를 상기 붐스풀의 내부 통로에 공급하는 연결통로를 포함하는 것을 특징으로 하는 건설기계용 유압제어밸브.
- 제1항에 있어서, 상기 붐스풀의 내부통로 양쪽 개구부를 각각 개폐시키도록 탄성지지되는 체크밸브를 포함하여, 상기 제1유압펌프의 공급통로 및 제2유압펌프의 공급통로로부터 작동유가 공급되는 실린더통로쪽 개구부의 체크밸브는 개방되어 액츄에이터로 작동유를 공급하고, 다른쪽 개구부의 체크밸브는 닫힌상태를 유지하게되는 것을 특징으로 하는 건설기계용 유압제어밸브.
- 제2항에 있어서, 상기 액츄에이터 및 실린더통로에 연통되는 액츄에이터 포트에 설치되고, 상기 액츄에이터에 설정압력을 초과하는 압력이 발생될 경우 초과압력의 작동유를 유압탱크로 귀환시키는 릴리프밸브를 포함하는 것을 특징으로 하는 건설기계용 유압제어밸브.
- 제1항에 있어서, 상기 제1유압펌프의 공급통로를 개폐시키는 체크밸브는,상기 제1유압펌프의 공급통로와 연통되는 통로가 형성되는 플러그와,상기 통로를 개폐시키도록 스프링에 의해 탄성지지되고, 상기 플러그에 대해 슬라이딩되는 양측면에 슬롯이 형성되는 포펫과,상기 포펫에 대해 상대운동하도록 슬라이딩되며, 상기 붐스풀이 절환되는 밸브블록의 슬라이딩면에 형성되는 통로를 개폐시키도록 상기 스프링에 의해 탄성지지되는 포펫을 포함하는 것을 특징으로 하는 건설기계용 유압제어밸브.
- 제1항에 있어서, 상기 제2유압펌프의 공급통로를 개폐시키는 체크밸브는,상기 제2유압펌프의 공급통로와 연통되는 통로가 형성되는 플러그와,상기 통로를 개폐시키도록 스프링에 의해 탄성지지되고, 상기 플러그에 대해 슬라이딩되는 양측면에 슬롯이 형성되는 포펫을 포함하는 것을 특징으로 하는 건설기계용 유압제어밸브.
- 제2항에 있어서, 상기 체크밸브는,상기 붐스풀의 내부통로 양쪽 개구부에 연통되도록 형성되는 백챔버와,상기 백챔버 내에 슬라이딩 결합되고 상기 내부통로의 개구부를 각각 개폐시키도록 지지되는 포펫과,상기 내부통로의 개구부에 대해 상기 포펫을 각각 가압하여 닫힌상태로 탄성지지하는 스프링과,상기 스프링의 설정압력을 유지하도록 붐스풀에 각각 고정되는 플러그를 포함하는 것을 특징으로 하는 건설기계용 유압제어밸브.
- 제6항에 있어서, 상기 제1유압펌프의 공급통로 및 제2유압펌프의 공급통로의 작동유를 상기 붐스풀의 내부통로를 경유하여 상기 액츄에이터에 공급할 수 있도록, 상기 백챔버와 연통되도록 상기 붐스풀의 좌우측에 형성되고, 상기 붐스풀의 절환시 상기 백챔버를 탱크통로에 연통시켜 상기 내부통로의 개구부로부터 포펫을 개방시키는 드레인통로를 포함하는 것을 특징으로 하는 건설기계용 유압제어밸브.
- 제1항 내지 제7항중 어느 한 항에 있어서, 상기 액츄에이터는 붐실린더 또는 아암실린더인 것을 특징으로 하는 건설기계용 유압제어밸브.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2010/003095 WO2011145754A1 (ko) | 2010-05-17 | 2010-05-17 | 건설기계용 유압제어밸브 |
CN201080066460.4A CN102869837B (zh) | 2010-05-17 | 2010-05-17 | 用于施工设备的液压调节阀 |
JP2013511087A JP5680189B2 (ja) | 2010-05-17 | 2010-05-17 | 建設機械用油圧制御弁 |
US13/641,318 US9261114B2 (en) | 2010-05-17 | 2010-05-17 | Hydraulic pressure-regulating valve for construction equipment |
EP10851801.0A EP2573282B1 (en) | 2010-05-17 | 2010-05-17 | Hydraulic pressure-regulating valve for construction equipment |
KR1020127025424A KR101737901B1 (ko) | 2010-05-17 | 2010-05-17 | 건설기계용 유압제어밸브 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2010/003095 WO2011145754A1 (ko) | 2010-05-17 | 2010-05-17 | 건설기계용 유압제어밸브 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011145754A1 true WO2011145754A1 (ko) | 2011-11-24 |
Family
ID=44991836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2010/003095 WO2011145754A1 (ko) | 2010-05-17 | 2010-05-17 | 건설기계용 유압제어밸브 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9261114B2 (ko) |
EP (1) | EP2573282B1 (ko) |
JP (1) | JP5680189B2 (ko) |
KR (1) | KR101737901B1 (ko) |
CN (1) | CN102869837B (ko) |
WO (1) | WO2011145754A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150159678A1 (en) * | 2012-07-19 | 2015-06-11 | Volvo Construction Equipment Ab | Flow control valve for construction machinery |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10047769B2 (en) * | 2014-04-29 | 2018-08-14 | Volvo Construction Equipment Ab | Flow control valve for construction equipment |
WO2016111391A1 (ko) * | 2015-01-08 | 2016-07-14 | 볼보 컨스트럭션 이큅먼트 에이비 | 건설기계용 유량 컨트롤밸브 |
US10633829B2 (en) * | 2015-10-08 | 2020-04-28 | Volvo Construction Equipment Ab | Spool valve |
KR200486065Y1 (ko) * | 2017-02-03 | 2018-03-29 | 주식회사 대진에이치에스 | 굴삭기 자세 제어용 록킹밸브 |
JP6755814B2 (ja) * | 2017-02-09 | 2020-09-16 | ナブテスコ株式会社 | 方向切換弁 |
KR101867528B1 (ko) * | 2017-11-20 | 2018-07-17 | 황종원 | 안티 드롭밸브의 릴리프 밸브 어셈블리 |
DE102018204854A1 (de) * | 2018-03-29 | 2019-10-02 | Robert Bosch Gmbh | Ventilanordnung mit einem Hauptschieber und zwei Steuerschiebern |
JP7508337B2 (ja) * | 2020-05-29 | 2024-07-01 | ナブテスコ株式会社 | 流体システム及び建設機械 |
US12085099B1 (en) * | 2020-06-18 | 2024-09-10 | Vacuworx Global, LLC | Flow control block for use with a vacuum material handler |
JP7561010B2 (ja) * | 2020-11-17 | 2024-10-03 | 川崎重工業株式会社 | マルチ制御弁 |
US11506297B2 (en) * | 2020-12-09 | 2022-11-22 | Caterpillar Inc. | Relief valve cavity |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06137304A (ja) * | 1992-10-29 | 1994-05-17 | Hitachi Constr Mach Co Ltd | 油圧制御弁装置 |
JPH07110007A (ja) * | 1993-10-12 | 1995-04-25 | Kato Works Co Ltd | 建設車両の油圧駆動装置 |
KR100814499B1 (ko) * | 2007-04-02 | 2008-03-18 | 주식회사 파카한일유압 | 무한궤도형 굴삭기의 주행 직진 기능 개선을 위한 이중제어스풀밸브 |
JP2009103304A (ja) * | 2007-10-22 | 2009-05-14 | Volvo Construction Equipment Ab | 建設機械用油圧制御弁 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3295551A (en) * | 1964-07-17 | 1967-01-03 | New York Air Brake Co | Valve |
US3952510A (en) * | 1975-06-06 | 1976-04-27 | Caterpillar Tractor Co. | Flow sensing and control apparatus |
JPS58217869A (ja) | 1982-06-08 | 1983-12-17 | Kayaba Ind Co Ltd | 合流制御弁 |
JPS5934076A (ja) | 1982-08-18 | 1984-02-24 | Kayaba Ind Co Ltd | 合流制御弁 |
JPH02248705A (ja) | 1989-03-22 | 1990-10-04 | Komatsu Ltd | 油圧回路 |
JP2767477B2 (ja) * | 1989-10-25 | 1998-06-18 | 株式会社ゼクセル | スタック型油圧制御弁装置 |
JPH06123123A (ja) | 1992-05-22 | 1994-05-06 | Hitachi Constr Mach Co Ltd | 油圧駆動装置 |
DE10004905C2 (de) | 2000-02-04 | 2002-10-24 | Orenstein & Koppel Ag | Verfahren und Vorrichtung zur Steuerung eines Hubzylinders insbesondere von Arbeitsmaschinen |
JP2001248603A (ja) * | 2000-03-06 | 2001-09-14 | Hitachi Constr Mach Co Ltd | 再生回路を有する方向制御弁 |
US6964163B2 (en) * | 2003-11-10 | 2005-11-15 | Sauer-Danfoss, Inc. | Dual check-relief valve |
JP2006283785A (ja) * | 2005-03-31 | 2006-10-19 | Nabtesco Corp | 油圧回路およびその弁装置 |
-
2010
- 2010-05-17 CN CN201080066460.4A patent/CN102869837B/zh active Active
- 2010-05-17 JP JP2013511087A patent/JP5680189B2/ja not_active Expired - Fee Related
- 2010-05-17 WO PCT/KR2010/003095 patent/WO2011145754A1/ko active Application Filing
- 2010-05-17 KR KR1020127025424A patent/KR101737901B1/ko active IP Right Grant
- 2010-05-17 US US13/641,318 patent/US9261114B2/en not_active Expired - Fee Related
- 2010-05-17 EP EP10851801.0A patent/EP2573282B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06137304A (ja) * | 1992-10-29 | 1994-05-17 | Hitachi Constr Mach Co Ltd | 油圧制御弁装置 |
JPH07110007A (ja) * | 1993-10-12 | 1995-04-25 | Kato Works Co Ltd | 建設車両の油圧駆動装置 |
KR100814499B1 (ko) * | 2007-04-02 | 2008-03-18 | 주식회사 파카한일유압 | 무한궤도형 굴삭기의 주행 직진 기능 개선을 위한 이중제어스풀밸브 |
JP2009103304A (ja) * | 2007-10-22 | 2009-05-14 | Volvo Construction Equipment Ab | 建設機械用油圧制御弁 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150159678A1 (en) * | 2012-07-19 | 2015-06-11 | Volvo Construction Equipment Ab | Flow control valve for construction machinery |
EP2876306A4 (en) * | 2012-07-19 | 2016-05-25 | Volvo Constr Equip Ab | FLOW LIMIT VALVE FOR CONSTRUCTION MACHINERY |
US9810244B2 (en) * | 2012-07-19 | 2017-11-07 | Volvo Construction Equipment Ab | Flow control valve for construction machinery |
Also Published As
Publication number | Publication date |
---|---|
US9261114B2 (en) | 2016-02-16 |
CN102869837B (zh) | 2016-03-16 |
CN102869837A (zh) | 2013-01-09 |
EP2573282B1 (en) | 2015-09-09 |
KR20130103303A (ko) | 2013-09-23 |
JP5680189B2 (ja) | 2015-03-04 |
KR101737901B1 (ko) | 2017-05-19 |
US20130032233A1 (en) | 2013-02-07 |
JP2013527399A (ja) | 2013-06-27 |
EP2573282A4 (en) | 2014-04-16 |
EP2573282A1 (en) | 2013-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011145754A1 (ko) | 건설기계용 유압제어밸브 | |
WO2012070703A1 (ko) | 건설기계용 유량 제어밸브 | |
WO2014014146A1 (ko) | 건설기계용 유량 컨트롤밸브 | |
WO2014112668A1 (ko) | 건설기계의 유량 제어장치 및 제어방법 | |
WO2013002429A1 (ko) | 건설기계용 유압제어밸브 | |
WO2011145759A1 (ko) | 건설기계용 더블 체크밸브 | |
WO2015064782A1 (ko) | 플로트 기능을 구비한 건설장비용 유압장치 | |
WO2016043365A1 (ko) | 건설기계용 유압회로 | |
WO2013100458A1 (ko) | 건설기계의 붐 실린더 제어회로 | |
WO2012121427A1 (ko) | 파이프 레이어용 유압회로 | |
WO2014123251A1 (ko) | 건설기계의 압력 제어밸브 | |
WO2015111775A1 (ko) | 건설기계용 재생유량 제어장치 및 그 제어방법 | |
WO2014208828A1 (ko) | 플로팅기능을 갖는 건설기계용 유압회로 및 플로팅기능 제어방법 | |
WO2016111391A1 (ko) | 건설기계용 유량 컨트롤밸브 | |
WO2012002589A1 (ko) | 건설기계의 유압펌프 제어장치 | |
WO2014098284A1 (ko) | 플로팅 기능이 구비된 건설기계 | |
WO2013062156A1 (ko) | 액츄에이터 충격 감소시스템이 구비된 하이브리드 굴삭기 | |
WO2013022131A1 (ko) | 건설기계의 유압 제어시스템 | |
WO2016072535A1 (ko) | 건설기계용 주행직진장치 및 그 제어방법 | |
WO2011145755A1 (ko) | 건설기계의 유압제어밸브 | |
WO2016175352A1 (ko) | 건설기계의 유량 제어장치 및 제어방법 | |
WO2015023010A1 (ko) | 건설기계용 유량 제어밸브 | |
WO2021215772A1 (ko) | 오일 세정 기능을 구비한 액츄에이터의 건전성 진단모듈 | |
WO2020045706A1 (en) | Hydraulic circuit for construction equipment | |
WO2016108300A1 (ko) | 건설기계용 제어밸브 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080066460.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10851801 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 20127025424 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010851801 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013511087 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13641318 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |