[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011067982A1 - 活物質粒子およびその利用 - Google Patents

活物質粒子およびその利用 Download PDF

Info

Publication number
WO2011067982A1
WO2011067982A1 PCT/JP2010/067691 JP2010067691W WO2011067982A1 WO 2011067982 A1 WO2011067982 A1 WO 2011067982A1 JP 2010067691 W JP2010067691 W JP 2010067691W WO 2011067982 A1 WO2011067982 A1 WO 2011067982A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material particles
particles
transition metal
lithium
Prior art date
Application number
PCT/JP2010/067691
Other languages
English (en)
French (fr)
Inventor
裕喜 永井
森田 昌宏
建作 森
心 今泉
研二 池内
大迫 敏行
広将 戸屋
Original Assignee
トヨタ自動車株式会社
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 住友金属鉱山株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020157020743A priority Critical patent/KR101668974B1/ko
Priority to CN201080051688.6A priority patent/CN102612772B/zh
Priority to EP10834435.9A priority patent/EP2509142B1/en
Priority to US13/513,209 priority patent/US20120282525A1/en
Priority to CA2781658A priority patent/CA2781658C/en
Publication of WO2011067982A1 publication Critical patent/WO2011067982A1/ja
Priority to US13/618,526 priority patent/US8486564B2/en
Priority to US13/941,253 priority patent/US9391318B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • C01G53/006
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • C01G53/44Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an active material particle for a lithium secondary battery, a method for producing the same, and a lithium secondary battery including the active material particle.
  • a lithium secondary battery that includes positive and negative electrodes having a material (active material) capable of reversibly occluding and releasing lithium (Li), and charging and discharging as lithium ions move between the electrodes.
  • a material active material
  • Such a lithium secondary battery is increasingly important as a power source for mounting on a vehicle or a personal computer or a portable terminal.
  • a lithium ion battery that is lightweight and obtains a high energy density is expected to be preferably used as a high-output power source mounted on a vehicle.
  • a typical example of an active material used for an electrode (typically a positive electrode) of a lithium secondary battery is a composite oxide containing lithium and a transition metal element.
  • a lithium composite oxide nickel-containing lithium composite oxide
  • Ni nickel
  • Patent Documents 1 to 4 are listed as technical documents related to the active material of the lithium secondary battery.
  • lithium secondary batteries are supposed to be used in a mode in which high-rate discharge (rapid discharge) is repeated.
  • a lithium ion battery used as a power source for a vehicle for example, a lithium ion battery mounted on a hybrid vehicle that uses a lithium ion battery and another power source having different operating principles such as an internal combustion engine as a power source
  • a conventional general lithium ion battery shows relatively high durability against a charge / discharge cycle at a low rate, performance deterioration (internal) It has been known that the resistance is likely to increase).
  • Patent Document 1 describes a technique for forming a positive electrode or a negative electrode of a lithium secondary battery from an active material having a porous hollow structure. According to the active material of such a porous hollow structure, the contact area with the electrolyte is increased, the movement of lithium ions is facilitated, and the distortion due to the volume expansion of the active material accompanying the insertion of lithium is suppressed. It is said that a high-capacity and long-life lithium battery capable of rapid charging can be obtained. Further, Patent Documents 2 to 4 disclose composite oxide particles (lithium cobalt composite oxide particles or spinel type) that are hollow spherical secondary particles in which primary particles are aggregated and have a large number of gaps leading to the inside thereof. It is described that by using lithium manganese composite oxide particles) as a positive electrode active material, the contact area with the non-aqueous electrolyte can be increased to improve the utilization rate of the positive electrode active material.
  • composite oxide particles lithium cobalt composite oxide particles or spinel type
  • the active material particles having a porous structure tend to be particularly susceptible to performance deterioration with respect to the high-rate charge / discharge cycle as described above. For this reason, compared with a lithium secondary battery using active material particles having a dense structure, an effect of reducing reaction resistance (an advantageous effect for increasing the output of the battery) can be obtained at the start of use of the battery. However, it is unsuitable as an active material for a lithium secondary battery for a vehicle power source or the like because performance is deteriorated when high-rate charge / discharge is repeated.
  • the present invention is an active material particle for a lithium secondary battery, which exhibits performance suitable for increasing the output of the battery and is an active material with little deterioration due to a charge / discharge cycle (particularly, a charge / discharge cycle with high-rate discharge).
  • One object is to provide material particles.
  • Another object of the present invention is to provide a method for producing such active material particles.
  • Another object of the present invention is to provide a lithium secondary battery using active material particles.
  • active material particles for a lithium secondary battery have a hollow structure having secondary particles in which a plurality of primary particles of a lithium transition metal oxide are aggregated and a hollow portion formed inside the secondary particles.
  • the secondary particle has a through-hole penetrating from the outside to the hollow portion.
  • the active material particles have a BET specific surface area of about 0.5 to 1.9 m 2 / g.
  • the active material particles having a hollow shape having a through-hole (perforated hollow structure) and satisfying the BET specific surface area are used for an electrode (typically a positive electrode) of a lithium secondary battery, and have higher performance. It is possible to provide a battery that stably exhibits.
  • a lithium secondary battery having a low internal resistance (in other words, good output characteristics) and a small increase in internal resistance can be constructed by a charge / discharge cycle (particularly, a charge / discharge cycle including discharge at a high rate). . If the BET specific surface area of the active material particles is too small, the effect of improving battery performance (for example, the effect of reducing internal resistance) tends to be reduced.
  • the specific surface area is too large, the effect of suppressing deterioration due to the charge / discharge cycle may tend to decrease.
  • improvement of high rate characteristics for example, suppression of resistance increase due to high rate cycle such as high rate cycle test described later, improvement of high rate discharge performance, etc. At least one of them
  • prevention of wear deterioration for example, at least one of suppression of resistance increase with respect to a durability cycle such as a durability test to be described later, improvement of capacity retention rate, etc.
  • lithium secondary battery refers to a secondary battery that uses lithium ions as electrolyte ions and is charged / discharged by the movement of charges accompanying the lithium ions between the positive and negative electrodes.
  • a battery generally referred to as a lithium ion battery is a typical example included in the lithium secondary battery in this specification.
  • the opening width of the through holes is an average of 0.01 ⁇ m or more.
  • the opening width of the through-hole refers to a passing length in the narrowest portion of the path through which the through-hole penetrates the secondary particle from the outside of the active material particle and reaches the hollow portion.
  • the opening width of the through hole (hereinafter sometimes referred to as “opening size”) is in an appropriate range, so that the electrolyte easily enters the hollow portion from the outside through the through hole. . Therefore, in the lithium secondary battery including the active material particles, the battery performance improvement effect (for example, the effect of reducing the internal resistance) due to the perforated hollow structure can be appropriately exhibited.
  • the average value of the opening sizes is, for example, for at least 10 active material particles, grasping the opening size of some or all of the through holes of the active material particles, It can be obtained by calculating the arithmetic average value.
  • the average hardness of the active material particles is approximately 0.5 MPa or more.
  • the average hardness of the active material particles refers to a value obtained by dynamic hardness measurement performed using a flat diamond indenter having a diameter of 50 ⁇ m and under a load speed of 0.5 mN / second to 3 mN / second.
  • the active material particles having a perforated hollow structure and high average hardness are used for an electrode (typically a positive electrode) of a lithium secondary battery, It can provide a battery that stably exhibits higher performance.
  • a lithium secondary battery having a low internal resistance (in other words, good output characteristics) and having a small increase in resistance even by a charge / discharge cycle (particularly, a charge / discharge cycle including discharge at a high rate) can be constructed.
  • the number of the through holes is preferably about 1 to 20 on average per particle of the active material particles.
  • the lithium secondary battery including the active material particles has an effect of improving battery performance (for example, internal resistance) by having a perforated hollow structure.
  • the desired average hardness can be easily ensured while properly exhibiting the effect of reducing the above. Therefore, good battery performance can be exhibited more stably (for example, while suppressing deterioration due to charge / discharge cycles).
  • the value of the said average through-hole number is obtained by grasping
  • the average particle diameter of the active material particles is preferably in the range of about 3 ⁇ m to 10 ⁇ m. Moreover, it is preferable that the average opening size of the said through-hole is 1/2 or less of the average particle diameter of an active material particle. Since the active material particles having such a structure have the above average opening size in an appropriate range, it is desirable that the battery performance improvement effect (for example, the effect of reducing internal resistance) due to having a perforated hollow structure is appropriately exerted. The average hardness can be easily ensured. Therefore, good battery performance can be exhibited more stably.
  • the primary particles constituting the perforated hollow secondary particles are sintered together. According to such active material particles, a desired average hardness can be easily ensured. Therefore, good battery performance can be exhibited more stably.
  • the primary particles constituting the secondary particles are densely sintered so that there is substantially no gap at the grain boundaries of the primary particles except for the through-hole portions. It is preferable that it is tied.
  • SEM scanning microscope
  • the cross section of the active material particle is substantially at the grain boundary of the primary particle except for the through hole portion. Active material particles in which no gap is observed are preferred. According to such active material particles, a lithium secondary battery that stably exhibits better high-rate characteristics can be constructed.
  • the lithium transition metal oxide is preferably a compound having a layered structure containing nickel as a constituent element (hereinafter also referred to as “Ni-containing Li oxide”). According to the active material particles having such a composition, a higher performance lithium secondary battery can be constructed.
  • a compound having a layered structure containing nickel, cobalt and manganese as constituent elements (hereinafter also referred to as “LiNiCoMn oxide”) can be preferably employed.
  • a lithium secondary battery using any one of the active material particles disclosed herein.
  • a lithium secondary battery typically includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. And at least one (preferably positive electrode) of the positive electrode and the negative electrode is a hollow active material-containing electrode having any of the active material particles disclosed herein.
  • the lithium secondary battery having such a configuration can have a low internal resistance and a small increase in resistance even by a charge / discharge cycle (particularly, a charge / discharge cycle including discharge at a high rate).
  • the lithium secondary battery provided with the active material particles disclosed herein can be excellent in output characteristics and durability, it is used as a lithium secondary battery mounted on a vehicle (for example, used as a driving power source of the vehicle). It is suitable as a lithium secondary battery. For example, it can be suitably used as a power source for a motor (electric motor) of a vehicle such as an automobile in the form of an assembled battery in which a plurality of lithium secondary batteries are connected in series. Therefore, according to the present invention, there is provided a vehicle including a lithium secondary battery having any of the active material particles disclosed herein (can be active material particles manufactured by any of the methods disclosed herein). Provided.
  • the active material particles have secondary particles in which a plurality of primary particles of a lithium transition metal oxide are aggregated, and hollow portions formed inside the secondary particles.
  • the secondary particle has a through-hole penetrating from the outside to the hollow portion.
  • the active material particles can be suitably used as a constituent material of a nonaqueous secondary battery (typically a lithium ion battery) such as a lithium secondary battery.
  • the active material particle manufacturing method includes a step of supplying ammonium ions to an aqueous solution (typically an aqueous solution) of a transition metal compound to precipitate the transition metal hydroxide particles from the aqueous solution (raw material hydroxide).
  • the aqueous solution contains at least one of transition metal elements constituting the lithium transition metal oxide.
  • the manufacturing method also includes a step (mixing step) of preparing an unfired mixture by mixing the transition metal hydroxide and the lithium compound. Furthermore, it includes a step of baking the mixture to obtain the active material particles (firing step).
  • the raw material hydroxide generation step includes a step (nucleation step) of depositing the transition metal hydroxide from the aqueous solution at a pH of 12 or more and an ammonium ion concentration of 25 g / L or less, and the deposited transition metal water.
  • a step of growing the oxide at a pH of less than 12 and an ammonium ion concentration of 3 g / L or more (particle growth step).
  • the active material particles having a perforated hollow structure can be appropriately manufactured.
  • This production method can be suitably employed, for example, as a method for producing any of the active material particles disclosed herein.
  • the firing step is preferably performed so that the maximum firing temperature is 800 ° C. to 1100 ° C.
  • the active material particle which has desired average hardness can be manufactured suitably.
  • This firing step is preferably performed so that, for example, secondary particles that do not substantially have a gap at the grain boundaries of the primary particles are formed in portions other than the hollow portion and the through hole.
  • the firing step includes a first firing step in which the mixture is fired at a temperature T1 of 700 ° C. or more and 900 ° C. or less, and a result of the first firing step. And a second firing stage in which the product is fired at a temperature T2 that is 800 ° C. or more and 1100 ° C. or less and higher than the firing temperature T1 in the first firing stage.
  • a method for producing an electrode for a lithium secondary battery having a configuration in which an electrode mixture layer is held on a sheet-like current collector includes a step of preparing an electrode mixture composition including any active material particle disclosed herein and a solvent in which the active material particle is dispersed. Moreover, the process of providing the said electrode compound-material composition to a electrical power collector is included. Moreover, after drying the provided composition, it includes a step of forming an electrode mixture layer by pressing.
  • the active material particles disclosed herein may have a strength that can withstand the press while having a perforated hollow structure. According to such active material particles, a perforated hollow structure suitable for improving battery performance is better maintained in an electrode (preferably a positive electrode) manufactured by the above method and a lithium secondary battery constructed using the electrode. obtain. Therefore, a higher performance lithium secondary battery can be provided.
  • a lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte
  • the positive electrode has secondary particles in which primary particles of a lithium transition metal oxide are aggregated and a hollow portion formed inside thereof, and the secondary particles have through holes penetrating from the outside to the hollow portion.
  • the resistance increase rate is 3 times or less (preferably 2 times or less, more preferably 1.2 times or less);
  • the rate of increase in low-temperature ( ⁇ 30 ° C.) reaction resistance is 2 times or less (preferably 1.1 times or less, more preferably 1.05 times).
  • the capacity retention rate is 90% or more;
  • a low temperature ( ⁇ 30 ° C.) initial reaction resistance measured under the conditions described in the experimental examples described below is 3 ⁇ or less (preferably 2 ⁇ or less);
  • the active material particles having a perforated hollow structure any of the active material particles disclosed herein can be preferably used.
  • a battery satisfying at least (1) is preferable, and a battery satisfying at least (1) and (2) is more preferable.
  • FIG. 1 is a partial cross-sectional view schematically showing a configuration of a cylindrical lithium secondary battery according to an embodiment.
  • FIG. 2 is a partial cross-sectional view schematically showing the configuration of the prismatic lithium secondary battery according to one embodiment.
  • 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a partial cross-sectional view schematically showing the configuration of the assembled battery according to the embodiment.
  • FIG. 5 is a surface SEM image showing an example of active material particles having a perforated hollow structure.
  • FIG. 6 is a cross-sectional SEM image showing an example of active material particles having a perforated hollow structure.
  • FIG. 7 is a side view schematically showing a vehicle (automobile) equipped with a lithium secondary battery.
  • the active material particles disclosed herein can be applied to various lithium secondary batteries configured such that the particles can function as electrode active materials.
  • Application to a lithium secondary battery including a liquid non-aqueous electrolyte (that is, a non-aqueous electrolyte) is particularly preferable.
  • the active material particles can be used as a positive electrode active material or a negative electrode active material in combination with a counter electrode active material. Among these, utilization as a positive electrode active material is more preferable.
  • the present invention will be described more specifically by taking as an example a case where the present invention is mainly applied to a positive electrode active material of a lithium secondary battery (typically, a lithium ion battery), but is not intended to limit the scope of the present invention.
  • a lithium secondary battery typically, a lithium ion battery
  • the material of the active material particles disclosed herein may be various lithium transition metal oxides capable of reversibly occluding and releasing lithium.
  • it may be a lithium transition metal oxide having a layered structure or a lithium transition metal oxide having a spinel structure used for a positive electrode of a general lithium secondary battery.
  • the lithium transition metal oxide having a layered structure include oxides containing at least nickel as the transition metal (nickel-containing lithium composite oxide), oxides containing at least cobalt, and oxides containing at least manganese.
  • Ni-containing Li oxide nickel-containing lithium composite oxide
  • Such Ni-containing Li oxide may contain one or more metal elements other than Li and Ni (that is, transition metal elements other than lithium and nickel and / or typical metal elements).
  • metal elements other than Li and Ni that is, transition metal elements other than lithium and nickel and / or typical metal elements.
  • metal elements other than Li and Ni that is, transition metal elements other than lithium and nickel and / or typical metal elements.
  • the main component of the transition metal element is Ni, or Ni containing, as a transition metal element, Ni and one or more other transition metal elements (for example, Co and Mn) at approximately the same ratio Li oxide is preferred.
  • M 1 is selected from Al, Cr, Fe, V, Mg, Ti, Zr, Nb, Mo, Ta, W, Cu, Zn, Ga, In, Sn, La, and Ce. It may be one or more selected from the group consisting of: m may be a number that satisfies 0 ⁇ m ⁇ 0.2. p may be a number that satisfies 0.1 ⁇ p ⁇ 0.9.
  • q may be a number that satisfies 0 ⁇ q ⁇ 0.5.
  • r may be a number that satisfies 0 ⁇ r ⁇ 0.5.
  • s may be a number that satisfies 0 ⁇ s ⁇ 0.02.
  • p + q + r + s 1.
  • 0 ⁇ s ⁇ p. s may be substantially 0 (that is, an oxide that does not substantially contain M 1 ).
  • Ni-containing Li oxide is an oxide containing at least Co and Mn (LiNiCoMn oxide).
  • a LiNiCoMn oxide satisfying 0 ⁇ q ⁇ 0.5 and 0 ⁇ r ⁇ 0.5 in the above formula (I) is preferable.
  • the first element (the element contained most in terms of the number of atoms) of Ni, Co, and Mn may be any of Ni, Co, and Mn. In a preferred embodiment, the first element is Ni. In another preferred embodiment, the contents of Ni, Co and Mn are approximately the same in terms of the number of atoms.
  • the active material particle disclosed here has a hollow structure having secondary particles and a hollow portion formed inside thereof, and a through-hole penetrating from the outside to the hollow portion is formed in the secondary particle. It is a perforated hollow active material particle.
  • the secondary particles have a form in which primary particles of the lithium transition metal oxide (preferably an oxide having a layered structure, for example, a layered Ni-containing Li oxide) are aggregated.
  • the average hardness of the active material particles is approximately 5 MPa or more.
  • the average hardness of the active material particles refers to a value obtained by dynamic hardness measurement performed using a flat diamond indenter having a diameter of 50 ⁇ m and under a load speed of 0.5 mN / second to 3 mN / second.
  • the arithmetic average value of the result obtained by performing the said measurement about at least 10 active material particle can be employ
  • the battery manufacturing process for example, adjustment of the electrode mixture composition described later, pressing of the electrode mixture layer, conveyance of the electrode sheet
  • the structure of the active material particles collapses due to the stress that can be applied in the case of winding, etc., and the stress that can be applied by the volume change of the electrode mixture layer accompanying the charging and discharging of the battery (compressive force), etc.
  • the desired effect may not be exhibited.
  • the phenomenon in which the structure of the active material particles collapses due to the stress applied due to the charge / discharge can be a cause of the deterioration of the battery using the active material particles having the conventional porous structure due to the charge / discharge cycle.
  • a battery which may be a battery used in the form of an assembled battery arranged in a plurality in the lateral direction
  • the stress caused by the charge / discharge can have a particularly great influence on the deterioration of the battery.
  • the active material particles having a preferred average hardness disclosed herein the battery performance improvement effect (for example, the effect of reducing internal resistance) due to the perforated hollow structure is satisfactorily exhibited, and the maintainability of the effect is maintained.
  • a lithium secondary battery excellent in (durability) can be constructed.
  • the number of through holes of the secondary particles is preferably about 20 or less (for example, 1 to 20) as an average per particle of the active material particles, and is about 1 to 10 (for example, 1). Is more preferable.
  • An active material particle having such a perforated hollow structure having an average number of through-holes is an active material particle having a conventional porous structure (that is, a structure having a large number of pores), for example, a porous hollow having a porous outer shell. Particles and porous particles formed entirely in a porous form (sponge-like) are clearly distinguished from each other in terms of structure.
  • the active material particles having a preferred average number of through-holes disclosed herein the effect of improving battery performance (for example, the inside) by having a perforated hollow structure while ensuring the strength of secondary particles (and thus of active material particles) The effect of reducing resistance) can be exhibited satisfactorily and stably.
  • the through hole is preferably formed so as to connect the outside of the active material particle and the hollow portion through a relatively short path.
  • 50% by number or more (more preferably 70% by number or more, for example, 80% by number or more, or 90% by number) of the through holes appearing in the cross section of the active material particles may be used.
  • the outer shell of the active material particle a portion that partitions the outer portion and the hollow portion
  • Such a path-shaped through-hole is preferable because the flow resistance is small and the electrolyte easily enters and exits the hollow portion through the through-hole.
  • the number of through-holes having a path shape extending substantially vertically through the outer shell of the active material particles to reach the hollow portion is 50 number% or more (more preferably 75 number% or more, for example, 90 number% or more). Active material particles having an average of 1 to 20 (for example, 1 to 10) such through-holes per particle are preferred.
  • the through-hole has, on average, a passing length (that is, an opening size) of about 0.01 ⁇ m or more even at the narrowest portion.
  • the average opening size is preferably about 0.02 ⁇ m or more, and more preferably about 0.05 ⁇ m or more.
  • the average opening size is preferably about 1 ⁇ 2 or less of the average particle diameter of the active material particles, more preferably about 3 or less (for example, about 1 ⁇ 4 or less). In addition, regardless of the average particle diameter of the active material particles, it is preferable that the average opening size of the through holes does not exceed about 2.5 ⁇ m. Such an average opening size is particularly suitable for active material particles having an average number of through-holes of about 1 to 20 (preferably about 1 to 10).
  • the characteristic values such as the average number of through-holes, the path shape of the through-holes, and the average opening size can be grasped by, for example, observing the cross section of the active material particles with an SEM.
  • SEM scanning electron microscope
  • a sample obtained by solidifying active material particles or a material containing the active material particles with an appropriate resin preferably a thermosetting resin
  • an appropriate resin preferably a thermosetting resin
  • SEM observation is performed while cutting the cut surface little by little. Good.
  • the orientation (posture) of the active material particles is generally random in the sample, the SEM observation results on a single cross section or a relatively small number of cross sections of about 2 to 10 points are statistically calculated.
  • the characteristic value can also be calculated by processing.
  • the primary particles constituting the secondary particles are sintered together.
  • Such active material particles can have high shape-maintaining properties (being difficult to collapse; for example, it can be reflected in high average hardness, high compressive strength, etc.). Therefore, according to such active material particles, good battery performance can be more stably exhibited.
  • the primary particles constituting the secondary particles are densely sintered except the through-hole portion.
  • active material particles are preferable because they can be particularly highly shape-retaining.
  • the particles in which the primary particles are densely sintered as described above (typically, at least dense enough not to pass a general electrolyte for non-aqueous batteries), the particles The location where the electrolyte can flow between the outside and the hollow portion is limited to the location where there is a through hole. This can be one factor in which the active material particles disclosed herein exert the effect of improving the high-rate cycle characteristics of the lithium secondary battery.
  • the electrolyte is squeezed out from the electrode body (particularly the positive electrode mixture layer) due to the expansion and contraction of the active material that accompanies charging / discharging. For example, the output performance may be reduced.
  • the active material particles having the above-described configuration the electrolyte solution in the hollow portion is prevented from flowing out in the portion other than the through hole, and therefore, an event that the electrolyte solution is insufficient in the positive electrode mixture layer can be prevented or reduced. Thereby, the resistance rise in the high rate cycle can be suppressed.
  • active material particles having an average number of through-holes per particle of about 1 to 20 (preferably 1 to 10).
  • the active material particles disclosed herein preferably have a BET specific surface area in the range of about 0.5 to 1.9 m 2 / g.
  • the specific surface area is too small, the effect of improving the battery performance tends to be reduced in the lithium secondary battery including the active material particles.
  • the effect of improving reaction resistance tends to be reduced.
  • the specific surface area is too smaller than the above range, the degree of deterioration due to charge / discharge cycles (particularly, charge / discharge cycles including discharge at a high rate) tends to increase.
  • the perforated hollow active material particles having a BET specific surface area in the range of 1.2 to 1.9 m 2 / g, a lithium secondary battery exhibiting better battery performance can be constructed.
  • the rate of increase in resistance due to the high-rate cycle is low, the initial reaction resistance (particularly, the initial reaction resistance at low temperatures) is low, the reaction resistance is unlikely to rise even after a charge / discharge cycle, and the capacity retention rate for the charge / discharge cycle
  • the effect of at least one of being high can be realized.
  • a value of the specific surface area a measured value by a general nitrogen adsorption method can be adopted.
  • the average particle diameter of the active material particles is preferably about 2 ⁇ m or more (for example, about 2 ⁇ m to 25 ⁇ m). If the average particle size is too small, the volume of the hollow part is small, so the effect of improving the battery performance tends to be reduced, and when trying to secure the volume of the hollow part, the outer shell of the active material particle becomes thin and the strength of the active material particle May be easily reduced. More preferably, the average particle size is about 3 ⁇ m or more. From the viewpoint of the productivity of the active material particles, the average particle size is preferably about 25 ⁇ m or less, more preferably about 15 ⁇ m or less (for example, about 10 ⁇ m or less).
  • the average particle diameter of the active material particles is about 3 ⁇ m to 10 ⁇ m.
  • a measurement value (median diameter (D50: 50% volume average particle diameter)) by a general laser diffraction particle size distribution measurement can be adopted.
  • the active material particles disclosed herein may have a TAP density in the range of about 0.7 to 2.5 g / cm 3 . Active material particles having a TAP density of about 1 to 2 g / cm 3 are preferred. According to such active material particles, a lithium secondary battery exhibiting better high-rate cycle characteristics can be constructed. In addition, as a value of TAP density, the value measured based on JIS K5101 is employable.
  • any of the perforated hollow active material particles disclosed herein is, for example, at least one of transition metal elements contained in a lithium transition metal oxide constituting the active material particles (preferably contained in the oxide).
  • the transition metal hydroxide can be precipitated from an aqueous solution containing all of the metal elements other than lithium) under appropriate conditions, and the transition metal hydroxide and lithium compound can be mixed and fired.
  • one embodiment of the method for producing active material particles will be described in detail by taking, as an example, the case of producing perforated hollow active material particles made of a layered LiNiCoMn oxide. It is not intended to be limited to perforated hollow active material particles.
  • the method for producing active material particles disclosed herein includes a step of supplying ammonium ions (NH 4 + ) to an aqueous solution of a transition metal compound and precipitating transition metal hydroxide particles from the aqueous solution (raw material hydroxylation).
  • Product generation step The solvent (aqueous solvent) constituting the aqueous solution is typically water, and may be a mixed solvent containing water as a main component.
  • an organic solvent such as a lower alcohol
  • the aqueous solution of the transition metal compound constitutes the lithium transition metal oxide according to the composition of the lithium transition metal oxide constituting the active material particles as the production object. It contains at least one (preferably all) transition metal elements (here, Ni, Co and Mn).
  • a transition metal solution containing one or more compounds that can supply Ni ions, Co ions, and Mn ions in an aqueous solvent is used.
  • the metal ion source compounds sulfates, nitrates, chlorides and the like of the metals can be appropriately employed.
  • a transition metal solution having a composition in which nickel sulfate, cobalt sulfate and manganese sulfate are dissolved in an aqueous solvent (preferably water) can be preferably used.
  • the NH 4 + may be supplied to the transition metal solution in the form of an aqueous solution (typically an aqueous solution) containing NH 4 + , for example, and supplied by directly blowing ammonia gas into the transition metal solution. These supply methods may be used in combination.
  • An aqueous solution containing NH 4 + can be prepared, for example, by dissolving a compound (ammonium hydroxide, ammonium nitrate, ammonia gas, or the like) that can be an NH 4 + source in an aqueous solvent.
  • NH 4 + is supplied in the form of an aqueous ammonium hydroxide solution (ie, aqueous ammonia).
  • the raw material hydroxide generation step has a pH of 12 or more (typically pH 12 or more and 14 or less, such as pH 12.2 or more and 13 or less) and an NH 4 + concentration of 25 g / L or less (typically 3 to 25 g / L).
  • a step (nucleation step) of depositing a transition metal hydroxide from the transition metal solution under conditions may be included.
  • the pH and NH 4 + concentration can be adjusted by appropriately balancing the usage amounts of the ammonia water and the alkali agent (a compound having an action of tilting the liquid property to alkalinity).
  • the alkaline agent for example, sodium hydroxide, potassium hydroxide and the like can be typically used in the form of an aqueous solution. In this embodiment, an aqueous sodium hydroxide solution is used.
  • the value of pH shall mean pH value on the basis of liquid temperature of 25 degreeC.
  • the transition metal hydroxide nuclei (typically particulate) precipitated in the nucleation stage are further reduced to a pH of less than 12 (typically pH 10 or more and less than 12, preferably pH 10).
  • the step of growth may be included at a pH of 11.8 or less (for example, pH 11 or more and 11.8 or less) and an NH 4 + concentration of 3 g / L or more (typically 3 to 25 g / L).
  • the pH of the particle growth stage is 0.1 or more (typically 0.3 or more, preferably 0.5 or more, for example, about 0.5 to 1.5) lower than the pH of the nucleation stage. It is appropriate to do.
  • the pH and NH 4 + concentration can be adjusted in the same manner as in the nucleation stage.
  • This particle growth stage is performed so as to satisfy the pH and NH 4 + concentration, and preferably at the pH, the NH 4 + concentration is 15 g / L or less (eg, 1 to 15 g / L, typically 3 to 15 g / L), more preferably 10 g / L or less (for example, 1 to 10 g / L, typically 3 to 10 g / L), so that transition metal hydroxides (here, Ni, Co and The deposition rate of the composite hydroxide containing Mn is increased, and the raw material hydroxide particles suitable for the formation of any of the perforated hollow active material particles disclosed herein (in other words, the firing of the perforated hollow structure) Raw material hydroxide particles) that are easy to form.
  • transition metal hydroxides here, Ni, Co and The deposition rate of the composite hydroxide containing Mn is increased, and the raw material hydroxide particles suitable for the formation of any of
  • the NH 4 + concentration may be 7 g / L or less (for example, 1 to 7 g / L, more preferably 3 to 7 g / L).
  • NH 4 + concentration in the particle growth step for example, may be a substantially the same level as NH 4 + concentration in the nucleation stage may be lower than NH 4 + concentration in the nucleation stage.
  • the precipitation rate of the transition metal hydroxide is, for example, the transition metal ions contained in the liquid phase of the reaction liquid with respect to the total number of moles of transition metal ions contained in the transition metal solution supplied to the reaction liquid. It can be grasped by examining the transition of the total number of moles (total ion concentration).
  • the temperature of the reaction solution is preferably controlled so as to be a substantially constant temperature (eg, a predetermined temperature ⁇ 1 ° C.) in a range of about 30 ° C. to 60 ° C.
  • the temperature of the reaction solution may be approximately the same in the nucleation stage and the particle growth stage.
  • the total number of moles (total ion concentration) of Ni ions, Co ions and Mn ions contained in the reaction solution is set to, for example, about 0.5 to 2.5 mol / L through the nucleation stage and the particle growth stage.
  • the transition metal solution may be replenished (typically continuously supplied) in accordance with the deposition rate of the transition metal hydroxide so that the total ion concentration is maintained.
  • the amounts of Ni ions, Co ions, and Mn ions contained in the reaction solution correspond to the composition of the active material particles as the target product (that is, the molar ratio of Ni, Co, and Mn in the LiNiCoMn oxide constituting the active material particles). It is preferable to set the quantity ratio.
  • the transition metal hydroxide particles thus generated are separated from the reaction solution, washed and dried. Then, the transition metal hydroxide particles and the lithium compound are mixed at a desired quantitative ratio to prepare an unfired mixture (mixing step).
  • the quantitative ratio corresponding to the composition of the active material particles as the target that is, the molar ratio of Li, Ni, Co, Mn in the LiNiCoMn oxide constituting the active material particles
  • Li compound and transition metal hydroxide particles are mixed.
  • the lithium compound Li compounds that can be dissolved by heating and become oxides, such as lithium carbonate and lithium hydroxide, can be preferably used.
  • the mixture is fired to obtain active material particles (firing step).
  • This firing step is typically performed in an oxidizing atmosphere (for example, in the air).
  • the firing temperature in this firing step can be, for example, 700 ° C. to 1100 ° C.
  • the maximum baking temperature is 800 ° C. or higher (preferably 800 ° C. to 1100 ° C., for example, 800 ° C. to 1050 ° C.). According to the maximum firing temperature within this range, the sintering reaction of the primary particles of the lithium transition metal oxide (preferably Ni-containing Li oxide, here LiNiCoMn oxide) can proceed appropriately.
  • the lithium transition metal oxide preferably Ni-containing Li oxide, here LiNiCoMn oxide
  • the mixture is calcined at a temperature T1 of 700 ° C. to 900 ° C. (that is, 700 ° C. ⁇ T1 ⁇ 900 ° C., for example, 700 ° C. ⁇ T1 ⁇ 800 ° C., typically 700 ° C. ⁇ T1 ⁇ 800 ° C.).
  • a second firing step, and a result obtained through the first firing step is fired at a temperature T2 of 800 ° C. to 1100 ° C. (that is, 800 ° C. ⁇ T2 ⁇ 1100 ° C., for example, 800 ° C. ⁇ T2 ⁇ 1050 ° C.) And a firing step.
  • T1 and T2 are preferably set so that T1 ⁇ T2.
  • the first firing stage and the second firing stage are performed continuously (for example, by holding the mixture at the first firing temperature T1, and subsequently raising the temperature to the second firing temperature T2 and maintaining the temperature at T2. Or after holding at the first firing temperature T1, it is once cooled (for example, cooled to room temperature) and subjected to crushing and sieving as necessary before being subjected to the second firing stage. Good.
  • the first firing stage is a temperature T1 in which the sintering reaction of the target lithium transition metal oxide proceeds and is lower than the melting point and lower than the second firing stage. It can be grasped as a stage for firing.
  • the second firing stage should be understood as a stage in which the sintering reaction of the target lithium transition metal oxide proceeds and the firing is performed at a temperature T2 that is lower than the melting point and higher than the first firing stage. Can do. It is preferable to provide a temperature difference of 50 ° C. or higher (typically 100 ° C. or higher, for example, 150 ° C. or higher) between T1 and T2.
  • the technology disclosed herein is characterized by using the active material particles having the above-described perforated hollow structure as the positive electrode active material. Therefore, as long as the object of the present invention can be realized, the material and shape of the other battery components are not particularly limited, and the same as a conventional lithium secondary battery (typically a lithium ion battery) should be used. Can do.
  • a positive electrode mixture containing the positive electrode active material as a main component that is, a component occupying 50% by mass or more, typically a component occupying 75% by mass or more
  • a lithium secondary battery including the positive electrode is characterized by using the active material particles having the above-described perforated hollow structure as the positive electrode active material. Therefore, as long as the object of the present invention can be realized, the material and shape of the other battery components are not particularly limited, and the same as a conventional lithium secondary battery (typically a lithium ion battery) should be used. Can do.
  • a positive electrode mixture containing the positive electrode active material as a main component that is,
  • a conductive metal material such as aluminum can be preferably employed as in the conventional general lithium secondary battery.
  • the shape of the positive electrode current collector can be different depending on the shape of the battery constructed using the positive electrode, and is not particularly limited. For example, various shapes such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape It can be.
  • the technology disclosed herein includes a positive electrode for a lithium secondary battery in which a positive electrode mixture layer is provided on a sheet-shaped or foil-shaped current collector, and a lithium secondary battery including the positive electrode as a constituent element It can be preferably applied to.
  • an electrode body (rolled electrode body) formed by winding a sheet-like positive electrode and a negative electrode together with a sheet-like separator is typically a suitable non-aqueous electrolyte (typically May be a battery having a configuration housed in an outer case together with a liquid electrolyte (that is, an electrolytic solution).
  • the outer shape of the battery is not particularly limited, and may be, for example, a rectangular parallelepiped shape, a flat shape, a cylindrical shape, or the like.
  • the positive electrode mixture may contain an optional component such as a conductive material and a binder (binder) in addition to the active material particles having a perforated hollow structure disclosed herein.
  • a conductive material the thing similar to the electrically conductive material used for the positive electrode of a common lithium secondary battery, etc. can be employ
  • the conductive material include carbon materials such as carbon powder and carbon fiber, and conductive metal powder such as nickel powder.
  • One kind selected from such conductive materials may be used alone, or two or more kinds may be used in combination.
  • the carbon powder various carbon blacks (for example, acetylene black, furnace black, ketjen black), graphite powder, and the like can be used. Of these, acetylene black and / or furnace black can be preferably employed.
  • the proportion of the positive electrode active material in the total positive electrode mixture is preferably about 50% by mass or more (typically 50 to 95% by mass), and usually about 70 to 95% by mass (eg, 75 to 90% by mass). ) Is more preferable.
  • the ratio of the conductive material in the whole positive electrode mixture can be, for example, about 2 to 20% by mass, and is usually preferably about 2 to 15% by mass.
  • the ratio of the binder to the whole positive electrode mixture can be, for example, about 1 to 10% by mass, and usually about 2 to 5% by mass.
  • the technique disclosed here is an aspect in which active material particles having a perforated hollow structure and other particulate or non-particulate active material (for example, active material particles having a general dense structure) are used in combination.
  • active material particles having a perforated hollow structure and other particulate or non-particulate active material for example, active material particles having a general dense structure
  • the technique disclosed here is an aspect in which active material particles having a perforated hollow structure and other particulate or non-particulate active material (for example, active material particles having a general dense structure) are used in combination.
  • active material particles having a perforated hollow structure can be implemented.
  • the active material particles having the perforated hollow structure can be implemented.
  • the active material particles having the perforated hollow structure can be implemented.
  • the active material particles having the perforated hollow structure can be implemented.
  • the active material particles having the perforated hollow structure can be implemented.
  • the active material particles having the perforated hollow structure can be implemented.
  • the perforated hollow active material particles More preferably, 75% by mass or more (for example, 90% by mass or more) of the entire active material is the perforated hollow active material particles. In a preferred embodiment, substantially all of the active material material provided in one electrode (typically the positive electrode) is the above-described perforated hollow active material particles.
  • the operation for forming the positive electrode mixture layer on the positive electrode current collector is, for example, a positive electrode mixture composition in which the positive electrode active material and other optional components (conductive material, binder, etc.) are dispersed in an appropriate solvent.
  • the composition typically a paste or slurry composition
  • the solvent any of an aqueous solvent and a non-aqueous solvent can be used.
  • a preferred example of the non-aqueous solvent is N-methyl-2-pyrrolidone (NMP).
  • cellulose-based polymers such as carboxymethyl cellulose (CMC) and hydroxypropylmethyl cellulose (HPMC); polyvinyl alcohol (PVA); polytetrafluoroethylene (PTFE), tetrafluoroethylene -Fluororesin such as hexafluoropropylene copolymer (FEP); vinyl acetate copolymer; rubber such as styrene butadiene rubber (SBR) and acrylic acid modified SBR resin (SBR latex); A dispersible polymer can be preferably employed.
  • CMC carboxymethyl cellulose
  • HPMC hydroxypropylmethyl cellulose
  • PVA polyvinyl alcohol
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene -Fluororesin
  • FEP hexafluoropropylene copolymer
  • SBR styrene butadiene rubber
  • SBR latex acrylic acid modified SBR resin
  • polymers such as polyvinylidene fluoride (PVDF) and polyvinylidene chloride (PVDC) can be preferably used.
  • PVDF polyvinylidene fluoride
  • PVDC polyvinylidene chloride
  • the polymer material illustrated above may be used for the purpose of exhibiting functions as a thickener and other additives of the composition in addition to the function as a binder.
  • the operation of applying the positive electrode mixture composition to the sheet-like current collector can be suitably performed using a conventionally known appropriate coating apparatus (slit coater, die coater, comma coater, gravure coater, etc.).
  • Appropriate amount of the positive electrode mixture composition is applied to a predetermined range of at least one side (typically both sides) of the current collector, dried, and then pressed in the thickness direction as necessary to achieve the desired properties.
  • the sheet-like positive electrode (positive electrode sheet) is obtained.
  • a conventionally known roll pressing method, flat plate pressing method, or the like can be appropriately employed.
  • FIG. 1 shows a schematic configuration of the lithium ion battery according to the present embodiment.
  • the lithium ion battery 10 has a configuration in which an electrode body 11 including a positive electrode 12 and a negative electrode 14 is housed in a battery case 15 having a shape capable of housing the electrode body together with a non-aqueous electrolyte (not shown).
  • the battery case 15 includes a bottomed cylindrical case body 152 and a lid 154 that closes the opening.
  • the lid 154 and the case main body 152 are both made of metal and insulated from each other, and are electrically connected to the positive and negative current collectors 122 and 142, respectively. That is, in the lithium ion battery 10, the lid 154 also serves as a positive terminal and the case body 152 serves as a negative terminal.
  • the electrode body 11 includes a positive electrode (positive electrode sheet) 12 in which a positive electrode mixture layer 124 including any positive electrode active material disclosed herein is provided on a long sheet-like positive electrode current collector 122, and a long sheet A negative electrode (negative electrode sheet) 14 having a negative electrode mixture layer 144 on a negative electrode current collector (eg, copper foil) 142 is overlapped with two long sheet-like separators 13, and these are wound into a cylindrical shape. It is formed by doing.
  • a positive electrode (positive electrode sheet) 12 in which a positive electrode mixture layer 124 including any positive electrode active material disclosed herein is provided on a long sheet-like positive electrode current collector 122, and a long sheet A negative electrode (negative electrode sheet) 14 having a negative electrode mixture layer 144 on a negative electrode current collector (eg, copper foil) 142 is overlapped with two long sheet-like separators 13, and these are wound into a cylindrical shape. It is formed by doing.
  • the negative electrode active material constituting the negative electrode mixture layer 144 one or two or more materials conventionally used for lithium ion batteries can be used without any particular limitation.
  • a particulate carbon material (carbon particles) including a graphite structure (layered structure) at least partially is mentioned. Any carbon material of a so-called graphitic material (graphite), a non-graphitizable carbonaceous material (hard carbon), an easily graphitizable carbonaceous material (soft carbon), or a combination of these materials is preferred.
  • graphite particles such as natural graphite can be preferably used.
  • Such a negative electrode active material is typically composed of a binder (similar to the positive electrode-side composite material layer, etc.) and a conductive material used as necessary (positive electrode-side composite material layer and
  • the negative electrode composite composition formed by mixing with the negative electrode current collector 142 is applied to the negative electrode current collector 142 and dried, whereby the negative electrode composite material layer is formed on a desired portion of the current collector 142. 144 can be formed.
  • the ratio of the negative electrode active material to the whole negative electrode mixture can be about 80% by mass or more (for example, 80 to 99% by mass), and about 90% by mass or more (for example, 90 to 99% by mass). %, More preferably 95 to 99% by mass).
  • the ratio of the binder to the whole negative electrode mixture can be, for example, about 0.5 to 10% by mass, and usually about 1 to 5% by mass is preferable.
  • the separator 13 that is used while being superimposed on the positive and negative electrode sheets 12 and 14 the same material as that of a conventional lithium ion battery can be used.
  • a porous resin sheet (film) made of a polyolefin resin such as polyethylene or polypropylene can be preferably used.
  • the positive and negative electrode sheets 12, 14 are formed by superimposing both composite material layers 124, 144, and the composite material layer non-forming portion of both electrode sheets is one end and the other along the longitudinal direction of the separator 13. The positions are slightly shifted in the width direction so as to protrude from the end portions.
  • the cover 154 and the case main body 152 are connected to the protruding portion.
  • the same non-aqueous electrolytic solution conventionally used for lithium ion batteries can be used without particular limitation.
  • a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent.
  • the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), 1,2-dimethoxyethane, 1,2 -One or more selected from the group consisting of diethoxyethane, tetrahydrofuran, 1,3-dioxolane and the like can be used.
  • Examples of the supporting salt (supporting electrolyte) include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2). )
  • a lithium salt such as 3 can be used.
  • the lithium ion battery 20 includes a flat rectangular container 21 (typically made of metal and may be made of resin).
  • a wound electrode body 30 is accommodated in the container 21.
  • the electrode body 30 of this embodiment includes a positive electrode sheet 32, a negative electrode sheet 34, and two separators 33 made of the same material as in the first embodiment.
  • the separators 33 are overlapped and wound so as to protrude from one end and the other end along the longitudinal direction of the separator 33, and the rolled body is pressed from the side direction to be ablated to match the shape of the container 21. It is formed in a flat shape.
  • the positive electrode terminal 24 and the negative electrode terminal 26 for external connection are electrically connected to the electrode sheets 32 and 34.
  • the portions protruding from the separator 33 in the positive electrode mixture layer non-forming portions of the electrode sheets 32 and 34 are gathered together in the radial direction of the wound electrode body 30, respectively. It can be suitably performed by connecting (for example, welding) the negative electrode terminals 26 respectively.
  • the electrode body 30 to which the terminals 24 and 26 are connected is accommodated in the container 21, and after supplying a suitable non-aqueous electrolyte (the same one as in the first embodiment can be used) into the container 21, the container 21 is By sealing, the lithium ion battery 20 according to the present embodiment is constructed.
  • FIG. 4 shows a schematic configuration of the assembled battery according to the present embodiment.
  • This assembled battery 60 is constructed using a plurality of batteries 20 according to the second embodiment (typically 10 or more, preferably about 10 to 30, for example, 20). These batteries (unit cells) 20 are accommodated in the wide surface of the container 21 (that is, in the container 21) while being inverted one by one so that the positive terminals 24 and the negative terminals 26 are alternately arranged.
  • the surface corresponding to the flat surface of the wound electrode body 30) is arranged in the facing direction.
  • a cooling plate 61 having a predetermined shape is disposed in close contact with the wide surface of the container 21 between the arranged unit cells 20 and both outsides in the unit cell arrangement direction (stacking direction).
  • the cooling plate 61 functions as a heat radiating member for efficiently dissipating heat generated in each unit cell during use, and introduces a cooling fluid (typically air) between the unit cells 20. It has a possible shape (for example, a shape in which a plurality of parallel grooves extending vertically from one side of the rectangular cooling plate 61 to the opposite side are provided on the surface).
  • a cooling plate 61 made of metal having good thermal conductivity or lightweight and hard polypropylene or other synthetic resin is suitable.
  • a pair of end plates 68 are disposed on the outer side of the cooling plate 61 arranged on both outsides of the unit cells 20 and the cooling plates 61 (hereinafter collectively referred to as “single cell group”). , 69 are arranged. In this way, the entire cell cell group and end plates 68 and 69 arranged in the stacking direction of the cell 20 (hereinafter also referred to as “constrained body”) bridge between the end plates 68 and 69.
  • the attached restraining band 71 for fastening is restrained by a prescribed restraining pressure P in the stacking direction of the restrained body (that is, the lateral direction with respect to the axis of the wound electrode body 30).
  • a prescribed restraining pressure P is applied in the stacking direction (for example, the surface pressure that the wide surface of the container 21 receives).
  • the restraint pressure P is restrained so that the restraint pressure P is about 0.1 MPa to 10 MPa.
  • one positive terminal 24 and the other negative terminal 26 are electrically connected by a connector 67.
  • the assembled battery 60 of the desired voltage is constructed
  • NiCoMn composite hydroxide was crystallized (nucleation stage).
  • the composite hydroxide particles were heat-treated at 150 ° C. for 12 hours in an air atmosphere.
  • Li 2 CO 3 as the lithium source and the composite hydroxide particles are combined into the number of moles of lithium (M Li ) and the total number of moles of Ni, Co and Mn constituting the composite hydroxide (M Me ).
  • the mixture (M Li : M Me ) was 1.15: 1.
  • This mixture was fired at 760 ° C. for 4 hours (first firing stage), and then fired at 950 ° C. for 10 hours (second firing stage). Thereafter, the fired product was crushed and sieved. In this manner, an active material particle sample having a composition represented by Li 1.15 Ni 0.33 Co 0.33 Mn 0.33 O 2 was obtained.
  • the pH in the nucleation stage is varied between 12 and 13, and the particle growth stage
  • the active material particles of Samples 1 to 12 having the average particle diameter (D 50 ) and the BET specific surface area shown in Table 1 were prepared by varying the NH 4 + concentration in the sample between 3 and 10 g / L.
  • Lithium nitrate, nickel nitrate, cobalt nitrate, and manganese nitrate have a Li: Ni: Co; Mn molar ratio of 1.15: 0.33: 0.33: 0.33, and the total molar concentration of these metal elements is 1. It was dissolved in water so as to be 5 mol / L to prepare a mixed aqueous solution. The mixed aqueous solution mist was introduced into a 700 ° C. heating furnace and thermally decomposed to obtain composite oxide particles having a composition represented by Li 1.15 Ni 0.33 Co 0.33 Mn 0.33 O 2 (spray pyrolysis method). .
  • Samples 13 and 14 were heated (annealed) at 950 ° C. for 10 hours to obtain active material particles of Samples 13 and 14 having the average particle diameter, specific surface area and average hardness shown in Table 1. Samples 13 and 14 were produced by making the average droplet diameter of the mist different from each other.
  • the average particle diameter and specific surface area were measured in the same manner as in samples 1 to 12. Moreover, the external appearance of these samples was observed with the said scanning electron microscope. As a result, it was confirmed that any sample had a porous structure in which a large number of pores exist on the particle surface. Further, when the average hardness of these active material particle samples was measured by the above method, it was confirmed that all of them were in the range of 0.05 MPa to 0.1 MPa.
  • a mixed aqueous solution was prepared by dissolving in water. This mixed aqueous solution, 25% NaOH aqueous solution, and 25% aqueous ammonia are supplied into the reaction vessel at a constant rate at which the average residence time of NiCoMn composite hydroxide particles precipitated in the reaction vessel is 10 hours. In addition, the reaction solution was controlled to have a pH of 12.0 and an NH 4 + concentration of 15 g / L, and was continuously crystallized.
  • NiCoMn composite hydroxide was obtained from the overflow pipe.
  • a product (product) was continuously collected, washed with water and dried.
  • composite hydroxide particles having a composition represented by Ni 0.33 Co 0.33 Mn 0.33 (OH) 2 + ⁇ (where ⁇ is 0 ⁇ ⁇ ⁇ 0.5) were obtained. .
  • the composite hydroxide particles were heat-treated at 150 ° C. for 12 hours in an air atmosphere.
  • Li 2 CO 3 as the lithium source and the composite hydroxide particles are combined into the number of moles of lithium (M Li ) and the total number of moles of Ni, Co and Mn constituting the composite hydroxide (M Me ).
  • the mixture (M Li : M Me ) was 1.15: 1.
  • This mixture was calcined at 760 ° C. for 4 hours and then at 950 ° C. for 10 hours. Thereafter, the fired product was crushed and sieved. In this manner, an active material particle sample having a composition represented by Li 1.15 Ni 0.33 Co 0.33 Mn 0.33 O 2 was obtained.
  • the active material particles of samples 15 to 21 having the average particle diameter (D 50 ) and BET specific surface area shown in Table 1 are prepared by adjusting conditions such as residence time and pH. did.
  • the average particle diameter and specific surface area were measured in the same manner as in Samples 1 to 12.
  • the external appearance of these samples was observed with the said scanning electron microscope. As a result, it was confirmed that any sample had a dense structure. Further, when the average hardness of these active material particle samples was measured by the above method, it was confirmed that all of them were in the range of 5 MPa to 30 MPa.
  • ⁇ Preparation of positive electrode sheet> The active material particle sample obtained above, acetylene black as a conductive material, and PVDF are such that the mass ratio of these materials is 85: 10: 5 and the solid content concentration (NV) is about 50 mass%.
  • a positive electrode mixture composition corresponding to each active material particle sample was prepared by mixing with NMP.
  • positive electrode mixture compositions were applied on both sides of a 15 ⁇ m-thick long aluminum foil (current collector).
  • the coating amount (based on solid content) of the composition was adjusted to be about 12.8 mg / cm 2 on both sides.
  • roll pressing was performed to obtain a sheet-like positive electrode (positive electrode sheet) having a positive electrode mixture layer on both surfaces of the current collector.
  • the total thickness of the positive electrode sheet was about 70 ⁇ m. In this way, a total of 21 types of positive electrode sheets corresponding to each active material particle sample were produced.
  • the positive electrode sheet was cut in the thickness direction, the cut surface was polished by a cross section polishing method using an argon ion beam, and the cross-section was observed with the scanning electron microscope. From the observation results, the average opening size of the through holes in each sample was determined. The results are shown in Table 1. Further, the average number of through-holes obtained from the above observation results was 1 to 10 per particle for any of Samples 1 to 12. In this cross-sectional observation, in any sample, 50% by number or more of the through-holes can be connected to the outside of the active material particles through the through-holes in a straight line and the secondary particles from the outside. It was confirmed that the hollow portion penetrated almost vertically. Further, in any sample, it was confirmed that the primary particles constituting the secondary particles were densely sintered in places other than the hollow portion and the through hole. As an example, a cross-sectional SEM image of Sample 8 is shown in FIG.
  • Natural graphite particles, SBR, and CMC are mixed with ion-exchanged water so that the mass ratio of these materials is 98: 1: 1 and NV is 45% by mass to obtain an aqueous active material composition (negative electrode composite).
  • a material composition was prepared. This composition was applied to both sides of a long copper foil (negative electrode current collector) having a thickness of about 10 ⁇ m and dried, followed by roll pressing. Thus, the sheet-like negative electrode (negative electrode sheet) which has a negative mix layer on both surfaces of a collector was produced. The total thickness of the negative electrode sheet was about 50 ⁇ m.
  • Each positive electrode sheet and negative electrode sheet produced above were laminated together with two long separators (here, a porous polyethylene sheet having a thickness of 20 ⁇ m was used), and the laminated sheet was wound in the longitudinal direction. Thus, a wound electrode body was produced.
  • This electrode body was housed in an outer case together with a non-aqueous electrolyte to construct a 18650 type lithium ion battery.
  • a non-aqueous electrolyte a composition in which LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent containing EC, DMC, and EMC at a volume ratio of 3: 3: 4 was used.
  • each battery constructed as described above is charged with a constant current of 3 hours at a charge rate of 1/10 C, and further charged with a constant current of up to 4.1 V at a charge rate of 1/3 C.
  • the initial charge / discharge treatment was repeated 2 to 3 times with a constant current discharge to 3.0 V at a discharge rate of 21 to obtain 21 types of lithium ion batteries corresponding to each active material particle sample.
  • the rated capacity of these batteries is 300 mAh.
  • each battery was adjusted to SOC 60% again, and a high rate cycle test was repeated at 10,000 at a charge / discharge cycle consisting of the following (I) to (VI) at 25 ° C. Meanwhile, an operation of adjusting the SOC to 60% was performed every 100 cycles.
  • (I) Discharge for 10 seconds at a constant current of 20 C (6 A in this case).
  • (II). Pause for 5 seconds.
  • (III) Charge for 40 seconds at a constant current of 5C.
  • IV Pause for 5 seconds.
  • the IV resistance after the high rate cycle was measured in the same manner as the initial IV resistance. Then, by dividing the IV resistance value after the high rate cycle by the initial IV resistance value, the resistance increase rate (times) by the high rate cycle test was calculated.
  • each battery produced above was charged at a constant current of 1 C up to 4.1 V under a temperature condition of 25 ° C., and then charged at a constant voltage until the total charging time was 2 hours.
  • the battery after such CC-CV charging is held at 25 ° C. for 24 hours, and then discharged at 25 ° C. with a constant current of 1 C from 4.1 V to 3.0 V, and then until the total discharge time reaches 2 hours.
  • the battery was discharged with voltage, and the discharge capacity (initial capacity) at this time was measured.
  • the battery after the initial capacity measurement was subjected to the above durability cycle test.
  • the batteries using Samples 6 to 12 had low initial reaction resistance values at a low temperature ( ⁇ 30 ° C.) of 2 ⁇ or less, and were excellent in output performance (particularly, output performance at low temperatures). Furthermore, as can be seen from the data on the rate of increase in the low-temperature reaction resistance, the batteries using the active material particles of Samples 1 to 12 have an extremely high durability because the rate of increase in the low-temperature reaction resistance in the durability test is 5% or less. Showed performance. In addition, the capacity retention rate in the durability test was as good as 90% or more.
  • the active material particles having a porous structure (samples 13 and 14) and the active material particles having a dense structure (samples 15 to 21) all have a resistance increase rate of 3 times or more due to the high-rate cycle and lack durability. It was a thing.
  • the active material particles having a porous structure had an effect of reducing the initial low-temperature reaction resistance as compared with the active material particles having a dense structure, it was confirmed that the durability of the effect was lacking. That is, in the batteries using the active material particles of Samples 13 and 14, the low-temperature reaction resistance increased by a factor of two or more by the durability test. Furthermore, the batteries according to Samples 13 and 14 each had a capacity retention rate of less than 80%.
  • the lithium secondary battery provided by the technology disclosed herein exhibits excellent performance as described above, it can be used as a lithium secondary battery for various applications.
  • it can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile.
  • Such lithium secondary batteries may be used in the form of an assembled battery formed by connecting a plurality of them in series and / or in parallel. Therefore, according to the technology disclosed herein, as schematically shown in FIG. 7, a vehicle (typically an automobile, in particular, a vehicle including such a lithium secondary battery (which may be in the form of an assembled battery) 20 as a power source.
  • a vehicle including an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle) 1 may be provided.
  • Electrode body 12 Positive electrode (positive electrode sheet) 13 Separator 14 Negative electrode (negative electrode sheet) 122 positive electrode current collector 124 positive electrode composite material layer 142 negative electrode current collector 144 negative electrode composite material layer 20 lithium ion battery (single cell) 24 positive electrode terminal 26 negative electrode terminal 30 electrode body 32 positive electrode sheet 33 separator 34 negative electrode sheet 60 assembled battery 61 cooling plate 67 connector 68, 69 end plate 71 restraint band

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 リチウム二次電池の高出力化に適した性能を示し、且つ充放電サイクルによる劣化の少ない活物質粒子を提供する。本発明により提供される活物質粒子は、リチウム遷移金属酸化物の一次粒子が複数集合した二次粒子と、その内側に形成された中空部とを有する中空構造であって、上記二次粒子には、外部から上記中空部まで貫通する貫通孔が形成されている。この活物質粒子のBET比表面積は0.5~1.9m/gである。

Description

活物質粒子およびその利用
 本発明は、リチウム二次電池用の活物質粒子とその製造方法、ならびに該活物質粒子を備えるリチウム二次電池に関する。
 本出願は、2009年12月2日に出願された日本国特許出願2009-274381号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 リチウム(Li)を可逆的に吸蔵および放出し得る材料(活物質)を有する正負の電極を備え、それら電極の間をリチウムイオンが行き来することによって充電および放電するリチウム二次電池が知られている。かかるリチウム二次電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として、その重要性がますます高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン電池は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。
 リチウム二次電池の電極(典型的には正極)に用いられる活物質の代表例として、リチウムと遷移金属元素とを含む複合酸化物が挙げられる。例えば、上記遷移金属元素として少なくともニッケル(Ni)を含むリチウム複合酸化物(ニッケル含有リチウム複合酸化物)であって層状構造を有するものが好ましく用いられる。リチウム二次電池の活物質に関する技術文献として特許文献1~4が挙げられる。
日本国特許出願公開平8-321300号公報 日本国特許出願公開平10-74516号公報 日本国特許出願公開平10-83816号公報 日本国特許出願公開平10-74517号公報
 ところで、リチウム二次電池の用途のなかには、ハイレートでの放電(急速放電)を繰り返す態様で使用されることが想定されるものがある。車両の動力源として用いられるリチウムイオン電池(例えば、動力源としてリチウムイオン電池と内燃機関等のように作動原理の異なる他の動力源とを併用するハイブリッド車両に搭載されるリチウムイオン電池)は、このような使用態様が想定されるリチウム二次電池の代表例である。しかし、従来の一般的なリチウムイオン電池は、ローレートでの充放電サイクルに対しては比較的高い耐久性を示すものであっても、ハイレート放電を伴う充放電サイクルに対しては性能劣化(内部抵抗の上昇等)を起こしやすいことが知られていた。
 特許文献1には、リチウム二次電池の正極または負極を多孔質中空構造の活物質から構成する技術が記載されている。かかる多孔質中空構造の活物質によると、電解液との接触面積が大きくなってリチウムイオンの移動が容易になり、またリチウムの挿入に伴う活物質の体積膨張による歪みが抑えられること等から、急速充電が可能で高容量・長寿命のリチウム電池が得られるとされている。また、特許文献2~4には、一次粒子が集合した中空球形の二次粒子であってその表面に内部に通じる多数の隙間が存在する複合酸化物粒子(リチウムコバルト複合酸化物粒子またはスピネル型リチウムマンガン複合酸化物粒子)を正極活物質として用いることにより、非水電解液との接触面積を大きくして正極活物質の利用率を向上させ得ることが記載されている。
 しかしながら、このような多孔質構造の活物質粒子を用いても、実際にリチウム二次電池を作製すると、予期したような電池性能向上効果が得られない場合があった。また、従来の多孔質構造の活物質粒子は、上述のようなハイレート充放電サイクルに対して、殊に性能劣化を起こしやすい傾向にあった。このため、一般的な緻密構造の活物質粒子を用いてなるリチウム二次電池に比べて、電池の使用開始時点では反応抵抗を低減する効果(電池の高出力化にとって有利な効果)が得られても、ハイレート充放電を繰り返すとむしろ性能が悪くなってしまう等、車両電源用等のリチウム二次電池の活物質としては不向きなものであった。
 そこで本発明は、リチウム二次電池用の活物質粒子であって、該電池の高出力化に適した性能を示し且つ充放電サイクル(特に、ハイレート放電を伴う充放電サイクル)による劣化の少ない活物質粒子を提供することを一つの目的とする。本発明の他の一つの目的は、かかる活物質粒子の製造方法を提供することである。本発明の他の一つの目的は、活物質粒子を用いてなるリチウム二次電池の提供である。
 本発明によると、リチウム二次電池用の活物質粒子が提供される。その活物質粒子は、リチウム遷移金属酸化物の一次粒子が複数集合した二次粒子と、その内側に形成された中空部とを有する中空構造を呈する。前記二次粒子には、外部から前記中空部まで貫通する貫通孔が形成されている。前記活物質粒子のBET比表面積は凡そ0.5~1.9m/gである。
 このように貫通孔を有する中空形状(孔開き中空構造)であって上記BET比表面積を満たす活物質粒子は、リチウム二次電池の電極(典型的には正極)に用いられて、より高い性能を安定して発揮する電池を与えるものであり得る。例えば、内部抵抗が低く(換言すれば、出力特性が良く)、且つ充放電サイクル(特に、ハイレートでの放電を含む充放電サイクル)によっても内部抵抗の上昇の少ないリチウム二次電池が構築され得る。活物質粒子のBET比表面積が小さすぎると、電池性能を向上させる効果(例えば、内部抵抗を低減する効果)が少なくなりがちである。一方、比表面積が大きすぎると、充放電サイクルによる劣化を抑える効果が低下傾向となることがあり得る。ここに開示される好ましい比表面積を満たす孔開き中空活物質粒子によると、ハイレート特性の向上(例えば、後述するハイレートサイクル試験のようなハイレートサイクルによる抵抗上昇の抑制、ハイレート放電性能の向上、等のうちの少なくとも一つ)と磨耗劣化の防止(例えば、後述する耐久性試験のような耐久サイクルに対する抵抗上昇の抑制、容量維持率の向上、等のうち少なくとも一つ)とが同時に実現され得る。
 なお、本明細書において「リチウム二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。一般にリチウムイオン電池と称される電池は、本明細書におけるリチウム二次電池に包含される典型例である。
 ここに開示される活物質粒子の好ましい一態様では、前記貫通孔の開口幅が平均0.01μm以上である。ここで、貫通孔の開口幅とは、該貫通孔が活物質粒子の外部から二次粒子を貫通して中空部に至る経路のなかで最も狭い部分における差渡し長さをいう。かかる構造の活物質粒子によると、上記貫通孔の開口幅(以下、「開口サイズ」ということもある。)が適切な範囲にあるので、この貫通孔を通して外部から中空部に電解液が入り込みやすい。したがって、該活物質粒子を備えるリチウム二次電池において、孔開き中空構造を有することによる電池性能向上効果(例えば、内部抵抗を低減する効果)を適切に発揮することができる。なお、上記開口サイズの平均値(平均開口サイズ)は、例えば、少なくとも10個の活物質粒子について、該活物質粒子の有する貫通孔の一部個数または全個数の開口サイズを把握し、それらの算術平均値を求めることにより得ることができる。
 ここに開示される活物質粒子の他の好ましい一態様では、該活物質粒子の平均硬度が概ね0.5MPa以上である。ここで、活物質粒子の平均硬度とは、直径50μmの平面ダイヤモンド圧子を使用して負荷速度0.5mN/秒~3mN/秒の条件で行われるダイナミック硬度測定により得られる値をいう。このように、孔開き中空構造であって且つ平均硬度の高い(換言すれば、形状維持性の高い)活物質粒子は、リチウム二次電池の電極(典型的には正極)に用いられて、より高い性能を安定して発揮する電池を与えるものであり得る。例えば、内部抵抗が低く(換言すれば、出力特性が良く)、且つ充放電サイクル(特に、ハイレートでの放電を含む充放電サイクル)によっても抵抗の上昇の少ないリチウム二次電池が構築され得る。
 前記貫通孔の数は、前記活物質粒子の一粒子当たり、平均1~20個程度であることが好ましい。かかる構造の活物質粒子によると、貫通孔の数が適切な範囲にあるので、該活物質粒子を備えるリチウム二次電池において、孔開き中空構造を有することによる電池性能向上効果(例えば、内部抵抗を低減する効果)を適切に発揮しつつ、所望の平均硬度を容易に確保することができる。したがって、良好な電池性能をより安定して(例えば、充放電サイクルによる劣化を抑えて)発揮することができる。なお、上記平均貫通孔数の値は、例えば、少なくとも10個の活物質粒子について一粒子当たりの貫通孔数を把握し、それらの算術平均値を求めることにより得られる。
 上記活物質粒子の平均粒径としては、凡そ3μm~10μm程度の範囲が好ましい。また、上記貫通孔の平均開口サイズは、活物質粒子の平均粒径の1/2以下であることが好ましい。かかる構造の活物質粒子は、上記平均開口サイズが適切な範囲にあるので、孔開き中空構造を有することによる電池性能向上効果(例えば、内部抵抗を低減する効果)を適切に発揮しつつ、所望の平均硬度を容易に確保することができる。したがって、良好な電池性能をより安定して発揮することができる。
 ここに開示される活物質粒子の典型的な態様では、上記孔開き中空形状の二次粒子を構成する一次粒子が互いに焼結している。かかる活物質粒子によると、所望の平均硬度を容易に確保することができる。したがって、良好な電池性能をより安定して発揮することができる。例えば、二次粒子のうち中空部を囲む部分では、貫通孔の部分を除いて一次粒子の粒界に実質的に隙間が存在しないように、上記二次粒子を構成する一次粒子が緻密に焼結していることが好ましい。例えば、該活物質粒子の断面を、走査型顕微鏡(SEM)により、上記貫通孔の開口サイズを測定可能な拡大率で観察した場合において、貫通孔の部分以外では一次粒子の粒界に実質的に隙間が観察されない活物質粒子が好ましい。かかる活物質粒子によると、より良好なハイレート特性を安定して発揮するリチウム二次電池が構築され得る。
 前記リチウム遷移金属酸化物としては、ニッケルを構成元素として含む層状構造の化合物(以下、「Ni含有Li酸化物」ともいう。)が好ましい。かかる組成の活物質粒子によると、より高性能なリチウム二次電池が構築され得る。例えば、ニッケル、コバルトおよびマンガンを構成元素として含む層状構造の化合物(以下、「LiNiCoMn酸化物」ともいう。)を好ましく採用し得る。
 本発明によると、また、ここに開示されるいずれかの活物質粒子を用いてなるリチウム二次電池が提供される。かかるリチウム二次電池は、典型的には、正極と負極と非水電解液とを備える。そして、前記正極および負極のうち少なくとも一方(好ましくは正極)は、ここに開示されるいずれかの活物質粒子を有する中空活物質含有電極である。かかる構成のリチウム二次電池は、内部抵抗が低く、且つ充放電サイクル(特に、ハイレートでの放電を含む充放電サイクル)によっても抵抗の上昇の少ないものであり得る。
 ここに開示される活物質粒子を備えるリチウム二次電池は、出力特性およびその耐久性に優れたものとなり得ることから、車両に搭載されるリチウム二次電池(例えば、車両の駆動電源として用いられるリチウム二次電池)として好適である。例えば、上記リチウム二次電池の複数個を直列に接続した組電池の形態で、自動車等の車両のモータ(電動機)用の電源として好適に利用され得る。したがって本発明によると、ここに開示されるいずれかの活物質粒子(ここに開示されるいずれかの方法により製造された活物質粒子であり得る。)を有するリチウム二次電池を備えた車両が提供される。
 本発明によると、また、孔開き中空構造の活物質粒子を製造する方法が提供される。その活物質粒子は、リチウム遷移金属酸化物の一次粒子が複数集合した二次粒子と、その内側に形成された中空部とを有する。前記二次粒子には、外部から前記中空部まで貫通する貫通孔が形成されている。上記活物質粒子は、リチウム二次電池等の非水二次電池(典型的にはリチウムイオン電池)の構成材料として好適に使用され得る。上記活物質粒子製造方法は、遷移金属化合物の水性溶液(典型的には水溶液)にアンモニウムイオンを供給して、前記遷移金属水酸化物の粒子を前記水性溶液から析出させる工程(原料水酸化物生成工程)を含む。ここで、前記水性溶液は、前記リチウム遷移金属酸化物を構成する遷移金属元素の少なくとも一つを含む。上記製造方法は、また、前記遷移金属水酸化物とリチウム化合物とを混合して未焼成の混合物を調製する工程(混合工程)を含む。さらに、前記混合物を焼成して前記活物質粒子を得る工程(焼成工程)を含む。ここで、前記原料水酸化物生成工程は、pH12以上かつアンモニウムイオン濃度25g/L以下で前記水性溶液から前記遷移金属水酸化物を析出させる段階(核生成段階)と、その析出した遷移金属水酸化物をpH12未満かつアンモニウムイオン濃度3g/L以上で成長させる段階(粒子成長段階)とを含む。かかる製造方法によると、孔開き中空構造の活物質粒子を適切に製造することができる。この製造方法は、例えば、ここに開示されるいずれかの活物質粒子を製造する方法として好適に採用され得る。
 上記焼成工程は、最高焼成温度が800℃~1100℃となるように行うことが好ましい。このことによって、上記一次粒子を十分に焼結させることができるので、所望の平均硬度を有する活物質粒子が好適に製造され得る。この焼成工程は、例えば、中空部および貫通孔以外の部分では一次粒子の粒界に実質的に隙間が存在しない二次粒子が形成されるように行うことが好ましい。
 ここに開示される活物質粒子製造方法の好ましい一態様では、前記焼成工程が、前記混合物を700℃以上900℃以下の温度T1で焼成する第一焼成段階と、その第一焼成段階を経た結果物を800℃以上1100℃以下であって且つ前記第一焼成段階における焼成温度T1よりも高い温度T2で焼成する第二焼成段階とを含む。これら第一および第二の焼成段階を含む態様で上記混合物を焼成することにより、ここに開示される好ましい孔開き中空構造を有する活物質粒子が適切に製造され得る。
 本発明によると、また、シート状の集電体に電極合材層が保持された構成のリチウム二次電池用電極を製造する方法が提供される。その方法は、ここに開示されるいずれかの活物質粒子と該活物質粒子を分散させる溶媒とを含む電極合材組成物を用意する工程を含む。また、前記電極合材組成物を集電体に付与する工程を含む。また、前記付与された組成物を乾燥させた後、プレスして電極合材層を形成する工程を含む。ここに開示される活物質粒子は、孔開き中空構造でありながら、上記プレスに耐える強度を有するものであり得る。かかる活物質粒子によると、上記方法で製造された電極(好ましくは正極)および該電極を用いて構築されたリチウム二次電池において、電池性能の向上に適した孔開き中空構造がよりよく維持され得る。したがって、より高性能なリチウム二次電池が提供され得る。
 この明細書により開示される事項には以下のものが含まれる。
 正極と負極と非水電解液とを備えるリチウム二次電池であって、
 前記正極は、リチウム遷移金属酸化物の一次粒子が集合した二次粒子と、その内側に形成された中空部とを有し、前記二次粒子には外部から前記中空部まで貫通する貫通孔が形成されている孔開き中空構造の活物質粒子を有し、
 以下の特性:
(1)後述する実験例に記載の条件で行われるハイレートサイクル試験において、抵抗上昇率が3倍以下(好ましくは2倍以下、より好ましくは1.2倍以下)である;
(2)後述する実験例に記載の条件で行われる耐久サイクル試験において、低温(-30℃)反応抵抗の上昇率が2倍以下(好ましくは1.1倍以下、より好ましくは1.05倍以下、さらに好ましくは1.03倍以下)である;および、
(3)後述する実験例に記載の条件で行われる耐久サイクル試験において、容量維持率が90%以上である;
(4)後述する実験例に記載の条件で測定される低温(-30℃)初期反応抵抗が3Ω以下(好ましくは2Ω以下)である;
 のうち一または二以上を満たす、リチウム二次電池。
 上記孔開き中空構造の活物質粒子としては、ここに開示されるいずれかの活物質粒子を好ましく採用することができる。上記特性(1)~(4)のうち少なくとも(1)を満たす電池が好ましく、少なくとも(1)および(2)を満たす電池がより好ましい。
図1は、一実施形態に係る円筒型リチウム二次電池の構成を模式的に示す部分断面図である。 図2は、一実施形態に係る角型リチウム二次電池の構成を模式的に示す部分断面図である。 図3は、図2のIII-III線断面図である。 図4は、一実施形態に係る組電池の構成を模式的に示す部分断面図である。 図5は、孔開き中空構造を有する活物質粒子の一例を示す表面SEM像である。 図6は、孔開き中空構造を有する活物質粒子の一例を示す断面SEM像である。 図7は、リチウム二次電池を搭載した車両(自動車)を模式的に示す側面図である。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 ここに開示される活物質粒子は、該粒子が電極活物質として機能し得るように構成された各種のリチウム二次電池に適用され得る。液状の非水電解質(すなわち非水電解液)を備えたリチウム二次電池への適用が特に好ましい。上記活物質粒子は、対極の活物質との組み合わせによって、正極活物質としても負極活物質としても利用され得る。これらのうち、正極活物質としての利用がより好ましい。
 以下、主としてリチウム二次電池(典型的にはリチウムイオン電池)の正極活物質に適用する場合を例として本発明をより具体的に説明するが、本発明の範囲を限定する意図ではない。
 ここに開示される活物質粒子の材質は、リチウムを可逆的に吸蔵および放出可能な各種のリチウム遷移金属酸化物であり得る。例えば、一般的なリチウム二次電池の正極に用いられる層状構造のリチウム遷移金属酸化物、スピネル構造のリチウム遷移金属酸化物等であり得る。層状構造のリチウム遷移金属酸化物としては、上記遷移金属として少なくともニッケルを含む酸化物(ニッケル含有リチウム複合酸化物)、少なくともコバルトを含む酸化物、少なくともマンガンを含む酸化物等が例示される。
 層状構造のリチウム遷移金属酸化物の一好適例として、ニッケル含有リチウム複合酸化物(Ni含有Li酸化物)が挙げられる。かかるNi含有Li酸化物は、LiおよびNi以外に、他の一種または二種以上の金属元素(すなわち、リチウムおよびニッケル以外の遷移金属元素および/または典型金属元素)を含むものであり得る。例えば、LiおよびNi以外に、Al,Cr,Fe,V,Mg,Ti,Mo,Cu,Zn,Ga,In,Sn,LaおよびCeからなる群から選択される一種または二種以上を含むものであり得る。遷移金属元素のうちの主成分がNiであるか、あるいは遷移金属元素としてNiと他の一種または二種以上の遷移金属元素(例えばCoおよびMn)とを概ね同程度の割合で含有するNi含有Li酸化物が好ましい。
 ここに開示される活物質粒子の好ましい組成として、下記一般式(I):
   Li1+mNipCoqMnr s2    (I);
 で表される層状Ni含有Li酸化物が例示される。ここで、上記式(I)において、Mは、Al,Cr,Fe,V,Mg,Ti,Zr,Nb,Mo,Ta,W,Cu,Zn,Ga,In,Sn,LaおよびCeからなる群から選択される一種または二種以上であり得る。mは、0≦m≦0.2を満たす数であり得る。pは、0.1≦p≦0.9を満たす数であり得る。qは、0≦q≦0.5を満たす数であり得る。rは、0≦r≦0.5を満たす数であり得る。sは、0≦s≦0.02を満たす数であり得る。ここで、典型的にはp+q+r+s=1である。好ましい一態様では、0≦s<pである。sが実質的に0(すなわち、Mを実質的に含有しない酸化物)であってもよい。
 Ni含有Li酸化物の好適例として、少なくともCoおよびMnを含む酸化物(LiNiCoMn酸化物)が挙げられる。例えば、上記式(I)において0<q≦0.5かつ0<r≦0.5であるLiNiCoMn酸化物が好ましい。Ni,Co,Mnのうちの第一元素(原子数換算で最も多く含まれる元素)は、Ni,CoおよびMnのいずれであってもよい。好ましい一態様では、上記第一元素がNiである。好ましい他の一態様では、原子数換算で、Ni,CoおよびMnの含有量が概ね同程度である。
 ここに開示される活物質粒子は、二次粒子とその内側に形成された中空部とを有する中空構造であって、その二次粒子に外部から前記中空部まで貫通する貫通孔が形成された孔開き中空活物質粒子である。上記二次粒子は、上述のようなリチウム遷移金属酸化物(好ましくは層状構造の酸化物、例えば層状Ni含有Li酸化物)の一次粒子が集合した形態を有する。
 ここに開示される活物質粒子の好ましい一態様では、該活物質粒子の平均硬度が概ね5MPa以上である。ここで、活物質粒子の平均硬度とは、直径50μmの平面ダイヤモンド圧子を使用して負荷速度0.5mN/秒~3mN/秒の条件で行われるダイナミック硬度測定により得られる値をいう。上記平均硬度としては、少なくとも10個の活物質粒子について上記測定を行って得られた結果の算術平均値を好ましく採用することができる。かかる平均硬度を有する活物質粒子によると、より高い性能を安定して発揮するリチウム二次電池が構築され得る。
 活物質粒子の硬度(該粒子の圧縮強度としても把握され得る。)が不足すると、電池の製造過程(例えば、後述する電極合材組成物の調整、電極合材層のプレス、電極シートの搬送、捲回等の際)において加わり得る応力や、電池の充放電に伴って電極合材層が体積変化することで加わり得る応力(圧縮力)等によって該活物質粒子の構造が崩れてしまい、所望の効果が発揮されなくなることがあり得る。上記充放電に起因して加わる応力により活物質粒子の構造が崩れる事象は、従来の多孔質構造の活物質粒子を用いた電池が充放電サイクルにより劣化しやすいことの一因であり得る。シート状の電極が緊密に捲回(例えば、円筒状に捲回)された捲回電極体を備える電池や、その捲回軸に対して横方向に応力を加えて拘束した形態で使用される電池(上記横方向に複数個配列された組電池の形態で用いられる電池であり得る。)では、上記充放電に起因する応力が電池の劣化に対して特に大きな影響を及ぼし得る。ここに開示される好ましい平均硬度を有する活物質粒子によると、孔開き中空構造を有することによる電池性能向上効果(例えば、内部抵抗を低減する効果)を良好に発揮し、且つその効果の維持性(耐久性)に優れたリチウム二次電池が構築され得る。
 上記二次粒子の有する貫通孔の数は、該活物質粒子の一粒子当たりの平均として、凡そ20個以下(例えば1~20個)であることが好ましく、凡そ1~10個程度(例えば1~3個)であることがより好ましい。このような平均貫通孔数を有する孔開き中空構造の活物質粒子は、従来の多孔質構造(すなわち、多数の孔を有する構造)の活物質粒子、例えば多孔質の外殻を有する多孔質中空粒子や、粒子全体が多孔質状(スポンジ状)に形成された多孔質粒子とは、構造上、明らかに区別されるものである。
 上記平均貫通孔数が多すぎると、二次粒子が脆くなって、中空形状を維持し難くなることがある。ここに開示される好ましい平均貫通孔数の活物質粒子によると、二次粒子の(ひいては活物質粒子の)強度を確保しつつ、孔開き中空構造を有することによる電池性能向上効果(例えば、内部抵抗を低減する効果)を良好に、且つ安定して発揮することができる。
 上記貫通孔は、活物質粒子の外部と中空部とを比較的短い経路で連絡するように形成されていることが好ましい。好ましい一態様では、活物質粒子の断面に表れた貫通孔のうち50個数%以上(より好ましくは70個数%以上、例えば80個数%以上であり、90個数%であってもよい。)が、該貫通孔を通して活物質粒子の外部と中空部とを直線で結び得るように、活物質粒子の外殻(外部と中空部とを仕切る箇所)を貫通している。このような経路形状の貫通孔は、流路抵抗が小さいことから、該貫通孔を通して電解液が中空部に出入りしやすいので好ましい。活物質粒子の外殻をほぼ垂直に貫いて中空部に至る経路形状の貫通孔が50個数%以上(より好ましくは75個数%以上、例えば90個数%以上)であることが好ましい。かかる貫通孔を一粒子当たり平均1~20個(例えば1~10個)有する活物質粒子が好ましい。
 ここに開示される活物質粒子の典型的な態様では、上記貫通孔が、平均で、最も狭い部分でも凡そ0.01μm以上の差渡し長さ(すなわち開口サイズ)を有する。この平均開口サイズが凡そ0.02μm以上であることが好ましく、凡そ0.05μm以上であることが更に好ましい。かかる開口サイズの貫通孔を有することにより、孔開き中空構造を有することによる電池性能向上効果を適切に発揮することができる。一方、平均開口サイズが大きすぎると、活物質粒子の強度が低下しやすくなる場合がある。好ましい平均開口サイズの上限は、活物質粒子の平均粒径によっても異なり得る。通常は、平均開口サイズが上記活物質粒子の平均粒径の凡そ1/2以下であることが好ましく、凡そ1/3以下(例えば凡そ1/4以下)であることがより好ましい。また、活物質粒子の平均粒径に関わらず、貫通孔の平均開口サイズが凡そ2.5μmを超えないことが好ましい。このような平均開口サイズは、平均貫通孔数が凡そ1~20個程度(好ましくは1~10個程度)の活物質粒子において特に好適である。
 なお、上記平均貫通孔数、貫通孔の経路形状、平均開口サイズ等の特性値は、例えば、活物質粒子の断面をSEMで観察することにより把握することができる。例えば、活物質粒子または該活物質粒子を含む材料を適当な樹脂(好ましくは熱硬化性樹脂)で固めたサンプルを、適当な断面で切断し、その切断面を少しづつ削りながらSEM観察を行うとよい。あるいは、通常は上記サンプル中において活物質粒子の向き(姿勢)は概ねランダムであると仮定できることから、単一の断面または2~10箇所程度の比較的少数の断面におけるSEM観察結果を統計的に処理することによっても上記特性値を算出し得る。
 ここに開示される活物質粒子の典型的な態様では、上記二次粒子を構成する一次粒子が互いに焼結している。かかる活物質粒子は、形状維持性が高い(崩れにくいこと;例えば平均硬度が高いこと、圧縮強度が高いこと等に反映され得る。)ものとなり得る。したがって、かかる活物質粒子によると、良好な電池性能を、より安定して発揮することができる。
 好ましい一態様では、二次粒子のうち中空部を囲む部分では、貫通孔の部分を除き、該二次粒子を構成する一次粒子が緻密に焼結している。例えば、SEM観察において上記一次粒子の粒界に実質的に隙間が存在しないように焼結していることが好ましい。かかる活物質粒子は、特に形状維持性の高いものとなり得るので好ましい。
 また、上記のように一次粒子が緻密(典型的には、少なくとも一般的な非水電池用電解液を通過させない程度に緻密に)に焼結された孔開き中空活物質粒子によると、該粒子の外部と中空部との間で電解液が流通し得る箇所が、貫通孔のある箇所に制限される。このことは、ここに開示される活物質粒子によってリチウム二次電池のハイレートサイクル特性向上効果が発揮される一つの要因となり得る。すなわち、例えば活物質を主成分とする正極合材層がシート状の集電体に保持された構成の正極がシート状のセパレータおよび負極とともに捲回された電極体を備える電池において、該電池の充放電を繰り返すと、充放電に伴う活物質の膨張収縮によって電極体(特に正極合材層)から電解液が絞り出され、これにより電極体の一部で電解液が不足して電池性能(例えば出力性能)が低下することがあり得る。上記構成の活物質粒子によると、貫通孔以外の部分では中空部内の電解液の流出が阻止されるので、正極合材層において電解液が不足する事象を防止または軽減することができる。これにより、ハイレートサイクルにおける抵抗上昇を抑制することができる。一粒子当たりの平均貫通孔数が1~20個(好ましくは1~10個)程度である活物質粒子によると、かかる効果が特によく発揮され得る。
 ここに開示される活物質粒子は、BET比表面積が凡そ0.5~1.9m/gの範囲にあることが好ましい。比表面積が小さすぎると、該活物質粒子を備えるリチウム二次電池において、電池性能を向上させる効果が少なくなりやすい。例えば、反応抵抗(特に、低温における反応抵抗)を向上させる効果が少なくなりがちである。一方、上記範囲よりも比表面積が小さすぎると、充放電サイクル(特に、ハイレートでの放電を含む充放電サイクル)による劣化の程度が大きくなりやすい。BET比表面積が1.2~1.9m/gの範囲にある孔開き中空活物質粒子によると、より良好な電池性能を示すリチウム二次電池が構築され得る。例えば、ハイレートサイクルによる抵抗上昇率が低いこと、初期反応抵抗(特に、低温における初期反応抵抗)が低いこと、該反応抵抗が充放電サイクルを経ても上昇しにくいこと、充放電サイクルに対する容量維持率が高いこと、のうちの少なくとも一つの効果が実現され得る。なお、比表面積の値としては、一般的な窒素吸着法による測定値を採用することができる。
 活物質粒子の平均粒径は、凡そ2μm以上(例えば凡そ2μm~25μm)であることが好ましい。平均粒径が小さすぎると、中空部の容積が小さいため電池性能を向上させる効果が少なくなりやすく、中空部の容積を確保しようとすると活物質粒子の外殻が薄くなって活物質粒子の強度が低下しやすくなる場合がある。平均粒径が凡そ3μm以上であることがより好ましい。また、活物質粒子の生産性等の観点からは、平均粒径が凡そ25μm以下であることが好ましく、凡そ15μm以下(例えば凡そ10μm以下)であることがより好ましい。好ましい一態様では、活物質粒子の平均粒径が凡そ3μm~10μmである。なお、活物質粒子の平均粒径の値としては、一般的なレーザ回折式粒度分布測定による測定値(メジアン径(D50:50%体積平均粒子径))を採用することができる。
 特に限定するものではないが、ここに開示される活物質粒子は、TAP密度が凡そ0.7~2.5g/cmの範囲にあるものであり得る。上記TAP密度が凡そ1~2g/cmである活物質粒子が好ましい。かかる活物質粒子によると、より良好なハイレートサイクル特性を示すリチウム二次電池が構築され得る。なお、TAP密度の値としては、JIS K5101に準拠して測定される値を採用することができる。
 ここに開示されるいずれかの孔開き中空活物質粒子は、例えば、該活物質粒子を構成するリチウム遷移金属酸化物に含まれる遷移金属元素の少なくとも一つ(好ましくは、該酸化物に含まれるリチウム以外の金属元素の全部)を含む水性溶液から、該遷移金属の水酸化物を適切な条件で析出させ、その遷移金属水酸化物とリチウム化合物とを混合して焼成する方法により製造され得る。以下、かかる活物質粒子製造方法の一実施態様につき、層状構造のLiNiCoMn酸化物からなる孔開き中空活物質粒子を製造する場合を例として詳しく説明するが、この製造方法の適用対象をかかる組成の孔開き中空活物質粒子に限定する意図ではない。
 ここに開示される活物質粒子製造方法は、遷移金属化合物の水性溶液にアンモニウムイオン(NH )を供給して、該水性溶液から遷移金属水酸化物の粒子を析出させる工程(原料水酸化物生成工程)を含む。上記水性溶液を構成する溶媒(水性溶媒)は、典型的には水であり、水を主成分とする混合溶媒であってもよい。この混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール等)が好適である。上記遷移金属化合物の水性溶液(以下、「遷移金属溶液」ともいう。)は、製造目的たる活物質粒子を構成するリチウム遷移金属酸化物の組成に応じて、該リチウム遷移金属酸化物を構成する遷移金属元素(ここではNi,CoおよびMn)の少なくとも一つ(好ましくは全部)を含む。例えば、水性溶媒中にNiイオン,CoイオンおよびMnイオンを供給し得る一種または二種以上の化合物を含む遷移金属溶液を使用する。これらの金属イオン源となる化合物としては、該金属の硫酸塩、硝酸塩、塩化物等を適宜採用することができる。例えば、水性溶媒(好ましくは水)に硫酸ニッケル、硫酸コバルトおよび硫酸マンガンが溶解した組成の遷移金属溶液を好ましく使用し得る。
 上記NH は、例えば、NH を含む水性溶液(典型的には水溶液)の形態で上記遷移金属溶液に供給されてもよく、該遷移金属溶液にアンモニアガスを直接吹き込むことにより供給されてもよく、これらの供給方法を併用してもよい。NH を含む水性溶液は、例えば、NH 源となり得る化合物(水酸化アンモニウム、硝酸アンモニウム、アンモニアガス等)を水性溶媒に溶解させることにより調製することができる。本実施態様では、水酸化アンモニウム水溶液(すなわちアンモニア水)の形態でNH を供給する。
 上記原料水酸化物生成工程は、pH12以上(典型的にはpH12以上14以下、例えばpH12.2以上13以下)かつNH 濃度25g/L以下(典型的には3~25g/L)の条件下で上記遷移金属溶液から遷移金属水酸化物を析出させる段階(核生成段階)を含み得る。上記pHおよびNH 濃度は、上記アンモニア水とアルカリ剤(液性をアルカリ性に傾ける作用のある化合物)との使用量を適切にバランスさせることにより調整することができる。アルカリ剤としては、例えば水酸化ナトリウム、水酸化カリウム等を、典型的には水溶液の形態で用いることができる。本実施態様では水酸化ナトリウム水溶液を使用する。なお、本明細書中において、pHの値は、液温25℃を基準とするpH値をいうものとする。
 上記原料水酸化物生成工程は、さらに、上記核生成段階で析出した遷移金属水酸化物の核(典型的には粒子状)を、pH12未満(典型的にはpH10以上12未満、好ましくはpH10以上11.8以下、例えばpH11以上11.8以下)かつNH 濃度3g/L以上(典型的には3~25g/L)で成長させる段階(粒子成長段階)を含み得る。通常は、核生成段階のpHに対して、粒子成長段階のpHを0.1以上(典型的には0.3以上、好ましくは0.5以上、例えば0.5~1.5程度)低くすることが適当である。上記pHおよびNH 濃度は、核生成段階と同様にして調整することができる。この粒子成長段階は、上記pHおよびNH 濃度を満たすように行われることにより、好ましくは上記pHにおいてNH 濃度を15g/L以下(例えば1~15g/L、典型的には3~15g/L)、より好ましくは10g/L以下(例えば1~10g/L、典型的には3~10g/L)の範囲とすることにより、遷移金属水酸化物(ここでは、Ni,CoおよびMnを含む複合水酸化物)の析出速度が大きくなり、ここに開示されるいずれかの孔開き中空活物質粒子の形成に適した原料水酸化物粒子(換言すれば、孔開き中空構造の焼成物を形成しやすい原料水酸化物粒子)が生成し得る。上記NH 濃度を7g/L以下(例えば1~7g/L、より好ましくは3~7g/L)としてもよい。粒子成長段階におけるNH 濃度は、例えば、核生成段階におけるNH 濃度と概ね同程度としてもよく、核生成段階におけるNH 濃度より低くしてもよい。なお、遷移金属水酸化物の析出速度は、例えば、反応液に供給される遷移金属溶液に含まれる遷移金属イオンの合計モル数に対して、反応液の液相中に含まれる遷移金属イオンの合計モル数(合計イオン濃度)の推移を調べることにより把握され得る。
 核生成段階および粒子成長段階のそれぞれにおいて、反応液の温度は、凡そ30℃~60℃の範囲のほぼ一定温度(例えば、所定の温度±1℃)となるように制御することが好ましい。核生成段階と粒子成長段階とで反応液の温度を同程度としてもよい。また、反応液および反応槽内の雰囲気は、核生成段階および粒子成長段階を通じて非酸化性雰囲気に維持することが好ましい。また、反応液に含まれるNiイオン,CoイオンおよびMnイオンの合計モル数(合計イオン濃度)は、核生成段階および粒子成長段階を通じて、例えば凡そ0.5~2.5モル/Lとすることができ、凡そ1.0~2.2モル/Lとすることが好ましい。かかる合計イオン濃度が維持されるように、遷移金属水酸化物の析出速度に合わせて遷移金属溶液を補充(典型的には連続供給)するとよい。反応液に含まれるNiイオン,CoイオンおよびMnイオンの量は、目的物たる活物質粒子の組成(すなわち、該活物質粒子を構成するLiNiCoMn酸化物におけるNi,Co,Mnのモル比)に対応する量比とすることが好ましい。
 本実施態様では、このようにして生成した遷移金属水酸化物粒子(ここでは、Ni,CoおよびMnを含む複合水酸化物粒子)を反応液から分離し、洗浄して乾燥させる。そして、この遷移金属水酸化物粒子とリチウム化合物とを所望の量比で混合して未焼成の混合物を調製する(混合工程)。この混合工程では、典型的には、目的物たる活物質粒子の組成(すなわち、該活物質粒子を構成するLiNiCoMn酸化物におけるLi,Ni,Co,Mnのモル比)に対応する量比で、Li化合物と遷移金属水酸化物粒子とを混合する。上記リチウム化合物としては、加熱により溶解し、酸化物となり得るLi化合物、例えば炭酸リチウム,水酸化リチウム等を好ましく用いることができる。
 そして、上記混合物を焼成して活物質粒子を得る(焼成工程)。この焼成工程は、典型的には酸化性雰囲気中(例えば大気中)で行われる。この焼成工程における焼成温度は、例えば700℃~1100℃とすることができる。最高焼成温度が800℃以上(好ましくは800℃~1100℃、例えば800℃~1050℃)となるように行われることが好ましい。この範囲の最高焼成温度によると、リチウム遷移金属酸化物(好ましくはNi含有Li酸化物、ここではLiNiCoMn酸化物)の一次粒子の焼結反応を適切に進行させることができる。
 好ましい一態様では、上記混合物を700℃以上900℃以下の温度T1(すなわち700℃≦T1≦900℃、例えば700℃≦T1≦800℃、典型的には700℃≦T1<800℃)で焼成する第一焼成段階と、その第一焼成段階を経た結果物を800℃以上1100℃以下の温度T2(すなわち800℃≦T2≦1100℃、例えば800℃≦T2≦1050℃)で焼成する第二焼成段階とを含む態様で行う。このことによって、孔開き中空構造の活物質粒子をより効率よく形成することができる。T1およびT2は、T1<T2となるように設定することが好ましい。
 第一焼成段階と第二焼成段階とは、連続して(例えば、上記混合物を第一焼成温度T1に保持した後、引き続き第二焼成温度T2まで昇温して該温度T2に保持することにより)行ってもよく、あるいは、第一焼成温度T1に保持した後、いったん冷却(例えば、常温まで冷却)し、必要に応じて解砕や篩い分けを行ってから第二焼成段階に供してもよい。
 なお、ここに開示される技術において、上記第一焼成段階は、目的とするリチウム遷移金属酸化物の焼結反応が進行し且つ融点以下の温度域であって第二焼成段階よりも低い温度T1で焼成する段階として把握することができる。また、上記第二焼成段階は、目的とするリチウム遷移金属酸化物の焼結反応が進行し且つ融点以下の温度域であって第一焼成段階よりも高い温度T2で焼成する段階として把握することができる。T1とT2との間には50℃以上(典型的には100℃以上、例えば150℃以上)の温度差を設けることが好ましい。
 ここに開示される技術は、上述のような孔開き中空構造を有する活物質粒子を正極活物質として利用することによって特徴づけられる。したがって、本発明の目的を実現し得る限り、他の電池構成要素の材質や形状等は特に制限されず、従来のリチウム二次電池(典型的にはリチウムイオン電池)と同様のものを用いることができる。上記正極活物質の好ましい利用態様の一例として、上記正極活物質を主成分(すなわち50質量%以上を占める成分、典型的には75質量%以上を占める成分)とする正極合材が集電体に保持された構成の正極、および該正極を備えるリチウム二次電池が挙げられる。
 上記集電体(正極集電体)の構成材料としては、従来の一般的なリチウム二次電池と同様、アルミニウム等の導電性金属材料を好ましく採用することができる。正極集電体の形状は、上記正極を用いて構築される電池の形状等に応じて異なり得るため特に制限はなく、例えば棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。ここに開示される技術は、シート状もしくは箔状の集電体上に正極合材の層が設けられた形態のリチウム二次電池用正極、および、該正極を構成要素とするリチウム二次電池に好ましく適用することができる。かかるリチウム二次電池の好ましい一態様として、シート状の正極および負極を典型的にはシート状のセパレータとともに捲回してなる電極体(捲回電極体)が、適当な非水電解質(典型的には液状の電解質、すなわち電解液)とともに外装ケースに収容された構成の電池が挙げられる。電池の外形は特に限定されず、例えば直方体状、扁平形状、円筒状等であり得る。
 正極合材は、ここに開示される孔開き中空構造の活物質粒子の他に、導電材、バインダ(結着剤)等の任意成分を必要に応じて含有し得る。上記導電材としては、一般的なリチウム二次電池の正極に使用される導電材と同様のもの等を適宜採用することができる。かかる導電材として、カーボン粉末やカーボンファイバー等のカーボン材料、ニッケル粉末等の導電性金属粉末が例示される。このような導電材から選択される一種を単独で用いてもよく二種以上を併用してもよい。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック)、グラファイト粉末、等のカーボン粉末を用いることができる。これらのうちアセチレンブラックおよび/またはファーネスブラックを好ましく採用することができる。
 正極合材全体に占める正極活物質の割合は、凡そ50質量%以上(典型的には50~95質量%)であることが好ましく、通常は凡そ70~95質量%(例えば75~90質量%)であることがより好ましい。また、正極合材全体に占める導電材の割合は、例えば凡そ2~20質量%とすることができ、通常は凡そ2~15質量%とすることが好ましい。バインダを使用する組成では、正極合材全体に占めるバインダの割合を例えば凡そ1~10質量%とすることができ、通常は凡そ2~5質量%とすることが好ましい。
 なお、ここに開示される技術は、孔開き中空構造の活物質粒子と、他の粒子状または非粒子状の活物質材料(例えば、一般的な緻密構造の活物質粒子)とを併用する態様で実施され得る。例えば、一方の電極に具備される活物質材料全体のうち凡そ5質量%以上を上記孔開き中空構造の活物質粒子とすることにより、該孔開き中空活物質粒子の使用による効果が発揮され得る。通常は、上記孔開き中空活物質粒子を凡そ10質量%以上(好ましくは凡そ25質量%以上、例えば50質量%以上)用いることが適当である。上記活物質材料全体のうち75質量%以上(例えば90質量%以上)を上記孔開き中空活物質粒子とすることがより好ましい。好ましい一態様では、一方の電極(典型的には正極)に具備される活物質材料全体の実質的に全部を上記孔開き中空活物質粒子とする。
 正極集電体上に正極合材層を形成する操作は、例えば、上記正極活物質と、他の任意成分(導電材、バインダ等)とが適当な溶媒に分散した態様の正極合材組成物を用意(購入、調製等)し、その組成物(典型的にはペーストまたはスラリー状の組成物)を集電体の表面に付与(典型的には塗布)して乾燥させるとよい。溶媒としては、水性溶媒および非水溶媒のいずれも使用可能である。非水溶媒の好適例として、N-メチル-2-ピロリドン(NMP)が挙げられる。
 上記バインダとしては、一般的なリチウム二次電池の正極に使用されるバインダと同様のもの等を適宜採用することができる。使用する溶媒に溶解または分散可溶なポリマーを選択することが好ましい。例えば、水性溶媒を用いた正極合材組成物においては、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルメチルセルロース(HPMC)等のセルロース系ポリマー;ポリビニルアルコール(PVA);ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)等のフッ素系樹脂;酢酸ビニル共重合体;スチレンブタジエンゴム(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)等のゴム類;等の水溶性または水分散性ポリマーを好ましく採用することができる。また、非水溶媒を用いた正極合材組成物においては、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)等のポリマーを好ましく採用することができる。なお、上記で例示したポリマー材料は、バインダとしての機能の他に、上記組成物の増粘剤その他の添加剤としての機能を発揮する目的で使用されることもあり得る。
 正極合材組成物をシート状集電体に付与する操作は、従来公知の適当な塗布装置(スリットコーター、ダイコーター、コンマコーター、グラビアコーター等)を使用して好適に行うことができる。集電体の少なくとも片面(典型的には両面)の所定範囲に適当量の正極合材組成物を塗布して乾燥させた後、必要に応じて厚み方向にプレスすることにより、目的とする性状のシート状正極(正極シート)が得られる。上記プレスを行う方法としては、従来公知のロールプレス法、平板プレス法等を適宜採用することができる。
 以下、ここに開示される孔開き中空構造の活物質粒子を正極に用いてなるリチウムイオン電池のいくつかの実施形態につき、図面を参照しつつ説明する。
  <第一実施形態>
 本実施形態に係るリチウムイオン電池の概略構成を図1に示す。このリチウムイオン電池10は、正極12および負極14を具備する電極体11が、図示しない非水電解液とともに、該電極体を収容し得る形状の電池ケース15に収容された構成を有する。電池ケース15は、有底円筒状のケース本体152と、上記開口部を塞ぐ蓋体154とを備える。蓋体154およびケース本体152はいずれも金属製であって相互に絶縁されており、それぞれ正負極の集電体122,142と電気的に接続されている。すなわち、このリチウムイオン電池10では、蓋体154が正極端子、ケース本体152が負極端子を兼ねている。
 電極体11は、ここに開示されるいずれかの正極活物質を含む正極合材層124が長尺シート状の正極集電体122上に設けられた正極(正極シート)12と、長尺シート状の負極集電体(例えば銅箔)142上に負極合材層144を有する負極(負極シート)14とを、二枚の長尺シート状セパレータ13と重ね合わせ、これらを円筒状に捲回することにより形成される。
 負極合材層144を構成する負極活物質としては、従来からリチウムイオン電池に用いられる材料の一種または二種以上を特に限定なく使用することができる。好適例として、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が挙げられる。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもののいずれの炭素材料も好ましい。例えば、天然黒鉛等の黒鉛粒子を好ましく使用することができる。
 このような負極活物質を、典型的にはバインダ(正極側の合材層と同様のもの等を使用することができる。)および必要に応じて用いられる導電材(正極側の合材層と同様のもの等を使用することができる。)と混合してなる負極合材組成物を負極集電体142に塗布して乾燥させることにより、集電体142の所望する部位に負極合材層144を形成することができる。特に限定するものではないが、負極合材全体に占める負極活物質の割合は凡そ80質量%以上(例えば80~99質量%)とすることができ、凡そ90質量%以上(例えば90~99質量%、より好ましくは95~99質量%)であることが好ましい。バインダを使用する組成では、負極合材全体に占めるバインダの割合を例えば凡そ0.5~10質量%とすることができ、通常は凡そ1~5質量%とすることが好ましい。
 正負極シート12,14と重ね合わせて使用されるセパレータ13としては、従来のリチウムイオン電池と同様の材料を用いることができる。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂から成る多孔質樹脂シート(フィルム)を好ましく使用し得る。
 正極集電体122の長手方向に沿う一方の縁には、正極合材層が設けられずに集電体122が露出した部分(正極合材層非形成部)が設けられている。同様に、負極集電体142の長手方向に沿う一方の縁には、負極合材層が設けられずに集電体142が露出した部分(負極合材層非形成部)が設けられている。正負極シート12,14は、図1に示すように、両合材層124,144を重ね合わせるとともに両電極シートの合材層非形成部がセパレータ13の長手方向に沿う一方の端部と他方の端部からそれぞれはみ出すように、幅方向にやや位置をずらして重ね合わされている。このはみ出し部に蓋体154およびケース本体152がそれぞれ接続されている。
 電解液としては、従来からリチウムイオン電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,3-ジオキソラン等からなる群から選択された一種または二種以上を用いることができる。また、上記支持塩(支持電解質)としては、例えば、LiPF,LiBF,LiAsF,LiCFSO,LiCSO,LiN(CFSO,LiC(CFSO等のリチウム塩を用いることができる。
  <第二実施形態>
 本実施形態に係るリチウムイオン電池の概略構成を図2,3に示す。このリチウムイオン電池20は、偏平な角型形状の容器21(典型的には金属製であり、樹脂製であってもよい。)を備える。この容器21の中に捲回電極体30が収容されている。本実施形態の電極体30は、第一実施形態と同様の材料を用いてなる正極シート32、負極シート34および二枚のセパレータ33を、両電極シート32,34の合材層非形成部がセパレータ33の長手方向に沿う一方の端部と他方の端部からそれぞれはみ出すように重ね合わせて捲回し、その捲回体を側面方向から押圧して拉げさせることにより、容器21の形状に合わせた扁平形状に形成されている。
 電極シート32,34には、外部接続用の正極端子24および負極端子26が電気的に接続されている。この接続は、両電極シート32,34の正極合材層非形成部のうちセパレータ33からはみ出した部分をそれぞれ捲回電極体30の径方向に寄せ集め、その寄せ集めた部分に正極端子24および負極端子26をそれぞれ接続(例えば溶接)することにより好適に行うことができる。端子24,26が接続された電極体30を容器21に収容し、その内部に適当な非水電解液(第一実施形態と同様のものを使用し得る。)を供給した後、容器21を封止することにより、本実施形態に係るリチウムイオン電池20が構築される。
  <第三実施形態>
 本実施形態に係る組電池の概略構成を図4に示す。この組電池60は、第二実施形態に係る電池20の複数個(典型的には10個以上、好ましくは10~30個程度、例えば20個)を用いて構築されている。これらの電池(単電池)20は、それぞれの正極端子24および負極端子26が交互に配置されるように一つづつ反転させつつ、容器21の幅広な面(すなわち、容器21内に収容される捲回電極体30の扁平面に対応する面)が対向する方向に配列されている。当該配列する単電池20間ならびに単電池配列方向(積層方向)の両アウトサイドには、所定形状の冷却板61が、容器21の幅広面に密接した状態で配置されている。この冷却板61は、使用時に各単電池内で発生する熱を効率よく放散させるための放熱部材として機能するものであって、単電池20間に冷却用流体(典型的には空気)を導入可能な形状(例えば、長方形状の冷却板61の一辺から垂直に延びて対向する辺に至る複数の平行な溝が表面に設けられた形状)を有する。熱伝導性の良い金属製もしくは軽量で硬質なポリプロピレンその他の合成樹脂製の冷却板61が好適である。
 上記配列させた単電池20および冷却板61(以下、これらを総称して「単電池群」ともいう。)の両アウトサイドに配置された冷却板61のさらに外側には、一対のエンドプレート68,69が配置されている。このように単電池20の積層方向に配列された単電池群およびエンドプレート68,69を含む全体(以下「被拘束体」ともいう。)が、両エンドプレート68,69間を架橋するように取り付けられた締め付け用の拘束バンド71によって、該被拘束体の積層方向(すなわち、捲回電極体30の軸に対して横方向)に、規定の拘束圧Pで拘束されている。より詳しくは、拘束バンド71の端部をビス72によりエンドプレート68に締め付け且つ固定することによって、上記積層方向に規定の拘束圧Pが加わるように(例えば、容器21の幅広面が受ける面圧として、上記拘束圧Pが0.1MPa~10MPa程度となるように)拘束されている。そして、隣接する単電池20間において、一方の正極端子24と他方の負極端子26とが接続具67によって電気的に接続されている。このように各単電池20を直列に接続することにより、所望する電圧の組電池60が構築されている。
 以下、本発明に関するいくつかの実験例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。
  <孔開き中空構造を有する活物質粒子(サンプル1~12)の製造>
 槽内温度40℃に設定された反応槽内にイオン交換水を入れ、攪拌しつつ窒素ガスを流通させて、該イオン交換水を窒素置換するとともに反応槽内を酸素ガス(O)濃度2.0%の非酸化性雰囲気に調整した。次いで、25%水酸化ナトリウム水溶液と25%アンモニア水とを、液温25℃を基準として測定するpHが12.5となり且つ液中NH 濃度が5g/Lとなるように加えた。
 硫酸ニッケル、硫酸コバルトおよび硫酸マンガンを、Ni:Co:Mnのモル比が0.33:0.33:0.33となり且つこれら金属元素の合計モル濃度が1.8モル/Lとなるように水に溶解させて、混合水溶液を調整した。この混合水溶液と25%NaOH水溶液と25%アンモニア水とを上記反応槽内に一定速度で供給することにより、反応液をpH12.5、NH 濃度5g/Lに制御しつつ、該反応液からNiCoMn複合水酸化物を晶析させた(核生成段階)。
 上記混合水溶液の供給開始から2分30秒経過したところで、25%NaOH水溶液の供給を停止した。上記混合水溶液および25%アンモニア水については引き続き一定速度で供給を行った。反応液のpHが11.6まで低下した後、25%NaOH水溶液の供給を再開した。そして、反応液をpH11.6且つNH 濃度5g/Lに制御しつつ、上記混合水溶液、25%NaOH水溶液および25%アンモニア水を供給する操作を4時間継続してNiCoMn複合水酸化物粒子を成長させた(粒子成長段階)。その後、生成物を反応槽から取り出し、水洗して乾燥させた。このようにして、Ni0.33Co0.33Mn0.33(OH)2+α(ここで、式中のαは0≦α≦0.5である。)で表わされる組成の複合水酸化物粒子を得た。
 上記複合水酸化物粒子に対し、大気雰囲気中、150℃で12時間の熱処理を施した。次いで、リチウム源としてのLi2CO3と上記複合水酸化物粒子とを、リチウムのモル数(MLi)と上記複合水酸化物を構成するNi,CoおよびMnの総モル数(MMe)との比(MLi:MMe)が1.15:1となるように混合した。この混合物を760℃で4時間焼成し(第一焼成段階)、次いで950℃で10時間焼成した(第二焼成段階)。その後、焼成物を解砕し、篩分けを行った。このようにして、Li1.15Ni0.33Co0.33Mn0.332で表わされる組成の活物質粒子サンプルを得た。
 上記の活物質粒子サンプル作製過程において、pH、NH 濃度等の条件を調節することにより、より具体的には、核生成段階におけるpHを12~13の間で異ならせ、また粒子成長段階におけるNH 濃度を3~10g/Lの間で異ならせることにより、表1に示す平均粒径(D50)およびBET比表面積を有するサンプル1~12の活物質粒子を作製した。これらの活物質粒子サンプルの平均硬度を上記方法により測定したところ、いずれも0.5MPa~10MPaの範囲にあることが確認された。
 サンプル1~12の活物質粒子につき表面SEM観察を行った。その結果、いずれの活物質粒子サンプルにおいても、一次粒子が複数集合した二次粒子にいくつかの貫通孔が形成され、その貫通孔以外の部分では上記一次粒子が緻密に焼結していることが確認された。一例として、サンプル8の表面SEM像を図5に示す。図5中、丸で囲んだ部分は、このSEM像において貫通孔の存在が認められる箇所である。
  <多孔質構造を有する活物質粒子(サンプル13,14)の製造>
 硝酸リチウム、硝酸ニッケル、硝酸コバルトおよび硝酸マンガンを、Li:Ni:Co;Mnのモル比が1.15:0.33:0.33:0.33となり且つこれら金属元素の合計モル濃度が1.5モル/Lとなるように水に溶解させて、混合水溶液を調整した。
 この混合水溶液のミストを700℃の加熱炉中に導入して熱分解させることにより、Li1.15Ni0.33Co0.33Mn0.332で表わされる組成の複合酸化物粒子を得た(噴霧熱分解法)。この粒子を950℃で10時間加熱(アニール)して、表1に示す平均粒径、比表面積および平均硬度を有するサンプル13,14の活物質粒子を得た。なお、サンプル13と14とは、上記ミストの平均液滴径を互いに異ならせて製造したものである。
 得られた活物質粒子サンプル13,14につき、サンプル1~12と同様に平均粒径および比表面積を測定した。また、これらのサンプルの外観を上記走査型電子顕微鏡により観察した。その結果、いずれのサンプルについても、粒子表面に多数の孔が存在する多孔質構造であることが確認された。また、これらの活物質粒子サンプルの平均硬度を上記方法により測定したところ、いずれも0.05MPa~0.1MPaの範囲にあることが確認された。
  <中実構造の活物質粒子(サンプル15~21)の製造>
 オーバーフローパイプを備え槽内温度40℃に設定された反応槽内に、イオン交換水を入れ、攪拌しつつ窒素ガスを流通させて、該イオン交換水を窒素置換するとともに反応槽内を酸素ガス(O)濃度2.0%の非酸化性雰囲気に調整した。次いで、25%水酸化ナトリウム水溶液と25%アンモニア水とを、液温25℃を基準として測定するpHが12.0となり且つ液中NH 濃度が15g/Lとなるように加えた。
 硫酸ニッケル、硫酸コバルトおよび硫酸マンガンを、Ni:Co:Mnのモル比が0.33:0.33:0.33となり且つこれら金属元素の合計モル濃度が1.8モル/Lとなるように水に溶解させて、混合水溶液を調整した。この混合水溶液と25%NaOH水溶液と25%アンモニア水とを上記反応槽内に、該反応槽内に析出するNiCoMn複合水酸化物粒子の平均的な滞留時間が10時間となる一定速度で供給し、且つ反応液をpH12.0、NH 濃度15g/Lになるように制御して連続的に晶析をさせ、反応槽内が定常状態になった後に、上記オーバーフローパイプよりNiCoMn複合水酸化物(生成物)を連続的に採取し、水洗して乾燥させた。このようにして、Ni0.33Co0.33Mn0.33(OH)2+α(ここで、式中のαは0≦α≦0.5である。)で表わされる組成の複合水酸化物粒子を得た。
 上記複合水酸化物粒子に対し、大気雰囲気中、150℃で12時間の熱処理を施した。次いで、リチウム源としてのLi2CO3と上記複合水酸化物粒子とを、リチウムのモル数(MLi)と上記複合水酸化物を構成するNi,CoおよびMnの総モル数(MMe)との比(MLi:MMe)が1.15:1となるように混合した。この混合物を760℃で4時間焼成し、次いで950℃で10時間焼成した。その後、焼成物を解砕し、篩分けを行った。このようにして、Li1.15Ni0.33Co0.33Mn0.332で表わされる組成の活物質粒子サンプルを得た。
 上記の活物質粒子サンプル作製過程において、滞留時間、pH等の条件を調節することにより、表1に示す平均粒径(D50)およびBET比表面積を有するサンプル15~21の活物質粒子を作製した。得られた活物質粒子サンプル15~21につき、サンプル1~12と同様に平均粒径および比表面積を測定した。また、これらのサンプルの外観を上記走査型電子顕微鏡により観察した。その結果、いずれのサンプルについても緻密構造であることが確認された。また、これらの活物質粒子サンプルの平均硬度を上記方法により測定したところ、いずれも5MPa~30MPaの範囲にあることが確認された。
  <正極シートの作製>
 上記で得られた活物質粒子サンプルと、導電材としてのアセチレンブラックと、PVDFとを、これら材料の質量比が85:10:5となり且つ固形分濃度(NV)が約50質量%となるようにNMPと混合して、各活物質粒子サンプルに対応する正極合材組成物を調製した。
 これらの正極合材組成物を厚さ15μmの長尺状アルミニウム箔(集電体)の両面に塗布した。上記組成物の塗布量(固形分基準)は、両面合わせて約12.8mg/cmとなるように調整した。その塗布物を乾燥させた後、ロールプレスを行って、集電体の両面に正極合材層を有するシート状正極(正極シート)を得た。該正極シートの全体の厚みは約70μmであった。このようにして、各活物質粒子サンプルに対応する計21種の正極シートを作製した。
 この正極シートを厚み方向に切断し、アルゴンイオンビームを用いたクロスセクションポリッシュ法にて切断面を研摩し、上記走査型電子顕微鏡で断面観察を行った。その観察結果から、各サンプルにおける貫通孔の平均開口サイズを求めた。それらの結果を表1に示す。また、上記観察結果から求めた平均貫通孔数は、サンプル1~12のいずれについても一粒子当たり1~10個であった。なお、この断面観察において、いずれのサンプルについても、貫通孔の50個数%以上は、該貫通孔を通して活物質粒子の外部と中空部とを直線で結び得るように、且つ二次粒子を外部から中空部までほぼ垂直に貫通していることが確認された。また、いずれのサンプルについても、中空部および貫通孔以外の箇所では、二次粒子を構成する一次粒子が緻密に焼結していることが確認された。一例として、サンプル8の断面SEM像を図6に示す。
Figure JPOXMLDOC01-appb-T000001
  <リチウムイオン電池の作製>
 天然黒鉛粒子とSBRとCMCとを、これら材料の質量比が98:1:1であり且つNVが45質量%となるようにイオン交換水と混合して、水系の活物質組成物(負極合材組成物)を調製した。この組成物を厚さ約10μmの長尺状銅箔(負極集電体)の両面に塗布して乾燥させ、ロールプレスを行った。このようにして、集電体の両面に負極合材層を有するシート状負極(負極シート)を作製した。該負極シートの全体の厚みは約50μmであった。
 上記で作製した各正極シートと負極シートとを二枚の長尺状セパレータ(ここでは、厚さ20μmの多孔質ポリエチレンシートを用いた。)とともに積層し、その積層シートを長尺方向に捲回して捲回電極体を作製した。この電極体を非水電解液とともに外装ケースに収容して、18650型リチウムイオン電池を構築した。非水電解液としては、ECとDMCとEMCとを3:3:4の体積比で含む混合溶媒に1mol/Lの濃度でLiPFを溶解した組成のものを使用した。その後、上記で構築した各電池に対し、1/10Cの充電レートで3時間の定電流充電を行い、さらに1/3Cの充電レートで4.1Vまで定電流で充電する操作と、1/3Cの放電レートで3.0Vまで定電流放電させる操作とを2~3回繰り返す初期充放電処理を行って、各活物質粒子サンプルに対応する計21種のリチウムイオン電池を得た。なお、これらの電池の定格容量は、いずれも300mAhである。
  <ハイレートサイクルによる抵抗上昇率>
 上記で作製した各電池をSOC(State of Charge)60%に調整し、25℃の温度下にて20Cの定電流で放電させ、その電圧降下から初期IV抵抗を求めた。
 次に、各電池を再びSOC60%に調整し、25℃において、以下の(I)~(VI)からなる充放電サイクルを1万回繰り返すハイレートサイクル試験を行った。その間、100サイクル毎に、SOCを60%に調整する操作を行った。
 (I).20C(ここでは6A)の定電流で10秒間放電させる。
 (II).5秒間休止する。
 (III).5Cの定電流で40秒間充電する。
 (IV).5秒間休止する。
 上記ハイレートサイクル試験後の各電池につき、初期IV抵抗の測定と同様にして、ハイレートサイクル後IV抵抗を測定した。そして、ハイレートサイクル後のIV抵抗値を初期のIV抵抗値で除すことにより、上記ハイレートサイクル試験による抵抗上昇率(倍)を算出した。
  <低温初期反応抵抗>
 上記で作製した各電池につき、測定温度-30℃において、測定周波数範囲0.001~10000Hz、振幅5mVの条件で交流インピーダンス測定を行い、Cole-Coleプロットの等価回路フィッティングにより直流抵抗Rsolおよび反応抵抗Rct(初期反応抵抗)を求めた。
  <耐久性評価>
 上記低温初期反応抵抗測定後の電池に対し、60℃において、SOC0%~100%(上限電圧4.1V、下限電圧3.0V)の範囲で4C(1.2A)の定電流充電と4Cの定電流放電とを500回繰り返す耐久サイクル試験を行った。上記耐久サイクル試験後の各電池につき、低温初期反応抵抗の測定と同様にして、耐久サイクル後の低温反応抵抗を測定した。そして、耐久サイクル後の反応抵抗値を初期の反応抵抗値で除すことにより、上記耐久サイクル試験による抵抗上昇率(倍)を算出した。
 また、上記で作製した各電池を、25℃の温度条件下にて4.1Vまで1Cの定電流で充電し、続いて合計充電時間が2時間となるまで定電圧で充電した。かかるCC-CV充電後の電池を25℃に24時間保持した後、25℃において、4.1Vから3.0Vまで1Cの定電流で放電させ、続いて合計放電時間が2時間となるまで定電圧で放電させて、このときの放電容量(初期容量)を測定した。この初期容量測定後の電池に対して上記耐久サイクル試験を行った。その耐久サイクル後の電池を、25℃において4.1Vから3.0Vまで1Cの定電流で放電させ、続いて合計放電時間が2時間となるまで定電圧で放電させて、このときの放電容量(サイクル後容量)を測定した。そして、次式:{(サイクル後容量)/(初期容量)}×100;により、上記500回の充放電サイクルにおける容量維持率(%)を求めた。
 以上の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1,2に示されるように、孔開き中空構造(ただし多孔質構造ではない)を有するサンプル1~12の活物質粒子を用いた電池によると、20Cのハイレート放電を伴う1万回のハイレートサイクルを経ても、抵抗上昇率は3倍以下(ここでは2倍以下、より詳しくは1.6倍以下)に抑えられていた。BET比表面積が1.2m/g以上(より詳しくは1.2m/g以上1.9m/g以下)であるサンプル6~12によると、上記ハイレートサイクルによる抵抗上昇率が1.2倍以下という、特に良好な結果が得られた。また、これらサンプル6~12を用いた電池は、低温(-30℃)における初期反応抵抗の値がいずれも2Ω以下と低く、出力性能(特に、低温における出力性能)に優れるものであった。さらに、上記低温反応抵抗上昇率のデータからわかるように、サンプル1~12の活物質粒子を用いた電池は、上記耐久試験による低温反応抵抗の上昇率が5%以下であり、極めて高い耐久性性能を示した。また、上記耐久試験における容量維持率はいずれも90%以上と良好であった。
 一方、多孔質構造の活物質粒子(サンプル13,14)や緻密構造の活物質粒子(サンプル15~21)は、上記ハイレートサイクルによる抵抗上昇率がいずれも3倍以上であり、耐久性に欠けるものであった。また、多孔質構造の活物質粒子では、緻密構造の活物質粒子に比べて初期の低温反応抵抗を低下させる効果は認められたものの、その効果の耐久性に欠けることが確認された。すなわち、サンプル13,14の活物質粒子を用いた電池は、上記耐久試験によって低温反応抵抗がいずれも2倍以上に増大した。さらに、サンプル13,14に係る電池はいずれも容量維持率が80%未満であった。
 以上、本発明を詳細に説明したが、上記実施形態は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。
 ここに開示される技術により提供されるリチウム二次電池は、上記のように優れた性能を示すことから、各種用途向けのリチウム二次電池として利用可能である。例えば、自動車等の車両に搭載されるモータ(電動機)用電源として好適に使用され得る。かかるリチウム二次電池は、それらの複数個を直列および/または並列に接続してなる組電池の形態で使用されてもよい。したがって、ここに開示される技術によると、図7に模式的に示すように、かかるリチウム二次電池(組電池の形態であり得る。)20を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)1が提供され得る。
  1 自動車(車両)
 10 リチウムイオン電池
 11 電極体
 12 正極(正極シート)
 13 セパレータ
 14 負極(負極シート)
122 正極集電体
124 正極合材層
142 負極集電体
144 負極合材層
 20 リチウムイオン電池(単電池)
 24 正極端子
 26 負極端子
 30 電極体
 32 正極シート
 33 セパレータ
 34 負極シート
 60 組電池
 61 冷却板
 67 接続具
 68,69 エンドプレート
 71 拘束バンド

Claims (13)

  1.  リチウム二次電池用の活物質粒子であって、
     リチウム遷移金属酸化物の一次粒子が複数集合した二次粒子と、その内側に形成された中空部とを有する中空構造を構成しており、
     前記二次粒子には、外部から前記中空部まで貫通する貫通孔が形成されており、
     BET比表面積が0.5~1.9m/gである、活物質粒子。
  2.  前記貫通孔の開口幅が平均0.01μm以上である、請求項1に記載の活物質粒子。
  3.  直径50μmの平面ダイヤモンド圧子を使用して負荷速度0.5mN/秒~3mN/秒の条件で行われるダイナミック硬度測定において、平均硬度が0.5MPa以上である、請求項1または2に記載の活物質粒子。
  4.  前記貫通孔の数は、前記活物質粒子の一粒子当たり平均1~20個である、請求項1から3のいずれか一項に記載の活物質粒子。
  5.  平均粒径が3μm~10μmである、請求項1から4のいずれか一項に記載の活物質粒子。
  6.  前記リチウム遷移金属酸化物は、ニッケルを構成元素として含む層状構造の化合物である、請求項1から5のいずれか一項に記載の活物質粒子。
  7.  前記リチウム遷移金属酸化物は、ニッケル、コバルトおよびマンガンを構成元素として含む層状構造の化合物である、請求項1から6のいずれか一項に記載の活物質粒子。
  8.  正極と負極と非水電解液とを備えるリチウム二次電池であって、
     前記正極および負極のうち少なくとも一方は、請求項1から7のいずれか一項に記載の活物質粒子を有する中空活物質含有電極である、リチウム二次電池。
  9.  車両の駆動電源として用いられる、請求項8に記載のリチウム二次電池。
  10.  請求項8または9に記載の電池を備える、車両。
  11.  リチウム遷移金属酸化物の一次粒子が複数集合した二次粒子と、その内側に形成された中空部とを有し、前記二次粒子には外部から前記中空部まで貫通する貫通孔が形成されている孔開き中空構造の活物質粒子を製造する方法であって:
     遷移金属化合物の水性溶液にアンモニウムイオンを供給して、前記遷移金属水酸化物の粒子を前記水性溶液から析出させる原料水酸化物生成工程、ここで、前記水性溶液は、前記リチウム遷移金属酸化物を構成する遷移金属元素の少なくとも一つを含む;
     前記遷移金属水酸化物とリチウム化合物とを混合して未焼成の混合物を調製する混合工程;および、
     前記混合物を焼成して前記活物質粒子を得る焼成工程;
     を包含し、
     ここで、前記原料水酸化物生成工程は、pH12以上かつアンモニウムイオン濃度25g/L以下で前記水性溶液から前記遷移金属水酸化物を析出させる核生成段階と、その析出した遷移金属水酸化物をpH12未満かつアンモニウムイオン濃度3g/L以上で成長させる粒子成長段階とを含む、活物質粒子製造方法。
  12.  前記焼成工程は、最高焼成温度が800℃~1100℃となるように行われる、請求項11に記載の方法。
  13.  前記焼成工程は、前記混合物を700℃以上900℃以下の温度T1で焼成する第一焼成段階と、その第一焼成段階を経た結果物を800℃以上1100℃以下であって且つ前記第一焼成段階における焼成温度T1よりも高い温度T2で焼成する第二焼成段階とを含む、請求項11または12に記載の方法。
PCT/JP2010/067691 2009-12-02 2010-10-07 活物質粒子およびその利用 WO2011067982A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020157020743A KR101668974B1 (ko) 2009-12-02 2010-10-07 활물질 입자 및 그 이용
CN201080051688.6A CN102612772B (zh) 2009-12-02 2010-10-07 活性物质粒子和其应用
EP10834435.9A EP2509142B1 (en) 2009-12-02 2010-10-07 Active material particles and use of same
US13/513,209 US20120282525A1 (en) 2009-12-02 2010-10-07 Active material particles and use of same
CA2781658A CA2781658C (en) 2009-12-02 2010-10-07 Active material particles having secondary particles with lithium transition metal oxides and method for procucing the same
US13/618,526 US8486564B2 (en) 2009-12-02 2012-09-14 Method of producing active material particles with lithium transition metal oxide secondary particles
US13/941,253 US9391318B2 (en) 2009-12-02 2013-07-12 Active material particles for a lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009274381A JP5175826B2 (ja) 2009-12-02 2009-12-02 活物質粒子およびその利用
JP2009-274381 2009-12-02

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/513,209 A-371-Of-International US20120282525A1 (en) 2009-12-02 2010-10-07 Active material particles and use of same
US13/618,526 Division US8486564B2 (en) 2009-12-02 2012-09-14 Method of producing active material particles with lithium transition metal oxide secondary particles
US13/941,253 Continuation US9391318B2 (en) 2009-12-02 2013-07-12 Active material particles for a lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2011067982A1 true WO2011067982A1 (ja) 2011-06-09

Family

ID=44114841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067691 WO2011067982A1 (ja) 2009-12-02 2010-10-07 活物質粒子およびその利用

Country Status (7)

Country Link
US (3) US20120282525A1 (ja)
EP (2) EP2509142B1 (ja)
JP (1) JP5175826B2 (ja)
KR (2) KR101563775B1 (ja)
CN (1) CN102612772B (ja)
CA (1) CA2781658C (ja)
WO (1) WO2011067982A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120145564A1 (en) * 2010-12-09 2012-06-14 Yokogawa Electric Corporation Fuel cell evaluator and fuel cell evaluation method
JP2013045761A (ja) * 2011-08-26 2013-03-04 Toyota Motor Corp リチウム二次電池
WO2013031478A1 (ja) * 2011-08-31 2013-03-07 トヨタ自動車株式会社 リチウム二次電池
WO2013094701A1 (ja) * 2011-12-20 2013-06-27 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2014060814A1 (en) 2012-10-17 2014-04-24 Toyota Jidosha Kabushiki Kaisha Secondary battery
US20140199589A1 (en) * 2013-01-11 2014-07-17 Gs Yuasa International Ltd. Electric storage device and manufacturing method thereof
WO2014181891A1 (ja) * 2013-05-10 2014-11-13 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池
WO2014203814A1 (ja) * 2013-06-17 2014-12-24 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物及びその製造方法
CN104396065A (zh) * 2012-06-29 2015-03-04 丰田自动车株式会社 锂二次电池和具有锂二次电池的车辆
JP2015043332A (ja) * 2014-10-14 2015-03-05 トヨタ自動車株式会社 リチウム二次電池
JP2016129114A (ja) * 2015-01-09 2016-07-14 トヨタ自動車株式会社 非水電解質二次電池用電極およびその製造方法
US10109849B2 (en) 2012-06-06 2018-10-23 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these
JP7422121B2 (ja) 2021-12-27 2024-01-25 プライムアースEvエナジー株式会社 リチウムイオン二次電池

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5464348B2 (ja) * 2010-02-26 2014-04-09 住友金属鉱山株式会社 非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物およびその製造方法、ならびに該ニッケル−コバルト複合水酸化物を用いた非水系電解質二次電池正極活物質の製造方法
JP5141791B2 (ja) 2010-08-30 2013-02-13 株式会社デンソー 温度センサ
JP5510761B2 (ja) 2010-10-15 2014-06-04 トヨタ自動車株式会社 二次電池
US9553310B2 (en) 2010-10-15 2017-01-24 Toyota Jidosha Kabushiki Kaisha Secondary battery
CN103329314B (zh) 2010-11-12 2016-04-27 丰田自动车株式会社 二次电池
CN103348510B (zh) * 2010-11-12 2016-01-13 丰田自动车株式会社 二次电池
WO2012117557A1 (ja) * 2011-03-03 2012-09-07 トヨタ自動車株式会社 非水電解液二次電池
JP5551195B2 (ja) * 2011-03-16 2014-07-16 日本化学工業株式会社 リチウムニッケルマンガンコバルト複合酸化物の製造方法
CN102971893B (zh) * 2011-05-06 2015-07-01 丰田自动车株式会社 锂离子二次电池
WO2012164752A1 (ja) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 非水系二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池
KR101584880B1 (ko) * 2011-05-31 2016-01-13 도요타지도샤가부시키가이샤 리튬 이차 전지
EP2720305B1 (en) * 2011-06-07 2019-02-20 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
GB2492167C (en) 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
JP5651547B2 (ja) * 2011-06-29 2015-01-14 日立オートモティブシステムズ株式会社 リチウムイオン二次電池
JP5725358B2 (ja) * 2011-09-15 2015-05-27 トヨタ自動車株式会社 リチウム二次電池
JP5920872B2 (ja) * 2011-11-25 2016-05-18 株式会社田中化学研究所 リチウム金属複合酸化物及びその製造方法
JP5858279B2 (ja) * 2011-12-05 2016-02-10 トヨタ自動車株式会社 リチウムイオン二次電池
JP5709010B2 (ja) * 2011-12-20 2015-04-30 トヨタ自動車株式会社 非水電解液二次電池
JP5641362B2 (ja) * 2011-12-26 2014-12-17 トヨタ自動車株式会社 正極活物質の製造方法
JP5682796B2 (ja) * 2012-01-12 2015-03-11 トヨタ自動車株式会社 リチウム二次電池
US10388948B2 (en) 2012-01-30 2019-08-20 Nexeon Limited Composition of SI/C electro active material
GB2499984B (en) 2012-02-28 2014-08-06 Nexeon Ltd Composite particles comprising a removable filler
KR101361118B1 (ko) * 2012-03-08 2014-02-13 주식회사 라미나 기-액 반응기를 이용한 리튬이차전지용 양극 활물질 제조 방법
DE112012006167B4 (de) 2012-03-30 2024-03-28 Toyota Jidosha Kabushiki Kaisha Lithium-Ionen-Sekundärbatterie
JP6055967B2 (ja) * 2012-05-10 2017-01-11 株式会社田中化学研究所 正極活物質及びその製造方法、正極活物質前駆体、リチウム二次電池用正極、並びにリチウム二次電池
GB2502625B (en) 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
JP5664930B2 (ja) * 2012-06-29 2015-02-04 トヨタ自動車株式会社 非水電解質二次電池
WO2014061399A1 (ja) * 2012-10-15 2014-04-24 日本碍子株式会社 リチウム二次電池用正極活物質及びそれを用いた正極
GB2507535B (en) 2012-11-02 2015-07-15 Nexeon Ltd Multilayer electrode
WO2014077231A1 (ja) * 2012-11-13 2014-05-22 戸田工業株式会社 非水電解質二次電池用マンガン酸リチウム粒子粉末及びその製造方法、並びに非水電解質二次電池
JP6369739B2 (ja) 2013-01-11 2018-08-08 株式会社Gsユアサ 蓄電素子及びその製造方法
WO2014136760A1 (ja) * 2013-03-04 2014-09-12 三井金属鉱業株式会社 リチウム金属複合酸化物粉体
CN105122514B (zh) * 2013-03-26 2017-12-19 三洋电机株式会社 非水电解质二次电池用正极活性物质及使用其的非水电解质二次电池
KR20160009666A (ko) 2013-06-05 2016-01-26 도요타 지도샤(주) 리튬 이온 이차 전지
JP6044463B2 (ja) * 2013-06-19 2016-12-14 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物及びその製造方法
US10629903B2 (en) * 2013-07-31 2020-04-21 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Method for preparing transition metal composite oxide, transition metal composite oxide prepared thereby, and lithium composite oxide prepared using same
GB2516895C (en) * 2013-08-05 2019-05-15 Nexeon Ltd Structured particles
JP6467352B2 (ja) * 2014-01-20 2019-02-13 住友化学株式会社 正極活物質およびその製造方法
JP6167943B2 (ja) * 2014-03-07 2017-07-26 トヨタ自動車株式会社 非水電解質二次電池
KR101567203B1 (ko) 2014-04-09 2015-11-09 (주)오렌지파워 이차 전지용 음극 활물질 및 이의 방법
KR101604352B1 (ko) 2014-04-22 2016-03-18 (주)오렌지파워 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR102172026B1 (ko) * 2014-05-20 2020-10-30 삼성에스디아이 주식회사 활물질 전구체 및 그 제조방법
JP6421690B2 (ja) 2014-07-17 2018-11-14 株式会社デンソー 温度センサ
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
JP6383326B2 (ja) * 2015-06-05 2018-08-29 プライムアースEvエナジー株式会社 非水電解液二次電池および非水電解液二次電池の正極活物質
JP6354995B2 (ja) * 2015-08-07 2018-07-11 トヨタ自動車株式会社 非水電解質二次電池用正極材料及びその製造方法
JP6284040B2 (ja) * 2015-08-07 2018-02-28 トヨタ自動車株式会社 リチウム二次電池用正極材料及びその製造方法
JP6549444B2 (ja) * 2015-08-07 2019-07-24 トヨタ自動車株式会社 活物質粒子の製造方法、活物質粉末材料およびリチウムイオン二次電池
CN108352526B (zh) 2015-10-28 2022-04-01 住友金属矿山株式会社 非水系电解质二次电池用正极活性物质和其制造方法、非水系电解质二次电池用正极复合材料糊剂和非水系电解质二次电池
JPWO2017104363A1 (ja) * 2015-12-18 2018-11-08 日本碍子株式会社 板状リチウム複合酸化物、及びその製造方法
CN109311699B (zh) * 2016-06-14 2022-05-03 住友金属矿山株式会社 含镍氢氧化物的制造方法
US11302919B2 (en) 2016-07-20 2022-04-12 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11569503B2 (en) 2016-07-20 2023-01-31 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
JP6337360B2 (ja) 2016-08-31 2018-06-06 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6500001B2 (ja) 2016-08-31 2019-04-10 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6756246B2 (ja) 2016-11-21 2020-09-16 トヨタ自動車株式会社 造粒体集合物の製造方法、電極板の製造方法、及び電池の製造方法
JP6380711B1 (ja) 2016-11-22 2018-08-29 住友金属鉱山株式会社 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質の製造方法
CN109983604A (zh) * 2016-11-22 2019-07-05 住友金属矿山株式会社 非水电解质二次电池用正极活性物质以及非水电解质二次电池
KR102184370B1 (ko) 2016-12-02 2020-11-30 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
PL3333129T3 (pl) 2016-12-08 2021-03-08 Samsung Sdi Co., Ltd. Aktywny materiał na bazie niklu do akumulatora litowego, metoda jego przygotowywania oraz akumulator litowy wyposażony w zawierającą ten materiał katodę
US11456458B2 (en) 2016-12-08 2022-09-27 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
JP6949297B2 (ja) * 2016-12-13 2021-10-13 住友金属鉱山株式会社 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質とその製造方法
JP7343265B2 (ja) * 2017-07-12 2023-09-12 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、及び非水系電解質二次電池用正極活物質の製造方法
JP6583359B2 (ja) * 2017-07-27 2019-10-02 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物
JP6495997B1 (ja) 2017-11-20 2019-04-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6799551B2 (ja) * 2018-02-07 2020-12-16 住友化学株式会社 リチウム二次電池用正極活物質の製造方法
JP2019175721A (ja) 2018-03-29 2019-10-10 三洋電機株式会社 非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法
JP7028716B2 (ja) * 2018-05-29 2022-03-02 トヨタ自動車株式会社 正極材料
CN112798630A (zh) * 2019-11-13 2021-05-14 天津国安盟固利新材料科技股份有限公司 一种表征元素分布均匀性的样品制备方法
CN110931772B (zh) * 2020-02-12 2020-06-19 湖南长远锂科股份有限公司 一种高功率型的锂离子电池用正极材料的制备方法
JP7552227B2 (ja) 2020-10-12 2024-09-18 株式会社Gsユアサ 蓄電素子
CN114497512B (zh) * 2020-12-14 2024-11-01 宁德新能源科技有限公司 电化学装置和电子装置
JP2022140180A (ja) * 2021-03-10 2022-09-26 茂 佐野 正極及び蓄電池
JP7414758B2 (ja) * 2021-03-12 2024-01-16 プライムプラネットエナジー&ソリューションズ株式会社 二次電池用電極およびそれを備える二次電池
JP2023031637A (ja) * 2021-08-25 2023-03-09 住友金属鉱山株式会社 有価金属の回収方法
KR102668579B1 (ko) * 2022-07-11 2024-05-24 주식회사 엘지에너지솔루션 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321300A (ja) 1995-03-17 1996-12-03 Canon Inc リチウムを利用する二次電池
JPH1074516A (ja) 1996-08-29 1998-03-17 Murata Mfg Co Ltd リチウム二次電池
JPH1074517A (ja) 1996-08-29 1998-03-17 Murata Mfg Co Ltd リチウム二次電池
JPH1083816A (ja) 1996-07-16 1998-03-31 Murata Mfg Co Ltd リチウム二次電池
JPH10255804A (ja) * 1997-01-07 1998-09-25 Murata Mfg Co Ltd リチウム二次電池
JP2000323123A (ja) * 1999-05-06 2000-11-24 Dowa Mining Co Ltd 非水系二次電池用正極活物質および正極
JP2000340226A (ja) * 1999-05-26 2000-12-08 Kawasaki Steel Corp リチウムマンガン複合酸化物粒子およびその製造方法
JP2004253174A (ja) * 2003-02-18 2004-09-09 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP2005123179A (ja) * 2003-09-26 2005-05-12 Mitsubishi Chemicals Corp リチウム二次電池正極材用リチウム複合酸化物粒子、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2006089364A (ja) * 2004-08-24 2006-04-06 Sumitomo Metal Mining Co Ltd アルミニウム含有水酸化ニッケル粒子及びその製造方法
JP2008266136A (ja) * 2003-04-17 2008-11-06 Agc Seimi Chemical Co Ltd リチウム−ニッケル−コバルト−マンガン含有複合酸化物とリチウム二次電池用正極活物質用原料およびその製造方法
JP2009259605A (ja) * 2008-04-17 2009-11-05 Toyota Motor Corp 正極活物質及びその製造方法ならびに該正極活物質を備えた電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69700735T2 (de) * 1996-08-29 2000-03-02 Murata Mfg. Co., Ltd. Lithium-Sekundärbatterie
US6086843A (en) * 1998-09-15 2000-07-11 Ovonic Battery Company, Inc. Structurally modified nickel hydroxide material and method for making same
US7585435B2 (en) * 2000-11-06 2009-09-08 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
DE60237441D1 (de) * 2001-04-20 2010-10-07 Gs Yuasa Corp Ür, anode zur benutzung in einer sekundärbatterie mit wasserfreiem elektrolyt und sekundärbatterie mit wasserfreiem elektrolyt
EP1667260A4 (en) * 2003-09-26 2007-10-03 Mitsubishi Chem Corp LITHIUM COMPOSITE OXIDE PARTICLE FOR POSITIVE ELECTRODE MATERIAL WITH LITHIUM ACCUMULATOR CONTAINING SAME, POSITIVE ELECTRODE FOR LITHIUM ACCUMULATOR, AND LITHIUM ACCUMULATOR
US7709149B2 (en) 2004-09-24 2010-05-04 Lg Chem, Ltd. Composite precursor for aluminum-containing lithium transition metal oxide and process for preparation of the same
JP4752244B2 (ja) * 2004-11-09 2011-08-17 三菱化学株式会社 リチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体及びそれを用いたリチウム二次電池正極、並びにリチウム二次電池
US7682741B2 (en) * 2005-06-29 2010-03-23 Panasonic Corporation Composite particle for lithium rechargeable battery, manufacturing method of the same, and lithium rechargeable battery using the same
JP2007048692A (ja) * 2005-08-12 2007-02-22 Hitachi Vehicle Energy Ltd リチウム二次電池用正極材料、リチウム二次電池用正極板及びこれを用いたリチウム二次電池
JP2009032647A (ja) * 2007-06-25 2009-02-12 Mitsubishi Chemicals Corp リチウム二次電池用正極活物質材料、及びそれを用いたリチウム二次電池用正極並びにリチウム二次電池
WO2009031619A1 (ja) * 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
US20090104517A1 (en) * 2007-10-17 2009-04-23 Toyotaka Yuasa Cathode active material and lithium ion secondary battery containing the same
JP2009099418A (ja) * 2007-10-17 2009-05-07 Hitachi Vehicle Energy Ltd リチウム二次電池用正極材料及びこれを用いたリチウム二次電池
JP5225708B2 (ja) * 2008-02-27 2013-07-03 日本化学工業株式会社 リチウム二次電池正極活物質用リチウムニッケルマンガンコバルト複合酸化物、その製造方法及びリチウム二次電池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321300A (ja) 1995-03-17 1996-12-03 Canon Inc リチウムを利用する二次電池
JPH1083816A (ja) 1996-07-16 1998-03-31 Murata Mfg Co Ltd リチウム二次電池
JPH1074516A (ja) 1996-08-29 1998-03-17 Murata Mfg Co Ltd リチウム二次電池
JPH1074517A (ja) 1996-08-29 1998-03-17 Murata Mfg Co Ltd リチウム二次電池
JPH10255804A (ja) * 1997-01-07 1998-09-25 Murata Mfg Co Ltd リチウム二次電池
JP2000323123A (ja) * 1999-05-06 2000-11-24 Dowa Mining Co Ltd 非水系二次電池用正極活物質および正極
JP2000340226A (ja) * 1999-05-26 2000-12-08 Kawasaki Steel Corp リチウムマンガン複合酸化物粒子およびその製造方法
JP2004253174A (ja) * 2003-02-18 2004-09-09 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP2008266136A (ja) * 2003-04-17 2008-11-06 Agc Seimi Chemical Co Ltd リチウム−ニッケル−コバルト−マンガン含有複合酸化物とリチウム二次電池用正極活物質用原料およびその製造方法
JP2005123179A (ja) * 2003-09-26 2005-05-12 Mitsubishi Chemicals Corp リチウム二次電池正極材用リチウム複合酸化物粒子、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2006089364A (ja) * 2004-08-24 2006-04-06 Sumitomo Metal Mining Co Ltd アルミニウム含有水酸化ニッケル粒子及びその製造方法
JP2009259605A (ja) * 2008-04-17 2009-11-05 Toyota Motor Corp 正極活物質及びその製造方法ならびに該正極活物質を備えた電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2509142A4

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9548506B2 (en) * 2010-12-09 2017-01-17 Yokogawa Electric Corporation Fuel cell evaluator and fuel cell evaluation method
US20120145564A1 (en) * 2010-12-09 2012-06-14 Yokogawa Electric Corporation Fuel cell evaluator and fuel cell evaluation method
KR20140052039A (ko) * 2011-08-26 2014-05-02 도요타지도샤가부시키가이샤 리튬 2차 전지
JP2013045761A (ja) * 2011-08-26 2013-03-04 Toyota Motor Corp リチウム二次電池
WO2013031477A1 (ja) * 2011-08-26 2013-03-07 トヨタ自動車株式会社 リチウム二次電池
US9520592B2 (en) 2011-08-26 2016-12-13 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
KR101649804B1 (ko) * 2011-08-26 2016-08-19 도요타지도샤가부시키가이샤 리튬 2차 전지
EP2750223A4 (en) * 2011-08-26 2015-04-22 Toyota Motor Co Ltd LITHIUM RECHARGEABLE BATTERY
EP2750223A1 (en) * 2011-08-26 2014-07-02 Toyota Jidosha Kabushiki Kaisha Lithium rechargeable battery
CN103765636A (zh) * 2011-08-26 2014-04-30 丰田自动车株式会社 锂二次电池
CN103765638A (zh) * 2011-08-31 2014-04-30 丰田自动车株式会社 锂二次电池
US20140205901A1 (en) * 2011-08-31 2014-07-24 Hiroki Nagai Lithium rechargeable battery
US9653725B2 (en) 2011-08-31 2017-05-16 Toyota Jidosha Kabushiki Kaisha Lithium rechargeable battery
WO2013031478A1 (ja) * 2011-08-31 2013-03-07 トヨタ自動車株式会社 リチウム二次電池
JP2013051172A (ja) * 2011-08-31 2013-03-14 Toyota Motor Corp リチウム二次電池
US9406930B2 (en) 2011-12-20 2016-08-02 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and production method thereof, cathode active material for non-aqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
KR20140126302A (ko) * 2011-12-20 2014-10-30 스미토모 긴조쿠 고잔 가부시키가이샤 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
JP2013147416A (ja) * 2011-12-20 2013-08-01 Sumitomo Metal Mining Co Ltd ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2013094701A1 (ja) * 2011-12-20 2013-06-27 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
KR101644252B1 (ko) 2011-12-20 2016-07-29 스미토모 긴조쿠 고잔 가부시키가이샤 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
US10109849B2 (en) 2012-06-06 2018-10-23 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these
CN104396065A (zh) * 2012-06-29 2015-03-04 丰田自动车株式会社 锂二次电池和具有锂二次电池的车辆
WO2014060814A1 (en) 2012-10-17 2014-04-24 Toyota Jidosha Kabushiki Kaisha Secondary battery
US9954219B2 (en) * 2013-01-11 2018-04-24 Gs Yuasa International Ltd. Electric storage device and manufacturing method thereof
US20140199589A1 (en) * 2013-01-11 2014-07-17 Gs Yuasa International Ltd. Electric storage device and manufacturing method thereof
JP2016154143A (ja) * 2013-05-10 2016-08-25 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池
WO2014181891A1 (ja) * 2013-05-10 2014-11-13 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池
US10424787B2 (en) 2013-05-10 2019-09-24 Sumitomo Metal Mining Co., Ltd. Transition metal composite hydroxide particles and production method thereof, cathode active material for non-aqueous electrolyte rechargeable battery and production method thereof, and nonaqueous electrolyte rechargeable battery
US11283072B2 (en) 2013-05-10 2022-03-22 Sumitomo Metal Mining Co., Ltd. Transition metal composite hydroxide particles and production method thereof, cathode active material for non-aqueous electrolyte rechargeable battery and production method thereof, and nonaqueous electrolyte rechargeable battery
JP2015002120A (ja) * 2013-06-17 2015-01-05 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物及びその製造方法
WO2014203814A1 (ja) * 2013-06-17 2014-12-24 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物及びその製造方法
US10236504B2 (en) 2013-06-17 2019-03-19 Sumitomo Metal Mining Co., Ltd. Nickel-cobalt-manganese composite hydroxide, and production method therefor
JP2015043332A (ja) * 2014-10-14 2015-03-05 トヨタ自動車株式会社 リチウム二次電池
JP2016129114A (ja) * 2015-01-09 2016-07-14 トヨタ自動車株式会社 非水電解質二次電池用電極およびその製造方法
JP7422121B2 (ja) 2021-12-27 2024-01-25 プライムアースEvエナジー株式会社 リチウムイオン二次電池

Also Published As

Publication number Publication date
JP2011119092A (ja) 2011-06-16
US20130302687A1 (en) 2013-11-14
EP2509142A1 (en) 2012-10-10
EP2533329B1 (en) 2014-07-02
EP2533329A3 (en) 2013-03-06
JP5175826B2 (ja) 2013-04-03
KR101563775B1 (ko) 2015-10-27
EP2509142B1 (en) 2015-12-16
KR20150093252A (ko) 2015-08-17
CA2781658A1 (en) 2011-06-09
EP2509142A4 (en) 2013-09-18
CA2781658C (en) 2015-02-17
US20130011331A1 (en) 2013-01-10
KR20120099108A (ko) 2012-09-06
EP2533329A2 (en) 2012-12-12
US8486564B2 (en) 2013-07-16
CN102612772B (zh) 2015-05-06
US9391318B2 (en) 2016-07-12
KR101668974B1 (ko) 2016-10-24
CN102612772A (zh) 2012-07-25
US20120282525A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5175826B2 (ja) 活物質粒子およびその利用
JP5858279B2 (ja) リチウムイオン二次電池
JP6011838B2 (ja) リチウム二次電池
JP5984026B2 (ja) バイモダルタイプの負極活物質組成物、並びに、負極活物質、負極活物質組成物、負極、リチウム二次電池、電池モジュール及び電池パックの製造方法
WO2012153379A1 (ja) リチウムイオン二次電池
WO2011161755A1 (ja) リチウム二次電池
KR20100093034A (ko) 비수전해액 이차 전지용 Li-Ni계 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
JP5696904B2 (ja) リチウムイオン二次電池およびその製造方法
US11967700B2 (en) Non-aqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle and a rock salt layer
JP6493757B2 (ja) リチウムイオン二次電池
JP7201539B2 (ja) リチウム二次電池の正極材料、およびこれを用いたリチウム二次電池
JP7152360B2 (ja) 二次電池の正極、およびこれを用いた二次電池
JP2013206558A (ja) 活物質及びリチウムイオン二次電池
CN112242509B (zh) 非水电解质二次电池
JP7104877B2 (ja) リチウム二次電池用の正極材料
JP7135040B2 (ja) 正極活物質およびその製造方法、ならびにリチウムイオン二次電池
WO2024161962A1 (ja) 非水電解質二次電池用正極および非水電解質二次電池
WO2024090148A1 (ja) 非水電解質二次電池
JP6549444B2 (ja) 活物質粒子の製造方法、活物質粉末材料およびリチウムイオン二次電池
JP6939045B2 (ja) 電気デバイス
CN116195082A (zh) 非水电解质二次电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051688.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2781658

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010834435

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127017038

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13513209

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP