[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014181891A1 - 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池 - Google Patents

遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池 Download PDF

Info

Publication number
WO2014181891A1
WO2014181891A1 PCT/JP2014/062637 JP2014062637W WO2014181891A1 WO 2014181891 A1 WO2014181891 A1 WO 2014181891A1 JP 2014062637 W JP2014062637 W JP 2014062637W WO 2014181891 A1 WO2014181891 A1 WO 2014181891A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
positive electrode
particle
composite hydroxide
active material
Prior art date
Application number
PCT/JP2014/062637
Other languages
English (en)
French (fr)
Inventor
康孝 鎌田
相田 平
広将 戸屋
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201480020849.3A priority Critical patent/CN105122517B/zh
Priority to JP2015515919A priority patent/JP6159395B2/ja
Priority to KR1020157030951A priority patent/KR102203425B1/ko
Priority to EP14794571.1A priority patent/EP3007254B1/en
Priority to US14/890,349 priority patent/US10424787B2/en
Publication of WO2014181891A1 publication Critical patent/WO2014181891A1/ja
Priority to US16/539,170 priority patent/US11283072B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/04Isothermal recrystallisation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a transition metal composite hydroxide particle, a method for producing the same, a positive electrode active material for a non-aqueous electrolyte secondary battery using the transition metal composite hydroxide particle as a precursor, a method for producing the same, and the non-aqueous electrolyte
  • the present invention relates to a non-aqueous electrolyte secondary battery using a positive electrode active material for a secondary battery as a positive electrode material.
  • the lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolytic solution and the like, and a material capable of desorbing and inserting lithium is used as an active material used as a material of the negative electrode and the positive electrode.
  • a lithium ion secondary battery using a layered or spinel type lithium transition metal complex oxide as a positive electrode material can obtain a voltage of 4 V grade, so as a battery having high energy density, At present, research and development are actively conducted, and some are in practical use.
  • Lithium cobalt composite oxide (LiCoO 2 ) which is relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ) using nickel which is cheaper than cobalt, and lithium as a positive electrode material of such a lithium ion secondary battery
  • Nickel-cobalt-manganese composite oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2
  • lithium-manganese composite oxide using manganese LiMn 2 O 4
  • lithium-nickel-manganese composite oxide LiNi 0.5 Mn 0.5) O 2
  • the positive electrode active material be constituted by particles having a small particle diameter and a narrow particle size distribution. This is because particles having a small particle diameter have a large specific surface area, and when used as a positive electrode active material, not only can the reaction area with the electrolytic solution be sufficiently secured, but also the positive electrode is thin and lithium ion This is because the movement distance between the positive electrode and the negative electrode can be shortened, so that the positive electrode resistance can be reduced.
  • particles having a narrow particle size distribution can equalize the voltage applied to the particles in the electrode, so that it is possible to suppress a decrease in battery capacity due to selective deterioration of the particles.
  • Such a positive electrode active material can increase the reaction area with the electrolytic solution as compared with a solid structure positive electrode active material having the same particle diameter, so that the positive electrode resistance can be significantly reduced. .
  • the positive electrode active material takes over the properties of the transition metal composite hydroxide particles to be its precursor. That is, in order to obtain the positive electrode active material described above, it is necessary to appropriately control the particle size, the particle size distribution and the specific surface area of the transition metal composite hydroxide particles as the precursor thereof.
  • JP-A-2012-246199, JP-A-2013-147416 and WO 2012/131881 disclose nucleation for mainly nucleation of transition metal composite hydroxide particles to be a precursor of a positive electrode active material.
  • a process is disclosed which is produced by a crystallization reaction which is clearly separated into two steps, a step and a particle growth step mainly performing particle growth.
  • the pH value of the reaction aqueous solution is in the range of 12.0-13.4 or 12.0-14.0 in the nucleation step on the basis of a liquid temperature of 25 ° C., and in the particle growth step, 10.5. It is controlled in the range of ⁇ 12.0.
  • the reaction atmosphere is an oxidizing atmosphere at the beginning of the nucleation step and the grain growth step, and is switched to a non-oxidizing atmosphere at a predetermined timing.
  • the transition metal composite hydroxide particles obtained by such a method have a small particle diameter and a narrow particle size distribution, and a low density central part consisting of fine primary particles and a high density consisting of plate-like or needle-like primary particles And the outer shell of the Therefore, when such transition metal composite hydroxide particles are fired, the low density central portion largely shrinks, and a space portion is formed inside. Moreover, as described above, the particle properties of the composite hydroxide particles are taken over to the positive electrode active material.
  • the positive electrode active material obtained by the techniques described in these documents has an average particle diameter in the range of 2 ⁇ m to 8 ⁇ m or 2 ⁇ m to 15 ⁇ m, and is an index indicating the spread of particle size distribution [(d90-d10 ) / Average particle diameter] is 0.60 or less, and has a hollow structure. Therefore, in secondary batteries using these positive electrode active materials, it is considered that the capacity characteristics, output characteristics and cycle characteristics can be simultaneously improved.
  • the present invention in view of the above problems, when a secondary battery is constructed, a positive electrode active material capable of simultaneously improving all of capacity characteristics, output characteristics and cycle characteristics, and a transition metal which is a precursor thereof It aims at providing composite hydroxide particles. Another object of the present invention is to provide a secondary battery using such a positive electrode active material. Furthermore, another object of the present invention is to provide a method by which such positive electrode active material and transition metal composite hydroxide particles can be easily produced in industrial scale production.
  • the method for producing a transition metal composite hydroxide particle of the present invention is a method for producing a transition metal composite hydroxide particle to be a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery by a crystallization reaction,
  • An aqueous solution for nucleation including at least a metal compound containing at least a transition metal and an ammonium ion donor is controlled to have a pH value of 12.0 to 14.0 at a liquid temperature of 25 ° C. to perform nucleation.
  • the aqueous solution for particle growth containing nuclei obtained in the nucleation step and the nucleation step, wherein the pH value at a liquid temperature of 25 ° C. is lower than the pH value of the nucleation step, and 10.5 And a particle growth step of controlling the growth to 12.0 and growing the nuclei.
  • the reaction atmosphere at the initial stage of the nucleation step and the particle growth step is a non-oxidizing atmosphere having an oxygen concentration of 5% by volume or less.
  • the atmosphere is switched from the oxidative atmosphere to a non-oxidative atmosphere in which the oxygen concentration is 5% by volume or less
  • the control is performed at least once.
  • the particle growth step it is preferable to switch from the non-oxidizing atmosphere to the oxidizing atmosphere within the range of 5% to 35% of the entire particle growth step time from the start of the particle growth step.
  • the crystallization reaction time in the oxidizing atmosphere in the particle growth step is preferably 3% to 20% with respect to the entire particle growth step time.
  • the total crystallization reaction time in the oxidizing atmosphere in the particle growth step is 3% to 30% with respect to the entire particle growth step time, And it is preferable to make the crystallization reaction time in an oxidizing atmosphere per time into 1% or more with respect to the whole particle growth process time.
  • the transition metal composite hydroxide particle of the present invention is a transition metal composite hydroxide particle to be a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a plurality of plate-like primary particles and the plate-like primary particles Smaller primary particles consist of secondary particles formed by aggregation.
  • the secondary particles have a central portion formed by aggregation of the plate-like primary particles, and the fine primary particles are outside the central portion. It is characterized in that it has at least one laminated structure in which a low density portion formed by aggregation and a high density portion formed by aggregation of the plate-like primary particles are laminated. Further, the secondary particles are characterized in that the average particle diameter is 1 ⁇ m to 15 ⁇ m, and [(d90 ⁇ d10) / average particle diameter] which is an index indicating the spread of the particle size distribution is 0.65 or less. I assume.
  • the average value of the ratio of the outer diameter of the central portion to the particle diameter of the secondary particles is preferably 30% to 80%.
  • the average value of the ratio of the radial thickness of the high density portion to the particle diameter of the secondary particles is preferably 5% to 25%.
  • the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention comprises the steps of: mixing the transition metal composite hydroxide particles and a lithium compound to form a lithium mixture; and the mixing step And B. firing the lithium mixture at 650 ° C. to 980 ° C. in an oxidizing atmosphere.
  • the lithium mixture is adjusted so that the ratio of the sum of the number of atoms of metals other than lithium contained in the lithium mixture and the number of atoms of lithium is 1: 0.95 to 1.5. It is preferable to do.
  • the method further comprises a heat treatment step of heat treating the transition metal composite hydroxide particles at 105 ° C. to 750 ° C. before the mixing step.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention comprises secondary particles formed by aggregation of a plurality of primary particles, and the secondary particles have a central portion of a solid structure or a hollow structure. At least a space where no primary particle exists and an outer shell electrically connected to the center are provided outside the center. Further, the secondary particles are characterized in that the average particle diameter is 1 ⁇ m to 15 ⁇ m, and [(d90 ⁇ d10) / average particle diameter], which is an index indicating the spread of the particle size distribution, is 0.7 or less. I assume. At least one inner shell may be present between the space and the outer shell.
  • the particles of the secondary particles comprises the central portion, a space portion where the primary particle is not present outside the central portion, and an outer shell portion electrically conducted to the central portion, the particles of the secondary particles
  • the average value of the ratio of the outer diameter of the central portion to the diameter is preferably 30% to 80%. In this case, it is preferable that an average value of the ratio of the thickness in the radial direction of the outer shell portion to the particle diameter of the secondary particles is 5% to 25%.
  • the positive electrode active material for the nonaqueous electrolyte secondary battery preferably has a specific surface area of 0.7m 2 /g ⁇ 3.0m 2 / g.
  • the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the positive electrode active material for non-aqueous electrolyte secondary battery is used as a positive electrode material of the positive electrode. It is characterized by
  • a positive electrode active material capable of simultaneously improving all of capacity characteristics, output characteristics and cycle characteristics, and transition metal composite hydroxide particles as a precursor thereofcan be provided. Moreover, according to the present invention, a secondary battery using such a positive electrode active material can be provided. Furthermore, according to the present invention, it is possible to provide a method by which such positive electrode active material and transition metal composite hydroxide particles can be easily produced in industrial scale production. For this reason, the industrial significance of the present invention is extremely great.
  • FIG. 1 is an FE-SEM photograph (5,000 ⁇ magnification) of a cross section of the transition metal composite hydroxide particles obtained in Example 1.
  • FIG. 2 is an FE-SEM photograph (5,000 ⁇ magnification) of a cross section of the positive electrode active material obtained in Example 1.
  • FIG. 3 is an FE-SEM photograph (5,000 ⁇ magnification) of a cross section of the positive electrode active material obtained in Example 3.
  • FIG. 4 is an FE-SEM photograph (observed magnification: 5,000 times) of the cross section of the positive electrode active material obtained in Comparative Example 1.
  • FIG. 5 is a schematic cross-sectional view of a 2032 type coin battery used for battery evaluation.
  • FIG. 6 is a schematic explanatory view of a measurement example of impedance evaluation and an equivalent circuit used for analysis.
  • the inventor of the present invention when used as a positive electrode material for a non-aqueous electrolyte secondary battery, can simultaneously improve the capacity characteristics, output characteristics and cycle characteristics, and a positive electrode active material for a non-aqueous electrolyte secondary battery (hereinafter, “positive electrode active material” We carefully studied about).
  • positive electrode active material a positive electrode active material for a non-aqueous electrolyte secondary battery
  • the reaction atmosphere in the initial stage of the growth step is a non-oxidizing atmosphere, and after switching from the non-oxidizing atmosphere to the oxidizing atmosphere in the particle growth step, atmosphere control is again switched at least once to a non-oxidizing atmosphere.
  • atmosphere control is again switched at least once to a non-oxidizing atmosphere.
  • Transition metal composite hydroxide particles (1) Transition metal composite hydroxide particles
  • the transition metal composite hydroxide particles (hereinafter referred to as "composite hydroxide particles") of the present invention are a plurality of plate-like primary particles and this plate Secondary particles formed by aggregation of fine primary particles smaller than the primary particles.
  • the secondary particles have a central portion formed by aggregation of plate-like primary particles, and a low density portion formed by aggregation of fine primary particles outside the central portion and aggregation of plate-like primary particles It is characterized in that it comprises at least one laminated structure in which the high-density portions formed by laminating are laminated. Further, the secondary particles are characterized in that the average particle diameter is 1 ⁇ m to 15 ⁇ m, and [(d90 ⁇ d10) / average particle diameter], which is an index indicating the spread of the particle size distribution, is 0.65 or less. I assume.
  • the composite hydroxide particle of the present invention has a central portion formed by aggregation of plate-like primary particles, and at least at least a laminated structure in which low density portions and high density portions are alternately laminated outside the central portion. It is characterized by having one.
  • the low density portion means a portion formed by the aggregation of fine primary particles inside the secondary particles.
  • the high density portion means a portion formed by aggregation of plate-like primary particles having a thickness larger than that of the fine primary particles inside the secondary particles.
  • the positive electrode active material obtained has a structure in which a partial space is formed outside the central part, and an inner shell or outer shell is formed outside the space.
  • a plurality of secondary particles in which plate-like primary particles are aggregated may be connected in the central portion of the composite hydroxide particles. In this case, a space and an inner shell portion or an outer shell portion are formed outside the central portion made of the connected secondary particles.
  • the fine primary particles constituting the low density portion of the composite hydroxide particles preferably have an average particle diameter of 0.01 ⁇ m to 0.3 ⁇ m, and more preferably 0.1 ⁇ m to 0.3 ⁇ m. If the average particle size of the fine primary particles is less than 0.01 ⁇ m, a low density portion with a sufficient size may not be formed. On the other hand, when the average particle diameter of the fine primary particles exceeds 0.3 ⁇ m, the shrinkage at the time of firing does not proceed in the low temperature region, and the shrinkage difference between the central portion and the high density portion is reduced. It may not be possible to form a sufficiently large space.
  • the shape of such fine primary particles is preferably plate-like and / or needle-like. With such a shape of the fine primary particles, the density difference between the low density part and the central part and the high density part can be made sufficiently large, and the size of the obtained positive electrode active material is sufficient. Space part of the
  • the average particle diameter of the fine primary particles or plate-like primary particles described below is such that the composite hydroxide particles are embedded in a resin or the like, and the cross section can be observed by cross section polisher processing etc. It observes using a scanning electron microscope (SEM), and can obtain
  • the maximum diameter of 10 or more fine primary particles or plate-like primary particles present in the cross section of the secondary particles is measured, and the average value thereof is determined, and this value is determined as the fine primary particles or plate-like in the secondary particles. Let it be the particle size of primary particles.
  • the particle diameter of the fine primary particles or plate-like primary particles is determined similarly for 10 or more secondary particles.
  • the average particle size of the fine primary particles or plate-like primary particles can be determined by calculating the average value of the particle sizes of the fine primary particles or plate-like primary particles in these secondary particles.
  • the plate-like primary particles constituting the central portion and the high density portion of the composite hydroxide particles preferably have an average particle diameter of 0.3 ⁇ m to 3 ⁇ m, and more preferably 0.4 ⁇ m to 1.5 ⁇ m. More preferably, it is 0.4 ⁇ m to 1 ⁇ m.
  • the average particle diameter of the plate-like primary particles is less than 0.3 ⁇ m, the shrinkage at the time of firing starts from the low temperature region, and the shrinkage difference with the low density portion decreases, so the space of sufficient size in the obtained positive electrode active material There is a case that can not form a part.
  • the average particle diameter of the plate-like primary particles exceeds 3 ⁇ m, in order to obtain sufficient crystallinity of the obtained positive electrode active material, it is not necessary to bake at high temperature, and sintering between secondary particles As a result, it becomes difficult to control the average particle size and particle size distribution of the positive electrode active material in a predetermined range.
  • the ratio of the outer diameter of the central portion and the radial thickness of the high density portion to the particle diameter of the secondary particles is substantially maintained in the positive electrode active material using this as a precursor Be done. That is, the structure of the positive electrode active material obtained by appropriately controlling the ratio of the outer diameter of the central portion to the particle diameter of the secondary particles and the radial thickness of the high density portion at the stage of the composite hydroxide particles. Can be more preferable.
  • the average value of the ratio of the outer diameter of the central portion to the particle diameter of the secondary particles (hereinafter referred to as “outside of the central portion
  • the average diameter ratio is referred to as 30% to 80%, more preferably 40% to 75%, and still more preferably 50% to 75%. If the average ratio of the outer diameter of the central portion is less than 30%, the obtained positive electrode active material can not be electrically conducted between the central portion and the outer shell, or the outer shell becomes excessively thick, etc. Will occur. On the other hand, when the average ratio of the outer diameter of the central portion exceeds 80%, in the obtained positive electrode active material, problems such as insufficient space portion formation and an excessively thin outer shell portion occur.
  • the average value of the ratio of the thickness in the radial direction of the high density portion to the particle diameter of the secondary particle (hereinafter referred to as “high”
  • the average ratio of radial thickness in the density portion is referred to as 5% to 25%, more preferably 5% to 20%, and still more preferably 5% to 15%. If the average ratio of the thickness in the radial direction of the high density part is less than 5%, the shrinkage amount of the composite hydroxide particles at the time of firing becomes excessively large, and not only the strength of the positive electrode active material decreases, but also between secondary particles Sintering may occur to deteriorate the particle size distribution of the obtained positive electrode active material. On the other hand, when the average ratio of the high density part radial direction thickness exceeds 25%, there is a possibility that a space part of a sufficient size can not be formed in the obtained positive electrode active material.
  • the composite hydroxide particles have two or more of the above-described laminated structures, it is preferable to set the average ratio of the core outer diameter to 20% to 70%, and to 25% to 65%. Is more preferred. Further, the average ratio of the thickness in the radial direction of the high density part (the sum of the thicknesses of a plurality of high density parts) is preferably 10% to 40%, and more preferably 15% to 35%. Furthermore, the average value of the ratio of the thickness in the radial direction per high density part to the particle diameter of the secondary particles (hereinafter referred to as “the average proportion of the radial thickness per one high density part”) is 5 % To 25% is preferable, and 5% to 20% is more preferable. Thereby, even when the composite hydroxide particles have two or more of the above-described laminated structures, it is possible to form a space of a sufficient size in the obtained positive electrode active material.
  • the average ratio of the outer diameter of the central portion and the average ratio of the radial thickness of the high density portion are obtained by using cross-sectional SEM photographs of secondary particles. , Can be determined as follows.
  • the thickness in the radial direction of the high density part is measured at three or more arbitrary positions per particle, and the average value is obtained.
  • the radial thickness of the high density part is a distance between two points where the distance from the outer periphery of the secondary particle to the boundary between the high density part and the low density part is the shortest.
  • the distance between two points where the distance is maximum is measured on the center and the outer periphery of the secondary particle, and the value is taken as the outer diameter of the center and the particle diameter of the secondary particle in the secondary particle. .
  • the ratio of the outer diameter of the central portion to the particle diameter of the secondary particles and the high density Determine the ratio of radial thickness of the part.
  • the same measurement is performed on ten or more secondary particles, and the average ratio can be determined to determine the average ratio of the center outer diameter and the average ratio of the high density portion radial direction thickness.
  • the particle diameter of the secondary particles is similarly measured except that the thickness in the radial direction is measured for each of the plurality of high density parts.
  • the average ratio of the center outer diameter, the average ratio of the high density portion radial thickness, and the average ratio of the radial thickness per high density portion can be determined.
  • the composite hydroxide particles of the present invention have an average particle size of secondary particles adjusted to 1 ⁇ m to 15 ⁇ m, preferably 3 ⁇ m to 12 ⁇ m, more preferably 3 ⁇ m to 10 ⁇ m.
  • the average particle size of the secondary particles correlates with the average particle size of the positive electrode active material having this composite hydroxide particle as a precursor. Therefore, by controlling the average particle size of the secondary particles in such a range, it is possible to control the average particle size of the positive electrode active material having this composite hydroxide particle as a precursor in a predetermined range. Become.
  • the average particle diameter of the secondary particles means the volume-based average particle diameter (MV), and can be determined from, for example, a volume integration value measured by a laser light diffraction scattering particle size analyzer.
  • the composite hydroxide particles of the present invention are an index showing the spread of particle size distribution [(d90-d10) / average particle size] is 0.65 or less, preferably 0.55 or less It is more preferably adjusted to be 0.50 or less.
  • the particle size distribution of the positive electrode active material is strongly influenced by the composite hydroxide particles that are its precursor. For this reason, when a composite hydroxide particle containing a large amount of fine particles and coarse particles is used as a precursor, the positive electrode active material contains a large amount of fine particles and coarse particles, and the safety of a secondary battery using this. , The cycle characteristics and the output characteristics can not be sufficiently improved. On the other hand, if [(d90-d10) / average particle diameter] is adjusted to 0.65 or less at the stage of the composite hydroxide particles, the positive electrode active material using this as a precursor The particle size distribution can be narrowed and the problems described above can be avoided.
  • d10 accumulates the number of particles in each particle size from the side of smaller particle size, and the accumulated volume is 10% of the total volume of all particles
  • d90 similarly accumulates the number of particles, It means a particle size whose cumulative volume is 90% of the total volume of all particles.
  • d10 and d90 can be determined from volume integration values measured by a laser light diffraction scattering particle size analyzer.
  • a positive electrode active material represented by General Formula (B) described later can be easily obtained, and higher battery performance can be realized.
  • the composition range of nickel, manganese, cobalt and the additional element M constituting the composite hydroxide particle and the critical significance thereof are represented by the general formula (B) It becomes the same as the positive electrode active material. Therefore, the description of these matters is omitted here.
  • the method of producing composite hydroxide particles of the present invention is a method of producing composite hydroxide particles to be a precursor of a positive electrode active material by crystallization reaction.
  • the aqueous solution for nucleation including at least a metal compound containing at least a transition metal and an ammonium ion donor so that the pH value at a liquid temperature of 25 ° C. becomes 12.0 to 14.0.
  • the aqueous solution for particle growth containing a nucleation step and the nucleus obtained in this nucleation step is lower in pH value at a liquid temperature of 25 ° C.
  • the reaction atmosphere at the initial stage of the nucleation step and the particle growth step is a non-oxidizing atmosphere having an oxygen concentration of 5% by volume or less.
  • the atmosphere control is further switched from an oxidizing atmosphere to a non-oxidizing atmosphere having an oxygen concentration of 5% by volume or less It is characterized in that it is performed at least once.
  • the method for producing composite hydroxide particles of the present invention is not limited by the composition as long as the above-described structure, average particle diameter and particle size distribution can be realized, but it is represented by the general formula (A) It can apply suitably to compound hydroxide particles.
  • the crystallization reaction is clearly defined in two steps, a nucleation step mainly for nucleation and a particle growth step mainly for particle growth.
  • the composite hydroxide particles having the above-described particle structure, average particle diameter and particle size distribution are obtained by separating and adjusting the crystallization conditions in each step, and in particular, changing the reaction atmosphere at a predetermined timing. It is possible to do that.
  • the operation necessary for adjusting the crystallization conditions is basically the same as in the prior art, the method for producing composite hydroxide particles of the present invention can be easily applied to industrial scale production. .
  • nucleation step first, a transition metal compound to be a raw material in this step is dissolved in water to prepare a raw material aqueous solution.
  • the composition ratio of the composite hydroxide particle obtained becomes the same as the composition ratio of each metal in raw material aqueous solution.
  • an alkaline aqueous solution and an aqueous solution containing an ammonium ion supplier are supplied and mixed in the reaction tank, and the pH value measured on the basis of a liquid temperature of 25 ° C.
  • the raw material aqueous solution is supplied while stirring the pre-reaction aqueous solution.
  • an aqueous solution for generating nuclei which is a reaction aqueous solution in the nucleation step, is formed. Since the pH value of this aqueous solution for nucleation is in the above-mentioned range, in the nucleation step, nucleation occurs preferentially with little growth of nuclei.
  • the pH value of the aqueous solution for nucleation and the concentration of ammonium ions change with nucleation.
  • the aqueous alkali solution and the aqueous ammonia solution are appropriately supplied, and the pH value of the solution in the reaction tank is in the range of pH 12.0 to 14.0 at a liquid temperature of 25 ° C. It is necessary to maintain in the range of / L.
  • nucleation step generation of new nuclei is continuously continued by supplying an aqueous solution containing a raw material aqueous solution, an alkaline aqueous solution and an ammonium ion supplier to the aqueous solution for nucleation. Then, when a predetermined amount of nuclei are generated in the aqueous solution for nucleation, the nucleation step is ended. Under the present circumstances, the generation amount of a nucleus can be judged from the quantity of the metal compound contained in the raw material aqueous solution supplied to the aqueous solution for nucleation.
  • the amount of nucleation generated in the nucleation step is not particularly limited, but in order to obtain composite hydroxide particles having a narrow particle size distribution, it is included in the raw material aqueous solution supplied through the nucleation step and the particle growth step.
  • the content is preferably 0.1 atomic% to 2 atomic%, and more preferably 0.1 atomic% to 1.5 atomic%, with respect to the metal element in the metal compound.
  • the pH value of the aqueous solution for nucleation in the reaction tank is adjusted to 10.5 to 12.0 on the basis of a liquid temperature of 25 ° C. to form an aqueous solution for particle growth which is a reaction aqueous solution in the particle growth step.
  • the pH value can be adjusted by stopping only the supply of the alkaline aqueous solution, but from the viewpoint of obtaining composite hydroxide particles having a narrow particle size distribution, once the supply of all the aqueous solutions is stopped, It is preferred to adjust the pH value.
  • adjustment of pH value should be performed by supplying sulfuric acid to the aqueous solution for nucleation, when using an inorganic acid of the same type as the acid constituting the metal compound as the raw material, for example, sulfate as the raw material.
  • an inorganic acid of the same type as the acid constituting the metal compound as the raw material, for example, sulfate as the raw material.
  • the supply of the aqueous solution of the raw material is resumed.
  • the pH value of the aqueous solution for particle growth is in the above-mentioned range, almost no new nuclei are generated, and nucleus (particle) growth proceeds to form composite hydroxide particles having a predetermined particle diameter. Ru.
  • the pH value and ammonium ion concentration of the aqueous solution for particle growth change along with the particle growth, so the alkaline aqueous solution and the ammonia aqueous solution are appropriately supplied to maintain the pH value and ammonium ion concentration in the above ranges. It is necessary to
  • the reaction atmosphere is switched from the non-oxidative atmosphere to an oxidative atmosphere in which the oxygen concentration exceeds 5 vol. It is necessary to perform atmosphere control at least once, switching from an oxidizing atmosphere to a non-oxidizing atmosphere having an oxygen concentration of 5% by volume or less. This makes it possible to obtain composite hydroxide particles having the above-described structure.
  • metal ions precipitate as nuclei or primary particles in the nucleation step and the particle growth step. For this reason, the ratio of the liquid component to the metal component in the aqueous solution for nucleation and the aqueous solution for particle growth is increased. As a result, the concentration of the raw material aqueous solution apparently decreases, and in particular, in the particle growth step, the growth of composite hydroxide particles may be stagnant. Therefore, in order to suppress an increase in the liquid component, it is preferable to discharge part of the liquid component of the aqueous solution for particle growth out of the reaction tank in the middle of the particle growth step after completion of the nucleation step.
  • the supply and stirring of the aqueous solution containing the raw material aqueous solution, the alkaline aqueous solution and the ammonium ion supply are temporarily stopped, and the nuclei and composite hydroxide particles in the aqueous solution for particle growth are allowed to settle to obtain an aqueous solution for particle growth. It is preferable to drain the supernatant.
  • the relative concentration of the mixed aqueous solution in the aqueous solution for particle growth can be increased, thereby preventing stagnation of the particle growth and controlling the particle size distribution of the composite hydroxide particles obtained to a suitable range. Not only that, but also the density of the secondary particles as a whole can be improved.
  • the particle diameter of the composite hydroxide particles obtained as described above is controlled by the time of the particle growth step and the nucleation step, the pH value of the aqueous solution for nucleation and the aqueous solution for particle growth, and the supply amount of the raw material aqueous solution.
  • Can. for example, by increasing the pH value in the nucleation step to a high value, or by prolonging the time of the particle production step, the amount of metal compound contained in the aqueous solution of the raw material supplied is increased to increase the amount of nucleation.
  • the particle size of the composite hydroxide particles obtained can be reduced.
  • the particle diameter of the composite hydroxide particle obtained can be enlarged by suppressing the generation amount of the nucleus in a nucleation process.
  • a component-adjusted aqueous solution adjusted to a pH value and an ammonium ion concentration suitable for the particle growth step is prepared separately from the aqueous solution for nucleation.
  • An aqueous solution for nucleation after the nucleation step preferably one obtained by removing a part of the liquid component from the aqueous solution for nucleation after the nucleation step is added and mixed, and this is used as an aqueous solution for particle growth; You may
  • the reaction aqueous solution in each step can be controlled to an optimal state.
  • the pH value of the aqueous solution for particle growth can be controlled to the optimum range from the start of the particle growth step, the particle size distribution of the obtained composite hydroxide particles can be made narrower.
  • the ratio of the metal element in the raw material aqueous solution is the composition ratio of the composite hydroxide particles to be obtained. For this reason, it is necessary to appropriately adjust the content of each metal element according to the composition of the desired composite hydroxide particles, as the raw material aqueous solution.
  • the compound of the transition metal for preparing the raw material aqueous solution is not particularly limited, but it is preferable to use water-soluble nitrates, sulfates and hydrochlorides, etc. from the viewpoint of ease of handling, cost and halogen From the viewpoint of preventing contamination, it is particularly preferable to preferably use a sulfate.
  • an additive element M (M is at least one additive element selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W) in the composite hydroxide particles Similarly, as a compound for supplying the additive element M, a water-soluble compound is preferable.
  • magnesium sulfate, calcium sulfate, aluminum sulfate, titanium sulfate, ammonium peroxotitanate, titanium potassium oxalate, Vanadium sulfate, ammonium vanadate, chromium sulfate, potassium chromate, zirconium sulfate, niobium oxalate, ammonium molybdate, hafnium sulfate, sodium tantalate, sodium tungstate, sodium tungstate and the like can be suitably used.
  • the concentration of the raw material aqueous solution is preferably 1 mol / L to 2.6 mol / L, more preferably 1.5 mol / L to 2.2 mol / L in total of the metal compounds.
  • concentration of the raw material aqueous solution is less than 1 mol / L, the amount of the crystallized material per reaction vessel decreases, and the productivity is lowered.
  • concentration of the mixed aqueous solution exceeds 2.6 mol / L, since the saturation concentration at normal temperature is exceeded, crystals of each metal compound may be reprecipitated to clog piping and the like.
  • the above-described metal compound may not necessarily be supplied to the reaction tank as a raw material aqueous solution.
  • the metal is individually added such that the total concentration of all the metal compound aqueous solutions is in the above range.
  • An aqueous compound solution may be prepared and supplied as an aqueous solution of individual metal compounds into the reaction vessel at a predetermined ratio.
  • the feed amount of the raw material aqueous solution is preferably 30 g / L to 200 g / L, more preferably 80 g / L to 150 g / L, at the end of the particle growth step, the concentration of the product in the particle growth aqueous solution is Let's do it. If the concentration of the product is less than 30 g / L, aggregation of primary particles may be insufficient. On the other hand, if it exceeds 200 g / L, the metal salt aqueous solution for nucleation or the metal salt aqueous solution for particle growth may not be sufficiently diffused in the reaction tank, and the particle growth may be biased.
  • the aqueous alkali solution for adjusting the pH value in the reaction aqueous solution is not particularly limited, and a common aqueous alkali metal hydroxide solution such as sodium hydroxide or potassium hydroxide can be used.
  • the alkali metal hydroxide can be directly added to the reaction aqueous solution, but is preferably added as an aqueous solution in view of the easiness of pH control.
  • the concentration of the aqueous alkali metal hydroxide solution is preferably 20% by mass to 50% by mass, and more preferably 20% by mass to 30% by mass.
  • the method of supplying the alkaline aqueous solution is not particularly limited as long as the pH value of the reaction aqueous solution does not increase locally and is maintained in a predetermined range.
  • it may be supplied by a pump whose flow rate can be controlled, such as a metering pump while sufficiently agitating the reaction aqueous solution.
  • the aqueous solution containing the ammonium ion donor is also not particularly limited, and, for example, aqueous ammonia or an aqueous solution of ammonium sulfate, ammonium chloride, ammonium carbonate or ammonium fluoride can be used.
  • aqueous ammonia When aqueous ammonia is used as the ammonium ion donor, its concentration is preferably 20% by mass to 30% by mass, more preferably 22% by mass to 28% by mass. By restricting the concentration of ammonia water to such a range, the loss of ammonia due to volatilization and the like can be suppressed to the minimum, so that the production efficiency can be improved.
  • the supply method of the aqueous solution containing an ammonium ion supply body can also be supplied with the pump which can control flow volume similarly to alkaline aqueous solution.
  • the pH value at a liquid temperature of 25 ° C. is in the range of 12.0 to 14.0 in the nucleation step.
  • the fluctuation range of the pH value during the crystallization reaction is preferably within ⁇ 0.2.
  • the pH value of the reaction aqueous solution (the aqueous solution for nucleation) is 12.0-14.0, preferably 12.3-13.5, more preferably 12.5, based on a liquid temperature of 25 ° C. It is necessary to control in the range of ⁇ 13.3. This makes it possible to suppress the growth of nuclei and give priority to nucleation, and the nuclei produced in this step can be made homogeneous and have a narrow particle size distribution.
  • the pH value is less than 12.0, since the growth of nuclei (particles) proceeds with nucleation, the particle diameter of the obtained composite hydroxide particles becomes nonuniform, and the particle size distribution is deteriorated.
  • the pH value exceeds 14.0 the generated nuclei become too fine, which causes a problem of gelation of the aqueous solution for nucleation.
  • the pH value of the reaction aqueous solution is 10.5 to 12.0, preferably 11.0 to 12.0, more preferably 11.5 to 20, based on a liquid temperature of 25 ° C. It is necessary to control in the range of 12.0. As a result, the formation of new nuclei can be suppressed, and particle growth can be prioritized, and the resulting composite hydroxide particles can be made homogeneous and have a narrow particle size distribution.
  • the pH value is less than 10.5, the ammonium ion concentration increases and the solubility of metal ions increases, so that not only the rate of crystallization reaction becomes slow but also the amount of metal ions remaining in the reaction aqueous solution increases And productivity declines.
  • the pH value exceeds 12.0, the nucleation amount in the particle growth step increases, the particle diameter of the obtained composite hydroxide particles becomes nonuniform, and the particle size distribution is deteriorated.
  • the nucleation step or the particle growth step should be taken as the condition. Can. That is, after making the pH value of the nucleation step higher than 12.0 and nucleating in a large amount, if the pH value of the particle growth step is 12.0, a large amount of nuclei are present in the reaction aqueous solution, Growth occurs preferentially, and composite hydroxide particles having a narrow particle size distribution can be obtained.
  • the pH value of the nucleation step is 12.0
  • the pH value of the particle growth step is made smaller than 12.0.
  • the generated nuclei can grow to obtain good composite hydroxide particles.
  • the pH value of the particle growth step may be controlled to a value lower than the pH value of the nucleation step, and in order to clearly separate nucleation and particle growth, the pH value of the particle growth step is The pH value is preferably 0.5 or more lower than the pH value of the production step, and more preferably 1.0 or more lower.
  • the structure of the composite hydroxide particles of the present invention controls the reaction atmosphere in these steps while controlling the pH value of the reaction aqueous solution in the nucleation step and the particle growth step as described above. It is formed by Therefore, in the method for producing composite hydroxide particles of the present invention, it is important to control the reaction atmosphere together with the control of the pH value in each step. That is, after controlling the pH value in each step as described above, the reaction atmosphere in the initial stage of the nucleation step and the particle growth step is set to a non-oxidizing atmosphere, thereby forming a central portion in which plate-like primary particles are aggregated. Be done.
  • the fine primary particles constituting the low density portion usually have a plate-like and / or needle-like shape, but depending on the composition of the composite hydroxide particles, a rectangular solid, an oval Shapes such as face shape can also be adopted.
  • a rectangular solid, an oval Shapes such as face shape can also be adopted.
  • the primary particles constituting the central portion and the high density portion in this respect. Therefore, in the method for producing composite hydroxide particles of the present invention, it is necessary to appropriately control the reaction atmosphere in each step depending on the composition of the target composite hydroxide particles.
  • the method of controlling the reaction atmosphere is not particularly limited.
  • the reaction atmosphere can be controlled by circulating an atmosphere gas corresponding to the reaction atmosphere in each step into the reaction tank, and further, by bubbling the reaction solution with this atmosphere gas.
  • Non-oxidative atmosphere In the production method of the present invention, it is necessary to control the reaction atmosphere at the stage of forming the central portion and the high density portion of the composite hydroxide particles to a weakly oxidizing atmosphere or a nonoxidizing atmosphere. Specifically, the mixed atmosphere of oxygen and an inert gas may be controlled so that the oxygen concentration in the reaction atmosphere is 5% by volume or less, preferably 2% by volume or less, more preferably 1% by volume or less. It will be necessary. As a result, the nuclei generated in the nucleation step can be grown to a certain range while suppressing unnecessary oxidation, so that the central portion and the high density portion of the composite hydroxide particles have an average particle diameter of 0.
  • the plate-like primary particles having a narrow particle size distribution in the range of 3 ⁇ m to 3 ⁇ m can be aggregated.
  • the reaction atmosphere it is necessary to control the reaction atmosphere to an oxidizing atmosphere. Specifically, it is necessary to control so that the oxygen concentration in the reaction atmosphere is preferably 10% by volume or more, more preferably the atmosphere (oxygen concentration: 21% by volume) so as to exceed 5% by volume. It becomes.
  • the oxygen concentration in the reaction atmosphere By controlling the oxygen concentration in the reaction atmosphere to such a range, particle growth is suppressed and the average particle diameter of the primary particles is controlled to a range of 0.01 ⁇ m to 0.3 ⁇ m. A high density portion and a low density portion having a sufficient density difference can be formed.
  • the upper limit of the oxygen concentration in the reaction atmosphere at this stage is not particularly limited, but when the oxygen concentration is excessively high, the average particle diameter of the primary particles is less than 0.01 ⁇ m, and the low density portion is sufficient. It may not be the size. Therefore, the oxygen concentration is preferably 30% by volume or less.
  • the atmosphere control is performed only once, and it is composed of a central portion, a low density portion, and a high density portion, and the average ratio of the central outer diameter to the particle diameter of secondary particles is in the range of 30% to 80%.
  • the average ratio of the central outer diameter to the particle diameter of secondary particles is in the range of 30% to 80%.
  • it is non-oxidizable within the range of 5% to 35%, preferably 10% to 30%, based on the whole particle growth step time. It is necessary to switch from the atmosphere to the oxidizing atmosphere.
  • the above-mentioned atmosphere control is performed only once, and it is composed of a central portion, a low density portion and a high density portion, and the average ratio of the radial density of high density portion to the particle diameter of secondary particles is 5%
  • the crystallization reaction time in an oxidizing atmosphere is 3% ⁇ 20%, preferably 3% with respect to the total particle growth process time. It is necessary to make it to 15%.
  • Crystallization reaction time in an oxidizing atmosphere is 3% to 30%, preferably 5% to 25% of the total grain growth process time, and crystallization reaction time in an oxidizing atmosphere per operation It is necessary to make the total of the particle growth process time 1% or more, preferably 2% to 15%.
  • the size of the space is sufficient in the positive electrode active material using this composite hydroxide particle as a precursor It may not be a thing. On the other hand, if it exceeds 30%, the thickness of the inner shell or outer shell of the positive electrode active material may become excessively thin, which may cause a problem in strength.
  • the ammonium ion concentration in the reaction aqueous solution is preferably maintained at a constant value within the range of 3 g / L to 25 g / L, more preferably 5 g / L to 20 g / L.
  • the ammonium ion functions as a complexing agent in the reaction aqueous solution
  • the ammonium ion concentration is less than 3 g / L
  • the solubility of the metal ion can not be kept constant, and the reaction aqueous solution becomes easy to gel and shape It becomes difficult to obtain composite hydroxide particles with a uniform particle size.
  • the ammonium ion concentration exceeds 25 g / L
  • the solubility of the metal ion becomes too large, so the amount of metal ion remaining in the reaction aqueous solution increases, which causes the composition deviation and the like.
  • reaction temperature The temperature (reaction temperature) of the reaction aqueous solution needs to be controlled preferably in the range of 20 ° C. or more, more preferably in the range of 20 ° C. to 60 ° C. throughout the nucleation step and particle growth step. .
  • reaction temperature is less than 20 ° C., nucleation is likely to occur due to the decrease in the solubility of the reaction aqueous solution, and it becomes difficult to control the average particle diameter and particle size distribution of the obtained composite hydroxide particles.
  • the upper limit of the reaction temperature is not particularly limited, but when it exceeds 60 ° C., the volatilization of ammonia is promoted, and an ammonium ion supplier to supply ammonium ions in the reaction aqueous solution to control in a certain range The amount of aqueous solution containing is increased and the production cost is increased.
  • the method for coating the composite hydroxide particles with the compound containing the additive element M is not particularly limited. For example, after slurrying the composite hydroxide particles and controlling the pH value in a predetermined range, an aqueous solution (coating aqueous solution) in which the compound containing the additive element M is dissolved is added to the surface of the composite hydroxide particles. By depositing the compound containing the additive element M, composite hydroxide particles uniformly coated with the compound containing the additive element M can be obtained.
  • an alkoxide solution of the additional element M may be added to the slurried composite hydroxide particles in place of the aqueous solution for coating.
  • the composite hydroxide particles may be coated by spraying and drying an aqueous solution or a slurry in which the compound containing the additional element M is dissolved, without slurrying the composite hydroxide particles.
  • the aqueous solution of the raw material and the coating so that the composition of the composite hydroxide particles after coating matches the composition of the target composite hydroxide particles. It is necessary to adjust the composition of the aqueous solution appropriately. Also, the coating step may be performed on the heat treated particles after heat treatment of the composite hydroxide particles.
  • (2-g) Production Device In the method for producing composite hydroxide particles of the present invention, it is preferable to use a device of a type not recovering the product until the reaction is completed, for example, a batch reaction tank. With such an apparatus, as in a continuous crystallizer that recovers a product by an overflow method, compound hydroxide particles having a narrow particle size distribution, because growing particles are not recovered simultaneously with the overflow liquid. Can be easily obtained.
  • the method for producing composite hydroxide particles of the present invention it is necessary to control the reaction atmosphere during the crystallization reaction, so it is preferable to use an apparatus capable of atmosphere control such as a closed system.
  • an apparatus capable of atmosphere control such as a closed system.
  • the positive electrode active material of the present invention is composed of secondary particles formed by aggregation of a plurality of primary particles, The next particle has a solid portion or a central portion of a hollow structure, and at the outside of the central portion, at least a space portion where no primary particle exists and an outer shell portion electrically conducted to the central portion It is characterized by In addition, the secondary particles are characterized in that the average particle diameter is 1 ⁇ m to 15 ⁇ m, and [(d90 ⁇ d10) / average particle diameter] which is an index indicating the spread of the particle size distribution is 0.7 or less. I assume.
  • “electrically conducted” means that the inner shell portion or the outer shell portion of the positive electrode active material directly or via the inner shell portion located inside, the core portion and the structure It means that they are connected and electrically conductive.
  • the case includes at least one inner shell portion between the space portion and the outer shell portion. It means that.
  • the positive electrode active material of the present invention is composed of secondary particles formed by aggregating a plurality of primary particles, and the secondary particles have a central portion of a solid structure or a hollow structure. And at least a space where no primary particle exists and an outer shell electrically connected to the center.
  • the space does not have to be formed entirely between the central portion and the inner shell portion or the outer shell portion, and may be partially formed.
  • the central portion may be in a state in which a plurality of secondary particles formed by aggregation of plate-like primary particles are connected.
  • the electrolyte penetrates into the secondary particles through the grain boundaries or voids between primary particles constituting the inner shell portion and the outer shell portion, and thus the outer shell portion
  • the lithium can be released and inserted not only on the surface of the core but also on the surface of the inner shell and the center.
  • the inner shell portion and the outer shell portion are electrically conducted to the central portion, so that the internal resistance of the particles can be made sufficiently small. Therefore, when the secondary battery is configured using the positive electrode active material of the present invention, the output characteristics can be significantly improved without impairing the capacity characteristics and the cycle characteristics.
  • the migration distance of lithium in each layer is reduced by appropriately controlling the thickness of each layer (central portion, inner shell portion and outer shell portion) constituting the secondary particles.
  • the output characteristics can be further improved.
  • the secondary particles are electrically connected to the central portion of the solid or hollow structure, the space portion where no primary particles exist outside the central portion, and the central portion.
  • the average value of the ratio of the outer diameter of the central portion to the particle diameter of the secondary particles (hereinafter referred to as “average ratio of the outer diameter of the central portion”) is preferably 30% to 80%. % To 75% is more preferable, and 50% to 75% is even more preferable. If the average ratio of the outer diameter of the central portion is less than 30%, the central portion and the inner shell portion or the outer shell portion can not be electrically conducted, and the internal resistance of the particles may increase. In addition, since the outer shell becomes excessively thick, the reaction area with the electrolytic solution may be reduced.
  • the average ratio of the outer diameter of the central portion exceeds 80%, the space decreases, and in some cases the reaction area with the electrolyte can not be sufficiently secured. Furthermore, since the outer shell becomes excessively thin, the strength of the positive electrode active material may be significantly reduced.
  • the average value of the ratio of the thickness in the radial direction of the outer shell portion to the particle diameter of the secondary particles is 5% to 25% Is preferably 5% to 20%, and more preferably 5% to 15%.
  • the average ratio of the thickness in the radial direction of the outer shell is less than 5%, the thickness of the outer shell becomes excessively thin, so the strength of the positive electrode active material significantly decreases, and when producing the positive electrode of the secondary battery, The positive electrode active material may be destroyed to generate fine powder.
  • the average ratio of the thickness in the radial direction of the outer shell exceeds 25%, the outer shell becomes excessively thick, the reaction area with the electrolytic solution may be reduced, and the output characteristics may be deteriorated.
  • the positive electrode active material has at least one inner shell between the space and the outer shell
  • the average value of the ratio of the sum of the radial thickness of the inner shell portion and the outer shell portion to the particle diameter of the secondary particles (hereinafter referred to as "average ratio of radial thickness of inner shell portion and outer shell portion" Is preferably 10% to 35%, and more preferably 12% to 30%.
  • the average value of the ratio of the thickness in the radial direction per inner shell layer to the particle diameter of the secondary particles (hereinafter referred to as “the average ratio of the radial thickness per inner shell layer”) and the outside
  • the average value of the ratio of thickness in the radial direction of the shell (hereinafter referred to as “average ratio of thickness in the radial direction of the outer shell”) is preferably 5% to 23%, and is 5% to 18%. Is more preferred.
  • the average ratio of the outer diameter of the central portion, the average ratio of the radial thickness of the inner shell and outer shell, the average ratio of the radial thickness per inner shell, and the average ratio of the radial thickness of the outer shell Since it is the same as that of the composite hydroxide particle mentioned above, the description here is abbreviate
  • the positive electrode active material of the present invention is adjusted to have an average particle size of 1 ⁇ m to 15 ⁇ m, preferably 3 ⁇ m to 12 ⁇ m, and more preferably 3 ⁇ m to 10 ⁇ m. Not only can the battery capacity per unit volume of the secondary battery using this positive electrode active material be increased if the average particle diameter of the positive electrode active material falls within such a range, but also safety and output characteristics are improved. can do. On the other hand, when the average particle size is less than 1 ⁇ m, the packability of the positive electrode active material is reduced, and the battery capacity per unit volume can not be increased. On the other hand, when the average particle size exceeds 15 ⁇ m, the specific surface area of the positive electrode active material decreases, and the reaction area with the electrolytic solution decreases, which makes it difficult to improve the output characteristics.
  • the average particle diameter of a positive electrode active material means a volume-based average particle diameter (MV) similarly to the composite hydroxide particle mentioned above, for example, volume integration measured with laser beam diffraction scattering type particle size analyzer It can be determined from the value.
  • MV volume-based average particle diameter
  • the positive electrode active material of the present invention is an index indicating the spread of particle size distribution [(d90-d10) / average particle size] is 0.70 or less, preferably 0.60 or less, Preferably, the lithium composite acid particles have a particle size distribution of 0.55 or less and a very narrow particle size distribution.
  • Such a positive electrode active material has a small proportion of fine particles and coarse particles, and a secondary battery using the same has excellent safety, cycle characteristics and output characteristics.
  • the value of u indicating the excess amount of lithium (Li) is preferably -0.05 or more and 0.50 or less, more preferably 0 or more and 0.50 or less, and still more preferably 0 or more and 0.35 or less I assume.
  • the value of u is preferably -0.05 or more and 0.50 or less, more preferably 0 or more and 0.50 or less, and still more preferably 0 or more and 0.35 or less I assume.
  • Nickel (Ni) is an element contributing to high potential and high capacity of the secondary battery, and the value of x indicating the content thereof is preferably 0.3 or more and 0.95 or less, more preferably 0. 3 or more and 0.9 or less. If the value of x is less than 0.3, it is not possible to improve the capacity characteristics of the secondary battery using this positive electrode active material. On the other hand, when the value of x exceeds 0.95, the content of other elements decreases, and the effect can not be obtained.
  • Manganese (Mn) is an element that contributes to the improvement of thermal stability, and the value of y indicating the content thereof is preferably 0.05 or more and 0.55 or less, more preferably 0.10 or more and 0.40 or less I assume. If the value of y is less than 0.05, the thermal stability of a secondary battery using this positive electrode active material can not be improved. On the other hand, when the value of y exceeds 0.55, Mn is eluted from the positive electrode active material at the time of high temperature operation, and charge and discharge cycle characteristics are degraded.
  • Co Co is an element contributing to the improvement of charge and discharge cycle characteristics, and the value of z indicating the content thereof is preferably 0 or more and 0.4 or less, and more preferably 0.10 or more and 0.35 or less. Do. When the value of z exceeds 0.4, the initial discharge capacity of a secondary battery using this positive electrode active material is significantly reduced.
  • an additional element M may be contained in addition to the above-described metal element.
  • magnesium (Mg) magnesium (Mg), calcium (Ca), aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), niobium (Nb), molybdenum
  • Mo hafnium
  • Ta tantalum
  • W tungsten
  • the value of t indicating the content of the additive element M is preferably 0 or more and 0.1 or less, more preferably 0.001 or more and 0.05 or less. When the value of t exceeds 0.1, the metal element contributing to the Redox reaction decreases, and the battery capacity decreases.
  • the additive element M may be uniformly dispersed in the particles of the positive electrode active material, or may cover the particle surface of the positive electrode active material. Furthermore, the surface may be coated after being uniformly dispersed inside the particle. In any case, it is necessary to control the content of the additive element M to be in the above range.
  • the value of x in the general formula (B1) is more preferably 0.7 ⁇ x ⁇ 0.9, and 0.7 ⁇ x ⁇ 0.85. Is more preferred.
  • the positive electrode active material having a specific surface area of the present invention has a specific surface area is preferably 0.7m 2 /g ⁇ 3.0m 2 / g, 1.0m 2 /g ⁇ 3.0m 2 / It is more preferable that it is g.
  • the positive electrode active material having a specific surface area in such a range has a large reaction area with the electrolytic solution, and can significantly improve the output characteristics of a secondary battery using the same.
  • the specific surface area of the positive electrode active material is less than 0.7 m 2 / g, when the secondary battery is configured, the reaction area with the electrolytic solution can not be secured, and the output characteristics are sufficiently improved. It will be difficult to
  • the specific surface area of the positive electrode active material exceeds 3.0 m 2 / g, the reactivity with the electrolytic solution becomes too high, and the thermal stability may be lowered.
  • the specific surface area of the positive electrode active material can be measured, for example, by the BET method using nitrogen gas adsorption.
  • the tap density which is an indicator of the filling property, is preferably 1.0 g / cm 3 or more, and more preferably 1.3 g / cm 3 or more .
  • the packing property may be low, and the capacity characteristics of the entire secondary battery may not be sufficiently improved.
  • the upper limit value of the tap density is not particularly limited, but the upper limit under normal manufacturing conditions is about 3.0 g / cm 3 .
  • the tap density means a bulk density after tapping the sample powder collected in a container 100 times based on JIS Z-2504, and can be measured using a shaking specific gravity measuring device.
  • the method of producing a positive electrode active material of the present invention uses the above-mentioned composite hydroxide particles as a precursor and has a predetermined structure, average particle diameter and particle size distribution There is no particular limitation as long as it is possible to synthesize a positive electrode active material comprising
  • the above-mentioned composite hydroxide particles are mixed with a lithium compound to obtain a lithium mixture, and the obtained lithium mixture is subjected to 650 ° C. to 980 in an oxidizing atmosphere. It is preferable to synthesize
  • the above-described positive electrode active material particularly, the positive electrode active material represented by the general formula (B) can be easily obtained.
  • a heat treatment step is optionally provided prior to the mixing step, and the composite hydroxide particles are mixed with the lithium compound as heat treatment particles. It is also good.
  • the heat treatment particles include not only composite hydroxide particles from which excess moisture has been removed in the heat treatment step, but also transition metal complex oxide particles converted to oxides in the heat treatment step (hereinafter referred to as “complex oxide particles Or mixtures thereof.
  • the heat treatment step is a step of removing excess water contained in the composite hydroxide particles by heating the composite hydroxide particles to 105 ° C. to 750 ° C. to perform heat treatment. Thereby, the remaining moisture can be reduced to a fixed amount until after the firing step, and variations in the composition of the obtained positive electrode active material can be suppressed.
  • the heating temperature in the heat treatment step is 105 ° C. to 750 ° C. If the heating temperature is less than 105 ° C., excess water in the composite hydroxide particles can not be removed, and the variation may not be sufficiently suppressed. On the other hand, even if the heating temperature exceeds 700 ° C., further effects can not be expected and the production cost will increase.
  • the heat treatment step it is only necessary to remove water to such an extent that the ratio of the number of atoms of each metal component in the positive electrode active material and the number of atoms of Li does not vary. There is no need to convert to particle. However, in order to make the variation in the ratio of the number of atoms of each metal component and the number of atoms of Li smaller, all the composite hydroxide particles are converted to composite oxide particles by heating to 400 ° C. or higher. It is preferable to do. In addition, the variation mentioned above can be suppressed more by calculating
  • the atmosphere in which the heat treatment is performed is not particularly limited, as long as it is a non-reducing atmosphere, but it is preferably performed in an air stream that can be easily performed.
  • the heat treatment time is not particularly limited, but is preferably at least 1 hour or more, more preferably 5 hours to 15 hours, from the viewpoint of sufficiently removing excess water in the composite hydroxide particles.
  • the mixing step is a step of mixing a lithium compound with the above-described composite hydroxide particles or heat-treated particles to obtain a lithium mixture.
  • the ratio of the number of metal atoms other than lithium in the lithium mixture specifically, the sum of the number of atoms with nickel, cobalt, manganese and the additional element M (Me), and the number of atoms of lithium (Li)
  • Li / Me is 0.95 to 1.5, preferably 1.0 to 1.5, more preferably 1.0 to 1.35, and still more preferably 1.0 to 1.2. It is necessary to mix the lithium hydroxide with the composite hydroxide particles or the heat-treated particles.
  • the composite hydroxide particles or the heat-treated particles and the lithium compound are adjusted so that Li / Me in the mixing step becomes Li / Me of the target positive electrode active material. It will be necessary to mix.
  • the lithium compound used in the mixing step is not particularly limited, but it is preferable to use lithium hydroxide, lithium nitrate, lithium carbonate or a mixture thereof, in view of easy availability.
  • lithium hydroxide or lithium carbonate is preferably used in consideration of ease of handling and stability of quality.
  • the composite hydroxide particles or the heat-treated particles and the lithium compound be sufficiently mixed so as not to form a fine powder. Insufficient mixing may cause variation in Li / Me among individual particles, and sufficient battery characteristics may not be obtained.
  • a common mixer can be used for mixing. For example, a shaker mixer, a Loedige mixer, a Julia mixer, a V blender, etc. can be used.
  • Pre-Firing Step When using lithium hydroxide or lithium carbonate as the lithium compound, after the mixing step and before the firing step, the lithium mixture is heated to a temperature lower than the firing temperature to be described later and 350 A calcination step may be carried out, in which calcination is carried out at a temperature of from ⁇ C to 800 ⁇ C, preferably from 450 ⁇ C to 780 ⁇ C. Thereby, lithium can be sufficiently diffused in the composite hydroxide particles or the heat-treated particles, and more uniform lithium composite oxide particles can be obtained.
  • the holding time at the above temperature is preferably 1 hour to 10 hours, and more preferably 3 hours to 6 hours.
  • the atmosphere in the calcination step is preferably an oxidative atmosphere as in the firing step described later, and more preferably an atmosphere having an oxygen concentration of 18% by volume to 100% by volume.
  • the lithium mixture obtained in the mixing step is fired under predetermined conditions, and lithium is diffused into the composite hydroxide particles or the heat-treated particles to obtain lithium composite oxide particles. It is a process to obtain.
  • the fine primary particles constituting the low density part of the composite hydroxide particles or the heat treatment particles start sintering at a lower temperature than the plate-like primary particles constituting the central part and the high density part.
  • the amount of contraction is large compared to the central portion and the high density portion composed of plate-like primary particles. For this reason, the fine primary particles constituting the low density portion shrink toward the central portion side or the high density portion side where the progress of sintering is slow, and a space portion of an appropriate size is formed.
  • the central portion With the contraction of the low density portion, the central portion is subjected to a tensile stress in the direction of the radial outer side of the secondary particles.
  • the central portion has a solid structure or a hollow structure depending on the average ratio of the outer diameter of the central portion and the average ratio of the thickness in the radial direction of the high density part. Specifically, when the average ratio of the outer diameter of the central portion is in the range of 20% to 35% or the average ratio of the radial thickness in the high density portion is in the range of 5% to 15%, the central portion has a solid structure It tends to be maintained.
  • the central portion of the positive electrode active material can also be formed into a hollow structure by setting the reaction atmosphere at the very beginning of the nucleation step as an oxidizing atmosphere and forming a low density inside the central portion.
  • the structure of the central portion changes depending on the composition of the composite hydroxide particles, the firing conditions, and the like. Therefore, after conducting a preliminary test, each condition is set so that the central portion has a desired structure. Is preferably controlled appropriately.
  • the furnace used in the firing step is not particularly limited as long as it can heat the lithium mixture in the atmosphere or an oxygen stream.
  • an electric furnace without gas generation is preferable, and either a batch type or a continuous type electric furnace can be suitably used.
  • the calcination temperature of the lithium mixture is required to be 650.degree. C. to 980.degree.
  • the calcination temperature is less than 650 ° C., lithium does not sufficiently diffuse in the composite hydroxide particles or heat-treated particles, and excess lithium, unreacted compound hydroxide particles or heat-treated particles remain, or a lithium composite is obtained
  • the crystallinity of the oxide particles is insufficient.
  • the firing temperature exceeds 980 ° C., the lithium composite oxide particles are vigorously sintered to cause abnormal grain growth, and the proportion of irregularly shaped coarse particles increases.
  • the firing temperature is preferably set to 650 ° C. to 900 ° C.
  • the firing temperature is preferably 800 ° C. to 980 ° C.
  • the temperature rising rate in the firing step is preferably 2 ° C./minute to 10 ° C./minute, and more preferably 2 ° C./minute to 8 ° C./minute. Furthermore, it is preferable to keep the temperature around the melting point of the lithium compound during the firing step, preferably for 1 hour to 5 hours, more preferably for 2 hours to 5 hours. Thereby, the composite hydroxide particles or the heat-treated particles and the lithium compound can be reacted more uniformly.
  • the holding time at the above-mentioned firing temperature is preferably at least 2 hours or more, and more preferably 4 hours to 24 hours. If the holding time at the firing temperature is less than 2 hours, lithium does not sufficiently diffuse in the composite hydroxide particles or heat-treated particles, and excess lithium, unreacted compound hydroxide particles or heat-treated particles remain or are obtained. The crystallinity of the resulting lithium composite oxide particles may be insufficient.
  • the cooling rate from the calcination temperature to at least 200 ° C. after the holding time is preferably 2 ° C./minute to 10 ° C./minute, and more preferably 3 ° C./minute to 7 ° C./minute.
  • the atmosphere at the time of firing is preferably an oxidative atmosphere, more preferably an atmosphere with an oxygen concentration of 18% by volume to 100% by volume, and a mixed atmosphere of oxygen with an oxygen concentration and an inert gas. Particularly preferred. That is, the firing is preferably performed in the air or an oxygen stream. If the oxygen concentration is less than 18% by volume, the crystallinity of the lithium composite oxide particles may be insufficient.
  • the lithium composite oxide particles obtained by the firing step may have aggregation or slight sintering. In such a case, it is preferable to crush an aggregate or a sintered body of lithium composite oxide particles. By this, the average particle diameter and particle size distribution of the positive electrode active material obtained can be adjusted to a suitable range.
  • mechanical energy is injected into an aggregate consisting of a plurality of secondary particles generated by sintering necking between secondary particles at the time of firing, and the secondary particles themselves are hardly destroyed. Separated to mean the operation of loosening the aggregates.
  • known means can be used, and for example, a pin mill, a hammer mill or the like can be used. At this time, it is preferable to adjust the crushing power to an appropriate range so as not to break the secondary particles.
  • Nonaqueous Electrolyte Secondary Battery of the present invention is provided with the same components as a general nonaqueous electrolyte secondary battery, such as a positive electrode, a negative electrode, a separator, and a nonaqueous electrolytic solution.
  • a general nonaqueous electrolyte secondary battery such as a positive electrode, a negative electrode, a separator, and a nonaqueous electrolytic solution.
  • the embodiment described below is merely an example, and the non-aqueous electrolyte secondary battery of the present invention is applied to various modifications and improvements based on the embodiment described in the present specification. It is also possible.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery obtained by the present invention is used, for example, to manufacture a positive electrode for a non-aqueous electrolyte secondary battery as follows.
  • a conductive material and a binder are mixed with the powdery positive electrode active material obtained according to the present invention, and if necessary, activated carbon and a solvent for viscosity adjustment are added, and these are kneaded to combine positive electrodes. Make a material paste. At that time, the mixing ratio of each in the positive electrode mixture paste is also an important factor that determines the performance of the non-aqueous electrolyte secondary battery.
  • the content of the positive electrode active material is 60 parts by mass to 95 parts by mass similarly to the positive electrode of a general non-aqueous electrolyte secondary battery
  • the content of the material can be 1 part by mass to 20 parts by mass
  • the content of the binder can be 1 part by mass to 20 parts by mass.
  • the obtained positive electrode mixture paste is applied, for example, on the surface of a current collector made of aluminum foil, and dried to disperse the solvent. If necessary, pressure may be applied by a roll press or the like to increase the electrode density. Thus, a sheet-like positive electrode can be produced.
  • the sheet-like positive electrode can be cut into an appropriate size according to the target battery, and can be used for battery production.
  • the method of producing the positive electrode is not limited to the one described above, and may be another method.
  • the conductive material it is possible to use, for example, graphite (natural graphite, artificial graphite, expanded graphite and the like), and carbon black based materials such as acetylene black and ketjen black.
  • the binder plays a role of holding the active material particles, and, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluororubber, ethylene propylene diene rubber, styrene butadiene, cellulose resin and polyacrylic.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • fluororubber ethylene propylene diene rubber
  • styrene butadiene cellulose resin
  • cellulose resin polyacrylic.
  • An acid can be used.
  • a positive electrode active material, a conductive material, and activated carbon can be dispersed, and a solvent that dissolves the binder can be added to the positive electrode mixture.
  • a solvent specifically, an organic solvent such as N-methyl-2-pyrrolidone can be used.
  • activated carbon can also be added to the positive electrode mixture.
  • Negative electrode A negative electrode was prepared by mixing a binder with a negative electrode active material capable of absorbing and desorbing lithium metal, lithium alloy or the like, or lithium ion, and adding an appropriate solvent to make a negative electrode
  • the composite material is applied to the surface of a metal foil current collector such as copper, dried, and compressed to form an electrode density if necessary.
  • negative electrode active materials include lithium-containing substances such as metal lithium and lithium alloys, natural graphite capable of absorbing and desorbing lithium ions, organic compound sintered bodies such as artificial graphite and phenol resin, and carbon substances such as coke. Powders can be used.
  • a fluorine-containing resin such as PVDF can be used as in the positive electrode
  • an organic compound such as N-methyl-2-pyrrolidone A solvent can be used.
  • the separator is disposed between the positive electrode and the negative electrode, and has a function of separating the positive electrode and the negative electrode and holding the electrolyte.
  • a separator for example, a thin film such as polyethylene or polypropylene and a film having many fine pores can be used, but there is no particular limitation as long as it has the above-mentioned function.
  • Nonaqueous Electrolyte is obtained by dissolving a lithium salt as a support salt in an organic solvent.
  • organic solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate, linear carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and dipropyl carbonate, and further tetrahydrofuran, 2-methyltetrahydrofuran And one or a mixture of two or more selected from ether compounds such as dimethoxyethane, sulfur compounds such as ethyl methyl sulfone and butanesultone, and phosphorus compounds such as triethyl phosphate and trioctyl phosphate. it can.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate
  • linear carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and dipropyl carbonate
  • 2-methyltetrahydrofuran 2-methyltetra
  • LiPF 6 LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and complex salts thereof can be used.
  • non-aqueous electrolyte may contain a radical scavenger, a surfactant, a flame retardant, and the like.
  • Nonaqueous Electrolyte Secondary Battery comprising the above positive electrode, negative electrode, separator and nonaqueous electrolytic solution may be formed into various shapes such as cylindrical or laminated type. it can.
  • the positive electrode and the negative electrode are stacked via a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolytic solution and passed to the positive electrode current collector and the outside. Connection with the positive electrode terminal and between the negative electrode current collector and the negative electrode terminal leading to the outside are connected using a current collection lead or the like, and sealed in a battery case to complete a non-aqueous electrolyte secondary battery. .
  • the non-aqueous electrolyte secondary battery of the present invention uses the positive electrode active material of the present invention as a positive electrode material. Excellent. Moreover, it can be said that the thermal stability and safety are excellent also in comparison with a secondary battery using a conventional positive electrode active material composed of lithium nickel oxide particles.
  • an initial discharge capacity of 150 mAh / g or more, preferably 158 mAh / g or more and 1.2 ⁇ or less is preferable
  • the non-aqueous electrolyte secondary battery of the present invention is excellent in capacity characteristics, output characteristics and cycle characteristics, and is a small portable electronic device (note type battery) in which these characteristics are required at high levels It can be suitably used as a power source for personal computers, prefecture telephone terminals, etc.).
  • the non-aqueous electrolyte secondary battery of the present invention is excellent in safety, can not only be miniaturized and output increased, but can simplify expensive protective circuits, so it can be used as a mounting space. It can also be suitably used as a power source for transportation equipment subject to restrictions.
  • each sample of the reagent special grade reagent manufactured by Wako Pure Chemical Industries, Ltd. was used for preparation of the composite hydroxide particles and the positive electrode active material.
  • the pH value of the reaction aqueous solution is measured by the pH controller (NPH-690D, manufactured by Nisshin Riko Co., Ltd.) through the nucleation step and the particle growth step, and the supply amount of the sodium hydroxide aqueous solution By adjusting, the fluctuation range of the pH value of the reaction aqueous solution in each step was controlled in the range of ⁇ 0.2.
  • Example 1 Production of composite hydroxide particles [Nucleation step] First, 900 ml of water was put into the reaction vessel and the temperature in the vessel was set to 40 ° C. while stirring. Under the present circumstances, nitrogen gas was distribute
  • Ni: Mn: Co: Zr 33.1: 33.1: 33.1: 0.2 It was dissolved in water to prepare a 2 mol / L aqueous solution of the raw material.
  • the raw material hydraulic solution was supplied to the pre-reaction aqueous solution at 10 ml / min to form an aqueous solution for the nucleation step, and nucleation was performed for 1 minute.
  • 25 mass% sodium hydroxide aqueous solution and 25 mass% ammonia water were supplied timely, and the pH value and ammonium ion concentration of the aqueous solution for nucleation were maintained in the range mentioned above.
  • the supply of all the aqueous solutions is once stopped, and sulfuric acid is added to adjust the pH value to 11.6 with a liquid temperature of 25 ° C., whereby the aqueous solution for particle growth is obtained. It formed.
  • the crystallization reaction is continued for 20 minutes (8.3% with respect to the whole particle growth process time), and once all the aqueous solution supply is once stopped, the reaction tank Nitrogen was allowed to flow, and the reaction atmosphere was a non-oxidizing atmosphere having an oxygen concentration of 2% by volume or less (switching operation 2). In this state, the supply of the raw material aqueous solution was resumed to grow particles.
  • the crystallization reaction is continued for 160 minutes (66.7% with respect to the whole particle growth process time), and then the supply of all the aqueous solutions is stopped to start the particle growth process. finished.
  • the concentration of the product in the aqueous solution for particle growth was 86 g / L.
  • the obtained product is washed with water, filtered and dried to obtain powdered composite hydroxide particles.
  • the composite hydroxide particles have a general formula: Ni 0.331 Mn 0.331 Co 0.331 Zr according to analysis using an ICP emission spectrophotometer (ICPE-9000 manufactured by Shimadzu Corporation). It was confirmed that it was represented by 0.002 W 0.005 (OH) 2 .
  • the average particle diameter of the composite hydroxide particles is measured using a laser light diffraction scattering particle size analyzer (Microtrac HRA, manufactured by Nikkiso Co., Ltd.), and d10 and d90 are measured to broaden the particle size distribution. An indicator [(d90 ⁇ d10) / average particle diameter] was calculated.
  • This lithium mixture is fired in an air (oxygen concentration: 21% by volume) air flow at a heating rate of 2.5 ° C./min up to 950 ° C. and held at this temperature for 4 hours to sinter the cooling rate. It cooled to room temperature as about 4 degrees C / min.
  • air oxygen concentration: 21% by volume
  • this positive electrode active material is represented by a general formula: Li 1.14 Ni 0.331 Mn 0.331 Co 0.331 Zr 0.002 W 0.005 O 2 was confirmed. Moreover, while measuring the average particle diameter of composite hydroxide particle using a laser light diffraction scattering type particle size analyzer, it is an index which measures d10 and d90 and shows the breadth of particle size distribution [(d90-d10) / Average particle size was calculated. Furthermore, the structure of this positive electrode active material, the average ratio of the center outer diameter, and the average ratio of the thickness in the radial direction of the outer shell were determined by observing the positive electrode active material and its cross section using an SEM.
  • the specific surface area was determined with a flow type gas adsorption specific surface area measuring device (Multisorb, manufactured by Yuasa Ionics Co., Ltd.), and the tap density was determined with a tapping machine (KRS-406, Inc., Kuragaku Scientific Instruments Co., Ltd.). The results are shown in Table 3 and FIG.
  • a 2032 type coin battery (B) was produced in a glove box under an Ar atmosphere controlled to have a dew point of ⁇ 80 ° C.
  • the negative electrode (2) of this 2032 type coin battery uses lithium metal with a diameter of 17 mm and a thickness of 1 mm, and the electrolyte contains ethylene carbonate (EC) and diethyl carbonate (DEC) using 1 M LiClO 4 as a supporting electrolyte.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a mixture of equal amounts of (manufactured by Toyama Pharmaceutical Co., Ltd.) was used.
  • the polyethylene porous film with a film thickness of 25 micrometers was used for the separator (3).
  • the 2032 coin battery (B) has a gasket (4) and is assembled into a coin-shaped battery by a positive electrode can (5) and a negative electrode can (6).
  • the resistance value was measured by an alternating current impedance method using a 2032 type coin battery charged with a charging potential of 4.1 V.
  • a Nyquist plot shown in FIG. 5 was obtained using a frequency response analyzer and a potentiogalvanostat (manufactured by Solartron) for the measurement. Since the plot appears as the sum of the solution resistance, the negative electrode resistance and capacity, and the characteristic curve showing the positive electrode resistance and capacity, the value of the positive electrode resistance was calculated by fitting calculation using an equivalent circuit.
  • Example 2 In the particle growth step, switching operation 1 is performed 60 minutes after the start of the particle growth step (25% with respect to the entire particle growth step time), and the supply of the aqueous solution of the raw material is restarted Is continued for 10 minutes (4.2% of the total particle growth process time), then switching operation 2 is performed, and then the crystallization reaction is performed for 170 minutes (70.8% of the total particle growth process time).
  • the composite hydroxide particles were obtained and evaluated in the same manner as in Example 1 except that the reaction was continued. The results are shown in Table 2. Further, a positive electrode active material and a secondary battery were obtained and evaluated in the same manner as in Example 1 except that this composite hydroxide particle was used as a precursor. The results are shown in Table 3.
  • Example 3 In the particle growth step, switching operation 1 is performed 25 minutes after the start of the particle growth step (10.4% with respect to the whole particle growth step time), and the supply of the raw material aqueous solution is resumed. After the precipitation reaction is continued for 20 minutes (8.3% with respect to the total particle growth process time), switching operation 2 is performed, and then the crystallization reaction is performed for 195 minutes (with the entire particle growth process time 81.
  • Composite hydroxide particles were obtained and evaluated in the same manner as in Example 1 except that 3% was continued. The results are shown in Table 2. Further, a positive electrode active material and a secondary battery were obtained and evaluated in the same manner as in Example 1 except that this composite hydroxide particle was used as a precursor. The results are shown in Table 3 and FIG.
  • Example 3 the positive electrode resistance of the secondary battery is slightly higher than that in Example 1. It is considered that this is because the contact between the central portion and the outer shell portion of the positive electrode active material is reduced, and the movement of electrons inside the particle is hindered.
  • Example 4 In the particle growth step, switching operation 1 is performed 70 minutes after the start of the particle growth step (29.2% with respect to the whole particle growth step time), and the supply of the raw material aqueous solution is resumed. After the precipitation reaction is continued for 20 minutes (8.3% with respect to the whole particle growth process time), switching operation 2 is performed, and then the crystallization reaction is carried out for 150 minutes (with respect to the whole particle growth process time).
  • Composite hydroxide particles were obtained and evaluated in the same manner as in Example 1 except that they were continued. The results are shown in Table 2. Further, a positive electrode active material and a secondary battery were obtained and evaluated in the same manner as in Example 1 except that this composite hydroxide particle was used as a precursor. The results are shown in Table 3.
  • Example 5 In the particle growth step, switching operation 1 is performed 15 minutes after the start of the particle growth step (6.3% with respect to the whole particle growth step time), and the supply of the raw material aqueous solution is resumed. After the precipitation reaction is continued for 20 minutes (8.3% with respect to the whole particle growth process time), switching operation 2 is performed, and then the crystallization reaction is performed for 205 minutes (with the entire particle growth process time with 85. 4)
  • the composite hydroxide particles were obtained and evaluated in the same manner as in Example 1 except that they were continued. The results are shown in Table 2. Further, a positive electrode active material and a secondary battery were obtained and evaluated in the same manner as in Example 1 except that this composite hydroxide particle was used as a precursor. The results are shown in Table 3.
  • Example 6 In the grain growth step, switching operation 1 is performed 80 minutes after the start of the grain growth step (33.3% with respect to the whole grain growth step time), and the supply of the raw material aqueous solution is resumed. After the precipitation reaction is continued for 20 minutes (8.3% with respect to the total particle growth process time), switching operation 2 is performed, and then the crystallization reaction is performed for 140 minutes (with the entire particle growth process time) 58.
  • Composite hydroxide particles were obtained and evaluated in the same manner as in Example 1 except that 3% was continued. The results are shown in Table 2. Further, a positive electrode active material and a secondary battery were obtained and evaluated in the same manner as in Example 1 except that this composite hydroxide particle was used as a precursor. The results are shown in Table 3.
  • Example 7 In the particle growth step, switching operation 1 is performed 60 minutes after the start of the particle growth step (25% with respect to the entire particle growth step time), and the supply of the aqueous solution of the raw material is restarted Is continued for 35 minutes (14.6% of the total particle growth process time), then switching operation 2 is performed, and then the crystallization reaction is performed for 145 minutes (60.4% of the total particle growth process time)
  • the composite hydroxide particles were obtained and evaluated in the same manner as in Example 1 except that the reaction was continued. The results are shown in Table 2. Further, a positive electrode active material and a secondary battery were obtained and evaluated in the same manner as in Example 1 except that this composite hydroxide particle was used as a precursor. The results are shown in Table 3.
  • Example 8 In the particle growth step, switching operation 1 is performed 60 minutes after the start of the particle growth step (25% with respect to the entire particle growth step time), and the supply of the aqueous solution of the raw material is restarted Is continued for 45 minutes (18.8% of the total particle growth process time), then switching operation 2 is performed, and then the crystallization reaction is performed for 135 minutes (56.3% of the total particle growth process time).
  • the composite hydroxide particles were obtained and evaluated in the same manner as in Example 1 except that the reaction was continued. The results are shown in Table 2. Further, a positive electrode active material and a secondary battery were obtained and evaluated in the same manner as in Example 1 except that this composite hydroxide particle was used as a precursor. The results are shown in Table 3.
  • Example 9 In the particle growth step, composite hydroxide particles were obtained and evaluated in the same manner as in Example 1 except that the oxygen concentration in the reaction atmosphere was changed to 10% by volume by switching operation 1. The results are shown in Table 2. Further, a positive electrode active material and a secondary battery were obtained and evaluated in the same manner as in Example 1 except that this composite hydroxide particle was used as a precursor. The results are shown in Table 3.
  • Example 10 In the particle growth step, composite hydroxide particles were obtained and evaluated in the same manner as in Example 1 except that the oxygen concentration in the reaction atmosphere was 5.5 vol% by switching operation 1. . The results are shown in Table 2. Further, a positive electrode active material and a secondary battery were obtained and evaluated in the same manner as in Example 1 except that this composite hydroxide particle was used as a precursor. The results are shown in Table 3.
  • Example 11 The oxygen concentration in the reaction atmosphere at the initial stage of the nucleation step and the particle growth step is 4% by volume, and in the particle growth step, the oxygen concentration in the reaction atmosphere is 4% by volume by switching operation 2
  • composite hydroxide particles were obtained and evaluated. The results are shown in Table 2.
  • a positive electrode active material and a secondary battery were obtained and evaluated in the same manner as in Example 1 except that this composite hydroxide particle was used as a precursor. The results are shown in Table 3.
  • Example 12 In the particle growth step, composite hydroxide particles were obtained in the same manner as Example 1, except that switching operations 1 and 2 were performed twice at a predetermined timing. Specifically, switching operation 1 is performed 30 minutes after the start of the particle growth step (12.5% with respect to the entire particle growth step time), and the supply of the aqueous solution of the raw material is resumed. After the precipitation reaction is continued for 15 minutes (6.3% of the total particle growth process time), switching operation 2 is performed, and then the crystallization reaction is performed for 90 minutes (total of the particle growth process time) 37. 5%) continued.
  • Example 1 In the particle growth step, composite hydroxide particles are obtained in the same manner as in Example 1 except that the switching operations 1 and 2 are not performed and the oxygen concentration is maintained in a non-oxidizing atmosphere of 2% by volume or less. The evaluation was made. The results are shown in Table 2. Further, a positive electrode active material and a secondary battery were obtained and evaluated in the same manner as in Example 1 except that this composite hydroxide particle was used as a precursor. The results are shown in Table 3 and FIG.
  • Comparative Example 1 composite hydroxide particles (secondary particles) consisting only of plate-like primary particles were obtained, but due to the large particle diameter, this composite hydroxide particle is used as a precursor In a part of the positive electrode active material to be formed, a hollow portion was formed inside due to shrinkage at the time of firing.
  • Positive electrode (electrode for evaluation) 2 negative electrode 3 separator 4 gasket 5 positive electrode can 6 negative electrode can B 2032 type coin battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】非水電解質二次電池の正極材料として用いた場合に、二次電池の容量特性、出力特性およびサイクル特性を同時に向上させることができる正極活物質を提供する。 【解決手段】少なくとも遷移金属を含有する金属化合物とアンモニウムイオン供給体とを含む核生成用水溶液のpH値を12.0~14.0となるように制御して核生成を行った後(核生成工程)、この核を含有する粒子成長用水溶液のpH値を、該核生成工程のpH値よりも低く、かつ、10.5~12.0となるように制御して成長させる(粒子成長工程)。この際、核生成工程および粒子成長工程の初期を非酸化酸化性雰囲気とするとともに、粒子成長工程において、この非酸化性雰囲気を酸化性雰囲気に切り替えた後、再度、非酸化性雰囲気に切り替える、雰囲気制御を少なくとも1回行う。このような晶析反応により得られた複合水酸化物粒子を前駆体として、正極活物質を得る。

Description

遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池
 本発明は、遷移金属複合水酸化物粒子とその製造方法、この遷移金属複合水酸化物粒子を前駆体とする非水電解質二次電池用正極活物質とその製造方法、および、この非水電解質二次電池用正極活物質を正極材料として用いた非水電解質二次電池に関する。
 近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギ密度を有する小型で軽量な非水電解質二次電池の開発が強く望まれている。また、ハイブリット電気自動車、プラグインハイブリッド電気自動車、電池式電気自動車などの電気自動車用の電源として高出力の二次電池の開発が強く望まれている。
 このような要求を満たす二次電池として、非水電解質二次電池の一種であるリチウムイオン二次電池がある。このリチウムイオン二次電池は、負極、正極、電解液などで構成され、その負極および正極の材料として用いられる活物質には、リチウムを脱離および挿入することが可能な材料が使用される。
 このリチウムイオン二次電池のうち、層状またはスピネル型のリチウム遷移金属複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の電圧が得られるため、高エネルギ密度を有する電池として、現在、研究開発が盛んに行われており、一部では実用化も進んでいる。
 このようなリチウムイオン二次電池の正極材料として、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO2)や、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO2)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/32)、マンガンを用いたリチウムマンガン複合酸化物(LiMn24)、リチウムニッケルマンガン複合酸化物(LiNi0.5Mn0.52)などが提案されている。
 ところで、サイクル特性や出力特性に優れたリチウムイオン二次電池を得るためには、正極活物質が、小粒径で粒度分布が狭い粒子によって構成されていることが必要となる。これは、粒径が小さい粒子は、比表面積が大きく、正極活物質として用いた場合に電解液との反応面積を十分に確保することができるばかりでなく、正極を薄く構成し、リチウムイオンの正極-負極間の移動距離を短くすることができるため、正極抵抗の低減が可能だからである。また、粒度分布が狭い粒子は、電極内で粒子に印加される電圧を均一化できるため、微粒子が選択的に劣化することによる電池容量の低下を抑制することが可能だからである。
 出力特性のさらなる改善を図るためには、正極活物質を中空構造とすることが有効である。このような正極活物質は、粒径が同程度である中実構造の正極活物質と比べて、電解液との反応面積を大きくすることができるため、正極抵抗を大幅に低減することができる。
 なお、正極活物物質は、その前駆体となる遷移金属複合水酸化物粒子の性状を引き継ぐことが知られている。すなわち、上述した正極活物質を得るためには、その前駆体である遷移金属複合水酸化物粒子の粒径、粒度分布および比表面積を適切に制御することが必要となる。
 たとえば、特開2012-246199号公報、特開2013-147416号公報およびWO2012/131881号公報には、正極活物質の前駆体となる遷移金属複合水酸化物粒子を、主として核生成を行う核生成工程と、主として粒子成長を行う粒子成長工程の2段階に明確に分離した晶析反応により、製造する方法が開示されている。これらの方法では、反応水溶液のpH値を、液温25℃基準で、核生成工程では12.0~13.4または12.0~14.0の範囲に、粒子成長工程では、10.5~12.0の範囲に制御している。また、反応雰囲気を、核生成工程および粒子成長工程の初期では酸化性雰囲気とするとともに、所定のタイミングで、非酸化性雰囲気に切り替えている。
 このような方法により得られる遷移金属複合水酸化物粒子は、小粒径で粒度分布が狭く、かつ、微細一次粒子からなる低密度の中心部と、板状または針状一次粒子からなる高密度の外殻部とから構成される。したがって、このような遷移金属複合水酸化物粒子を焼成した場合、低密度の中心部が大きく収縮し、内部に空間部が形成されることとなる。しかも、上述したように、複合水酸化物粒子の粒子性状は、正極活物質に引き継がれることとなる。具体的には、これらの文献に記載の技術により得られる正極活物質は、平均粒径が2μm~8μmまたは2μm~15μmの範囲にあり、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.60以下であり、かつ、中空構造を備えたものとなる。このため、これらの正極活物質を用いた二次電池では、容量特性、出力特性およびサイクル特性を同時に改善できると考えられる。
 しかしながら、これらの正極活物質を用いた二次電池は、出力特性の改善が十分であるとはいえない。特に、上述した電気自動車などの電源としての用途を前提とした場合には、容量特性やサイクル特性を損なうことなく、出力特性をさらに改善することが必要となる。
特開2012-246199号公報 特開2013-147416号公報 WO2012/131881号公報
 本発明は、上述の問題に鑑みて、二次電池を構成した場合に、容量特性、出力特性およびサイクル特性のすべてを同時に向上させることができる正極活物質、および、その前駆体である遷移金属複合水酸化物粒子を提供することを目的とする。また、本発明は、このような正極活物質を用いた二次電池を提供することを目的とする。さらに、本発明は、このような正極活物質および遷移金属複合水酸化物粒子を、工業規模の生産において容易に製造することができる方法を提供することを目的とする。
 本発明の遷移金属複合水酸化物粒子の製造方法は、晶析反応によって、非水電解質二次電池用正極活物質の前駆体となる遷移金属複合水酸化物粒子を製造する方法であって、少なくとも遷移金属を含有する金属化合物とアンモニウムイオン供給体とを含む核生成用水溶液を、液温25℃基準におけるpH値が12.0~14.0となるように制御して、核生成を行う、核生成工程と、前記核生成工程で得られた核を含有する粒子成長用水溶液を、液温25℃基準におけるpH値が、該核生成工程のpH値よりも低く、かつ、10.5~12.0となるように制御して該核を成長させる、粒子成長工程とを備える。
 特に、本発明の遷移金属複合水酸化物粒子の製造方法においては、前記核生成工程および粒子成長工程の初期における反応雰囲気を、酸素濃度が5容量%以下の非酸化性雰囲気とし、前記粒子成長工程において、反応雰囲気を、前記非酸化性雰囲気から酸素濃度が5容量%を超える酸化性雰囲気に切り替えた後、該酸化性雰囲気から酸素濃度が5容量%以下の非酸化性雰囲気に切り替える、雰囲気制御を少なくとも1回行うことを特徴とする。
 前記粒子成長工程において、該粒子成長工程の開始時から、該粒子成長工程時間の全体に対して5%~35%の範囲で、前記非酸化性雰囲気から前記酸化性雰囲気に切り替えることが好ましい。
 前記雰囲気制御を1回のみ行う場合には、前記粒子成長工程における酸化性雰囲気での晶析反応時間を、粒子成長工程時間の全体に対して3%~20%とすることが好ましい。これに対して、前記雰囲気制御を2回以上行う場合には、前記粒子成長工程における酸化性雰囲気での全晶析反応時間を、粒子成長工程時間の全体に対して3%~30%とし、かつ、1回あたりの酸化性雰囲気での晶析反応時間を、粒子成長工程時間の全体に対して1%以上とすることが好ましい。
 前記遷移金属複合水酸化物粒子は、一般式(A):NixMnyCozt(OH)2+a(ただし、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される遷移金属複合水酸化物粒子であることが好ましい。この場合において、前記粒子成長工程後に、前記遷移金属複合水酸化物粒子を、前記添加元素Mを含む化合物で被覆する、被覆工程を行ってもよい。
 本発明の遷移金属複合水酸化物粒子は、非水電解質二次電池用正極活物質の前駆体となる遷移金属複合水酸化物粒子であって、複数の板状一次粒子および該板状一次粒子よりも小さな微細一次粒子が凝集して形成された二次粒子からなる。
 特に、本発明の遷移金属複合水酸化物粒子は、前記二次粒子は、前記板状一次粒子が凝集して形成された中心部を有し、該中心部の外側に、前記微細一次粒子が凝集して形成された低密度部と、該板状一次粒子が凝集して形成された高密度部とが積層した積層構造を少なくとも1つ備えていることを特徴とする。また、前記二次粒子は、平均粒径が1μm~15μmであり、かつ、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.65以下であることを特徴とする。
 前記積層構造を1つのみ備える場合において、前記二次粒子の粒径に対する、前記中心部の外径の比率の平均値は30%~80%であることが好ましい。また、この場合において、前記二次粒子の粒径に対する、前記高密度部の径方向の厚さの比率の平均値は5%~25%であることが好ましい。
 前記遷移金属複合水酸化物粒子は、一般式(A):NixMnyCozt(OH)2+a(ただし、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される遷移金属複合水酸化物粒子であることが好ましい。この場合において、前記添加元素Mは、前記二次粒子の内部に均一に分布および/または該二次粒子の表面を均一に被覆していることが好ましい。
 本発明の非水電解質二次電池用正極活物質の製造方法は、前記遷移金属複合水酸化物粒子とリチウム化合物を混合して、リチウム混合物を形成する混合工程と、前記混合工程で形成された前記リチウム混合物を、酸化性雰囲気中、650℃~980℃で焼成する焼成工程と、を備えることを特徴とする。
 前記混合工程において、前記リチウム混合物を、該リチウム混合物に含まれるリチウム以外の金属の原子数の和と、リチウムの原子数との比が、1:0.95~1.5となるように調整することが好ましい。
 前記混合工程前に、前記遷移金属複合水酸化物粒子を105℃~750℃で熱処理する、熱処理工程をさらに備えることが好ましい。
 前記非水電解質二次電池用正極活物質は、一般式(B):Li1+uNixMnyCozt2(ただし、-0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表され、層状構造を有する六方晶系のリチウムニッケルマンガン複合酸化物粒子からなるものであることが好ましい。
 本発明の非水電解質二次電池用正極活物質は、複数の一次粒子が凝集して形成された二次粒子からなり、前記二次粒子が、中実構造または中空構造の中心部を有し、該中心部の外側に、少なくとも、一次粒子が存在しない空間部と、前記中心部と電気的に導通する外殻部とを備えていることを特徴とする。また、前記二次粒子が、平均粒径が1μm~15μmであり、かつ、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.7以下であることを特徴とする。なお、前記空間部と前記外殻部の間には、少なくとも1つの内殻部が存在してもよい。
 前記二次粒子が、前記中心部と、該中心部の外側に、一次粒子が存在しない空間部と、該中心部と電気的に導通する外殻部からなる場合において、該二次粒子の粒径に対する、該中心部の外径の比率の平均値が30%~80%であることが好ましい。また、この場合において、該二次粒子の粒径に対する、該外殻部の径方向の厚さの比率の平均値が5%~25%であることが好ましい。
 前記非水電解質二次電池用正極活物質は、比表面積が0.7m2/g~3.0m2/gであることが好ましい。
 前記正極活物質は、一般式(B):Li1+uNixMnyCozt2(ただし、-0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表され、層状構造を有する六方晶系の結晶構造を有するリチウム遷移金属複合酸化物粒子からなるものであることが好ましい。
 本発明の非水電解質二次電池は、正極と、負極と、セパレータと、非水電解質とを備え、前記正極の正極材料として、前記非水電解質二次電池用正極活物質が用いられていることを特徴とする。
 本発明によれば、二次電池を構成した場合に、容量特性、出力特性およびサイクル特性のすべてを同時に向上させることができる正極活物質、および、その前駆体である遷移金属複合水酸化物粒子を提供することができる。また、本発明によれば、このような正極活物質を用いた二次電池を提供することができる。さらに、本発明によれば、このような正極活物質および遷移金属複合水酸化物粒子を、工業規模の生産において容易に製造可能な方法を提供することができる。このため、本発明の工業的意義はきわめて大きい。
図1は、実施例1で得られた遷移金属複合水酸化物粒子の断面のFE-SEM写真(観察倍率5,000倍)である。 図2は、実施例1で得られた正極活物質の断面のFE-SEM写真(観察倍率5,000倍)である。 図3は、実施例3で得られた正極活物質の断面のFE-SEM写真(観察倍率5,000倍)である。 図4は、比較例1で得られた正極活物質の断面のFE-SEM写真(観察倍率5,000倍)である。 図5は、電池評価に使用した2032型コイン電池の概略断面図である。 図6は、インピーダンス評価の測定例と解析に使用した等価回路の概略説明図である。
 本発明者は、非水電解質二次電池の正極材料として用いた場合に、容量特性、出力特性およびサイクル特性を同時に改善できる非水電解質二次電池用正極活物質(以下、「正極活物質」という)について鋭意検討を重ねた。この結果、正極活物質の前駆体である遷移金属複合水酸化物粒子を製造する際、晶析反応を核生成工程と粒子成長工程の2段階に明確に分離した上で、核生成工程および粒子成長工程の初期における反応雰囲気を非酸化性雰囲気とし、かつ、粒子成長工程において、非酸化性雰囲気から酸化性雰囲気に切り替えた後、再度、非酸化性雰囲気に切り替える雰囲気制御を少なくとも1回行うことにより、小粒径で粒度分布が狭く、かつ、低密度部と高密度部とが積層した積層構造を備える複合水酸化物粒子が得られるとの知見を得た。また、この複合水酸化物粒子を前駆体とする正極活物質を用いて二次電池を構成した場合には、容量特性やサイクル特性を損なうことなく、出力特性を大幅に向上させることができるとの知見を得た。本発明は、これらの知見に基づき完成されたものである。
 1.遷移金属複合水酸化物粒子
 (1)遷移金属複合水酸化物粒子
 本発明の遷移金属複合水酸化物粒子(以下、「複合水酸化物粒子」という)は、複数の板状一次粒子およびこの板状一次粒子よりも小さな微細一次粒子が凝集して形成された二次粒子からなる。この二次粒子は、板状一次粒子が凝集して形成された中心部を有し、中心部の外側に、微細一次粒子が凝集して形成された低密度部と、板状一次粒子が凝集して形成された高密度部とが積層した積層構造を少なくとも1つ備えていることを特徴とする。また、この二次粒子は、平均粒径が1μm~15μmであり、かつ、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.65以下であることを特徴とする。
 (1-a)粒子構造
 [二次粒子の構造]
 本発明の複合水酸化物粒子は、板状一次粒子が凝集して形成された中心部を有し、中心部の外側に、低密度部と高密度部とが交互に積層した積層構造を少なくとも1つ備えていることを特徴とする。なお、本発明において、低密度部とは、二次粒子の内部において、微細一次粒子が凝集することにより形成された部分を意味する。また、高密度部とは、二次粒子の内部において、微細一次粒子よりも大きく、厚みのある板状一次粒子が凝集することにより形成された部分を意味する。
 このような複合水酸化物粒子を前駆体とすることで、中心部の外側に、空間部と内殻部または外殻部とが交互に配置された多層構造の正極活物質を得ることができる。なお、この複合水酸化物粒子において、低密度部は、中心部の外側全体にわたって形成されている必要はなく、部分的に形成された状態であってもよい。この場合、得られる正極活物質は、中心部の外側に部分的な空間部が形成され、この空間部の外側に内殻部または外殻部が形成された構造となる。また、この複合水酸化物粒子の中心部は、板状一次粒子が凝集した二次粒子が、複数連結した状態であってもよい。この場合、連結した二次粒子からなる中心部の外側に、空間部と、内殻部または外殻部が形成された構造となる。
 [微細一次粒子]
 複合水酸化物粒子の低密度部を構成する微細一次粒子は、平均粒径が、0.01μm~0.3μmであることが好ましく、0.1μm~0.3μmであることがより好ましい。微細一次粒子の平均粒径が0.01μm未満では、十分な大きさの低密度部が形成されない場合ある。一方、微細一次粒子の平均粒径が0.3μmを超えると、焼成時における収縮が低温域で進行せず、中心部および高密度部との収縮差が少なり、得られる正極活物質において、十分な大きさの空間部を形成できない場合がある。
 このような微細一次粒子の形状は、板状および/または針状であることが好ましい。微細一次粒子がこのような形状を採ることで、低密度部と、中心部および高密度部との密度差を十分に大きなものとすることができ、得られる正極活物質において、十分な大きさの空間部を形成することができる。
 なお、微細一次粒子または次述する板状一次粒子の平均粒径は、複合水酸化物粒子を樹脂などに埋め込み、クロスセクションポリッシャ加工などにより断面観察が可能な状態とした上で、この断面を、走査型電子顕微鏡(SEM)を用いて観察し、次のようにして求めることができる。
 はじめに、二次粒子の断面に存在する10個以上の微細一次粒子または板状一次粒子の最大径を測定し、その平均値を求め、この値を、その二次粒子における微細一次粒子または板状一次粒子の粒径とする。次に、10個以上の二次粒子について、同様にして、微細一次粒子または板状一次粒子の粒径を求める。最後に、これらの二次粒子における微細一次粒子または板状一次粒子の粒径の平均値を算出することで、微細一次粒子または板状一次粒子の平均粒径を求めることができる。
 [板状一次粒子]
 複合水酸化物粒子の中心部および高密度部を構成する板状一次粒子は、平均粒径が0.3μm~3μmであることが好ましく、0.4μm~1.5μmであることがより好ましく、0.4μm~1μmであることがさらに好ましい。板状一次粒子の平均粒径が0.3μm未満では、焼成時における収縮が低温域からはじまり、低密度部との収縮差が少なくなるため、得られる正極活物質において、十分な大きさの空間部を形成できない場合がある。一方、板状一次粒子の平均粒径が3μmを超えると、得られる正極活物質の結晶性を十分なものとするためには、高温で焼成しなければならなくなり、二次粒子間の焼結が進行し、正極活物質の平均粒径や粒度分布を所定の範囲に制御することが困難となる。
 [二次粒子の平均粒径に対する、中心部の外径および外殻部の径方向の厚さの比率]
 本発明の複合水酸化物粒子において、二次粒子の粒径に対する、中心部の外径および高密度部の径方向の厚さの比率は、これを前駆体とする正極活物質において、概ね維持される。すなわち、複合水酸化物粒子の段階において、二次粒子の粒径に対する中心部の外径および高密度部の径方向の厚さの比率を適切に制御することにより、得られる正極活物質の構造をより好適なものとすることができる。
 たとえば、複合水酸化物粒子(二次粒子)が、上述した積層構造を1つのみ備える場合、二次粒子の粒径に対する、中心部の外径の比率の平均値(以下、「中心部外径の平均比率」という)を、30%~80%とすることが好ましく、40%~75%とすることがより好ましく、50%~75%とすることがさらに好ましい。中心部外径の平均比率が30%未満では、得られる正極活物質において、中心部と外殻部とを電気的に導通させることができなくなったり、外殻部が過度に厚くなるなどの問題が生じる。一方、中心部外径の平均比率が80%を超えると、得られる正極活物質において、十分な空間部が形成されなかったり、外殻部が過度に薄くなるなどの問題が生じる。
 また、同様に、複合水酸化物粒子が、上述した積層構造を1つのみ備える場合、二次粒子の粒径に対する、高密度部の径方向の厚さの比率の平均値(以下、「高密度部径方向厚さの平均比率」という)を、5%~25%とすることが好ましく、5%~20%とすることがより好ましく、5%~15%とすることがさらに好ましい。高密度部径方向厚さの平均比率が5%未満では、焼成時における複合水酸化物粒子の収縮量が過度に大きくなり、正極活物質の強度が低下するばかりでなく、二次粒子間に焼結が生じて、得られる正極活物質の粒度分布が悪化するおそれがある。一方、高密度部径方向厚さの平均比率が25%を超えると、得られる正極活物質において、十分な大きさの空間部が形成されないおそれがある。
 これに対して、複合水酸化物粒子が、上述した積層構造を2つ以上備える場合、中心部外径の平均比率を20%~70%とすることが好ましく、25%~65%とすることがより好ましい。また、高密度部径方向厚さ(複数の高密度部の厚さの合計)の平均比率を10%~40%とすることが好ましく、15%~35%とすることが好ましい。さらに、二次粒子の粒径に対する高密度部1層あたりの径方向の厚さの比率の平均値(以下、「高密度部1層あたりの径方向厚さの平均比率」という)を、5%~25%とすることが好ましく、5%~20%とすることがより好ましい。これにより、複合水酸化物粒子が、上述した積層構造を2つ以上備える場合であっても、得られる正極活物質において、十分な大きさの空間部を形成することが可能となる。
 なお、複合水酸化物粒子が、上述した積層構造を1つのみ備える場合、中心部外径の平均比率および高密度部径方向厚さの平均比率は、二次粒子の断面SEM写真を用いて、次のようにして求めることができる。
 はじめに、断面SEM写真上で、1粒子あたり3か所以上の任意の位置で、高密度部の径方向の厚さを測定し、その平均値を求める。ここで、高密度部の径方向の厚さは、二次粒子の外周から高密度部と低密度部の境界までの距離が最短となる2点間の距離とする。同時に、中心部および二次粒子の外周上で、距離が最大となる2点間の距離を測定し、その値を、その二次粒子における中心部の外径および二次粒子の粒径とする。そして、中心部の外径および高密度部の径方向の厚さを、二次粒子の粒径で除することにより、その二次粒子の粒径に対する、中心部の外径の比率および高密度部の径方向の厚さの比率を求める。同様の測定を10個以上の二次粒子に対して行い、その平均値を求めることで、中心部外径の平均比率および高密度部径方向厚さの平均比率を求めることができる。
 一方、複合水酸化物粒子が、上述した積層構造を2つ以上備える場合、複数の高密度部のそれぞれについて径方向の厚さを測定すること以外は同様にして、二次粒子の粒径に対する、中心部外径の平均比率、高密度部径方向厚さの平均比率および高密度部1層あたりの径方向厚さの平均比率を求めることができる。
 (1-b)平均粒径
 本発明の複合水酸化物粒子は、二次粒子の平均粒径が、1μm~15μm、好ましくは3μm~12μm、より好ましくは3μm~10μmに調整される。二次粒子の平均粒径は、この複合水酸化物粒子を前駆体とする正極活物質の平均粒径と相関する。このため、二次粒子の平均粒径をこのような範囲に制御することで、この複合水酸化物粒子を前駆体とする正極活物質の平均粒径を所定の範囲に制御することが可能となる。
 なお、本発明において、二次粒子の平均粒径とは、体積基準平均粒径(MV)を意味し、たとえば、レーザ光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
 (1-c)粒度分布
 本発明の複合水酸化物粒子は、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が、0.65以下、好ましくは0.55以下、より好ましくは0.50以下となるように調整される。
 正極活物質の粒度分布は、その前駆体である複合水酸化物粒子の影響を強く受ける。このため、微細粒子や粗大粒子を多く含む複合水酸化物粒子を前駆体とした場合、正極活物質にも微細粒子や粗大粒子が多く含まれることとなり、これを用いた二次電池の安全性、サイクル特性および出力特性を十分に改善することができなくなる。これに対して、複合水酸化物粒子の段階で、〔(d90-d10)/平均粒径〕が0.65以下となるように調整しておけば、これを前駆体とする正極活物質の粒度分布を狭くすることができ、上述した問題を回避することが可能となる。ただし、工業規模の生産を前提とした場合、複合水酸化物粒子として、〔(d90-d10)/平均粒径〕が過度に小さいものを使用することは現実的ではない。したがって、コストや生産性を考慮すると、〔(d90-d10)/平均粒径〕の下限値は、0.25程度とすることが好ましい。
 なお、d10は、各粒径における粒子数を粒径の小さい側から累積し、その累積体積が全粒子の合計体積の10%となる粒径を、d90は、同様に粒子数を累積し、その累積体積が全粒子の合計体積の90%となる粒径を意味する。d10およびd90は、平均粒径と同様に、レーザ光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
 (1-d)組成
 本発明の複合水酸化物粒子は、上述した構造、平均粒径および粒度分布を有する限り、その組成が制限されることはないが、一般式(A):NixMnyCozt(OH)2+a(ただし、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される複合水酸化物粒子であることが好ましい。このような複合水酸化物粒子を前駆体とすることで、後述する一般式(B)で表される正極活物質を容易に得ることができ、より高い電池性能を実現することができる。
 なお、一般式(A)で表される複合水酸化物粒子において、これを構成するニッケル、マンガン、コバルトおよび添加元素Mの組成範囲およびその臨界的意義は、一般式(B)で表される正極活物質と同様となる。このため、これらの事項について、ここでの説明は省略する。
 (2)遷移金属複合水酸化物粒子の製造方法
 本発明の複合水酸化物粒子の製造方法は、晶析反応によって、正極活物質の前駆体となる複合水酸化物粒子を製造する方法であって、少なくとも遷移金属を含有する金属化合物とアンモニウムイオン供給体とを含む核生成用水溶液を、液温25℃基準におけるpH値が12.0~14.0となるように制御して核生成を行う、核生成工程と、この核生成工程で得られた核を含有する粒子成長用水溶液を、液温25℃基準におけるpH値が、核生成工程のpH値よりも低く、かつ、10.5~12.0となるように制御して核を成長させる、粒子成長工程を備える。特に、本発明の複合水酸化物粒子の製造方法は、核生成工程および粒子成長工程の初期における反応雰囲気を、酸素濃度が5容量%以下の非酸化性雰囲気とするとともに、粒子成長工程において、反応雰囲気を、非酸化性雰囲気から酸素濃度が5容量%を超える酸化性雰囲気に切り替えた後、さらに、酸化性雰囲気から酸素濃度が5容量%以下の非酸化性雰囲気に切り替える、雰囲気制御を、少なくとも1回行うことを特徴とする。
 なお、本発明の複合水酸化物粒子の製造方法は、上述した構造、平均粒径および粒度分布を実現できる限り、その組成によって制限されることはないが、一般式(A)で表される複合水酸化物粒子に対して、好適に適用することができる。
 (2-a)晶析反応
 本発明の複合水酸化物粒子の製造方法では、晶析反応を、主として核生成を行う核生成工程と、主として粒子成長を行う粒子成長工程の2段階に明確に分離するとともに、各工程における晶析条件を調整することにより、特に、所定のタイミングで反応雰囲気を変更することにより、上述した粒子構造、平均粒径および粒度分布を備える複合水酸化物粒子を得ることを可能としている。また、晶析条件の調整に必要な操作は、基本的には従来技術と同様であるため、本発明の複合水酸化物粒子の製造方法は、工業規模の生産に容易に適用することができる。
 [核生成工程]
 核生成工程では、はじめに、この工程における原料となる遷移金属の化合物を水に溶解し、原料水溶液を調製する。なお、本発明の複合水酸化物粒子の製造方法では、得られる複合水酸化物粒子の組成比は、原料水溶液における各金属の組成比と同様となる。同時に、反応槽内に、アルカリ水溶液と、アンモニウムイオン供給体を含む水溶液を供給および混合して、液温25℃基準で測定するpH値が12.0~14.0、アンモニウムイオン濃度が3g/L~25g/Lである反応前水溶液を調製する。また、反応槽内に、不活性ガスを導入し、反応雰囲気を、酸素濃度が5容量%以下の非酸化性雰囲気に調整する。なお、反応前水溶液のpH値はpH計により、アンモニウムイオン濃度はイオンメータにより測定することができる。
 次に、この反応前水溶液を撹拌しながら、原料水溶液を供給する。これにより、反応槽内には、核生成工程における反応水溶液である核生用成水溶液が形成される。この核生成用水溶液のpH値は上述した範囲にあるので、核生成工程では、核はほとんど成長することなく、核生成が優先的に起こる。なお、核生成工程では、核生成に伴い、核生成用水溶液のpH値およびアンモニウムイオンの濃度は変化する。このため、アルカリ水溶液およびアンモニア水溶液を適時供給し、反応槽内液のpH値を、液温25℃基準でpH12.0~14.0の範囲に、アンモニウムイオンの濃度を、3g/L~25g/Lの範囲に維持することが必要となる。
 核生成工程では、核生成用水溶液に、原料水溶液、アルカリ水溶液およびアンモニウムイオン供給体を含む水溶液を供給することにより、連続して新しい核の生成が継続される。そして、核生成用水溶液中に、所定量の核が生成した時点で、核生成工程を終了する。この際、核の生成量は、核生成用水溶液に供給した原料水溶液に含まれる金属化合物の量から判断することができる。
 なお、核生成工程における核の生成量は、特に制限されるものではないが、粒度分布の狭い複合水酸化物粒子を得るためには、核生成工程および粒子成長工程を通じて供給する原料水溶液に含まれる金属化合物中の金属元素に対して、0.1原子%~2原子%とすることが好ましく、0.1原子%~1.5原子%とすることがより好ましい。
 [粒子成長工程]
 核生成工程終了後、反応槽内の核生成用水溶液のpH値を、液温25℃基準で10.5~12.0に調整し、粒子成長工程における反応水溶液である粒子成長用水溶液を形成する。この際、アルカリ水溶液の供給のみを停止することでpH値を調整することができるが、粒度分布の狭い複合水酸化物粒子を得る観点から、一旦、すべての水溶液の供給を停止した上で、pH値を調整することが好ましい。なお、pH値の調整は、核生成用水溶液に、原料となる金属化合物を構成する酸と同種の無機酸、たとえば、原料として硫酸塩を使用する場合には、硫酸を供給することで行うことができる。
 次に、この粒子成長用水溶液を撹拌しながら、原料水溶液の供給を再開する。この際、粒子成長用水溶液のpH値は上述した範囲にあるため、新たな核はほとんど生成せず、核(粒子)成長が進行し、所定の粒径を有する複合水酸化物粒子が形成される。なお、粒子成長工程においても、粒子成長に伴い、粒子成長用水溶液のpH値およびアンモニウムイオン濃度は変化するので、アルカリ水溶液およびアンモニア水溶液を適時供給し、pH値およびアンモニウムイオン濃度を上記範囲に維持することが必要となる。
 特に、本発明の複合水酸化物粒子の製造方法では、この粒子成長工程の途中で、反応雰囲気を、前記非酸化性雰囲気から酸素濃度が5容量%を超える酸化性雰囲気に切り替えた後、該酸化性雰囲気から酸素濃度が5容量%以下の非酸化性雰囲気に切り替える、雰囲気制御を少なくとも1回行うことが必要となる。これにより、上述した構造を有する複合水酸化物粒子を得ることが可能となる。
 なお、このような複合水酸化物粒子の製造方法では、核生成工程および粒子成長工程において、金属イオンは、核または一次粒子となって析出する。このため、核生成用水溶液および粒子成長用水溶液中の金属成分に対する液体成分の割合が増加する。この結果、見かけ上、原料水溶液の濃度が低下し、特に、粒子成長工程においては、複合水酸化物粒子の成長が停滞する可能性がある。したがって、液体成分の増加を抑制するため、核生成工程終了後から粒子成長工程の途中で、粒子成長用水溶液の液体成分の一部を反応槽外に排出することが好ましい。具体的には、原料水溶液、アルカリ水溶液およびアンモニウムイオン供給体を含む水溶液の供給および攪拌を一旦停止し、粒子成長用水溶液中の核や複合水酸化物粒子を沈降させて、粒子成長用水溶液の上澄み液を排出することが好ましい。このような操作により、粒子成長用水溶液における混合水溶液の相対的な濃度を高めることができるため、粒子成長の停滞を防止し、得られる複合水酸物粒子の粒度分布を好適な範囲に制御することができるばかりでなく、二次粒子全体としての密度も向上させることができる。
 [複合水酸化物粒子の粒径制御]
 上述のようにして得られる複合水酸化物粒子の粒径は、粒子成長工程や核生成工程の時間、核生成用水溶液や粒子成長用水溶液のpH値や、原料水溶液の供給量により制御することができる。たとえば、核生成工程におけるpH値を高い値とすることにより、または、粒子生成工程の時間を長くすることにより、供給する原料水溶液に含まれる金属化合物の量を増やし、核の生成量を増加させることで、得られる複合水酸化物粒子の粒径を小さくすることができる。反対に、核生成工程における核の生成量を抑制することで、得られる複合水酸化物粒子の粒径を大きくすることができる。
 [晶析反応の別実施態様]
 本発明の複合水酸化物粒子の製造方法では、核生成用水溶液とは別に、粒子成長工程に適したpH値およびアンモニウムイオン濃度に調整された成分調整水溶液を用意し、この成分調整用水溶液に、核生成工程後の核生成用水溶液、好ましくは核生成工程後の核生成用水溶液から液体成分の一部を除去したものを添加および混合して、これを粒子成長用水溶液として、粒子成長工程を行ってもよい。
 この場合、核生成工程と粒子成長工程の分離をより確実に行うことができるため、各工程における反応水溶液を、最適な状態に制御することができる。特に、粒子成長工程の開始時から粒子成長用水溶液のpH値を最適な範囲に制御することができるため、得られる複合水酸化物粒子の粒度分布をより狭いものとすることができる。
 (2-b)供給水溶液
 [原料水溶液]
 本発明においては、原料水溶液中の金属元素の比率が、得られる複合水酸化物粒子の組成比となる。このため、原料水溶液は、目的とする複合水酸化物粒子の組成に応じて、各金属元素の含有量を適宜調整することが必要となる。たとえば、上述した一般式(A)で表される複合水酸化物粒子を得ようとする場合、原料水溶液中の金属元素の比率を、Ni:Mn:Co:M=x:y:z:t(ただし、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1)となるように調整することが必要となる。
 原料水溶液を調製するための、遷移金属の化合物は、特に制限されることはないが、取扱いの容易性から、水溶性の硝酸塩、硫酸塩および塩酸塩などを用いることが好ましく、コストやハロゲンの混入を防止する観点から、硫酸塩を好適に用いることが特に好ましい。
 また、複合水酸化物粒子中に添加元素M(Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)を含有させる場合、添加元素Mを供給するための化合物としては、同様に水溶性の化合物が好ましく、たとえば、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、硫酸ハフニウム、タンタル酸ナトリウム、タングステン酸ナトリウム、タングステン酸アンモニウムなどを好適に用いることができる。
 原料水溶液の濃度は、金属化合物の合計で、好ましくは1mol/L~2.6mol/L、より好ましくは1.5mol/L~2.2mol/Lとする。原料水溶液の濃度が1mol/L未満では、反応槽当たりの晶析物量が少なくなるため、生産性が低下する。一方、混合水溶液の濃度が2.6mol/Lを超えると、常温での飽和濃度を超えるため、各金属化合物の結晶が再析出して、配管などを詰まらせるおそれがある。
 上述した金属化合物は、必ずしも原料水溶液として反応槽に供給しなくてもよい。たとえば、混合すると反応して目的とする化合物以外の化合物が生成されてしまう金属化合物を用いて晶析反応を行う場合、全金属化合物水溶液の合計の濃度が上記範囲となるように、個別に金属化合物水溶液を調製して、個々の金属化合物の水溶液として、所定の割合で反応槽内に供給してもよい。
 また、原料水溶液の供給量は、粒子成長工程の終了時点において、粒子成長水溶液中の生成物の濃度が、好ましくは30g/L~200g/L、より好ましくは80g/L~150g/Lとなるようにする。生成物の濃度が30g/L未満では、一次粒子の凝集が不十分になる場合がある。一方、200g/Lを超えると、反応槽内に、核生成用金属塩水溶液または粒子成長用金属塩水溶液が十分に拡散せず、粒子成長に偏りが生じる場合がある。
 [アルカリ水溶液]
 反応水溶液中のpH値を調整するアルカリ水溶液は、特に制限されることはなく、水酸化ナトリウムや水酸化カリウムなどの一般的なアルカリ金属水酸化物水溶液を用いることができる。なお、アルカリ金属水酸化物を、直接、反応水溶液に添加することもできるが、pH制御の容易さから、水溶液として添加することが好ましい。この場合、アルカリ金属水酸化物水溶液の濃度を、20質量%~50質量%とすることが好ましく、20質量%~30質量%とすることがより好ましい。アルカリ金属水酸化物水溶液の濃度をこのような範囲に規制することにより、反応系に供給する溶媒量(水量)を抑制しつつ、添加位置で局所的にpH値が高くなることを防止することができるため、粒度分布の狭い複合水酸化物粒子を効率的に得ることができる。
 なお、アルカリ水溶液の供給方法は、反応水溶液のpH値が局所的に高くならず、かつ、所定の範囲に維持される限り、特に制限されることはない。たとえば、反応水溶液を十分に撹拌しながら、定量ポンプなどの流量制御が可能なポンプにより供給すればよい。
 [アンモニウム供給体を含む水溶液]
 アンモニウムイオン供給体を含む水溶液も、特に制限されることはなく、たとえば、アンモニア水、または、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウムもしくはフッ化アンモニウムなどの水溶液を使用することができる。
 アンモニウムイオン供給体として、アンモニア水を使用する場合、その濃度は、好ましくは20質量%~30質量%、より好ましくは22質量%~28質量%とする。アンモニア水の濃度をこのような範囲に規制することにより、揮発などによるアンモニアの損失を最小限に抑制することができるため、生産効率の向上を図ることができる。
 なお、アンモニウムイオン供給体を含む水溶液の供給方法も、アルカリ水溶液と同様に、流量制御が可能なポンプにより供給することができる。
 (2-c)pH値
 本発明の複合水酸化物粒子の製造方法においては、液温25℃基準におけるpH値を、核生成工程においては12.0~14.0の範囲に、粒子成長工程においては10.5~12.0の範囲に制御することが必要となる。なお、いずれの工程においても、晶析反応中のpH値の変動幅は、±0.2以内とすることが好ましい。pH値の変動幅が大きい場合、核生成量と粒子成長の割合が一定とならず、粒度分布の狭い複合水酸化物粒子を得ることが困難となる。
 [核生成工程]
 核生成工程においては、反応水溶液(核生成用水溶液)のpH値を、液温25℃基準で、12.0~14.0、好ましくは12.3~13.5、より好ましくは12.5~13.3の範囲に制御することが必要となる。これにより、核の成長を抑制し、核生成を優先させることが可能となり、この工程で生成する核を均質かつ粒度分布の狭いものとすることができる。一方、pH値が12.0未満では、核生成とともに核(粒子)の成長が進行するため、得られる複合水酸化物粒子の粒径が不均一となり、粒度分布が悪化する。また、pH値が14.0を超えると、生成する核が微細になりすぎるため、核生成用水溶液がゲル化する問題が生じる。
 [粒子成長工程]
 粒子成長工程においては、反応水溶液(粒子成長水溶液)のpH値を、液温25℃基準で、10.5~12.0、好ましくは11.0~12.0、より好ましくは11.5~12.0の範囲に制御することが必要となる。これにより、新たな核の生成が抑制され、粒子成長を優先させることが可能となり、得られる複合水酸化物粒子を均質かつ粒度分布が狭いものとすることができる。一方、pH値が10.5未満では、アンモニウムイオン濃度が上昇し、金属イオンの溶解度が高くなるため、晶析反応の速度が遅くなるばかりでなく、反応水溶液中に残存する金属イオン量が増加し、生産性が悪化する。また、pH値が12.0を超えると、粒子成長工程中の核生成量が増加し、得られる複合水酸化物粒子の粒径が不均一となり、粒度分布が悪化する。
 なお、pH値が12.0の場合は、核生成と核成長の境界条件であるため、反応水溶液中に存在する核の有無により、核生成工程または粒子成長工程のいずれかの条件とすることができる。すなわち、核生成工程のpH値を12.0より高くして多量に核生成させた後、粒子成長工程のpH値を12.0とすると、反応水溶液中に多量の核が存在するため、粒子成長が優先して起こり、粒径分布が狭い複合水酸化物粒子を得ることができる。一方、核生成工程のpH値を12.0とすると、反応水溶液中に成長する核が存在しないため、核生成が優先して起こり、粒子成長工程のpH値を12.0より小さくすることで、生成した核が成長して良好な複合水酸化物粒子を得ることができる。いずれの場合においても、粒子成長工程のpH値を核生成工程のpH値より低い値で制御すればよく、核生成と粒子成長を明確に分離するためには、粒子成長工程のpH値を核生成工程のpH値より0.5以上低くすることが好ましく、1.0以上低くすることがより好ましい。
 (2-c)反応雰囲気
 本発明の複合水酸化物粒子の構造は、核生成工程および粒子成長工程における反応水溶液のpH値を上述のように制御するとともに、これらの工程における反応雰囲気を制御することにより形成される。したがって、本発明の複合水酸化物粒子の製造方法においては、各工程におけるpH値の制御とともに、反応雰囲気を制御することが重要な意義を有する。すなわち、各工程におけるpH値を上述のように制御した上で、核生成工程と粒子成長工程の初期の反応雰囲気を非酸化性雰囲気とすることで、板状一次粒子が凝集した中心部が形成される。また、粒子成長工程の途中で、非酸化性雰囲気から酸化性雰囲気に切り替えた後、さらに、非酸化性雰囲気に切り替えることにより、中心部の外側に、微細一次粒子が凝集した低密度部と、板状一次粒子が凝集した高密度部が積層した構造が形成される。
 このような反応雰囲気の制御では、低密度部を構成する微細一次粒子は、通常、板状および/または針状となるが、複合水酸化物粒子の組成によっては、直方体状、楕円状、稜面体状などの形状も採り得る。この点については、中心部および高密度部を構成する一次粒子についても同様である。したがって、本発明の複合水酸化物粒子の製造方法においては、目的とする複合水酸化物粒子の組成に応じて、各段階における反応雰囲気を適切に制御することが必要となる。
 なお、反応雰囲気を制御する方法は、特に制限されることはない。たとえば、各段階における反応雰囲気に相当する雰囲気ガスを、反応槽内に流通させることにより、さらには、反応水溶液を、この雰囲気ガスでバブリングすることにより、反応雰囲気を制御することができる。
 [非酸化性雰囲気]
 本発明の製造方法においては、複合水酸化物粒子の中心部および高密度部を形成する段階における反応雰囲気は、弱酸化性雰囲気ないしは非酸化性雰囲気に制御することが必要となる。具体的には、反応雰囲気中における酸素濃度が、5容量%以下、好ましくは2容量%以下、より好ましくは1容量%以下となるように、酸素と不活性ガスの混合雰囲気に制御することが必要となる。これにより、不要な酸化を抑制しつつ、核生成工程で生成した核を一定の範囲まで成長させることができるため、複合水酸化物粒子の中心部および高密度部を、平均粒径が0.3μm~3μmの範囲にあり、粒度分布が狭い板状一次粒子が凝集した構造とすることができる。
 [酸化性雰囲気]
 一方、本発明の複合水酸化物粒子の低密度部を形成する段階では、反応雰囲気を、酸化性雰囲気に制御することが必要となる。具体的には、反応雰囲気中における酸素濃度が、5容量%を超えるように、好ましくは10容量%以上、より好ましくは大気雰囲気(酸素濃度:21容量%)となるように制御することが必要となる。反応雰囲気中の酸素濃度をこのような範囲に制御することにより、粒子成長が抑制され、一次粒子の平均粒径が0.01μm~0.3μmの範囲に制御されるため、上述した中心部および高密度部と十分な密度差を有する低密度部を形成することができる。
 なお、この段階における反応雰囲気中の酸素濃度の上限は特に制限されることはないが、酸素濃度が過度に高いと、一次粒子の平均粒径が0.01μm未満となり、低密度部が十分な大きさとならない場合がある。このため、酸素濃度は30容量%以下とすることが好ましい。
 [反応雰囲気の切り替え]
 粒子成長工程において、上述した雰囲気制御は、目的とする粒子構造を有する複合水酸化物粒子が形成されるように、適切なタイミングで行うことが必要となる。
 たとえば、雰囲気制御を1回のみ行い、中心部と低密度部と高密度部とから構成され、二次粒子の粒径に対する中心部外径の平均比率が30%~80%の範囲にある、複合水酸化物粒子を得ようとする場合、粒子成長工程の開始時から、この粒子成長工程時間の全体に対して5%~35%、好ましくは10%~30%の範囲で、非酸化性雰囲気から酸化性雰囲気に切り替えることが必要となる。
 また、同様に、上述した雰囲気制御を1回のみ行い、中心部と低密度部と高密度部とから構成され、二次粒子の粒径に対する高密度部径方向厚さの平均比率が5%~25%の範囲にある、複合水酸化物粒子を得ようとする場合、酸化性雰囲気での晶析反応時間を、粒子成長工程時間の全体に対して3%~20%、好ましくは3%~15%とすることが必要となる。
 これに対して、上述した雰囲気制御を2回以上行い、中心部と、複数の低密度部および高密度部とから構成される複合水酸化物粒子を得ようとする場合、粒子成長工程における酸化性雰囲気での全晶析反応時間を、粒子成長工程時間の全体に対して3%~30%、好ましくは5%~25%とし、かつ、1回あたりの酸化性雰囲気での晶析反応時間を、粒子成長工程時間の全体に対して1%以上、好ましくは2%~15%とすることが必要となる。
 酸化性雰囲気での全晶析反応時間が、粒子成長工程時間の全体に対して3%未満では、この複合水酸化物粒子を前駆体とする正極活物質において、空間部の大きさが十分なものとならない場合がある。一方、30%を超えると、正極活物質の内殻部または外殻部の厚さが過度に薄くなり、強度上の問題が生じる場合がある。
 また、1回あたりの酸化性雰囲気での晶析反応時間を、粒子成長工程時間の全体に対して、1%未満とすると、十分な大きさの低密度部を形成することができない場合がある。
 (2-d)アンモニウムイオン濃度
 反応水溶液中のアンモニウムイオン濃度は、好ましくは3g/L~25g/L、より好ましくは5g/L~20g/Lの範囲内で一定値に保持する。
 反応水溶液中においてアンモニウムイオンは錯化剤として機能するため、アンモニウムイオン濃度が3g/L未満では、金属イオンの溶解度を一定に保持することができず、また、反応水溶液がゲル化しやすくなり、形状や粒径の整った複合水酸化物粒子を得ることが困難となる。一方、アンモニウムイオン濃度が25g/Lを超えると、金属イオンの溶解度が大きくなりすぎるため、反応水溶液中に残存する金属イオン量が増加し、組成ずれなどの原因となる。
 なお、晶析反応中にアンモニウムイオン濃度が変動すると、金属イオンの溶解度が変動し、均一な複合水酸化物粒子が形成されなくなる。このため、核生成工程と粒子成長工程を通じて、アンモニウムイオン濃度の変動幅を一定の範囲に制御することが好ましく、具体的には、±5g/Lの変動幅に制御することが好ましい。
 (2-e)反応温度
 反応水溶液の温度(反応温度)は、核生成工程と粒子成長工程を通じて、好ましくは20℃以上、より好ましくは20℃~60℃の範囲に制御することが必要となる。反応温度が20℃未満の場合、反応水溶液の溶解度が低くなることに起因して、核生成が起こりやすくなり、得られる複合水酸化物粒子の平均粒径や粒度分布の制御が困難となる。なお、反応温度の上限は、特に制限されることはないが、60℃を超えると、アンモニアの揮発が促進され、反応水溶液中のアンモニウムイオンを一定範囲に制御するために供給するアンモニウムイオン供給体を含む水溶液の量が増加し、生産コストが増加してしまう。
 (2-f)被覆工程
 本発明の複合水酸化物粒子の製造方法では、原料水溶液中に添加元素Mを含有する化合物を添加することで、粒子内部に添加元素Mが均一に分散した複合水酸化物粒子を得ることができる。しかしながら、より少ない添加量で、添加元素Mの添加による効果を得ようとする場合、粒子成長工程後に、得られた複合水酸化物粒子の表面を、添加元素Mを含む化合物で被覆する被覆工程を行うことが好ましい。
 複合水酸化物粒子を、添加元素Mを含む化合物で被覆する方法は、特に制限されることはない。たとえば、複合水酸化物粒子をスラリー化し、そのpH値を所定の範囲に制御した後、添加元素Mを含む化合物を溶解した水溶液(被覆用水溶液)を添加し、複合水酸化物粒子の表面に添加元素Mを含む化合物を析出させることで、添加元素Mを含む化合物によって均一に被覆された複合水酸化物粒子を得ることができる。
 この場合、被覆用水溶液に代えて、添加元素Mのアルコキシド溶液を、スラリー化した複合水酸化物粒子に添加してもよい。また、複合水酸化物粒子をスラリー化せずに、添加元素Mを含む化合物を溶解した水溶液またはスラリーを吹き付けて乾燥させることにより被覆してもよい。さらに、複合水酸化物粒子と添加元素Mを含む化合物が懸濁したスラリーを噴霧乾燥させる方法により、または、複合水酸化物粒子と添加元素Mを含む化合物を固相法で混合するなどの方法により被覆することもできる。
 なお、複合水酸化物粒子の表面を添加元素Mで被覆する場合、被覆後の複合水酸化物粒子の組成が、目的とする複合水酸化物粒子の組成と一致するように、原料水溶液および被覆用水溶液の組成を適宜調整することが必要となる。また、被覆工程は、複合水酸化物粒子を熱処理した後の熱処理粒子に対して行ってもよい。
 (2-g)製造装置
 本発明の複合水酸化物粒子の製造方法では、反応が完了するまで生成物を回収しない方式の装置、たとえば、バッチ反応槽を用いることが好ましい。このような装置であれば、オーバーフロー方式によって生成物を回収する連続晶析装置のように、成長中の粒子がオーバーフロー液と同時に回収されることがないため、粒度分布が狭い複合水酸化物粒子を容易に得ることができる。
 また、本発明の複合水酸化物粒子の製造方法では、晶析反応中の反応雰囲気を制御することが必要であるため、密閉式の装置などの雰囲気制御可能な装置を使用することが好ましい。このような装置であれば、核生成工程や粒子成長工程における反応雰囲気を適切に制御することができるため、上述した粒子構造を有し、かつ、粒度分布が狭い複合水酸化物粒子を容易に得ることができる。
 2.非水電解質二次電池用性欲活物質
 (1)非水電解質二次電池用正極活物質
 本発明の正極活物質は、複数の一次粒子が凝集して形成された二次粒子からなり、この二次粒子が、中実構造または中空構造の中心部を有し、中心部の外側に、少なくとも、一次粒子が存在しない空間部と、中心部と電気的に導通する外殻部とを備えていることを特徴とする。また、前記二次粒子は、平均粒径が1μm~15μmであり、かつ、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.7以下であることを特徴とする。
 なお、本発明において、「電気的に導通する」とは、正極活物質の内殻部または外殻部が、直接的に、または、内側に存在する内殻部を介して、中心部と構造的に接続され、電気的に導通可能な状態であることを意味する。
 また、「中実構造または中空構造の中心部を有し、中心部の外側に、少なくとも、一次粒子が存在しない空間部と、中心部と電気的に導通する外殻部とを備えている」とは、二次粒子が、中心部と空間部と外殻部とから構成されている場合のほか、空間部と外殻部との間に、少なくとも1つの内殻部を存在する場合を含むことを意味する。
 (1-a)粒子構造
 本発明の正極活物質は、複数の一次粒子が凝集して形成された二次粒子からなり、この二次粒子が、中実構造または中空構造の中心部を有し、中心部の外側に、少なくとも、一次粒子が存在しない空間部と、中心部と電気的に導通する外殻部とを備えていることを特徴とする。なお、この正極活物質において、空間部は、中心部と内殻部または外殻部との間の全体に形成される必要はなく、部分的に形成されていてもよい。また、中心部は、板状一次粒子が凝集して形成された二次粒子が複数連結した状態であってもよい。
 このような粒子構造を有する正極活物質では、内殻部および外殻部を構成する一次粒子間の粒界または空隙を介して、二次粒子の内部に電解液が浸入するため、外殻部の表面ばかりでなく、内殻部や中心部の表面においても、リチウムの脱離および挿入が可能となる。しかも、この正極活物質では、内殻部および外殻部は、中心部と電気的に導通しているため、粒子内部の抵抗を十分に小さなものとすることができる。したがって、本発明の正極活物質を用いて二次電池を構成した場合、容量特性やサイクル特性を損なうことなく、出力特性を大幅に向上させることが可能となる。
 さらに、本発明の正極活物質では、二次粒子を構成する各層(中心部、内殻部および外殻部)の厚さを適切に制御することで、各層内におけるリチウムの移動距離を少なくし、出力特性を一層向上させることができる。
 本発明の正極活物質において、二次粒子が、中実構造または中空構造の中心部と、中心部の外側に、一次粒子が存在しない空間部と、中心部と電気的に導通する外殻部とからなる場合、二次粒子の粒径に対する中心部の外径の比率の平均値(以下、「中心部外径の平均比率」という)は、30%~80%であることが好ましく、40%~75%であることがより好ましく、50%~75%であることがさらに好ましい。中心部外径の平均比率が30%未満では、中心部と内殻部または外殻部とを電気的に導通させることができなくなり、粒子内部の抵抗が増加する場合がある。また、外殻部が過度に厚くなるため、電解液との反応面積が減少する場合がある。一方、中心部外径の平均比率が80%を超えると、空間部が減少し、電解液との反応面積を十分に確保できない場合がある。さらに、外殻部が過度に薄くなるため、正極活物質の強度が著しく低下する場合がある。
 また、この場合、二次粒子の粒径に対する外殻部の径方向の厚さの比率の平均値(以下、「外殻部径方向厚さの平均比率」という)は、5%~25%であることが好ましく、5%~20%であることがより好ましく、5%~15%であることがさらに好ましい。外殻部径方向厚さの平均比率が5%未満では、外殻部の厚さが過度に薄くなるため、正極活物質の強度が著しく低下し、二次電池の正極を作製する際に、正極活物質が破壊され、微粉が生じる場合がある。一方、外殻部径方向厚さの平均比率が25%を超えると、外殻部が過度に厚くなり、電解液との反応面積が減少し、出力特性が低下する場合がある。
 これに対して、正極活物質が、空間部と外殻部との間に少なくとも1つの内殻部を有する場合、中心部外径の平均比率を20%~70%とすることが好ましく、25%~65%とすることがより好ましい。また、二次粒子の粒径に対する、内殻部および外殻部の径方向の厚さの合計の比率の平均値(以下、「内殻部および外殻部径方向厚さの平均比率」という)を10%~35%とすることが好ましく、12%~30%とすることが好ましい。さらに、二次粒子の粒径に対する、内殻部1層あたりの径方向の厚さの比率の平均値(以下、「内殻部1層あたりの径方向厚さの平均比率」という)および外殻部の径方向の厚さの比率の平均値(以下、「外殻部径方向厚さの平均比率」という)を、5%~23%とすることが好ましく、5%~18%とすることがより好ましい。これにより、正極活物質が、空間部と外殻部との間に少なくとも1つの内殻部を有する場合であっても、その強度を確保しつつ、電解液との反応面積を増加させることが可能となる。
 なお、中心部外径の平均比率、内殻部および外殻部径方向厚さの平均比率、内殻部1層あたりの径方向厚さの平均比率および外殻部径方向厚さの平均比率の求め方は、上述した複合水酸化物粒子と同様であるため、ここでの説明は省略する。
 (1-b)平均粒径
 本発明の正極活物質は、平均粒径が、1μm~15μm、好ましくは3μm~12μm、より好ましくは3μm~10μmとなるように調整される。正極活物質の平均粒径がこのような範囲にあれば、この正極活物質を用いた二次電池の単位容積あたりの電池容量を増加させることができるばかりでなく、安全性や出力特性も改善することができる。これに対して、平均粒径が1μm未満では、正極活物質の充填性が低下し、単位容積あたりの電池容量を増加させることができない。一方、平均粒径が15μmを超えると、正極活物質の比表面積が低下し、電解液との反応面積が減少するため、出力特性を改善することが困難となる。
 なお、正極活物質の平均粒径とは、上述した複合水酸化物粒子と同様に、体積基準平均粒径(MV)を意味し、たとえば、レーザ光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
 (1-c)粒度分布
 本発明の正極活物質は、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が、0.70以下、好ましくは0.60以下、より好ましくは0.55以下であり、きわめて粒度分布が狭いリチウム複合酸物粒子により構成される。このような正極活物質は、微細粒子や粗大粒子の割合が少なく、これを用いた二次電池は、安全性、サイクル特性および出力特性が優れたものとなる。
 これに対して、〔(d90-d10)/平均粒径〕が0.70を超えると、正極活物質中の微細粒子や粗大粒子の割合が増加する。たとえば、微細粒子の割合が多い正極活物質を用いた二次電池は、微細粒子の局所的な反応に起因して、発熱し、安全性が低下するとともに、微細粒子が選択的に劣化するため、サイクル特性が劣ったものとなる。また、粗大粒子の割合が多い正極活物質を用いた二次電池は、電解液と正極活物質の反応面積を十分に確保することができず、出力特性が劣ったものとなる。
 一方、工業規模の生産を前提とした場合、正極活物質として、〔(d90-d10)/平均粒径〕が過度に小さいものを用いることは現実的でではない。したがって、コストや生産性を考慮すると、〔(d90-d10)/平均粒径〕の下限値は、0.25程度とすることが好ましい。
 なお、粒度分布の広がりを示す指標〔(d90-d10)/平均粒径〕におけるd10およびd90の意味、ならびに、これらの求め方は、上述した複合水酸化物粒子と同様であるため、ここでの説明は省略する。
 (1-d)組成
 本発明の正極活物質は、上述した構造を有する限り、その組成が制限されることはないが、一般式(B):Li1+uNixMnyCozt2(ただし、-0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される正極活物質に対して好適に適用することができる。
 この正極活物質において、リチウム(Li)の過剰量を示すuの値は、好ましくは-0.05以上0.50以下、より好ましく0以上0.50以下、さらに好ましくは0以上0.35以下とする。uの値を上記範囲に規制することにより、この正極活物質を正極材料として用いた二次電池の出力特性および容量特性を向上させることができる。これに対して、uの値がー0.05未満では、二次電池の正極抵抗が大きくなるため、出力特性を向上させることができない。一方、uの値が0.50を超えると、初期放電容量が低下するばかりでなく、正極抵抗も大きくなってしまう。
 ニッケル(Ni)は、二次電池の高電位化および高容量化に寄与する元素であり、その含有量を示すxの値は、好ましくは0.3以上0.95以下、より好ましくは0.3以上0.9以下とする。xの値が0.3未満では、この正極活物質を用いた二次電の容量特性を向上させることができない。一方、xの値が0.95を超えると、他の元素の含有量が減少し、その効果を得ることができない。
 マンガン(Mn)は、熱安定性の向上に寄与する元素であり、その含有量を示すyの値は、好ましくは0.05以上0.55以下、より好ましくは0.10以上0.40以下とする。yの値が0.05未満では、この正極活物質を用いた二次電池の熱安定性を向上させることができない。一方、yの値が0.55を超えると、高温作動時に正極活物質からMnが溶出し、充放電サイクル特性が劣化してしまう。
 コバルト(Co)は、充放電サイクル特性の向上に寄与する元素であり、その含有量を示すzの値は、好ましくは0以上0.4以下、より好ましくは0.10以上0.35以下とする。zの値が0.4を超えると、この正極活物質を用いた二次電池の初期放電容量が大幅に低下してしまう。
 本発明の正極活物質では、二次電池の耐久性や出力特性をさらに改善するため、上述した金属元素に加えて、添加元素Mを含有してもよい。このような添加元素Mとしては、マグネシウム(Mg)、カルシウム(Ca)、アルミニウム(Al)、チタン(Ti)、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)から選択される1種以上を用いることができる。
 添加元素Mの含有量を示すtの値は、好ましくは0以上0.1以下、より好ましくは0.001以上0.05以下とする。tの値が0.1を超えると、Redox反応に貢献する金属元素が減少するため、電池容量が低下する。
 なお、添加元素Mは、正極活物質の粒子内部に均一に分散させてもよく、正極活物質の粒子表面を被覆させてもよい。さらには、粒子内部に均一に分散させた上で、その表面を被覆させてもよい。いずれにしても、添加元素Mの含有量が上記範囲となるように制御することが必要となる。
 また、一般式(B)で表される正極活物質において、これを用いた二次電池の容量特性のさらなる改善を図る場合、その組成を、一般式(B1):Li1+uNixMnyCozt2(ただし、-0.05≦u≦0.20、x+y+z+t=1、0.7<x≦0.95、0.05≦y≦0.1、0≦z≦0.2、0≦t≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の添加元素)で表されるように調整することが好ましい。特に、熱安定性との両立を図る場合、一般式(B1)におけるxの値を、0.7<x≦0.9とすることがより好ましく、0.7<x≦0.85とすることがさらに好ましい。
 一方、熱安定性のさらなる改善を図る場合、その組成を、一般式(B2):Li1+uNixMnyCozt2(ただし、-0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表されるように調整することが好ましい。
 (1-e)比表面積
 本発明の正極活物質は、比表面積が、0.7m2/g~3.0m2/gであることが好ましく、1.0m2/g~3.0m2/gであることがより好ましい。比表面積がこのような範囲にある正極活物質は、電解液との反応面積が大きく、これを用いた二次電池の出力特性を大幅に改善することができる。これに対して、正極活物質の比表面積が0.7m2/g未満では、二次電池を構成した場合に、電解液との反応面積を確保することができず、出力特性を十分に向上させることが困難となる。一方、正極活物質の比表面積が3.0m2/gを超えると、電解液との反応性が高くなりすぎるため、熱安定性が低下する場合がある。
 なお、正極活物質の比表面積は、たとえば、窒素ガス吸着によるBET法により測定することができる。
 (1-f)タップ密度
 携帯電子機器の使用時間や電気自動車の走行距離を伸ばすために、二次電池の高容量化は重要な課題となっている。一方、二次電池の電極の厚さは、電池全体のパッキングや電子伝導性の問題から数ミクロン程度とすることが要求される。このため、正極活物質として高容量のものを使用するばかりでなく、正極活物質の充填性を高め、二次電池全体としての高容量化を図ることが必要となる。このような観点から、本発明の正極活物質では、充填性の指標であるタップ密度を、1.0g/cm3以上とすることが好ましく、1.3g/cm3以上とすることがより好ましい。タップ密度が1.0g/cm3未満では、充填性が低く、二次電池全体の容量特性を十分に改善することができない場合がある。一方、タップ密度の上限値は、特に制限されるものではないが、通常の製造条件での上限は、3.0g/cm3程度となる。
 なお、タップ密度とは、JIS Z-2504に基づき、容器に採取した試料粉末を、100回タッピングした後のかさ密度を意味し、振とう比重測定器を用いて測定することができる。
 (2)非水電解質二次電池用正極活物質の製造方法
 本発明の正極活物質の製造方法は、上述した複合水酸化物粒子を前駆体として用い、所定の構造、平均粒径および粒度分布を備える正極活物質を合成することができる限り、特に制限されることはない。しかしながら、工業規模の生産を前提とした場合、上述した複合水酸化物粒子をリチウム化合物と混合し、リチウム混合物を得る混合工程と、得られたリチウム混合物を、酸化性雰囲気中、650℃~980℃で焼成する焼成工程とを備える製造方法によって正極活物質を合成することが好ましい。なお、必要に応じて、上述した工程に、熱処理工程や仮焼工程などの工程を追加してもよい。このような製造方法によれば、上述した正極活物質、特に、一般式(B)で表される正極活物質を容易に得ることができる。
 (2-a)熱処理工程
 本発明の正極活物質の製造方法においては、任意的に、混合工程の前に熱処理工程を設けて、複合水酸化物粒子を熱処理粒子としてからリチウム化合物と混合してもよい。ここで、熱処理粒子には、熱処理工程において余剰水分を除去された複合水酸化物粒子のみならず、熱処理工程により、酸化物に転換された遷移金属複合酸化物粒子(以下、「複合酸化物粒子」という)、または、これらの混合物も含まれる。
 熱処理工程は、複合水酸化物粒子を105℃~750℃に加熱して熱処理することにより、複合水酸化物粒子に含有される余剰水分を除去する工程である。これにより、焼成工程後まで残留する水分を一定量まで減少させることができ、得られる正極活物質の組成のばらつきを抑制することができる。
 熱処理工程における加熱温度は105℃~750℃とする。加熱温度が105℃未満では、複合水酸化物粒子中の余剰水分が除去できず、ばらつきを十分に抑制することができない場合がある。一方、加熱温度が700℃を超えても、それ以上の効果は期待できないばかりか、生産コストが増加してしまう。
 なお、熱処理工程では、正極活物質中の各金属成分の原子数や、Liの原子数の割合にばらつきが生じない程度に水分が除去できればよいので、必ずしもすべての複合水酸化物粒子を複合酸化物粒子に転換する必要はない。しかしながら、各金属成分の原子数やLiの原子数の割合のばらつきをより少ないものとするためには、400℃以上に加熱して、すべての複合水酸化物粒子を、複合酸化物粒子に転換することが好ましい。なお、熱処理条件による複合水酸化物粒子に含有される金属成分を分析によって予め求めておき、リチウム化合物との混合比を決めておくことで、上述したばらつきをより抑制することができる。
 熱処理を行う雰囲気は特に制限されるものではなく、非還元性雰囲気であればよいが、簡易的に行える空気気流中で行うことが好ましい。
 また、熱処理時間は、特に制限されないが、複合水酸化物粒子中の余剰水分を十分に除去する観点から、少なくとも1時間以上とすることが好ましく、5時間~15とすることがより好ましい。
 (2-b)混合工程
 混合工程は、上述した複合水酸化物粒子または熱処理粒子に、リチウム化合物を混合して、リチウム混合物を得る工程である。
 混合工程では、リチウム混合物中のリチウム以外の金属原子、具体的には、ニッケル、コバルト、マンガンおよび添加元素Mとの原子数の和(Me)と、リチウムの原子数(Li)との比(Li/Me)が、0.95~1.5、好ましくは1.0~1.5、より好ましくは1.0~1.35、さらに好ましくは1.0~1.2となるように、複合水酸化物粒子または熱処理粒子とリチウム化合物を混合することが必要となる。すなわち、焼成工程の前後ではLi/Meは変化しないので、混合工程におけるLi/Meが、目的とする正極活物質のLi/Meとなるように、複合水酸化物粒子または熱処理粒子とリチウム化合物を混合することが必要となる。
 混合工程で使用するリチウム化合物は、特に制限されることはないが、入手の容易性から、水酸化リチウム、硝酸リチウム、炭酸リチウムまたはこれらの混合物を用いることが好ましい。特に、取り扱いの容易さや品質の安定性を考慮すると、水酸化リチウムまたは炭酸リチウムを用いることが好ましい。
 複合水酸化物粒子または熱処理粒子とリチウム化合物は、微粉が生じない程度に十分に混合することが好ましい。混合が不十分であると、個々の粒子間でLi/Meにばらつきが生じ、十分な電池特性を得ることができない場合がある。なお、混合には、一般的な混合機を使用することができる。たとえば、シェーカーミキサ、レーディゲミキサ、ジュリアミキサ、Vブレンダなどを用いることができる。
 (2-c)仮焼工程
 リチウム化合物として、水酸化リチウムや炭酸リチウムを使用する場合には、混合工程後、焼成工程の前に、リチウム混合物を、後述する焼成温度よりも低温、かつ、350℃~800℃、好ましくは450℃~780℃で仮焼する仮焼工程を行ってもよい。これにより、複合水酸化物粒子または熱処理粒子中に、リチウムを十分に拡散させることができ、より均一なリチウム複合酸化物粒子を得ることができる。
 なお、上記温度での保持時間は、1時間~10時間とすることが好ましく、3時間~6時間とすることが好ましい。また、仮焼工程における雰囲気は、後述する焼成工程と同様に、酸化性雰囲気とすることが好ましく、酸素濃度が18容量%~100容量%の雰囲気とすることがより好ましい。
 (2-d)焼成工程
 焼成工程は、混合工程で得られたリチウム混合物を所定条件の下で焼成し、複合水酸化物粒子または熱処理粒子中にリチウムを拡散させて、リチウム複合酸化物粒子を得る工程である。
 この焼成工程において、複合水酸化物粒子または熱処理粒子の低密度部を構成する微細一次粒子は、中心部および高密度部を構成する板状一次粒子よりも低温から焼結を開始する。しかも、板状一次粒子から構成される中心部や高密度部と比べて、その収縮量は大きなものとなる。このため、低密度部を構成する微細一次粒子は、焼結の進行が遅い中心部側または高密度部側に収縮し、適度な大きさの空間部が形成されることとなる。
 一方、低密度部の収縮に伴い、中心部は、二次粒子の径方向外側に向う方向に引張応力を受けることとなる。この際、中心部は、中心部外径の平均比率や高密度部径方向厚さの平均比率などによって、中実構造となったり、中空構造となったりする。具体的には、中心部外径の平均比率が20%~35%または高密度部径方向厚さの平均比率が5%~15%の範囲にある場合には、中心部は中実構造が維持される傾向にある。これに対して、中心部外径の平均比率が35%~80%または高密度部径方向厚さの平均比率が15%~25%の範囲にある場合には、中心部は、上述した引張応力の作用により、中空構造となる傾向にある。なお、核生成工程のごく初期における反応雰囲気を酸化性雰囲気とし、中心部の内部に低密度を形成することで、正極活物質の中心部を中空構造とすることも可能である。ただし、いずれの場合も、複合水酸化物粒子の組成や焼成条件などによっても中心部の構造は変化するため、予備試験を行った上で、中心部が所望の構造となるように、各条件を適宜制御することが好ましい。
 なお、焼成工程に用いられる炉は、特に制限されることはなく、大気ないしは酸素気流中でリチウム混合物を加熱できるものであればよい。ただし、炉内の雰囲気を均一に保つ観点から、ガス発生がない電気炉が好ましく、バッチ式あるいは連続式の電気炉のいずれも好適に用いることができる。この点については、熱処理工程および仮焼工程に用いる炉についても同様である。
 [焼成温度]
 リチウム混合物の焼成温度は、650℃~980℃とすることが必要となる。焼成温度が650℃未満では、複合水酸化物粒子または熱処理粒子中にリチウムが十分に拡散せず、余剰のリチウムや未反応の複合水酸化物粒子または熱処理粒子が残存したり、得られるリチウム複合酸化物粒子の結晶性が不十分なものとなる。一方、焼成温度が980℃を超えると、リチウム複合酸化物粒子間が激しく焼結し、異常粒成長が引き起こされ、不定形な粗大粒子の割合が増加することとなる。
 なお、上述した一般式(B1)で表される正極活物質を得ようとする場合には、焼成温度を650℃~900℃とすることが好ましい。一方、一般式(B2)で表される正極活物質を得ようとする場合には、焼成温度を800℃~980℃とすることが好ましい。
 また、焼成工程における昇温速度は、2℃/分~10℃/分とすることが好ましく、2℃/分~8℃/分とすることがより好ましい。さらに、焼成工程中、リチウム化合物の融点付近の温度で、好ましくは1時間~5時間、より好ましくは2時間~5時間保持することが好ましい。これにより、複合水酸化物粒子または熱処理粒子とリチウム化合物とを、より均一に反応させることができる。
 [焼成時間]
 焼成時間のうち、上述した焼成温度での保持時間は、少なくとも2時間以上とすることが好ましく、4時間~24時間とすることがより好ましい。焼成温度における保持時間が2時間未満では、複合水酸化物粒子または熱処理粒子中にリチウムが十分に拡散せず、余剰のリチウムや未反応の複合水酸化物粒子または熱処理粒子が残存したり、得られるリチウム複合酸化物粒子の結晶性が不十分なものとなるおそれがある。
 なお、保持時間終了後、焼成温度から少なくとも200℃までの冷却速度は、2℃/分~10℃/分とすることが好ましく、3℃/分~7℃/分とすることがより好ましい。冷却速度をこのような範囲に制御することにより、生産性を確保しつつ、匣鉢などの設備が、急冷により破損することを防止することを防止することができる。
 [焼成雰囲気]
 焼成時の雰囲気は、酸化性雰囲気とすることが好ましく、酸素濃度が18容量%~100容量%の雰囲気とすることがより好ましく、上記酸素濃度の酸素と不活性ガスの混合雰囲気とすることが特に好ましい。すなわち、焼成は、大気ないしは酸素気流中で行うことが好ましい。酸素濃度が18容量%未満では、リチウム複合酸化物粒子の結晶性が不十分なものとなるおそれがある。
 (2-e)解砕工程
 焼成工程によって得られたリチウム複合酸化物粒子は、凝集または軽度の焼結が生じている場合がある。このような場合、リチウム複合酸化物粒子の凝集体または焼結体を解砕することが好ましい。これによって、得られる正極活物質の平均粒径や粒度分布を好適な範囲に調整することができる。なお、解砕とは、焼成時に二次粒子間の焼結ネッキングなどにより生じた複数の二次粒子からなる凝集体に、機械的エネルギを投入して、二次粒子自体をほとんど破壊することなく分離させて、凝集体をほぐす操作を意味する。
 解砕の方法としては、公知の手段を用いることができ、たとえば、ピンミルやハンマーミルなどを使用することができる。なお、この際、二次粒子を破壊しないように解砕力を適切な範囲に調整することが好ましい。
 3.非水電解質二次電池
 本発明の非水電解質二次電池は、正極、負極、セパレータ、非水電解液などの、一般の非水電解質二次電池と同様の構成要素を備える。なお、以下に説明する実施形態は例示にすぎず、本発明の非水電解質二次電池は、本明細書に記載されている実施形態を基づいて、種々の変更、改良を施した形態に適用することも可能である。
 (1)構成部材
 (1-a)正極
 本発明により得られた非水電解質二次電池用正極活物質を用いて、たとえば、以下のようにして非水電解質二次電池の正極を作製する。
 まず、本発明により得られた粉末状の正極活物質に、導電材および結着剤を混合し、さらに必要に応じて活性炭や、粘度調整などの溶剤を添加し、これらを混練して正極合材ペーストを作製する。その際、正極合材ペースト中のそれぞれの混合比も、非水電解質二次電池の性能を決定する重要な要素となる。たとえば、溶剤を除いた正極合材の固形分を100質量部とした場合、一般の非水電解質二次電池の正極と同様、正極活物質の含有量を60質量部~95質量部とし、導電材の含有量を1質量部~20質量部とし、結着剤の含有量を1質量部~20質量部とすることができる。
 得られた正極合材ペーストを、たとえば、アルミニウム箔製の集電体の表面に塗布し、乾燥して、溶剤を飛散させる。必要に応じ、電極密度を高めるべく、ロールプレスなどにより加圧することもある。このようにして、シート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断などをして、電池の作製に供することができる。ただし、正極の作製方法は、前記例示のものに限られることはなく、他の方法によってもよい。
 導電材としては、たとえば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)や、アセチレンブラックやケッチェンブラックなどのカーボンブラック系材料を用いることができる。
 結着剤は、活物質粒子をつなぎ止める役割を果たすもので、たとえば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂およびポリアクリル酸を用いることができる。
 また、必要に応じて、正極活物質、導電材および活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加することができる。溶剤としては、具体的には、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。また、正極合材には、電気二重層容量を増加させるために、活性炭を添加することもできる。
 (1-b)負極
 負極には、金属リチウムやリチウム合金など、あるいは、リチウムイオンを吸蔵および脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅などの金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
 負極活物質としては、たとえば、金属リチウムやリチウム合金などのリチウムを含有する物質、リチウムイオンを吸蔵・脱離できる天然黒鉛、人造黒鉛およびフェノール樹脂などの有機化合物焼成体ならびにコークスなどの炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、PVDFなどの含フッ素樹脂を用いることができ、これらの活物質および結着剤を分散させる溶剤としては、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。
 (1-c)セパレータ
 セパレータは、正極と負極との間に挟み込んで配置されるものであり、正極と負極とを分離し、電解質を保持する機能を有する。このようなセパレータとしては、たとえば、ポリエチレンやポリプロピレンなどの薄い膜で、微細な孔を多数有する膜を用いることができるが、上記機能を有するものであれば、特に限定されることはない。
 (1-d)非水電解液
 非水電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
 有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートおよびトリフルオロプロピレンカーボネートなどの環状カーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートおよびジプロピルカーボネートなどの鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフランおよびジメトキシエタンなどのエーテル化合物、エチルメチルスルホンやブタンスルトンなどの硫黄化合物、リン酸トリエチルやリン酸トリオクチルなどのリン化合物などから選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
 支持塩としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiN(CF3SO22、およびそれらの複合塩などを用いることができる。
 さらに、非水電解液は、ラジカル捕捉剤、界面活性剤および難燃剤などを含んでいてもよい。
 (2)非水電解質二次電池
 以上の正極、負極、セパレータおよび非水電解液で構成される本発明の非水電解質二次電池は、円筒形や積層形など、種々の形状にすることができる。
 いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、および、負極集電体と外部に通ずる負極端子との間を、集電用リードなどを用いて接続し、電池ケースに密閉して、非水電解質二次電池を完成させる。
 (3)非水電解質二次電池の特性
 本発明の非水電解質二次電池は、上述したように、本発明の正極活物質を正極材料として用いているため、容量特性、出力特性およびサイクル特性に優れる。しかも、従来のリチウムニッケル系酸化物粒子からなる正極活物質を用いた二次電池との比較においても、熱安定性や安全性において優れているといえる。
 たとえば、本発明の正極活物質を用いて、図4に示すような2032型コイン電池を構成した場合、150mAh/g以上、好ましくは158mAh/g以上の初期放電容量と、1.2Ω以下、好ましくは1.15Ω以下の正極抵抗と、75%以上、好ましくは80%以上の500サイクル容量維持率を同時に達成することができる。
 (4)用途
 本発明の非水電解質二次電池は、上述のように、容量特性、出力特性およびサイクル特性に優れており、これらの特性が高いレベルで要求される小型携帯電子機器(ノート型パーソナルコンピュータや県電話端末など)の電源に好適に利用することができる。また、本発明の非水電解質二次電池は、安全性にも優れており、小型化および高出力化が可能であるばかりでなく、高価な保護回路を簡略することができるため、搭載スペースに制約を受ける輸送用機器の電源としても好適に利用することができる。
 以下、実施例および比較例を用いて、本発明を詳細に説明する。なお、以下の実施例および比較例では、特に断りがない限り、複合水酸化物粒子および正極活物質の作製には、和光純薬工業株式会社製試薬特級の各試料を使用した。また、核生成工程および粒子成長工程を通じて、反応水溶液のpH値は、pHコントローラ(株式会社日伸理化製、NPH-690D)により測定し、この測定値に基づき、水酸化ナトリウム水溶液の供給量を調整することで、各工程における反応水溶液のpH値の変動幅を±0.2の範囲に制御した。
 (実施例1)
 (a)複合水酸化物粒子の製造
 [核生成工程]
 はじめに、反応槽内に、水を900ml入れて撹拌しながら、槽内温度を40℃に設定した。この際、反応槽内に、窒素ガスを30分間流通させ、反応雰囲気を、酸素濃度が2容量%以下の非酸化性雰囲気とした。続いて、反応槽内に、25質量%水酸化ナトリウム水溶液と25質量%アンモニア水を適量供給し、pH値が、液温25℃基準で12.8、アンモニウムイオン濃度が10g/Lとなるように調整することで反応前水溶液を形成した。
 同時に、硫酸ニッケル、硫酸コバルト、硫酸マンガン、硫酸ジルコニウムを、各金属元素のモル比が、Ni:Mn:Co:Zr=33.1:33.1:33.1:0.2となるように水に溶解し、2mol/Lの原料水溶液を調製した。
 次に、この原料水応液を、反応前水溶液に10ml/分で供給することで、核生成工程用水溶液を形成し、1分間の核生成を行った。この際、25質量%の水酸化ナトリウム水溶液と25質量%のアンモニア水を適時供給し、核生成用水溶液のpH値およびアンモニウムイオン濃度を上述した範囲に維持した。
 [粒子成長工程]
 核生成終了後、一旦、すべての水溶液の供給を一旦停止するとともに、硫酸を加えて、pH値が、液温25℃基準で11.6となるように調整することで、粒子成長用水溶液を形成した。pH値が所定の値になったことを確認した後、上述した原料水溶液とタングステン酸ナトリウム水溶液とを、これらの水溶液に含まれる金属元素のモル比が、Ni:Mn:Co:Zr:W=33.1:33:1:33.1:0.2:0.5となるように供給し、核生成工程で生成した核(粒子)を成長させた。
 粒子成長工程の開始時から60分(粒子成長工程時間の全体に対して25%)経過後、すべての水溶液の供給を一旦停止し、反応槽内に空気を流通させ、反応雰囲気を酸素濃度が21容量%の酸化性雰囲気とした(切替操作1)。この状態で、原料水溶液の供給を再開し、粒子を成長させた。
 原料水溶液の供給を再開してから、晶析反応を20分間(粒子成長工程時間の全体に対して8.3%)継続した後、再度、すべての水溶液の供給を一旦停止、反応槽内に窒素を流通させ、反応雰囲気を酸素濃度が2容量%以下の非酸化性雰囲気とした(切替操作2)。この状態で、原料水溶液の供給を再開し、粒子を成長させた。
 原料水溶液の供給を再開してから、晶析反応を160分間(粒子成長工程時間の全体に対して66.7%)継続した後、すべての水溶液の供給を停止することで、粒子成長工程を終了した。この際、粒子成長水溶液中の生成物の濃度は、86g/Lであった。その後、得られた生成物を、水洗、ろ過および乾燥させることにより、粉末状の複合水酸化物粒子を得た。
 なお、粒子成長工程においては、この工程を通じて、25質量%の水酸化ナトリウム水溶液と25質量%のアンモニア水を適時供給し、粒子成長用水溶液のpH値およびアンモニウムイオン濃度を上述した範囲に維持した。
 (b)複合水酸化物粒子の評価
 ICP発光分光分析装置(株式会社島津製作所製、ICPE-9000)を用いた分析により、この複合水酸化物粒子は、一般式:Ni0.331Mn0.331Co0.331Zr0.0020.005(OH)2で表されるものであることが確認された。また、レーザ光回折散乱式粒度分析計(日機装株式会社製、マイクロトラックHRA)を用いて、複合水酸化物粒子の平均粒径を測定するとともに、d10およびd90を測定し、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕を算出した。さらに、この複合水酸化物粒子およびその断面を、SEM(日本電子株式会社製、JSM-6360LA)を用いて観察することにより、この複合水酸化物粒子を構成する一次粒子の形状および平均粒径、二次粒子の構造、中心部外径の平均比率ならびに高密度部径方向厚さの平均比率を求めた。これらの結果を表2および図1に示す。
 (c)正極活物質の作製
 上述のようにして得られた複合水酸化物粒子を、空気(酸素濃度:21容量%)気流中、120℃で12時間熱処理した後、Li/Meが1.14となるように、シェーカーミキサ装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて炭酸リチウムと十分に混合し、リチウム混合物を得た。
 このリチウム混合物を、空気(酸素濃度:21容量%)気流中、昇温速度を2.5℃/分として950℃まで昇温し、この温度で4時間保持することにより焼成し、冷却速度を約4℃/分として室温まで冷却した。このようにして得られた正極活物質は、凝集または軽度の焼結が生じていた。このため、この正極活物質を解砕し、平均粒径および粒度分布を調整した。
 (d)正極活物質の評価
 ICP発光分光分析装置を用いた分析により、この正極活物質は、一般式:Li1.14Ni0.331Mn0.331Co0.331Zr0.0020.0052で表されるものであることが確認された。また、レーザ光回折散乱式粒度分析計を用いて、複合水酸化物粒子の平均粒径を測定するとともに、d10およびd90を測定し、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕を算出した。さらに、この正極活物質およびその断面を、SEMを用いて観察することにより、この正極活物質の構造、中心部外径の平均比率および外殻部径方向厚さの平均比率を求めた。加えて、流動方式ガス吸着法比表面積測定装置(ユアサアイオニクス社製、マルチソーブ)により比表面積を、タッピングマシン(株式会社蔵持科学器械製作所、KRS-406)によりタップ密度を求めた。これらの結果を表3および図2に示す。
 (e)二次電池の作製
 上述のようにして得られた正極活物質:52.5mgと、アセチレンブラック:15mgと、PTEE:7.5mgを混合し、100MPaの圧力で、直径11mm、厚さ100μmにプレス成形した後、真空乾燥機中、120℃で12時間乾燥することにより、正極(1)を作製した。
 次に、この正極(1)を用いて2032型コイン電池(B)を、露点が-80℃に管理されたAr雰囲気のグローブボックス内で作製した。この2032型コイン電池の負極(2)には、直径17mm、厚さ1mmのリチウム金属を用い、電解液には、1MのLiClO4を支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(富山薬品工業株式会社製)を用いた。また、セパレータ(3)には、膜厚25μmのポリエチレン多孔膜を用いた。なお、2032型コイン電池(B)は、ガスケット(4)を有し、正極缶(5)と負極缶(6)とでコイン状の電池に組み立てられたものである。
 (f)電池評価
 [初期放電容量]
 2032型コイン電池を作製してから24時間程度放置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.1mA/cm2として、カットオフ電圧が4.3Vとなるまで充電し、1時間の休止後、カットオフ電圧が3.0Vになるまで放電したときの放電容量を測定する充放電試験を行ない、初期放電容量を求めた。この際、充放電容量の測定には、マルチチャンネル電圧/電流発生器(株式会社アドバンテスト製、R6741A)を用いた。
 [正極抵抗]
 充電電位4.1Vで充電した2032型コイン電池を用いて、交流インピーダンス法により抵抗値を測定した。測定には、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン製)を使用し、図5に示すナイキストプロットを得た。プロットは、溶液抵抗、負極抵抗と容量、および、正極抵抗と容量を示す特性曲線の和として表れているため、等価回路を用いてフィッティング計算し、正極抵抗の値を算出した。
 [サイクル特性]
 上述した充放電試験を繰り返し、初期放電容量に対する、500回目の放電容量を測定することで、500サイクルの容量維持率を算出した。これらの結果を表3に示す。
 (実施例2)
 粒子成長工程において、切替操作1を、粒子成長工程の開始時から60分経過後(粒子成長工程時間の全体に対して25%)に行い、原料水溶液の供給を再開してから、晶析反応を10分間(粒子成長工程時間の全体に対して4.2%)継続した後、切替操作2を行い、その後、晶析反応を170分間(粒子成長工程時間の全体に対して70.8%)継続したこと以外は、実施例1と同様にして、複合水酸化物粒子を得て、その評価を行った。この結果を表2に示す。また、この複合水酸化物粒子を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3に示す。
 (実施例3)
 粒子成長工程において、切替操作1を、粒子成長工程の開始時から25分経過後(粒子成長工程時間の全体に対して10.4%)に行い、原料水溶液の供給を再開してから、晶析反応を20分間(粒子成長工程時間の全体に対して8.3%)継続した後、切替操作2を行い、その後、晶析反応を195分間(粒子成長工程時間の全体に対して81.3%)継続したこと以外は、実施例1と同様にして、複合水酸化物粒子を得て、その評価を行った。この結果を表2に示す。また、この複合水酸化物粒子を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3および図3に示す。
 なお、実施例3では、実施例1と比べて、二次電池の正極抵抗がやや高い値を示している。これは、正極活物質の中心部と外殻部の接点が少なくなり、粒子内部における電子の移動が妨げられたためと考えられる。
 (実施例4)
 粒子成長工程において、切替操作1を、粒子成長工程の開始時から70分経過後(粒子成長工程時間の全体に対して29.2%)に行い、原料水溶液の供給を再開してから、晶析反応を20分間(粒子成長工程時間の全体に対して8.3%)継続した後、切替操作2を行い、その後、晶析反応を150分間(粒子成長工程時間の全体に対して62.5%)継続したこと以外は、実施例1と同様にして、複合水酸化物粒子を得て、その評価を行った。この結果を表2に示す。また、この複合水酸化物粒子を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3に示す。
 (実施例5)
 粒子成長工程において、切替操作1を、粒子成長工程の開始時から15分経過後(粒子成長工程時間の全体に対して6.3%)に行い、原料水溶液の供給を再開してから、晶析反応を20分間(粒子成長工程時間の全体に対して8.3%)継続した後、切替操作2を行い、その後、晶析反応を205分間(粒子成長工程時間の全体に対して85.4%)継続したこと以外は、実施例1と同様にして、複合水酸化物粒子を得て、その評価を行った。この結果を表2に示す。また、この複合水酸化物粒子を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3に示す。
 (実施例6)
 粒子成長工程において、切替操作1を、粒子成長工程の開始時から80分経過後(粒子成長工程時間の全体に対して33.3%)に行い、原料水溶液の供給を再開してから、晶析反応を20分間(粒子成長工程時間の全体に対して8.3%)継続した後、切替操作2を行い、その後、晶析反応を140分間(粒子成長工程時間の全体に対して58.3%)継続したこと以外は、実施例1と同様にして、複合水酸化物粒子を得て、その評価を行った。この結果を表2に示す。また、この複合水酸化物粒子を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3に示す。
 (実施例7)
 粒子成長工程において、切替操作1を、粒子成長工程の開始時から60分経過後(粒子成長工程時間の全体に対して25%)に行い、原料水溶液の供給を再開してから、晶析反応を35分間(粒子成長工程時間の全体に対して14.6%)継続した後、切替操作2を行い、その後、晶析反応を145分間(粒子成長工程時間の全体に対して60.4%)継続したこと以外は、実施例1と同様にして、複合水酸化物粒子を得て、その評価を行った。この結果を表2に示す。また、この複合水酸化物粒子を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3に示す。
 (実施例8)
 粒子成長工程において、切替操作1を、粒子成長工程の開始時から60分経過後(粒子成長工程時間の全体に対して25%)に行い、原料水溶液の供給を再開してから、晶析反応を45分間(粒子成長工程時間の全体に対して18.8%)継続した後、切替操作2を行い、その後、晶析反応を135分間(粒子成長工程時間の全体に対して56.3%)継続したこと以外は、実施例1と同様にして、複合水酸化物粒子を得て、その評価を行った。この結果を表2に示す。また、この複合水酸化物粒子を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3に示す。
 (実施例9)
 粒子成長工程において、切替操作1により、反応雰囲気中の酸素濃度を10容量%としたこと以外は、実施例1と同様にして、複合水酸化物粒子を得て、その評価を行った。この結果を表2に示す。また、この複合水酸化物粒子を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3に示す。
 (実施例10)
 粒子成長工程において、切替操作1により、反応雰囲気中の酸素濃度を5.5容量%としたこと以外は、実施例1と同様にして、複合水酸化物粒子を得て、その評価を行った。この結果を表2に示す。また、この複合水酸化物粒子を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3に示す。
 (実施例11)
 核生成工程および粒子成長工程の初期の反応雰囲気中の酸素濃度を4容量%としたこと、および、粒子成長工程において、切替操作2により、反応雰囲気中の酸素濃度を4容量%としたこと以外は、実施例1と同様にして、複合水酸化物粒子を得て、その評価を行った。この結果を表2に示す。また、この複合水酸化物粒子を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3に示す。
 (実施例12)
 粒子成長工程において、所定のタイミングで、切替操作1および2を2回ずつ行ったこと以外は、実施例1と同様にして、複合水酸化物粒子を得た。具体的には、切替操作1を、粒子成長工程の開始時から30分経過後(粒子成長工程時間の全体に対して12.5%)に行い、原料水溶液の供給を再開してから、晶析反応を15分間(粒子成長工程時間の全体に対して6.3%)継続した後、切替操作2を行い、その後、晶析反応を90分間(粒子成長工程時間の全体に対して37.5%)継続した。続いて、再度、切替操作1を行い、原料水溶液の救急を再開してから、晶析反応を15分間継続した後、切替操作2を行い、その後、晶析反応を90分間継続した。このようにして得られた複合水酸化物粒子に対して、実施例1と同様にして評価を行った。また、この複合水酸化物粒子を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3に示す。なお、実施例12で得られた正極活物質は、内殻部の径方向の厚さと、外殻部の径方向の厚さは、ほぼ同等であった。
 (比較例1)
 粒子成長工程において、切替操作1および2を行わず、酸素濃度を2容量%以下の非酸化性雰囲気に維持したこと以外は、実施例1と同様にして、複合水酸化物粒子を得て、その評価を行った。この結果を表2に示す。また、この複合水酸化物粒子を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3および図4に示す。なお、比較例1では、板状一次粒子のみからなる複合水酸化物粒子(二次粒子)が得られたが、粒径が大きいことに起因して、この複合水酸化物粒子を前駆体とする正極活物質の一部では、焼成時の収縮により、内部に中空部が形成されていた。
 (比較例2)
 粒子成長工程において、切替操作1を、粒子成長工程の開始時から10分経過後(粒子成長工程時間の全体に対して4.2%)に行い、原料水溶液の供給を再開してから、晶析反応を35分間(粒子成長工程時間の全体に対して14.6%)継続した後、切替操作2を行い、その後、晶析反応を195分間(粒子成長工程時間の全体に対して81.3%)継続したこと以外は、実施例1と同様にして、複合水酸化物粒子を得て、その評価を行った。この結果を表2に示す。また、この複合水酸化物粒子を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3に示す。
 (比較例3)
 粒子成長工程において、切替操作1を、粒子成長工程の開始時から90分経過後(粒子成長工程時間の全体に対して37.5%)に行い、原料水溶液の供給を再開してから、晶析反応を20分間(粒子成長工程時間の全体に対して8.3%)継続した後、切替操作2を行い、その後、晶析反応を130分間(粒子成長工程時間の全体に対して54.2%)継続したこと以外は、実施例1と同様にして、複合水酸化物粒子を得て、その評価を行った。この結果を表2に示す。また、この複合水酸化物粒子を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3に示す。
 (比較例4)
 粒子成長工程において、切替操作1を、粒子成長工程の開始時から60分経過後(粒子成長工程時間の全体に対して25%)に行い、原料水溶液の供給を再開してから、晶析反応を55分間(粒子成長工程時間の全体に対して22.9%)継続した後、切替操作2を行い、その後、晶析反応を125分間(粒子成長工程時間の全体に対して52.1%)継続したこと以外は、実施例1と同様にして、複合水酸化物粒子を得て、その評価を行った。この結果を表2に示す。また、この複合水酸化物粒子を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 1 正極(評価用電極)
 2 負極
 3 セパレータ
 4 ガスケット
 5 正極缶
 6 負極缶
 B 2032型コイン電池

Claims (21)

  1.  晶析反応によって、非水電解質二次電池用正極活物質の前駆体となる遷移金属複合水酸化物粒子を製造する方法であって、
     少なくとも遷移金属を含有する金属化合物とアンモニウムイオン供給体とを含む核生成用水溶液を、液温25℃基準におけるpH値が12.0~14.0となるように制御して、核生成を行う、核生成工程と、
     前記核生成工程で得られた核を含有する粒子成長用水溶液を、液温25℃基準におけるpH値が、該核生成工程のpH値よりも低く、かつ、10.5~12.0となるように制御して、該核を成長させる、粒子成長工程とを備え、
     前記核生成工程および粒子成長工程の初期における反応雰囲気を、酸素濃度が5容量%以下の非酸化性雰囲気とし、
     前記粒子成長工程において、反応雰囲気を、前記非酸化性雰囲気から酸素濃度が5容量%を超える酸化性雰囲気に切り替えた後、該酸化性雰囲気から酸素濃度が5容量%以下の非酸化性雰囲気に切り替える、雰囲気制御を少なくとも1回行う、
    遷移金属複合水酸化物粒子の製造方法。
  2.  前記粒子成長工程において、該粒子成長工程の開始時から、該粒子成長工程時間の全体に対して5%~35%の範囲で、前記非酸化性雰囲気から前記酸化性雰囲気に切り替える、請求項1に記載の遷移金属複合水酸化物粒子の製造方法。
  3.  前記雰囲気制御を1回のみ行う場合において、前記粒子成長工程における酸化性雰囲気での晶析反応時間を、粒子成長工程時間の全体に対して3%~20%とする、請求項1または2に記載の遷移金属複合水酸化物粒子の製造方法。
  4.  前記雰囲気制御を2回以上行う場合において、前記粒子成長工程における酸化性雰囲気での全晶析反応時間を、粒子成長工程時間の全体に対して3%~30%とし、かつ、1回あたりの酸化性雰囲気での晶析反応時間を、粒子成長工程時間の全体に対して1%以上とする、請求項1または2に記載の遷移金属複合水酸化物粒子の製造方法。
  5.  前記遷移金属複合水酸化物粒子は、一般式(A):NixMnyCozt(OH)2+a(ただし、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される遷移金属複合水酸化物粒子である、請求項1~4のいずれかに記載の遷移金属複合水酸化物粒子の製造方法。
  6.  前記粒子成長工程後に、前記遷移金属複合水酸化物粒子を、前記添加元素Mを含む化合物で被覆する、被覆工程をさらに備える、請求項5に記載の遷移金属複合水酸化物粒子の製造方法。
  7.  非水電解質二次電池用正極活物質の前駆体となる遷移金属複合水酸化物粒子であって、複数の板状一次粒子および該板状一次粒子よりも小さな微細一次粒子が凝集して形成された二次粒子からなり、
     前記二次粒子は、前記板状一次粒子が凝集して形成された中心部を有し、該中心部の外側に、前記微細一次粒子が凝集して形成された低密度部と、該板状一次粒子が凝集して形成された高密度部とが積層した積層構造を少なくとも1つ備えており、
     前記二次粒子は、平均粒径が1μm~15μmであり、かつ、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.65以下である、
    遷移金属複合水酸化物粒子。
  8.  前記積層構造を1つのみ備える場合において、前記二次粒子の粒径に対する、前記中心部の外径の比率の平均値が30%~80%である、請求項7に記載の遷移金属複合水酸化物粒子。
  9.  前記層構造を1つのみ備える場合において、前記二次粒子の粒径に対する、前記高密度部の径方向の厚さの比率の平均値が5%~25%である、請求項7または8に記載の遷移金属複合水酸化物粒子。
  10.  前記遷移金属複合水酸化物粒子は、一般式(A):NixMnyCozt(OH)2+a(ただし、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される遷移金属複合水酸化物粒子である、請求項7~9のいずれかに記載の遷移金属複合水酸化物粒子。
  11.  前記添加元素Mは、前記二次粒子の内部に均一に分布および/または該二次粒子の表面を均一に被覆している、請求項10に記載の遷移金属複合水酸化物粒子。
  12.  請求項7~11のいずれかに記載の遷移金属複合水酸化物粒子とリチウム化合物を混合して、リチウム混合物を形成する混合工程と、
     前記混合工程で形成された前記リチウム混合物を、酸化性雰囲気中、650℃~980℃で焼成する焼成工程と、
    を備える、非水電解質二次電池用正極活物質の製造方法。
  13.  前記混合工程において、前記リチウム混合物を、該リチウム混合物に含まれるリチウム以外の金属の原子数の和と、リチウムの原子数との比が、1:0.95~1.5となるように調整する、請求項12に記載の非水電解質二次電池用正極活物質の製造方法。
  14.  前記混合工程前に、前記遷移金属複合水酸化物粒子を105℃~750℃で熱処理する、熱処理工程をさらに備える、請求項13に記載の非水電解質二次電池用正極活物質の製造方法。
  15.  前記非水電解質二次電池用正極活物質は、一般式(B):Li1+uNixMnyCozt2(ただし、-0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表され、層状構造を有する六方晶系のリチウムニッケルマンガン複合酸化物粒子からなる、請求項12~15のいずれかに記載の非水電解質二次電池用正極活物質の製造方法。
  16.  複数の一次粒子が凝集して形成された二次粒子からなり、
     前記二次粒子は、中実構造または中空構造の中心部を有し、該中心部の外側に、少なくとも、一次粒子が存在しない空間部と、前記中心部と電気的に導通する外殻部とを備えており、
     前記二次粒子は、平均粒径が1μm~15μmであり、かつ、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.7以下である、
    非水電解質二次電用正極活物質。
  17.  前記二次粒子が、前記中心部と、該中心部の外側に、一次粒子が存在しない空間部と、該中心部と電気的に導通する外殻部とからなる場合において、該二次粒子の粒径に対する、該中心部の外径の比率の平均値が30%~80%である、請求項16に記載の非水電解質二次電池用正極活物質。
  18.  前記二次粒子が、前記中心部と、該中心部の外側に、一次粒子が存在しない空間部と、該中心部と電気的に導通する外殻部とからなる場合において、該二次粒子の粒径に対する、該外殻部の径方向の厚さの比率の平均値が5%~25%である、請求項16または17に記載の非水電解質二次電池用正極活物質。
  19.  比表面積が0.7m2/g~3.0m2/gである、請求項16~18のいずれかに記載の非水電解質二次電池用正極活物質。
  20.  前記正極活物質は、一般式(B):Li1+uNixMnyCozt2(ただし、-0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表され、層状構造を有する六方晶系の結晶構造を有するリチウム遷移金属複合酸化物粒子からなる、請求項16~19のいずれかに記載の非水電解質二次電池用正極活物質。
  21.  正極と、負極と、セパレータと、非水電解質とを備え、前記正極の正極材料として、請求項16~20のいずれかに記載の非水電解質二次電池用正極活物質が用いられている、非水電解質二次電池。
PCT/JP2014/062637 2013-05-10 2014-05-12 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池 WO2014181891A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480020849.3A CN105122517B (zh) 2013-05-10 2014-05-12 过渡金属复合氢氧化粒子及其制造方法、非水电解质二次电池用正极活性物质及其制造方法、以及非水电解质二次电池
JP2015515919A JP6159395B2 (ja) 2013-05-10 2014-05-12 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池
KR1020157030951A KR102203425B1 (ko) 2013-05-10 2014-05-12 전이 금속 복합 수산화물 입자와 그의 제조 방법, 비수전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수전해질 이차 전지
EP14794571.1A EP3007254B1 (en) 2013-05-10 2014-05-12 Transition metal composite hydroxide particles, method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
US14/890,349 US10424787B2 (en) 2013-05-10 2014-05-12 Transition metal composite hydroxide particles and production method thereof, cathode active material for non-aqueous electrolyte rechargeable battery and production method thereof, and nonaqueous electrolyte rechargeable battery
US16/539,170 US11283072B2 (en) 2013-05-10 2019-08-13 Transition metal composite hydroxide particles and production method thereof, cathode active material for non-aqueous electrolyte rechargeable battery and production method thereof, and nonaqueous electrolyte rechargeable battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013100034 2013-05-10
JP2013-100034 2013-05-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/890,349 A-371-Of-International US10424787B2 (en) 2013-05-10 2014-05-12 Transition metal composite hydroxide particles and production method thereof, cathode active material for non-aqueous electrolyte rechargeable battery and production method thereof, and nonaqueous electrolyte rechargeable battery
US16/539,170 Division US11283072B2 (en) 2013-05-10 2019-08-13 Transition metal composite hydroxide particles and production method thereof, cathode active material for non-aqueous electrolyte rechargeable battery and production method thereof, and nonaqueous electrolyte rechargeable battery

Publications (1)

Publication Number Publication Date
WO2014181891A1 true WO2014181891A1 (ja) 2014-11-13

Family

ID=51867360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062637 WO2014181891A1 (ja) 2013-05-10 2014-05-12 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池

Country Status (6)

Country Link
US (2) US10424787B2 (ja)
EP (1) EP3007254B1 (ja)
JP (2) JP6159395B2 (ja)
KR (1) KR102203425B1 (ja)
CN (1) CN105122517B (ja)
WO (1) WO2014181891A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160254536A1 (en) * 2015-02-27 2016-09-01 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20160139143A (ko) * 2015-05-27 2016-12-07 지에스이엠 주식회사 양극 활물질 전구체 및 이의 제조방법, 이를 이용하여 제조된 양극 활물질
WO2016208413A1 (ja) * 2015-06-26 2016-12-29 住友金属鉱山株式会社 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
CN107251282A (zh) * 2015-09-30 2017-10-13 株式会社Lg 化学 二次电池用正极活性材料和包含其的二次电池
US20170324091A1 (en) * 2016-05-09 2017-11-09 Toyota Jidosha Kabushiki Kaisha Cathode active material and lithium ion secondary battery comprising the same
CN107408667A (zh) * 2015-06-17 2017-11-28 株式会社Lg 化学 二次电池用正极活性材料、其制备方法和包含其的二次电池
JP2017210395A (ja) * 2016-05-27 2017-11-30 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに非水系電解質二次電池
JP2018500720A (ja) * 2014-10-28 2018-01-11 エルジー・ケム・リミテッド リチウム二次電池用正極活物質、この製造方法及びこれを含むリチウム二次電池
CN108028373A (zh) * 2015-11-30 2018-05-11 株式会社Lg化学 二次电池用正极活性材料和包含其的二次电池
WO2018097136A1 (ja) * 2016-11-22 2018-05-31 住友金属鉱山株式会社 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質の製造方法
WO2018097137A1 (ja) * 2016-11-25 2018-05-31 住友金属鉱山株式会社 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP2018095505A (ja) * 2016-12-13 2018-06-21 住友金属鉱山株式会社 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質とその製造方法
JP2018104273A (ja) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP2018104274A (ja) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP2018104275A (ja) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP2018104276A (ja) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP2020071899A (ja) * 2018-10-29 2020-05-07 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池
JP2020180032A (ja) * 2019-04-26 2020-11-05 住友金属鉱山株式会社 ニッケル複合水酸化物、ニッケル複合水酸化物の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池
JP2020180033A (ja) * 2019-04-26 2020-11-05 住友金属鉱山株式会社 ニッケル複合水酸化物、ニッケル複合水酸化物の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池
WO2021054469A1 (ja) 2019-09-19 2021-03-25 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
WO2021054466A1 (ja) 2019-09-19 2021-03-25 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
WO2021054467A1 (ja) 2019-09-19 2021-03-25 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
WO2021054468A1 (ja) 2019-09-19 2021-03-25 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
US11121368B2 (en) 2015-11-27 2021-09-14 Sumitomo Metal Mining Co., Ltd. Positive electrode material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode composite material paste, and nonaqueous electrolyte secondary battery
US11411214B2 (en) 2015-10-28 2022-08-09 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, positive electrode mixture material paste for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2720305B1 (en) * 2011-06-07 2019-02-20 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
US10581110B2 (en) * 2015-04-30 2020-03-03 Lg Chem, Ltd. Positive electrode active material for secondary battery, method of preparing the same, and secondary battery including the positive electrode active material
CN112678877B (zh) * 2016-01-06 2023-05-12 住友金属矿山株式会社 非水类电解质二次电池用正极活性物质
JP7022940B2 (ja) * 2016-03-04 2022-02-21 パナソニックIpマネジメント株式会社 非水電解質二次電池
CN107394201B (zh) 2016-05-09 2022-03-25 日亚化学工业株式会社 镍钴复合氢氧化物的制造方法及非水电解质二次电池用正极活性物质的制造方法
JP7120012B2 (ja) 2016-07-29 2022-08-17 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
CN116514185A (zh) 2016-07-29 2023-08-01 住友金属矿山株式会社 镍锰复合氢氧化物及其制造方法、正极活性物质及其制造方法、以及非水系电解质二次电池
JP6855752B2 (ja) * 2016-10-31 2021-04-07 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
EP3331065B1 (en) * 2016-11-30 2019-07-24 Samsung SDI Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing nickel-based active material, and lithium secondary battery including positive electrode including nickel-based active material
JP6878586B2 (ja) * 2016-12-02 2021-05-26 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. リチウム二次電池用ニッケル系活物質前駆体、その製造方法、そこから形成されたリチウム二次電池用ニッケル系活物質、及びそれを含む正極を含むリチウム二次電池
JP6724769B2 (ja) * 2016-12-22 2020-07-15 住友金属鉱山株式会社 ニッケル複合水酸化物の製造方法
CN107324405B (zh) * 2017-07-07 2019-08-09 金驰能源材料有限公司 一种镍钴锰酸锂材料前驱体及其制备方法、以及由该前驱体制备的锂离子电池
JP6924657B2 (ja) * 2017-09-11 2021-08-25 株式会社田中化学研究所 電池用正極活物質に用いられる遷移金属複合水酸化物粒子の製造方法
JP7260249B2 (ja) * 2018-01-11 2023-04-18 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP7035540B2 (ja) * 2018-01-11 2022-03-15 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
WO2019163845A1 (ja) * 2018-02-22 2019-08-29 住友金属鉱山株式会社 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
CN111741927B (zh) * 2018-02-22 2024-11-01 住友金属矿山株式会社 金属复合氢氧化物及其制造方法、非水电解质二次电池用正极活性物质及其制造方法、以及非水电解质二次电池
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries
JP2019175721A (ja) * 2018-03-29 2019-10-10 三洋電機株式会社 非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法
JP7310117B2 (ja) * 2018-10-26 2023-07-19 住友金属鉱山株式会社 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池
CN111370679A (zh) * 2018-12-25 2020-07-03 宁德时代新能源科技股份有限公司 正极活性物质前驱体、其制备方法及正极活性物质
US20220158185A1 (en) * 2019-04-26 2022-05-19 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide, method for producing nickel composite hydroxide, positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP7144371B2 (ja) 2019-07-18 2022-09-29 トヨタ自動車株式会社 非水電解質二次電池
GB202000146D0 (en) * 2020-01-07 2020-02-19 Johnson Matthey Plc Process for preparing lithium metal oxides
CN110931772B (zh) * 2020-02-12 2020-06-19 湖南长远锂科股份有限公司 一种高功率型的锂离子电池用正极材料的制备方法
KR102582478B1 (ko) * 2020-06-22 2023-09-25 한양대학교에리카산학협력단 양극활물질 및 그 제조 방법
CN113903901B (zh) * 2021-12-09 2023-05-26 湖南长远锂科股份有限公司 一种特定核壳结构的高功率正极材料及其制备方法
CN113979489B (zh) * 2021-12-27 2022-03-22 金驰能源材料有限公司 一种晶面可控的中空正极材料的前驱体及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074517A (ja) * 1996-08-29 1998-03-17 Murata Mfg Co Ltd リチウム二次電池
JP2004253174A (ja) * 2003-02-18 2004-09-09 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
WO2011067982A1 (ja) * 2009-12-02 2011-06-09 トヨタ自動車株式会社 活物質粒子およびその利用
WO2012131881A1 (ja) 2011-03-28 2012-10-04 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2012165654A1 (ja) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 非水系二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池
WO2012169274A1 (ja) * 2011-06-07 2012-12-13 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP2012246199A (ja) 2011-05-30 2012-12-13 Sumitomo Metal Mining Co Ltd マンガン複合水酸化物粒子、非水系電解質二次電池用正極活物質、および非水系電解質二次電池と、それらの製造方法
JP2013147416A (ja) 2011-12-20 2013-08-01 Sumitomo Metal Mining Co Ltd ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2013131881A1 (de) 2012-03-08 2013-09-12 Robert Bosch Gmbh Hydrostatische verdrängermaschine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69700735T2 (de) 1996-08-29 2000-03-02 Murata Mfg. Co., Ltd. Lithium-Sekundärbatterie
KR101220677B1 (ko) 2005-04-28 2013-01-09 닛산 지도우샤 가부시키가이샤 비수 전해질 리튬 이온 전지용 정극 재료 및 이를 이용한 전지
JP4781004B2 (ja) * 2005-04-28 2011-09-28 パナソニック株式会社 非水電解液二次電池
JP5135843B2 (ja) * 2007-03-26 2013-02-06 三菱化学株式会社 リチウム遷移金属複合酸化物、および、それを用いたリチウム二次電池用正極、ならびに、それを用いたリチウム二次電池
US8060350B2 (en) * 2007-03-29 2011-11-15 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of performing computational aeroelastic analyses
JP5638232B2 (ja) * 2009-12-02 2014-12-10 住友金属鉱山株式会社 非水系電解質二次電池正極活物質用ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2011067937A1 (ja) 2009-12-02 2011-06-09 住友金属鉱山株式会社 ニッケル複合水酸化物粒子および非水系電解質二次電池
US20120124126A1 (en) * 2010-11-17 2012-05-17 Microsoft Corporation Contextual and task focused computing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074517A (ja) * 1996-08-29 1998-03-17 Murata Mfg Co Ltd リチウム二次電池
JP2004253174A (ja) * 2003-02-18 2004-09-09 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
WO2011067982A1 (ja) * 2009-12-02 2011-06-09 トヨタ自動車株式会社 活物質粒子およびその利用
WO2012131881A1 (ja) 2011-03-28 2012-10-04 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2012165654A1 (ja) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 非水系二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池
JP2012246199A (ja) 2011-05-30 2012-12-13 Sumitomo Metal Mining Co Ltd マンガン複合水酸化物粒子、非水系電解質二次電池用正極活物質、および非水系電解質二次電池と、それらの製造方法
WO2012169274A1 (ja) * 2011-06-07 2012-12-13 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP2013147416A (ja) 2011-12-20 2013-08-01 Sumitomo Metal Mining Co Ltd ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2013131881A1 (de) 2012-03-08 2013-09-12 Robert Bosch Gmbh Hydrostatische verdrängermaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3007254A4

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735721B2 (en) 2014-10-28 2023-08-22 Lg Energy Solution, Ltd. Positive electrode active material for lithium secondary battery, method for preparing the same and lithium secondary battery including the same
JP2018500720A (ja) * 2014-10-28 2018-01-11 エルジー・ケム・リミテッド リチウム二次電池用正極活物質、この製造方法及びこれを含むリチウム二次電池
US12132199B2 (en) 2014-10-28 2024-10-29 Lg Energy Solution, Ltd. Positive electrode active material for lithium secondary battery, method for preparing the same and lithium secondary battery including the same
US20160254536A1 (en) * 2015-02-27 2016-09-01 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN105932276A (zh) * 2015-02-27 2016-09-07 松下电器产业株式会社 非水电解质二次电池用正极活性物质和非水电解质二次电池
JP2016164869A (ja) * 2015-02-27 2016-09-08 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
CN105932276B (zh) * 2015-02-27 2018-10-02 松下电器产业株式会社 非水电解质二次电池用正极活性物质和非水电解质二次电池
US9997774B2 (en) * 2015-02-27 2018-06-12 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20160139143A (ko) * 2015-05-27 2016-12-07 지에스이엠 주식회사 양극 활물질 전구체 및 이의 제조방법, 이를 이용하여 제조된 양극 활물질
KR101890462B1 (ko) * 2015-05-27 2018-08-21 주식회사 엘지화학 양극 활물질 전구체 및 이의 제조방법, 이를 이용하여 제조된 양극 활물질
US10854870B2 (en) 2015-06-17 2020-12-01 Lg Chem, Ltd. Positive electrode active material for secondary battery, method of preparing the same, and secondary battery including the positive electrode active material
CN107408667A (zh) * 2015-06-17 2017-11-28 株式会社Lg 化学 二次电池用正极活性材料、其制备方法和包含其的二次电池
KR20180021681A (ko) 2015-06-26 2018-03-05 스미토모 긴조쿠 고잔 가부시키가이샤 전이 금속 함유 복합 수산화물과 그의 제조 방법, 비수전해질 이차 전지용 정극 활물질과 그의 제조 방법 및 비수전해질 이차 전지
US11404690B2 (en) 2015-06-26 2022-08-02 Sumitomo Metal Mining Co., Ltd. Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
WO2016208413A1 (ja) * 2015-06-26 2016-12-29 住友金属鉱山株式会社 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
CN107615531A (zh) * 2015-06-26 2018-01-19 住友金属矿山株式会社 含过渡金属的复合氢氧化物及制造方法、非水电解质二次电池及其正极活性物质及制造方法
CN107615531B (zh) * 2015-06-26 2021-04-30 住友金属矿山株式会社 含过渡金属的复合氢氧化物及制造方法、非水电解质二次电池及其正极活性物质及制造方法
US10547052B2 (en) 2015-06-26 2020-01-28 Sumitomo Metal Mining Co., Ltd. Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP2017016753A (ja) * 2015-06-26 2017-01-19 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
KR102481160B1 (ko) 2015-06-26 2022-12-26 스미토모 긴조쿠 고잔 가부시키가이샤 전이 금속 함유 복합 수산화물과 그의 제조 방법, 비수전해질 이차 전지용 정극 활물질과 그의 제조 방법 및 비수전해질 이차 전지
CN107251282B (zh) * 2015-09-30 2021-03-12 株式会社Lg 化学 二次电池用正极活性材料和包含其的二次电池
JP2018521456A (ja) * 2015-09-30 2018-08-02 エルジー・ケム・リミテッド 二次電池用正極活物質及びこれを含む二次電池
CN107251282A (zh) * 2015-09-30 2017-10-13 株式会社Lg 化学 二次电池用正极活性材料和包含其的二次电池
US10862156B2 (en) 2015-09-30 2020-12-08 Lg Chem, Ltd. Positive electrode active material for secondary battery and secondary battery including the same
US11411214B2 (en) 2015-10-28 2022-08-09 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, positive electrode mixture material paste for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US11121368B2 (en) 2015-11-27 2021-09-14 Sumitomo Metal Mining Co., Ltd. Positive electrode material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode composite material paste, and nonaqueous electrolyte secondary battery
EP3386014A4 (en) * 2015-11-30 2019-03-20 LG Chem, Ltd. CATHODIC ACTIVE MATERIAL FOR SECONDARY BATTERY AND SECONDARY BATTERY THEREWITH
JP2018534735A (ja) * 2015-11-30 2018-11-22 エルジー・ケム・リミテッド 二次電池用正極活物質およびこれを含む二次電池
CN108028373A (zh) * 2015-11-30 2018-05-11 株式会社Lg化学 二次电池用正极活性材料和包含其的二次电池
US10763497B2 (en) 2015-11-30 2020-09-01 Lg Chem, Ltd. Positive electrode active material for secondary battery, and secondary battery comprising the same
CN108028373B (zh) * 2015-11-30 2021-02-19 株式会社Lg化学 二次电池用正极活性材料和包含其的二次电池
US11283071B2 (en) * 2016-05-09 2022-03-22 Toyota Jidosha Kabushiki Kaisha Cathode active material and lithium ion secondary battery comprising the same
CN111933950B (zh) * 2016-05-09 2023-11-24 丰田自动车株式会社 正极活性物质和使用了该正极活性物质的锂离子二次电池
CN111933950A (zh) * 2016-05-09 2020-11-13 丰田自动车株式会社 正极活性物质和使用了该正极活性物质的锂离子二次电池
US20170324091A1 (en) * 2016-05-09 2017-11-09 Toyota Jidosha Kabushiki Kaisha Cathode active material and lithium ion secondary battery comprising the same
JP2017210395A (ja) * 2016-05-27 2017-11-30 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに非水系電解質二次電池
WO2018097136A1 (ja) * 2016-11-22 2018-05-31 住友金属鉱山株式会社 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質の製造方法
US11024839B2 (en) 2016-11-22 2021-06-01 Sumitomo Metal Mining Co., Ltd. Transition metal-containing composite hydroxide and production method thereof, and production method of positive electrode active material for nonaqueous electrolyte secondary battery
JP6380711B1 (ja) * 2016-11-22 2018-08-29 住友金属鉱山株式会社 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質の製造方法
WO2018097137A1 (ja) * 2016-11-25 2018-05-31 住友金属鉱山株式会社 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP7188081B2 (ja) 2016-11-25 2022-12-13 住友金属鉱山株式会社 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JPWO2018097137A1 (ja) * 2016-11-25 2019-10-17 住友金属鉱山株式会社 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP2018095505A (ja) * 2016-12-13 2018-06-21 住友金属鉱山株式会社 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質とその製造方法
JP2018104275A (ja) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP2018104273A (ja) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7006255B2 (ja) 2016-12-27 2022-01-24 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP2018104274A (ja) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7087381B2 (ja) 2016-12-27 2022-06-21 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7087380B2 (ja) 2016-12-27 2022-06-21 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7087379B2 (ja) 2016-12-27 2022-06-21 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP2018104276A (ja) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP2020071899A (ja) * 2018-10-29 2020-05-07 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池
JP2020180033A (ja) * 2019-04-26 2020-11-05 住友金属鉱山株式会社 ニッケル複合水酸化物、ニッケル複合水酸化物の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池
JP7367335B2 (ja) 2019-04-26 2023-10-24 住友金属鉱山株式会社 ニッケル複合水酸化物、ニッケル複合水酸化物の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池
JP7367336B2 (ja) 2019-04-26 2023-10-24 住友金属鉱山株式会社 ニッケル複合水酸化物、ニッケル複合水酸化物の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池
JP2020180032A (ja) * 2019-04-26 2020-11-05 住友金属鉱山株式会社 ニッケル複合水酸化物、ニッケル複合水酸化物の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池
WO2021054466A1 (ja) 2019-09-19 2021-03-25 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
WO2021054467A1 (ja) 2019-09-19 2021-03-25 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
WO2021054468A1 (ja) 2019-09-19 2021-03-25 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
WO2021054469A1 (ja) 2019-09-19 2021-03-25 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池

Also Published As

Publication number Publication date
KR102203425B1 (ko) 2021-01-15
US10424787B2 (en) 2019-09-24
KR20160006172A (ko) 2016-01-18
US20180254481A2 (en) 2018-09-06
EP3007254A4 (en) 2016-12-21
CN105122517A (zh) 2015-12-02
JP6159395B2 (ja) 2017-07-05
JPWO2014181891A1 (ja) 2017-02-23
US20200006770A1 (en) 2020-01-02
EP3007254B1 (en) 2023-04-19
US20160093885A1 (en) 2016-03-31
EP3007254A1 (en) 2016-04-13
CN105122517B (zh) 2017-10-31
US11283072B2 (en) 2022-03-22
JP2016154143A (ja) 2016-08-25

Similar Documents

Publication Publication Date Title
WO2014181891A1 (ja) 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池
JP6596978B2 (ja) 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP6331983B2 (ja) 遷移金属複合水酸化物粒子の製造方法および非水電解質二次電池用正極活物質の製造方法
KR101644252B1 (ko) 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
JP7578122B2 (ja) 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP5708277B2 (ja) ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに非水系電解質二次電池
JP6380711B1 (ja) 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質の製造方法
WO2012131881A1 (ja) ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
EP2717361A1 (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
JP7260249B2 (ja) 遷移金属含有複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP2018095505A (ja) 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質とその製造方法
JP7087381B2 (ja) 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP6436335B2 (ja) 遷移金属複合水酸化物粒子とその製造方法、およびそれを用いた非水系電解質二次電池用正極活物質の製造方法
JP7006255B2 (ja) 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7159639B2 (ja) 遷移金属複合水酸化物の粒子の製造方法、及び、リチウムイオン二次電池用正極活物質の製造方法
JP2018104275A (ja) 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7087379B2 (ja) 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7273260B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
JP2020119787A (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP2020119784A (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
WO2018097191A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2019119661A (ja) 遷移金属含有複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
WO2019013053A1 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池
JP7183814B2 (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP6862786B2 (ja) 遷移金属含有複合水酸化物の製造方法および非水電解質二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015515919

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157030951

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14890349

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014794571

Country of ref document: EP