[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013094701A1 - ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 - Google Patents

ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 Download PDF

Info

Publication number
WO2013094701A1
WO2013094701A1 PCT/JP2012/083128 JP2012083128W WO2013094701A1 WO 2013094701 A1 WO2013094701 A1 WO 2013094701A1 JP 2012083128 W JP2012083128 W JP 2012083128W WO 2013094701 A1 WO2013094701 A1 WO 2013094701A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
composite hydroxide
active material
electrode active
aqueous solution
Prior art date
Application number
PCT/JP2012/083128
Other languages
English (en)
French (fr)
Inventor
福井 篤
広将 戸屋
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to US14/366,871 priority Critical patent/US9406930B2/en
Priority to CN201280070138.8A priority patent/CN104136376B/zh
Priority to KR1020147020103A priority patent/KR101644252B1/ko
Priority to EP12860901.3A priority patent/EP2796415B1/en
Publication of WO2013094701A1 publication Critical patent/WO2013094701A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0497Chemical precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a nickel composite hydroxide, a method for producing the same, a positive electrode active material for a non-aqueous electrolyte secondary battery using the composite hydroxide as a raw material, a method for producing the same, and a positive electrode active for the non-aqueous electrolyte secondary battery
  • the present invention relates to a non-aqueous electrolyte secondary battery using a substance as a positive electrode material.
  • the lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolytic solution and the like, and a material capable of desorbing and inserting lithium is used as the active material of the negative electrode and the positive electrode.
  • lithium ion secondary batteries using a layered or spinel type lithium composite oxide as a positive electrode active material are: Since a high voltage of 4V class can be obtained, the practical use is advanced as a battery having a high energy density.
  • lithium complex oxide used as a positive electrode active material of lithium ion secondary battery lithium cobalt complex oxide (LiCoO 2 ) which is relatively easy to synthesize at present, and lithium nickel using nickel cheaper than cobalt Proposals such as complex oxide (LiNiO 2 ), lithium nickel cobalt manganese complex oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), lithium manganese complex oxide using manganese (LiMn 2 O 4 ), etc. It is done.
  • the positive electrode active material be constituted by particles having a uniform and appropriate particle diameter. This is because when the positive electrode active material having a large particle size is used, the reaction area with the electrolytic solution is not sufficiently secured, the reaction resistance of the positive electrode is increased, and a high power battery may not be obtained. Conversely, when a positive electrode active material having an extremely small particle size is used, the packing density of the positive electrode may be reduced, and the battery capacity per volume may be reduced.
  • the positive electrode active material has a uniform and proper particle size, but also that it has a high specific surface area.
  • the specific surface area can be increased even if the particle size of the particles is the same. In this case, the reaction area between the particles and the electrolytic solution is increased, and the reactivity of both can be enhanced, so that the output of the battery can be further improved.
  • the lithium composite oxide as the positive electrode active material has particles having a uniform and appropriate particle size and having a large specific surface area. It is necessary to manufacture.
  • Japanese Patent Application Laid-Open No. 2008-147068 discloses that in the particle size distribution curve, the average particle diameter D50, which means the particle diameter having a cumulative frequency of 50%, is 3 ⁇ m to 15 ⁇ m, and the minimum particle diameter is 0.5 ⁇ m or more and the maximum particle diameter. Particles having a particle size distribution of 50 ⁇ m or less and the cumulative frequency of which is 10% D10 and 90% D90, D10 / D50 is 0.60 to 0.90, D10 / D90 is A lithium composite oxide is disclosed that is 0.30 to 0.70. The lithium composite oxide has high packing properties, good charge / discharge capacity characteristics and high output characteristics, and is less likely to deteriorate even under conditions of high charge / discharge load. By using as a positive electrode active material, it is described that it is possible to obtain a lithium ion secondary battery having excellent output characteristics and small deterioration of cycle characteristics.
  • Japanese Patent Application Laid-Open No. 2004-253174 discloses a lithium composite oxide comprising hollow particles having a layered structure and having an outer shell portion and an inner space portion of the outer shell portion. It is described that the positive electrode active material composed of such a lithium composite oxide is excellent in characteristics such as cycle characteristics, output characteristics and thermal stability and can be suitably used for a lithium ion secondary battery.
  • the lithium composite oxide disclosed in Japanese Patent Application Laid-Open No. 2008-147068 has a minimum particle size of 0.5 ⁇ m or more and a maximum particle size of 50 ⁇ m or less while having an average particle size of 3 ⁇ m to 15 ⁇ m. From the above, the values of D10 / D50 and D10 / D90 indicate that the range of the particle size distribution can not be narrow. That is, since the lithium composite oxide described in this document does not have uniform particle diameter, the performance of the lithium ion secondary battery can be obtained even if this lithium composite oxide is adopted as a positive electrode active material. It is difficult to improve.
  • the lithium composite oxide disclosed in Japanese Patent Application Laid-Open No. 2004-253174 is a hollow particle, an increase in specific surface area is expected compared to a solid particle, and the increase in the specific surface area is expected. It is considered that improvement in reactivity can be expected.
  • this lithium composite oxide does not take into consideration the particle size and particle size distribution, and therefore, due to the nonuniformity of particle size, selective of fine particles by nonuniformity of applied voltage in the electrode It is thought that deterioration occurs and battery capacity decreases.
  • a lithium composite oxide that can sufficiently improve the performance of a lithium ion secondary battery has not been developed yet.
  • various studies have been made on a method of producing a composite hydroxide that is a raw material of a lithium composite oxide, the composite hydroxide leading to the development of a lithium composite oxide that provides excellent battery performance on an industrial scale
  • a positive electrode active material composed of, for example, a lithium composite oxide having a uniform and appropriate particle diameter and a large reaction area, for example, a hollow structure, a composite hydroxide to be the raw material thereof, and industrial production of these
  • a positive electrode active material composed of, for example, a lithium composite oxide having a uniform and appropriate particle diameter and a large reaction area, for example, a hollow structure, a composite hydroxide to be the raw material thereof, and industrial production of these There is a need to develop methods.
  • the present invention provides a composite hydroxide as a raw material thereof, which can provide a lithium composite oxide having a uniform and appropriate particle size and having a high specific surface area by a hollow structure. It aims to be able to produce on an industrial scale.
  • the present invention provides a positive electrode active material for a non-aqueous secondary battery comprising a lithium composite oxide which can suppress a decrease in battery capacity in a lithium ion secondary battery and can reduce the reaction resistance of the positive electrode.
  • Another object of the present invention is to provide a non-aqueous electrolyte secondary battery having high capacity, excellent cycle characteristics and high output by using the positive electrode active material.
  • the present inventors have found that the particle size distribution of nickel composite hydroxide as a raw material And a central portion consisting of fine primary particles of nickel composite hydroxide, and an outer portion consisting of plate-like primary particles which are present outside this central portion and consist of nickel composite hydroxide and are larger than the primary particles.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium nickel composite oxide having a uniform and appropriate particle diameter and having a hollow structure can be obtained. Obtained.
  • the nickel composite hydroxide is separated into a nucleation step and a particle growth step by pH control at the time of crystallization, and the reaction atmosphere in each step and the metal compound supplied in each step, more specifically Specifically, it has been found that the manganese content in the mixed aqueous solution, which is a supply source of the metal element constituting the composite hydroxide, can be obtained by controlling each of them.
  • the present invention has been completed based on these findings.
  • M is a metal compound containing a metal element at a composition ratio of at least one additional element selected from the group consisting of Mg, Ca, Ti, V, Cr, Zr, Nb, Mo and W)
  • the aqueous solution for nucleation containing an ammonium ion donor is controlled so that the pH value becomes 12.0 to 14.0 on the basis of a liquid temperature of 25 ° C., and the nuclei in an oxidizing atmosphere having an oxygen concentration of more than 1% by volume
  • the oxygen concentration in the oxidizing atmosphere is preferably 10% by volume or more.
  • aqueous solution for particle growth it is preferable to use one formed by adjusting the pH value of the aqueous solution for nucleation after completion of the nucleation step.
  • the oxygen concentration in the mixed atmosphere is 0.5% by volume or less.
  • part of the liquid portion of the aqueous solution for particle growth is preferably discharged.
  • the ammonia concentration of the aqueous solution for nucleation and the aqueous solution for particle growth is preferably maintained in the range of 3 g / L to 25 g / L.
  • this process can be performed simultaneously with the process of coat
  • the present invention relates to a nickel composite hydroxide, which is represented by at least one additional element selected from the group consisting of substantially spherical secondary particles formed by aggregation of a plurality of primary particles.
  • the secondary particles have an average particle size of 3 ⁇ m to 15 ⁇ m, and an index indicating the spread of particle size distribution [(d90 ⁇ d10) / average particle size] is 0.55 or less.
  • a central portion composed of fine primary particles of a composite hydroxide represented by at least one additive element selected from: and an outer portion of the central portion, the general formula (3): Ni x Co y Al z Mn t M s (OH) 2 + a (x + y + z + t + s 1,0 ⁇ y ⁇ 0.3,0 ⁇ z ⁇ 0.1,0 ⁇ t ⁇ 0.05,0 ⁇ s ⁇ 0.05,0 ⁇ ⁇
  • the fine primary particles preferably have an average particle diameter of 0.01 ⁇ m to 0.3 ⁇ m, and the plate-like primary particles preferably have an average particle diameter of 0.3 ⁇ m to 3 ⁇ m.
  • the thickness of the outer shell portion is preferably 5% to 45% in proportion to the particle diameter of the secondary particles.
  • the aluminum is uniformly distributed in the inside of the secondary particles, and / or the aluminum compound uniformly coats the surface of the secondary particles.
  • the one or more additional elements are uniformly distributed inside the secondary particle, and / or the compound of the one or more additional elements uniformly covers the surface of the secondary particle. Is preferred.
  • the present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a nickel composite oxide.
  • the production method of the present invention Heat treating the nickel composite hydroxide at a temperature of 105 ° C. to 750 ° C .; Mixing the lithium compound with the nickel composite hydroxide after the heat treatment to form a lithium mixture; And B. baking the lithium mixture formed in the mixing step at a temperature of 700 ° C. to 800 ° C. in an oxidizing atmosphere.
  • the lithium mixture is preferably adjusted such that the ratio of the sum of the number of atoms of metals other than lithium contained in the lithium mixture and the number of atoms of lithium is 1: 0.95 to 1.2.
  • the firing step it is preferable to perform calcination at a temperature of 350 ° C. to 800 ° C. in advance before firing.
  • the oxidizing atmosphere in the firing step is preferably an atmosphere containing 18% by volume to 100% by volume of oxygen.
  • the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a nickel composite oxide.
  • the positive electrode active material of the present invention has an average particle diameter of 2 ⁇ m to 15 ⁇ m, and an index indicating spread of particle size distribution [(d 90 -d 10) / average particle diameter] is 0.60 or less, and is aggregated It is characterized by comprising a hollow structure comprising an outer shell portion in which primary particles are sintered and a hollow portion existing inside the outer shell portion.
  • the thickness of the outer shell portion is preferably 5% to 35% in proportion to the particle diameter of the secondary particles.
  • a fifth aspect of the present invention relates to a non-aqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery of the present invention is characterized in that the positive electrode is formed of the above-described positive electrode active material for non-aqueous electrolyte secondary battery.
  • a cathode active material for a non-aqueous electrolyte secondary battery comprising a lithium nickel composite oxide having a high specific surface area by having a uniform and appropriate particle diameter and having a hollow structure is industrially used. It becomes possible to offer.
  • this positive electrode active material as a positive electrode material, it is possible to obtain a non-aqueous electrolyte secondary battery with excellent battery characteristics, which has high capacity, high power, and good cycle characteristics.
  • FIG. 1 is a schematic flow chart of the process for producing the nickel composite hydroxide of the present invention.
  • FIG. 2 is a schematic flow chart of another process for producing the nickel composite hydroxide of the present invention.
  • FIG. 3 is a schematic flow chart from the production of the nickel composite hydroxide of the present invention to the production of a non-aqueous electrolyte secondary battery.
  • FIG. 4 is a SEM photograph (1,000 ⁇ magnification) of the nickel composite hydroxide of the present invention.
  • FIG. 5 is a cross-sectional SEM photograph (10,000 ⁇ magnification) of the nickel composite hydroxide of the present invention.
  • FIG. 6 is a SEM photograph (1,000 ⁇ magnification) of a lithium nickel composite oxide which is a positive electrode active material of the present invention.
  • FIG. 1 is a schematic flow chart of the process for producing the nickel composite hydroxide of the present invention.
  • FIG. 2 is a schematic flow chart of another process for producing the nickel composite hydroxide of the present invention.
  • FIG. 7 is a cross-sectional SEM photograph (observation magnification of 10,000 times) of the lithium nickel composite oxide which is a positive electrode active material of the present invention.
  • FIG. 8 is a schematic cross-sectional view of a coin-type battery used for battery evaluation.
  • FIG. 9 is a schematic explanatory view of a measurement example of impedance evaluation and an equivalent circuit used for analysis.
  • the present invention provides (1) a nickel composite hydroxide (hereinafter referred to as "composite hydroxide”) as a raw material of a positive electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same, (2) the composite hydroxide
  • composite hydroxide a nickel composite hydroxide
  • the present invention relates to a positive electrode active material for non-aqueous electrolyte secondary battery using the same and a method for producing the same, and (3) a non-aqueous electrolyte secondary battery using the positive electrode active material for non-aqueous electrolyte secondary battery as a positive electrode.
  • the influence of the positive electrode active material for non-aqueous electrolyte secondary battery adopted for the positive electrode is large.
  • the particle size, the particle size distribution, and the specific surface area are important factors, and have a desired particle structure, The positive electrode active material adjusted to the desired particle size and particle size distribution is preferable.
  • the value of the measured positive electrode resistance can be lowered.
  • the battery performance can be made good.
  • the composition ratio (Ni: Co: Al: Mn: M) of this composite hydroxide is also maintained in the obtained positive electrode active material. Therefore, the composition ratio of the composite hydroxide of the present invention is adjusted to be the same as the composition ratio required for the positive electrode active material to be obtained.
  • the constituent element aluminum may be uniformly distributed inside the secondary particles, and / or the surface of the secondary particles may be uniformly coated.
  • aluminum is added to improve the thermal stability, it is possible not only to obtain the above-mentioned effect in the whole particle, even by a small amount, by uniformly distributing it inside and / or on the surface. And the decrease in capacity can be suppressed.
  • additive elements are also added to improve the durability and output characteristics of the battery, and it is preferable to uniformly distribute them inside and / or on the surface of the particles, but suppressing the decrease in capacity, When the above effect is obtained with a smaller amount, such an additive element may be present on the surface or the concentration on the surface may be increased.
  • the composite hydroxide of the present invention is a substantially spherical particle as illustrated in FIG. Specifically, as illustrated in FIG. 5, this composite hydroxide is composed of substantially spherical secondary particles formed by aggregation of a plurality of primary particles, and more specifically, It has a central portion formed by aggregation of primary particles, and an outer shell portion formed by aggregation of plate-like primary particles larger than the fine primary particles, which is present outside the central portion. .
  • lithium is sufficiently diffused into the particles in the sintering step of forming the lithium nickel composite oxide which is the positive electrode active material of the present invention, so that the distribution of lithium is uniform. Good cathode active material can be obtained.
  • Mo and W At least one additive element selected from the group consisting of Mo and W.
  • the central portion is composed of extremely fine primary particles and is considered to have a low density.
  • the shrinkage due to sintering starts from a lower temperature than the composite hydroxide constituting the outer shell, and the shrinkage rate also increases.
  • the core shrinks sufficiently even at 700 ° C. to 800 ° C., which is the firing temperature of the outer shell, and the space where the core is present becomes a space of a sufficient size. .
  • the positive electrode active material obtained after firing has a hollow structure.
  • the outer shell part has a structure in which plate-like primary particles are aggregated in a random direction to form secondary particles.
  • the aggregation of the plate-like primary particles in a random direction causes voids to be almost uniformly formed between the primary particles, and when mixed and fired with the lithium compound, the molten lithium compound spreads into the secondary particles, and lithium is This is because diffusion is sufficiently performed.
  • a space having a sufficient size can be formed inside the positive electrode active material. It is preferable that it is a structure as mentioned above.
  • the fine primary particles in the central portion have an average particle size of 0.01 ⁇ m to 0.3 ⁇ m, and the plate-like primary particles in the outer shell portion have an average particle size
  • the diameter is preferably 0.3 ⁇ m to 3 ⁇ m. If the average primary particle diameter of the fine primary particles in the central portion is less than 0.01 ⁇ m, the aggregation of the primary particles may be insufficient, and a central portion having a sufficient size may not be formed in the obtained composite hydroxide. If the thickness is more than 0.3 ⁇ m, the above-mentioned sintering initiation at a low temperature and shrinkage may not be sufficient, and a sufficiently large space may not be obtained after firing.
  • the average particle diameter of the plate-like primary particles of the outer shell part is less than 0.3 ⁇ m, sintering at the time of firing of the plate-like primary particles is sufficiently lowered after firing. If it exceeds 3 ⁇ m, in order to obtain sufficient crystallinity of the positive electrode active material to be obtained, it is necessary to raise the firing temperature, and firing between secondary particles is required. There is a high possibility that the particle size of the obtained positive electrode active material will exceed the predetermined range due to the occurrence of bonding.
  • the fine primary particles are preferably plate-like and / or needle-like.
  • the center portion becomes sufficiently low in density
  • the sintering start temperature becomes sufficiently low, and large shrinkage occurs by firing, so that sufficient size is obtained. Space is created.
  • the thickness of the outer shell portion is preferably 5% to 45%, more preferably 7% to 35%, as a ratio to the particle diameter of the secondary particles. .
  • the ratio of the thickness of the outer shell portion to the particle diameter of the secondary particles is generally maintained at the ratio of the secondary particles of the composite hydroxide. Therefore, by setting the ratio of the thickness of the outer shell portion to the secondary particle diameter of the composite hydroxide in the above range, a hollow portion of a sufficiently large size is formed in the secondary particles of the lithium nickel composite oxide.
  • the thickness of the outer shell portion is too thin at less than 5% in proportion to the particle diameter of the secondary particles, the shrinkage of the secondary particles of the composite hydroxide becomes large in the firing step during the production of the positive electrode active material.
  • sintering may occur between secondary particles of the lithium nickel composite oxide, which may deteriorate the particle size distribution of the positive electrode active material.
  • problems such as the formation of a sufficiently large center portion may occur.
  • the particle sizes of these fine primary particles and plate-like primary particles, and the ratio of the thickness of the outer shell part to the particle size of the secondary particles can be determined by scanning the cross section of the secondary particles of the composite hydroxide. It can measure by observing using a microscope.
  • secondary particles of a plurality of composite hydroxides are embedded in a resin or the like, and cross-section polishing is performed so that cross-sectional observation of the particles is possible.
  • the particle sizes of the fine primary particles and the plate-like primary particles can be determined by measuring the maximum diameter of the cross section of the primary particles, preferably 10 or more, in the secondary particles as the particle size and calculating the average value.
  • the ratio of the thickness of the outer shell portion to the secondary particle diameter is determined as follows. First, from the secondary particles in the resin, select particles in which the cross section of the particle center can be observed, and at any three or more locations, the distance on the outer periphery of the outer shell and the inner periphery on the central side Measure the distance between the two points where is the shortest, and find the average thickness of the outer shell of each particle. The thickness of the outer shell of each particle is obtained by dividing the average thickness by the secondary particle diameter, where the distance between any two points at which the distance is maximum on the outer periphery of the secondary particles is the secondary particle diameter. Find the ratio of Furthermore, the ratio of the thickness of the outer shell portion to the secondary particle diameter in the secondary particles of the composite hydroxide can be determined by averaging the ratio of each particle determined for 10 or more particles.
  • the average particle diameter of the secondary particles is adjusted to 3 ⁇ m to 15 ⁇ m, preferably 3 ⁇ m to 7 ⁇ m.
  • a predetermined average particle size is obtained also for a nickel composite oxide (hereinafter referred to as “composite oxide”) which is a positive electrode active material obtained using the composite hydroxide of the present invention as a raw material. It is possible to adjust the diameter (2 ⁇ m to 15 ⁇ m).
  • composite oxide nickel composite oxide
  • the particle diameter of the composite hydroxide correlates with the particle diameter of the obtained positive electrode active material, and thus affects the characteristics of a battery using this positive electrode active material as a positive electrode material.
  • the average particle size of the composite hydroxide is less than 3 ⁇ m, the average particle size of the obtained positive electrode active material is also reduced, the packing density of the positive electrode is reduced, and the battery capacity per volume is reduced.
  • the average particle size of the composite hydroxide exceeds 15 ⁇ m, the specific surface area of the positive electrode active material decreases, and the interface with the electrolytic solution decreases, so that the resistance of the positive electrode increases and the output characteristics of the battery Decreases.
  • the composite hydroxide of the present invention is adjusted so that [(d90 ⁇ d10) / average particle size], which is an index indicating the spread of the particle size distribution, is 0.55 or less. Since the particle size distribution of the positive electrode active material is strongly affected by the particle size distribution of the composite hydroxide as the raw material, when fine particles or coarse particles are mixed in the composite hydroxide, the same particles are also contained in the positive electrode active material. Will be present. That is, when [(d90 ⁇ d10) / average particle size] exceeds 0.55 and the particle size distribution is wide, fine particles or coarse particles are also present in the positive electrode active material.
  • the particle size of the positive electrode active material obtained using this as a raw material is also The range of distribution becomes narrow, and the particle diameter can be made uniform. That is, with respect to the particle size distribution of the positive electrode active material, [(d90 ⁇ d10) / average particle diameter] can be made to be 0.60 or less.
  • d10 accumulates the number of particles in each particle diameter from the side of smaller particle diameter, and the accumulated volume is the total volume of all particles Means a particle size of 10% of the Also, d90 means a particle size in which the number of particles is similarly accumulated, and the accumulated volume is 90% of the total volume of all particles.
  • the method for determining the average particle diameter and d90 and d10 is not particularly limited.
  • the average particle diameter and d90 and d10 can be determined from a volume integration value measured by a laser light diffraction scattering particle size analyzer.
  • d50 is used as the average particle diameter
  • a particle diameter at which the cumulative volume is 50% of the total particle volume may be used as in d90.
  • the method for producing a composite hydroxide of the present invention is a method for producing a composite hydroxide represented by the general formula (1) by a crystallization reaction, It comprises: (A) a nucleation step for nucleation, and (B) a particle growth step for growing the nuclei produced in the nucleation step.
  • the particle size distribution of the secondary particles of the obtained composite hydroxide becomes wide.
  • the method for producing a composite hydroxide according to the present invention it is necessary to clearly separate the time in which the nucleation reaction mainly occurs (nucleation step) and the time in which the particle growth reaction mainly occurs (particle growth step). Is characterized in that a narrow particle size distribution is achieved in the resulting composite hydroxide.
  • the particle structure of the composite hydroxide thus obtained can be obtained by using a central portion composed of fine primary particles composed of the composite hydroxide represented by the general formula (2), and a composite water represented by the general formula (3) It is characterized in that it is composed of an oxide and has a double structure consisting of an outer shell consisting of plate-like primary particles larger than fine primary particles.
  • FIGS. 1 and 2 corresponds to a nucleation step, and (B) corresponds to a particle growth step.
  • the manganese content in this mixed aqueous solution needs to be controlled so that t in the general formula (a) is in the range of 0.1 or more and 0.8 or less, preferably 0.2 or more. It is controlled to be 7 or less, more preferably 0.3 or more and 0.6 or less.
  • t is less than 0.1, fine primary particles can not be obtained, and when it exceeds 0.8, shrinkage at the time of firing is reduced, and a sufficient hollow structure can not be obtained.
  • the cobalt content is controlled so that y in the general formula (a) is 0 or more and 0.8 or less, preferably 0 or more and 0.5 or less, in order to make the composition of the composite hydroxide uniform.
  • an alkaline aqueous solution such as an aqueous sodium hydroxide solution, an aqueous ammonia solution containing an ammonium ion supplier, and water are supplied to the reaction vessel and mixed to form an aqueous solution.
  • the pH value of this aqueous solution (hereinafter referred to as “pre-reaction aqueous solution”) is adjusted to a range of 12.0 to 14.0 at a liquid temperature of 25 ° C. by adjusting the supply amount of the alkaline aqueous solution. Adjust as. Further, the concentration of ammonium ion in the aqueous solution before reaction is adjusted to be 3 g / L to 25 g / L by adjusting the supply amount of the aqueous ammonia solution.
  • the temperature of the aqueous solution before reaction is also adjusted to preferably 20 ° C. or higher, more preferably 20 ° C. to 60 ° C.
  • the pH of the aqueous solution in the reaction tank and the concentration of ammonium ions can be measured by a general pH meter and an ion meter, respectively.
  • the mixed aqueous solution is supplied into the reaction vessel while stirring the pre-reaction aqueous solution.
  • an aqueous solution for nucleation which is a reaction aqueous solution in the nucleation step, is formed in the reaction tank in which the aqueous solution before reaction and the mixed aqueous solution are mixed, and the aqueous solution for nucleation is formed finely. A nucleus is to be generated.
  • the pH value of the aqueous solution for nucleation is in the above-mentioned range, formation of nuclei occurs preferentially with little growth of generated nuclei.
  • the aqueous solution for nucleation is supplied with the aqueous alkaline solution and the aqueous ammonia solution together with the mixed aqueous solution.
  • the pH value of the aqueous solution for nucleation is controlled so as to maintain the range of 12.0-14.0 on the basis of a liquid temperature of 25 ° C., and the concentration of ammonium ion is maintained in the range of 3 g / L-25 g / L.
  • the amount of nuclei generated in the nucleation step is not particularly limited, but in order to obtain a composite hydroxide having a good particle size distribution, the entire amount, that is, supplied to obtain a composite hydroxide It is preferably 0.1% to 1.5% of the total metal salt, and more preferably 1.2% or less. In addition, it can be judged by the quantity of the metal salt added to the aqueous solution for nucleus generation whether the nucleus of predetermined amount produced
  • the pH value of the aqueous solution for nucleation is adjusted so that the pH value becomes 10.5 to 12.0 on the basis of a liquid temperature of 25 ° C.
  • An aqueous solution for particle growth which is a reaction aqueous solution, is obtained.
  • control of the pH value at the time of adjustment is performed by adjusting the supply amount of the aqueous alkali solution.
  • the growth reaction of nuclei takes precedence over the reaction of generation of nuclei. For this reason, in the particle growth step, the nuclei grow (particle growth) in the aqueous solution for particle growth with hardly any new nuclei being formed, and a composite hydroxide having a predetermined particle diameter is formed.
  • the aqueous alkaline solution and the aqueous ammonia solution are also supplied to the aqueous solution for particle growth together with the mixed aqueous solution.
  • the pH value of the aqueous solution for particle growth is controlled so as to maintain the range of 10.5 to 12.0 and the concentration of ammonium ion in the range of 3 g / L to 25 g / L on the basis of a liquid temperature of 25 ° C.
  • composition ratio of each metal contained in the mixed aqueous solution to be supplied is changed from the composition ratio represented by the general formula (a) at the same time as switching of the reaction atmosphere described later after a predetermined time has elapsed since the start of the particle growth step.
  • Formula (b): Ni x Co y Al z Mn t M s (x + y + z + t + s 1, 0 ⁇ y ⁇ 0.3, 0 ⁇ z ⁇ 0.1, 0 ⁇ t ⁇ 0.05, 0 ⁇ s ⁇ 0. 05, M is switched to the composition ratio of at least one additional element selected from the group consisting of Mg, Ca, Ti, V, Cr, Zr, Nb, Mo and W).
  • the particle structure of the composite hydroxide obtained is represented by the central portion composed of fine primary particles constituted by the composite hydroxide represented by the general formula (2), and the composite represented by the general formula (3)
  • the secondary particles may be formed of a hydroxide and have a shell-like primary particle larger than the fine primary particles.
  • the manganese content in the mixed aqueous solution after switching is required to be controlled so that t in the general formula (b) is 0 or more and less than 0.05. It controls so that it may become a range of manganese content of, but, in order not to reduce battery capacity, it is preferable to set it as 0 or more and 0.01 or less. When t is 0.05 or more, there arises a problem that the manganese content in the whole particle is too high.
  • the composite hydroxide having the desired particle diameter can be obtained by continuing the particle growth step until the desired particle diameter is grown. You can get
  • the particle diameter of the composite hydroxide can be controlled not only by the particle growth step but also by the pH value of the nucleation step and the amount of raw material added for nucleation. That is, by setting the pH value at the time of nucleation to a high pH value side or by prolonging the nucleation time, the amount of raw material to be introduced is increased, and the number of nuclei to be generated is increased. Thereby, even when the particle growth step is performed under the same conditions, the particle diameter of the composite hydroxide can be reduced. On the other hand, if the number of nucleation is controlled to be small, the particle diameter of the obtained composite hydroxide can be increased. For this reason, it is preferable to obtain the relationship between the amount of the metal salt added to each reaction aqueous solution and the obtained particles in each of the nucleation step and the particle growth step by a preliminary test.
  • the particle diameter of the composite hydroxide can be controlled not only by the particle growth step but also by the pH value of the nucleation step and the amount of raw material added for nucleation. That is, by setting the pH value at the time of nucleation to a high pH value side or by prolonging the nucleation time, the amount of raw material to be introduced is increased, and the number of nuclei to be generated is increased. Thereby, even when the particle growth step is performed under the same conditions, the particle diameter of the composite hydroxide can be reduced. On the other hand, if the number of nucleation is controlled to be small, the particle diameter of the obtained composite hydroxide can be increased.
  • nucleation occurs preferentially in the nucleation step, and growth of nuclei hardly occurs, and conversely, nucleus growth occurs in the particle growth step. Only new kernels are not generated. Therefore, in the nucleation step, it is possible to form homogeneous nuclei with a narrow range of particle size distribution, and in the particle growth step, it is possible to grow nuclei homogeneously. Therefore, in the method for producing a composite hydroxide of the present invention, it is possible to obtain a homogeneous composite hydroxide with a narrow range of particle size distribution.
  • the metal ion crystallizes as a nucleus or a composite hydroxide, so that the ratio of the liquid component to the metal component in each reaction aqueous solution increases.
  • the concentration of the mixed aqueous solution to be supplied apparently decreases, and the composite hydroxide may not grow sufficiently, particularly in the particle growth step. Therefore, in order to suppress an increase in the liquid component in the reaction aqueous solution, part of the liquid component in the reaction aqueous solution, particularly the aqueous solution for particle growth, is discharged out of the reaction tank during the particle growth step after completion of the nucleation step. Is preferred.
  • the supply and stirring of the mixed aqueous solution, the aqueous alkali solution and the aqueous ammonia solution to the aqueous solution for particle growth are stopped to precipitate the nuclei and the composite hydroxide, and the supernatant liquid of the aqueous solution for particle growth is discharged.
  • the relative concentration of the mixed aqueous solution in the aqueous solution for particle growth can be increased.
  • the composite hydroxide can be grown in a state where the relative concentration of the mixed aqueous solution is high, the particle size distribution of the composite hydroxide can be narrowed further, and as a whole, secondary particles of the composite hydroxide Density can also be increased.
  • the pH value of the aqueous solution for nucleation is adjusted to form the aqueous solution for particle growth, and the particle growth step is performed subsequently to the nucleation step in the embodiment shown in FIG.
  • the transition to the particle growth process can be performed quickly.
  • the transition from the nucleation step to the particle growth step can be shifted only by adjusting the pH value of the reaction aqueous solution, and the pH adjustment can be easily performed by temporarily stopping the supply of the aqueous alkali solution.
  • the pH value of the reaction aqueous solution can also be adjusted by adding sulfuric acid to the reaction aqueous solution in the case of an inorganic acid of the same type as the acid constituting the metal compound, for example, a sulfate.
  • a component adjustment aqueous solution adjusted to a pH value and an ammonium ion concentration suitable for the particle growth step is formed separately from the aqueous solution for nucleation,
  • An aqueous solution containing a nucleus generated by performing a nucleation step in another reaction tank (an aqueous solution for nucleation, preferably one obtained by removing a part of the liquid component from the aqueous solution for nucleation) is added to obtain a reaction aqueous solution
  • the particle growth step may be performed using the reaction aqueous solution as an aqueous solution for particle growth.
  • the state of the reaction aqueous solution in each step can be set as the optimum condition for each step.
  • the pH value of the aqueous solution for particle growth can be set as the optimum condition from the start of the particle growth step.
  • the composite hydroxide formed in the particle growth step can be made more homogeneous with a narrower range of particle size distribution.
  • reaction conditions in the crystallization reaction will be described below, but the difference between the nucleation step and the particle growth step is only in the range of controlling the pH value of the reaction aqueous solution and the atmosphere in the reaction tank.
  • the conditions such as in-liquid ammonia concentration and reaction temperature are substantially the same in both steps.
  • the reaction atmosphere in the nucleation step of the present invention needs to be an oxidizing atmosphere, more specifically, an oxidizing atmosphere in which the oxygen concentration in the space in the reaction vessel exceeds 1% by volume.
  • An oxidizing atmosphere having an oxygen concentration of more than 10% by volume is preferable, and it is particularly preferable to use an air atmosphere (oxygen concentration: 21% by volume) which is easy to control.
  • the atmosphere By setting the atmosphere to have an oxygen concentration of more than 1% by volume, the average particle diameter of the primary particles can be set to 0.01 ⁇ m to 0.3 ⁇ m.
  • the oxygen concentration is 1% by volume or less, the average particle size of the primary particles in the central part may exceed 0.3 ⁇ m.
  • the upper limit of the oxygen concentration is not particularly limited, but when it exceeds 30% by volume, the average particle diameter of the primary particles may be less than 0.01 ⁇ m, which is not preferable.
  • the reaction atmosphere in the particle growth step of the present invention is an atmosphere ranging from the above-mentioned oxidizing atmosphere to a weakly oxidizing to non-oxidizing atmosphere at a predetermined time point described later, specifically oxygen in the reaction chamber inner space. It is necessary to switch to an atmosphere having a concentration of 1% by volume or less.
  • the mixed atmosphere of oxygen and inert gas is controlled so that the oxygen concentration is 0.5 volume% or less, more preferably 0.2 volume% or less.
  • the oxygen concentration in the reaction chamber space 1% by volume or less and growing the particles, unnecessary oxidation of the particles is suppressed and the growth of primary particles is promoted, and the average particle diameter is larger than 0.3 ⁇ m to 3 ⁇ m It is possible to obtain a secondary particle having a dense and high density outer shell part in which the primary particle size is uniform and the particle size is uniform.
  • reaction vessel interior space there is no particular limitation on the means for keeping the reaction vessel interior space in such an atmosphere, but it is possible to circulate an inert gas such as nitrogen into the reaction vessel interior space, and further, in the reaction liquid. Bubbling active gas may be mentioned.
  • the particle structure of the composite hydroxide of the present invention is formed by controlling the composition of the mixed aqueous solution and the reaction atmosphere in the nucleation step and the particle growth step. That is, by using a part of the initial stage of the nucleation step and the particle growth step as the oxidizing atmosphere and the composition of the mixed aqueous solution as the composition represented by the general formula (a), it comprises fine primary particles and has many voids.
  • a low density core is formed, and in the subsequent particle growth step, the atmosphere is switched from the oxidizing atmosphere to a weakly oxidizing to non-oxidizing atmosphere, and the composition of the mixed aqueous solution is represented by the general formula (b)
  • the composition of the mixed aqueous solution is represented by the general formula (b)
  • the timing of this switching is 1% to 15%, preferably 2%, from the start of the particle growth step to the entire particle growth step time (from the start of this step to the end of the reaction) It is carried out in the range of ⁇ 12.5%, more preferably 4% ⁇ 10%. If this switching is performed at more than 15% of the whole grain growth process time, the formed center becomes large and the thickness of the shell relative to the particle diameter of the secondary particles becomes too thin. Not only that, but the content of manganese increases, so the charge and discharge capacity decreases. On the other hand, if this switching is performed at less than 1% with respect to the whole particle growth process time, the central part becomes too small or secondary particles having a sufficient hollow structure are not formed.
  • PH control In the nucleation step, it is necessary to control the pH value of the reaction aqueous solution to be in the range of 12.0 to 14.0 at a liquid temperature of 25 ° C. If the pH value is more than 14.0, the generated nuclei become too fine, and there is a problem that the reaction aqueous solution gels. Further, if the pH value is less than 12.0, since the growth reaction of the nucleus occurs together with the nucleation, the range of the particle size distribution of the formed nucleus becomes wide and becomes inhomogeneous.
  • the nucleation step by controlling the pH value of the reaction aqueous solution to the above-mentioned range, it is possible to suppress the growth of the nucleus and cause only nucleation, and the generated nucleus is homogeneous and the range of particle size distribution Can be narrow.
  • the pH value of the reaction aqueous solution it is necessary to control the pH value of the reaction aqueous solution to be in the range of 10.5 to 12.0 at a liquid temperature of 25 ° C.
  • the pH value exceeds 12.0, a large number of newly generated nuclei are generated, and fine secondary particles are formed, so that a composite hydroxide having a narrow range of particle size distribution can not be obtained.
  • the pH value is less than 10.5, the solubility by ammonia ion is high, and metal ions remaining in the solution without precipitation are increased, so that the production efficiency is deteriorated.
  • the composite hydroxides can be made homogeneous and have a narrow range of particle size distribution.
  • the fluctuation range of pH is preferably controlled within 0.2 above and below the set value.
  • nucleation and particle growth may not be constant, and a uniform composite hydroxide having a narrow range of particle size distribution may not be obtained.
  • the pH value is 12.0, it is the boundary condition between nucleation and growth, so either the nucleation step or the particle growth step should be made depending on the presence or absence of the nuclei present in the reaction aqueous solution. Can.
  • the pH value of the particle growth step may be controlled to a value lower than the pH value of the nucleation step, and in order to clearly separate nucleation and particle growth, the pH value of the particle growth step is
  • the pH value is preferably 0.5 or more lower than the pH value of the production step, and more preferably 1.0 or more lower.
  • alkaline solution It does not specifically limit about the alkaline aqueous solution which adjusts pH in reaction aqueous solution,
  • alkali metal hydroxide aqueous solution such as sodium hydroxide and potassium hydroxide
  • alkali metal hydroxide although it may be directly supplied into the reaction aqueous solution, it is added to the reaction aqueous solution in the reaction tank as an aqueous solution because of easy control of the pH value of the reaction aqueous solution in the reaction tank. Is preferred.
  • the method of adding the alkaline aqueous solution to the reaction tank is not particularly limited, and the pH value of the reaction aqueous solution is predetermined by a pump such as a metering pump capable of controlling the flow rate while sufficiently agitating the reaction aqueous solution. So as to be kept in the range of
  • ammonia concentration in the reaction aqueous solution is preferably kept at a constant value within the range of 3 g / L to 25 g / L in order not to cause the following problems.
  • Ammonia acts as a complexing agent, so if the ammonia concentration is less than 3 g / L, the solubility of metal ions can not be kept constant, and primary particles of the composite hydroxide whose shape and particle size are correct are Since it is not formed and gel-like nuclei are easily generated, the particle size distribution also tends to spread.
  • concentration of ammonia exceeds 25 g / L, the solubility of metal ions becomes too large, the amount of metal ions remaining in the reaction aqueous solution increases, and a deviation of composition occurs.
  • the ammonia concentration fluctuates the solubility of metal ions fluctuates, and a hydroxide having a uniform shape and particle size is not formed, so it is preferable to keep the value constant.
  • it is preferable to maintain the ammonia concentration at a desired concentration by setting the width between the upper and lower limits to 5 g / L or less.
  • ammonium ion supplier is not particularly limited, and, for example, ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride and the like can be used.
  • Metal compounds As a source of nickel, cobalt, aluminum and manganese which are constituent elements of the composite hydroxide of the present invention, a compound containing a target metal is used.
  • the compound to be used is preferably a water-soluble compound, and examples thereof include nitrates, sulfates and hydrochlorides.
  • nickel sulfate, manganese sulfate, cobalt sulfate, aluminum sulfate and sodium aluminate are preferably used.
  • an aluminum compound is added to the mixed aqueous solution, or an aluminum-containing aqueous solution is separately prepared, and this is added to the reaction aqueous solution simultaneously with the mixed aqueous solution.
  • an aluminum compound is added to the mixed aqueous solution, or an aluminum-containing aqueous solution is separately prepared, and this is added to the reaction aqueous solution simultaneously with the mixed aqueous solution.
  • nickel, cobalt, and manganese to the inside of reaction aqueous solution, it can be coprecipitated in the state to which aluminum was disperse
  • the additive element (represented by M in the composition formula and at least one or more elements selected from the group consisting of Mg, Ca, Ti, V, Cr, Zr, Nb, Mo and W) is a water-soluble compound. It is preferable to use, for example, titanium sulfate, ammonium peroxotitanate, potassium titanium oxalate, vanadium sulfate, ammonium vanadate, chromium sulfate, potassium chromate, zirconium sulfate, zirconium nitrate, niobium nitrate, niobium oxalate, ammonium molybdate, tungstate Sodium, ammonium tungstate or the like can be used. These additive elements can be dispersed in the composite hydroxide or coated on the surface of the composite hydroxide by the same method as in the case of aluminum.
  • the composite water obtained in the particle growth step It is necessary to further include the step of coating the aluminum compound on the oxide.
  • the composite hydroxide when coating the surface of the composite hydroxide with an aluminum compound, for example, the composite hydroxide is slurried with an aqueous solution containing sodium aluminate and controlled to a predetermined pH. If the aluminum compound is precipitated on the surface of the composite hydroxide by a crystallization reaction, the surface can be uniformly coated. In this case, an aluminum alkoxide solution may be used instead of the aqueous solution containing sodium aluminate. Furthermore, the surface of the composite hydroxide can be coated with the aluminum compound by spraying an aqueous solution or slurry containing the aluminum compound and drying the composite hydroxide. Alternatively, the slurry in which the salt containing the composite hydroxide and aluminum is suspended may be spray-dried, or the composite hydroxide and the salt containing aluminum may be coated by a method such as mixing in a solid phase method.
  • the surface of the composite hydroxide containing aluminum can also be further coated with an aluminum compound, in this case, the atomic number ratio of aluminum ions present in the mixed aqueous solution should be reduced by the amount to cover Can be matched with the atomic ratio of metal ions of the composite hydroxide to be obtained. Also, the step of coating the surface of the particles with an aluminum compound may be performed on the particles after heating the composite hydroxide.
  • the additive element can be coated on the surface of the composite hydroxide by the same method as in the case of aluminum, and in this case, it can be performed simultaneously with the step of coating with an aluminum compound.
  • the concentration of the mixed aqueous solution is preferably 1 mol / L to 2.2 mol / L in total of the metal compounds. If the concentration of the mixed aqueous solution is less than 1 mol / L, the amount of the crystallized material per reaction vessel decreases, which is not preferable because the productivity decreases. On the other hand, when the salt concentration of the mixed aqueous solution exceeds 2.2 mol / L, the saturation concentration at normal temperature is exceeded, and there is a danger that crystals will reprecipitate and clog the piping of the facility.
  • the metal compound may not necessarily be supplied to the reaction tank as a mixed aqueous solution.
  • the total concentration of all metal compound aqueous solutions is in the above range and
  • the metal compound aqueous solution may be separately prepared so as to be simultaneously supplied as an aqueous solution of individual metal compounds at a predetermined ratio into the reaction vessel.
  • a mixed aqueous solution may be described including an aqueous solution of a metal compound individually supplied.
  • the amount of the aqueous solution of each metal compound, such as a mixed aqueous solution, supplied to the reaction vessel should be such that the concentration of the crystallized material at the end of the crystallization reaction is approximately 30 g / L to 200 g / L. Is desirable.
  • the concentration of the crystallized material is less than 30 g / L, the aggregation of the primary particles may be insufficient, and when it exceeds 200 g / L, the diffusion of the mixed aqueous solution to be added in the reaction tank is sufficient.
  • the grain growth may be biased.
  • the temperature of the reaction solution is preferably set at 20 ° C. or higher, particularly preferably 20 ° C. to 60 ° C. If the temperature of the reaction solution is less than 20 ° C., since the solubility is low, nucleation is likely to occur and control becomes difficult. On the other hand, if the temperature exceeds 60 ° C., volatilization of ammonia is promoted, and therefore an excess ammonium ion donor must be added to maintain a predetermined ammonia concentration, resulting in high cost.
  • production equipment In the method for producing a composite hydroxide of the present invention, an apparatus of a type in which the product is not recovered until the reaction is completed is used.
  • a commonly used batch reaction vessel equipped with a stirrer When such an apparatus is employed, there is no problem that growing particles are recovered simultaneously with the overflow liquid, as in a continuous crystallizer that recovers a product by a general overflow, so the particle size distribution is narrow. Particles of uniform diameter can be obtained.
  • an atmosphere-controllable device such as a closed type device is used.
  • the resulting composite hydroxide can be made to have the above-described structure, and nucleation reaction and particle growth reaction can be promoted almost uniformly, so that the particle size distribution is excellent. It is possible to obtain particles, ie particles with a narrow range of particle size distribution.
  • u representing an excessive amount of lithium is in the range of ⁇ 0.05 or more and 0.20 or less.
  • the excess amount u of lithium is less than ⁇ 0.05, the reaction resistance of the positive electrode in the non-aqueous electrolyte secondary battery using the obtained positive electrode active material is increased, and the output of the battery is lowered.
  • the excess amount u of lithium exceeds 0.20, the initial discharge capacity in the case of using the above-mentioned positive electrode active material for the positive electrode of the battery decreases, and the reaction resistance of the positive electrode also increases.
  • the excess amount u of lithium is preferably set to 0.00 or more and 0.15 or less.
  • y which shows content of cobalt into the range of 0 or more and 0.3 or less, and set it as 0.1 or more and 0.2 or less range.
  • Cobalt is not preferable because y is more than 0.3 because the amount of cobalt is small and expensive.
  • the z indicating the aluminum content is in the range of more than 0 and 0.1 or less, and preferably in the range of 0.2 or more and 0.8 or less. When z exceeds 0.1, there arises a problem that the battery capacity is reduced.
  • t indicating the content of manganese is preferably in the range of more than 0.001 and 0,05 or less, and preferably in the range of 0.01 or more and 0.03 or less.
  • t is less than 0.001, a sufficient hollow structure can not be obtained, and the output of the battery is lowered.
  • t exceeds 0.05, the charge and discharge capacity when used for the positive electrode of the battery decreases.
  • the positive electrode active material of this invention is adjusted so that an additional element may be contained in lithium nickel complex oxide.
  • an additional element may be contained in lithium nickel complex oxide.
  • the above effect can be obtained in the whole particle, and the above effect can be obtained and the reduction of the capacity can be suppressed by adding a small amount. Furthermore, in order to obtain an effect with a smaller addition amount, it is preferable to increase the concentration of the additive element at the particle surface rather than inside the particle.
  • s which shows content of such an additional element into the range of 0 or more and 0.05 or less, and to be 0.01 or more and 0.04 or less. If the content of the additive element exceeds 0.05, the metal element contributing to the Redox reaction decreases, and the battery capacity is unfavorably reduced.
  • the positive electrode active material of the present invention has an average particle diameter in the range of 2 ⁇ m to 15 ⁇ m.
  • the average particle size is less than 2 ⁇ m, the packing density of particles decreases when the positive electrode is formed, and the battery capacity per volume of the positive electrode decreases.
  • the average particle size exceeds 15 ⁇ m, the specific surface area of the positive electrode active material is reduced, and the interface between the positive electrode and the electrolytic solution is reduced. Therefore, the resistance of the positive electrode is increased and the output characteristics of the battery are reduced.
  • the average particle diameter of the positive electrode active material is preferably in the range of 3 ⁇ m to 8 ⁇ m, and more preferably in the range of 3 ⁇ m to 6 ⁇ m.
  • the positive electrode active material of the present invention is an index indicating the spread of particle size distribution [(d90 ⁇ d10) / average particle diameter] is 0.60 or less, and the average particle diameter is 2 ⁇ m. It is composed of secondary particles of lithium nickel composite oxide with extremely high homogeneity, which is ⁇ 15 ⁇ m.
  • the particle size distribution of the positive electrode active material to the index [(d90-d10) / average particle size] of 0.60 or less and controlling the average particle size to the range of 2 ⁇ m to 15 ⁇ m, an appropriate particle size is obtained.
  • the ratio of fine particles and coarse particles can be reduced while For this reason, a battery using this positive electrode active material for the positive electrode is excellent in safety, and has good cycle characteristics and battery output.
  • the said average particle diameter and d90, d10 are the same as that of what is used for the composite hydroxide mentioned above, and it can measure similarly.
  • the positive electrode active material of the present invention is characterized in that it has a hollow structure composed of the hollow portion inside the secondary particle and the outer shell portion outside thereof as illustrated in FIG. With such a hollow structure, the reaction surface area can be increased, and the electrolyte penetrates from the grain boundaries or gaps between primary particles in the outer shell portion, and the primary particle surface on the hollow side of the particles inside Since lithium insertion and extraction are also performed at the reaction interface in the above, the movement of Li ions and electrons is not hindered, and the output characteristics can be enhanced.
  • the thickness of the outer shell portion is preferably 5% to 35% in a ratio to the particle diameter of the secondary particles of the positive electrode active material.
  • the thickness of the outer shell portion is more preferably in the range of 0.5 ⁇ m to 5 ⁇ m. Preferably, it is in the range of 0.5 ⁇ m to 2.5 ⁇ m.
  • the thickness ratio of the outer shell portion exceeds 35%, the amount of the electrolytic solution decreases from the above grain boundaries or voids which allow the electrolytic solution to penetrate into the hollow portion inside the particles, and the surface area contributing to the battery reaction decreases. Therefore, the positive electrode resistance is increased, and the output characteristics are degraded.
  • the ratio of the thickness of the outer shell portion to the particle diameter of the composite oxide can be determined by the same measurement method as that for the above-described composite hydroxide.
  • the positive electrode active material of the present invention When the positive electrode active material of the present invention is used, for example, as a positive electrode of a 2032 type coin battery, a high initial discharge capacity of 185 mAh / g or more, a low positive electrode resistance and a high cycle capacity retention rate can be obtained. It shows excellent characteristics as a positive electrode active material for a secondary battery.
  • the method for producing a positive electrode active material of the present invention is a method for producing a positive electrode active material represented by the general formula (4),
  • the positive electrode active material is not particularly limited as long as the positive electrode active material can be produced to have an average particle size, particle size distribution, particle structure and composition, but the positive electrode active material can be more reliably produced by adopting the following method. preferable.
  • the method for producing a positive electrode active material of the present invention comprises: a) a heat treatment step of heat treating a composite hydroxide which is a raw material of the positive electrode active material of the present invention; and b) a composite hydroxide or composite oxide after heat treatment. And c) mixing the lithium compound and forming a mixture, and c) calcining the mixture formed in the mixing step.
  • a heat treatment step of heat treating a composite hydroxide which is a raw material of the positive electrode active material of the present invention
  • b) a composite hydroxide or composite oxide after heat treatment and c) mixing the lithium compound and forming a mixture, and c) calcining the mixture formed in the mixing step.
  • the heat treatment step is a step of heating the composite hydroxide to a temperature of 105 ° C. to 750 ° C. to heat-treat, and removes the water contained in the composite hydroxide. By performing this heat treatment step, it is possible to reduce the amount of water remaining in the particles until the firing step to a certain amount. This can prevent variation in the ratio of the number of metal atoms and the number of lithium atoms in the positive electrode active material to be obtained.
  • the heat treatment step may be omitted if the variation can be suppressed by the exact blending of the raw materials.
  • the heat treatment step it is only necessary to remove water to such an extent that the ratio of the number of metal atoms in the positive electrode active material and the number of lithium atoms does not vary, so it is not necessary to convert all composite hydroxides to composite oxides. Absent. However, in order to reduce the above-mentioned variation, it is preferable to set the heating temperature to 500 ° C. or more to convert all the composite hydroxides to the composite oxide.
  • the heating temperature when the heating temperature is less than 105 ° C., excess water in the composite hydroxide can not be removed, and the above variation can not be suppressed.
  • the heating temperature exceeds 750 ° C., the particles are sintered by heat treatment and a composite oxide having a uniform particle diameter can not be obtained. From the viewpoint of suppressing such variations, it is preferable to previously obtain, by analysis, the metal component contained in the composite hydroxide under the heat treatment conditions, and to determine the ratio to the lithium compound.
  • the atmosphere in which the heat treatment is performed is not particularly limited, as long as it is a non-reducing atmosphere, but is preferably performed in an air stream that can be easily performed.
  • the heat treatment time is not particularly limited, but excess water removal of the composite hydroxide may not be sufficiently performed in less than 1 hour, so at least 1 hour or more is preferable, and 5 hours to 15 hours is more preferable. .
  • the equipment used for the heat treatment is not particularly limited, as long as the composite hydroxide can be heated in a non-reducing atmosphere, preferably in a stream of air, and an electric furnace or the like without gas generation Is preferably used.
  • a lithium mixture is prepared by mixing the composite hydroxide (hereinafter referred to as "heat-treated particles") or the like that has been heat-treated in the above heat treatment step with a lithium-containing substance such as a lithium compound. It is a process to obtain.
  • the heat-treated particles include not only the composite hydroxide from which residual water has been removed in the heat treatment step, but also the complex oxide converted into an oxide in the heat treatment step or a mixture of these.
  • the heat-treated particles and the lithium compound are the number of atoms of metals other than lithium in the lithium mixture, that is, the ratio of the sum of the number of atoms of nickel, manganese, cobalt and aluminum (Me) to the number of atoms of lithium (Li) Li / Me) is mixed so as to be 0.95 to 1.2, preferably 1 to 1.15. That is, since Li / Me does not change before and after the firing step, Li / Me mixed in this mixing step becomes Li / Me in the positive electrode active material, so that Li / Me in the lithium mixture is intended to be obtained Mixed to be the same as Li / Me in
  • the mixing step it is preferable to sufficiently mix the heat-treated particles and the lithium compound so as to be uniformly dispersed. If mixing is not sufficient, Li / Me may vary among individual particles, which may cause problems such as insufficient battery characteristics.
  • a common mixer can be used for mixing, for example, a shaker mixer, a Loedige mixer, a Julia mixer, a V blender etc. can be used, and complex oxidation is performed to such an extent that the defects such as heat treated particles are not destroyed.
  • the substance and the substance containing lithium may be sufficiently mixed.
  • the lithium compound used to form the lithium mixture is not particularly limited.
  • lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof is preferable in that it is easily available.
  • lithium hydroxide is more preferably used in consideration of ease of handling and stability of quality.
  • the firing step is a step of firing the lithium mixture obtained in the above mixing step to form a lithium-nickel composite oxide.
  • the firing step lithium in the lithium-containing substance is diffused into the heat-treated particles to form a lithium-nickel composite oxide.
  • the calcination of the lithium mixture is performed at 650 ° C. to 800 ° C., more preferably at 700 ° C. to 800 ° C., still more preferably at 740 ° C. to 770 ° C.
  • the firing temperature is less than 650 ° C.
  • the diffusion of lithium into the heat-treated particles is not sufficiently carried out, and surplus lithium and unreacted particles remain, or the crystal structure is not sufficiently prepared, and the battery is used in a battery. In such a case, sufficient battery characteristics can not be obtained.
  • the firing temperature exceeds 800 ° C.
  • sintering may occur vigorously between secondary particles of the composite oxide, and abnormal particle growth may occur. Therefore, the particles after firing become coarse and the particles become particles. There is a possibility that the form (the form of spherical secondary particles) can not be maintained. Since such a positive electrode active material has a reduced specific surface area, when used in a battery, there arises a problem that the resistance of the positive electrode increases and the battery capacity decreases. In addition, cation mixing of lithium and the metal element may occur to disturb the crystal structure, and the battery capacity may be reduced.
  • the temperature is preferably raised to the above temperature at a temperature rising rate of 3 ° C./min to 10 ° C./min. Furthermore, the reaction can be performed more uniformly by maintaining the temperature around the melting point of the lithium compound for about 1 hour to 5 hours.
  • the holding time at the baking temperature is preferably at least 2 hours or more, more preferably 4 hours to 24 hours. In less than 2 hours, the formation of the lithium nickel composite oxide may not be sufficiently performed.
  • the atmosphere is cooled to a temperature of 200 ° C. or less at a falling rate of 2 ° C./min to 10 ° C./min after the holding time to prevent deterioration of the mortar.
  • lithium hydroxide or lithium carbonate when used as the lithium compound, it is maintained at a temperature lower than the calcination temperature, specifically at a temperature of 100 ° C. to 500 ° C., for about 1 hour to 10 hours before firing. It is preferable to carry out calcination. That is, it is preferable to perform calcination at a reaction temperature of lithium hydroxide or lithium carbonate and heat-treated particles. In this case, if lithium hydroxide or lithium carbonate is maintained at around the above reaction temperature, the diffusion of lithium to the heat-treated particles is sufficiently performed, and a uniform lithium nickel composite oxide can be obtained.
  • the atmosphere at the time of firing is preferably an oxidative atmosphere, more preferably an atmosphere with an oxygen concentration of 18% by volume to 100% by volume, and a mixed atmosphere of oxygen with an oxygen concentration and an inert gas. More preferable.
  • the firing is preferably performed in the air or an oxygen stream. If the oxygen concentration is less than 18% by volume, the crystallinity of the lithium-nickel composite oxide may not be sufficient.
  • the furnace used for the firing is not particularly limited as long as it can heat the lithium mixture in the atmosphere or an oxygen stream, but there is no gas generation from the viewpoint of keeping the atmosphere in the furnace uniform. Electric furnaces are preferred, and either batch or continuous furnaces can be used.
  • the lithium nickel composite oxide obtained by firing may have caused aggregation or slight sintering. In this case, it is preferable to crush the lithium nickel composite oxide. Thereby, a lithium nickel composite oxide, that is, the positive electrode active material of the present invention can be obtained.
  • mechanical energy is injected into an aggregate consisting of a plurality of secondary particles generated by sintering necking between secondary particles at the time of firing, and the secondary particles themselves are hardly destroyed. It is an operation to separate secondary particles and loosen aggregates.
  • Nonaqueous Electrolyte Secondary Battery employs a positive electrode using the above-mentioned positive electrode active material for non-aqueous electrolyte secondary battery as a positive electrode material.
  • the structure of the non-aqueous electrolyte secondary battery will be described.
  • the non-aqueous electrolyte secondary battery of the present invention has substantially the same structure as a general non-aqueous electrolyte secondary battery except that the positive electrode active material of the present invention is used as a positive electrode material.
  • the secondary battery of the present invention has a structure including a case, and a positive electrode, a negative electrode, a non-aqueous electrolytic solution, and a separator housed in the case.
  • the positive electrode and the negative electrode are stacked via the separator to form an electrode body, and the obtained electrode body is impregnated with the non-aqueous electrolytic solution, and the positive electrode current collector of the positive electrode and the positive electrode terminal passing outside.
  • the secondary battery of the present invention is formed by connecting between and between the negative electrode current collector of the negative electrode and the negative electrode terminal leading to the outside using a current collection lead etc. and sealing in a case. .
  • the structure of the secondary battery of the present invention is not limited to the above-mentioned example, and the outer shape thereof can adopt various shapes such as a cylindrical shape and a laminated shape.
  • the positive electrode which is a feature of the secondary battery of the present invention, will be described.
  • the positive electrode is a sheet-like member, and is formed by applying and drying a positive electrode mixture paste containing the positive electrode active material of the present invention, for example, on the surface of a current collector made of aluminum foil.
  • a positive electrode is suitably processed according to the battery to be used.
  • a cutting process of forming into an appropriate size according to a target battery, and a pressure compression process using a roll press or the like are performed to increase the electrode density.
  • the positive electrode mixture paste is formed by adding a solvent to the positive electrode mixture and kneading.
  • the positive electrode mixture is formed by mixing the positive electrode active material of the present invention in powder form, a conductive material and a binder.
  • the conductive material is added to provide the electrode with appropriate conductivity.
  • the conductive material is not particularly limited, and for example, carbon black-based materials such as graphite (natural graphite, artificial graphite, expanded graphite and the like) and acetylene black and ketjen black can be used.
  • the binder plays a role of holding the positive electrode active material particles.
  • the binder used for the positive electrode mixture is not particularly limited, and examples thereof include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluororubber, ethylene propylene diene rubber, styrene butadiene, cellulose resin, Polyacrylic acid or the like can be used.
  • Activated carbon or the like may be added to the positive electrode mixture, and the electric double layer capacity of the positive electrode can be increased by adding activated carbon or the like.
  • the solvent dissolves the binder and disperses the positive electrode active material, the conductive material, the activated carbon, and the like in the binder.
  • this solvent is not particularly limited, for example, an organic solvent such as N-methyl-2-pyrrolidone can be used.
  • the mixing ratio of each substance in the positive electrode mixture paste is not particularly limited.
  • the content of the positive electrode active material is 60 parts by mass to 95 parts by mass, like the positive electrode of a general non-aqueous electrolyte secondary battery
  • the content of B is 1 to 20 parts by mass
  • the content of the binder is 1 to 20 parts by mass.
  • the negative electrode is a sheet-like member formed by applying a negative electrode mixture paste onto the surface of a metal foil current collector such as copper and drying.
  • This negative electrode is formed by substantially the same method as that of the positive electrode although the components constituting the negative electrode mixture paste and the composition thereof, the material of the current collector, etc. are different. Is done.
  • the negative electrode mixture paste is obtained by adding a suitable solvent to a negative electrode mixture obtained by mixing a negative electrode active material and a binder to form a paste.
  • the negative electrode active material for example, a lithium-containing substance such as metal lithium or lithium alloy, or an occluding substance capable of occluding and desorbing lithium ions can be adopted.
  • the storage material is not particularly limited, and, for example, natural graphite, artificial graphite, an organic compound fired body such as a phenol resin, and a powdery body of a carbon material such as coke can be used.
  • a fluorine-containing resin such as PVDF can be used as the binder as in the positive electrode, and as a solvent for dispersing the negative electrode active material in the binder Can use an organic solvent such as N-methyl-2-pyrrolidone.
  • the separator is disposed between the positive electrode and the negative electrode, and has a function of separating the positive electrode and the negative electrode and holding an electrolyte.
  • a separator is, for example, a thin film such as polyethylene or polypropylene, and a film having a large number of fine pores can be used, but is not particularly limited as long as it has the above-described function.
  • Non-aqueous electrolyte solution is one in which a lithium salt as a support salt is dissolved in an organic solvent.
  • organic solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate; linear carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and dipropyl carbonate; and further tetrahydrofuran, 2- Ether compounds such as methyltetrahydrofuran and dimethoxyethane; sulfur compounds such as ethylmethylsulfone and butanesultone; phosphorus compounds such as triethyl phosphate and trioctyl phosphate alone or in combination of two or more , Can be used.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate
  • linear carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and dipropyl carbonate
  • 2- Ether compounds such as methyltetrahydrofuran and dim
  • LiPF 6 LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3) SO 2 ) 2 and complex salts thereof can be used.
  • the non-aqueous electrolytic solution may contain a radical scavenger, a surfactant, a flame retardant, and the like to improve battery characteristics.
  • the non-aqueous electrolyte secondary battery of the present invention has the above-described configuration, and has the positive electrode using the positive electrode active material of the present invention. Therefore, for example, in the case of the 2032 coin battery configured in the example described later A high initial discharge capacity of 185 mAh / g or more, a positive electrode resistance of 6 ⁇ or less can be obtained, and a high capacity and high output can be obtained. Moreover, even in comparison with the conventional lithium nickel oxide positive electrode active material, it can be said that the thermal stability is high and the safety is also excellent.
  • the secondary battery of the present invention Since the secondary battery of the present invention has the above-mentioned characteristics, it is suitable for the power supply of a small portable electronic device (such as a notebook personal computer or a portable telephone terminal) which always requires a high capacity.
  • a small portable electronic device such as a notebook personal computer or a portable telephone terminal
  • the secondary battery of the present invention is also suitable for a battery as a motor drive power source which requires high output. If the size of the battery becomes large, it becomes difficult to ensure safety, and expensive protective circuits are indispensable. However, the secondary battery of the present invention has excellent safety, so safety is ensured. Not only is it easy, but expensive protection circuits can be simplified and less expensive. And since size reduction and high output-ization are possible, it is suitable as a power supply for transportation apparatus which receives restrictions in mounting space.
  • Example 1 Manufacture of composite hydroxide
  • a composite hydroxide was produced as follows. In all of the examples, unless otherwise noted, respective samples of reagent special grade reagent manufactured by Wako Pure Chemical Industries, Ltd. were used for preparation of the composite hydroxide, the positive electrode active material and the secondary battery.
  • This mixed aqueous solution was added to the pre-reaction aqueous solution in the reaction tank at a rate of 88 ml / min to obtain a reaction aqueous solution.
  • 25% by mass ammonia water and 25% by mass sodium hydroxide aqueous solution are also added to this reaction aqueous solution at a constant rate to keep the ammonia concentration in the reaction aqueous solution (aqueous solution for nucleation) at the above value
  • pH Nucleation was performed by adding 50 ml while controlling the value to 13.0 (nucleation pH value).
  • nickel sulfate and cobalt sulfate were dissolved in water to prepare a 2.0 mol / L nickel-cobalt mixed aqueous solution.
  • a liquid volume of 9240 ml was prepared so that this mixed aqueous solution could be supplied at a rate of 88 ml / min for 105 minutes.
  • sodium aluminate was dissolved in water to prepare an aqueous solution containing 0.6 mol / L of aluminum.
  • a liquid volume of 924 ml was prepared so that this aluminum-containing aqueous solution could be supplied at 8.8 ml / min for 105 minutes.
  • Example 1 the switching from the air atmosphere to the nitrogen atmosphere was performed at the point of 6.25% of the entire grain growth process time from the start of the grain growth process.
  • the pH value was controlled by adjusting the supply flow rate of the sodium hydroxide aqueous solution with a pH controller, and the fluctuation range was within the range of 0.2 above and below the set value.
  • a value of [(d90-d10) / average particle size] showing an average particle size and a particle size distribution of this composite hydroxide was measured using a laser diffraction scattering type particle size distribution measuring apparatus (Microtrac HRA manufactured by Nikkiso Co., Ltd.) It calculated and calculated
  • the secondary particle is composed of a central part consisting of needle-like, flake-like fine primary particles (particle diameter about 0.3 ⁇ m) and a plate-like shape larger than the fine primary particles outside the central part It was confirmed that the outer shell portion was composed of primary particles (particle diameter: about 0.6 .mu.m).
  • the SEM observation result of this cross section is shown in FIG. The thickness of the outer shell portion with respect to the secondary particle diameter determined from the SEM observation of this cross section was 11%.
  • the composite hydroxide was subjected to heat treatment at 700 ° C. for 6 hours in a stream of air (oxygen: 21% by volume), converted to a composite oxide, and recovered.
  • the mixing was carried out using a shaker mixer apparatus (TURBULA Type T2C, manufactured by Willie et Bachkofen (WAB).
  • the obtained lithium mixture was calcined at 500 ° C. for 9 hours in the air (oxygen: 21% by volume), calcined at 760 ° C. for 12 hours, cooled, and then crushed to obtain a positive electrode active material. .
  • the obtained positive electrode active material is analyzed by powder X-ray diffraction using Cu-K ⁇ radiation using an X-ray diffraction apparatus (manufactured by PANalytical, X'Pert PRO), the crystal structure of the positive electrode active material It was confirmed that the crystal was composed of a hexagonal layered crystal complex oxide single phase.
  • composition analysis of the positive electrode active material was performed similarly by ICP emission spectroscopy, it was confirmed to be Li 1.06 Ni 0.79 Co 0.16 Al 0.03 Mn 0.02 O 2 .
  • the 2032 type coin battery was used for evaluation of the obtained positive electrode active material.
  • the coin-type battery 1 is composed of a case 2 and an electrode 3 housed in the case 2.
  • the case 2 has a hollow cathode can 2a open at one end, and a cathode can 2b disposed in the opening of the cathode can 2a.
  • a cathode can 2b disposed in the opening of the cathode can 2a.
  • a space for housing the electrode 3 is formed between the negative electrode can 2b and the positive electrode can 2a.
  • the electrode 3 is composed of a positive electrode 3a, a separator 3c and a negative electrode 3b, which are stacked in this order, and the positive electrode 3a is in contact with the inner surface of the positive electrode can 2a and the negative electrode 3b is in contact with the inner surface of the negative electrode can 2b. Is housed in case 2.
  • the case 2 is provided with a gasket 2c, and the gasket 2c fixes the positive electrode can 2a and the negative electrode can 2b so as to maintain an electrically insulated state.
  • the gasket 2 c also has a function of sealing the gap between the positive electrode can 2 a and the negative electrode can 2 b to shut off the inside of the case 2 from the outside in an airtight liquid tight manner.
  • This coin battery 1 was produced as follows. First, 52.5 mg of the obtained positive electrode active material, 15 mg of acetylene black, and 7.5 mg of polytetrafluoroethylene resin (PTFE) are mixed, and pressed at a pressure of 100 MPa to a diameter of 11 mm and a thickness of 100 ⁇ m. Made. The produced positive electrode 3a was dried at 120 ° C. for 12 hours in a vacuum dryer. Using this positive electrode 3a, the negative electrode 3b, the separator 3c, and the electrolytic solution, a coin-type battery 1 was produced in a glove box under an Ar atmosphere with a dew point controlled to -80.degree.
  • PTFE polytetrafluoroethylene resin
  • the negative electrode 3b a negative electrode sheet in which a copper powder having a mean particle diameter of about 20 ⁇ m punched into a disk shape having a diameter of 14 mm and a polyvinylidene fluoride applied to a copper foil was used. Moreover, the polyethylene porous film with a film thickness of 25 micrometers was used for the separator 3c.
  • an electrolyte solution an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) (made by Toyama Pharmaceutical Co., Ltd.) using 1 M LiClO 4 as a supporting electrolyte was used.
  • the initial discharge capacity is left for about 24 hours after producing the coin-type battery 1, and after the open circuit voltage OCV (open circuit voltage) is stabilized, the cut-off voltage 4 with the current density to the positive electrode of 0.1 mA / cm 2.
  • OCV open circuit voltage
  • the capacity when charged to 8 V and discharged to a cut-off voltage of 2.5 V after 1 hour of rest was taken as the initial discharge capacity, which was a measure of the charge and discharge capacity of the battery.
  • positive electrode resistance was evaluated as follows.
  • the coin-type battery 1 is charged at a charge potential of 4.1 V and measured by an AC impedance method using a frequency response analyzer and a potentiogalvanostat (manufactured by Solartron, 1255B) to obtain the Nyquist plot shown in FIG. Since this Nyquist plot is expressed as the sum of solution resistance, negative electrode resistance and its capacity, and positive electrode resistance and characteristic curve showing its capacity, fitting calculation is performed using an equivalent circuit based on this Nyquist plot, and positive electrode resistance is calculated. The value of was calculated.
  • initial stage discharge capacity was 196.5 mAh / g
  • positive electrode resistance was 3.8 ohm.
  • Table 1 shows the characteristics of the composite hydroxide obtained in the present example
  • Table 2 shows the characteristics of the positive electrode active material and each evaluation of the coin-type battery manufactured using this positive electrode active material. The same contents are shown in Tables 1 and 2 also for the following Examples 2 to 5 and Comparative Examples 1 to 5.
  • Example 2 In the particle growth step in the production process of the composite hydroxide, switching from the air atmosphere to the nitrogen atmosphere and switching of the stock solution were performed at 4.2% from the start with respect to the entire particle growth step time. Similarly to Example 1, a positive electrode active material for a non-aqueous electrolyte secondary battery was obtained and evaluated.
  • the composition of the obtained composite hydroxide and positive electrode active material is Ni 0.80 Co 0.16 Al 0.03 Mn 0.01 (OH) 2 + a (0 ⁇ a ⁇ 0.5) and Li 1.06 Ni 0.80 Co 0.16 Al 0.03 Mn 0.01 O 2, the composite hydroxide, in the same manner as in example 1 needle, a central portion comprising a flaky fine primary particles (particle size approximately 0.3 [mu] m), the fine primary outside of said central portion It was comprised by the outer shell part which consists of plate-like primary particles (particle diameter of 0.7 micrometer) larger than particle
  • initial stage discharge capacity was 198.3 mAh / g
  • positive electrode resistance was 4.8 ohm.
  • Example 3 In the particle growth step in the production process of the composite hydroxide, switching from the air atmosphere to the nitrogen atmosphere and switching of the stock solution were performed at the time of 2.1% from the start to the entire particle growth step time. Similarly to Example 1, a positive electrode active material for a non-aqueous electrolyte secondary battery was obtained and evaluated.
  • the composition of the obtained composite hydroxide and positive electrode active material is Ni 0.81 Co 0.15 Al 0.03 Mn 0.01 (OH) 2 + a (0 ⁇ a ⁇ 0.5) and Li 1.06 Ni 0.81 Co 0.15 Al 0.03 Mn
  • the composite hydroxide is 0.01 O 2 , and the composite hydroxide has a central portion consisting of needle-like and flake-like fine primary particles (particle diameter of about 0.3 ⁇ m) as in Example 1, and the fine primary particles outside the central portion. It was comprised by the outer shell part which consists of a larger plate-like primary particle (particle diameter 0.8 micrometer).
  • initial stage discharge capacity was 201.4 mAh / g
  • positive electrode resistance was 5.2 ohm.
  • the composition of the resulting composite hydroxide and the positive electrode active material Ni 0.79 Co 0.16 Al 0.03 Mn 0.02 (OH) 2 + a (0 ⁇ a ⁇ 0.5) and Li 1.06 Ni 0.79 Co 0.16 Al 0.03 Mn
  • the complex hydroxide is 0.02 O 2 , and the complex hydroxide has a central portion consisting of needle-like and flake-like fine primary particles (particle diameter of about 0.3 ⁇ m) as in Example 1, and the fine primary particles outside the central portion. It was comprised by the outer shell part which consists of plate-like primary particles (particle diameter 0.8 micrometer) larger than particle
  • Example 5 In the production process of the composite hydroxide, in the particle growth process, switching from the atmospheric atmosphere to the nitrogen atmosphere is performed for 20 minutes from the start of the particle growth process, that is, 8.3 from the start for the entire particle growth process time.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery was obtained and evaluated in the same manner as in Example 1 except that it was carried out at a point of%.
  • the composition of the obtained composite hydroxide and positive electrode active material is Ni 0.78 Co 0.17 Al 0.03 Mn 0.03 (OH) 2 + a (0 ⁇ a ⁇ 0.5) and Li 1.06 Ni 0.78 Co 0.17 Al 0.03 Mn 0.03 O
  • the composite hydroxide has a central portion composed of needle-like and flake-like fine primary particles (particle diameter of 0.3 ⁇ m) and is larger than the fine primary particles outside the central portion. It was comprised by the outer shell part which consists of plate-like primary particles (particle diameter 0.5 micrometer).
  • initial stage discharge capacity was 188.1 mAh / g
  • positive electrode resistance was 4.0 ohm.
  • Example 6 In the production process of the composite hydroxide, switching from air atmosphere to nitrogen atmosphere in the particle growth step was performed in 20 minutes from the start of the particle growth step, and the crystallization time was 8 hours in total. In the same manner as Example 1, a positive electrode active material for a non-aqueous electrolyte secondary battery was obtained and evaluated. In addition, the withdrawal of the supernatant liquid from the reaction tank in the particle growth step was performed every two hours. In Example 6, the switching from the air atmosphere to the nitrogen atmosphere was performed at 4.2% of the entire particle growth process time from the start time.
  • the composition of the obtained composite hydroxide and positive electrode active material is Ni 0.80 Co 0.16 Al 0.03 Mn 0.01 (OH) 2 + a (0 ⁇ a ⁇ 0.5) and Li 1.06 Ni 0.80 Co 0.16 Al 0.03 Mn 0.01 O
  • the composite hydroxide has a central portion consisting of needle-like and flake-like fine primary particles (having a particle diameter of about 0.3 .mu.m), and the fine primary particles outside the central portion. Also, it was composed of a large plate-like primary particle (particle diameter 0.6 ⁇ m) and an outer shell part.
  • initial stage discharge capacity was 185.2 mAh / g
  • positive electrode resistance was 4.3 ohm.
  • Example 1 In the composite hydroxide production process, switching from the atmospheric atmosphere to the nitrogen atmosphere in the particle growth process is performed for 35 minutes from the start of the particle growth process, that is, 16.6 from the start for the entire particle growth process time.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery was obtained and evaluated in the same manner as in Example 1 except that it was carried out at a point of%.
  • the composition of the obtained composite hydroxide and positive electrode active material is Ni 0.75 Co 0.18 Al 0.03 Mn 0.05 (OH) 2 + a (0 ⁇ a ⁇ 0.5) and Li 1.06 Ni 0.75 Co 0.18 Al 0.03 Mn 0.05 O
  • the composite hydroxide has a central portion consisting of needle-like fine primary particles (particle diameter 0.3 .mu.m) and a plate-like shape larger than the fine primary particles outside the central portion. And an outer shell consisting of primary particles (particle diameter 0.5 ⁇ m).
  • the positive electrode active material since the destruction and sintering of particles occurred in the manufacturing process, the subsequent evaluation was stopped.
  • the composition of the obtained composite hydroxide and positive electrode active material is Ni 0.73 Co 0.14 Al 0.03 Mn 0.10 (OH) 2 + a (0 ⁇ a ⁇ 0.5) and Li 1.06 Ni 0.73 Co 0.14 Al 0.03 Mn 0.10 O
  • the composite hydroxide has a central portion consisting of needle-like fine primary particles (particle diameter 0.3 ⁇ m) and a plate-like shape larger than the fine primary particles outside the central portion. And an outer shell consisting of primary particles (particle diameter 0.5 ⁇ m).
  • initial stage discharge capacity was 180.1 mAh / g
  • positive electrode resistance was 4.0 ohm.
  • Example 3 In the same manner as in Example 1, except that switching from air atmosphere to nitrogen atmosphere in the grain growth step and switching of the mixed solution were performed from the start of the grain growth step, the positive electrode active for nonaqueous electrolyte secondary batteries The material was obtained and evaluated.
  • the composition of the obtained composite hydroxide and positive electrode active material is Ni 0.82 Co 0.15 Al 0.03 Mn 0.001 (OH) 2 + a (0 ⁇ a ⁇ 0.5) and Li 1.06 Ni 0.82 Co 0.15 Al 0.03 Mn 0.001 O
  • the composite hydroxide needle-like fine primary particles were found at the center, but the size of the center was not sufficient, and the ratio of large plate-shaped primary particles was large. For this reason, the obtained positive electrode active material had a solid structure.
  • initial stage discharge capacity was 204.1 mAh / g
  • positive electrode resistance was 7.6 ohm.
  • Example 4 The mixed solution in the nucleation step and the mixed solution up to switching from the air atmosphere to the nitrogen atmosphere in the particle growth step were the same as in Example 1 except that the same solution containing nickel cobalt without manganese was used as in the nitrogen atmosphere step. Similarly, a positive electrode active material for a non-aqueous electrolyte secondary battery was obtained and evaluated.
  • the composition of the obtained composite hydroxide and positive electrode active material is Ni 0.82 Co 0.15 Al 0.03 (OH) 2 + a (0 ⁇ a ⁇ 0.5) and Li 1.06 Ni 0.82 Co 0.15 Al 0.03 O 2
  • the composite hydroxide needle-like fine primary particles were hardly observed at the center, and were composed of large plate-like primary particles. For this reason, the obtained positive electrode active material had a solid structure.
  • initial stage discharge capacity was 206.1 mAh / g
  • positive electrode resistance was 8.6 (ohm).
  • the positive electrode active material for a non-aqueous electrolyte secondary battery was obtained and evaluated in the same manner as in Example 1 except that adjustment was made as follows.
  • the composition of the obtained composite hydroxide and positive electrode active material is Ni 0.82 Co 0.15 Al 0.03 Mn 0.003 (OH) 2 + a (0 ⁇ a ⁇ 0.5) and Li 1.06 Ni 0.82 Co 0.15 Al 0.03 Mn 0.003 O
  • the composite hydroxide had almost no needle-like fine primary particles in the center and was composed of large plate-like primary particles. For this reason, the obtained positive electrode active material had a solid structure.
  • each positive electrode active material also has a structure including an outer shell portion in which aggregated primary particles are sintered, and a hollow portion inside the outer shell portion.
  • a coin-type battery using these positive electrode active materials has a high initial discharge capacity, excellent cycle characteristics, and a low positive electrode resistance, and is a battery having excellent characteristics.
  • Example 5 the switching from air atmosphere to nitrogen atmosphere in the particle growth step is slightly delayed, and the time of being put in air atmosphere is long, so the ratio of manganese and cobalt becomes high, and the initial stage is higher than Examples 1-4.
  • the discharge capacity tends to decrease slightly.
  • Example 6 the average particle diameter of the positive electrode active material is 10.3 ⁇ m, which is slightly larger than in Examples 1 to 5. Due to this, the initial discharge capacity is slightly reduced. Conceivable.
  • Comparative Example 1 in the particle growth step, the time of being placed in the air atmosphere is too long, so the strength of the composite hydroxide decreases, and the particles are broken or sintered in the production process of the positive electrode active material. ing.
  • Comparative Example 4 since the mixed aqueous solution containing manganese was not used in the nucleation step, the center of the low density was small, and the secondary particles were solid after sintering although the time for placing in the air was long. Structure, a sufficient specific surface area can not be obtained, and the positive electrode resistance value is high.
  • the non-aqueous electrolyte secondary battery using this positive electrode active material has a high initial discharge capacity, and the cycle It is possible to confirm that the battery has excellent characteristics, low positive electrode resistance, and excellent characteristics.
  • the manufacturing method of the positive electrode active material of the present invention and the composite hydroxide as the precursor thereof are all easy and are suitable for large-scale production, so their industrial value is extremely large.
  • the non-aqueous electrolyte secondary battery of the present invention is suitable for the power supply of small portable electronic devices (such as notebook personal computers and mobile phone terminals) which are always required to have high capacity, and electric vehicles which require high output. It is also suitable for batteries. Furthermore, since the non-aqueous electrolyte secondary battery of the present invention has excellent safety and can be miniaturized and has a high output, the non-aqueous electrolyte secondary battery is also suitable as a power source for transportation equipment that is restricted by the mounting space. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

均一で適度な粒径、かつ、中空構造により高い比表面積を有するリチウム複合酸化物を工業的な規模で生産できるようにする。 原料となるニッケル複合水酸化物の粒度分布を制御し、微細一次粒子からなる中心部と、この中心部の外側に存在し、前記一次粒子よりも大きな板状の一次粒子からなる外殻部を有する構造の複合水酸化物を、晶析時のpH制御により、核生成工程と粒子成長工程に分離するとともに、それぞれの工程における反応雰囲気と、それぞれの工程において供給される金属化合物におけるマンガン含有量とを、それぞれ制御しつつ、得る。

Description

ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
 本発明は、ニッケル複合水酸化物とその製造方法、この複合水酸化物を原材料とする非水系電解質二次電池用正極活物質とその製造方法、および、この非水系電解質二次電池用正極活物質を正極材料として用いる非水系電解質二次電池に関する。
 近年、携帯電話、ノート型パーソナルコンピュータなどの携帯電子機器の普及に伴い、高いエネルギ密度を有する小型で軽量な二次電池の開発が強く望まれている。また、ハイブリット自動車を始めとする電気自動車用の電池として、高出力の二次電池の開発が強く望まれている。このような要求を満たす非水系電解質二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極、正極、電解液などで構成され、負極および正極の活物質には、リチウムを脱離および挿入することが可能な材料が用いられている。
 このようなリチウムイオン二次電池については、現在研究開発が盛んに行われているところであるが、中でも、層状またはスピネル型のリチウム複合酸化物を正極活物質として用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギ密度を有する電池として実用化が進んでいる。
 リチウムイオン二次電池の正極活物質として用いられるリチウム複合酸化物としては、現在、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO2)や、コバルトよりも安価なニッケルが用いられたリチウムニッケル複合酸化物(LiNiO2)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/32)、マンガンを用いたリチウムマンガン複合酸化物(LiMn24)などが提案されている。
 高サイクル特性、低抵抗、高出力といった優れた性能を電池にもたらすためには、正極活物質が均一で適度な粒径を有する粒子によって構成されていることが必要となる。これは、粒径が大きい正極活物質を使用した場合に、電解液との反応面積が十分に確保されず、正極の反応抵抗が上昇して、高出力の電池が得らなくなる可能性があり、逆に、粒径が極端に小さい正極活物質を使用した場合には、正極の充填密度が低下して、容積あたりの電池容量が低下する可能性があるためである。一方、粒度分布が広い正極活物質を使用した場合には、電極内で正極活物質を構成する粒子に印加される電圧がその粒径の相違に起因して不均一となり、充放電の繰り返しにより微粒子が選択的に劣化して、電池容量の低下や正極の反応抵抗の上昇といった不具合が生ずる可能性があるためである。
 また、電池の高出力化を図るためには、正極と負極との間でリチウムイオンが移動する距離を短くすることが有効であることから、正極板を薄くすることが望まれている。このような観点から、容積あたりの電池容量が低下しない範囲で、小粒径の正極活物質を使用することは有用である。
 さらなる高出力化を図る観点からは、正極活物質が均一で適度な粒径を有するばかりでなく、高い比表面積を有していることも重要となる。たとえば、正極活物質の粒子表面の平滑性を低下させたり、粒子自体を多孔質構造としたりすることにより、粒子の粒径は同じでも、比表面積を高めることができる。この場合、粒子と電解液との反応面積が大きくなり、両者の反応性を高めることができるため、電池の出力をさらに向上させることが可能となる。
 このように、リチウムイオン二次電池の性能を向上させるためには、正極活物質であるリチウム複合酸化物について、均一で適度な粒径を有し、かつ、比表面積が大きな粒子となるように製造することが必要である。
 特開2008―147068号公報には、粒度分布曲線において、その累積頻度が50%の粒径を意味する平均粒径D50が3μm~15μmであり、最小粒径が0.5μm以上で最大粒径が50μm以下である粒度分布を有する粒子であって、かつ、その累積頻度が10%のD10と90%のD90との関係において、D10/D50が0.60~0.90、D10/D90が0.30~0.70であるリチウム複合酸化物が開示されている。このリチウム複合酸化物は、高充填性を有し、良好な充放電容量特性および高出力特性を有し、充放電負荷の大きい条件下であっても劣化しにくいため、このリチウム複合酸化物を正極活物質として用いることにより、優れた出力特性を持ち、かつ、サイクル特性の劣化の小さいリチウムイオン二次電池を得ることができると記載されている。
 特開2004-253174号公報には、層状構造を備え、外側の外殻部と、この外殻部の内側の空間部とを有する中空粒子からなるリチウム複合酸化物が開示されている。このようなリチウム複合酸化物からなる正極活物質は、サイクル特性、出力特性、熱安定性などの特性に優れ、リチウムイオン二次電池に好適に用いることができると記載されている。
 しかしながら、特開2008-147068号公報に開示されているリチウム複合酸化物は、平均粒径が3μm~15μmでありながら、最小粒径が0.5μm以上で、最大粒径が50μm以下であることから、微細粒子と粗大粒子の両方を含んだものとなっており、上記のD10/D50およびD10/D90の値からは、粒径分布の範囲が狭いということはできない。すなわち、この文献に記載されたリチウム複合酸化物は、その粒径が均一であるとはいえないため、このリチウム複合酸化物を正極活物質として採用しても、リチウムイオン二次電池の性能を向上させることは困難である。
 また、特開2004-253174号に開示されているリチウム複合酸化物は、中空粒子であることから、中実粒子よりは比表面積の増加は期待され、比表面積の増加による粒子と電解液との反応性の向上は期待できると考えられる。しかしながら、この文献では、リチウム複合酸化物の粒径および粒度分布に関しては何らの言及もなされていない。このことから、このリチウム複合酸化物ではその粒径および粒度分布について配慮されていないといえるため、粒径の不均一性に起因して、電極内で印加電圧の不均一性による微粒子の選択的劣化が発生し、電池容量が低下することは避けられないと考えられる。
特開2008-147068号公報 特開2004-253174号公報
 以上のように、リチウムイオン二次電池の性能を十分に向上させることができるリチウム複合酸化物は未だ開発されていない。また、リチウム複合酸化物の原材料となる複合水酸化物の製造方法に関して種々の検討がなされているものの、優れた電池性能をもたらすリチウム複合酸化物の開発につながる複合水酸化物を工業的規模で生産可能とする製造方法についても未だ有力な提案がなされていないのが実情である。したがって、均一で適度な粒径を有し、かつ、反応面積が大きい、たとえば中空構造を有するリチウム複合酸化物からなる正極活物質、その原材料となる複合水酸化物、およびこれらの工業的な製造方法の開発が要望されている。
 本発明は、このような問題点に鑑み、均一で適度な粒径を有し、かつ、中空構造により高い比表面積を有するリチウム複合酸化物が得られる、その原材料としての、複合水酸化物を工業的規模で生産できるようにすることを目的としている。
 また、リチウムイオン二次電池における電池容量の低下を抑制でき、正極の反応抵抗を低減させることが可能な、リチウム複合酸化物からなる非水系二次電池用正極活物質を提供するとともに、このような正極活物質を用いることで、高容量で、サイクル特性に優れ、高出力が得られる非水系電解質二次電池を提供することも目的としている。
 本発明者らは、リチウムイオン二次電池の正極活物質として用いた場合に、優れた電池特性を発揮できるリチウムニッケル複合酸化物について鋭意検討した結果、原料となるニッケル複合水酸化物の粒度分布を制御し、ニッケル複合水酸化物の微細一次粒子からなる中心部と、この中心部の外側に存在し、ニッケル複合水酸化物からなり、前記一次粒子よりも大きな板状の一次粒子からなる外殻部を有する構造とすることで、均一で適度な粒径を有し、かつ、中空構造を有するリチウムニッケル複合酸化物からなる非水系電解質二次電池用正極活物質が得られるとの知見を得た。また、このニッケル複合水酸化物は、晶析時のpH制御により、核生成工程と粒子成長工程に分離するとともに、それぞれの工程における反応雰囲気と、それぞれの工程において供給される金属化合物、より具体的には、複合水酸化物を構成する金属元素の供給源である混合水溶液におけるマンガン含有量とを、それぞれ制御することで得られるとの知見を得た。本発明は、これらの知見に基づいて完成されたものである。
 すなわち、本発明の第1態様は、晶析反応により、一般式(1):NixCoyAlzMnts(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表されるニッケル複合水酸化物の製造方法に関する。
 特に、本発明の製造方法は、
 一般式(a):NixCoyAlzMnts(x+y+z+t+s=1、0≦y≦0.8、0≦z≦0.1、0.1≦t≦0.8、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)の組成比で金属元素を含有する金属化合物とアンモニウムイオン供給体を含む核生成用水溶液を、液温25℃基準でpH値が12.0~14.0となるように制御して、酸素濃度が1容量%を超える酸化性雰囲気中で核生成を行う核生成工程と、
 前記核生成工程において形成された核を含有する粒子成長用水溶液を、液温25℃基準でpH値が10.5~12.0となるように制御して、前記核を成長させる粒子成長工程であって、該粒子成長工程の開始から終了までの時間全体に対して、該粒子成長工程の開始時から1%~15%の範囲で、前記酸化性雰囲気から酸素濃度1容量%以下の酸素と不活性ガスの混合雰囲気に切り替え、かつ、供給される金属化合物を、一般式(b):NixCoyAlzMnts(x+y+z+t+s=1、0≦y≦0.3、0≦z≦0.1、0≦t<0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)の組成比で金属元素を含有する金属化合物に切り替える粒子成長工程と、
を備えるとともに、
 少なくとも前記核生成用水溶液に含まれる金属化合物および前記粒子成長工程において供給される金属化合物のいずれにもアルミニウムが含まれていない場合には、前記粒子成長工程で得られたニッケル複合水酸化物に、アルミニウム化合物を被覆する工程をさらに備える、ことを特徴とする。
 前記酸化性雰囲気の酸素濃度が10容量%以上であることが好ましい。
 前記粒子成長工程における前記雰囲気および供給される金属化合物の切り替えを、前記粒子成長工程の開始時から2%~12.5%の範囲で行うことが好ましい。
 前記粒子成長用水溶液として、前記核生成工程が終了した前記核生成用水溶液のpH値を調整して形成されたものを用いることが好ましい。
 前記混合雰囲気の酸素濃度を、0.5容量%以下とすることが好ましい。
 前記粒子成長工程において、前記粒子成長用水溶液のうちの液体部分の一部を排出することが好ましい。
 また、前記核生成工程および前記粒子成長工程において、前記核生成用水溶液および前記粒子成長用水溶液のアンモニア濃度を3g/L~25g/Lの範囲内に維持することが好ましい。
 さらに、前記粒子成長工程で得られたニッケル複合水酸化物に、前記1種以上の添加元素の化合物を被覆する工程をさらに含むことが好ましい。なお、この工程は、前記アルミニウム化合物を被覆する工程と同時に行うことができる。
 本発明の第2態様は、一般式(1):NixCoyAlzMnts(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表され、複数の一次粒子が凝集して形成された略球状の二次粒子からなる、ニッケル複合水酸化物に関する。
 前記二次粒子は、平均粒径が3μm~15μmであり、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.55以下であることを特徴とする。
 また、この二次粒子は、一般式(2):NixCoyAlzMnts(OH)2+a(x+y+z+t+s=1、0≦y≦0.8、0≦z≦0.1、0.1≦t≦0.8、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表される複合水酸化物の微細一次粒子からなる中心部と、該中心部の外側に存在し、一般式(3):NixCoyAlzMnts(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0≦z≦0.1、0≦t<0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表される複合水酸化物であって、前記微細一次粒子よりも大きな板状一次粒子からなる外殻部とを有し、アルミニウムが、前記中心部および外殻部の少なくとも一方に存在するか、または、前記二次粒子の表面にアルミニウム化合物として存在することを特徴とする。
 前記微細一次粒子は、平均粒径が0.01μm~0.3μmであり、前記板状一次粒子は、平均粒径が0.3μm~3μmであることが好ましい。
 前記外殻部の厚さは、前記二次粒子の粒径に対する比率で5%~45%であることが好ましい。
 また、前記アルミニウムが、前記二次粒子の内部に均一に分布している、および/または、前記アルミニウム化合物が、前記二次粒子の表面を均一に被覆していることが好ましい。
 さらに、前記1種以上の添加元素が、前記二次粒子の内部に均一に分布している、および/または、前記1種以上の添加元素の化合物が、前記二次粒子の表面を均一に被覆している、ことが好ましい。
 本発明の第3態様は、一般式(4):Li1+uNixCoyAlzMnts2(-0.05≦u≦0.20、x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表され、複数の一次粒子が凝集して形成された略球状の二次粒子からなり、層状構造を有する六方晶系の結晶構造を有するリチウムニッケル複合酸化物からなる非水系電解質二次電池用正極活物質の製造方法に関する。
 特に、本発明の製造方法は、
 前記ニッケル複合水酸化物を105℃~750℃の温度で熱処理する工程と、
 前記熱処理後のニッケル複合水酸化物に対して、リチウム化合物を混合してリチウム混合物を形成する混合工程と、
 前記混合工程で形成された前記リチウム混合物を、酸化性雰囲気中、700℃~800℃の温度で焼成する焼成工程と、を備えることを特徴とする。
 前記リチウム混合物を、該リチウム混合物に含まれるリチウム以外の金属の原子数の和とリチウムの原子数との比が、1:0.95~1.2となるように調整することが好ましい。
 また、前記焼成工程において、焼成前に予め350℃~800℃の温度で仮焼を行うことが好ましい。
 さらに、前記焼成工程における酸化性雰囲気を、18容量%~100容量%の酸素を含有する雰囲気とすることが好ましい。
 本発明の第4態様は、一般式(4):Li1+uNixCoyAlzMnts2(-0.05≦u≦0.20、x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表され、複数の一次粒子が凝集して形成された略球状の二次粒子からなり、層状構造を有する六方晶系の結晶構造を有するリチウムニッケル複合酸化物からなる非水系電解質二次電池用正極活物質に関する。
 特に、本発明の正極活物質は、平均粒径が2μm~15μmであり、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.60以下であり、凝集した一次粒子が焼結している外殻部と、その内側に存在する中空部とからなる中空構造を備えることを特徴とする。
 前記外殻部の厚さは、前記二次粒子の粒径に対する比率で5%~35%であることが好ましい。
 本発明の第5態様は、非水系電解質二次電池に関する。特に、本発明の非水系電解質二次電池は、その正極が、前記非水系電解質二次電池用正極活物質によって形成されていることを特徴とする。
 本発明により、均一で適度な粒径を有し、かつ、中空構造を備えることにより、高比表面積であるリチウムニッケル複合酸化物からなる非水系電解質二次電池用の正極活物質を工業的に提供することが可能となる。この正極活物質を正極材料として用いることにより、高容量、高出力で、サイクル特性も良好である、優れた電池特性を備えた非水系電解質二次電池が得られる。
図1は、本発明のニッケル複合水酸化物を製造する工程の概略フローチャートである。 図2は、本発明のニッケル複合水酸化物を製造する他の工程の概略フローチャートである。 図3は、本発明のニッケル複合水酸化物を製造してから、非水系電解質二次電池を製造するまでの概略フローチャートである。 図4は、本発明のニッケル複合水酸化物のSEM写真(観察倍率1,000倍)である。 図5は、本発明のニッケル複合水酸化物の断面SEM写真(観察倍率10,000倍)である。 図6は、本発明の正極活物質であるリチウムニッケル複合酸化物のSEM写真(観察倍率1,000倍)である。 図7は、本発明の正極活物質であるリチウムニッケル複合酸化物の断面SEM写真(観察倍率10,000倍)である。 図8は、電池評価に使用したコイン型電池の概略断面図である。 図9は、インピーダンス評価の測定例と解析に使用した等価回路の概略説明図である。
 本発明は、(1)非水系電解質二次電池用正極活物質の原料となるニッケル複合水酸化物(以下、「複合水酸化物」という)とその製造方法、(2)該複合水酸化物を用いた非水系電解質二次電池用正極活物質とその製造方法、(3)該非水系電解質二次電池用正極活物質を正極に用いた非水系電解質二次電池に関する。
 非水系電解質二次電池の性能を向上させるためには、正極に採用される非水系電解質二次電池用正極活物質の影響が大きい。かかる優れた電池特性が得られる非水系電解質二次電池用正極活物質を得るためには、その粒径と粒度分布、および比表面積が重要な要因であり、所望の粒子構造を有し、かつ、所望の粒径と粒度分布に調整された正極活物質が好ましい。
 このような正極活物質を得るためには、その原料である複合水酸化物として、所望の粒子構造を有し、かつ、所望の粒径と粒度分布のものを使用する必要がある。
 以下、上記(1)~(3)の発明のそれぞれについて詳細に説明するが、最初に、本発明の最大の特徴である、複合水酸化物とその製造方法について説明する。なお、この複合水酸化物は、本発明の中空構造を有する正極活物質の原材料として特に適したものであるので、以下の説明は、正極活物質の原材料として使用することを前提としている。
 (1-1)複合水酸化物
 (粒子の組成)
 本発明の複合水酸化物は、一般式(1):NixCoyAlzMnts(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表される組成を有する。
 このような組成を有する複合水酸化物を原材料として、リチウムニッケル複合酸化物を製造し、これを正極活物質として非水系電解質二次電池を構成した場合、測定される正極抵抗の値を低くできるとともに、電池性能を良好なものとすることができる。この複合水酸化物の組成比(Ni:Co:Al:Mn:M)は、得られる正極活物質においても維持される。したがって、本発明の複合水酸化物の組成比は、得ようとする正極活物質に要求される組成比と同様となるように調整される。
 なお、本発明の複合水酸化物およびこれを原材料として得られるリチウムニッケル複合酸化物において、個々の金属元素がもたらす特性やその含有量の規制については、特開2008-147068号公報や特開2004-253174号公報を含む先行技術文献により公知であるため、その説明は省略する。
 ただし、本発明の複合水酸化物において、その構成元素であるアルミニウムは、二次粒子の内部に均一に分布させてもよく、および/または、二次粒子の表面を均一に被覆させてもよい。アルミニウムは、熱安定性を向上させるために添加されるものであるが、内部および/または表面に均一に分布させることで、少量であっても粒子全体における上記効果を得ることができるばかりでなく、容量の低下を抑制できる。なお、より少量で上記効果を得るためには、粒子内部より表面におけるアルミニウム濃度を高めることが好ましい。
 また、添加元素についても、電池の耐久性や出力特性を向上させるために添加されるものであり、粒子内部および/または表面に均一に分布させることが好ましいが、容量の低下を抑制して、より少量で上記効果を得る場合には、このような添加元素を表面に存在させたり、表面における濃度を高めたりしてもよい。
 (粒子構造)
 本発明の複合水酸化物は、図4に例示されるように、略球状の粒子である。具体的には、図5に例示されるように、この複合水酸化物は、複数の一次粒子が凝集して形成された略球状の二次粒子から構成されており、さらに詳細には、微細一次粒子が凝集して形成された中心部と、この中心部の外側に存在し、前記微細一次粒子よりも大きな板状一次粒子が凝集して形成された外殻部を有する構造となっている。
 このような構造を備えることにより、本発明の正極活物質であるリチウムニッケル複合酸化物を形成する焼結工程において、粒子内へのリチウムの拡散が十分に行われることから、リチウムの分布が均一で良好な正極活物質が得られる。
 ここで、中心部を構成する複合水酸化物は、一般式(2):NixCoyAlzMnts(OH)2+a(x+y+z+t+s=1、0≦y≦0.8、0≦z≦0.1、0.1≦t≦0.8、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表される組成を有するものである。通常、このようなマンガンの含有量が多い複合水酸化物を単独で用いて、リチウムニッケル複合酸化物を得る場合には、900℃程度の高温で焼成する必要がある。
 一方、外郭部を構成する複合水酸化物は、一般式(3):NixCoyAlzMnts(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0≦z≦0.1、0≦t<0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表されるものである。このようなマンガンの含有量が少ない複合水酸化物を用いて、リチウムニッケル複合酸化物とするための焼成温度は、700℃~800℃である。
 本発明の構造の複合水酸化物においては、中心部に存在する複合水酸化物のマンガン含有量は多いものの、中心部は極めて微細な一次粒子から構成され、低密度であると考えられることから、外殻部を構成する複合水酸化物よりも低温から焼結による収縮が開始し、その収縮率も大きくなる。このため、本発明の構造では、外殻部の焼成温度である700℃~800℃においても、中心部は十分に収縮し、中心部の存在していた場所は十分な大きさの空間となる。これによって、焼成後に得られる正極活物質が中空構造を備えることになる。
 また、外殻部は、板状一次粒子がランダムな方向に凝集して二次粒子を形成した構造であることが、より好ましい。板状一次粒子がランダムな方向に凝集することで、一次粒子間にほぼ均一に空隙が生じて、リチウム化合物と混合して焼成するとき、溶融したリチウム化合物が二次粒子内へ行き渡り、リチウムの拡散が十分に行われるためである。
 さらに、ランダムな方向に凝集していることで、上記焼成工程における中心部の収縮も均等に生じることから、正極活物質内部に十分な大きさを有する空間を形成することができ、この点でも上記のような構造であることが好ましい。
 焼成時の空間形成のため、前記中心部の微細一次粒子は、その平均粒径が0.01μm~0.3μmであることが、また、前記外殻部の板状一次粒子は、その平均粒径が0.3μm~3μmであることが好ましい。前記中心部の微細一次粒子の平均粒径0.01μm未満であると、一次粒子の凝集が不十分となって、得られる複合水酸化物に十分な大きさの中心部が形成されないことがあり、0.3μmを超えると、上記の焼結開始の低温化および収縮が十分ではなく、焼成後に十分な大きさの空間が得られないことがある。一方、前記外殻部の板状一次粒子の平均粒径が、0.3μm未満であると、この板状一次粒子の焼成時の焼結が低温化することに起因して、焼成後に十分な大きさの空間が得られないことがあり、3μmを超えると、得られる正極活物質の結晶性を十分なのもとするために、焼成温度を高くする必要があり、二次粒子間での焼結が発生して、得られる正極活物質の粒径が所定の範囲を超えてしまう可能性が高い。
 さらに、前記微細一次粒子は、板状および/または針状であることが好ましい。前記微細一次粒子が、板状および/または針状となることで、中心部は十分に低密度となり、焼結開始温度が十分に低温化し、焼成によって大きな収縮が発生して十分な大きさの空間が生じる。
 このような構造の二次粒子において、前記外殻部の厚さは、二次粒子の粒径に対する比率で5%~45%であることが好ましく、7%~35%であることがより好ましい。これは、この複合水酸化物を原材料として得られる正極活物質において中空構造が形成される程度に十分な大きさの中心部が必要とされるためである。すなわち、正極活物質においても、その二次粒子の粒子径に対する外殻部の厚さの比率は、複合水酸化物の二次粒子の比率がおおむね維持される。したがって、複合水酸化物の二次粒子径に対する外殻部の厚さの比率を上記の範囲とすることで、リチウムニッケル複合酸化物の二次粒子に十分な大きさの中空部を形成することが可能となる。この外殻部の厚さが、二次粒子の粒径に対する比率で5%未満と薄すぎると、正極活物質の製造時の焼成工程において、複合水酸化物の二次粒子の収縮が大きくなり、かつ、リチウムニッケル複合酸化物の二次粒子間に焼結が生じて、正極活物質の粒度分布が悪化することがある。一方、45%を超えると、十分な大きさの中心部が形成されないなどの問題を生ずる。
 なお、これらの微細一次粒子および板状一次粒子の粒径、ならびに、二次粒子の粒径に対する外殻部の厚さの比率は、複合水酸化物の二次粒子の断面を、走査型電子顕微鏡を用いて観察することによって測定することができる。
 たとえば、複数の複合水酸化物の二次粒子を樹脂などに埋め込み、クロスセクションポリッシャ加工などにより、該粒子の断面観察が可能な状態とする。微細一次粒子および板状一次粒子の粒径は、二次粒子中の、好ましくは10個以上の一次粒子断面の最大径を粒径として測定し、平均値を計算することで求めることができる。
 また、外殻部の厚さの二次粒子径に対する比率は、以下のように求める。まず、樹脂中の二次粒子から、ほぼ粒子中心の断面観察が可能な粒子を選択して、3箇所以上の任意の箇所で、外殻部の外周上と中心部側の内周上の距離が最短となる2点間の距離を測定して、粒子ごとの外殻部の平均厚みを求める。二次粒子の外周上で距離が最大となる任意の2点間の距離を二次粒子径として、前記平均厚みをこの二次粒子径で除することにより、粒子ごとの外殻部の厚さの比率を求める。さらに、10個以上の粒子について求めた粒子ごとの比率を平均することで、複合水酸化物の二次粒子における、二次粒子径に対する外殻部の厚さの比率を求めることができる。
 (平均粒径)
 本発明の複合水酸化物は、二次粒子の平均粒径が、3μm~15μm、好ましくは3μm~7μmに調整されている。平均粒径を3μm~15μmとすることで、本発明の複合水酸化物を原料として得られる正極活物質であるニッケル複合酸化物(以下、「複合酸化物」という)についても、所定の平均粒径(2μm~15μm)に調整することが可能となる。このように、複合水酸化物の粒径は、得られる正極活物質の粒径と相関するため、この正極活物質を正極材料に用いた電池の特性に影響する。
 具体的には、この複合水酸化物の平均粒径が3μm未満であると、得られる正極活物質の平均粒径も小さくなり、正極の充填密度が低下して、容積あたりの電池容量が低下する。逆に、複合水酸化物の平均粒径が15μmを超えると、正極活物質の比表面積が低下して、電解液との界面が減少することにより、正極の抵抗が上昇して電池の出力特性が低下する。
 (粒度分布)
 本発明の複合水酸化物は、その粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が、0.55以下となるように調整されている。正極活物質の粒度分布は、原料である複合水酸化物の粒度分布の影響を強く受けるため、複合水酸化物に微粒子あるいは粗大粒子が混入していると、正極活物質にも同様の粒子が存在するようになる。すなわち、〔(d90-d10)/平均粒径〕が0.55を超え、粒度分布が広い状態であると、正極活物質にも微粒子あるいは粗大粒子が存在するようになる。
 微粒子が多く存在する正極活物質を用いて正極を形成した場合、微粒子の局所的な反応に起因して発熱する可能性があり、電池の安全性が低下するばかりでなく、微粒子が選択的に劣化するため、電池のサイクル特性が悪化してしまう。一方、粗大粒子が多く存在する正極活物質を用いて正極を形成した場合、電解液と正極活物質との反応面積が十分に取れず、反応抵抗の増加により電池出力が低下する。
 よって、本発明の複合水酸化物において、〔(d90-d10)/平均粒径〕が0.55以下となるように調整しておけば、これを原料として用いて得られる正極活物質も粒度分布の範囲が狭いものとなり、その粒子径を均一化することができる。すなわち、正極活物質の粒度分布について、〔(d90-d10)/平均粒径〕が0.60以下となるようにすることができる。これにより、本発明の複合水酸化物を原料として形成された正極活物質を正極材料として用いた電池において、良好なサイクル特性および高出力を達成することができる。
 なお、粒度分布の広がりを示す指標〔(d90-d10)/平均粒径〕において、d10は、各粒径における粒子数を粒径の小さい側から累積し、その累積体積が全粒子の合計体積の10%となる粒径を意味している。また、d90は、同様に粒子数を累積し、その累積体積が全粒子の合計体積の90%となる粒径を意味している。
 平均粒径や、d90、d10を求める方法は、特に限定されないが、たとえば、レーザ光回折散乱式粒度分析計で測定した体積積算値から求めることができる。平均粒径としてd50を用いる場合には、d90と同様に累積体積が全粒子体積の50%となる粒径を用いればよい。
 (1-2)複合水酸化物の製造方法
 本発明の複合水酸化物の製造方法は、晶析反応により、一般式(1)により表される複合水酸化物を製造する方法であって、(A)核生成を行う核生成工程と、(B)核生成工程において生成された核を成長させる粒子成長工程とから構成されている。
 すなわち、従来の連続晶析法では、核生成反応と粒子成長反応とが同じ槽内において同時に進行するため、得られる複合水酸化物の二次粒子の粒度分布が広範囲となってしまう。これに対して、本発明の複合水酸化物の製造方法では、主として核生成反応が生じる時間(核生成工程)と、主として粒子成長反応が生じる時間(粒子成長工程)とを明確に分離することにより、得られる複合水酸化物において狭い粒度分布を達成している点に特徴がある。
 さらに、工程ごとに晶析反応時の雰囲気を制御するとともに、ニッケル、コバルト、アルミニウムなどの化合物を所定の割合で水に溶解させた混合水溶液中のマンガンの含有量を所定の範囲に制御することにより、得られる複合水酸化物の粒子構造を、一般式(2)で表される複合水酸化物により構成される微細一次粒子からなる中心部と、一般式(3)で表される複合水酸化物により構成され、微細一次粒子よりも大きな板状一次粒子からなる外殻部からなる二重構造とする点に特徴がある。
 最初に、本発明の複合水酸化物の製造方法の概略を、図1に基づいて説明する。なお、図1および図2では、(A)が核生成工程に相当し、(B)が粒子成長工程に相当する。
 (第1実施形態)
 a)核生成工程
 図1に示すように、まず、金属の組成比が、複合水酸化物に関する一般式(2)に対応するように、一般式(a):NixCoyAlzMnts(x+y+z+t+s=1、0≦y≦0.8、0≦z≦0.1、0.1≦t≦0.8、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)の組成比となるように、複数の金属化合物を所定の割合で水に溶解させ、混合水溶液を作製する。
 特に、この混合水溶液中のマンガン含有量は、一般式(a)におけるtが0.1以上0.8以下の範囲となるように制御することが必要であり、好ましくは0.2以上0.7以下とし、より好ましくは0.3以上0.6以下となるように制御する。tが、0.1未満となると微細一次粒子が得られず、0.8を超えると、焼成時の収縮が少なくなり、十分な中空構造が得られない。
 また、コバルト含有量は、複合水酸化物の組成を均一化するため、一般式(a)におけるyが0以上0.8以下、好ましくは0以上0.5以下となるように制御する。
 一方、反応槽には、水酸化ナトリウム水溶液などのアルカリ水溶液、アンモニウムイオン供給体を含むアンモニア水溶液、および水を供給して混合して水溶液を形成する。この水溶液(以下、「反応前水溶液」という)について、そのpH値を、アルカリ水溶液の供給量を調整することにより、液温25℃基準でpH値が12.0~14.0の範囲となるように調節する。また、反応前水溶液中のアンモニウムイオンの濃度を、アンモニア水溶液の供給量を調整することにより、3g/L~25g/Lとなるように調節する。なお、反応前水溶液の温度についても、好ましくは20℃以上、より好ましくは20℃~60℃となるように調節する。反応槽内の水溶液のpH、アンモニウムイオンの濃度については、それぞれ一般的なpH計、イオンメータによって測定可能である。
 反応槽内において反応前水溶液の温度およびpH値が調整されると、反応前水溶液を攪拌しながら混合水溶液を反応槽内に供給する。これにより、反応槽内には、反応前水溶液と混合水溶液とが混合した、核生成工程における反応水溶液である核生成用水溶液が形成され、この核生成用水溶液中において複合水酸化物の微細な核が生成されることになる。このとき、核生成用水溶液のpH値は上記範囲にあるので、生成した核はほとんど成長することなく、核の生成が優先的に生じる。
 なお、混合水溶液の供給による核生成に伴って、核生成用水溶液のpH値およびアンモニウムイオンの濃度が変化するので、核生成用水溶液には、混合水溶液とともに、アルカリ水溶液、アンモニア水溶液を供給して、核生成用水溶液のpH値が、液温25℃基準で12.0~14.0の範囲、アンモニウムイオンの濃度が、3g/L~25g/Lの範囲を維持するように制御する。
 核生成用水溶液に対する混合水溶液、アルカリ水溶液およびアンモニア水溶液の供給により、核生成用水溶液中では、連続して新しい核の生成が継続されることとなる。そして、核生成用水溶液中に、所定の量の核が生成されると、核生成工程を終了する。
 核生成工程において生成する核の量は、特に限定されるものではないが、粒度分布の良好な複合水酸化物を得るためには、全体量、つまり、複合水酸化物を得るために供給する全金属塩の0.1%~1.5%とすることが好ましく、1.2%以下とすることがより好ましい。なお、所定量の核が生成したか否かは、核生成用水溶液に添加した金属塩の量によって判断することができる。
 b)粒子成長工程
 核生成工程の終了後、前記核生成用水溶液のpH値を、液温25℃基準でpH値が10.5~12.0となるように調整して、粒子成長工程における反応水溶液である粒子成長用水溶液を得る。具体的には、この調整時のpH値の制御は、アルカリ水溶液の供給量を調節することにより行う。
 粒子成長用水溶液のpH値を上記範囲とすることにより、核の生成反応よりも核の成長反応の方が優先して生じる。このため、粒子成長工程において、粒子成長用水溶液には、新たな核はほとんど生成することなく、核が成長(粒子成長)して、所定の粒子径を有する複合水酸化物が形成される。
 同様に、混合水溶液の供給による粒子成長に伴って、粒子成長用水溶液のpH値およびアンモニウムイオンの濃度が変化するので、粒子成長用水溶液にも、混合水溶液とともに、アルカリ水溶液、アンモニア水溶液を供給して、粒子成長用水溶液のpH値が、液温25℃基準で10.5~12.0の範囲、アンモニウムイオンの濃度が、3g/L~25g/Lの範囲を維持するように制御する。
 粒子成長工程を開始してから所定時間経過後、後述する反応雰囲気の切り替えと同時に、供給される混合水溶液に含まれる各金属の組成比を、一般式(a)によって表わされる組成比から、一般式(b):NixCoyAlzMnts(x+y+z+t+s=1、0≦y≦0.3、0≦z≦0.1、0≦t<0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)の組成比に切り替える。これにより、得られる複合水酸化物の粒子構造を、一般式(2)で表される複合水酸化物により構成される微細一次粒子からなる中心部と、一般式(3)で表される複合水酸化物により構成され、この微細一次粒子よりも大きな板状一次粒子からなる外殻部とを有する二次粒子とすることができる。
 なお、切り替え後の混合水溶液中のマンガン含有量は、一般式(b)におけるtが0以上0.05未満となるように制御することが必要であり、複合水酸化物全体として一般式(1)のマンガン含有量の範囲となるように制御するが、電池容量を低下させないためには、0以上0.01以下とすることが好ましい。tが0.05以上になると、粒子全体としてマンガン含有量が多くなりすぎるという問題が生じる。
 その後、複合水酸化物が所定の粒径まで成長した時点で、反応を停止させて、粒子成長工程を終了する。
 複合水酸化物(二次粒子)の粒径は、粒子成長工程の時間により制御できるので、所望の粒径に成長するまで粒子成長工程を継続すれば、所望の粒径を有する複合水酸化物を得ることができる。
 また、複合水酸化物の粒径は、粒子成長工程のみならず、核生成工程のpH値と核生成のために投入した原料量でも制御することができる。すなわち、核生成時のpH値を高pH値側とすることにより、あるいは核生成時間を長くすることにより投入する原料量を増やし、生成する核の数を多くする。これにより、粒子成長工程を同条件とした場合でも、複合水酸化物の粒径を小さくできる。一方、核生成数が少なくするように制御すれば、得られる複合水酸化物の粒径を大きくすることができる。このため、予備試験により核生成工程と粒子成長工程の各工程における、それぞれの反応水溶液への金属塩の添加量と得られる粒子の関係を求めおくことが好ましい。
 (複合水酸化物の粒径制御)
 複合水酸化物(二次粒子)の粒径は、粒子成長工程の時間により制御できるので、所望の粒径に成長するまで粒子成長工程を継続すれば、所望の粒径を有する複合水酸化物を得ることができる。
 また、複合水酸化物の粒径は、粒子成長工程のみならず、核生成工程のpH値と核生成のために投入した原料量でも制御することができる。すなわち、核生成時のpH値を高pH値側とすることにより、あるいは核生成時間を長くすることにより投入する原料量を増やし、生成する核の数を多くする。これにより、粒子成長工程を同条件とした場合でも、複合水酸化物の粒径を小さくできる。一方、核生成数が少なくするように制御すれば、得られる複合水酸化物の粒径を大きくすることができる。
 c)特徴
 以上のように、本発明の複合水酸化物の製造方法においては、核生成工程では核生成が優先して起こり、核の成長はほとんど生じず、逆に、粒子成長工程では核成長のみが生じ、ほとんど新しい核は生成されない。このため、核生成工程では、粒度分布の範囲が狭く均質な核を形成させることができ、また、粒子成長工程では、均質に核を成長させることができる。したがって、本発明の複合水酸化物の製造方法では、粒度分布の範囲が狭く、均質な複合水酸化物を得ることが可能となる。
 なお、両方の工程において、金属イオンは、核または複合水酸化物となって晶出するので、それぞれの反応水溶液中の金属成分に対する液体成分の割合が増加する。この場合、見かけ上、供給する混合水溶液の濃度が低下したようになり、特に粒子成長工程において、複合水酸化物が十分に成長しない可能性がある。したがって、反応水溶液中の液体成分の増加を抑制するため、核生成工程終了後から粒子成長工程の途中で、反応水溶液、特に粒子成長用水溶液中の液体成分の一部を反応槽外に排出することが好ましい。具体的には、粒子成長用水溶液に対する混合水溶液、アルカリ水溶液およびアンモニア水溶液の供給および攪拌を停止して、核や複合水酸化物を沈降させて、粒子成長用水溶液の上澄み液を排出する。これにより、粒子成長用水溶液における混合水溶液の相対的な濃度を高めることができる。そして、混合水溶液の相対的な濃度が高い状態で、複合水酸化物を成長させることができるので、複合水酸化物の粒度分布をより狭めることができ、複合水酸化物の二次粒子全体としての密度も高めることができる。
 また、図1に示す実施形態では、核生成工程が終了した核生成用水溶液のpH値を調整して粒子成長用水溶液を形成して、核生成工程から引き続いて粒子成長工程を行っているので、粒子成長工程への移行を迅速に行うことができるという利点がある。さらに、核生成工程から粒子成長工程への移行は、反応水溶液のpH値を調整するだけで移行でき、pHの調整も一時的にアルカリ水溶液の供給を停止することで容易に行うことができるという利点がある。なお、反応水溶液のpH値は、金属化合物を構成する酸と同種の無機酸、たとえば、硫酸塩の場合、硫酸を反応水溶液に添加することでも調整することができる。
 (第2実施形態)
 図2に示す別実施形態のように、核生成用水溶液とは別に、粒子成長工程に適したpH値、アンモニウムイオン濃度に調整された成分調整水溶液を形成しておき、この成分調整水溶液に、別の反応槽で核生成工程を行って生成した核を含有する水溶液(核生成用水溶液、好ましくは核生成用水溶液から液体成分の一部を除去したもの)を添加して反応水溶液とし、この反応水溶液を粒子成長用水溶液として粒子成長工程を行ってもよい。
 この場合、核生成工程と粒子成長工程の分離を、より確実に行うことができるので、各工程における反応水溶液の状態を、各工程に最適な条件とすることができる。特に、粒子成長工程の開始時点から、粒子成長用水溶液のpH値を最適な条件とすることができる。粒子成長工程で形成される複合水酸化物を、より粒度分布の範囲が狭く、かつ、均質なものとすることができる。
 以下、晶析反応における反応条件などについて説明するが、核生成工程と粒子成長工程との相違点は、反応水溶液のpH値および反応槽内の雰囲気を制御する範囲のみであり、金属化合物、反応液中アンモニア濃度、反応温度などの条件は、両工程において実質的に同様である。
 (反応雰囲気)
 本発明の核生成工程における反応雰囲気は、酸化性雰囲気、より具体的には、反応槽内の空間の酸素濃度が1容量%を超える酸化性雰囲気とする必要がある。酸素濃度が10容量%を超える酸化性雰囲気が好ましく、制御が容易な大気雰囲気(酸素濃度:21容量%)とすることが特に好ましい。酸素濃度が1容量%を超える雰囲気とすることで、一次粒子の平均粒径を0.01μm~0.3μmとすることができる。酸素濃度が1容量%以下では、中心部の一次粒子の平均粒径が0.3μmを超えることがある。酸素濃度の上限は、特に限定されるものではないが、30容量%を超えると、一次粒子の平均粒径が0.01μm未満となる場合があり、好ましくない。
 一方、本発明の粒子成長工程における反応雰囲気は、後述する所定の時点で、上記の酸化性雰囲気から、弱酸化性~非酸化性の範囲の雰囲気、具体的には、反応槽内空間の酸素濃度が1容量%以下である雰囲気に切り替える必要がある。好ましくは、酸素濃度が0.5容量%以下、より好ましくは0.2容量%以下となるように、酸素と不活性ガスの混合雰囲気に制御する。反応槽内空間の酸素濃度を1容量%以下にして粒子成長させることで、粒子の不要な酸化を抑制し、一次粒子の成長を促して、平均粒径0.3μm~3μmの中心部より大きい一次粒子径で粒度が揃った、緻密で高密度の外殻部を有する二次粒子を得ることができる。
 このような雰囲気に反応槽内空間を保つための手段としては、特に限定されることはないが、窒素などの不活性ガスを反応槽内空間部へ流通させること、さらには反応液中に不活性ガスをバブリングさせることが挙げられる。
 (混合水溶液の組成および反応雰囲気の切り替え)
 このように、本発明では、各工程において、それぞれの目的に応じて、反応雰囲気を制御するとともに、混合水溶液の組成を変更する必要がある。すなわち、本発明の複合水酸化物が有する粒子構造は、上述したように、核生成工程および粒子成長工程における、混合水溶液の組成および反応雰囲気を制御することにより形成される。すなわち、核生成工程と粒子成長工程の初期の一部を酸化性雰囲気とし、かつ、混合水溶液の組成を一般式(a)で表わされる組成とすることで、微細一次粒子からなり、空隙が多い低密度の中心部が形成され、その後の粒子成長工程において、酸化性雰囲気から切り替えて、弱酸化性から非酸化性の範囲の雰囲気とするとともに、混合水溶液の組成を一般式(b)で表される組成に切り替えることで、前記中心部の外側に、微細一次粒子よりも大きな板状一次粒子からなり、緻密で高密度の外殻部を有する二次粒子構造を形成することができ、かつ、複合水酸化物の二次粒子の組成を全体として一般式(1)で表される組成とすることができる。
 粒子成長工程における雰囲気および混合水溶液の切り替えは、最終的に得られる正極活物質に微粒子が発生し、サイクル特性が悪化しない程度の中空部が得られるようにする必要がある。具体的には、この切り替えのタイミングを粒子成長工程時間の全体(この工程の開始から反応終了まで)に対して、粒子成長工程の開始時からの時間が1%~15%、好ましくは2%~12.5%、さらに好ましくは4%~10%の範囲で行う。粒子成長工程時間の全体に対して15%を超える時点で、この切り替えを行うと、形成される中心部が大きくなり、二次粒子の粒径に対する外殻部の厚さが薄くなり過ぎることがあるばかりでなく、マンガンの含有量が増えるため、充放電容量が小さくなる。一方、粒子成長工程時間の全体に対して1%未満で、この切り替えを行うと、中心部が小さくなりすぎるか、十分な中空構造を有する二次粒子が形成されない。
 (pH制御)
 核生成工程においては、反応水溶液のpH値が、液温25℃基準で12.0~14.0の範囲となるように制御する必要がある。pH値が14.0を超える場合、生成する核が微細になり過ぎ、反応水溶液がゲル化する問題がある。また、pH値が12.0未満では、核生成とともに核の成長反応が生じるので、生成される核の粒度分布の範囲が広くなり不均質なものとなってしまう。すなわち、核生成工程において、上述の範囲に反応水溶液のpH値を制御することで、核の成長を抑制して、核生成のみを起こすことができ、生成される核を均質かつ粒度分布の範囲が狭いものとすることができる。
 一方、粒子成長工程においては、反応水溶液のpH値が、液温25℃基準で10.5~12.0の範囲となるように制御する必要がある。pH値が12.0を超える場合、あらたに生成される核が多くなり、微細な二次粒子が生成するため、粒径分布の範囲が狭い複合水酸化物が得られない。また、pH値が10.5未満では、アンモニアイオンによる溶解度が高く、析出せずに液中に残存する金属イオンが増えるため、生産効率が悪化する。すなわち、粒子成長工程において、上述の範囲に反応水溶液のpH値を制御することで、核生成工程で生成した核の成長を優先的に起こさせ、新たな核生成を抑制することができ、得られる複合水酸化物を均質かつ粒度分布の範囲が狭いものとすることができる。
 核生成工程および粒子成長工程のいずれにおいても、pHの変動幅は、設定値の上下0.2以内に制御することが好ましい。pHの変動幅が大きい場合、核生成と粒子成長が一定とならず、粒度分布の範囲の狭い均一な複合水酸化物が得られない場合がある。
 なお、pH値が12.0の場合は、核生成と核成長の境界条件であるため、反応水溶液中に存在する核の有無により、核生成工程もしくは粒子成長工程のいずれかの条件とすることができる。
 すなわち、核生成工程のpH値を12.0より高くして多量に核生成させた後、粒子成長工程でpH値を12.0とすると、反応水溶液中に多量の核が存在するため、核の成長が優先して起こり、粒径分布が狭く比較的大きな粒径の複合水酸化物が得られる。
 一方、反応水溶液中に核が存在しない状態、すなわち、核生成工程においてpH値を12.0とした場合、成長する核が存在しないため、核生成が優先して起こり、粒子成長工程のpH値を12.0より小さくすることで、生成した核が成長して良好な複合水酸化物が得られる。
 いずれの場合においても、粒子成長工程のpH値を核生成工程のpH値より低い値で制御すればよく、核生成と粒子成長を明確に分離するためには、粒子成長工程のpH値を核生成工程のpH値より0.5以上低くすることが好ましく、1.0以上低くすることがより好ましい。
 (アルカリ水溶液)
 反応水溶液中のpHを調整するアルカリ水溶液については、特に限定されるものではなく、たとえば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物水溶液を用いることができる。このようなアルカリ金属水酸化物の場合、直接、反応水溶液中に供給してもよいが、反応槽内における反応水溶液のpH値制御の容易さから、水溶液として反応槽内の反応水溶液に添加することが好ましい。
 また、アルカリ水溶液を反応槽に添加する方法についても、特に限定されるものではなく、反応水溶液を十分に攪拌しながら、定量ポンプなど、流量制御が可能なポンプで、反応水溶液のpH値が所定の範囲に保持されるように、添加すればよい。
 (アンモニア濃度)
 反応水溶液中のアンモニア濃度は、以下の問題を生じさせないために、好ましくは3g/L~25g/Lの範囲内で一定値に保持する。アンモニアは錯化剤として作用するため、アンモニア濃度が3g/L未満であると、金属イオンの溶解度を一定に保持することができず、形状および粒径が整った複合水酸化物の一次粒子が形成されず、ゲル状の核が生成しやすいため粒度分布も広がりやすい。一方、上記アンモニア濃度が25g/Lを超える濃度では、金属イオンの溶解度が大きくなり過ぎ、反応水溶液中に残存する金属イオン量が増えて、組成のずれなどが起きる。
 また、アンモニア濃度が変動すると、金属イオンの溶解度が変動し、均一な形状および粒径の水酸化物が形成されないため、一定値に保持することが好ましい。たとえば、アンモニア濃度は、上限と下限の幅を5g/L以下として所望の濃度に保持することが好ましい。
 なお、アンモニウムイオン供給体については、特に限定されないが、たとえば、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどを使用することができる。
 (金属化合物)
 本発明の複合水酸化物の構成元素である、ニッケル、コバルト、アルミニウムおよびマンガンの供給源としては、目的とする金属を含有する化合物を用いる。使用する化合物は、水溶性の化合物を用いることが好ましく、硝酸塩、硫酸塩、塩酸塩などが挙げられる。たとえば、硫酸ニッケル、硫酸マンガン、硫酸コバルト、硫酸アルミニウム、アルミン酸ナトリウムが好ましく用いられる。
 アルミニウムを複合水酸化物の内部に均一に分散させる場合には、アルミニウム化合物を混合水溶液に添加するか、あるいは、別途アルミニウム含有水溶液を用意し、これを前記混合水溶液と同時に反応水溶液に添加することが好ましい。これにより、反応水溶液の内部にニッケル、コバルト、マンガンに加えて、アルミニウムを均一に分散させた状態で共沈させることができる。
 一方、添加元素(組成式中Mで表され、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種以上の元素)は、水溶性の化合物を用いることが好ましく、たとえば、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、タングステン酸ナトリウム、タングステン酸アンモニウムなどを用いることができる。これらの添加元素は、アルミニウムの場合と同様の方法により、複合水酸化物中に分散、または、複合水酸化物の表面に被覆させることができる。
 (アルミニウムおよび添加元素の被覆)
 本発明において、少なくとも前記核生成用水溶液に含まれる金属化合物および前記粒子成長工程において供給される金属化合物のいずれにもアルミニウムが含まれていない場合には、前記粒子成長工程で得られた複合水酸化物に、アルミニウム化合物を被覆する工程をさらに備える必要がある。
 このように、複合水酸化物の表面にアルミニウム化合物を被覆する場合には、たとえば、アルミン酸ナトリウムを含んだ水溶液を用いて複合水酸化物をスラリー化し、所定のpHとなるように制御した上で、晶析反応により、アルミニウム化合物を複合水酸化物の表面に析出させれば、その表面を均一に被覆することができる。この場合、アルミニウム酸ナトリウムを含んだ水溶液に替えて、アルミニウムのアルコキシド溶液を用いてもよい。さらに、複合水酸化物に対して、アルミニウム化合物を含んだ水溶液あるいはスラリーを吹き付けて乾燥させることによっても、複合水酸化物の表面をアルミニウム化合物で被覆することができる。また、複合水酸化物とアルミニウムを含む塩が懸濁したスラリーを噴霧乾燥させる、あるいは複合水酸化物とアルミニウムを含む塩を固相法で混合するなどの方法により被覆することもできる。
 なお、アルミニウムを含む複合水酸化物の表面をアルミニウム化合物でさらに被覆することもできるが、この場合には、混合水溶液中に存在するアルミニウムイオンの原子数比を被覆する量だけ少なくしておくことで、得られる複合水酸化物の金属イオンの原子数比と一致させることができる。また、粒子の表面をアルミニウム化合物で被覆する工程は、複合水酸化物を加熱した後の粒子に対して行ってもよい。
 また、前記添加元素についても、アルミニウムの場合と同様の方法により、複合水酸化物の表面に被覆させることができ、この場合、アルミニウム化合物で被覆する工程と同時に行うことができる。
 (混合水溶液の濃度)
 混合水溶液の濃度は、金属化合物の合計で1mol/L~2.2mol/Lとすることが好ましい。混合水溶液の濃度が1mol/L未満では、反応槽当たりの晶析物量が少なくなるために生産性が低下するため好ましくない。一方、混合水溶液の塩濃度が2.2mol/Lを超えると、常温での飽和濃度を超えるため、結晶が再析出して設備の配管を詰まらせるなどの危険がある。
 また、金属化合物は、必ずしも混合水溶液として反応槽に供給しなくてもよく、たとえば、混合すると反応して化合物が生成される金属化合物を用いる場合、全金属化合物水溶液の合計の濃度が上記範囲となるように、個別に金属化合物水溶液を調整して、個々の金属化合物の水溶液として所定の割合で同時に反応槽内に供給してもよい。本発明においては、個々に供給する金属化合物の水溶液も含めて混合水溶液と記載することがある。
 さらに、混合水溶液など、個々の金属化合物の水溶液を反応槽に供給する量は、晶析反応を終えた時点での晶析物濃度が、概ね30g/L~200g/Lになるようにすることが望ましい。晶析物濃度が30g/L未満の場合には、一次粒子の凝集が不十分になることがあり、200g/Lを超える場合には、添加する混合水溶液の反応槽内での拡散が十分でなく、粒子成長に偏りが生じることがあるからである。
 (反応液温度)
 反応槽内において、反応液の温度は、好ましくは20℃以上、特に好ましくは20℃~60℃に設定する。反応液の温度が20℃未満の場合、溶解度が低いため核発生が起こりやすく制御が難しくなる。一方、60℃を超えると、アンモニアの揮発が促進されるため、所定のアンモニア濃度を保つために、過剰のアンモニウムイオン供給体を添加しなければならならず、コスト高となる。
 (製造設備)
 本発明の複合水酸化物の製造方法では、反応が完了するまで生成物を回収しない方式の装置を用いる。たとえば、撹拌機が設置された通常に用いられるバッチ反応槽などである。このような装置を採用すると、一般的なオーバーフローによって生成物を回収する連続晶析装置のように、成長中の粒子がオーバーフロー液と同時に回収されるという問題が生じないため、粒度分布が狭く粒径の揃った粒子を得ることができる。
 また、反応雰囲気を制御する必要があるため、密閉式の装置などの雰囲気制御可能な装置を用いる。このような装置を用いることで、得られる複合水酸化物を上記構造のものとすることができるとともに、核生成反応や粒子成長反応をほぼ均一に進めることができるので、粒径分布の優れた粒子、すなわち粒度分布の範囲の狭い粒子を得ることができる。
 (2-1)非水系電解質二次電池用正極活物質
 本発明の正極活物質は、一般式(4):Li1+uNixCoyAlzMnts2(-0.05≦u≦0.20、x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表されるリチウムニッケル複合酸化物であって、層状構造を有する六方晶系の結晶構造を有するものである。
 (組成)
 本発明の正極活物質において、リチウムの過剰量を示すuは、-0.05以上0.20以下の範囲とする。リチウムの過剰量uが-0.05未満の場合、得られた正極活物質を用いた非水系電解質二次電池における正極の反応抵抗が大きくなるため、電池の出力が低くなってしまう。一方、リチウムの過剰量uが0.20を超える場合、上記正極活物質を電池の正極に用いた場合の初期放電容量が低下するとともに、正極の反応抵抗も増加してしまう。リチウムの過剰量uは、この反応抵抗をより低減させるためには0.00以上0.15以下とすることが好ましい。
 コバルトの含有量を示すyは、0以上0.3以下の範囲とし、0.1以上0.2以下の範囲とすることが好ましい。コバルトは埋蔵量が少なく高価であるため、yが0.3を超える場合、コストが向上してしまうため好ましくない。
 アルミニウムの含有量を示すzは、0を超えて0.1以下の範囲とし、0.2以上0.8以下の範囲とすることが好ましい。zが0.1を超える場合、電池容量が低下するという問題が生じる。
 また、マンガンの含有量を示すtは、0.001を超えて0,05以下の範囲とし、0.01以上0.03以下の範囲とすることが好ましい。tが0.001以下では十分な中空構造が得られず、電池の出力が低くなってしまう。一方、tが0.05を超えると、電池の正極に用いた場合の充放電容量が低下する。
 さらに、一般式(4)で表されるように、本発明の正極活物質は、リチウムニッケル複合酸化物に添加元素を含有するように調整されていることが、より好ましい。上記添加元素を含有させることで、これを正極活物質として用いた電池の耐久特性や出力特性を向上させることができる。
 特に、添加元素が粒子の表面または内部に均一に分布することで、粒子全体で上記効果を得ることができ、少量の添加で上記効果が得られるとともに容量の低下を抑制できる。さらに、より少ない添加量で効果を得るためには、粒子内部より粒子表面における添加元素の濃度を高めることが好ましい。
 このような添加元素の含有量を示すsは、0以上0.05以下の範囲とし、0.01以上0.04以下の範囲とすることが好ましい。添加元素の含有量が0.05を超えると、Redox反応に貢献する金属元素が減少するため、電池容量が低下するため好ましくない。
 (平均粒径)
 本発明の正極活物質は、平均粒径が2μm~15μmの範囲にある。平均粒径が2μm未満では、正極を形成したときに粒子の充填密度が低下して、正極の容積あたりの電池容量が低下する。一方、平均粒径が15μmを超えると、正極活物質の比表面積が低下して、正極と電解液との界面が減少するため、正極の抵抗が上昇して電池の出力特性が低下する。
 正極の抵抗を下げて、さらに出力特性を向上させるためには、正極活物質を小粒径化して、電解液との界面を増加させることが好ましい。このような観点から、正極活物質の平均粒径を3μm~8μmの範囲とすることが好ましく、3μm~6μmの範囲とすることがより好ましい。正極活物質の平均粒径をこのような範囲に調整することにより、この正極活物質を正極に用いた電池の容積あたりの電池容量を大きくすることができるとともに、高安全性、高出力といった高い電池特性を得ることができる。
 (粒度分布)
 図6に例示されるように、本発明の正極活物質は、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.60以下であり、平均粒径が2μm~15μmである、きわめて均質性が高いリチウムニッケル複合酸化物の二次粒子により構成される。
 粒度分布が広範囲になっている場合、正極活物質に、平均粒径に対して粒径が非常に小さい微粒子や、平均粒径に対して非常に粒径の大きい粗大粒子が多く存在することになる。微粒子が多く存在する正極活物質を用いて正極を形成した場合には、微粒子の局所的な反応に起因して発熱する可能性があり、安全性が低下するとともに、微粒子が選択的に劣化するのでサイクル特性が悪化してしまう。一方、粗大粒子が多く存在する正極活物質を用いて正極を形成した場合には、電解液と正極活物質との反応面積が十分に取れず、反応抵抗の増加による電池出力が低下する。
 したがって、正極活物質の粒度分布を前記指標〔(d90-d10)/平均粒径〕を0.60以下とし、かつ、平均粒径を2μm~15μmの範囲に制御することにより、適度な粒径を有しながらも、微粒子や粗大粒子の割合を少なくすることができる。このため、この正極活物質を正極に用いた電池は、安全性に優れ、良好なサイクル特性および電池出力を有するものとなる。なお、上記平均粒径や、d90、d10は、上述した複合水酸化物に用いられているものと同様のものであり、測定も同様にして行うことができる。
 (粒子構造)
 本発明の正極活物質は、図7に例示するように、二次粒子内部の中空部とその外側の外殻部で構成される中空構造を有する点に特徴がある。このような中空構造とすることにより、反応表面積を大きくすることができ、かつ、外殻部の一次粒子間の粒界あるいは空隙から電解液が浸入して、粒子内部の中空側の一次粒子表面における反応界面でもリチウムの挿脱入が行われるため、Liイオン、電子の移動が妨げられず、出力特性を高くすることができる。
 ここで、この外殻部の厚さは、正極活物質の二次粒子の粒径に対する比率において5%~35%であることが好ましい。特に、本発明の正極活物質の二次粒子の平均粒径が2μm~15μmの範囲にあることを考慮すれば、外殻部の厚さは、0.5μm~5μmの範囲にあることがより好ましく、0.5μm~2.5μmの範囲にあることがさらに好ましい。外殻部の厚さの比率が5%未満であると、正極活物質を構成するリチウムニッケル複合酸化物の強度が低下するため、粉体取扱時および電池の正極とするときに粒子が破壊され微粒子が発生し、特性を悪化させる。一方、外殻部の厚さの比率が35%を超えると、粒子内部の中空部へ電解液が侵入可能な上記粒界あるいは空隙から電解液が少なくなり、電池反応に寄与する表面積が小さくなるため、正極抵抗が上がり、出力特性が低下してしまう。なお、この複合酸化物の粒子径に対する外殻部の厚さの比率は、上述した複合水酸化物に対して行ったのと同様の測定方法により求めることができる。
 (特性)
 本発明の正極活物質は、たとえば、2032型コイン電池の正極に用いた場合、185mAh/g以上の高い初期放電容量、低い正極抵抗および高いサイクル容量維持率が得られるものとなり、非水系電解質二次電池用正極活物質として優れた特性を示すものである。
 (2-2)非水系電解質二次電池用正極活物質の製造方法
 本発明の正極活物質の製造方法は、一般式(4)により表される正極活物質を製造する方法であって、上記平均粒径、粒度分布、粒子構造および組成となるように正極活物質を製造できるのであれば、特に限定されないが、以下の方法を採用すれば、該正極活物質をより確実に製造できるので、好ましい。
 本発明の正極活物質の製造方法は、a)本発明の正極活物質の原料となる複合水酸化物を熱処理する熱処理工程と、b)熱処理後の複合水酸化物または複合酸化物に対してリチウム化合物を混合して混合物を形成する混合工程、c)混合工程で形成された混合物を焼成する焼成工程を含むものである。以下、各工程を説明する。
 a)熱処理工程
 熱処理工程は、複合水酸化物を、105℃~750℃の温度に加熱して熱処理する工程であり、複合水酸化物に含有されている水分を除去するものである。この熱処理工程を行うことによって、粒子中に焼成工程まで残留している水分を一定量まで減少させることができる。これにより、得られる正極活物質中の金属の原子数やリチウムの原子数の割合がばらつくことを防ぐことができる。
 なお、熱処理工程の目的は、原子数の割合がばらつくことを抑制するものであるので、厳密な原料の配合などによってばらつきを抑制することができる場合には、熱処理工程を省略してもよい。
 熱処理工程では、正極活物質中の金属の原子数やリチウムの原子数の割合にばらつきが生じない程度に水分が除去できればよいので、必ずしもすべての複合水酸化物を複合酸化物に転換する必要はない。しかしながら、上記ばらつきをより少なくするためには、加熱温度を500℃以上として複合水酸化物を複合酸化物にすべて転換することが好ましい。
 
 熱処理工程において、加熱温度が105℃未満の場合、複合水酸化物中の余剰水分が除去できず、上記ばらつきを抑制することができない。一方、加熱温度が750℃を超えると、熱処理により粒子が焼結して均一な粒径の複合酸化物が得られない。このようなばらつきを抑制する観点から、熱処理条件による複合水酸化物中に含有される金属成分を分析によって予め求めておき、リチウム化合物との比を決めておくことが好ましい。
 熱処理を行う雰囲気は特に制限されるものではなく、非還元性雰囲気であればよいが、簡易的に行える空気気流中において行うことが好ましい。
 また、熱処理時間は、特に制限されないが、1時間未満では複合水酸化物の余剰水分の除去が十分に行われない場合があるので、少なくとも1時間以上が好ましく、5時間~15時間がより好ましい。
 なお、熱処理に用いられる設備は、特に限定されるものではなく、複合水酸化物を非還元性雰囲気中、好ましくは、空気気流中で加熱できるものであればよく、ガス発生がない電気炉などが好適に用いられる。
 b)混合工程
 混合工程は、上記熱処理工程において熱処理された複合水酸化物(以下、「熱処理粒子」という)などと、リチウムを含有する物質、たとえば、リチウム化合物とを混合して、リチウム混合物を得る工程である。ここで、上記熱処理粒子には、熱処理工程において残留水分を除去された複合水酸化物のみならず、熱処理工程で酸化物に転換された複合酸化物、もしくはこれらが混合したものも含まれる。
 熱処理粒子とリチウム化合物とは、リチウム混合物中のリチウム以外の金属の原子数、すなわち、ニッケル、マンガン、コバルトおよびアルミニウムの原子数の和(Me)と、リチウムの原子数(Li)との比(Li/Me)が、0.95~1.2、好ましくは1~1.15となるように、混合される。すなわち、焼成工程前後でLi/Meは変化しないので、この混合工程で混合するLi/Meが正極活物質におけるLi/Meとなるため、リチウム混合物におけるLi/Meが、得ようとする正極活物質におけるLi/Meと同じになるように混合される。
 混合工程では、熱処理粒子とリチウム化合物とが均一に分散するように、十分に混合することが好ましい。混合が十分でない場合には、個々の粒子間でLi/Meがばらつき、十分な電池特性が得られないなどの問題が生じる可能性がある。
 なお、混合には、一般的な混合機を使用することができ、たとえば、シェーカーミキサ、レーディゲミキサ、ジュリアミキサ、Vブレンダなどを用いることができ、熱処理粒子などの形骸が破壊されない程度で、複合酸化物とリチウムを含有する物質とが十分に混合されればよい。
 リチウム混合物を形成するために使用されるリチウム化合物は、特に限定されるものではないが、たとえば、水酸化リチウム、硝酸リチウム、炭酸リチウム、もしくはこれらの混合物が、入手が容易であるという点で好ましい。特に、取り扱いの容易さ、品質の安定性を考慮すると、水酸化リチウムを用いることがより好ましい。
 c)焼成工程
 焼成工程は、上記混合工程で得られたリチウム混合物を焼成して、リチウムニッケル複合酸化物を形成する工程である。焼成工程においてリチウム混合物を焼成することにより、熱処理粒子中に、リチウムを含有する物質中のリチウムが拡散し、リチウムニッケル複合酸化物が形成される。
 (焼成温度)
 リチウム混合物の焼成は、650℃~800℃で、より好ましくは700℃~800℃で、さらに好ましくは740℃~770℃で行われる。
 焼成温度が650℃未満であると、熱処理粒子中へのリチウムの拡散が十分に行われず、余剰のリチウムや未反応の粒子が残ったり、結晶構造が十分整わなくなったりして、電池に用いられた場合に十分な電池特性が得られない。
 また、焼成温度が800℃を超えると、複合酸化物の二次粒子間で激しく焼結が生じるとともに、異常粒成長を生じる可能性があり、このため、焼成後の粒子が粗大となって粒子形態(球状二次粒子の形態)を保持できなくなる可能性がある。このような正極活物質は、比表面積が低下するため、電池に用いた場合、正極の抵抗が上昇して電池容量が低下するという問題が生じる。また、リチウムと金属元素のカチオンミキシングが発生して結晶構造が乱れ、電池容量が低下することがある。
 なお、熱処理粒子とリチウム化合物の反応を均一に行わせる観点から、昇温速度を3℃/min~10℃/minとして上記温度まで昇温することが好ましい。さらには、リチウム化合物の融点付近の温度にて1時間~5時間程度保持することで、より反応を均一に行わせることができる。
 (焼成時間)
 焼成時間のうち、焼成温度での保持時間は、少なくとも2時間以上とすることが好ましく、より好ましくは、4時間~24時間である。2時間未満では、リチウムニッケル複合酸化物の生成が十分に行われないことがある。
 なお、特に限定されるものではないが、保持時間終了後、匣鉢の劣化を抑止するため、降下速度を2℃/min~10℃/minとして200℃以下になるまで雰囲気を冷却する。
 (仮焼)
 特に、リチウム化合物として、水酸化リチウムや炭酸リチウムを使用した場合には、焼成する前に、焼成温度より低い温度、具体的には100℃~500℃の温度で、1時間~10時間程度保持して仮焼することが好ましい。すなわち、水酸化リチウムや炭酸リチウムと熱処理粒子の反応温度において仮焼することが好ましい。この場合、水酸化リチウムや炭酸リチウムの上記反応温度付近で保持すれば、熱処理粒子へのリチウムの拡散が十分に行われ、均一なリチウムニッケル複合酸化物を得ることができる。
 (焼成雰囲気)
 焼成時の雰囲気は、酸化性雰囲気とすることが好ましく、酸素濃度が18容量%~100容量%の雰囲気とすることがより好ましく、上記酸素濃度の酸素と不活性ガスの混合雰囲気とすることがさらに好ましい。特に、電池特性を考慮すると、酸素気流中で行うことが好ましい。すなわち、焼成は、大気ないしは酸素気流中で行うことが好ましい。酸素濃度が18容量%未満であると、リチウムニッケル複合酸化物の結晶性が十分でない状態になる可能性がある。
 なお、焼成に用いられる炉は、特に限定されるものではなく、大気ないしは酸素気流中でリチウム混合物を加熱できるものであればよいが、炉内の雰囲気を均一に保つ観点から、ガス発生がない電気炉が好ましく、バッチ式あるいは連続式の炉をいずれも用いることができる。
 (解砕)
 焼成によって得られたリチウムニッケル複合酸化物は、凝集もしくは軽度の焼結が生じている場合がある。この場合には、該リチウムニッケル複合酸化物を解砕することが好ましい。これにより、リチウムニッケル複合酸化物、つまり、本発明の正極活物質を得ることができる。なお、解砕とは、焼成時に二次粒子間の焼結ネッキングなどにより生じた複数の二次粒子からなる凝集体に、機械的エネルギを投入して、二次粒子自体をほとんど破壊することなく二次粒子を分離させて、凝集体をほぐす操作のことである。
 (3)非水系電解質二次電池
 本発明の非水系電解質二次電池は、上記非水系電解質二次電池用正極活物質を正極材料に用いた正極を採用したものであり、以下、本発明の非水系電解質二次電池の構造を説明する。
 本発明の非水系電解質二次電池は、正極材料に本発明の正極活物質を用いたこと以外は、一般的な非水系電解質二次電池と実質的に同様の構造を備えている。
 たとえば、本発明の二次電池は、ケースと、このケース内に収容された正極、負極、非水系電解液およびセパレータを備えた構造を有している。具体的にいえば、セパレータを介して正極と負極とを積層させて電極体とし、得られた電極体に非水系電解液を含浸させ、正極の正極集電体と外部に通ずる正極端子との間、および、負極の負極集電体と外部に通ずる負極端子との間を、それぞれ集電用リードなどを用いて接続し、ケースに密閉することによって、本発明の二次電池は形成される。
 なお、本発明の二次電池の構造は、上記例に限定されないのはいうまでもなく、また、その外形も筒形や積層形など、種々の形状を採用することができる。
 (正極)
 まず、本発明の二次電池の特徴である正極について説明する。正極は、シート状の部材であり、本発明の正極活物質を含有する正極合材ペーストを、たとえば、アルミニウム箔製の集電体の表面に塗布乾燥して形成されている。
 なお、正極は、使用する電池にあわせて適宜処理される。たとえば、目的とする電池に応じて適当な大きさに形成する裁断処理や、電極密度を高めるためにロールプレスなどによる加圧圧縮処理などが行われる。
 前記正極合材ペーストは、正極合材に、溶剤を添加して混練して形成されたものである。正極合材は、粉末状になっている本発明の正極活物質と、導電材および結着剤とを混合して形成されたものである。
 導電材は、電極に適当な導電性を与えるために添加されるものである。この導電材は、特に限定されないが、たとえば、黒鉛(天然黒鉛、人造黒鉛および膨張黒鉛など)や、アセチレンブラックやケッチェンブラックなどのカーボンブラック系材料を用いることができる。
 結着剤は、正極活物質粒子をつなぎ止める役割を果たすものである。この正極合材に使用される結着剤は、特に限定されないが、たとえば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。
 なお、正極合材には、活性炭などを添加してもよく、活性炭などを添加することによって、正極の電気二重層容量を増加させることができる。
 溶剤は、結着剤を溶解して、正極活物質、導電材および活性炭などを結着剤中に分散させるものである。この溶剤は特に限定されないが、たとえば、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。
 また、正極合材ペースト中における各物質の混合比は、特に限定されない。たとえば、溶剤を除いた正極合材の固形分を100質量部とした場合、一般の非水系電解質二次電池の正極と同様、正極活物質の含有量を60質量部~95質量部、導電材の含有量を1質量部~20質量部、結着剤の含有量を1質量部~20質量部とすることができる。
 (負極)
 負極は、銅などの金属箔集電体の表面に、負極合材ペーストを塗布し、乾燥して形成されたシート状の部材である。この負極は、負極合材ペーストを構成する成分やその配合、集電体の素材などは異なるものの、実質的に前記正極と同様の方法によって形成され、正極と同様に、必要に応じて各種処理が行われる。
 負極合材ペーストは、負極活物質と結着剤とを混合した負極合材に、適当な溶剤を加えてペースト状にしたものである。
 負極活物質は、たとえば、金属リチウムやリチウム合金などのリチウムを含有する物質や、リチウムイオンを吸蔵および脱離できる吸蔵物質を採用することができる。
 吸蔵物質は、特に限定されないが、たとえば、天然黒鉛、人造黒鉛、フェノール樹脂などの有機化合物焼成体、およびコークスなどの炭素物質の粉状体を用いることができる。このような吸蔵物質を負極活物質に採用した場合には、正極同様に、結着剤として、PVDFなどの含フッ素樹脂を用いることができ、負極活物質を結着剤中に分散させる溶剤としては、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。
 (セパレータ)
 セパレータは、正極と負極との間に挟み込んで配置されるものであり、正極と負極とを分離し、電解質を保持する機能を有している。このようなセパレータは、たとえば、ポリエチレンやポリプロピレンなどの薄い膜で、微細な孔を多数有する膜を用いることができるが、上記機能を有するものであれば、特に限定されない。
 (非水系電解液)
 非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
 有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状カーボネート;また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート;さらに、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタンなどのエーテル化合物;エチルメチルスルホンやブタンスルトンなどの硫黄化合物;リン酸トリエチルやリン酸トリオクチルなどのリン化合物などから選ばれる1種を、単独で、あるいは2種以上を混合して、用いることができる。
 支持塩としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiN(CF3
SO22、およびそれらの複合塩などを用いることができる。
 なお、非水系電解液は、電池特性改善のため、ラジカル捕捉剤、界面活性剤、難燃剤などを含んでいてもよい。
 (本発明の非水系電解質二次電池の特性)
 本発明の非水系電解質二次電池は、上述した構成からなり、本発明の正極活物質を用いた正極を有しているので、たとえば、後述する実施例で構成した2032型コイン電池の場合では、185mAh/g以上の高い初期放電容量、6Ω以下の正極抵抗が得られ、高容量で高出力となる。しかも、従来のリチウムニッケル系酸化物の正極活物質との比較においても、熱安定性が高く、安全性においても優れているといえる。
 (本発明の二次電池の用途)
 本発明の二次電池は、上記特性を有するので、常に高容量を要求される小型携帯電子機器(ノート型パーソナルコンピュータや携帯電話端末など)の電源に好適である。
 また、本発明の二次電池は、高出力が要求されるモーター駆動用電源としての電池にも好適である。電池は、大型化すると安全性の確保が困難になり、高価な保護回路が必要不可欠であるが、本発明の二次電池は、優れた安全性を有しているため、安全性の確保が容易になるばかりでなく、高価な保護回路を簡略化し、より低コストにできる。そして、小型化、高出力化が可能であることから、搭載スペースに制約を受ける輸送機器用の電源として好適である。
 (実施例1)
 [複合水酸化物の製造]
 複合水酸化物を、以下のようにして作製した。なお、すべての実施例を通じて、複合水酸化物、正極活物質および二次電池の作製には、特に断りのない限りは、和光純薬工業株式会社製試薬特級の各試料を使用した。
 (核生成工程)
 まず、反応槽(34L)内に、水を半分の量まで入れて撹拌しながら、槽内温度を40℃に設定した。このときの反応槽内は、大気雰囲気(酸素濃度:21容量%)とした。この反応槽内の水に、25質量%水酸化ナトリウム水溶液と25質量%アンモニア水を適量加えて、液温25℃基準で、槽内の反応液のpH値が13.0となるように調整した。さらに、該反応液中のアンモニア濃度を15g/Lに調節して反応前水溶液とした。
 次に、硫酸ニッケルと硫酸コバルトと硫酸マンガンを水に溶かして2.0mol/Lの混合水溶液を調整した。この混合水溶液では、各金属の元素モル比が、Ni:Co:Mn=1:1:1(Al=0)となるように調整した。
 この混合水溶液を、反応槽内の反応前水溶液に88ml/minの割合で加えて、反応水溶液とした。同時に、25質量%アンモニア水および25質量%水酸化ナトリウム水溶液も、この反応水溶液に一定速度で加えていき、反応水溶液(核生成用水溶液)中のアンモニア濃度を上記値に保持した状態で、pH値を13.0(核生成pH値)に制御しながら、50ml添加して、核生成を行った。
 (粒子成長工程)
 核生成終了後、反応水溶液のpH値が液温25℃基準で11.6になるまで35質量%硫酸を添加して、反応水溶液のpH値が11.6に到達した後、反応水溶液(粒子成長用水溶液)に、再度、25質量%水酸化ナトリウム水溶液の供給を再開し、pH値を液温25℃基準で11.6に制御したまま、15分間の晶析を継続し粒子成長を行った後、給液を一旦停止し、反応槽内空間の酸素濃度が0.2容量%以下となるまで窒素ガスを5L/minで流通させた。
 次に、硫酸ニッケルと硫酸コバルトとを水に溶かして、2.0mol/Lのニッケルコバルト混合水溶液を調整した。この混合水溶液では、各金属の元素モル比が、Ni:Co=82:15となるように調整した。この混合水溶液を、88ml/minの割合で105分間供給できるように、液量9240mlを準備した。また、アルミン酸ナトリウムを水に溶かして、0.6mol/Lのアルミニウム含有水溶液を調製した。このアルミニウム含有水溶液を、8.8ml/minで105分間供給できるように、液量924mlを準備した。その後、ニッケルコバルト溶液を88ml/minの割合、アルミニウム含有水溶液を8.8ml/minの割合で供給を再開し、105分間晶析を行った。
 反応槽内が満液になったところで、晶析を停止するとともに、撹拌を止めて静置することで、生成物の沈殿を促した。その後、反応槽から上澄み液を半量抜き出した。さらに、上記ニッケルコバルト溶液を88ml/minの割合で120分供給できるように、液量10560mlを準備した。また、上記アルミニウム含有水溶液を8.8ml/minの割合で120分供給できるように、液量1056mlを準備した。その後、ニッケルコバルト溶液を88ml/minの割合で、アルミニウム含有水溶液を8.8ml/minの割合で供給を再開し、2時間晶析を行った後(計4時間)、晶析を終了させた。
 得られた生成物を水洗、濾過、乾燥させて複合水酸化物を得た。
 なお、実施例1では、大気雰囲気から窒素雰囲気への切り替えは、粒子成長工程の開始時から粒子成長工程時間の全体に対して6.25%の時点で行ったことになる。また、上記晶析において、pH値は、pHコントローラにより水酸化ナトリウム水溶液の供給流量を調整することで制御され、変動幅は設定値の上下0.2の範囲内であった。
 [複合水酸化物の分析]
 得られた複合水酸化物について、その試料を無機酸により溶解した後、ICP発光分光法により化学分析を行ったところ、その組成は、Ni0.79Co0.16Al0.03Mn0.02(OH)2+a(0≦a≦0.5)であった。
 また、この複合水酸化物について、平均粒径および粒度分布を示す〔(d90-d10)/平均粒径〕値を、レーザ回折散乱式粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)を用いて測定した体積積算値から算出して求めた。その結果、平均粒径は4.8μmであり、〔(d90-d10)/平均粒径〕値は、0.49であった。
 次に、得られた複合水酸化物のSEM(株式会社日立ハイテクノロジース製、走査電子顕微鏡S-4700)観察(倍率:1000倍)を行ったところ、この複合水酸化物は、略球状であり、粒径がほぼ均一に揃っていることが確認された。SEM観察結果を図4に示す。
 また、得られた複合水酸化物の試料を、樹脂に埋め込み、クロスセクションポリッシャ加工を行ったものについて、倍率を10,000倍としたSEM観察結果を行ったところ、この複合水酸化物が二次粒子により構成され、該二次粒子は、針状、薄片状の微細一次粒子(粒径およそ0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径およそ0.6μm)からなる外殻部とにより構成されていることが確認された。この断面のSEM観察結果を、図5に示す。この断面のSEM観察から求めた、二次粒子径に対する外殻部の厚さは、11%であった。
 [正極活物質の製造]
 上記複合水酸化物を、空気(酸素:21容量%)気流中にて、700℃で6時間の熱処理を行って、複合酸化物に転換して回収した。
 Li/Me=1.06となるように水酸化リチウムを秤量し、上記複合酸化物と混合してリチウム混合物を調整した。混合は、シェーカーミキサ装置(ウィリー・エ・バッコーフェン(WAB)社製、TURBULA TypeT2C)を用いて行った。
 得られたリチウム混合物を大気中(酸素:21容量%)にて、500℃で9時間仮焼した後、760℃で12時間焼成し、冷却した後、解砕して正極活物質を得た。
 [正極活物質の分析]
 複合水酸化物と同様の方法で、得られた正極活物質の粒度分布を測定したところ、平均粒径は4.4μmであり、〔(d90-d10)/平均粒径〕値は、0.43であった。
 また、複合水酸化物と同様の方法で、正極活物質のSEM観察および断面SEM観察を行ったところ、得られた正極活物質は、略球状であり、粒径がほぼ均一に揃っていることが確認された。この正極活物質のSEM観察結果を図6に示す。一方、断面SEM観察により、この正極活物質が、一次粒子が焼結して構成された外殻部と、その内部に中空部を備える中空構造となっていることを確認した。この正極活物質の断面SEM観察結果を図7に示す。この観察から求めた、正極活物質の粒子径に対する外殻部の厚さの比率は、12%であった。
 得られた正極活物質について、流動方式ガス吸着法比表面積測定装置(ユアサアイオニクス社製マルチソーブ)により比表面積を求めたところ、1.3m2/gであった。
 また、得られた正極活物質について、X線回折装置(パナリティカル社製、X’Pert PRO)を用いて、Cu-Kα線による粉末X線回折で分析したところ、この正極活物質の結晶構造が、六方晶の層状結晶複合酸化物単相からなることを確認した。
 さらに、同様にICP発光分光法により、正極活物質の組成分析を行ったところ、Li1.06Ni0.79Co0.16Al0.03Mn0.022であることが確認された。
 [二次電池の製造]
 得られた正極活物質の評価には、2032型コイン電池を使用した。図8に示すように、このコイン型電池1は、ケース2と、このケース2内に収容された電極3とから構成されている。
 ケース2は、中空かつ一端が開口された正極缶2aと、この正極缶2aの開口部に配置される負極缶2bとを有しており、負極缶2bを正極缶2aの開口部に配置すると、負極缶2bと正極缶2aとの間に電極3を収容する空間が形成されるように構成されている。
 電極3は、正極3a、セパレータ3cおよび負極3bとからなり、この順で並ぶように積層されており、正極3aが正極缶2aの内面に接触し、負極3bが負極缶2bの内面に接触するようにケース2に収容されている。
 なお、ケース2は、ガスケット2cを備えており、このガスケット2cによって、正極缶2aと負極缶2bとの間が電気的に絶縁状態を維持するように固定されている。また、ガスケット2cは、正極缶2aと負極缶2bとの隙間を密封して、ケース2内と外部との間を気密液密に遮断する機能も有している。
 このコイン型電池1を、以下のようにして作製した。まず、得られた正極活物質52.5mg、アセチレンブラック15mg、およびポリテトラフッ化エチレン樹脂(PTFE)7.5mgを混合し、100MPaの圧力で直径11mm、厚さ100μmにプレス成形して、正極3aを作製した。作製した正極3aを、真空乾燥機中、120℃で12時間乾燥した。この正極3aと、負極3b、セパレータ3cおよび電解液とを用いて、コイン型電池1を、露点が-80℃に管理されたAr雰囲気のグローブボックス内で作製した。
 なお、負極3bには、直径14mmの円盤状に打ち抜かれた平均粒径20μm程度の黒鉛粉末と、ポリフッ化ビニリデンが銅箔に塗布された負極シートを用いた。また、セパレータ3cには、膜厚25μmのポリエチレン多孔膜を用いた。電解液には、1MのLiClO4を支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(富山薬品工業株式会社製)を用いた。
 [電池評価]
 得られたコイン型電池1の性能を評価する、初期放電容量および正極抵抗は、以下のように定義した。
 初期放電容量は、コイン型電池1を作製してから24時間程度放置し、開回路電圧OCV(open circuit voltage)が安定した後、正極に対する電流密度を0.1mA/cm2としてカットオフ電圧4.8Vまで充電し、1時間の休止後、カットオフ電圧2.5Vまで放電したときの容量を初期放電容量とし、電池の充放電容量の尺度とした。
 また、正極抵抗は、以下のようにして評価した。コイン型電池1を充電電位4.1Vで充電して、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン製、1255B)を使用して、交流インピーダンス法により測定すると、図9に示すナイキストプロットが得られる。このナイキストプロットは、溶液抵抗、負極抵抗とその容量、および、正極抵抗とその容量を示す特性曲線の和として表しているため、このナイキストプロットに基づき等価回路を用いてフィッティング計算して、正極抵抗の値を算出した。
 上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は196.5mAh/gであり、正極抵抗は3.8Ωであった。
 本実施例により得られた複合水酸化物の特性を表1に、正極活物質の特性およびこの正極活物質を用いて製造したコイン型電池の各評価を表2に、それぞれ示す。また、以下の実施例2~5および比較例1~5についても、同様の内容について、表1および表2に示す。
 (実施例2)
 複合水酸化物の製造工程における粒子成長工程において、大気雰囲気から窒素雰囲気への切り替えおよび原液の切り替えを、粒子成長工程時間全体に対して開始時から4.2%の時点で行ったこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。なお、得られた複合水酸化物および正極活物質の組成は、Ni0.80Co0.16Al0.03Mn0.01(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.80Co0.16Al0.03Mn0.012であり、複合水酸化物は、実施例1と同様に針状、薄片状の微細一次粒子(粒径およそ0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径0.7μm)からなる外殻部とにより構成されていた。
 上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は198.3mAh/gであり、正極抵抗は4.8Ωであった。
 (実施例3)
 複合水酸化物の製造工程における粒子成長工程において、大気雰囲気から窒素雰囲気への切り替えおよび原液の切り替えを、粒子成長工程時間全体に対して開始時から2.1%の時点で行ったこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。なお、得られた複合水酸化物および正極活物質の組成は、Ni0.81Co0.15Al0.03Mn0.01(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.81Co0.15Al0.03Mn0.012であり、複合水酸化物は実施例1と同様に針状、薄片状の微細一次粒子(粒径およそ0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径0.8μm)からなる外殻部とにより構成されていた。
 上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は201.4mAh/gであり、正極抵抗は5.2Ωであった。
 (実施例4)
 複合水酸化物の製造工程において、アルミニウムを添加せず、得られた水酸化物に、一般式(1)においてt=0.03となるように、アルミン酸ナトリウムを用いた被覆法によりアルミニウム化合物を表面に被覆することにより、アルミニウムを添加したこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。なお、得られた複合水酸化物および正極活物質の組成は、Ni0.79Co0.16Al0.03Mn0.02(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.79Co0.16Al0.03Mn0.022であり、複合水酸化物は、実施例1と同様に針状、薄片状の微細一次粒子(粒径およそ0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径0.8μm)からなる外殻部とにより構成されていた。
 上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は196.0mAh/gであり、正極抵抗は4.0Ωであった。
 (実施例5)
 複合水酸化物の製造工程において、粒子成長工程における、大気雰囲気から窒素雰囲気への切り替えを、粒子成長工程の開始時から20分、すなわち、粒子成長工程時間全体に対して開始時から8.3%の時点で行ったこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。得られた複合水酸化物および正極活物質の組成は、Ni0.78Co0.17Al0.03Mn0.03(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.78Co0.17Al0.03Mn0.032であり、複合水酸化物は実施例1と同様に針状、薄片状の微細一次粒子(粒径0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径0.5μm)からなる外殻部とにより構成されていた。
 上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は188.1mAh/gであり、正極抵抗は4.0Ωであった。
 (実施例6)
 複合水酸化物の製造工程において、粒子成長工程における、大気雰囲気から窒素雰囲気への切り替えを、粒子成長工程の開始時から20分で行ったこと、晶析時間を合計で8時間としたこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。なお、粒子成長工程における反応槽からの上澄み液の抜き出しは、2時間おきにおこなった。また、実施例6では、大気雰囲気から窒素雰囲気への切り替えは粒子成長工程時間全体に対して開始時から4.2%の時点で行ったことになる。
 得られた複合水酸化物および正極活物質の組成は、Ni0.80Co0.16Al0.03Mn0.01(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.80Co0.16Al0.03Mn0.012であり、複合水酸化物は、実施例1と同様に針状、薄片状の微細一次粒子(粒径およそ0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径0.6μm)からなる外殻部とにより構成されていた。
 上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は185.2mAh/gであり、正極抵抗は4.3Ωであった。
 (比較例1)
 複合水酸化物の製造工程において、粒子成長工程における、大気雰囲気から窒素雰囲気への切り替えを、粒子成長工程の開始時から35分、すなわち、粒子成長工程時間全体に対して開始時から16.6%の時点で行ったこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。得られた複合水酸化物および正極活物質の組成は、Ni0.75Co0.18Al0.03Mn0.05(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.75Co0.18Al0.03Mn0.052であり、複合水酸化物は、実施例1と同様に針状の微細一次粒子(粒径0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径0.5μm)からなる外殻部とにより構成されていた。一方、正極活物質は、製造工程での粒子の破壊や焼結が発生したため、その後の評価を中止した。
 (比較例2)
 複合水酸化物の製造工程において、核生成工程で用いた混合水溶液の各金属の元素モル比をNi:Co:Mn=1:1:8となるように調整したこと、粒子成長工程における、大気雰囲気から窒素雰囲気への切り替えを、粒子成長工程の開始時から30分、すなわち粒子成長工程時間全体に対して開示から12.5%の時点で行ったこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。得られた複合水酸化物および正極活物質の組成は、Ni0.73Co0.14Al0.03Mn0.10(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.73Co0.14Al0.03Mn0.102であり、複合水酸化物は、実施例4と同様に針状の微細一次粒子(粒径0.3μm)からなる中心部と、該中心部の外側にこの微細一次粒子よりも大きい板状の一次粒子(粒径0.5μm)からなる外殻部とにより構成されていた。
 上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は180.1mAh/gであり、正極抵抗は4.0Ωであった。
 (比較例3)
 粒成長工程における大気雰囲気から窒素雰囲気への切り替え、および、混合溶液の切り替えを粒子成長工程の開始時から行ったこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。得られた複合水酸化物および正極活物質の組成は、Ni0.82Co0.15Al0.03Mn0.001(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.82Co0.15Al0.03Mn0.0012であり、複合水酸化物は、中心部に針状の微細一次粒子が見られたが、中心部の大きさは十分ではなく、大きい板状の一次粒子が占める割合が大きかった。このため、得られた正極活物質は中実構造であった。
 上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は204.1mAh/gであり、正極抵抗は7.6Ωであった。
 (比較例4)
 核生成工程における混合溶液および粒子成長工程における大気雰囲気から窒素雰囲気への切り替えまでの混合溶液を、窒素雰囲気工程と同じマンガンを含まないニッケルコバルトからなる溶液を使用したこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。得られた複合水酸化物および正極活物質の組成は、Ni0.82Co0.15Al0.03(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.82Co0.15Al0.032であり、複合水酸化物は中心部に針状の微細一次粒子はほとんど見られず、大きい板状の一次粒子から構成されていた。このため、得られた正極活物質は中実構造であった。
 上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は206.1mAh/gであり、正極抵抗は8.6Ωであった。
 (比較例5)
 核生成工程における混合溶液および粒子成長工程における大気雰囲気から窒素雰囲気への切り替えまでの混合溶液を、各金属の元素モル比が、Ni:Co:Mn=80:15:5(Al=0)となるように調整したこと以外は、実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。得られた複合水酸化物および正極活物質の組成は、Ni0.82Co0.15Al0.03Mn0.003(OH)2+a(0≦a≦0.5)およびLi1.06Ni0.82Co0.15Al0.03Mn0.0032であり、複合水酸化物は中心部に針状の微細一次粒子はほとんど見られず、大きい板状の一次粒子から構成されていた。このため、得られた正極活物質は中実構造であった。
 上記正極活物質を用いて形成された正極を有するコイン型電池について、電池評価を行ったところ、初期放電容量は203.2mAh/gであり、正極抵抗は8.1Ωであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (評価)
 実施例1~6の複合水酸化物および正極活物質は、本発明に従って製造されたため、平均粒径および粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕値のいずれもが、好ましい範囲にあり、均一で適度な粒径を有する粒子となっている。また、いずれの正極活物質も、凝集した一次粒子が焼結している外殻部と、その内側の中空部とからなる構造を備えている。これらの正極活物質を用いたコイン型電池は、初期放電容量が高く、サイクル特性に優れ、正極抵抗も低いものとなっており、優れた特性を有した電池となっている。
 なお、実施例5では、粒子成長工程において大気雰囲気から窒素雰囲気への切り替えがやや遅くなり、大気雰囲気に置かれる時間が長かったため、マンガン、コバルトの比率が高くなり、実施例1~4より初期放電容量がやや低下する傾向が見られる。
 また、実施例6は、正極活物質の平均粒径が10.3μmと、実施例1~5と比べてやや大きく、このことに起因して、初期放電容量がやや低下してしまったものと考えられる。
 一方、比較例1では、粒子成長工程において、大気雰囲気に置かれる時間が長すぎたために、複合水酸化物の強度が低下して、正極活物質の製造工程で粒子の破壊や焼結が生じている。
 比較例2では、核生成工程における混合水溶液のマンガン濃度が高すぎたこと、および、粒子成長工程において混合水溶液の切り替えまでの時間を長かったことに起因して、粒子全体のマンガン含有量が多くなり、粒子構造については良好であるものの、実施例との比較では、初期放電容量が低下している。
 比較例3では、大気雰囲気から窒素雰囲気への切り替え、および、混合溶液の切り替えを粒子成長工程開始時から行ったため、複合水酸化物において、十分な大きさの低密度の中心部が得られず、最終的に得られる正極活物質を構成する二次粒子が中実構造となり、十分な比表面積が得られず、正極抵抗値が高くなっている。
 比較例4では、マンガンを含む混合水溶液を核生成工程に用いなかったため、大気雰囲気に置く時間が長かったにもかかわらず、低密度の中心部が小さく、焼成後に二次粒子が中実の緻密な構造となり、十分な比表面積が得られず、正極抵抗値が高くなっている。
 比較例5では、大気雰囲気で用いた混合溶液中のマンガン含有量が少なかったため、大気雰囲気に置く時間が長かったにもかかわらず、低密度の中心部が生成されず、焼成後に二次粒子が中実の緻密な構造となり、十分な比表面積が得られず、正極抵抗値が高くなっている。
 以上の結果より、本発明の製造方法を用いて、ニッケル複合水酸化物および正極活物質を製造すれば、この正極活物質を用いた非水系電解質二次電池は、初期放電容量が高く、サイクル特性に優れ、正極抵抗も低いものとなり、優れた特性を有した電池となることが確認できる。
 本発明の正極活物質およびその前駆体としての複合水酸化物の製造方法は、いずれも容易で、大規模生産に適したものであることから、その工業的価値は極めて大きい。
 また、本発明の非水系電解質二次電池は、常に高容量を要求される小型携帯電子機器(ノート型パーソナルコンピュータや携帯電話端末など)の電源に好適であり、高出力が要求される電気自動車用電池にも好適である。さらに、本発明の非水系電解質二次電池は、優れた安全性を有し、かつ、小型化、高出力化が可能であるため、搭載スペースに制約を受ける輸送用機器の電源としても好適である。
 1  コイン型電池
 2  ケース
 2a 正極缶
 2b 負極缶
 2c ガスケット
 3  電極
 3a 正極
 3b 負極
 3c セパレータ

Claims (20)

  1.  晶析反応により、一般式(1):NixCoyAlzMnts(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表されるニッケル複合水酸化物の製造方法であって、
     一般式(a):NixCoyAlzMnts(x+y+z+t+s=1、0≦y≦0.8、0≦z≦0.1、0.1≦t≦0.8、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)の組成比で金属元素を含有する金属化合物とアンモニウムイオン供給体を含む核生成用水溶液を、液温25℃基準でpH値が12.0~14.0となるように制御して、酸素濃度が1容量%を超える酸化性雰囲気中で核生成を行う核生成工程と、
     前記核生成工程において形成された核を含有する粒子成長用水溶液を、液温25℃基準でpH値が10.5~12.0となるように制御して、前記核を成長させる粒子成長工程であって、該粒子成長工程の開始から終了までの時間全体に対して、該粒子成長工程の開始時から1%~15%の範囲で、前記酸化性雰囲気から酸素濃度1容量%以下の酸素と不活性ガスの混合雰囲気に切り替え、かつ、供給される金属化合物を、一般式(b):NixCoyAlzMnts(x+y+z+t+s=1、0≦y≦0.3、0≦z≦0.1、0≦t<0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)の組成比で金属元素を含有する金属化合物に切り替える粒子成長工程と、
    を備えるとともに、
     少なくとも前記核生成用水溶液に含まれる金属化合物および前記粒子成長工程において供給される金属化合物のいずれにもアルミニウムが含まれていない場合には、前記粒子成長工程で得られたニッケルコバルト複合水酸化物に、アルミニウム化合物を被覆する工程をさらに備える、
    ことを特徴とする、ニッケル複合水酸化物の製造方法。
  2.  前記酸化性雰囲気の酸素濃度が10容量%以上である、請求項1に記載のニッケル複合水酸化物の製造方法。
  3.  前記粒子成長工程における前記雰囲気および供給される金属化合物の切り替えを、前記粒子成長工程の開始時から2%~12.5%の範囲で行う、請求項1に記載のニッケル複合水酸化物の製造方法。
  4.  前記粒子成長用水溶液として、前記核生成工程が終了した前記核生成用水溶液のpH値を調整して形成されたものを用いる、請求項1に記載のニッケル複合水酸化物の製造方法。
  5.  前記混合雰囲気の酸素濃度が、0.5容量%以下である、請求項1に記載のニッケル複合水酸化物の製造方法。
  6.  前記粒子成長工程において、前記粒子成長用水溶液のうちの液体部分の一部を排出する、請求項1に記載のニッケル複合水酸化物の製造方法。
  7.  前記核生成工程および前記粒子成長工程において、前記核生成用水溶液および前記粒子成長用水溶液のアンモニア濃度を3g/L~25g/Lの範囲内に維持する、請求項1に記載のニッケル複合水酸化物の製造方法。
  8.  前記粒子成長工程で得られたニッケル複合水酸化物に、前記1種以上の添加元素の化合物を被覆する工程をさらに含む、請求項1に記載のニッケル複合水酸化物の製造方法。
  9.  一般式(1):NixCoyAlzMnts(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表され、複数の一次粒子が凝集して形成された略球状の二次粒子からなり、該二次粒子は、平均粒径が3μm~15μmであり、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.55以下であって、
     前記二次粒子は、一般式(2):NixCoyAlzMnts(OH)2+a(x+y+z+t+s=1、0≦y≦0.8、0≦z≦0.1、0.1≦t≦0.8、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表される複合水酸化物の微細一次粒子からなる中心部と、
     該中心部の外側に存在し、一般式(3):NixCoyAlzMnts(OH)2+a(x+y+z+t+s=1、0≦y≦0.3、0≦z≦0.1、0≦t<0.05、0≦s≦0.05、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表される複合水酸化物であって、前記微細一次粒子よりも大きな板状一次粒子からなる外殻部と、
    を有し、
     アルミニウムが、前記中心部および外殻部の少なくとも一方に存在するか、または、前記二次粒子の表面にアルミニウム化合物として存在する、
    ことを特徴とする、ニッケル複合水酸化物。
  10.  前記微細一次粒子は、平均粒径が0.01μm~0.3μmであり、前記板状一次粒子は、平均粒径が0.3μm~3μmである、請求項9に記載のニッケル複合水酸化物。
  11.  前記外殻部の厚さは、前記二次粒子の粒径に対する比率で5%~45%である、請求項9に記載のニッケル複合水酸化物。
  12.  前記アルミニウムが、前記二次粒子の内部に均一に分布している、および/または、前記アルミニウム化合物が、前記二次粒子の表面を均一に被覆している、請求項9に記載のニッケル複合水酸化物。
  13.  前記1種以上の添加元素が、前記二次粒子の内部に均一に分布している、および/または、前記1種以上の添加元素の化合物が、前記二次粒子の表面を均一に被覆している、請求項9に記載のニッケル複合水酸化物。
  14.  一般式(4):Li1+uNixCoyAlzMnts2(-0.05≦u≦0.20、x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表され、複数の一次粒子が凝集して形成された略球状の二次粒子からなり、層状構造を有する六方晶系の結晶構造を有するリチウムニッケル複合酸化物からなる非水系電解質二次電池用正極活物質の製造方法であって、
     請求項9~13のいずれかに記載のニッケルコバルトアルミニウム複合水酸化物を105℃~750℃の温度で熱処理する工程と、
     前記熱処理後のニッケル複合水酸化物またはニッケル複合酸化物に対して、リチウム化合物を混合してリチウム混合物を形成する混合工程と、
     前記混合工程で形成された前記リチウム混合物を、酸化性雰囲気中、700℃~800℃の温度で焼成する焼成工程と
    を備えることを特徴とする、非水系電解質二次電池用正極活物質の製造方法。
  15.  前記リチウム混合物は、該リチウム混合物に含まれるリチウム以外の金属の原子数の和とリチウムの原子数との比が、1:0.95~1.2となるように調整される、請求項14に記載の非水系電解質二次電池用正極活物質の製造方法。
  16.  前記焼成工程において、焼成前に予め350℃~800℃の温度で仮焼を行う、請求項14に記載の非水系電解質二次電池用正極活物質の製造方法。
  17.  前記焼成工程における酸化性雰囲気を、18容量%~100容量%の酸素を含有する雰囲気とする、請求項14に記載の非水系電解質二次電池用正極活物質の製造方法。
  18.  一般式(4):Li1+uNixCoyAlzMnts2(-0.05≦u≦0.20、x+y+z+t+s=1、0≦y≦0.3、0<z≦0.1、0.001<t≦0.05、0≦s≦0.05、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、MoおよびWからなる群より選ばれる少なくとも1種の添加元素)で表され、複数の一次粒子が凝集して形成された略球状の二次粒子からなり、層状構造を有する六方晶系の結晶構造を有するリチウムニッケルコバルトアルミニウム複合酸化物からなる非水系電解質二次電池用正極活物質であって、平均粒径が2μm~15μmであり、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.60以下であり、凝集した一次粒子が焼結している外殻部と、その内側に存在する中空部とからなる中空構造を備える、ことを特徴とする非水系電解質二次電池用正極活物質。
  19.  前記外殻部の厚さは、前記二次粒子の粒径に対する比率で5%~35%である、請求項18に記載の非水系電解質二次電池用正極活物質。
  20.  正極が、請求項18または19に記載の非水系電解質二次電池用正極活物質によって形成されていることを特徴とする、非水系電解質二次電池。
PCT/JP2012/083128 2011-12-20 2012-12-20 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 WO2013094701A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/366,871 US9406930B2 (en) 2011-12-20 2012-12-20 Nickel composite hydroxide and production method thereof, cathode active material for non-aqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
CN201280070138.8A CN104136376B (zh) 2011-12-20 2012-12-20 镍复合氢氧化物及其制造方法、非水系电解质二次电池用正极活性物质及其制造方法以及非水系电解质二次电池
KR1020147020103A KR101644252B1 (ko) 2011-12-20 2012-12-20 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
EP12860901.3A EP2796415B1 (en) 2011-12-20 2012-12-20 Nickel compound hydroxide and method for producing same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-278955 2011-12-20
JP2011278955 2011-12-20
JP2012-277430 2012-12-19
JP2012277430A JP5971109B2 (ja) 2011-12-20 2012-12-19 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池

Publications (1)

Publication Number Publication Date
WO2013094701A1 true WO2013094701A1 (ja) 2013-06-27

Family

ID=48668580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083128 WO2013094701A1 (ja) 2011-12-20 2012-12-20 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池

Country Status (6)

Country Link
US (1) US9406930B2 (ja)
EP (1) EP2796415B1 (ja)
JP (1) JP5971109B2 (ja)
KR (1) KR101644252B1 (ja)
CN (1) CN104136376B (ja)
WO (1) WO2013094701A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017004635A (ja) * 2015-06-05 2017-01-05 プライムアースEvエナジー株式会社 非水電解液二次電池および非水電解液二次電池の正極活物質
US10858265B2 (en) * 2015-04-28 2020-12-08 Sumitomo Metal Mining Co., Ltd. Aluminum-coated nickel cobalt containing composite hydroxide and method for manufacturing same, cathode active material for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2720305B1 (en) * 2011-06-07 2019-02-20 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
KR101665270B1 (ko) 2012-06-06 2016-10-11 스미토모 긴조쿠 고잔 가부시키가이샤 니켈 복합 수산화물, 비수계 전해질 이차 전지용 정극 활물질, 비수계 전해질 이차 전지, 및 이들의 제조 방법
US10424787B2 (en) 2013-05-10 2019-09-24 Sumitomo Metal Mining Co., Ltd. Transition metal composite hydroxide particles and production method thereof, cathode active material for non-aqueous electrolyte rechargeable battery and production method thereof, and nonaqueous electrolyte rechargeable battery
JP2015037067A (ja) * 2013-08-16 2015-02-23 輔仁大學學校財團法人輔仁大學 リチウムニッケルコバルトマンガン正極材料粉体
JP6432123B2 (ja) * 2013-10-07 2018-12-05 住友金属鉱山株式会社 非水電解質二次電池用正極活物質およびその製造方法
JP6358077B2 (ja) * 2014-01-31 2018-07-18 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および、非水電解質二次電池
JP6168004B2 (ja) 2014-06-27 2017-07-26 住友金属鉱山株式会社 マンガン複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
CN106470949B (zh) 2014-06-30 2018-10-12 巴斯夫欧洲公司 制造用于锂离子电池组的阴极材料的方法
US10840510B2 (en) * 2014-07-31 2020-11-17 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same
JP6511521B2 (ja) * 2014-10-28 2019-05-15 エルジー・ケム・リミテッド リチウム二次電池用正極活物質、この製造方法及びこれを含むリチウム二次電池
US10593942B2 (en) 2014-10-30 2020-03-17 Sumitomo Metal Mining Co., Ltd. Nickel-containing composite hydroxide and production process therefor, positive-electrode active material for a nonaqueous-electrolyte secondary battery and production process therefor, and nonaqueous-electrolyte secondary battery
JP6492543B2 (ja) * 2014-10-30 2019-04-03 住友金属鉱山株式会社 ニッケルコバルトアルミニウム複合水酸化物の製造方法及び非水系電解質二次電池用正極活物質の製造方法
CN104300117A (zh) * 2014-11-10 2015-01-21 厦门首能科技有限公司 一种用于锂离子电池的阴极组合物及其制备方法
JP6331983B2 (ja) * 2014-11-12 2018-05-30 住友金属鉱山株式会社 遷移金属複合水酸化物粒子の製造方法および非水電解質二次電池用正極活物質の製造方法
CN107408691A (zh) * 2015-03-10 2017-11-28 日本化学产业株式会社 非水电解质锂二次电池用正极活性物质及其制造方法
CN104795558B (zh) * 2015-04-23 2017-02-22 兰州金川新材料科技股份有限公司 一种锂电池用镍钴锰三元氢氧化物的连续合成方法
JP6164332B2 (ja) 2015-04-28 2017-07-19 日亜化学工業株式会社 ニッケルコバルト複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
KR102447364B1 (ko) 2015-04-28 2022-09-26 니치아 카가쿠 고교 가부시키가이샤 니켈 코발트 복합 수산화물 입자 및 그 제조 방법, 비수용성 전해질 이차 전지용 양 전극 활물질 및 그 제조 방법, 및 비수용성 전해질 이차 전지
JP6487279B2 (ja) 2015-06-10 2019-03-20 住友化学株式会社 リチウム含有複合酸化物、正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6596978B2 (ja) 2015-06-26 2019-10-30 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
EP3337763B1 (en) * 2015-08-17 2019-04-10 Basf Se Process for making a cathode active material and a precursor therefore, cathode active material and its use
WO2017073238A1 (ja) * 2015-10-28 2017-05-04 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
KR101892225B1 (ko) * 2015-12-24 2018-08-27 주식회사 포스코 리튬 이차 전지용 양극 활물질 전구체 및 이의 제조 방법, 양극 활물질 및 이의 제조 방법, 상기 양극 활물질을 포함하는 리튬 이차 전지
JP6933143B2 (ja) * 2016-01-06 2021-09-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法、及び非水系電解質二次電池用正極活物質の製造方法
JP6631320B2 (ja) * 2016-02-29 2020-01-15 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに非水系電解質二次電池
KR101937896B1 (ko) * 2016-03-04 2019-01-14 주식회사 엘지화학 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
CN108780888B (zh) * 2016-03-25 2021-07-09 国立大学法人名古屋工业大学 电池用电极材料及其制造方法
TWI651271B (zh) * 2016-05-27 2019-02-21 比利時商烏明克公司 小粒徑的鎳鋰金屬複合氧化物粉體的製造方法
JP7088007B2 (ja) * 2016-06-14 2022-06-21 住友金属鉱山株式会社 ニッケル含有水酸化物の製造方法
JP6500001B2 (ja) 2016-08-31 2019-04-10 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6862727B2 (ja) * 2016-09-13 2021-04-21 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
US11024839B2 (en) 2016-11-22 2021-06-01 Sumitomo Metal Mining Co., Ltd. Transition metal-containing composite hydroxide and production method thereof, and production method of positive electrode active material for nonaqueous electrolyte secondary battery
US20190372119A1 (en) * 2016-11-22 2019-12-05 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR102086536B1 (ko) 2017-02-06 2020-03-10 주식회사 엘지화학 리튬 이차전지용 양극 활물질 전구체 및 양극 활물질의 제조방법
JP7293576B2 (ja) 2017-07-12 2023-06-20 住友金属鉱山株式会社 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池
CN115385395A (zh) 2017-07-12 2022-11-25 住友金属矿山株式会社 金属复合氢氧化物、非水电解质二次电池用正极活性物质以及使用其的非水电解质二次电池
CN107403930B (zh) * 2017-07-20 2019-03-15 湖南金富力新能源股份有限公司 镍钴铝酸锂正极材料及其制备方法和应用
JP6924657B2 (ja) * 2017-09-11 2021-08-25 株式会社田中化学研究所 電池用正極活物質に用いられる遷移金属複合水酸化物粒子の製造方法
JP7356786B2 (ja) * 2017-09-13 2023-10-05 住友化学株式会社 リチウム二次電池用正極活物質の製造方法
JP6495997B1 (ja) * 2017-11-20 2019-04-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
CN111741927B (zh) * 2018-02-22 2024-11-01 住友金属矿山株式会社 金属复合氢氧化物及其制造方法、非水电解质二次电池用正极活性物质及其制造方法、以及非水电解质二次电池
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries
JP7185838B2 (ja) * 2018-03-26 2022-12-08 住友金属鉱山株式会社 高強度リチウムイオン二次電池用正極活物質の製造方法
JP2019175721A (ja) * 2018-03-29 2019-10-10 三洋電機株式会社 非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法
EP3797446A4 (en) * 2018-05-21 2022-03-16 Microvast Power Systems Co., Ltd. METHODS FOR PREPARING PARTICLE PRECURSOR AND CATHODE ACTIVE PARTICLES, AND PARTICLE PRECURSOR SO PREPARED
RU2749535C1 (ru) 2018-06-11 2021-06-15 Микроваст Пауэр Системс Ко., Лтд. Способ получения частиц прекурсора и частица прекурсора, полученная этим способом
JP7159639B2 (ja) * 2018-06-25 2022-10-25 住友金属鉱山株式会社 遷移金属複合水酸化物の粒子の製造方法、及び、リチウムイオン二次電池用正極活物質の製造方法
JP7033258B2 (ja) * 2018-08-30 2022-03-10 トヨタ自動車株式会社 非水電解質二次電池用の正極
JP7172301B2 (ja) * 2018-08-31 2022-11-16 住友金属鉱山株式会社 遷移金属複合水酸化物、遷移金属複合水酸化物の製造方法、リチウム遷移金属複合酸化物活物質及びリチウムイオン二次電池
JP7310117B2 (ja) * 2018-10-26 2023-07-19 住友金属鉱山株式会社 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池
KR102533811B1 (ko) 2018-12-03 2023-05-19 주식회사 엘지에너지솔루션 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극 및 리튬 이차전지
US10501335B1 (en) 2019-01-17 2019-12-10 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
CA3126058A1 (en) * 2019-01-17 2020-07-23 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
US10950857B2 (en) 2019-01-17 2021-03-16 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
JP6835888B2 (ja) * 2019-02-21 2021-02-24 住友化学株式会社 リチウム含有複合酸化物、正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP7164006B2 (ja) * 2019-02-26 2022-11-01 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
CN111435739B (zh) * 2019-12-26 2024-04-30 蜂巢能源科技有限公司 正极材料及其制备方法和应用
EP4037030A4 (en) * 2020-01-29 2022-12-21 Lg Chem, Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERY, POSITIVE ELECTRODE ACTIVE MATERIAL, METHOD OF PRODUCTION THEREOF AND LITHIUM SECONDARY BATTERY CONTAINING THIS
KR102595884B1 (ko) * 2020-01-29 2023-11-01 주식회사 엘지화학 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
JP7562207B2 (ja) * 2020-01-29 2024-10-07 エルジー・ケム・リミテッド 二次電池用正極活物質前駆体、正極活物質およびこれを含むリチウム二次電池
CN111370681B (zh) * 2020-03-20 2021-06-01 宁德新能源科技有限公司 正极活性材料、电化学装置和电子装置
JP6861870B1 (ja) * 2020-04-14 2021-04-21 住友化学株式会社 リチウム二次電池用正極活物質粒子、リチウム二次電池用正極及びリチウム二次電池
WO2022039088A1 (ja) * 2020-08-19 2022-02-24 住友化学株式会社 リチウム金属複合酸化物の製造方法
WO2022103105A1 (ko) * 2020-11-10 2022-05-19 주식회사 엘지에너지솔루션 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
KR20220087953A (ko) * 2020-12-18 2022-06-27 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP7296994B2 (ja) * 2021-01-14 2023-06-23 プライムプラネットエナジー&ソリューションズ株式会社 黒鉛系負極活物質
EP4269362A4 (en) * 2021-02-18 2024-06-26 LG Chem, Ltd. PRECURSOR FOR CATHODE ACTIVE MATERIAL AND ASSOCIATED PREPARATION METHOD
KR102669012B1 (ko) 2021-10-14 2024-05-24 (주)에코프로머티리얼즈 리튬 이차 전지용 양극활물질 전구체 및 이의 제조 방법
KR20230094569A (ko) * 2021-12-21 2023-06-28 포스코홀딩스 주식회사 전고체 전지용 양극 활물질 및 그 제조 방법, 양극 및 전고체 전지
CN114464800B (zh) * 2021-12-31 2023-11-21 北京当升材料科技股份有限公司 正极材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029820A (ja) * 1996-07-12 1998-02-03 Nippon Chem Ind Co Ltd Ni−Co系複合水酸化物とその製造方法及びリチウム二次電池用正極活物質原料
JP2004193115A (ja) * 2002-11-27 2004-07-08 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2004253174A (ja) 2003-02-18 2004-09-09 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP2006228604A (ja) * 2005-02-18 2006-08-31 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用正極活物質およびその製造方法
JP2008147068A (ja) 2006-12-12 2008-06-26 Ise Chemicals Corp 非水電解液二次電池用リチウム複合酸化物
JP2009117369A (ja) * 2007-03-05 2009-05-28 Toda Kogyo Corp 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2011067935A1 (ja) * 2009-12-02 2011-06-09 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2011067982A1 (ja) * 2009-12-02 2011-06-09 トヨタ自動車株式会社 活物質粒子およびその利用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310433A (ja) 1997-05-07 1998-11-24 Ise Kagaku Kogyo Kk リチウム二次電池用ニッケル水酸化物、ニッケル酸化物および正極活物質の製造方法
CN100466341C (zh) * 2002-08-08 2009-03-04 松下电器产业株式会社 非水电解质二次电池用正极活性物质及其制造方法
KR100670507B1 (ko) * 2005-04-28 2007-01-16 삼성에스디아이 주식회사 리튬 이차 전지
US8492030B2 (en) * 2006-06-19 2013-07-23 Uchicago Argonne Llc Cathode material for lithium batteries
US9177689B2 (en) * 2007-01-29 2015-11-03 Umicore High density and high voltage stable cathode materials for secondary batteries
EP2421077B1 (en) * 2010-08-17 2013-10-23 Umicore Positive electrode materials combining high safety and high power in a Li rechargeable battery
US8709279B2 (en) * 2011-05-03 2014-04-29 Uchicago Argonne, Llc Production of battery grade materials via an oxalate method
EP2720305B1 (en) * 2011-06-07 2019-02-20 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029820A (ja) * 1996-07-12 1998-02-03 Nippon Chem Ind Co Ltd Ni−Co系複合水酸化物とその製造方法及びリチウム二次電池用正極活物質原料
JP2004193115A (ja) * 2002-11-27 2004-07-08 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2004253174A (ja) 2003-02-18 2004-09-09 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP2006228604A (ja) * 2005-02-18 2006-08-31 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用正極活物質およびその製造方法
JP2008147068A (ja) 2006-12-12 2008-06-26 Ise Chemicals Corp 非水電解液二次電池用リチウム複合酸化物
JP2009117369A (ja) * 2007-03-05 2009-05-28 Toda Kogyo Corp 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2011067935A1 (ja) * 2009-12-02 2011-06-09 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2011067982A1 (ja) * 2009-12-02 2011-06-09 トヨタ自動車株式会社 活物質粒子およびその利用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10858265B2 (en) * 2015-04-28 2020-12-08 Sumitomo Metal Mining Co., Ltd. Aluminum-coated nickel cobalt containing composite hydroxide and method for manufacturing same, cathode active material for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery
JP2017004635A (ja) * 2015-06-05 2017-01-05 プライムアースEvエナジー株式会社 非水電解液二次電池および非水電解液二次電池の正極活物質

Also Published As

Publication number Publication date
JP5971109B2 (ja) 2016-08-17
CN104136376B (zh) 2016-06-29
EP2796415B1 (en) 2017-08-23
US9406930B2 (en) 2016-08-02
KR20140126302A (ko) 2014-10-30
EP2796415A4 (en) 2015-09-09
KR101644252B1 (ko) 2016-07-29
EP2796415A1 (en) 2014-10-29
CN104136376A (zh) 2014-11-05
JP2013147416A (ja) 2013-08-01
US20140377660A1 (en) 2014-12-25

Similar Documents

Publication Publication Date Title
US10818921B2 (en) Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery
WO2013094701A1 (ja) ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP6596978B2 (ja) 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP4915488B1 (ja) ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP4894969B1 (ja) ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
JP4840545B1 (ja) ニッケル複合水酸化物粒子および非水系電解質二次電池
JP6443084B2 (ja) 遷移金属複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法および非水系電解質二次電池
KR20140008445A (ko) 비수계 전해질 2차 전지용 정극 활물질의 전구체가 되는 전이 금속 복합 수산화물과 그 제조방법, 그 비수계 전해질 2차 전지용 정극 활물질과 그 제조방법, 및 상기 정극 활물질을 이용한 비수계 전해질 2차 전지
JP2014129188A (ja) ニッケル複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
WO2015198710A1 (ja) マンガンコバルト複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
JP7087380B2 (ja) 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7087381B2 (ja) 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
WO2017119451A1 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP7006255B2 (ja) 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
WO2015198676A1 (ja) マンガン複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
JP2015140297A (ja) マンガンニッケルチタン複合水酸化物粒子とその製造方法、および、非水系電解質二次電池用正極活物質の製造方法
JP7087379B2 (ja) 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
WO2017119459A1 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP7273260B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
JP2019153567A (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法及び非水系電解質二次電池用正極活物質の製造方法
JP7167491B2 (ja) リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池
JP2019021422A (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860901

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14366871

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012860901

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012860901

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147020103

Country of ref document: KR

Kind code of ref document: A