[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010122922A1 - 非水電解液二次電池用負極板、非水電解液二次電池用負極板の製造方法、および非水電解液二次電池 - Google Patents

非水電解液二次電池用負極板、非水電解液二次電池用負極板の製造方法、および非水電解液二次電池 Download PDF

Info

Publication number
WO2010122922A1
WO2010122922A1 PCT/JP2010/056584 JP2010056584W WO2010122922A1 WO 2010122922 A1 WO2010122922 A1 WO 2010122922A1 JP 2010056584 W JP2010056584 W JP 2010056584W WO 2010122922 A1 WO2010122922 A1 WO 2010122922A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
metal
electrode plate
Prior art date
Application number
PCT/JP2010/056584
Other languages
English (en)
French (fr)
Inventor
圭介 野村
史陽 菊地
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to US13/139,688 priority Critical patent/US8673492B2/en
Priority to CN2010800183553A priority patent/CN102414877A/zh
Publication of WO2010122922A1 publication Critical patent/WO2010122922A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a negative electrode plate used for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, a non-aqueous electrolyte secondary battery using the negative electrode plate, and a negative electrode plate for a non-aqueous electrolyte secondary battery. It relates to a manufacturing method.
  • a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery has a high energy density and a high voltage, and also has a memory effect during charging / discharging (when the battery is charged before it is fully charged, the battery is gradually charged. Since there is no phenomenon in which the capacity decreases, it is used in various fields such as portable devices and large devices. In recent years, the use of secondary batteries has attracted attention in fields where high input / output characteristics are required, such as electric vehicles, hybrid vehicles, and power tools.
  • a general non-aqueous electrolyte secondary battery is composed of a positive electrode plate, a negative electrode plate, a separator, and an organic electrolyte, and the positive electrode plate and the negative electrode plate are in the form of a slurry on a current collector such as a metal foil.
  • a current collector such as a metal foil.
  • an electrode active material layer-forming coating solution is applied, dried by hot air drying or the like, and pressed with a roll press or the like to form an electrode active material layer.
  • the electrode active material layer forming coating solution is composed of an electrode active material, a resinous binder, and a conductive material (however, the conductive material may be omitted when the active material also exhibits a conductive effect), or Furthermore, other materials are used as necessary, and the mixture is kneaded and / or dispersed in an organic solvent to prepare a slurry. Then, a method for producing an electrode plate having an electrode active material layer by applying a coating solution for forming an electrode active material layer to the surface of the current collector, then drying to form a coating film on the current collector, and pressing (For example, paragraphs [0019] to [0026] in Patent Document 1, paragraph 1 [Claim 1], paragraphs [0051] to [0055]).
  • the electrode active material contained in the electrode active material layer forming coating liquid is a particulate compound dispersed in the coating liquid, and the current collector is simply applied to the surface of the current collector.
  • the electrode active material layer forming composition that does not easily adhere to the body surface and does not contain a resinous binder is applied to a current collector and dried to form a coating film, the coating film is easily peeled off. End up. That is, the electrode active material is bound through the resinous binder and is fixed to the surface of the current collector to form an electrode active material layer. Therefore, the resinous binder was essentially an essential component.
  • the above conductive material is used in order to ensure good electron conductivity between the electrode active material and the current collector contained in the electrode active material layer and to lower the volume resistivity of the electrode active material layer itself.
  • the inventors of the present invention have examined in detail particularly the negative electrode plate as one of the causes for increasing the impedance of the non-aqueous electrolyte secondary battery.
  • the resinous binder present in the electrode active material layer in the negative electrode plate is one of the above causes. That is, the presence of a resinous binder in the electrode active material layer increases the distance of movement of negative electrode active material ions such as lithium ions and electrons, and the permeability of the electrolyte in the electrode active material layer It has been found that there is a problem that the contact area between the electrolytic solution and the active material becomes small.
  • the present invention has been accomplished in view of the above problems, and includes an electrode active material layer configured without depending on the presence of a resinous binder, and a negative electrode for a non-aqueous electrolyte secondary battery capable of high input / output.
  • an object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of high input / output.
  • the present inventors prepared a composition for forming an electrode active material layer containing at least a metal oxide precursor and a negative electrode active material, applied this onto a current collector, and heated, It has been found that a negative electrode active material can be fixed on the current collector without using a binder. Thus, regardless of the presence of the resinous binder, the negative electrode active material is formed on the current collector by the presence of the metal oxide or the metal simple substance formed by reducing the metal oxide in the electrode active material layer. It was found that the negative electrode plate for a non-aqueous electrolyte secondary battery solution fixed to the substrate can lower the impedance and improve the discharge rate characteristics, thereby completing the present invention.
  • the present invention includes a current collector and an electrode active material layer laminated on the current collector and including at least a negative electrode active material and a metal oxide or a single metal, and the negative electrode active material is A negative electrode plate for a non-aqueous electrolyte secondary battery, wherein the negative electrode plate is fixed on the current collector by a metal oxide or a single metal.
  • the present invention provides a negative electrode plate for a non-aqueous electrolyte secondary battery, wherein the metal oxide or the metal simple substance does not occlude or release alkali metal.
  • the metal oxide is copper oxide, yttrium oxide, iron oxide, barium oxide, or zinc oxide, or the metal simple substance is copper, yttrium, iron, barium, or zinc.
  • the metal oxide is a ternary composite metal oxide composed of three metal elements, or the metal simple substance is a ternary composite metal composed of three metal elements. It is the negative electrode plate for non-aqueous electrolyte secondary batteries characterized.
  • the ternary composite metal oxide is LaXLiYTiO 3 , or the ternary composite metal is LaXLiYTi. It is a negative electrode plate.
  • the ternary composite metal oxide (LaXLiYTiO 3 ) or the ternary composite metal (LaXLiYTi) has a ratio of lanthanum to lithium of 0 ⁇ X ⁇ 1, 0 ⁇ Y.
  • a negative electrode plate for a nonaqueous electrolyte secondary battery wherein the negative electrode plate is in a range of ⁇ 1.
  • the present invention provides a negative electrode plate for a nonaqueous electrolyte secondary battery, wherein the negative electrode active material is a carbon material or lithium titanate.
  • the present invention is the negative electrode plate for a non-aqueous electrolyte secondary battery, wherein the simple metal is produced by reducing the metal oxide in an electrode active material layer.
  • the present invention provides a positive electrode plate, a negative electrode plate, a separator interposed between the positive electrode plate and the negative electrode plate, an electrolytic solution containing a nonaqueous solvent, and these positive electrode plate, negative electrode plate, separator and electrolysis
  • a negative electrode plate including a current collector and a negative electrode active material, and an electrode active material layer containing at least a metal oxide or a metal simple substance
  • the non-aqueous electrolyte secondary battery is characterized in that the negative electrode active material is fixed on the current collector by the metal oxide or the metal simple substance.
  • the present invention includes a step of preparing a current collector, a step of preparing a composition for forming an electrode active material layer by mixing at least a negative electrode active material in a metal ion solution containing metal ions, and a recording electrode
  • the active material layer forming composition is applied onto a current collector to form a coating film, and then heated to form a metal oxide in which the metal ions are oxidized.
  • the negative electrode plate for a non-aqueous electrolyte secondary battery according to the present invention is more discharged than a negative electrode plate for a non-aqueous electrolyte secondary battery in which a negative electrode active material is fixed on a current collector by a conventional resinous binder.
  • the rate characteristics have been greatly improved.
  • the improvement of the discharge rate characteristics is that a particulate negative electrode active material is fixed on a current collector by a metal oxide or a metal simple substance without using a resinous binder, and an electrode active material layer is formed. It seems to be because.
  • a non-aqueous electrolyte secondary battery negative electrode plate including an electrode active material layer that does not contain a resinous binder can be easily produced. That is, as in the conventional method, the particulate negative electrode active material is previously dispersed in the coating liquid to prepare a slurry-like coating liquid, which is applied to the surface of the current collector, dried, and pressure-bonded. In particular, the negative electrode active material could not be fixed on the current collector without the presence of a resinous binder.
  • a negative electrode active material is mixed with a metal ion solution containing metal ions to prepare a composition for forming an electrode active material layer, which is applied onto a current collector.
  • a negative electrode plate for a non-aqueous electrolyte secondary battery that exhibits desirable discharge rate characteristics can be produced.
  • non-aqueous electrolyte secondary battery using the negative electrode plate for non-aqueous electrolyte secondary batteries of the present invention it is possible to show a very high discharge rate characteristics compared to the conventional one, High-performance non-aqueous electrolysis that can be used in fields that require high input / output characteristics such as electric vehicles, hybrid vehicles, and power tools, or in relatively small and multifunctional devices such as mobile phones. It has become possible to provide a liquid secondary battery.
  • FIG. 1 is a cyclic voltammogram showing the results of an alkali metal occlusion / release confirmation test in Reference Example 1.
  • FIG. FIG. 2A is a view showing a non-aqueous electrolyte secondary battery
  • FIG. 2B is a view showing a negative electrode plate for a non-aqueous electrolyte secondary battery.
  • the negative electrode plate 15 for a non-aqueous electrolyte secondary battery As shown in FIG. 2B, the negative electrode plate 15 for a non-aqueous electrolyte secondary battery according to the present invention is laminated on at least part of the surface of the current collector 15a and the current collector 15a. And an electrode active material layer 15b containing a metal oxide. Below, the form for implementing the negative electrode plate 15 for nonaqueous electrolyte secondary batteries of this invention is demonstrated.
  • the current collector used in the present invention is not particularly limited as long as it is generally used as a negative electrode current collector of a negative electrode plate for a nonaqueous electrolyte secondary battery.
  • it is formed from a simple substance or an alloy such as copper, aluminum, or nickel, and among them, an electrolytic copper foil or a copper foil such as a rolled copper foil is preferably used.
  • the thickness of the negative electrode current collector is not particularly limited as long as it can be used as a current collector for a negative electrode plate for a non-aqueous electrolyte secondary battery, but is preferably 5 to 100 ⁇ m, preferably 10 to 50 ⁇ m. More preferably.
  • the current collector used in the present invention may be subjected to corona treatment, oxygen plasma treatment, or the like in advance, if necessary, to improve the film-forming property of the solution on the substrate surface.
  • the electrode active material layer in the present invention contains at least a negative electrode active material and a metal oxide or a metal simple substance, and does not contain a resinous binder that has been conventionally used in general.
  • the negative electrode active material is fixed on a current collector. That is, as an example of a resinous binder that has been generally used for forming an electrode active material layer, fluorinated polymers such as polytetrafluoroethylene and polyvinylidene fluoride, and polyolefins such as polyethylene and polypropylene Polymers, synthetic rubbers, and the like can be mentioned.
  • the negative electrode active material can be fixed on the current collector without using these materials.
  • Negative electrode active material The negative electrode active material used in the present invention is not particularly limited as long as it is generally known as a negative electrode active material, and can be appropriately selected and used. Specific examples include carbonaceous materials such as natural graphite, artificial graphite, amorphous carbon, carbon black, or those obtained by adding different elements to these components. In addition, materials that can occlude and release lithium ions, such as metallic lithium and its alloys, tin, silicon, and their alloys, and oxides of silicon, titanium, cobalt, manganese, iron, and cobalt nitride are generally available. is there. Among these, graphite is preferably used because of its large energy that can be taken out per weight, low discharge potential, and good flatness. Alternatively, lithium titanate is also preferably used because of its high safety and excellent output characteristics and cycle characteristics.
  • the negative electrode active material is present in the form of particles in the electrode active material layer.
  • the shape of the particles depends on the size of the negative electrode active material particles used, and the average particle diameter of the electrode active material layer is generally about 0.1 ⁇ m to 30 ⁇ m.
  • the average particle diameter is an average particle diameter (volume median particle diameter: D50) measured by laser diffraction / scattering particle size distribution measurement.
  • Metal oxide examples of the metal oxide contained in the electrode active material layer in the present invention include copper oxide, iron oxide, yttrium oxide, barium oxide, titanium oxide, aluminum oxide, zinc oxide, and nickel oxide.
  • the metal oxide may be an oxide containing two or more metal elements, and examples thereof include composite metal oxides such as iron titanium oxide and lanthanum lithium titanium oxide.
  • One preferred example of the metal oxide is copper oxide. Copper oxide does not react with lithium ions (ie, does not occlude or release lithium ions) when it is reduced to copper in the electrode active material layer to form simple copper, and has good electrical contact with the current collector It is preferable from the point. Yttrium oxide is also preferable as the metal oxide in the present invention because it provides a very high discharge capacity retention rate.
  • the metal oxide is a ternary composite metal oxide composed of three kinds of metal elements.
  • LaXLiYTiO 3 is preferable as the metal oxide of the present invention.
  • LaXLiYTiO 3 which is an oxide of lanthanum, lithium, and titanium as the metal oxide in the present invention
  • the element ratio of lanthanum to lithium in LaXLiYTiO 3 is not limited, but is particularly preferably in the range of 0 ⁇ X ⁇ 1 and 0 ⁇ Y ⁇ 1.
  • the element ratio of LaXLiYTiO 3 is preferably in the above range is not clear, but if it is in the above range, the lithium ion conductivity in the electrode is improved, and this is one of the factors that exert a favorable result. Is inferred.
  • the metal simple substance contained in the electrode active material layer in the present invention means that the metal compound shown as the metal oxide is reduced to have only a metal element.
  • the simple metal includes not only one composed of one metal element but also a composite metal composed of two or more metal elements.
  • Specific examples of the simple metal include one metal such as copper, iron, yttrium, barium, titanium, aluminum, zinc and nickel, or a binary composite metal containing titanium and a ternary containing titanium. Examples of such composite metals.
  • the element ratio of lanthanum and lithium in LaXLiYTi, which is a preferred example of the ternary metal, is not limited, but is preferably in the range of 0 ⁇ X ⁇ 1, 0 ⁇ Y ⁇ 1.
  • the reason why a metal oxide or a simple metal is contained in the electrode active material layer in the present invention is as follows. That is, the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention contains a metal oxide at the time of production (a detailed example of the production method will be described later). However, since the metal oxide can be reduced by performing an initial charging process using the negative electrode plate for a non-aqueous electrolyte secondary battery, the resulting metal may become a simple substance. Further, since the metal simple substance is not oxidized by the subsequent discharge process or the repeated charge process, the metal simple substance once reduced exists in the electrode active material layer as it is.
  • the metal simple substance contained in an electrode active material layer means what was produced
  • the particulate negative electrode active material is fixed on the current collector without using a resinous binder that has been conventionally used. Is important to.
  • the metal oxide or simple metal does not occlude and release alkali metal.
  • the metal oxide or metal does not react electrochemically with the alkali metal, so there is no expansion or reaction product resulting from the reaction, and as a result, the metal oxide or the single metal in the electrode active material layer expands or lacks. Deterioration due to is suppressed. Therefore, it is preferable that the metal oxide or the metal simple substance does not exhibit a behavior of occluding and releasing lithium ions like the negative electrode active material in the electrode active material layer of the negative electrode plate.
  • the presence or absence of occlusion and release of alkali metal in the metal oxide or simple metal can be confirmed by an electrochemical measurement (cyclic voltammetry) method. Specifically, assuming that the electrode potential is in the optimum voltage range of the active material, for example, lithium ions as an alkali metal, and graphite is used, after sweeping from 2.0 V to 0.3 V, 2.0 V again. It is measured by repeating the work of returning to about 3 times. The scanning speed at this time is preferably 1 mV / sec.
  • the presence or absence of occlusion and release of alkali metal of the metal oxide that is expected to be contained in the electrode active material layer can be confirmed as described above. it can. Therefore, after confirming in advance, the electrode active material layer can contain a metal oxide that does not show an alkali metal occlusion and release reaction. On the other hand, whether or not the metal oxide or the metal simple substance contained in the electrode active material layer in the already completed negative electrode plate shows occlusion and release of alkali metal can be confirmed as follows, for example.
  • the electrode active material layer in the negative electrode plate of the present invention can be composed only of the negative electrode active material and the metal oxide or a single metal, but further additives are within the scope of the present invention. It may be contained.
  • a conductive material may be blended in the electrode active material layer in order to ensure good electron conductivity.
  • electrically conductive material what is normally used for the negative electrode plate for nonaqueous electrolyte secondary batteries can be used, For example, carbon materials, such as carbon black, such as acetylene black and ketjen black, are illustrated.
  • the average primary particle size of the conductive material is preferably about 20 nm to 50 nm.
  • the average primary particle size can be obtained by an arithmetic average obtained from actual measurement using an electron microscope.
  • the blending amount of the conductive material is not particularly limited, but generally, about 5 to 20 parts by weight of the conductive material is used with respect to 100 parts by weight of the negative electrode active material. When the blending amount of the conductive material is less than 5 parts by weight, the effect of adding the conductive material is hardly exhibited. On the other hand, the numerical range indicating the addition amount of the conductive material is not intended to exclude the addition of the conductive material in excess of 20 weights in the electrode active material layer in the present invention, but when the blending ratio of the conductive material is too large. It becomes difficult to uniformly disperse the electrode active material layer.
  • the gap of the electrode active material layer is blocked.
  • the addition of more conductive material than necessary is the volume (weight) energy of the electrode active material layer.
  • the thickness of the electrode active material layer in the present invention configured as described above is not particularly limited, it can be formed with a thickness of 1 ⁇ m to 100 ⁇ m, for example. If the thickness of the electrode active material layer is less than 1 ⁇ m, the energy density in the battery may be lowered, and if it exceeds 100 ⁇ m, a high energy density can be obtained, but the adhesion to the current collector is reduced, or There is a possibility that the resistance of the material layer is increased and the discharge rate is lowered.
  • the thickness of the electrode active material layer can be formed to be equal to or less than the thickness of a conventional general electrode active material layer, and sufficiently high input / output characteristics can be obtained even if the thickness of the electrode active material is reduced. It has the advantageous feature of being exerted.
  • the input / output characteristics of the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention can be evaluated by determining the discharge capacity retention rate (%). That is, the discharge capacity retention rate is an evaluation of discharge rate characteristics, and it is generally understood that in a negative electrode plate with improved discharge rate characteristics, the charge rate characteristics are also improved. Therefore, when a desirable discharge capacity maintenance rate is indicated, it is evaluated that the charge / discharge rate characteristics have been improved. More specifically, the theoretical value of the discharge capacity (mAh / g) possessed by the negative electrode active material was set to a discharge rate of 1C so that the discharge was completed in 1 hour, and actually measured at the set discharge rate of 1C. The discharge capacity (mAh / g) is set to a discharge capacity maintenance rate of 100%. Then, the discharge capacity (mAh / g) when the discharge rate is further increased is measured, and the discharge capacity maintenance ratio (%) can be obtained by the following equation (1).
  • the present invention is characterized in that a negative electrode active material is fixed on a current collector by a metal oxide without using a conventional resinous binder, and as a result, non-aqueous electrolysis is excellent in high input / output characteristics.
  • An electrode negative electrode plate for a liquid secondary battery can be provided, but in terms of its electrical performance, it is desirable that a discharge capacity maintenance rate of 80% or more be exhibited particularly when the discharge rate is 10C. Also, in the field of using non-aqueous electrolyte secondary batteries, 85% or more when the discharge rate is 10 C from the viewpoint of showing excellent performance even when high output / input characteristics are required. It is more desirable that a discharge capacity maintenance ratio of 60% or more is shown when the discharge capacity maintenance ratio of 50% or more is shown and the discharge rate is 50C.
  • the discharge capacity retention rate is obtained by measuring the discharge capacity of the electrode itself using a tripolar beaker cell and using the equation shown in the above equation (1).
  • the production method of the present invention first prepares a metal ion solution containing metal ions by dissolving in a solvent a metal compound that is a precursor of the metal oxide (hereinafter also referred to as “metal oxide precursor”).
  • the negative electrode active material is mixed with the metal ion solution to prepare a composition for forming an electrode active material layer.
  • the composition for forming an electrode active material layer used in the production method of the present invention As described above, at least a metal oxide precursor, a solvent, and a negative electrode active material are used. Moreover, arbitrary additives, such as a electrically conductive material, may be further added as needed.
  • the additive materials such as the negative electrode active material and the conductive material are the same as those already described above, and are omitted here.
  • the metal oxide precursor used in the present invention is a metal element-containing compound containing a metal element in the metal oxide, and a chloride, nitrate, sulfate, perchlorate, acetate of the metal element, A phosphate, a bromate, etc. can be mentioned.
  • chlorides, nitrates and acetates are easily available as general-purpose products, and these metal salts are dissolved in an organic solvent such as alcohol and applied to form a coating film. When heated, chlorine ions, nitrate ions, and acetate ions can be easily eliminated from the coating film, and thus are preferably used.
  • nitrate As the metal oxide precursor from the viewpoint of good film formability on the current collector.
  • nitrate has a lower thermal decomposition temperature than chloride or the like, it can be easily applied to the current collector to form nitrate ions when heated to form an electrode active material layer.
  • the metal (metal ion) remaining in the coating film is easily formed as an oxide.
  • the negative electrode active material dispersed and mixed in the same solvent is easily fixed on the surface of a wide range of substrates (current collectors).
  • two or more metal salts may be dissolved in a solvent.
  • the metal element when the metal element is copper, the metal element is iron such as copper chloride, copper nitrate, copper acetate, copper sulfate, copper acetylacetonate. If the metal element is titanium, such as iron nitrate, iron acetate, iron acetylacetonate, etc., if the metal element is titanium, such as yttrium chloride, yttrium nitrate, yttrium acetate, yttrium acetylacetonate, etc. When the metal element is aluminum, such as acetylacetonate, titanium diisopropoxybisacetylacetonate, etc.
  • the metal element is barium, such as aluminum chloride, aluminum nitrate, aluminum acetylacetonate, barium chloride, barium acetate
  • the metal element is zinc, such as barium nitrate
  • nickel such as zinc chloride, zinc acetate, zinc nitrate, zinc acetylacetonate
  • metal oxide precursors such as nickel chloride, nickel acetate, nickel nitrate, nickel acetylacetonate may be mentioned. it can.
  • the electrode active material layer is expected to contain lanthanum, lithium and titanium oxide (LaXLiYTiO 3 ) or a reduced product thereof, titanium acetylacetonate or titanium diisopropoxybisacetylacetate
  • lanthanum chloride lanthanum nitrate, lanthanum acetate, lanthanum acetylacetonate, lanthanum isopropoxide
  • lithium chloride lithium nitrate, lithium acetate, lithium carbonate, lithium acetylacetonate, etc. It can be mixed with a solvent and used as a metal oxide precursor.
  • the solvent used for dissolving the metal oxide precursor and preparing the metal ion solution is not particularly limited as long as it can dissolve the metal oxide precursor.
  • methanol Lower alcohols having a total carbon number of 5 or less such as ethanol, isopropyl alcohol, propanol and butanol, diketones such as acetylacetone, diacetyl and benzoylacetone, ketoesters such as ethyl acetoacetate, ethyl pyruvate, ethyl benzoylacetate and ethyl benzoylformate And toluene, ethylene glycol, diethylene glycol, polyethylene glycol, and mixed solvents thereof.
  • the electrode active material layer forming composition is prepared by mixing the above-described negative electrode active material in a metal ion solution in which the above-described metal oxide precursor is dissolved.
  • the compounding amount of the metal oxide precursor and the negative electrode active material depends on the required performance and electric capacity of the negative electrode plate, or the performance and electric capacity of the positive electrode plate used in combination therewith. Determined by taking into account.
  • the concentration of metal ions derived from the metal oxide precursor is preferably 0.01 to 5 mol / L, particularly 0.1 to 2 mol / L.
  • the concentration is less than 0.01 mol / L, the adhesion between the electrode active material layer to be formed and the current collector may not be sufficient. If it exceeds 5 mol / L, the viscosity of the solution becomes too high, and it may be difficult to uniformly apply the electrode active material layer forming composition to the current collector.
  • the metal oxide to be produced is a composite metal oxide containing two or more metal elements, the sum of the metal ion concentrations of various metal elements contained in the composite metal oxide is within the above range. It is preferable to be within.
  • the blending amount of the negative electrode active material in the composition for forming an electrode active material layer is not particularly limited, but from the viewpoint of securing adhesion to the current collector and securing a sufficient discharge rate, the solid content ratio is 50 to 98 wt. % Or more, more preferably 70 to 95% by weight or more.
  • the energy density of the negative electrode plate formed by setting it as 50 weight% or more can be ensured favorable.
  • by setting it to less than 98% by weight a sufficient amount of the metal oxide precursor and the conductive material is ensured, and the adhesion of the formed electrode active material layer to the current collector and the discharge rate characteristics are desirably maintained. can do.
  • the mixing ratio of the metal oxide and the negative electrode active material in the electrode active material layer to be formed is not particularly specified, and is required for the type and size of the negative electrode active material used, the type of metal oxide, and the negative electrode. It can be determined appropriately in consideration of functions and the like. However, in general, the larger the amount of the electrode active material in the electrode active material layer, the higher the electric capacity of the electrode. From this point of view, the amount of metal oxide present in the electrode active material layer However, it can be said that the smaller one is preferable. More specifically, in the electrode active material layer, when the weight ratio of the negative electrode active material is 100 parts by weight, the weight ratio of the metal oxide is 1 part by weight or more and 50 parts by weight or less. Can do.
  • the negative electrode active material may not be satisfactorily fixed on the current collector.
  • the description of the upper limit of the weight ratio of the metal oxide is not intended to exclude the presence of the metal oxide in excess of 50 parts by weight in the present invention. This shows that the active material can be fixed on the current collector with less metal oxide in order to increase the electric capacity of the electrode. Therefore, the amount of the negative electrode active material and the metal oxide precursor to be blended in the electrode active material layer forming composition is also determined in consideration of the blending amount of the metal oxide and the electrode active material in the electrode active material layer. can do.
  • the electrode active material layer forming composition obtained as described above is applied onto the current collector described above to form a coating film.
  • the amount of application can be arbitrarily determined according to the intended use of the current collector, but for example, it is applied so that the formed negative electrode active material layer has a thickness of about 1 to 100 ⁇ m.
  • the coating method is not particularly limited, and a generally performed coating method can be appropriately employed.
  • the electrode active material layer forming composition can be uniformly applied on the current collector by printing, spin coating, dip coating, bar coating, spray coating, or the like.
  • the substrate surface is porous, provided with a large number of irregularities, or has a three-dimensional structure, it can be applied by means other than the above method.
  • the current collector coated with the electrode active material layer forming composition is heated.
  • the heating temperature at this time is usually in the temperature range of 150 ° C. to 800 ° C., although it varies depending on the type of metal oxide precursor used.
  • the solvent etc. which exist in the said coating film are removed by heating, and the negative electrode active material which exists in this coating film adheres on a collector by presence of the said metal oxide.
  • an electrode active material layer containing a metal oxide and a negative electrode active material is formed on the current collector, and the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention is manufactured.
  • the heating method is not particularly limited, and examples thereof include a hot plate, an oven, a heating furnace, an infrared heater, a halogen heater, and a hot air blower.
  • heating can be preferably performed by heating the current collector coated with the electrode active material layer forming composition through a roll to roll in an atmosphere heating furnace.
  • the nonaqueous electrolyte secondary battery 10 generally includes a negative electrode 14, a negative electrode plate 15, a positive electrode 16, a positive electrode plate 17, a negative electrode 14, a negative electrode plate 15, and a positive electrode. 16 and a separator 13 that partitions the positive electrode plate 17.
  • the negative electrode 14 and the negative electrode plate 15, the positive electrode 16 and the positive electrode plate 17, and the separator 13 are accommodated in the container 11.
  • the separator 13 is made of a polyethylene porous film, and the container 11 is filled with a nonaqueous electrolytic solution 19.
  • Negative electrode plate The above-described negative electrode plate of the present invention is used for the non-aqueous electrolyte secondary battery of the present invention.
  • a positive electrode plate used for a general non-aqueous electrolyte secondary battery can be appropriately used.
  • a positive electrode active material that is a material capable of occluding and releasing lithium ions such as lithium cobalt oxide, lithium manganate, or lithium-containing metal oxides on a common positive electrode current collector such as an aluminum foil.
  • a positive electrode plate or the like having an electrode active material layer formed by being fixed by any one of a resinous binder that is a thermoplastic resin such as a polyester resin, a polyamide resin, or a polyacrylate resin can be used.
  • the conductive material as described above may be contained in the electrode active material layer in the positive electrode plate as appropriate.
  • the thickness of the current collector used for the positive electrode plate is not particularly limited, but in general, an aluminum foil having a thickness of about 5 to 50 ⁇ m is used.
  • the above known positive electrode plate is obtained by applying a slurry-like coating liquid containing a positive electrode active material, a resinous binder, or further an additive such as a conductive material to at least a part of the current collector surface. It is generally formed by drying and pressing as necessary.
  • Non-aqueous electrolyte The non-aqueous electrolyte used in the present invention is not particularly limited as long as it is generally used as a non-aqueous electrolyte for a non-aqueous electrolyte secondary battery, but a lithium salt is dissolved in an organic solvent. A non-aqueous electrolyte is preferably used.
  • lithium salt examples include inorganic lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, and LiBr; LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , LiC ( Organic compounds such as SO 2 CF 3 ) 3 , LiOSO 2 CF 3 , LiOSO 2 C 2 F 5 , LiOSO 2 C 4 F 9 , LiOSO 2 C 5 F 11 , LiOSO 2 C 6 F 13 , and LiOSO 2 C 7 F 15 Typical examples include lithium salts.
  • inorganic lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, and LiBr
  • LiB (C 6 H 5 ) 4 LiN (SO 2 CF 3 ) 2
  • LiC Organic compounds such as SO 2 CF 3 ) 3 , LiOSO 2 CF 3 , LiOSO 2 C 2 F 5
  • Examples of the organic solvent used for dissolving the lithium salt include cyclic esters, chain esters, cyclic ethers, and chain ethers.
  • Examples of the cyclic esters include propylene carbonate, butylene carbonate, ⁇ -butyrolactone, vinylene carbonate, 2-methyl- ⁇ -butyrolactone, acetyl- ⁇ -butyrolactone, and ⁇ -valerolactone.
  • chain esters examples include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, methyl butyl carbonate, methyl propyl carbonate, ethyl butyl carbonate, ethyl propyl carbonate, butyl propyl carbonate, propionic acid alkyl ester, Examples include malonic acid dialkyl esters and acetic acid alkyl esters.
  • Examples of the cyclic ethers include tetrahydrofuran, alkyltetrahydrofuran, dialkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, and 1,4-dioxolane.
  • Examples of the chain ethers include 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, and tetraethylene glycol dialkyl ether. It is done.
  • a conventionally known structure can be appropriately selected and used.
  • the structure which winds a positive electrode plate and a negative electrode plate in the shape of a spiral via the separator like a polyethylene porous film, and accommodates in a battery container is mentioned.
  • a structure in which a positive electrode plate and a negative electrode plate cut into a predetermined shape are stacked and fixed via a separator, and this is housed in a battery container may be employed.
  • the lead wire attached to the positive electrode plate is connected to the positive electrode terminal provided in the outer container, while the lead wire attached to the negative electrode plate Is connected to a negative electrode terminal provided in the outer container, and the battery container is further filled with a nonaqueous electrification solution and then sealed to produce a nonaqueous electrolyte secondary battery.
  • Example 1 Production of negative electrode plate: As a raw material for producing a metal oxide, 40 g of copper chloride is added to 40 g of methanol, 20 g of artificial graphite having an average particle diameter of 20 ⁇ m is further mixed as a negative electrode active material, and 8000 rpm with an Excel auto homogenizer (Nippon Seiki Seisakusho Co., Ltd.). A composition for forming a negative electrode active material layer was prepared by kneading at a rotational speed for 15 minutes.
  • Example 1 an electrolytic copper foil having a thickness of 10 ⁇ m as a negative electrode current collector is placed, and the electrode active material layer forming composition prepared above is applied to one surface side of the negative electrode current collector with an applicator (2 mil). Thus, a coating film was formed. Then, the negative electrode current collector on which the coating film was formed was placed in an electric furnace and heated at 250 ° C. for 1 hour to form an electrode active material layer having a thickness of 20 ⁇ m on the current collector. Formed. The negative electrode plate was cut into a predetermined size (a circle having a diameter of 15 mm) to obtain Example 1.
  • LiPF 6 Lithium hexafluorophosphate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • concentration of LiPF 6 as the solute is 1 mol.
  • the non-aqueous electrolyte was prepared by adjusting the concentration to be / L.
  • the lead metal (nickel wire) was previously attached to each electrode plate (negative electrode plate, counter electrode, reference electrode) using a spot welder, using the non-aqueous electrolyte prepared above as the electrolytic lithium solution After that, a tripolar beaker cell was assembled, a test cell of Example 1 was produced, and subjected to the following charge / discharge test.
  • Example Test Cell 1 which is a tripolar beaker cell prepared as described above, first, in order to conduct a discharge test of the working electrode, the battery was fully charged as in the following charge test of Example Test Cell 1.
  • Example Test cell 1 was charged with a constant current (651 ⁇ A) under a 25 ° C. environment until the voltage reached 0.03 V. After the voltage reached 0.03 V, the voltage was 0.03 V. The current (discharge rate: 1C) was reduced until it became 5% or less so as not to fall below, and the battery was charged at a constant voltage, fully charged, and then suspended for 10 minutes.
  • “1C” means a current value (current value that reaches a discharge end voltage) at which constant current discharge is performed using the tripolar beaker cell and discharge is completed in one hour. .
  • the constant current was set such that a theoretical discharge amount of 372 mAh / g of artificial graphite as an active material was discharged in one hour at the working electrode in Example Test Cell 1.
  • Discharge test Thereafter, the fully charged example test cell 1 was subjected to a constant current (651 ⁇ A) (discharge) in an environment of 25 ° C. until the voltage changed from 0.03 V (full charge voltage) to 2.0 V (discharge end voltage).
  • a constant current discharge at a rate of 1 C) the cell voltage (V) on the vertical axis, the discharge time (h) on the horizontal axis, a discharge curve is created, and the discharge capacity of the working electrode (the negative electrode plate of Example 1) (MAh) was determined and converted to a discharge capacity (mAh / g) per unit active material weight of the working electrode.
  • Example 2 A negative electrode plate was prepared in the same manner as in Example 1 except that the metal salt, negative electrode active material, solvent, and negative electrode current collector used were changed to the contents shown in Table 1, and cut into a prescribed size. To 9. In Example 2, Example 7, and Example 8, the conductive material shown in Table 1 was further added to the solvent, and then kneaded with a homogenizer. In any of Examples 1 to 9, no resinous binder was used. Table 2 shows the thicknesses of the electrode active material layers in Examples 1 to 9.
  • Example Test Cells 2 to 9 tripolar beaker cells were prepared and designated as Example Test Cells 2 to 9, respectively. And using these, the charge / discharge test was done by the method similar to Example test cell 1, and discharge capacity maintenance factor (%) was computed. The results are summarized in Table 2. In the charge / discharge test using the test cells of each example, the constant current at the discharge rate of 1C was 651 ⁇ A in the example test cell 1, whereas 374 ⁇ A in the example test cell 2 and 662 ⁇ A in the example test cell 3.
  • Example test cell 4 445 ⁇ A, Example test cell 5 803 ⁇ A, Example test cell 6 944 ⁇ A, Example test cell 7 389 ⁇ A, Example test cell 8 384 ⁇ A, Example test cell 9 861 ⁇ A did.
  • the metal salt that is a raw material for producing the metal oxide was prepared by first mixing 3 g of lanthanum nitrate and 0.28 g of lithium acetate with a mixed solvent of 1.5 g of isopropyl alcohol and 24.7 g of ethanol. Stir and dissolve. Next, 4.5 g of titanium diisopropoxybisacetylacetate was further added and stirred, and then 6 g of polyethylene glycol was added and stirred.
  • the obtained slurry-like coating composition was applied to a 10 ⁇ m-thick copper foil as a negative electrode current collector with an applicator (1 mil), dried with hot air, and a 25 ⁇ m-thick negative electrode active material layer was formed. Formed.
  • Comparative Example 2 A negative electrode plate was formed in the same manner as in Comparative Example 1 except that no resinous binder was used, and this was used as Comparative Example 2.
  • a test cell was prepared in the same manner as in Example 1 using Comparative Example 2, and an attempt was made to perform a charge / discharge test. However, the adhesion of the electrode active material layer to the current collector was poor, and the electrode active material layer was collected. It peeled off from the electric body, and the charge / discharge test could not be carried out.
  • each of Examples 1 to 9 was shown to have a higher discharge capacity retention rate than Comparative Example 1.
  • a discharge capacity retention rate of 80% or more was shown in any of the examples at a discharge rate of 10 C, and it was confirmed that a negative electrode plate having excellent discharge rate characteristics was produced.
  • the discharge capacity retention rate was 60% or more, and very high input / output characteristics were exhibited.
  • the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention can exhibit a very high discharge capacity retention rate, and thus has a very high discharge rate characteristic. As a result, it was inferred that the charge rate characteristics were also high. That is, from the above charge / discharge test, it was confirmed that the negative electrode plate of the present invention has excellent input / output characteristics. Therefore, by using the present invention as a negative electrode plate in a non-aqueous electrolyte secondary battery, it is possible to provide a non-aqueous electrolyte secondary battery exhibiting a discharge rate characteristic superior to conventional ones.
  • the negative electrode plate of Comparative Example 1 was chargeable / dischargeable at discharge rates 1, 2, and 5C, but when the discharge rate was increased to 10C or higher, the discharge curve became unstable, and the capacity maintenance rate could not be calculated. It was. From the above results, it was shown that the negative electrode plate of the present invention is superior in high input / output compared with the conventional negative electrode plate for non-aqueous electrolyte secondary batteries using a resinous binder. .
  • Comparative Example 2 it was confirmed that the electrode active material layer could not be formed substantially because no resinous binder was used. On the other hand, in Examples 1 to 9, it was confirmed that the adhesion of the electrode active material layer to the current collector was as good as that of Comparative Example 1 without using a resinous binder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 非電解液二次電池用負極板15は、集電体15aと、集電体15a上に積層された電解活物質層15bとを有している。電解活物質層15bは負極活物質と、金属酸化物あるいは金属単体とを含む。負極活物質は金属酸化物または金属単体により集電体15a上に固着されている。

Description

非水電解液二次電池用負極板、非水電解液二次電池用負極板の製造方法、および非水電解液二次電池
 本発明は、リチウムイオン二次電池などの非水電解液二次電池に用いられる負極板、上記負極板を用いた非水電解液二次電池、及び非水電解液二次電池用負極板の製造方法に関するものである。
 リチウムイオン二次電池に代表される非水電解液二次電池は、高エネルギー密度、高電圧を有し、また充放電時におけるメモリ効果(完全に充電させる前に電池の充電を行なうと次第に電池容量が減少していく現象)が無いことから、携帯機器、及び大型機器など様々な分野で用いられている。また近年、電気自動車、ハイブリッド自動車そしてパワーツールなどの高出入力特性が必要とされる分野における二次電池の使用が注目されている。
 一般的な非水電解液二次電池は、正極板、負極板、セパレータ、及び有機電解液から構成され、当該正極板及び負極板としては、金属箔などの集電体上に、スラリー状の電極活物質層形成用塗工液を塗布し、熱風乾燥などにより乾燥させ、ロールプレス機などでプレスすることにより電極活物質層が形成されたものが一般に用いられている。
 上記電極活物質層形成用塗工液は、電極活物質、樹脂性のバインダー、及び導電材(但し活物質が導電効果も発揮する場合には、導電材は省略される場合がある)、あるいはさらに、必要に応じてその他の材料を用い、有機溶媒中で混練及び/又は分散させて、スラリー状に調整される。そして電極活物質層形成用塗工液を集電体表面に塗布し、次いで乾燥して集電体上に塗膜を形成し、プレスすることにより電極活物質層を備える電極板を製造する方法が一般的である(例えば特許文献1段落[0019]乃至[0026]、特許文献2[請求項1]、段落[0051]乃至[0055])。
 このとき、電極活物質層形成用塗工液に含有される電極活物質は、該塗工液中に分散する粒子状の化合物であって、集電体表面に塗布されただけでは該集電体表面に固着され難く、樹脂性のバインダーを含まない電極活物質層形成用組成物を集電体に塗布して乾燥して塗膜を形成しても、該塗膜は容易に剥離してしまう。すなわち、樹脂性のバインダーを介して電極活物質が結着するとともに集電体表面に固着化されて、電極活物質層が形成される。したがって樹脂性のバインダーは実質的には必須の成分であった。
 また電極活物質層に含有される電極活物質と集電体との電子伝導性を良好に確保し、電極活物質層自体の体積抵抗率を下げるために上記導電材が用いられている。
特開2006-310010号公報 特開2006-107750号公報
 上述のとおり、近年、特に電気自動車、ハイブリッド自動車、そしてパワーツールなどの分野、あるいは、携帯電話などの比較的小型の装置であって、装置が多機能化される傾向にある分野などの幅広い分野において、高出入力特性を備える二次電池の使用が期待されている。これに対し二次電池において高出入力特性を実現するためには、電池のインピーダンスを下げる必要がある。インピーダンスが高い電池では、高速充放電時にその容量を充分に生かすことができないなどの問題があるからである。
 本発明者らは、上記非水電解液二次電池のインピーダンスを上げる原因の1つとして、特に負極板について詳細に検討した。その結果、負極板における電極活物質層中に存在する樹脂性のバインダーが、上記原因の1つであることを見出した。即ち、電極活物質層中に樹脂性のバインダーが存在することにより、リチウムイオン等の負極活物質イオン及び電子の移動距離が長くなってしまうという問題、および電極活物質層における電解液の浸透性が低くなり、且つ該電解液と活物質との接触面積が小さくなってしまうという問題があることを見出した。
 本発明は上記問題に鑑みて成し遂げられたものであり、樹脂性のバインダーの存在に依らずに構成される電極活物質層を備える、高出入力可能な非水電解液二次電池用の負極板を提供し、また樹脂性のバインダーを用いずとも集電体表面に良好に負極活物質が固着し、従来と同等の密着性を有する電極活物質層を備える負極板を製造する方法を提供し、これによって高出入力可能な非水電解液二次電池の提供を実現可能とすることを目的とする。
 本発明者らは、金属酸化物前駆体と負極活物質とを少なくとも含有する電極活物質層形成用組成物を調製し、これを集電体上に塗布して加熱することによれば、樹脂性のバインダーを使用せずとも該集電体上に負極活物質を固着させることができることを見出した。そして、このように樹脂性のバインダーの存在によらず、上記金属酸化物あるいは上記金属酸化物が電極活物質層中で還元されて生成された金属単体の存在により負極活物質が集電体上に固着化されてなる非水電解液二次電池液用負極板であれば、インピーダンスを下げ、放電レート特性を向上させることができることを見出し、本発明を完成させた。
(1)本発明は、集電体と、集電体上に積層され、負極活物質と、金属酸化物あるいは金属単体とを少なくとも含む電極活物質層とを備え、上記負極活物質が、上記金属酸化物または上記金属単体により上記集電体上に固着されていることを特徴とする非水電解液二次電池用負極板である。
(2)本発明は、上記金属酸化物または上記金属単体が、アルカリ金属を吸蔵、放出しないことを特徴とする非水電解液二次電池用負極板である。
(3)本発明は、上記金属酸化物が、酸化銅、酸化イットリウム、酸化鉄、酸化バリウム、または酸化亜鉛であり、あるいは上記金属単体が、銅、イットリウム、鉄、バリウム、または亜鉛であることを特徴とする非水電解液二次電池用負極板である。
(4)本発明は、上記金属酸化物が、金属元素3種からなる三元系の複合金属酸化物、あるいは上記金属単体が、金属元素3種からなる三元系の複合金属であることを特徴とする非水電解液二次電池用負極板である。
(5)本発明は、上記三元系の複合金属酸化物が、LaXLiYTiOであり、あるいは、上記三元系の複合金属が、LaXLiYTiであることを特徴とする非水電解液二次電池用負極板である。
(6)本発明は、上記三元系の複合金属酸化物(LaXLiYTiO)あるいは、上記三元系の複合金属(LaXLiYTi)において、ランタンとリチウムの比率が、0<X<1、0<Y<1の範囲であることを特徴とする非水電解液二次電池用負極板である。
(7)本発明は、上記負極活物質が炭素材料またはチタン酸リチウムであることを特徴とする非水電解液二次電池用負極板である。
(8)本発明は、上記金属単体は、上記金属酸化物が電極活物質層中において還元されて生成されたものであることを特徴とする非水電解液二次電池用負極板である。
(9)本発明は、正極板と、負極板と、上記正極板と上記負極板との間に介在するセパレータと、非水溶媒を含む電解液と、これら正極板、負極板、セパレータおよび電解液を収納する容器とを備え、上記負極板は、集電体と、集電体上に積層され、負極活物質と、金属酸化物あるいは金属単体とを少なくとも含む電極活物質層とを備え、上記負極活物質が、上記金属酸化物または上記金属単体により上記集電体上に固着されていることを特徴とする非水電解液二次電池である。
(10)本発明は、集電体を準備する工程と、金属イオンが含有される金属イオン溶液に少なくとも負極活物質を混合させて電極活物質層形成用組成物を作製する工程と、記電極活物質層形成用組成物を集電体上に塗布して塗膜を形成し、次いで、加熱することによって、上記金属イオンが酸化されてなる金属酸化物を形成するとともに、上記金属酸化物により、上記負極活物質を上記集電体上に固着させることによって電極活物質層を形成する工程とを備えたことを特徴とする非水電解液二次電池用負極板の製造方法である。
 本発明の非水電解液二次電池用負極板は、従来の樹脂性のバインダーにより負極活物質が集電体上に固着されている非水電解液二次電池用負極板に比べて、放電レート特性が非常に向上した。
 上記放電レート特性の向上は、樹脂性のバインダーを使用せずに、粒子状の負極活物質が、金属酸化物あるいは金属単体によって集電体上に固着されて、電極活物質層が形成されているためと思われる。
 本発明の非水電解液二次電池用負極板の製造方法によれば、樹脂性のバインダーを含まない電極活物質層を備える非水電解液二次電池負極板を容易に製造することができる。すなわち、従来のように粒子状の負極活物質をあらかじめ塗工液中に分散させスラリー状の塗工液を調製し、これを集電体表面に塗布して乾燥させ、圧着させる方法では、実質的に、樹脂性のバインダーの存在なしには、負極活物質を集電体上に固着させることができなかった。これに対し、本発明の製造方法では、金属イオンが含有される金属イオン溶液に、負極活物質を混合させて電極活物質層形成用組成物を調製し、これを集電体上に塗布して加熱するだけで、望ましい放電レート特性を発揮する非水電解液二次電池用負極板を製造することができる。
 そして、上記本発明の非水電解液二次電池用負極板を用いる非水電解液二次電池であれば、従来のものに比べて、非常に高い放電レート特性を示すことが可能であり、電気自動車、ハイブリッド自動車そしてパワーツールなどの高出入力特性が必要とされる分野、あるいは携帯電話などの比較的小型であって多機能化される装置などにおいても使用可能な高性能の非水電解液二次電池を提供することを可能とした。
図1は参考例1におけるアルカリ金属吸蔵放出確認試験の結果を示すサイクリックボルタモグラムである。 図2(a)は非水電解液二次電池を示す図、図2(b)は非水電解液二次電池用負極板を示す図である。
[非水電解液二次電池用負極板]
 本発明の非水電解液二次電池用負極板15は、図2(b)に示すように、集電体15aと、該集電体15a表面の少なくとも一部に積層され、負極活物質と、金属酸化物とを含有する電極活物質層15bとを備える。以下に本発明の非水電解液二次電池用負極板15を実施するための形態について説明する。
(集電体)
 本発明に用いられる集電体は、一般的に非水電解液二次電池用負極板の負極集電体として用いられるものであれば、特に限定されない。例えば、銅、アルミニウム、ニッケルなどの単体または合金から形成され、中でも、電解銅箔や、圧延銅箔などの銅箔が好ましく用いられる。上記負極集電体の厚みは、一般に非水電解液二次電池用負極板の集電体として使用可能な厚みであれば特に限定されないが、5~100μmであることが好ましく、10~50μmであることがより好ましい。本発明に使用する集電体は、必要に応じて、予めコロナ処理や酸素プラズマ処理等を行い、基板表面での溶液の製膜性を改善してもよい。
(電極活物質層)
 本発明における電極活物質層は、少なくとも負極活物質と、金属酸化物あるいは金属単体を含み、且つ、従来一般的に使用されていた樹脂性のバインダーを含まず、上記金属酸化物あるいは金属単体によって上記負極活物質が集電体上に固着されているという特徴を有する。即ち、従来、電極活物質層を形成する際に一般的に使用されてきた樹脂性のバインダーの一例としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素化ポリマー、ポリエチレン、ポリプロピレンなどのポリオレフィン系ポリマー、合成ゴムなどが挙げられるが、これらの材を使用しなくても本発明の負極板では、負極活物質を集電体上に固着させることができる。
負極活物質:
 本発明において用いられる負極活物質としては、負極活物質として一般的に知られているものであれば特に限定されず適宜選択して使用することができる。具体的な例としては、天然黒鉛、人造黒鉛、アモルファス炭素、カーボンブラック、またはこれらの成分に異種元素を添加したもののような炭素質材料が好ましい例として挙げられる。また金属リチウム及びその合金、スズ、ケイ素、及びそれらの合金やケイ素、チタン、コバルトの酸化物、マンガン、鉄、コバルトの窒化物など、リチウムイオンを吸蔵放出可能な材料が一般的に使用可能である。中でも、黒鉛は重量あたりに取り出せるエネルギーが大きく、放電電位が卑であり、平坦性がよいなどの理由から好ましく使用される。あるいはチタン酸リチウムも安全性が高く、出力特性やサイクル特性に優れているという理由から好ましく使用される。
 上記負極活物質は、電極活物質層中において粒子形状で存在する。粒子の形状は、使用される負極活物質粒子の寸法に依存し、電極活物質層において、その平均粒子径が約0.1μm~30μm程度あることが一般的である。上記平均粒子径は、レーザー回折/散乱式粒度分布測定により測定される平均粒径(体積中位粒径:D50)である。
金属酸化物:
 本発明における電極活物質層に含有される金属酸化物は、酸化銅、酸化鉄、酸化イットリウム、酸化バリウム、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化ニッケルが挙げられる。また上記金属酸化物としては、2種以上の金属元素を含有する酸化物であってもよく、例えば、鉄チタン酸化物、ランタンリチウムチタン酸化物などの複合金属酸化物が挙げられる。
 特に上記金属酸化物の好ましい例の1つとして、酸化銅を挙げることができる。酸化銅は、電極活物質層中で銅に還元されて銅単体となった際にリチウムイオンと反応しない(すなわち、リチウムイオンを吸蔵、放出しない)点および集電体との電気的コンタクトが良好である点から好ましい。また酸化イットリウムも非常に高い放電容量維持率の発揮に供与することから、本発明における金属酸化物として好ましい。
 上記金属酸化物の特に好ましい別の例としては、3種の金属元素からなる三元系の複合金属酸化物を挙げることができる。中でも、LaXLiYTiOが、本発明の金属酸化物として好ましい。本発明における金属酸化物として、ランタン、リチウム、チタンの酸化物であるLaXLiYTiOを選択することにより、非水電解液二次電池用負極板の出入力特性を特に好ましく向上させることができる。
 上記LaXLiYTiOにおけるランタンとリチウムの元素比率は、限定されないが、特には、0<X<1、0<Y<1の範囲であることが好ましい。LaXLiYTiOの元素比率が上記範囲であると好ましいという理由は明らかではないが、上記範囲内であると電極中のリチウムイオン伝導性が向上し、これが好ましい結果を発揮する要因の1つであることが推察される。
金属単体:
 本発明における電極活物質層に含有される金属単体は、上記金属酸化物として示す金属化合物が還元されて、金属元素のみの構成となったものを意味する。本発明において金属単体とは、金属元素1つからなるもののみならず、2種以上の金属元素からなる複合金属も含む。上記金属単体の具体的な例としては、銅、鉄、イットリウム、バリウム、チタン、アルミニウム、亜鉛、ニッケルなどの1種の金属、あるいは、チタンを含む二元系の複合金属、チタンを含む三元系の複合金属などが挙げられる。尚、三元系金属の好ましい例として挙げられるLaXLiYTiにおけるランタンとリチウムの元素比率は、限定されないが、特には、0<X<1、0<Y<1の範囲であることが好ましい。LaXLiYTiの元素比率が上記範囲であると好ましいという理由は明らかではないが、上記範囲内であると電極中のリチウムイオン伝導性が向上し、これが好ましい結果を発揮する要因の1つであることが推察される。
 本発明における電極活物質層において金属酸化物あるいは、金属単体が含有される理由は以下のとおりである。即ち、本発明の非水電解液二次電池用負極板は、作製された時点では、金属酸化物を含有する(詳細な製造方法の例は後述する)。しかし、当該非水電解液二次電池用負極板を用いて初期充電処理を施すことによって、この金属酸化物が還元され得るため、結果として金属単体になる場合がある。またそのあとに実施される放電処理あるいはさらに繰り返される充電処理によっては、上記金属単体は酸化されないため、一度還元された金属単体は、そのまま電極活物質層中に存在するものである。したがって、本発明において、電極活物質層中に含有される金属単体とは、電極活物質層中において含有される金属酸化物が還元されて生成されたものを意味する。本発明において、上記金属酸化物あるいは金属単体の存在により、従来用いられていた樹脂性のバインダーを使用せず、粒子状の負極活物質が集電体上に固着されていることが、本発明にとって重要である。
 上記金属酸化物あるいは金属単体は、アルカリ金属を吸蔵及び放出しないものであることが望ましい。その理由について、金属酸化物あるいは金属はアルカリ金属と電気化学的に反応しないことで反応に伴う膨張や反応物が無く、結果として電極活物質層中の金属酸化物あるいは金属単体の膨張や欠損などによる劣化が抑制される。したがって、上記金属酸化物あるいは上記金属単体は、負極板の電極活物質層内において、負極活物質のごとくリチウムイオンを吸蔵、放出する挙動を示さないものが好ましい。
 金属酸化物あるいは金属単体におけるアルカリ金属の吸蔵及び放出の有無については、電気化学測定(サイクリックボルタンメトリー)法により確認することができる。
 具体的には、電極電位を活物質の最適な電圧範囲、例えばアルカリ金属としてリチウムイオンを想定し、黒鉛を用いる場合であれば、2.0Vから0.3Vまで掃引したのち、再び2.0Vまで戻す作業を3回程度繰り返すことにより測定される。このときの走査速度は1mV/秒が好ましい。上記黒鉛であれば、サイクリックボルタンメトリー試験において、約0.2V以下で黒鉛のLi挿入・脱離反応に相当する還元・酸化ピークが出現し、リチウムイオンの吸蔵および放出の反応があることを確認することができる。また、ピークが出現しない場合にはリチウムイオンの吸蔵および放出がないと判断することができる。
 本発明の非水電解液二次電池用負極板を製造するにあたり、電極活物質層中に含有が予定される金属酸化物のアルカリ金属の吸蔵及び放出の有無は、上述のとおり確認することができる。したがって、予め確認したうえで、アルカリ金属の吸蔵及び放出の反応を示さない金属酸化物を電極活物質層中に含有させることができる。一方、すでに完成された負極板における電極活物質層中に含有される金属酸化物または金属単体が、アルカリ金属の吸蔵及び放出を示すか否かは、例えば、以下のとおり確認することができる。即ち、電極活物質層を削ってサンプルを作成し、該サンプルの組成分析を実施することにより、サンプル中に、いかなる金属酸化物または金属単体が含有されているかを推定することができる。そして、推定された金属酸化物または金属単体よりなる塗膜を、銅やアルミニウムなどの基板上に形成し、これをサイクリックボルタンメトリー試験に供することにより、当該金属酸化物または金属単体がアルカリ金属の吸蔵及び放出を示すか否かを確認することができる。
その他の添加物:
 本発明の負極板における電極活物質層には、上記負極活物質及び上記金属酸化物あるいは金属単体のみから構成することが可能であるが、本発明の趣旨を逸脱しない範囲において、さらなる添加剤が含有されていてもよい。たとえば、本発明において電子の導電性を良好に確保するために、導電材を電極活物質層中に配合させてもよい。上記導電材としては、通常、非水電解液二次電池用負極板に用いられるものを使用することができ、例えば、アセチレンブラック、ケッチェンブラック等のカーボンブラック等の炭素材料が例示される。上記導電材の平均一次粒径は20nm~50nm程度であることが好ましい。上記平均一次粒径は、電子顕微鏡による実測から求められる算術平均により求めることができる。上記導電材の配合量は、特に限定されないが、一般的には、負極活物質100重量部に対して、導電材を5乃至20重量部程度使用される。導電材の配合量は、5重量部未満であると、実質的に導電材の添加効果が発揮され難い。一方、上記導電材の添加量示す数値範囲は、本発明における電極活物質層において、導電材を20重量を超えて添加することを除外する趣旨ではないが、導電材の配合割合が多すぎると、電極活物質層材料の均一な分散が困難になる、用いられる導電材の形状によっては電極活物質層の空隙を塞ぐ、必要以上の導電材の添加は電極活物質層の体積(重量)エネルギー密度の低下につながる、などの問題が生じる場合があるので、留意する必要がある。
 上述のとおり構成される本発明における電極活物質層の厚みは、特に限定されないが、たとえば1μm以上100μm以下の厚みで形成することができる。電極活物質層の厚みが、1μm未満であると電池におけるエネルギー密度が低くなる恐れがあり、また100μmを上回ると高いエネルギー密度は得られるが集電体との密着性が低下し、あるいは電極活物質層の抵抗が増大し、放電レートの低下に繋がる虞がある。尚、本発明は、電極活物質層の厚みを従来の一般的な電極活物質層の厚み以下に形成することができ、また電極活物質の厚みを小さくしても充分に高い出入力特性が発揮されるという有利な特徴を有する。
(電極の充放電レート特性評価方法)
 本発明の非水電解液二次電池用負極板の出入力特性は、放電容量維持率(%)を求めることにより評価することができる。即ち、上記放電容量維持率は、放電レート特性を評価するものであり、放電レート特性が向上した負極板においては、一般的に、充電レート特性も同様に向上していると理解される。したがって、望ましい放電容量維持率が示される場合には、充放電レート特性が向上したと評価するものである。より具体的には、負極活物質の有する放電容量(mAh/g)の理論値を1時間で放電終了となるよう放電レート1Cを設定し、設定された1Cの放電レートにおいて実際に測定された放電容量(mAh/g)を放電容量維持率100%とする。そしてさらに放電レートを高くしていった場合の放電容量(mAh/g)を測定し、以下の数1に示す式により放電容量維持率(%)を求めることができる。
Figure JPOXMLDOC01-appb-M000001
 本発明は、従来の樹脂性のバインダーを使用せずとも、金属酸化物によって負極活物質が集電体上に固着されることに特徴を有し、結果として高出入力特性に優れる非水電解液二次電池用電極負極板を提供することができるが、特にその電気的性能において、放電レートが10Cである場合に、80%以上の放電容量維持率が示されることが望ましい。また非水電解液二次電池を使用する分野において、得に高出入力特性を求められる場合であっても優れたパフォーマンスを示すという観点からは、放電レートが10Cである場合に、85%以上の放電容量維持率が示され、且つ、放電レートが50Cである場合に、60%以上の放電容量維持率が示されることがより望ましい。
 尚、上記放電容量維持率は、三極式ビーカーセルにより電極自体の放電容量を測定し、上記数1において示す式を用いて求められる。
[非水電解液二次電池用負極板の製造方法]
 次に、本発明の非水電解液二次電池用負極板の製造方法(以下、単に「本発明の製造方法」ともいう)について説明する。本発明の製造方法は、まず、金属酸化物の前駆体となる金属化合物(以下、「金属酸化物前駆体」ともいう)を溶媒に溶解することによって金属イオンを含有する金属イオン溶液を準備し、上記金属イオン溶液に負極活物質を混合して、電極活物質層形成用組成物を調製する。そして、上記電極活物質層形成用組成物を、集電体上に塗布した後、加熱することによって、電極活物質層形成用組成物中の溶媒を除去するとともに、これに含まれる金属イオンを酸化して金属酸化物を形成させる。このとき、上記電極活物質層形成用組成物には樹脂性のバインダーが実質的に添加されず、集電体表面において金属酸化物が生成される際に、該金属酸化物の存在によって、負極活物質が集電体表面に固着され、塗膜化される。この結果、集電体上に負極活物質と金属酸化物とが含有される電極活物質層が形成され、本発明の非水電解液二次電池用負極板が製造される。以下に、本発明の非水電解液二次電池用負極板の製造方法について、さらに詳細に
説明する。
 本発明の製造方法に用いられる電極活物質層形成用組成物を調製するためには、上述のとおり、金属酸化物前駆体、溶媒、負極活物質が少なくとも用いられる。また必要に応じて、導電材などの任意の添加材がさらに添加されてもよい。上記負極活物質及び導電材などの添加材については、上述で既に述べたものと同様であるため、ここでは割愛する。
金属酸化物前駆体:
 本発明に使用する金属酸化物前駆体は、上記金属酸化物における金属元素を含有する金属元素含有化合物であって、当該金属元素の塩化物、硝酸塩、硫酸塩、過塩素酸塩、酢酸塩、リン酸塩、臭素酸塩等を挙げることができる。中でも、本発明においては、塩化物、硝酸塩、酢酸塩は汎用品として入手が容易な上、これらの金属塩をアルコールなどの有機溶媒に溶解させ、これを塗布して塗膜を形成し、次いで加熱すると、塩素イオン、硝酸イオン、酢酸イオンは容易に塗膜中より消失させることができので、好ましく使用される。また特に、集電体上における成膜性が良好であるという観点からは、金属酸化物前駆体として硝酸塩を用いることが望ましい。すなわち硝酸塩は、塩化物などと比較して熱分解温度が低いので、集電体上に塗布して電極活物質層を形成するために実施する加熱の際に、当該熱で、硝酸イオンを容易に消失させ、塗膜中に残存する金属(金属イオン)を酸化物として形成しやすい。その結果、同溶媒中に分散・混合している負極活物質を、高範囲の種類の基板(集電体)表面に固着させやすい。
 尚、2種以上の金属元素を含有する金属酸化物を電極活物質層中に形成させたい場合には、2種以上の金属塩を溶媒中に溶解させればよい。
 上記金属酸化物前駆体の具体的な例としては、例えば、金属元素が銅である場合には、塩化銅、硝酸銅、酢酸銅、硫酸銅、銅アセチルアセトナートなど、金属元素が鉄である場合には硝酸鉄、酢酸鉄、鉄アセチルアセトナートなど、金属元素がイットリウムである場合には塩化イットリウム、硝酸イットリウム、酢酸イットリウム、イットリウムアセチルアセトナートなど、金属元素がチタンである場合には、チタンアセチルアセトナート、チタンジイソプロポキシビスアセチルアセトナートなど、金属元素がアルミニウムである場合には、塩化アルミニウム、硝酸アルミニウム、アルミニウムアセチルアセトナートなど、金属元素がバリウムある場合には、塩化バリウム、酢酸バリウム、硝酸バリウムなど、金属元素が亜鉛である場合には、塩化亜鉛、酢酸亜鉛、硝酸亜鉛、亜鉛アセチルアセトナートなど、金属元素がニッケルである場合には、塩化ニッケル、酢酸ニッケル、硝酸ニッケル、ニッケルアセチルアセトナートなどといった金属酸化物前駆体を挙げることができる。
 あるいは、電極活物質層中に、ランタン、リチウムおよびチタンの酸化物(LaXLiYTiO)または、その還元物を含有させることを予定する場合には、チタンアセチルアセトナート、またはチタンジイソプロポキシビスアセチルアセトナートのいずれかと、塩化ランタン、硝酸ランタン、酢酸ランタン、ランタンアセチルアセトナート、ランタンイソプロポキシドなどのいずれかと、塩化リチウム、硝酸リチウム、酢酸リチウム、炭酸リチウム、リチウムアセチルアセトナートなどのいずれかとを、溶媒に混合させて、金属酸化物前駆体として用いることができる。
溶媒:
 上述する金属酸化物前駆体を溶解し、金属イオン溶液を準備するために用いられる溶媒としては、該金属酸化物前駆体を溶解することができるものであれば、特に限定されないが、例えば、メタノール、エタノール、イソプロピルアルコール、プロパノール、ブタノール等の総炭素数が5以下の低級アルコール、アセチルアセトン、ジアセチル、ベンゾイルアセトン等のジケトン類、アセト酢酸エチル、ピルビン酸エチル、ベンゾイル酢酸エチル、ベンゾイル蟻酸エチル等のケトエステル類、トルエン、エチレングリコール、ジエチレングリコール、ポリエチレングリコールおよびこれらの混合溶媒等を挙げることができる。
 上述する金属酸化物前駆体を溶解した金属イオン溶液に上述する負極活物質を混合させることによって電極活物質層形成用組成物が調製される。上記電極活物質層形成用組成物において、金属酸化物前駆体及び負極活物質の配合量は、求められる負極板の性能や電気容量、あるいはこれと組み合わせて用いられる正極板の性能や電気容量を勘案して決定される。とりわけ、上記電極活物質層形成用組成物において、金属酸化物前駆体に由来する金属イオンの濃度は、0.01乃至5mol/L、特に0.1乃至2mol/Lが好ましい。前記濃度が0.01mol/L未満であると、形成される電極活物質層と集電体との密着性が充分でない虞がある。また、5mol/Lを超えると、前記溶液の粘度が高くなりすぎて、集電体に対する電極活物質層形成用組成物の均一な塗布が困難となる可能性が生じる。生成される金属酸化物が2種以上の金属元素を含む複合金属酸化物を予定する場合には、それらの複合金属酸化物に含有される種々の金属元素の金属イオン濃度の合計が、上記範囲内であることが好ましい。
 また上記電極活物質層形成用組成物における負極活物質の配合量は特に限定されないが、集電体への密着性や充分な放電レートの確保の観点から、固形分比率において、50乃至98重量%以上、より好ましくは、70乃至95重量%以上であることが望ましい。50重量%以上とすることで形成される負極板のエネルギー密度を良好に確保することができる。一方、98重量%未満とすることで、金属酸化物前駆体および導電材の配合量も十分に確保し、形成される電極活物質層の集電体への密着性および放電レート特性を望ましく維持することができる。
 尚、形成される電極活物質層中における金属酸化物と、負極活物質の配合比率は特に特定されず、使用される負極活物質の種類や大きさ、金属酸化物の種類、負極に求められる機能などを勘案して適宜決定することができる。ただし、一般的には、電極活物質層中における電極活物質の量が多い方が、電極の電気容量が増大するため、この観点からは、電極活物質層中に存在する金属酸化物の量が、少ない方が好ましいといえる。より具体的には、上記電極活物質層中において、上記負極活物質の重量比率を100重量部としたときに、上記金属酸化物の重量比率を、1重量部以上50重量部以下とすることができる。1重量部未満であると、負極活物質が集電体上に良好に固着されない場合がある。一方、上記金属酸化物の重量比率の上限の記載は、本発明において、金属酸化物が50重量部を超えて存在することを除外する趣旨ではない。電極の電気容量を大きくするために、より少ない金属酸化物で活物質を集電体上に固着されることができることを示すものである。したがって、電極活物質層形成用組成物に配合される負極活物質と金属酸化物前駆体中の量も、上記電極活物質層中における金属酸化物と電極活物質の配合量を勘案して決定することができる。
 次に、以上のとおり得られた電極活物質層形成用組成物を上述で説明する集電体上に塗布して塗膜を形成する。塗布量は、対象となる集電体の用途等に応じて任意に決めることができるが、例えば、形成される負極活物質層が1~100μm程度となるように塗布する。塗布方法は、特に限定されず、一般的に実施される塗布方法を適宜採用することができる。例えば、印刷方、スピンコート、ディップコート、バーコート、スプレーコート等によって、上記電極活物質層形成用組成物を集電体上に均一に塗布することができる。また基板表面が多孔質であったり、凹凸が多数設けられていたり、三次元立体構造を有したりする場合には、上記方法以外に手段で塗布することも可能である。
 次に上記電極活物質層形成用組成物が塗布された集電体を加熱する。塗膜中に含有される金属酸化物前駆体由来の金属イオンを、当該金属の酸化温度以上に加熱することにより、集電体上で金属酸化物が生成される。このときの加熱温度は、用いられる金属酸化物前駆体の種類などによっても異なるが、通常、150℃から800℃の温度範囲内である。また加熱することによって、上記塗膜中に存在する溶媒などが除去され、且つ、該塗膜中に存在する負極活物質が、上記金属酸化物の存在により集電体上に固着される。この結果、集電体上に、金属酸化物と負極活物質とが含有される電極活物質層が形成され、本発明の非水電解液二次電池用負極板が製造される。
 上記加熱方法としては、特に限定されるものではないが、例えば、ホットプレート、オーブン、加熱炉、赤外線ヒーター、ハロゲンヒーター、熱風送風機等を挙げることができる。また雰囲気加熱炉内において、電極活物質層形成用組成物が塗布された集電体をロール to ロールで通して加熱することによっても、好ましく加熱することができる。
[非水電解液二次電池]
 非水電解液二次電池10は、一般的には、図2(a)に示すように、負極14および負極板15と、正極16および正極板17と、負極14および負極板15と、正極16および正極板17とを区画するセパレータ13とを備え、これら負極14および負極板15と、正極16および正極板17と、セパレータ13は容器11内に収納されている。そしてセパレータ13はポリエチレン製多孔質フィルムからなり、且つ容器11内に非水電解液19が充填されている。
負極板:
 本発明の非水電解液二次電池には、上述する本発明の負極板が用いられる。
正極板:
 一般的な非水電解液二次電池に用いられる正極板を適宜使用することができる。例えば、アルミニウム箔などの一般的な正極集電体上に、コバルト酸リチウム、マンガン酸リチウム、あるいはニッケル酸リチウムといったリチウム含有金属酸化物などのリチウムイオンを吸蔵放出可能な物質である正極活物質のいずれかが、ポリエステル樹脂、ポリアミド樹脂、ポリアクリル酸エステル樹脂などの熱可塑性樹脂である樹脂性のバインダーのいずれかにより固着されて形成される電極活物質層を備える正極板などを用いることができる。また適宜、正極板における電極活物質層にも、上述するような導電材が含有されていてよい。上記正極板に用いられる集電体の厚みは、特に限定されないが、一般的には、5~50μm程度の厚みのアルミニウム箔が用いられる。
 尚、上記従来公知の正極板は、正極活物質、樹脂性のバインダー、あるいはさらに導電材などの添加材が含有されたスラリー状の塗工液を集電体表面上の少なくとも一部に塗布して、乾燥させ、必要に応じてプレスすることにより形成されることが一般的である。
非水電解液:
 本発明に用いられる非水電解液は、一般的に、非水電解液二次電池用の非水電解液として用いられるものであれば、特に限定されないが、リチウム塩を有機溶媒に溶解させた非水電解液が好ましく用いられる。
 上記リチウム塩の例としては、LiClO、LiBF、LiPF、LiAsF、LiCl、及びLiBr等の無機リチウム塩;LiB(C、LiN(SOCF、LiC(SOCF、LiOSOCF、LiOSO、LiOSO、LiOSO11、LiOSO13、及びLiOSO15等の有機リチウム塩;等が代表的に挙げられる。
 リチウム塩の溶解に用いられる有機溶媒としては、環状エステル類、鎖状エステル類、環状エーテル類、及び鎖状エーテル類等が挙げられる。
 上記環状エステル類としては、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、ビニレンカーボネート、2-メチル-γ-ブチロラクトン、アセチル-γ-ブチロラクトン、及びγ-バレロラクトン等が挙げられる。
 上記鎖状エステル類としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、メチルブチルカーボネート、メチルプロピルカーボネート、エチルブチルカーボネート、エチルプロピルカーボネート、ブチルプロピルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、及び酢酸アルキルエステル等が挙げられる。
 上記環状エーテル類としては、テトラヒドロフラン、アルキルテトラヒドロフラン、ジアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3-ジオキソラン、アルキル-1,3-ジオキソラン、及び1,4-ジオキソラン等が挙げられる。
 上記鎖状エーテル類としては、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、及びテトラエチレングリコールジアルキルエーテル等が挙げられる。
 上記正極板、負極板、セパレータ、非水電解液を用いて製造される電池の構造としては、従来公知の構造を適宜選択して用いることができる。例えば、正極板及び負極板を、ポリエチレン製多孔質フィルムのようなセパレータを介して渦巻状に巻き回して、電池容器内に収納する構造が挙げられる。また別の態様としては、所定の形状に切り出した正極板及び負極板をセパレータを介して積層して固定し、これを電池容器内に収納する構造を採用してもよい。いずれの構造においても、正極板及び負極板を電池容器内に収納後、正極板に取り付けられたリード線を外装容器に設けられた正極端子に接続し、一方、負極板に取り付けられたリード線を外装容器内に設けられた負極端子に接続し、さらに電池容器内に非水電化液を充填した後、密閉することによって非水電解液二次電池が製造される。
(実施例1)
負極板の作製:
 金属酸化物を生成する原料として、塩化銅40gをメタノール40gに加えて、さらに負極活物質として、平均粒径20μmの人造黒鉛20gを混合させ、エクセルオートホモジナイザー(株式会社日本精機製作所)で8000rpmの回転数で15分間混練することによって負極活物質層形成用組成物を作製した。
 次に、負極集電体である厚さ10μmの電解銅箔を置き、当該負極集電体の一面側に、上記にて調製した電極活物質層形成用組成物を、アプリケーター(2mil)で塗布して塗膜を形成した。
 そして、上記塗膜の形成された負極集電体を電気炉内に設置し、250℃で1時間の条件で加熱し、集電体上に厚み20μmの電極活物質層を形成し、負極板を形成した。上記負極板を、所定の大きさ(直径15mmの円)に裁断し、実施例1とした。
三極式ビーカーセルの作製:
 エチレンカーボネート(EC)/ジメチルカーボネート(DMC)混合溶媒(体積比=1:1)に、溶質として六フッ化リン酸リチウム(LiPF)を加えて、当該溶質であるLiPFの濃度が、1mol/Lとなるように濃度調整して、非水電解液を調製した。
 作用極として上記にて作製した実施例1である負極板(直径15mmの円、負極活物質層の重量:16.7g/m)、対極及び参照極としてニッケルメッシュ上に金属リチウム箔を圧着した金属リチウム板、電解液として上記にて作製した非水電解液を用い、各電極板(負極板、対極、参照極)には、予めスポット溶接機を用いてリード線(ニッケル線)を取り付けた後、三極式ビーカーセルを組み立て、実施例1試験セルを作製し、下記充放電試験に供した。
<電極活物質層の密着性評価>
 集電体上に形成された電極活物質層の該集電体への密着性評価は、以下のとおり判断した。即ち、得られた実施例あるいは比較例を用いて、上述のとおり三極式ビーカーセルを作製する際に、電極活物質層の一部に剥離が発生し、後述する充放電試験に供与することができなかった場合には、電極活物質層の密着性は不良、と評価した。一方、三極式ビーカーセルを作製した際に電極活物質層の剥離が観察されず、後述する充放電試験を実施することができた場合には、電極活物質層の密着性は良好と評価した。評価結果は表2にまとめて示す。
<充放電試験>
 上述のとおり作成した三極式ビーカーセルである実施例試験セル1において、作用極の放電試験を実施するために、まず実施例試験セル1の下記充電試験のとおり満充電させた。
充電試験:
 実施例試験セル1を、25℃の環境下で、電圧が0.03Vに達するまで定電流(651μA)で定電流充電し、当該電圧が0.03Vに達した後は、電圧が0.03Vを下回らないように、当該電流(放電レート:1C)が5%以下となるまで減らしていき、定電圧で充電を行ない、満充電させた後、10分間休止させた。尚、ここで、上記「1C」とは、上記三極式ビーカーセルを用いて定電流放電して、1時間で放電終了となる電流値(放電終止電圧に達する電流値)のことを意味する。また上記定電流は、実施例試験セル1における作用極において、活物質である人造黒鉛の理論放電量372mAh/gが1時間で放電されるよう設定された。
放電試験:
 その後、満充電された実施例試験セル1を、25℃の環境下で、電圧が0.03V(満充電電圧)から2.0V(放電終止電圧)になるまで、定電流(651μA)(放電レート:1C)で定電流放電し、縦軸にセル電圧(V)、横軸に放電時間(h)をとり、放電曲線を作成し、作用極(実施例1である負極板)の放電容量(mAh)を求め、当該作用極の単位活物質重量当たりの放電容量(mAh/g)に換算した。
 続いて、上述のとおり実施した定電流(651μA)(放電レート:1C、放電終了時間:1時間)での定電流放電試験を基準として、2倍の定電流(1.30mA)(放電レート:2C、放電終了時間:30分)、5倍の定電流(3.26mA)(放電レート:5C、放電終了時間:12分)、10倍の定電流(6.51mA)(放電レート:10C、放電終了時間:6分)50倍の定電流(32.55mA)(放電レート:50C、放電終了時間:1.2分)においても、同様にして各々定電流放電試験を行ない、各放電レートにおける作用極の放電容量(mAh)を求め、これより単位活物質重量当たりの放電容量(mAh/g)を換算した。
<放電容量維持率(%)の算出>
 作用極の放電レート特性を評価するため、上述のとおり得られた各放電レートにおける単位活物質重量当たりの各放電容量(mAh/g)を用い、上述する数1において示す式により放電容量維持率(%)を求めた。尚、上記放電試験により得られた単位活物質重量当たりの放電容量(mAh/g)及び放電容量維持率(%)は、いずれも表2にまとめて示す。
<アルカリ金属吸蔵放出確認試験>
 実施例1における電極活物質層中に生成される金属酸化物および金属単体がアルカリ金属を吸蔵放出しないか否かについて、以下のとおり確認した。尚、本試験では、特に、集電体上に生成される金属酸化物がリチウム金属を吸蔵放出するか否かについて確認した。
 まず、負極活物質を用いないこと以外は実施例1と同様に積層体を形成し、これを参考例1とした。そして、上記参考例1を用いてCV試験を行った。具体的には、まず電極電位を2.0Vから0.3Vまで掃引したのち、再び2.0Vまで戻す作業を2度繰り返した。走査速度は1mV/秒とした。1サイクル目には種々の分解反応により、電流が検出される。2サイクル目の結果を示すサイクリックボリタモグラム(図1)には、サイクリックなピークが確認されず、参考例1において生成される酸化銅が、リチウムイオンの吸蔵および放出を行わないことがわかった。以上より、実施例1において集電体上に形成される金属酸化物である酸化銅が、リチウムイオンを吸蔵放出しないことを予め確認した。表2において上記結果を、アルカリ金属吸蔵放出、「無し」として示した。尚、本実施例では、CV試験は、Bio Logic社製のVMP3を用いて実施した。
(実施例2乃至9)
 使用する金属塩、負極活物質、溶媒、および負極集電体を表1に示す内容に変更した以外は実施例1と同様に負極板を作製し、規定の大きさに裁断して実施例2乃至9とした。尚、実施例2、実施例7、及び実施例8には、溶媒に表1に示す導電材もさらに添加した後、ホモジナイザーで混練した。また、実施例1乃至9のいずれにおいても、樹脂性のバインダーは使用しなかった。実施例1乃至9における電極活物質層の厚みは、表2に示す。
 上述のとおり作成した実施例2乃至9について、三極式ビーカーセルを作成し、それぞれ実施例試験セル2乃至9とした。そしてこれらを用いて、実施例試験セル1と同様の方法で充放電試験を行い、放電容量維持率(%)を算出した。結果は、表2にまとめて示す。尚、各実施例試験セルを用いた充放電試験は、実施例試験セル1が放電レート1Cにおける定電流を651μAとしたのに対し、実施例試験セル2では374μA、実施例試験セル3では662μA、実施例試験セル4では445μA、実施例試験セル5では803μA、実施例試験セル6では944μA、実施例試験セル7では389μA、実施例試験セル8では384μA、実施例試験セル9では861μAとして実施した。
 尚、実施例9については、金属酸化物を生成するための原料である金属塩は、まず硝酸ランタン3gと酢酸リチウム0.28gをイソプロピルアルコール1.5g、エタノール24.7gの混合溶媒で混ぜて攪拌し、溶解させた。次いで、チタンジイソプロポキシビスアセチルアセテート4.5gをさらに添加して攪拌した後、ポリエチレングリコール6gを加えて攪拌して調製した。
 また、実施例1に関し行ったアルカリ金属吸蔵放出確認試験と同様に、実施例2乃至9について参考例2乃至9を形成し、試験を行った。この結果、参考例2乃至9のいずれについても、サイクリックボルタモグラムにおいてピークが確認されず、各実施例において生成される金属酸化物がリチウム金属の吸蔵放出を行わないことを予め確認した。結果について表2にまとめて示す。
(比較例1)
 負極活物質の原料に平均粒径20μmの人造黒鉛41g、溶媒にN-メチル-2-ピロリドンを56g、樹脂性のバインダーとして、ポリフッ化ビニリデンを3g混合させ、エクセルオートホモジナイザー(株式会社日本精機製作所)で8000rpmの回転数で15分間混練することによって、スラリー状の塗工組成物を得た。次いで、得られたスラリー状の塗工組成物を負極集電体である厚さ10μmの銅箔上に、アプリケーター(1mil)で塗工し、熱風乾燥を行い、厚み25μmの負極活物質層を形成させた。
 さらに、形成された負極活物質層の塗工密度が1.0g/cmとなるように、ロールプレス機を用いてプレスした後、所定の大きさ(直径15mmの円)に裁断し、120℃にて12時間、真空乾燥させて、負極板を作製し、比較例1とした。そして、実施例1と同様に、電極活物質層の集電体に対する密着性を評価した。結果については、表1に示す。
<充電試験及び放電試験>
 次に、実施例1の代わりに比較例1を用いたこと以外は、実施例1試験セルの作成方法と同様にして比較例1の三極式ビーカーセルを作製し、比較例1試験セルを得た。そして、比較例試験セル1について、各放電レートにおける定電流を、定電流(1.22mA)(放電レート:1C、放電終了時間:1時間)、定電流(12.2mA)(放電レート:10C、放電終了時間:6分)、定電流(24.4mA)(放電レート:20C、放電終了時間:3分)、定電流(61.0mA)(放電レート:50C、放電終了時間:1.2分)としたこと以外は、実施例試験セル1と同様に充電試験及び放電試験を実施し、各放電レートにおける作用極の放電容量(mAh)を求め、これより単位活物質重量当たりの放電容量(mAh/g)を換算した。また実施例試験セル1と同様に、上記数1において示す式を用いて、放電容量維持率(%)を求めた。結果については、表3にまとめて示す。
(比較例2)
 樹脂性のバインダーを用いないこと以外は、比較例1と同様に負極板を形成し、これを比較例2とした。比較例2を用いて実施例1と同様に試験セルを作成し、充放電試験を実施しようとしたが、電極活物質層の集電体に対する密着性が不良であり、電極活物質層が集電体より剥離し、充放電試験の実施が不可能であった。
 表2および表3に示すとおり、実施例1乃至9は、いずれも、比較例1より放電容量維持率が高いことが示された。特に、いずれの実施例においても、放電レート10Cにおいて、いずれの実施例でも、80%以上の放電容量維持率が示され、放電レート特性に優れた負極板作製されたことが確認された。また実施例1乃至7および9については、さらに放電レートを50Cに上げても、放電容量維持率が60%以上であり、非常に優れた高出入力特性が示されることが確認された。
 以上のとおり、本発明の非水電解液二次電池用負極板は、非常に高い放電容量維持率を示すことができ、したがって非常に高い放電レート特性を備えていることが確認された。これにより充電レート特性も同様に高いことが推察された。即ち、上記充放電試験から、本発明の負極板は出入力特性が優れていることが確認された。したがって、非水電解液二次電池において、本発明を負極板として使用することにより、従来よりも優れた放電レート特性を示す非水電解液二次電池を提供することが可能である。
 一方、比較例1の負極板は、放電レート1、2、5Cでは充放電可能であったが、10C以上に放電レートを高くすると放電カーブが不安定になり、容量維持率の計算に至らなかった。以上の結果から、樹脂性のバインダーを使用する従来の非水電解液二次電池用負極板に比べて、本発明の負極板の方が、高出入力化に優れていることが示された。
 また比較例2では、樹脂性のバインダーが使用されなかったことにより、電極活物質層が実質的に形成不能であったことが確認された。これに対し、実施例1乃至9では、樹脂性のバインダーを用いずとも、電極活物質層の集電体への密着性が、比較例1と同等に良好であることが確認された。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (10)

  1.  集電体と、
     集電体上に積層され、負極活物質と、金属酸化物あるいは金属単体とを少なくとも含む電極活物質層とを備え、
     上記負極活物質が、上記金属酸化物または上記金属単体により上記集電体上に固着されていることを特徴とする非水電解液二次電池用負極板。
  2.  上記金属酸化物または上記金属単体が、アルカリ金属を吸蔵、放出しないことを特徴とする請求項1に記載の非水電解液二次電池用負極板。
  3.  上記金属酸化物が、酸化銅、酸化イットリウム、酸化鉄、酸化バリウム、または酸化亜鉛であり、あるいは上記金属単体が、銅、イットリウム、鉄、バリウム、または亜鉛であることを特徴とする請求項2に記載の非水電解液二次電池用負極板。
  4.  上記金属酸化物が、金属元素3種からなる三元系の複合金属酸化物、あるいは上記金属単体が、金属元素3種からなる三元系の複合金属であることを特徴とする請求項2に記載の非水電解液二次電池用負極板。
  5.  上記三元系の複合金属酸化物が、LaXLiYTiOであり、あるいは、上記三元系の複合金属が、LaXLiYTiであることを特徴とする請求項4に記載の非水電解液二次電池用負極板。
  6.  上記三元系の複合金属酸化物(LaXLiYTiO)あるいは、上記三元系の複合金属(LaXLiYTi)において、ランタンとリチウムの比率が、0<X<1、0<Y<1の範囲であることを特徴とする請求項5に記載の非水電解液二次電池用負極板。
  7.  上記負極活物質が炭素材料またはチタン酸リチウムであることを特徴とする請求項1に記載の非水電解液二次電池用負極板。
  8.  上記金属単体は、上記金属酸化物が電極活物質層中において還元されて生成されたものであることを特徴とする請求項1に記載の非水電解液二次電池用負極板。
  9.  正極板と、
     負極板と、
     上記正極板と上記負極板との間に介在するセパレータと、
     非水溶媒を含む電解液と、
     これら正極板、負極板、セパレータおよび電解液を収納する容器とを備え、
     上記負極板は、
     集電体と、
     集電体上に積層され、負極活物質と、金属酸化物あるいは金属単体とを少なくとも含む電極活物質層とを備え、
     上記負極活物質が、上記金属酸化物または上記金属単体により上記集電体上に固着されていることを特徴とする非水電解液二次電池。
  10.  集電体を準備する工程と、
     金属イオンが含有される金属イオン溶液に少なくとも負極活物質を混合させて電極活物質層形成用組成物を作製する工程と、
     上記電極活物質層形成用組成物を集電体上に塗布して塗膜を形成し、次いで、加熱することによって、上記金属イオンが酸化されてなる金属酸化物を形成するとともに、上記金属酸化物により、上記負極活物質を上記集電体上に固着させることによって電極活物質層を形成する工程とを備えたことを特徴とする非水電解液二次電池用負極板の製造方法。
PCT/JP2010/056584 2009-04-24 2010-04-13 非水電解液二次電池用負極板、非水電解液二次電池用負極板の製造方法、および非水電解液二次電池 WO2010122922A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/139,688 US8673492B2 (en) 2009-04-24 2010-04-13 Cathode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CN2010800183553A CN102414877A (zh) 2009-04-24 2010-04-13 非水电解液二次电池用负极板、非水电解液二次电池用负极板的制备方法及非水电解液二次电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-107185 2009-04-24
JP2009107185 2009-04-24
JP2009226482A JP4930733B2 (ja) 2009-04-24 2009-09-30 非水電解液二次電池用負極板、非水電解液二次電池用負極板の製造方法、および非水電解液二次電池
JP2009-226482 2009-09-30

Publications (1)

Publication Number Publication Date
WO2010122922A1 true WO2010122922A1 (ja) 2010-10-28

Family

ID=43011040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056584 WO2010122922A1 (ja) 2009-04-24 2010-04-13 非水電解液二次電池用負極板、非水電解液二次電池用負極板の製造方法、および非水電解液二次電池

Country Status (4)

Country Link
US (1) US8673492B2 (ja)
JP (1) JP4930733B2 (ja)
CN (1) CN102414877A (ja)
WO (1) WO2010122922A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133394A1 (ja) * 2012-03-07 2013-09-12 株式会社村田製作所 全固体電池
CN103682298A (zh) * 2013-11-27 2014-03-26 上海纳米技术及应用国家工程研究中心有限公司 一种掺镧钛酸锂复合材料及制备方法和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030881A1 (ja) * 2011-08-30 2013-03-07 トヨタ自動車株式会社 車両
WO2014113795A1 (en) * 2013-01-21 2014-07-24 Kinestral Technologies, Inc. Process for preparing a multi-layer electrochromic structure
US10670936B2 (en) 2014-07-23 2020-06-02 Kinestral Technologies, Inc. Wet-coating of thin film lithium nickel oxides for electrochromic applications
US10061177B2 (en) 2014-07-23 2018-08-28 Kinestral Technologies, Inc. Process for preparing multi-layer electrochromic stacks
CN106953352A (zh) * 2016-01-07 2017-07-14 张建城 钠氯化物储热蓄电发电装置
JP6640690B2 (ja) * 2016-09-21 2020-02-05 株式会社東芝 電極構造体、二次電池、電池パック及び車両
CN114391194A (zh) * 2019-12-23 2022-04-22 株式会社Lg新能源 锂金属电池及其制造方法
CN111600076A (zh) * 2020-05-02 2020-08-28 安徽五行动力新能源有限公司 一种锂电池叠片加工工艺
KR20210142487A (ko) * 2020-05-18 2021-11-25 주식회사 엘지에너지솔루션 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
US20240266536A1 (en) * 2021-08-19 2024-08-08 Vehicle Energy Japan Inc. Lithium Ion Secondary Battery
JP7500517B2 (ja) 2021-09-07 2024-06-17 プライムアースEvエナジー株式会社 二次電池の負極材の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349482A (ja) * 1993-06-07 1994-12-22 Sharp Corp リチウム二次電池
JP2002141069A (ja) * 2000-08-21 2002-05-17 Samsung Sdi Co Ltd リチウム二次電池用の電極及びリチウム二次電池
JP2004103304A (ja) * 2002-09-05 2004-04-02 National Institute Of Advanced Industrial & Technology 高性能二次電池
JP2007527603A (ja) * 2004-08-17 2007-09-27 エルジー・ケム・リミテッド 安全性及び性能が向上されたリチウム二次電池

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902589A (en) 1988-06-08 1990-02-20 Moli Energy Limited Electrochemical cells, electrodes and methods of manufacture
JPH09503092A (ja) 1993-09-27 1997-03-25 アーサー・ディー・リトル・インコーポレイテッド エーロゾル法による粉体電極
US5856045A (en) 1996-11-13 1999-01-05 Mitsubshi Chemical Corporation Lithium ion electrolytic cell and method for fabricating same
JPH10208747A (ja) 1997-01-29 1998-08-07 Hitachi Ltd 二次電池および二次電池を利用した組電池と機器システム
JPH11144736A (ja) 1997-11-12 1999-05-28 Mitsubishi Chemical Corp リチウムイオン電解質電池および該電池の製造方法
JP2000277119A (ja) 1999-03-26 2000-10-06 Kyocera Corp リチウム電池
EP1142834A4 (en) 1999-11-15 2009-06-17 Mitsubishi Chem Corp LITHIUM MANGANIC OXIDE, POSITIVE ELECTRODE MATERIAL FOR SECONDARY LITHIUM CELLS, POSITIVE ELECTRODE AND SECONDARY LITHIUM CELL AND METHOD FOR PRODUCING LITHIUM MANGANIC OXIDE
JP2001155739A (ja) 1999-11-24 2001-06-08 Nissha Printing Co Ltd 二次電池用正極および二次電池
KR100378014B1 (ko) 2000-08-21 2003-03-29 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 리튬 이차 전지
JP4799776B2 (ja) 2000-08-22 2011-10-26 富士フイルム株式会社 電解質組成物及びそれを用いた電気化学電池
JP3809770B2 (ja) 2001-02-28 2006-08-16 財団法人電力中央研究所 電池材料の製造方法
EP1403944A4 (en) 2001-05-15 2008-08-13 Fdk Corp WATER-FREE ELECTROLYTIC SECONDARY BATTERY AND METHOD FOR PRODUCING AN ANODE MATERIAL THEREFOR
JP2003142101A (ja) 2001-10-31 2003-05-16 Nec Corp 二次電池用正極およびそれを用いた二次電池
JP2003317707A (ja) 2002-04-26 2003-11-07 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極とその製造方法
JP4767484B2 (ja) 2002-08-08 2011-09-07 パナソニック株式会社 非水電解質二次電池用正極活物質の製造法および正極活物質
WO2004022484A1 (ja) * 2002-09-05 2004-03-18 National Institute Of Advanced Industrial Science And Technology 金属酸化物、金属窒化物又は金属炭化物コート炭素微粉末、その製造方法、当該炭素微粉末を用いたスーパーキャパシター及び二次電池
JP4610213B2 (ja) 2003-06-19 2011-01-12 三洋電機株式会社 リチウム二次電池及びその製造方法
JP4407211B2 (ja) 2003-09-02 2010-02-03 日産自動車株式会社 非水電解質二次電池
JP2005078985A (ja) 2003-09-02 2005-03-24 Toshiba Battery Co Ltd 非水系二次電池用電極及びこれを用いたリチウム二次電池。
US7687102B2 (en) 2003-10-23 2010-03-30 Medtronic, Inc. Methods and apparatus for producing carbon cathodes
US20050130042A1 (en) * 2003-12-11 2005-06-16 Byd America Corporation Materials for positive electrodes of lithium ion batteries and their methods of fabrication
CN1627550A (zh) * 2003-12-11 2005-06-15 比亚迪股份有限公司 锂离子电池正极材料及其制备方法
JP4834975B2 (ja) 2004-09-30 2011-12-14 大日本印刷株式会社 活物質層用塗工組成物、非水電解液二次電池用電極板、及び非水電解液二次電池
US7829242B2 (en) 2004-10-21 2010-11-09 Evonik Degussa Gmbh Inorganic separator-electrode-unit for lithium-ion batteries, method for the production thereof and use thereof in lithium batteries
JP4193141B2 (ja) 2005-03-25 2008-12-10 ソニー株式会社 リチウム二次電池用負極およびリチウム二次電池、並びにそれらの製造方法
JP2006310010A (ja) 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP5093997B2 (ja) 2005-06-30 2012-12-12 三洋電機株式会社 非水電解質二次電池及びその製造方法
FR2890785A1 (fr) 2005-09-15 2007-03-16 Batscap Sa Dispositif de stockage d'energie electrique comprenant une couche barriere de protection du collecteur
US20070154807A1 (en) 2005-12-30 2007-07-05 Yevgen Kalynushkin Nanostructural Electrode and Method of Forming the Same
JP5194709B2 (ja) 2007-10-19 2013-05-08 住友電気工業株式会社 全固体電池およびその製造方法
JP5262143B2 (ja) * 2008-01-31 2013-08-14 トヨタ自動車株式会社 正極体およびその製造方法
JP5293020B2 (ja) 2008-09-10 2013-09-18 住友化学株式会社 非水電解質二次電池用電極合剤、電極および非水電解質二次電池
JP2010129418A (ja) 2008-11-28 2010-06-10 Sumitomo Chemical Co Ltd 無機粒子バインダを用いた電極、及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349482A (ja) * 1993-06-07 1994-12-22 Sharp Corp リチウム二次電池
JP2002141069A (ja) * 2000-08-21 2002-05-17 Samsung Sdi Co Ltd リチウム二次電池用の電極及びリチウム二次電池
JP2004103304A (ja) * 2002-09-05 2004-04-02 National Institute Of Advanced Industrial & Technology 高性能二次電池
JP2007527603A (ja) * 2004-08-17 2007-09-27 エルジー・ケム・リミテッド 安全性及び性能が向上されたリチウム二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133394A1 (ja) * 2012-03-07 2013-09-12 株式会社村田製作所 全固体電池
CN103682298A (zh) * 2013-11-27 2014-03-26 上海纳米技术及应用国家工程研究中心有限公司 一种掺镧钛酸锂复合材料及制备方法和应用

Also Published As

Publication number Publication date
CN102414877A (zh) 2012-04-11
US8673492B2 (en) 2014-03-18
US20110250494A1 (en) 2011-10-13
JP2010272503A (ja) 2010-12-02
JP4930733B2 (ja) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4930733B2 (ja) 非水電解液二次電池用負極板、非水電解液二次電池用負極板の製造方法、および非水電解液二次電池
JP5136804B2 (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池
JP5196197B2 (ja) 非水電解液二次電池用電極板の製造方法
JP5212394B2 (ja) 非水電解液二次電池用電極板の製造方法
JP2012094405A (ja) 非水電解液二次電池用活物質、非水電解液二次電池用正極板、及び非水電解液二次電池、並びに電池パック
JP4924852B2 (ja) 非水電解液二次電池用電極板の製造方法
JP4811613B2 (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池
JP4775605B2 (ja) 非水電解液二次電池用電極板の製造方法
JP2010086712A (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池
JP4924763B1 (ja) 非水電解液二次電池用正極板、非水電解液二次電池、および非水電解液二次電池用正極板の製造方法、並びに電池パック
JP4695718B2 (ja) 非水電解液二次電池
JP2012190726A (ja) 非水電解液二次電池用負極板、非水電解液二次電池、および電池パック
JP2011100746A (ja) 非水電解液二次電池用負極板、非水電解液二次電池用負極板の製造方法、および非水電解液二次電池
JP2011003554A (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池
JP2011003555A5 (ja)
JP2012049136A (ja) 非水電解液二次電池用電極板および非水電解液二次電池
JP2011100747A (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池
JP2012094352A (ja) 非水電解液二次電池用正極板、非水電解液二次電池、および非水電解液二次電池用正極板の製造方法、並びに電池パック
JP2011204460A (ja) 非水電解液二次電池用正極板、非水電解液二次電池用正極板の製造方法、および非水電解液二次電池
JP2012094335A (ja) 非水電解液二次電池用負極板、非水電解液二次電池、電池パック、非水電解液二次電池用負極板の製造方法、および負極用電極活物質層の形成方法
JP2011204458A (ja) 非水電解液二次電池用正極板、非水電解液二次電池用正極板の製造方法、および非水電解液二次電池
JP2011181532A (ja) 非水電解液二次電池用電極板の製造方法
JP2012094334A (ja) 非水電解液二次電池用正極板、非水電解液二次電池、電池パック、非水電解液二次電池用正極板の製造方法、および正極用電極活物質層の形成方法
JP2011100748A (ja) 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池
JP2011071105A (ja) 非水電解液二次電池用負極板、非水電解液二次電池用負極板の製造方法、非水電解液二次電池、および電池パック

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018355.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766979

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13139688

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766979

Country of ref document: EP

Kind code of ref document: A1