[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009107734A1 - カラーフィルター用着色樹脂組成物、カラーフィルター、有機elディスプレイおよび液晶表示装置 - Google Patents

カラーフィルター用着色樹脂組成物、カラーフィルター、有機elディスプレイおよび液晶表示装置 Download PDF

Info

Publication number
WO2009107734A1
WO2009107734A1 PCT/JP2009/053579 JP2009053579W WO2009107734A1 WO 2009107734 A1 WO2009107734 A1 WO 2009107734A1 JP 2009053579 W JP2009053579 W JP 2009053579W WO 2009107734 A1 WO2009107734 A1 WO 2009107734A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
dye
color filter
resin composition
Prior art date
Application number
PCT/JP2009/053579
Other languages
English (en)
French (fr)
Inventor
直樹 迫
誠治 秋山
孝行 庄田
早恵 槇野
靖 志賀
敏明 横尾
美織 石田
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to KR1020107018758A priority Critical patent/KR101298884B1/ko
Priority to CN200980106409.9A priority patent/CN101960337B/zh
Publication of WO2009107734A1 publication Critical patent/WO2009107734A1/ja
Priority to US12/870,140 priority patent/US20110049444A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/02Dyestuff salts, e.g. salts of acid dyes with basic dyes
    • C09B69/04Dyestuff salts, e.g. salts of acid dyes with basic dyes of anionic dyes with nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/24Obtaining compounds having —COOH or —SO3H radicals, or derivatives thereof, directly bound to the phthalocyanine radical
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays

Definitions

  • the present invention relates to a colored resin composition capable of providing a blue pixel of a color filter having excellent spectral characteristics, a color filter having a pixel formed using the same, an organic EL display formed using the color filter, and
  • the present invention relates to a liquid crystal display device.
  • a color liquid crystal display device includes, as an example, a black matrix, a colored layer composed of a plurality of colors (usually three primary colors of red (R), green (G), and blue (B)), a transparent electrode, and an alignment layer.
  • the color filter substrate provided, the thin film transistor (TFT element), the counter electrode substrate provided with the pixel electrode and the alignment layer, the two substrates are opposed to each other with a predetermined gap, sealed with a sealing member, and liquid crystal is placed in the gap.
  • TFT element thin film transistor
  • the counter electrode substrate provided with the pixel electrode and the alignment layer
  • the two substrates are opposed to each other with a predetermined gap, sealed with a sealing member, and liquid crystal is placed in the gap.
  • a transmissive liquid crystal display device that is roughly configured from a liquid crystal layer formed by injecting a material.
  • a reflective liquid crystal display device in which a reflective layer is provided between the color filter substrate and the colored layer.
  • an organic EL display has an organic EL element having a structure in which an organic EL light emitting layer is sandwiched between an anode and a cathode.
  • color display is possible using the organic EL element.
  • CCM method that combines an organic EL element that emits blue light and a color conversion layer (CCM layer) that performs color conversion from blue to green and blue to red, respectively.
  • the method of (1) is characterized in that high color reproducibility can be exhibited because organic EL elements of each color are used. Therefore, by placing a color filter corresponding to the organic EL element of each color, it can be expected to improve color reproducibility and contrast by absorbing reflected light. . Further, the combination method of the white organic EL and the color filter in (2) and the CCM method in (3) only need to use one type of organic EL element that emits light of the same color. Unlike the EL display, it is not necessary to align the characteristics of the organic EL elements of each color, and the number of processes and materials can be reduced.
  • Non-patent Document 1 a method of finely dispersing the particle size of pigment particles to 1/2 or less of the coloration wavelength is known (Non-patent Document 1). Is shorter in coloration wavelength than other red and green pigments, and in this case, further fine dispersion is required, resulting in problems of cost increase and stability after dispersion.
  • Patent Document 3 describes a color filter provided with a blue filter layer containing C.I. Acid Blue 83 (triallylamine dye) and C.I. Solvent Blue 67 (copper phthalocyanine dye). ing.
  • C.I. Acid Blue 83 triallylamine dye
  • C.I. Solvent Blue 67 copper phthalocyanine dye
  • Patent Document 4 describes a color filter using a polymer containing a polymerizable triphenylmethane dye represented by the following formula.
  • the color filter using the dye described in this document has a problem that it has excellent spectral characteristics but has insufficient light resistance.
  • At least one of R 1 in the above formula is a specific polymerizable group containing a carbon-carbon double bond
  • An object of the present invention is to provide a colored resin composition that can provide a blue pixel of a color filter excellent in light resistance and that also satisfies the heat resistance required in the color display manufacturing process described above. It is another object of the present invention to provide a color filter excellent in color purity and transmittance of a blue pixel, an organic EL display having good blue purity, and a liquid crystal display device by using such a colored resin composition.
  • the present inventors have found that the above problem can be solved by using a salt made of a specific compound as a color material for forming a blue pixel of a color filter, and have reached the present invention. That is, the gist of the present invention is as follows.
  • a colored resin composition for a color filter containing (a) a binder resin, (b) a solvent, and (c) a coloring material, wherein (c) the coloring material contains a compound represented by the following general formula (I) .
  • Z represents an m-valent anion having an anthraquinone skeleton or a phthalocyanine skeleton.
  • M represents an integer of 1 to 4.
  • R represents a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, or an optionally substituted phenyl group, or adjacent Rs bonded to form a ring. Form. The ring may have a substituent. Each R may be the same or different.
  • R 101 is an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted alkenyl group having 2 to 6 carbon atoms, and an optionally substituted phenyl group. Or represents a fluorine atom.
  • R 102 may be a hydrogen atom, an alkyl group having 1 to 8 carbon atoms which may have a substituent, an alkenyl group having 2 to 6 carbon atoms which may have a substituent, or a substituent. Represents a good phenyl group or a fluorine atom.
  • R 101 and R 102 may be bonded to form a ring, and the ring may have a substituent.
  • any of the three benzene rings in the cation moiety of the general formula (I) may be substituted with a group other than —NR 2 , —R 101 and —R 102 .
  • a plurality of molecules per molecule May be the same structure or different structures. )
  • R 103 and R 104 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 8 carbon atoms.
  • a plurality of molecules per molecule May be the same structure or different structures.
  • M represents two hydrogen atoms, Cu, Mg, Al, Ni, Co, Fe, Zn, Ge, Mn, Si, Ti, V, or Sn.
  • An oxygen atom, a halogen atom, a hydroxyl group, an alkoxy group or an aryloxy group may be coordinated.
  • the —SO 3 — group in the formula is bonded to any carbon atom constituting the benzene ring in the phthalocyanine skeleton. Of the carbon atoms constituting these four benzene rings, the carbon atom to which the —SO 3 — group is not bonded may be substituted with any group.
  • m, R, and R 101 to R 104 have the same meaning as in the general formula (I ′), and a plurality of May be the same structure or different structures.
  • the —SO 3 — group is bonded to any carbon atom constituting the benzene ring in the phthalocyanine skeleton, and the phthalocyanine skeleton has a substituent other than the —SO 3 — group.
  • No. m, M, R, R 103 and R 104 have the same meanings as in the general formula (I ′), and a plurality of May be the same structure or different structures.
  • R 31 represents a hydrogen atom or a phenyl group which may have a substituent.
  • R 32 , R 33 and R 34 each independently represent a hydrogen atom, a hydroxyl group, —NHR 41 (R 41 has the same meaning as R 31 ), —SO 3 ⁇ , a halogen atom, —CO 2 R 42 (R 42 represents an alkyl group having 1 to 3 carbon atoms, and at least one of R 32 to R 34 is a —NHR 41 group.
  • R 35 , R 36 , R 37 and R 38 are each independently a hydrogen atom, —SO 3 ⁇ , a halogen atom, a phenoxy group, a naphthyloxy group, an alkoxyl group having 1 to 12 carbon atoms, —CO 2 R 43 , Represents a phenyl group, —SO 3 R 44 , or —SO 2 NHR 45 (wherein R 43 to R 45 each independently represents an alkyl group having 1 to 6 carbon atoms).
  • m —SO 3 — groups are bonded in one anthraquinone skeleton.
  • m, R, and R 101 to R 104 have the same meaning as in the general formula (I ′), and a plurality of May be the same structure or different structures. )
  • a colored resin composition for a color filter which contains (a) a binder resin, (b) a solvent, and (c) a coloring material, and (c) the coloring material contains a compound represented by the following general formula (V) object.
  • Z represents an m-valent anion having an anthraquinone skeleton or a phthalocyanine skeleton.
  • M represents an integer of 1 to 4.
  • R represents a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, or an optionally substituted phenyl group, or adjacent Rs bonded to form a ring. Form. The ring may have a substituent. Each R may be the same or different.
  • R 201 represents a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, a benzyl group, an optionally substituted phenyl group, or an optionally substituted naphthyl group. Represents a group.
  • R 202 has an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted phenyl group, an optionally substituted naphthyl group, or an optionally substituted group. Represents an aromatic heterocyclic group which may be substituted.
  • R 203 , R 204 , R 205 , and R 206 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, a perfluoroalkyl group having 1 to 8 carbon atoms, carbon
  • both of the two benzene rings in the cation moiety of the general formula (V) may be substituted with a group other than —NR 2 .
  • a plurality of molecules per molecule May be the same structure or different structures.
  • R 207 and R 208 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 8 carbon atoms.
  • a plurality of molecules per molecule May be the same structure or different structures.
  • M represents two hydrogen atoms, Cu, Mg, Al, Ni, Co, Fe, Zn, Ge, Mn, Si, Ti, V, or Sn.
  • An oxygen atom, a halogen atom, a hydroxyl group, an alkoxy group or an aryloxy group may be coordinated.
  • the —SO 3 — group in the formula is bonded to any carbon atom constituting the benzene ring in the phthalocyanine skeleton. Of the carbon atoms constituting these four benzene rings, the carbon atom to which the —SO 3 — group is not bonded may be substituted with any group.
  • m, R, R 201 , R 202 , R 207 and R 208 have the same meanings as in the general formula (V ′), and a plurality of May be the same structure or different structures.
  • the —SO 3 — group is bonded to any carbon atom constituting the benzene ring in the phthalocyanine skeleton, and the phthalocyanine skeleton is a substituent other than the —SO 3 — group.
  • R 31 represents a hydrogen atom or a phenyl group which may have a substituent.
  • R 32 , R 33 and R 34 each independently represent a hydrogen atom, a hydroxyl group, —NHR 41 (R 41 has the same meaning as R 31 ), —SO 3 ⁇ , a halogen atom, —CO 2 R 42 (R 42 represents an alkyl group having 1 to 3 carbon atoms, and at least one of R 32 to R 34 is a —NHR 41 group.
  • R 35 , R 36 , R 37 and R 38 are each independently a hydrogen atom, —SO 3 ⁇ , a halogen atom, a phenoxy group, a naphthyloxy group, an alkoxyl group having 1 to 12 carbon atoms, —CO 2 R 43 , Represents a phenyl group, —SO 3 R 44 , or —SO 2 NHR 45 (wherein R 43 to R 45 each independently represents an alkyl group having 1 to 6 carbon atoms).
  • m —SO 3 — groups are bonded in one anthraquinone skeleton.
  • m, R, R 201 , R 202 , R 207 and R 208 have the same meanings as in the general formula (V ′), and a plurality of May be the same structure or different structures. )
  • the coloring material contains a compound composed of a cationic blue pigment (pigment 1) and an anionic pigment (pigment 2), and the pigment 1 and the pigment 2 in the compound have the following (A) or (B) A colored resin composition for a color filter, characterized by satisfying.
  • the dye 1 is a cationic dye having a cationic site in the skeleton or having a cationic substituent as a substituent
  • the dye 2 is an anionic dye having an anionic substituent.
  • the colored resin composition for color filters according to any one of [1] to [17], further comprising (e) at least one of a photopolymerization initiation system and a thermal polymerization initiation system.
  • a liquid crystal display device comprising the color filter according to [20].
  • the color filter satisfies the light resistance, which is an extremely important item in the long-term reliability of the color filter, has the heat resistance required in the color display manufacturing process, and is excellent in color purity and transmittance of a blue pixel.
  • Color filters can be obtained.
  • the light emission of the organic EL display and the light emission of the backlight of the color filter can be efficiently taken out, and the organic EL display and the liquid crystal display device that achieve both high color reproducibility and high brightness. Can be provided.
  • the contrast of the liquid crystal display device can be improved.
  • (meth) acryl means “acryl and / or methacryl”, “acrylate and / or methacrylate” and the like, for example, “(meth) acrylic acid” "Means” acrylic acid and / or methacrylic acid ".
  • total solid content means all components of the colored resin composition for a color filter of the present invention other than the solvent components described later.
  • the colored resin composition for a color filter of the present invention contains (a) a binder resin, (b) a solvent, and (c) a color material, and (c) the color material is any of the following (1) to (3): It is characterized by being. Both are characterized by being superior in light resistance to conventional colorant compounds.
  • Z represents an m-valent anion having an anthraquinone skeleton or a phthalocyanine skeleton.
  • M represents an integer of 1 to 4.
  • R represents a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, or an optionally substituted phenyl group, or adjacent Rs bonded to form a ring. Form. The ring may have a substituent. Each R may be the same or different.
  • R 101 is an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted alkenyl group having 2 to 6 carbon atoms, and an optionally substituted phenyl group. Or represents a fluorine atom.
  • R 102 may be a hydrogen atom, an alkyl group having 1 to 8 carbon atoms which may have a substituent, an alkenyl group having 2 to 6 carbon atoms which may have a substituent, or a substituent. Represents a good phenyl group or a fluorine atom.
  • R 101 and R 102 may be bonded to form a ring, and the ring may have a substituent.
  • any of the three benzene rings in the cation moiety of the general formula (I) may be substituted with a group other than —NR 2 , —R 101 and —R 102 .
  • a plurality of molecules per molecule May be the same structure or different structures. )
  • Z represents an m-valent anion having an anthraquinone skeleton or a phthalocyanine skeleton.
  • M represents an integer of 1 to 4.
  • R represents a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, or an optionally substituted phenyl group, or adjacent Rs bonded to form a ring. Form. The ring may have a substituent. Each R may be the same or different.
  • R 201 represents a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, a benzyl group, an optionally substituted phenyl group, or an optionally substituted naphthyl group. Represents a group.
  • R 202 has an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted phenyl group, an optionally substituted naphthyl group, or an optionally substituted group. Represents an aromatic heterocyclic group which may be substituted.
  • R 203 , R 204 , R 205 , and R 206 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, a perfluoroalkyl group having 1 to 8 carbon atoms, carbon
  • both of the two benzene rings in the cation moiety of the general formula (V) may be substituted with a group other than —NR 2 .
  • a plurality of molecules per molecule May be the same structure or different structures.
  • a compound comprising a cationic blue dye (Dye 1) and an anionic dye (Dye 2) (hereinafter, this compound may be referred to as “Dye 1—Dye 2 Compound”).
  • Dye 1—Dye 2 Compound A compound comprising a cationic blue dye (Dye 1) and an anionic dye (Dye 2) (hereinafter, this compound may be referred to as “Dye 1—Dye 2 Compound”).
  • the dye 1 and the dye 2 in the dye 2 compound satisfy the following (a) or (b).
  • the component (c) other than the color material can be used without particular limitation as long as it can be used as a color filter forming material.
  • any type of resin composition such as a thermosetting resin composition described in JP-A-60-184202 and a photopolymerizable resin composition described later may be used.
  • a thermosetting resin composition When forming a pixel for a color filter by a photolithography method, if a thermosetting resin composition is used, it is necessary to form an image by further providing a positive resist layer or the like for pattern formation. From the viewpoint of simplicity of the process, a photopolymerizable resin composition is preferable.
  • an exposure step or the like is not necessary, and therefore a thermosetting resin composition is preferable.
  • the colored resin composition for a color filter of the present invention comprises (a) a binder resin, (b) a solvent, and (c) a coloring material as essential components, preferably (d) a monomer, (e) a photopolymerization initiation system, and / Or thermal polymerization initiating system, (f) contains pigment, and further contains other components blended as necessary.
  • the color material (c) according to the first aspect of the present invention contains a compound represented by the following general formula (I), and among the compounds represented by the general formula (I), in particular, R
  • a colored resin composition for a color filter capable of forming a good pixel with good balance in all of heat resistance, light resistance and color
  • a colored resin composition for a color filter that can form a pixel with significantly good color Offer things.
  • Z represents an m-valent anion having an anthraquinone skeleton or a phthalocyanine skeleton.
  • M represents an integer of 1 to 4.
  • R represents a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, or an optionally substituted phenyl group, or adjacent Rs bonded to form a ring. Form. The ring may have a substituent. Each R may be the same or different.
  • R 101 is an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted alkenyl group having 2 to 6 carbon atoms, and an optionally substituted phenyl group. Or represents a fluorine atom.
  • R 102 may be a hydrogen atom, an alkyl group having 1 to 8 carbon atoms which may have a substituent, an alkenyl group having 2 to 6 carbon atoms which may have a substituent, or a substituent. Represents a good phenyl group or a fluorine atom.
  • R 101 and R 102 may be bonded to form a ring, and the ring may have a substituent.
  • any of the three benzene rings in the cation moiety of the general formula (I) may be substituted with a group other than —NR 2 , —R 101 and —R 102 .
  • a plurality of molecules per molecule May be the same structure or different structures. )
  • R in the general formula (I) represents a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, or an optionally substituted phenyl group, or adjacent R. Combine to form a ring.
  • a plurality of R may be the same or different. Accordingly, the —NRR group may be left-right symmetric or left-right asymmetric.
  • each R is preferably independently a hydrogen atom, an optionally substituted alkyl group having 2 to 8 carbon atoms, or an optionally substituted phenyl group. Or an adjacent R is bonded to form a ring, more preferably an optionally substituted alkyl group having 2 to 8 carbon atoms or an optionally substituted phenyl It is a group.
  • R 101 is an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted alkenyl group having 2 to 6 carbon atoms, and an optionally substituted phenyl group. Or represents a fluorine atom.
  • R 101 has a group other than a hydrogen atom, or is bonded to R 102 to form a part of the ring, thereby forming a plane composed of a benzene ring adjacent to the sp2 carbon at the center of the triarylmethine structure.
  • the benzene ring to which R 101 is bonded has a twisted positional relationship, it has blue absorption, and the spectral characteristics of the coloring composition for color filters using this improve, and the contrast of the blue display member is improved. Since it is improved, it is preferable.
  • R 102 may be a hydrogen atom, an alkyl group having 1 to 8 carbon atoms which may have a substituent, an alkenyl group having 2 to 6 carbon atoms which may have a substituent, or a substituent. Represents a good phenyl group or a fluorine atom.
  • R 102 is preferably a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, or an optionally substituted carbon atom.
  • a alkenyl group of 2 to 6 or R 101 forms a part of the ring, more preferably a hydrogen atom or R 101 forms a part of the ring.
  • R 101 and R 102 may be bonded to form a ring.
  • Specific examples of the ring formed by combining R 101 and R 102 include the following.
  • the ring may have a substituent.
  • R is an alkyl group or a phenyl group
  • R 101 and R 102 are each independently an alkyl group, an alkenyl group or a phenyl group
  • these groups may further have a substituent.
  • adjacent Rs or a ring formed by combining R 101 and R 102 may have a substituent. Examples of the substituent include those exemplified in the following substituent group W.
  • (Substituent group W) Fluorine atom, chlorine atom, alkyl group having 1 to 8 carbon atoms, alkenyl group having 1 to 8 carbon atoms, alkoxyl group having 1 to 8 carbon atoms, phenyl group, mesityl group, tolyl group, naphthyl group, cyano group, acetyloxy Group, alkyl carboxyl group having 2 to 9 carbon atoms, sulfonic acid amide group, sulfone alkylamide group having 2 to 9 carbon atoms, alkylcarbonyl group having 2 to 9 carbon atoms, phenethyl group, hydroxyethyl group, acetylamide group, carbon A dialkylaminoethyl group, a trifluoromethyl group, a trialkylsilyl group having 1 to 8 carbon atoms, a nitro group, an alkylthio group having 1 to 8 carbon atoms, or a vinyl group, which is formed by
  • R, R 101 , and R 102 have a substituent having an alkyl group having 2 to 8 carbon atoms, an alkoxyl group having 2 to 8 carbon atoms, a cyano group, an acetyloxy group, or an alkyl having 2 to 8 carbon atoms.
  • a carboxyl group, a sulfonic acid amide group, and a sulfonealkylamide group having 2 to 8 carbon atoms are preferred.
  • the ring formed by bonding of adjacent Rs or R 101 and R 102 has, preferably an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or a silyl group , Carboxyl group, cyano group, sulfonic acid amide group and the like.
  • any of the three benzene rings in the cation moiety may be substituted with a group other than —NR 2 , —R 101 and —R 102 . That is, you may have a substituent other than having specified in general formula (I) in the range which does not impair the effect of this invention. Examples of such a substituent include a halogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted alkoxy group having 1 to 8 carbon atoms, and a cyano group. Etc.
  • alkyl groups and alkoxy groups may have include a halogen atom, an alkoxy group having 1 to 8 carbon atoms, an acyl group having 2 to 9 carbon atoms, an alkoxycarbonyl group having 2 to 9 carbon atoms, a cyano group, Examples thereof include a phenyl group which may be substituted with any group, and a naphthyl group which may be substituted with any of the above groups.
  • the o-position does not have a substituent or is substituted with a halogen atom or an alkyl group having 1 to 4 carbon atoms.
  • m represents an integer of 1 to 4.
  • the compound represented by the general formula (I) is preferably a compound represented by the following general formula (I ′).
  • R 103 and R 104 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 8 carbon atoms.
  • a plurality of molecules per molecule May be the same structure or different structures.
  • R 103 and R 104 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 8 carbon atoms.
  • R 103 and R 104 are too bulky groups, the planarity of the molecule is hindered and the color tone of the compound changes, so that the compound tends not to exhibit blue with high color purity.
  • R 103 and R 104 are not a hydrogen atom, it is preferably a halogen atom or an alkyl group having about 1 to 4 carbon atoms. That is, R 103 and R 104 are more preferably each independently a halogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Particularly preferred from the viewpoints of color purity and heat resistance are each independently a hydrogen atom, a chlorine atom or a methyl group.
  • a compound in which at least one of R 103 and R 104 is other than a hydrogen atom is preferable because of higher heat resistance.
  • a compound in which one of R 103 and R 104 is a hydrogen atom and the other is a group other than that is particularly preferable.
  • the compound represented by the general formula (I ′) is preferably a compound represented by the following general formula (II) or a compound represented by the following general formula (IV).
  • compounds represented by the general formula (II) compounds represented by the following general formula (III) are particularly preferred.
  • compounds represented by the general formula (IV ') are particularly preferred.
  • M is two hydrogen atoms, Cu, Mg, Al, Ni, Co, F, e, Zn, Ge, Mn, Si, Ti, V or Sn are represented, and each metal atom may be coordinated with an oxygen atom, a halogen atom, a hydroxyl group, an alkoxy group or an aryloxy group.
  • the —SO 3 — group in the formula is bonded to any carbon atom constituting the benzene ring in the phthalocyanine skeleton. Of the carbon atoms constituting these four benzene rings, the carbon atom to which the —SO 3 — group is not bonded may be substituted with any group.
  • m, R, and R 101 to R 104 have the same meaning as in the general formula (I ′), and a plurality of May be the same structure or different structures.
  • the —SO 3 — group is bonded to any carbon atom constituting the benzene ring in the phthalocyanine skeleton, and the phthalocyanine skeleton has a substituent other than the —SO 3 — group.
  • No. m, M, R, R 103 and R 104 have the same meanings as in the general formula (I ′), and a plurality of May be the same structure or different structures.
  • R 31 represents a hydrogen atom or a phenyl group which may have a substituent.
  • R 32 , R 33 and R 34 each independently represent a hydrogen atom, a hydroxyl group, —NHR 41 (R 41 has the same meaning as R 31 ), —SO 3 ⁇ , a halogen atom, —CO 2 R 42 (R 42 represents an alkyl group having 1 to 3 carbon atoms, and at least one of R 32 to R 34 is a —NHR 41 group.
  • R 35 , R 36 , R 37 and R 38 are each independently a hydrogen atom, —SO 3 ⁇ , a halogen atom, a phenoxy group, a naphthyloxy group, an alkoxyl group having 1 to 12 carbon atoms, —CO 2 R 43 , Represents a phenyl group, —SO 3 R 44 , or —SO 2 NHR 45 (wherein R 43 to R 45 each independently represents an alkyl group having 1 to 6 carbon atoms).
  • m —SO 3 — groups are bonded in one anthraquinone skeleton.
  • m, R, and R 101 to R 104 have the same meaning as in the general formula (I ′), and a plurality of May be the same structure or different structures. )
  • M represents two hydrogen atoms, Cu, Mg, Al, Ni, Co, Fe, Zn, Ge, Mn, Si, Ti, V, or Sn, and each metal atom May be coordinated with an oxygen atom, a halogen atom, a hydroxyl group, an alkoxy group or an aryloxy group.
  • M is preferably two hydrogen atoms, Cu, AlCl, AlOH, Ni, or Co. Among them, Cu is more preferable from the viewpoint of improving the contrast of the blue display member.
  • the —SO 3 — group in the general formula (II) is bonded to any carbon atom constituting the benzene ring in the phthalocyanine skeleton.
  • the carbon atom to which the —SO 3 — group is not bonded may be substituted with any group.
  • Examples of the “arbitrary group” include the substituent group W exemplified as the substituent which R may have when R is an alkyl group or a phenyl group, and preferred groups are the same as those described above. It is. Note that it is particularly preferable that each benzene ring in the phthalocyanine skeleton is unsubstituted or has no substituent other than the —SO 3 — group.
  • R 31 represents a hydrogen atom or a phenyl group which may have a substituent.
  • the substituent is not particularly limited as long as it does not impair the effect of the present invention, but also plays a role of assisting the hue of the cationic dye, preferably an alkyl group having 1 to 8 carbon atoms, —SO 3 ⁇ , benzyl A group or —NHCOR 40 (R 40 represents an alkyl group having 1 to 3 carbon atoms).
  • R 31 is more preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, —SO 3 ⁇ , or —NHCOR 40 .
  • R 32 , R 33 and R 34 are each independently a hydrogen atom, a hydroxyl group, —NHR 41 (R 41 has the same meaning as R 31 ), —SO 3 ⁇ , a halogen atom, —CO 2 R 42. (Wherein R 42 represents an alkyl group having 1 to 3 carbon atoms), and at least one of R 32 to R 34 represents a —NHR 41 group, and serves to assist the hue of the cationic dye. Therefore, a hydrogen atom, a hydroxyl group or —NHR 41 is preferable.
  • R 35 , R 36 , R 37 and R 38 are each independently a hydrogen atom, —SO 3 ⁇ , a halogen atom, a phenoxy group, a naphthyloxy group, an alkoxyl group having 1 to 12 carbon atoms, —CO 2 R 43 , a phenyl group, —SO 3 R 44 , or —SO 2 NHR 45 (wherein R 43 to R 45 each independently represents an alkyl group having 1 to 6 carbon atoms), Since it also plays a role of assisting hue, a hydrogen atom or —SO 3 — is preferable.
  • the compounds represented by the general formula (III) or (IV ′) In the case where one of the benzene rings in the triarylmethine structure is a naphthalene ring, at least one of R 103 and R 104 has a group other than a hydrogen atom. This is particularly noticeable.
  • the compound represented by the general formula (I) can be synthesized according to the method described in, for example, J. Chem. Soc., PerkinTrans. 1998, 2,297., WO 2006/120205.
  • the compound represented with the said general formula (I) is necessarily obtained as a mixture of the multiple types of compound from which the value of m differs from the manufacturing process.
  • the compound represented by the general formula (I) may be used as a mixture or may be an isolated single compound.
  • the compound satisfying the above-mentioned “preferred” m value is preferably a mixture that occupies the largest proportion.
  • C 6 H 5 - is a phenyl group
  • T S represents a tosyl group.
  • examples of the compounds represented by the general formulas (IV) and (IV ′) include the following.
  • the compound represented by the general formula (I) is preferably 1 to 50% by weight, more preferably 3 to 40% by weight in the total solid content. Particularly preferred is a composition containing 5 to 30% by weight. If the content of the compound represented by the general formula (I) is larger than this range, the curability of the coating film is lowered, and the film strength may be insufficient. In some cases, sufficient chromaticity cannot be obtained, or the film thickness becomes too thick. In addition, when the solubility of the compound represented by the general formula (I) in the colored resin composition (especially the solvent contained in the composition) is low, the same as the optional component pigment described later.
  • the compound represented by the general formula (I) is preferably present in a dissolved state in the colored resin composition.
  • (c) As a coloring material only 1 type of the compound represented by general formula (I) may be contained, and 2 or more types are contained. 1 or 2 or more of other coloring materials may be included, but the content ratio of all (c) coloring materials in the colored resin composition for a color filter of the present invention is: The content is preferably 1 to 30% by weight.
  • the color material (c) according to the second aspect of the present invention contains a compound represented by the following general formula (V), and can form a pixel having particularly good light resistance and heat resistance.
  • a colored resin composition for a color filter is provided.
  • Z represents an m-valent anion having an anthraquinone skeleton or a phthalocyanine skeleton.
  • M represents an integer of 1 to 4.
  • R represents a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, or an optionally substituted phenyl group, or adjacent Rs bonded to form a ring. Form. The ring may have a substituent. Each R may be the same or different.
  • R 201 represents a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, a benzyl group, an optionally substituted phenyl group, or an optionally substituted naphthyl group. Represents a group.
  • R 202 has an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted phenyl group, an optionally substituted naphthyl group, or an optionally substituted group. Represents an aromatic heterocyclic group which may be substituted.
  • R 203 , R 204 , R 205 , and R 206 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, a perfluoroalkyl group having 1 to 8 carbon atoms, carbon
  • both of the two benzene rings in the cation moiety of the general formula (V) may be substituted with a group other than —NR 2 .
  • a plurality of molecules per molecule May be the same structure or different structures.
  • R in the general formula (V) represents a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, or an optionally substituted phenyl group, or an adjacent R. Combine to form a ring.
  • a plurality of R may be the same or different. Accordingly, the —NRR group may be left-right symmetric or left-right asymmetric.
  • each R is preferably independently a hydrogen atom, an optionally substituted alkyl group having 2 to 8 carbon atoms, or an optionally substituted phenyl group. Or an adjacent R is bonded to form a ring, more preferably an optionally substituted alkyl group having 2 to 8 carbon atoms or an optionally substituted phenyl It is a group.
  • R 201 represents a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, a benzyl group, an optionally substituted phenyl group, or an optionally substituted naphthyl group. Represents a group, (b) preferably an alkyl group having 1 to 8 carbon atoms or a benzyl group because of its increased solubility in a solvent.
  • R 202 has an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted phenyl group, an optionally substituted naphthyl group, or an optionally substituted group.
  • An aromatic heterocyclic group that may optionally have a phenyl group optionally having a substituent, since it mainly serves to protect the sp2 carbon at the center of the triarylmethine structure. Or it is a naphthyl group which may have a substituent.
  • R 203 , R 204 , R 205 , and R 206 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, a perfluoroalkyl group having 1 to 8 carbon atoms, carbon
  • a hydrogen atom or a carbon number of 1 is preferred.
  • R, R 201 , R 203 to R 206 are each independently an alkyl group or a phenyl group, and when R 202 is an alkyl group, a phenyl group or a naphthyl group, these groups further have a substituent. You may do it.
  • the ring formed by bonding adjacent Rs may also have a substituent. Examples of the substituent include those exemplified in the following substituent group W.
  • (Substituent group W) Fluorine atom, chlorine atom, alkyl group having 1 to 8 carbon atoms, alkoxyl group having 1 to 8 carbon atoms, phenyl group, mesityl group, tolyl group, naphthyl group, cyano group, acetyloxy group, alkyl carboxyl group, sulfonic acid amide Group, sulfonealkylamide group, alkylcarbonyl group, phenethyl group, hydroxyethyl group, acetylamide group, dialkylaminoethyl group, trifluoromethyl group, trialkylsilyl group, nitro group, alkylthio group, vinyl group.
  • the substituents R, R 201 , and R 202 have (b) an improved alkyl group, trifluoromethyl group, or carbon number because of improved solubility in a solvent.
  • An alkoxy group having 1 to 8 carbon atoms is preferable, and the substituent that R 203 to R 206 have is preferably an alkyl group having 1 to 8 carbon atoms because (b) solubility in a solvent is improved.
  • a substituent which the ring formed by combining adjacent Rs preferably includes an alkyl group, an alkoxyl group, a silyl group, a carboxyl group, a cyano group, a sulfonic acid amide group, and the like.
  • any of the two benzene rings in the cation moiety may be substituted with a group other than —NR 2 . That is, you may have substituents other than having specified in general formula (V) in the range which does not impair the effect of this invention. Examples of such a substituent include a halogen atom and an alkyl group having 1 to 8 carbon atoms.
  • substituents include a halogen atom and an alkyl group having 1 to 8 carbon atoms.
  • the o-position does not have a substituent or is substituted with a halogen atom, an alkyl group having 1 to 4 carbon atoms, or the like.
  • m represents an integer of 1 to 4.
  • the compound represented by the general formula (V) is preferably a compound represented by the following general formula (V ′).
  • R 207 and R 208 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 8 carbon atoms.
  • a plurality of molecules per molecule May be the same structure or different structures.
  • R 207 and R 208 in general formula (V ′) include the same groups as those described as R 103 and R 104 in general formula (I ′).
  • the preferable group and the reason why the group is preferable are the same as described above.
  • the compound represented by the general formula (V ′) is preferably a compound represented by the following general formula (VI) or a compound represented by the following general formula (VII).
  • M represents two hydrogen atoms, Cu, Mg, Al, Ni, Co, Fe, Zn, Ge, Mn, Si, Ti, V, or Sn.
  • An oxygen atom, a halogen atom, a hydroxyl group, an alkoxy group or an aryloxy group may be coordinated.
  • the —SO 3 — group in the formula is bonded to any carbon atom constituting the benzene ring in the phthalocyanine skeleton. Of the carbon atoms constituting these four benzene rings, the carbon atom to which the —SO 3 — group is not bonded may be substituted with any group.
  • m, R, R 201 , R 202 , R 207 and R 208 have the same meanings as in the general formula (V ′), and a plurality of May be the same structure or different structures.
  • R 31 represents a hydrogen atom or a phenyl group which may have a substituent.
  • R 32 , R 33 and R 34 each independently represent a hydrogen atom, a hydroxyl group, —NHR 41 (R 41 has the same meaning as R 31 ), —SO 3 ⁇ , a halogen atom, —CO 2 R 42 (R 42 represents an alkyl group having 1 to 3 carbon atoms, and at least one of R 32 to R 34 is a —NHR 41 group.
  • R 35 , R 36 , R 37 and R 38 are each independently a hydrogen atom, —SO 3 ⁇ , a halogen atom, a phenoxy group, a naphthyloxy group, an alkoxyl group having 1 to 12 carbon atoms, —CO 2 R 43 , Represents a phenyl group, —SO 3 R 44 , or —SO 2 NHR 45 (wherein R 43 to R 45 each independently represents an alkyl group having 1 to 6 carbon atoms).
  • m —SO 3 — groups are bonded in one anthraquinone skeleton.
  • m, R, R 201 , R 202 , R 207 and R 208 have the same meanings as in the general formula (V ′), and a plurality of May be the same structure or different structures. )
  • M represents two hydrogen atoms, Cu, Mg, Al, Ni, Co, Fe, Zn, Ge, Mn, Si, Ti, V, or Sn.
  • An atom, a halogen atom, a hydroxyl group, an alkoxy group or an aryloxy group may be coordinated.
  • M is preferably two hydrogen atoms, Cu, AlCl, AlOH, Ni, or Co.
  • Cu is preferable from the viewpoint of improving the contrast of the blue display member.
  • the —SO 3 — group in the general formula (VI) is bonded to any carbon atom constituting the benzene ring in the phthalocyanine skeleton.
  • the carbon atom to which the —SO 3 — group is not bonded may be substituted with any group.
  • Examples of the “arbitrary group” include the substituent group W exemplified as the substituent which R may have when R is an alkyl group or a phenyl group, and preferred groups are the same as those described above. It is. Note that it is particularly preferable that each benzene ring in the phthalocyanine skeleton is unsubstituted or has no substituent other than the —SO 3 — group.
  • R 31 represents a hydrogen atom or a phenyl group which may have a substituent.
  • the substituent is not particularly limited as long as it does not impair the effect of the present invention, but also plays a role of assisting the hue of the cationic dye, preferably an alkyl group having 1 to 8 carbon atoms, —SO 3 ⁇ , benzyl A group or —NHCOR 40 (R 40 represents an alkyl group having 1 to 3 carbon atoms).
  • R 31 is more preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, —SO 3 ⁇ , or —NHCOR 40 .
  • R 32 , R 33 and R 34 are each independently a hydrogen atom, a hydroxyl group, —NHR 41 (R 41 has the same meaning as R 31 ), —SO 3 ⁇ , a halogen atom, —CO 2 R 42. (Wherein R 42 represents an alkyl group having 1 to 3 carbon atoms), and at least one of R 32 to R 34 represents a —NHR 41 group, and serves to assist the hue of the cationic dye. Therefore, a hydrogen atom, a hydroxyl group or —NHR 41 is preferable.
  • R 35 , R 36 , R 37 and R 38 are each independently a hydrogen atom, —SO 3 ⁇ , a halogen atom, a phenoxy group, a naphthyloxy group, an alkoxyl group having 1 to 12 carbon atoms, —CO 2 R 43 , a phenyl group, —SO 3 R 44 , or —SO 2 NHR 45 (wherein R 43 to R 45 each independently represents an alkyl group having 1 to 6 carbon atoms), Since it also plays a role of assisting hue, a hydrogen atom or —SO 3 — is preferable.
  • the compound represented by the general formula (V) can be synthesized according to the method described in, for example, J. Chem. Soc., PerkinTrans. 1998, 2,297., WO 2006/120205.
  • the compound represented by the said general formula (V) is necessarily obtained as a mixture of the multiple types of compound from which the value of m differs from the manufacturing process.
  • the compound represented by the general formula (V) may be used as a mixture or may be an isolated single compound.
  • the compound satisfying the above-mentioned “preferred” m value is preferably a mixture that occupies the largest proportion.
  • the compound represented by the general formula (V) is preferably 1 to 50% by weight, more preferably 3 to 40% by weight in the total solid content. Particularly preferred is a composition containing 5 to 30% by weight. If the content of the compound represented by the general formula (V) is larger than this range, the curability of the coating film is lowered, and the film strength may be insufficient. In some cases, sufficient chromaticity cannot be obtained, or the film thickness becomes too thick. In addition, when the solubility of the compound represented by the general formula (V) in the colored resin composition (especially the solvent contained in the composition) is low, it is the same as the pigment which is an optional component described later.
  • the compound represented by the general formula (V) is preferably present in a dissolved state in the colored resin composition.
  • the colored resin composition for color filters of this invention only 1 type of the compound represented by general formula (V) may be contained as (c) color material, and 2 or more types are contained. 1 or 2 or more of other coloring materials may be included, but the content ratio of all (c) coloring materials in the colored resin composition for a color filter of the present invention is: The content is preferably 1 to 30% by weight.
  • the colorant (c) according to the third aspect of the present invention contains a compound (pigment 1-pigment 2 compound) composed of a cationic blue pigment (pigment 1) and an anionic pigment (pigment 2).
  • a compound pigment 1-pigment 2 compound
  • an anionic pigment pigment 2
  • -Provided is a colored resin composition for a color filter, in which the dye 1 and the dye 2 in the dye 2 compound satisfy the following (a) or (b) and can form a pixel with high light resistance.
  • the form of the compound composed of the dye 1 and the dye 2 is a salt composed of the dye 1 which is a cationic compound and the dye 2 which is an anionic compound.
  • the number of the dye 1 and the dye 2 constituting the dye 1-dye 2 compound is not particularly limited.
  • the resulting Dye 1-Dye 2 compound can suppress the generation of active oxygen associated with photoexcitation of Dye 1 and can control decomposition due to the photooxidation reaction. ,preferable. Further, in the compound composed of the dye 1 and the dye 2, the intermolecular interaction between the dye 1 and the dye 2 works sufficiently. Therefore, high light resistance and a unique color which could not be obtained by such a single dye compound that is not the dye 1-dye 2 compound or a mixture of the compound corresponding to the dye 1 and the compound corresponding to the dye 2 are achieved. It is also possible to do.
  • the energy level of the dye can be determined by B3LYP / 6-31G, TDDF calculation after structural optimization of the molecular structure.
  • the excitation energy of the lowest singlet excited state (S 1 state) due to light absorption of the cation is efficiently transferred to the anion, via the relaxation from the cation singlet excited state to the triplet.
  • This has the effect of crushing the energy transfer path to ground state oxygen that occurs in As a result, due to the energy transfer from the excited state of the cations is preferable in that the generation of singlet oxygen (1 delta g state oxygen) is suppressed.
  • the excitation energy of the lowest triplet excited state of the anion by calculating (T 1 state) satisfies the formula (ii) corresponds to T 1 state of the anion is less than the excitation energy to 1 delta g state oxygen
  • energy transfer from the lowest triplet excited state of the anion to the ground state oxygen does not occur, which is preferable in terms of suppressing the generation of singlet oxygen (oxygen in the 1 ⁇ g state).
  • the anion is odd electron system
  • excitation energy efficiently energy transfer to the anion of formula lowest singlet excited state and (iii) satisfying by a light absorption of the cation (S 1 state), singlet excitation cations It has the effect of crushing the energy transfer path to ground state oxygen that occurs via relaxation from the state to the triplet.
  • the anion is an odd-electron system
  • the lowest excited state does not become a triplet, so the interaction with the ground state of oxygen, which is a triplet state, does not increase, and the probability of energy transfer from the excited state of the anion to the ground state oxygen is small, preferable in that the generation of singlet oxygen (1 delta g state oxygen) is suppressed.
  • Singlet oxygen in the system (1 delta g state of oxygen) is a kind of active oxygen, but dye 1 Dye 2 compound attack resulting in dyes 1 Dye 2 compound is considered to be destroyed, the in the present invention by devising the structure of the dye 1 dye 2 compounds to prevent the generation of singlet oxygen (1 delta g state oxygen), with improved light resistance of the composition.
  • the difference between ⁇ E S1 (Dye 1) and ⁇ E S1 (Dye 2) in Formula (i) and the difference between ⁇ E S1 (Dye 1) and ⁇ E lowest (Dye 2) in Formula (iii) are respectively 0. It is preferably about 2 eV or more.
  • the dye 1 is preferably a cationic dye having a cationic site in the skeleton or a cationic substituent as a substituent.
  • the dye 2 is preferably an anionic dye having an anionic substituent.
  • the cationic dye means a dye whose whole molecule is positively charged
  • the anionic dye means a dye whose whole molecule is negatively charged.
  • the cation has a ⁇ -conjugated structure in which the cation tends to be delocalized in the whole molecule, has absorption in a visible wide range, and has a larger molecular absorbance than the anionic dye.
  • An anionic dye that forms a salt with such a cationic dye has a LUMO lower than that of the cationic dye and a narrower band gap than the singlet energy band gap of the cationic dye. It is preferable to combine those having.
  • examples of the cationic dye include those having a cation in the skeleton such as polyene, polymethine, triarylmethine, and xanthene, and anthraquinone, indigo, and phthalocyanine having an ammonium cation as a substituent.
  • neutral dyes such as azo and azo.
  • those having a cation in the skeleton are preferable from the viewpoint of molecular absorbance, and compounds having a radial molecular structure are preferable from the viewpoint of solubility.
  • a triarylmethine dye is more preferable.
  • an anionic dye it has an acidic group with high acidity such as carboxylic acid, phosphoric acid, sulfonic acid, and the whole molecule has an anionic azo, quinoline, xanthene, phthalocyanine, anthraquinone, Examples include indigo, triarylmethine, and metal complex dyes.
  • phthalocyanine-based (having a phthalocyanine skeleton) dye or anthraquinone-based (having an anthraquinone skeleton) dye is preferable because the triplet excitation energy level in the excited state is small.
  • a phthalocyanine dye having an acidic group is more preferable.
  • anthraquinone dyes are more preferable.
  • the dye 1-dye 2 compound composed of the dye 1 and the dye 2 is particularly preferably a compound represented by the general formula (I) or a compound represented by the general formula (V).
  • the compounds represented by the general formula (I) more preferred are the compounds represented by the general formula (I ′), and still more preferred are those represented by the general formula (II) or (IV). It is a compound.
  • a compound represented by the general formula (II) a compound represented by the general formula (III) is particularly preferable.
  • the compounds represented by the general formula (IV) a compound represented by the general formula (IV ′) is particularly preferable.
  • the compounds represented by the general formula (V) more preferred are the compounds represented by the general formula (V ′), and particularly preferred are the compounds represented by the general formula (VI) or (VII). It is a compound.
  • the colored resin composition for a color filter of the present invention may contain only one type of the compound represented by the general formula (I) or (V) as the color material (c), One or more of the compounds represented by general formula (I) and one or more of the compounds represented by general formula (V) may be included. Species or two or more may be included.
  • Binder resin As (a) the binder resin, as described above, a preferable resin is different depending on what means is used for the colored resin composition to be cured.
  • examples of (a) binder resins include JP-A-7-207211, JP-A-8-259876, JP-A-10-300922, Known polymer compounds described in JP-A-11-14144, JP-A-11-174224, JP-A-2000-56118, JP-A-2003-233179, and the like can be used. (A-1) to (a-5) of the above.
  • A-1) With respect to a copolymer of an epoxy group-containing (meth) acrylate and another radical polymerizable monomer, an unsaturated monobasic acid is added to at least a part of the epoxy group of the copolymer.
  • Alkali-soluble resin hereinafter sometimes referred to as “resin (a-1)” obtained by adding a polybasic acid anhydride to at least a part of the hydroxyl group generated by the addition reaction or the added hydroxyl group.
  • A-2) Carboxyl group-containing linear alkali-soluble resin (a-2) (hereinafter sometimes referred to as “resin (a-2)”)
  • A-3) a resin obtained by adding an epoxy group-containing unsaturated compound to the carboxyl group portion of the resin (a-2) (hereinafter sometimes referred to as “resin (a-3)”).
  • A-4) (Meth) acrylic resin (hereinafter sometimes referred to as “resin (a-4)”)
  • A-5) Epoxy acrylate resin having a carboxyl group (hereinafter sometimes referred to as “resin (a-5)”)
  • each of these resins will be described.
  • A-1) With respect to a copolymer of an epoxy group-containing (meth) acrylate and another radical polymerizable monomer, an unsaturated monobasic acid is added to at least a part of the epoxy group of the copolymer.
  • a copolymer of 5 to 90 mol% of a group-containing (meth) acrylate and 10 to 95 mol% of another radical polymerizable monomer it is not present in 10 to 100 mol% of the epoxy group of the copolymer.
  • examples thereof include a resin obtained by adding a saturated monobasic acid, or an alkali-soluble resin obtained by adding a polybasic acid anhydride to 10 to 100 mol% of a hydroxyl group generated by the addition reaction.
  • epoxy group-containing (meth) acrylate examples include glycidyl (meth) acrylate, 3,4-epoxybutyl (meth) acrylate, (3,4-epoxycyclohexyl) methyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. ) Acrylate glycidyl ether and the like. Of these, glycidyl (meth) acrylate is preferred. These epoxy group-containing (meth) acrylates may be used alone or in combination of two or more.
  • the other radical polymerizable monomer copolymerized with the epoxy group-containing (meth) acrylate is preferably a mono (meth) acrylate having a structure represented by the following general formula (1).
  • R 1 to R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 7 and R 8 each independently represent a hydrogen atom, 3 alkyl groups or may be linked to form a ring.
  • the ring formed by connecting R 7 and R 8 is preferably an aliphatic ring, which may be saturated or unsaturated, and has 5 to 6 carbon atoms. Is preferred.
  • the structure represented by the general formula (1) is preferably a structure represented by the following formula (1a), (1b), or (1c).
  • the mono (meth) acrylate which has a structure represented by General formula (1) may be used individually by 1 type, and may use 2 or more types together.
  • the colored resin composition of the present invention when used for a color filter or a liquid crystal display element, the heat resistance of the colored resin composition is improved, or the colored resin composition is used. It is possible to increase the intensity of the pixel formed by using.
  • the mono (meth) acrylate which has a structure represented by General formula (1) may be used individually by 1 type, and may use 2 or more types together.
  • the mono (meth) acrylate having the structure represented by the general formula (1) various known ones can be used as long as the structure has the structure, and those represented by the following general formula (2) are particularly preferable. .
  • R 9 represents a hydrogen atom or a methyl group
  • R 10 represents the structure of the general formula (1).
  • the repeating unit derived from the mono (meth) acrylate having the structure represented by the general formula (1) is: Among the repeating units derived from “other radical polymerizable monomers”, those containing 5 to 90 mol% are preferred, those containing 10 to 70 mol% are more preferred, and those containing 15 to 50 mol% are particularly preferred preferable.
  • the “other radical polymerizable monomer” other than the mono (meth) acrylate having the structure represented by the general formula (1) is not particularly limited. Specifically, for example, vinyl aromatics such as styrene, styrene ⁇ -, o-, m-, p-alkyl, nitro, cyano, amide, ester derivatives; butadiene, 2,3-dimethylbutadiene, isoprene, Dienes such as chloroprene; methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylic acid-n-propyl, (meth) acrylic acid-iso-propyl, (meth) acrylic acid-n-butyl, (Meth) acrylic acid-sec-butyl, (meth) acrylic acid-tert-butyl, (meth) acrylic acid pentyl, (meth) acrylic acid neopentyl, (meth) acrylic acid isoamyl, (
  • At least one selected from styrene, benzyl (meth) acrylate, and monomaleimide is used to impart excellent heat resistance and strength to the colored resin composition. It is effective to use seeds.
  • the content of the repeating unit derived from at least one selected from styrene, benzyl (meth) acrylate, and monomaleimide is 1 to 70. Those having a mol% are preferred, and those with 3 to 50 mol% are more preferred.
  • the solvent to be used is not particularly limited as long as it is inert to radical polymerization, and a commonly used organic solvent can be used.
  • the solvent examples include ethylene glycol monoalkyl ether acetates such as ethyl acetate, isopropyl acetate, cellosolve acetate and butyl cellosolve acetate; diethylene glycol monoalkyl ether acetates such as diethylene glycol monomethyl ether acetate, carbitol acetate and butyl carbitol acetate.
  • These solvents may be used alone or in combination of two or more.
  • the amount of these solvents used is usually 30 to 1000 parts by weight, preferably 50 to 800 parts by weight, based on 100 parts by weight of the copolymer obtained. When the amount of the solvent used is outside this range, it becomes difficult to control the molecular weight of the copolymer.
  • the radical polymerization initiator used in the copolymerization reaction is not particularly limited as long as it can initiate radical polymerization, and a commonly used organic peroxide catalyst or azo compound catalyst should be used. Can do.
  • organic peroxide catalyst examples include those classified into known ketone peroxides, peroxyketals, hydroperoxides, diallyl peroxides, diacyl peroxides, peroxyesters, and peroxydicarbonates. Specific examples thereof include benzoyl peroxide, dicumyl peroxide, diisopropyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, t-hexyl peroxybenzoate, and t-butyl peroxy-2-ethyl.
  • radical polymerization initiators having an appropriate half-life are used depending on the polymerization temperature.
  • the amount of the radical polymerization initiator used is usually 0.5 to 20 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the monomers used in the copolymerization reaction.
  • the copolymerization reaction may be performed by dissolving the monomer and radical polymerization initiator used in the copolymerization reaction in a solvent and raising the temperature while stirring, or by adding the monomer to which the radical polymerization initiator has been added.
  • the reaction may be performed dropwise in a solvent that has been heated and stirred.
  • you may carry out by dripping a monomer, adding a radical polymerization initiator in a solvent and heating up.
  • the reaction conditions can be freely changed according to the target molecular weight.
  • the copolymer of the epoxy group-containing (meth) acrylate and the other radical polymerizable monomer may include 5 to 90 mol% of repeating units derived from the epoxy group-containing (meth) acrylate, and the like. Are preferably composed of 10 to 95 mol% of repeating units derived from the radical polymerizable monomer, more preferably 20 to 80 mol% of the former and 80 to 20 mol% of the latter, and 30 to Those composed of 70 mol% and the latter 70 to 30 mol% are particularly preferred.
  • the number of repeating units derived from the epoxy group-containing (meth) acrylate in the copolymer is too small, the amount of the polymerizable component and alkali-soluble component to be described later may be insufficient, while the epoxy group-containing (meta) ) When there are too many repeating units derived from acrylate and there are too few repeating units derived from other radical polymerizable monomers, heat resistance and strength may be insufficient.
  • an unsaturated monobasic acid (polymerizable component) and a polybasic acid anhydride (polymeric component) are added to the epoxy group portion of a copolymer of an epoxy resin-containing (meth) acrylate and another radical polymerizable monomer. Reaction with an alkali-soluble component).
  • unsaturated monobasic acid added to an epoxy group a well-known thing can be used,
  • unsaturated carboxylic acid which has an ethylenically unsaturated double bond is mentioned.
  • Specific examples include (meth) acrylic acid, crotonic acid, o-, m-, p-vinylbenzoic acid, ⁇ -position substituted with a haloalkyl group, an alkoxyl group, a halogen atom, a nitro group, or a cyano group.
  • monocarboxylic acids such as (meth) acrylic acid. Of these, (meth) acrylic acid is preferred. These may be used alone or in combination of two or more. By adding such components, polymerizability can be imparted to the binder resin used in the present invention.
  • These unsaturated monobasic acids are usually added to 10 to 100 mol% of the epoxy group of the copolymer, preferably 30 to 100 mol%, more preferably 50 to 100 mol%. If the addition ratio of unsaturated monobasic acid is too small, there is a concern about the adverse effects of the remaining epoxy groups on the temporal stability of the colored resin composition.
  • a well-known method is employable as a method of adding unsaturated monobasic acid to the epoxy group of a copolymer.
  • a well-known thing can be used as a polybasic acid anhydride added to the hydroxyl group produced when an unsaturated monobasic acid is added to the epoxy group of a copolymer.
  • dibasic acid anhydrides such as maleic anhydride, succinic anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, chlorendic anhydride; trimellitic anhydride, pyromellitic anhydride, benzophenone
  • examples thereof include anhydrides of three or more bases such as tetracarboxylic acid anhydride and biphenyltetracarboxylic acid anhydride.
  • tetrahydrophthalic anhydride and / or succinic anhydride are preferable.
  • These polybasic acid anhydrides may be used individually by 1 type, and may use 2 or more types together. By adding such a component, alkali solubility can be imparted to the binder resin used in the present invention.
  • polybasic acid anhydrides are usually added to 10 to 100 mol% of the hydroxyl group generated by adding an unsaturated monobasic acid to the epoxy group of the copolymer, preferably 20 to 90 mol. %, More preferably 30 to 80 mol%. If the addition ratio is too large, the remaining film ratio at the time of development may decrease, and if it is too small, the solubility may be insufficient. In addition, a well-known method is employable as a method of adding a polybasic acid anhydride to the said hydroxyl group.
  • glycidyl (meth) acrylate or a glycidyl ether compound having a polymerizable unsaturated group is added to a part of the generated carboxyl group. May be.
  • the glycidyl ether compound having no polymerizable unsaturated group include a glycidyl ether compound having a phenyl group or an alkyl group.
  • a glycidyl ether compound having a phenyl group or an alkyl group As commercial products, for example, trade names “Denacol EX-111”, “Denacol EX-121”, “Denacol EX-141”, “Denacol EX-145”, “Denacol EX-146”, “Denacol EX-146” manufactured by Nagase Chemical Industries, Ltd. Denacol EX-171 "," Denacol EX-192 ", and the like.
  • the above-mentioned binder resin (a-1) has a polystyrene-equivalent weight average molecular weight (Mw) measured by GPC (gel permeation chromatography) of preferably from 3000 to 100,000, particularly preferably from 5,000 to 50,000. If the molecular weight is less than 3000, heat resistance and film strength may be inferior, and if it exceeds 100,000, the solubility in a developer tends to be insufficient. Further, as a measure of molecular weight distribution, the ratio of weight average molecular weight (Mw) / number average molecular weight (Mn) is preferably 2.0 to 5.0.
  • the acid value of the binder resin (a-1) is usually 10 to 200 mg-KOH / g, preferably 15 to 150 mg-KOH / g, more preferably 25 to 100 mg-KOH / g. If the acid value becomes too low, the solubility in the developer may be reduced. Conversely, if it is too high, film roughening may occur.
  • the carboxyl group-containing linear alkali-soluble resin is not particularly limited as long as it has a carboxyl group, and is usually a polymerizable monomer containing a carboxyl group. It is obtained by polymerizing a monomer.
  • carboxyl group-containing polymerizable monomer examples include (meth) acrylic acid, maleic acid, crotonic acid, itaconic acid, fumaric acid, 2- (meth) acryloyloxyethyl succinic acid, and 2- (meth) acryloyloxyethyl.
  • Adipic acid 2- (meth) acryloyloxyethylmaleic acid, 2- (meth) acryloyloxyethylhexahydrophthalic acid, 2- (meth) acryloyloxyethylphthalic acid, 2- (meth) acryloyloxypropylsuccinic acid, 2 -(Meth) acryloyloxypropyladipic acid, 2- (meth) acryloyloxypropylmaleic acid, 2- (meth) acryloyloxypropylhydrophthalic acid, 2- (meth) acryloyloxypropylphthalic acid, 2- (meth) acryloyl Oxybutyl succinic acid, 2- (me ) Vinyl monomers such as acryloyloxybutyl adipic acid, 2- (meth) acryloyloxybutylmaleic acid, 2- (meth) acryloyloxybutylhydrophthalic acid, 2- (meth) acryloy
  • (meth) acrylic acid and 2- (meth) acryloyloxyethyl succinic acid are preferable, and (meth) acrylic acid is more preferable.
  • the carboxyl group-containing linear alkali-soluble resin may be one obtained by copolymerizing the above carboxyl group-containing polymerizable monomer with another polymerizable monomer having no carboxyl group.
  • the other polymerizable monomer is not particularly limited, but methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl ( (Meth) acrylate, benzyl (meth) acrylate, phenyl (meth) acrylate, cyclohexyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxymethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, (Meth) acrylic acid esters such as 2-hydroxyethyl,
  • Nyl aromatics vinyl compounds such as N-vinylpyrrolidone; N-substituted maleimides such as N-cyclohexylmaleimide, N-phenylmaleimide, N-benzylmaleimide; polymethyl (meth) acrylate macromonomer, polystyrene macromonomer, poly Examples thereof include macromonomers such as 2-hydroxyethyl (meth) acrylate macromonomer, polyethylene glycol macromonomer, polypropylene glycol macromonomer, and polycaprolactone macromonomer. These may be used alone or in combination of two or more.
  • styrene methyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, hydroxypropyl ( And (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, N-cyclohexylmaleimide, N-benzylmaleimide, and N-phenylmaleimide.
  • the carboxyl group-containing linear alkali-soluble resin may further have a hydroxyl group.
  • the hydroxyl group-containing monomer include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxyalkyl (meth) acrylate such as 4-hydroxybutyl (meth) acrylate, glycerol mono (meth) acrylate, and the like.
  • carboxyl group-containing linear alkali-soluble resin (a-2) examples include (meth) acrylic acid, methyl (meth) acrylate, benzyl (meth) acrylate, butyl (meth) acrylate, isobutyl (Polymeric monomers that do not contain hydroxyl groups such as meth) acrylate, cyclohexyl (meth) acrylate, cyclohexylmaleimide, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.
  • the resin (a-2) is particularly preferably a copolymer resin containing benzyl (meth) acrylate.
  • the acid value of the carboxyl group-containing linear alkali-soluble resin in the present invention is usually 30 to 500 KOH-mg / g, preferably 40 to 350 KOH-mg / g, more preferably 50 to 300 KOH-mg / g.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by GPC is usually 2000 to 80000, preferably 3000 to 50000, and more preferably 4000 to 30000. If the weight average molecular weight is too small, the stability of the colored resin composition tends to be inferior. If it is too large, the solubility in a developer tends to deteriorate when used in a color filter or a liquid crystal display device described later. .
  • the epoxy group-containing unsaturated compound to be added to the carboxyl group part of 2) is not particularly limited as long as it has an ethylenically unsaturated group and an epoxy group in the molecule.
  • epoxy group-containing unsaturated compound examples include glycidyl (meth) acrylate, allyl glycidyl ether, glycidyl- ⁇ -ethyl acrylate, crotonyl glycidyl ether, (iso) crotonic acid glycidyl ether, N- (3,5-dimethyl).
  • -4-glycidyl) benzylacrylamide acyclic epoxy group-containing unsaturated compounds such as 4-hydroxybutyl (meth) acrylate glycidyl ether, etc., from the viewpoint of heat resistance and dispersibility of the pigment described later.
  • An alicyclic epoxy group-containing unsaturated compound is preferred.
  • the alicyclic epoxy group-containing unsaturated compound for example, 2,3-epoxycyclopentyl group, 3,4-epoxycyclohexyl group, 7,8-epoxy [tricyclo [5 .2.1.0] dec-2-yl] group and the like.
  • the ethylenically unsaturated group is preferably derived from a (meth) acryloyl group.
  • Suitable alicyclic epoxy group-containing unsaturated compounds are represented by the following general formulas (3a) to (3m). Compounds.
  • R 11 represents a hydrogen atom or a methyl group
  • R 12 represents an alkylene group
  • R 13 represents a divalent hydrocarbon group
  • n is an integer of 1 to 10.
  • the alkylene group represented by R 12 preferably has 1 to 10 carbon atoms. Specific examples include a methylene group, an ethylene group, a propylene group, and a butylene group, and a methylene group, an ethylene group, and a propylene group are preferable.
  • the hydrocarbon group for R 13 is preferably one having 1 to 10 carbon atoms, and examples thereof include an alkylene group and a phenylene group.
  • alicyclic epoxy group-containing unsaturated compounds may be used alone or in combination of two or more.
  • a compound represented by the general formula (3c) is preferable, and 3,4-epoxycyclohexylmethyl (meth) acrylate is particularly preferable.
  • a known method can be used.
  • a resin (a-2) and an epoxy group-containing unsaturated compound are mixed with a tertiary amine such as triethylamine or benzylmethylamine; dodecyltrimethylammonium chloride, tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium chloride, benzyltriethyl
  • a quaternary ammonium salt such as ammonium chloride
  • reaction in an organic solvent at a reaction temperature of 50 to 150 ° C. for several hours to several tens of hours in the presence of a catalyst such as pyridine and triphenylphosphine allows the resin (a-2) to be reacted.
  • An epoxy group-containing unsaturated compound can be introduced into the carboxyl group.
  • the acid value of the carboxyl group-containing resin (a-3) obtained by introducing an epoxy group-containing unsaturated compound into the resin (a-2) is usually 10 to 200 KOH-mg / g, preferably 20 to 150 KOH-mg / g, The preferred range is 30 to 150 KOH-mg / g.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by GPC is usually 2000 to 100,000, preferably 4000 to 50000, and more preferably 5000 to 30000. If the weight average molecular weight is too small, the stability of the colored resin composition tends to be inferior. If it is too large, the solubility in a developer tends to deteriorate when used in a color filter or a liquid crystal display device described later. .
  • (meth) acrylic resin (meth) acrylic resin (a-4) is a polymer obtained by polymerizing a monomer component essentially comprising a compound represented by the following general formula (4) (Hereinafter sometimes referred to as “resin (a-4)”).
  • R 1a and R 2a each independently represent a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms which may have a substituent.
  • the hydrocarbon group having 1 to 25 carbon atoms which may have a substituent represented by R 1a and R 2a is not particularly limited.
  • Linear or branched alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, t-amyl, stearyl, lauryl, 2-ethylhexyl; aryl groups such as phenyl; Alicyclic groups such as cyclohexyl, t-butylcyclohexyl, dicyclopentadienyl, tricyclodecanyl, isobornyl, adamantyl, 2-methyl-2-adamantyl; substituted with alkoxy such as 1-methoxyethyl, 1-ethoxyethyl An alkyl group substituted with an alkyl groups substituted with an alkyl groups such as 1-methoxyethyl, 1-eth
  • R 1a and R 2a may be the same type of substituent or different substituents.
  • ether dimer examples include dimethyl-2,2 ′-[oxybis (methylene)] bis-2-propenoate, diethyl-2,2 ′-[oxybis (methylene)] bis-2-propenoate, (N-propyl) -2,2 '-[oxybis (methylene)] bis-2-propenoate, di (isopropyl) -2,2'-[oxybis (methylene)] bis-2-propenoate, di (n-butyl) ) -2,2 '-[oxybis (methylene)] bis-2-propenoate, di (isobutyl) -2,2'-[oxybis (methylene)] bis-2-propenoate, di (t-butyl) -2, 2 '-[oxybis (methylene)] bis-2-propenoate, di (t-amyl) -2,2'-[oxybis (methylene)] bis-2-propenoate, di (t-amyl) -2,2'-
  • dimethyl-2,2 '-[oxybis (methylene)] bis-2-propenoate, diethyl-2,2'-[oxybis (methylene)] bis-2-propenoate, dicyclohexyl-2,2'- [Oxybis (methylene)] bis-2-propenoate, dibenzyl-2,2 ′-[oxybis (methylene)] bis-2-propenoate are preferred.
  • These ether dimers may be used alone or in combination of two or more.
  • the ratio of the ether dimer represented by the general formula (4) in the monomer component in obtaining the resin (a-4) is not particularly limited, but is usually 2 to 60% by weight in the total monomer components. It is preferably 5 to 55% by weight, more preferably 5 to 50% by weight. If the amount of the ether dimer is too large, it may be difficult to obtain a low molecular weight or may be easily gelled during polymerization. On the other hand, if the amount is too small, transparency, heat resistance, etc. There is a possibility that the performance of the coating film becomes insufficient.
  • the resin (a-4) preferably has an acid group.
  • the resulting colored resin composition can be cured by a crosslinking reaction in which an acid group and an epoxy group react to form an ester bond (hereinafter abbreviated as acid-epoxy curing). Or a composition in which an uncured part can be visualized with an alkali developer.
  • the acid group is not particularly limited, and examples thereof include a carboxyl group, a phenolic hydroxyl group, and a carboxylic anhydride group. These acid groups in the resin (a-4) may be used alone or in combination of two or more.
  • a monomer having an acid group and / or a “monomer capable of imparting an acid group after polymerization” (hereinafter “monomer for introducing an acid group”) May be used as a monomer component.
  • polymerization the process for providing an acid group as mentioned later is required after superposition
  • Examples of the monomer having an acid group include monomers having a carboxyl group such as (meth) acrylic acid and itaconic acid; monomers having a phenolic hydroxyl group such as N-hydroxyphenylmaleimide; maleic anhydride and itaconic anhydride.
  • monomers having a carboxyl group such as (meth) acrylic acid and itaconic acid
  • monomers having a phenolic hydroxyl group such as N-hydroxyphenylmaleimide
  • maleic anhydride and itaconic anhydride is preferable among these.
  • Examples of the monomer capable of imparting an acid group after the polymerization include, for example, a monomer having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate; a monomer having an epoxy group such as glycidyl (meth) acrylate; ) Monomers having an isocyanate group such as acrylate.
  • these monomers for introducing acid groups may be used alone or in combination of two or more.
  • the monomer component for obtaining the resin (a-4) also includes the monomer for introducing the acid group, the content ratio is not particularly limited, but usually 5% of all the monomer components It is ⁇ 70% by weight, preferably 10 to 60% by weight.
  • the resin (a-4) may have a radical polymerizable double bond.
  • a radical polymerizable double bond for example, “a monomer capable of imparting a radical polymerizable double bond after polymerization” (hereinafter referred to as “a radical polymerizable double bond for introducing a radical polymerizable double bond”). May be referred to as a “monomer”.) Is polymerized as a monomer component, and then a treatment for imparting a radical polymerizable double bond as described later may be performed.
  • Examples of the monomer capable of imparting a radical polymerizable double bond after polymerization include, for example, a monomer having a carboxyl group such as (meth) acrylic acid and itaconic acid; a carboxylic acid anhydride group such as maleic anhydride and itaconic anhydride Monomers: Monomers having an epoxy group such as glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, o- (or m-, or p-) vinylbenzylglycidyl ether, and the like. These monomers for introducing radical polymerizable double bonds may be used alone or in combination of two or more.
  • the content ratio is not particularly limited, but usually the total amount It is 5 to 70% by weight, preferably 10 to 60% by weight in the body component.
  • the resin (a-4) preferably has an epoxy group.
  • a monomer having an epoxy group may be polymerized as a monomer component.
  • the monomer having an epoxy group include glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, o- (or m-, or p-) vinylbenzyl glycidyl ether, and the like. These monomers for introducing an epoxy group may be used alone or in combination of two or more.
  • the content ratio is not particularly limited, but usually 5% of all the monomer components It should be ⁇ 70% by weight, preferably 10 to 60% by weight.
  • the monomer component for obtaining the resin (a-4) may contain other copolymerizable monomers as required in addition to the essential monomer components.
  • Examples of other copolymerizable monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth) acrylate.
  • acrylic acid esters such as: aromatic vinyl compounds such as styrene, vinyltoluene and ⁇ -methylstyrene; N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide; butadienes such as butadiene and isoprene; Substituted butadiene compounds; ethylene, propylene, vinyl chloride Le, ethylene or substituted ethylene compound such as acrylonitrile, vinyl esters such as vinyl acetate and the like.
  • methyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, and styrene are preferable in terms of good transparency and resistance to heat resistance.
  • These other copolymerizable monomers may be used alone or in combination of two or more.
  • benzyl (meth) acrylate when a part or all of the resin (a-4) is used as a dispersant as described later, it is preferable to use benzyl (meth) acrylate, and the content thereof is usually the total monomer component.
  • the content is 1 to 70% by weight, preferably 5 to 60% by weight.
  • the content ratio is not particularly limited, but is usually 95% by weight or less based on the total monomer component. Is preferable, and 85 weight% or less is more preferable.
  • the resin (a-4) can be produced, for example, by the method described in International Publication Pamphlet WO2008 / 156148A1.
  • the weight average molecular weight of the resin (a-4) is not particularly limited, but the polystyrene equivalent weight average molecular weight (Mw) measured by GPC is preferably 2,000 to 200,000, more preferably 4000 to 100,000. When the weight average molecular weight exceeds 200,000, the viscosity may become too high to form a coating film, and when it is less than 2,000, sufficient heat resistance tends to be hardly exhibited.
  • the preferable acid value is 30 to 500 mg-KOH / g, more preferably 50 to 400 mg-KOH / g.
  • the acid value is less than 30 mg-KOH / g, it may be difficult to apply to alkali development, and when it exceeds 500 mg-KOH / g, the viscosity tends to be too high to form a coating film.
  • Examples of the resin (a-4) include compounds described in JP-A-2004-300203 and JP-A-2004-300204.
  • Epoxy acrylate resin having a carboxyl group The epoxy acrylate resin (a-5) is an ⁇ , ⁇ -unsaturated monocarboxylic acid in an epoxy resin or an ⁇ , ⁇ -unsaturated monocarboxylic acid having a carboxyl group in an ester moiety. It is synthesized by adding a carboxylic acid ester and further reacting with a polybasic acid anhydride. Such a reaction product has substantially no epoxy group in terms of chemical structure and is not limited to “acrylate”, but epoxy resin is a raw material, and “acrylate” is a representative example. It is named like this according to common usage.
  • epoxy resin used as a raw material for example, bisphenol A type epoxy resin (for example, “Epicoat 828”, “Epicoat 1001”, “Epicoat 1002”, “Epicoat 1004”, etc., manufactured by Yuka Shell Epoxy Co., Ltd.), bisphenol A type epoxy resin Epoxy resin obtained by the reaction of an alcoholic hydroxyl group and epichlorohydrin (for example, “NER-1302” (epoxy equivalent 323, softening point 76 ° C.) manufactured by Nippon Kayaku Co., Ltd.), bisphenol F-type resin (for example, oil-based shell epoxy "Epicoat 807", “EP-4001”, “EP-4002", “EP-4004 etc.”), epoxy resins obtained by reaction of alcoholic hydroxyl groups of bisphenol F type epoxy resins with epichlorohydrin (for example, Japan) “NER-74” manufactured by Kayaku Co., Ltd.
  • bisphenol A type epoxy resin for example, “Epicoat 828”, “Epicoat 1001”, “E
  • the epoxy resin is a copolymer type epoxy resin.
  • the copolymerization type epoxy resin include glycidyl (meth) acrylate, (meth) acryloylmethylcyclohexene oxide, vinylcyclohexene oxide (hereinafter referred to as “first component of copolymerization type epoxy resin”), and the like.
  • Second component of copolymerization type epoxy resin Monofunctional ethylenically unsaturated group-containing compound
  • second component of copolymerization type epoxy resin for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2- Hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, (meth) acrylic acid, styrene, phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, ⁇ -methylstyrene, glycerin mono (meth) acrylate, below Represented by general formula (8)
  • One or more selected from compounds, by reacting the city include a copolymer obtained by.
  • R 61 represents a hydrogen atom or an ethyl group
  • R 62 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • r is an integer of 2 to 10.
  • Examples of the compound represented by the general formula (8) include polyethylene glycol mono (meth) acrylates such as diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate and tetraethylene glycol mono (meth) acrylate; methoxy Examples include alkoxy polyethylene glycol (meth) acrylates such as diethylene glycol mono (meth) acrylate, methoxytriethylene glycol mono (meth) acrylate, and methoxytetraethylene glycol mono (meth) acrylate. These may be used alone or in combination of two or more.
  • the amount of the first component of the copolymerization type epoxy resin used is preferably 10% by weight or more, particularly preferably 20% by weight or more, preferably 70% by weight based on the second component of the copolymerization type epoxy resin. % By weight or less, particularly preferably 50% by weight or less.
  • copolymer type epoxy resins include “CP-15”, “CP-30”, “CP-50”, “CP-20SA”, “CP-510SA” manufactured by NOF Corporation, “CP-50S”, “CP-50M”, “CP-20MA” and the like are exemplified.
  • the molecular weight of the raw material epoxy resin is usually in the range of 200 to 200,000, preferably 300 to 100,000 as the weight average molecular weight (Mw) in terms of polystyrene measured by GPC. If the weight average molecular weight is less than the above range, there are many cases where a problem occurs in the film forming property. Conversely, if the resin exceeds the above range, gelation easily occurs during the addition reaction of ⁇ , ⁇ -unsaturated monocarboxylic acid. May become difficult.
  • Examples of the ⁇ , ⁇ -unsaturated monocarboxylic acid to be added to the epoxy resin include itaconic acid, crotonic acid, cinnamic acid, acrylic acid, methacrylic acid and the like, preferably acrylic acid and methacrylic acid, particularly acrylic acid Is preferable because of its high reactivity.
  • the ⁇ , ⁇ -unsaturated monocarboxylic acid or its ester and the epoxy resin can be added by a known method, for example, by reacting at a temperature of 50 to 150 ° C. in the presence of an esterification catalyst.
  • an esterification catalyst one or more tertiary amines such as triethylamine, trimethylamine, benzyldimethylamine and benzyldiethylamine; quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium chloride and dodecyltrimethylammonium chloride should be used.
  • the esterification catalyst one or more tertiary amines such as triethylamine, trimethylamine, benzyldimethylamine and benzyldiethylamine; quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium chloride and dodecy
  • the amount of ⁇ , ⁇ -unsaturated monocarboxylic acid or ester thereof used is preferably in the range of 0.5 to 1.2 equivalents, more preferably 0.7 to 1.1, relative to 1 equivalent of the epoxy group of the raw material epoxy resin. Equivalent range. If the amount of ⁇ , ⁇ -unsaturated monocarboxylic acid or ester thereof used is small, the amount of unsaturated groups introduced is insufficient, and the subsequent reaction with the polybasic acid anhydride becomes insufficient. Also, it is not advantageous that a large amount of epoxy groups remain. On the other hand, when the amount used is large, ⁇ , ⁇ -unsaturated monocarboxylic acid or its ester remains as an unreacted product. In either case, there is a tendency for the curing properties to deteriorate.
  • the polybasic acid anhydride to be further added to the epoxy resin to which ⁇ , ⁇ -unsaturated carboxylic acid or its ester is added includes maleic anhydride, succinic anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, Hexahydrophthalic anhydride, pyromellitic anhydride, trimellitic anhydride, benzophenonetetracarboxylic dianhydride, methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, chlorendic anhydride, methyltetrahydrophthalic anhydride, biphenyltetra Carboxylic acid dianhydride and the like, preferably maleic anhydride, succinic anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, pyromellitic anhydride
  • a known method can also be used for the addition reaction of polybasic acid anhydride, and the reaction can be carried out by continuing the reaction under the same conditions as the addition reaction of ⁇ , ⁇ -unsaturated carboxylic acid or its ester.
  • the addition amount of the polybasic acid anhydride is preferably such that the acid value of the resulting epoxy acrylate resin (a-5) is in the range of 10 to 150 mg-KOH / g, more preferably 20 to 140 mg-KOH / g. A range is particularly preferred. If the acid value of the resin (a-5) is too small, the alkali developability may be poor, and if the acid value of the resin (a-5) is too large, a tendency to be inferior in curing performance is observed.
  • epoxy acrylate resin (a-5) having a carboxyl group for example, a naphthalene-containing resin described in JP-A-6-49174; JP-A-2003-89716, JP-A-2003-165830, JP-A-2005-325331
  • examples include fluorene-containing resins described in JP-A-2001-354735; resins described in JP-A-2005-126684, JP-A-2005-55814, JP-A-2004-295084, and the like.
  • a commercially available epoxy acrylate resin (a-5) having a carboxyl group can be used.
  • examples of commercially available products include “ACA-200M” manufactured by Daicel Corporation.
  • the (a) binder resin for example, an acrylic binder resin described in JP-A-2005-154708 can also be used.
  • the resin (a-1) that is, the copolymer of the epoxy group-containing (meth) acrylate and another radical polymerizable monomer is particularly preferable.
  • a resin obtained by adding an unsaturated monobasic acid to at least a part of the epoxy group of the coal, or an alkali-soluble resin obtained by adding a polybasic acid anhydride to at least a part of the hydroxyl group generated by the addition reaction is there.
  • binder resin in the present invention one of the various binder resins described above may be used alone, or two or more may be used in combination.
  • the above-mentioned various binder resins are used in combination with a dispersant, which is an optional component, which will be described later, in particular, with no undissolved matter remaining in the non-image area on the substrate, and excellent adhesion to the substrate, with a high concentration. The effect that a color pixel can be formed is obtained, which is preferable.
  • the content of the (a) binder resin is usually 0.1% by weight or more, preferably 1% by weight or more, and usually 80% by weight or less, preferably in the total solid content. Is 60% by weight or less.
  • the colored resin composition of the present invention comprises (b) a solvent as an essential component.
  • the solvent has a function of dissolving or dispersing each component contained in the colored resin composition and adjusting the viscosity.
  • any solvent can be used as long as it can dissolve or disperse each component constituting the colored resin composition, and a solvent having a boiling point in the range of 100 to 200 ° C. is preferably selected. More preferably, it has a boiling point of 120 to 170 ° C.
  • solvents include the following. Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol-mono t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, methoxymethylpentanol, propylene Glycol monoalkyl ethers such as glycol monoethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monomethyl ether, 3-methyl-3-methoxybutanol, tripropylene glycol monomethyl ether; Glycol dialkyl ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl
  • solvents corresponding to the above include mineral spirit, Barsol # 2, Apco # 18 Solvent, Apco thinner, Soal Solvent No. 1 and no. 2, Solvesso # 150, Shell TS28 Solvent, carbitol, ethyl carbitol, butyl carbitol, methyl cellosolve, ethyl cellosolve, ethyl cellosolve acetate, methyl cellosolve acetate, diglyme (all trade names) and the like.
  • solvents may be used alone or in combination of two or more.
  • glycol monoalkyl ethers are preferred from the viewpoint of the solubility of the color material (c) according to the present invention described above.
  • propylene glycol monomethyl ether is particularly preferable from the viewpoint of the solubility of various components in the composition.
  • glycolalkyl is further used as a solvent. It is more preferable to use a mixture of ether acetates.
  • glycol monoalkyl ethers have high polarity, tend to aggregate the pigment, and may reduce storage stability such as increasing the viscosity of the colored resin composition. . Therefore, it is preferable that the amount of glycol monoalkyl ether used is not excessively large.
  • the proportion of glycol monoalkyl ether in the solvent is preferably 5 to 50% by weight, more preferably 5 to 30% by weight. .
  • a solvent having a boiling point of 150 ° C. or higher it is also preferable to use a solvent having a boiling point of 150 ° C. or higher.
  • the content of such a high boiling point solvent is preferably 3 to 50% by weight, more preferably 5 to 40% by weight, and particularly preferably 5 to 30% by weight based on the total amount of the solvent (b). If the amount of the high-boiling solvent is too small, for example, coloring material components may precipitate and solidify at the tip of the slit nozzle to cause foreign matter defects, and if too large, the drying speed of the composition will be slow, which will be described later. There is a concern that problems such as tact defects in the vacuum drying process and prebaked pin marks may be caused in the color filter manufacturing process.
  • the solvent having a boiling point of 150 ° C. or higher may be glycol alkyl ether acetates or glycol alkyl ethers. In this case, a solvent having a boiling point of 150 ° C. or higher may not be included separately. .
  • the colored resin composition of the present invention may be used for color filter production by the ink jet method.
  • the ink emitted from the nozzle is very small, from several to several tens pL.
  • the solvent has a high boiling point.
  • the solvent (b) contains a solvent having a boiling point of 180 ° C. or higher.
  • the high boiling point solvent whose boiling point is 180 degreeC or more is 50 weight% or more in (b) solvent.
  • the ratio of such a high boiling point solvent is less than 50% by weight, the effect of preventing evaporation of the solvent from the ink droplets may not be sufficiently exhibited.
  • the content of the solvent is not particularly limited, but the upper limit is usually 99% by weight.
  • the content ratio of the solvent (b) in the composition exceeds 99% by weight, the concentration of each component excluding the solvent (b) may be too small to be suitable for forming a coating film.
  • the lower limit of the content ratio of the solvent (b) is usually 75% by weight, preferably 80% by weight, and more preferably 82% by weight in consideration of viscosity suitable for coating.
  • the colored resin composition of the present invention preferably contains (d) a monomer.
  • the monomer is not particularly limited as long as it is a polymerizable low-molecular compound, but may be referred to as an addition-polymerizable compound having at least one ethylenic double bond (hereinafter referred to as “ethylenic compound”). ) Is preferred.
  • the ethylenic compound is a compound having an ethylenic double bond that undergoes addition polymerization and cures by the action of a photopolymerization initiation system described later when the colored resin composition of the present invention is irradiated with actinic rays.
  • the (d) monomer in this invention means the concept opposite to what is called a polymeric substance, and also includes a dimer, a trimer, and an oligomer other than a monomer in a narrow sense.
  • Examples of the ethylenic compound include unsaturated carboxylic acid such as (meth) acrylic acid; ester of monohydroxy compound and unsaturated carboxylic acid; ester of aliphatic polyhydroxy compound and unsaturated carboxylic acid; aromatic polyhydroxy An ester of a compound and an unsaturated carboxylic acid; an ester obtained by an esterification reaction of an unsaturated carboxylic acid with a polyvalent carboxylic acid and a polyvalent hydroxy compound such as the above-mentioned aliphatic polyhydroxy compound or aromatic polyhydroxy compound; And an ethylenic compound having a urethane skeleton obtained by reacting an isocyanate compound with a (meth) acryloyl group-containing hydroxy compound.
  • unsaturated carboxylic acid such as (meth) acrylic acid
  • ester of monohydroxy compound and unsaturated carboxylic acid ester of aliphatic polyhydroxy compound and unsaturated carboxylic acid
  • aromatic polyhydroxy An ester of a compound and an unsatur
  • Esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids include ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate , Pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) Examples include (meth) acrylic acid esters such as acrylate and glycerol (meth) acrylate.
  • the (meth) acrylic acid portion of these (meth) acrylic acid esters is replaced with an itaconic acid portion, a crotonic acid portion replaced with a crotonic acid portion, or a maleic acid ester replaced with a maleic acid portion, etc. Is mentioned.
  • ester of an aromatic polyhydroxy compound and an unsaturated carboxylic acid examples include hydroquinone di (meth) acrylate, resorcin di (meth) acrylate, pyrogallol tri (meth) acrylate and the like.
  • the ester obtained by the esterification reaction of an unsaturated carboxylic acid with a polyvalent carboxylic acid and a polyvalent hydroxy compound is not necessarily a single substance but may be a mixture.
  • Representative examples are condensates of (meth) acrylic acid, phthalic acid, and ethylene glycol; condensates of (meth) acrylic acid, maleic acid, and diethylene glycol; condensation of (meth) acrylic acid, terephthalic acid, and pentaerythritol A condensate of (meth) acrylic acid, adipic acid, butanediol, and glycerin.
  • Examples of the ethylenic compound having a urethane skeleton obtained by reacting a polyisocyanate compound with a (meth) acryloyl group-containing hydroxy compound include aliphatic diisocyanates such as hexamethylene diisocyanate and trimethylhexamethylene diisocyanate; alicyclic rings such as cyclohexane diisocyanate and isophorone diisocyanate.
  • Formula diisocyanates aromatic diisocyanates such as tolylene diisocyanate and diphenylmethane diisocyanate, and (meth) acryloyl such as 2-hydroxyethyl (meth) acrylate and 3-hydroxy [1,1,1-tri (meth) acryloyloxymethyl] propane
  • aromatic diisocyanates such as tolylene diisocyanate and diphenylmethane diisocyanate
  • (meth) acryloyl such as 2-hydroxyethyl (meth) acrylate and 3-hydroxy [1,1,1-tri (meth) acryloyloxymethyl] propane
  • examples of the ethylenic compound used in the present invention include (meth) acrylamides such as ethylene bis (meth) acrylamide; allyl esters such as diallyl phthalate; vinyl group-containing compounds such as divinyl phthalate. .
  • esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids are preferred, pentaerythritol or (meth) acrylic acid esters of dipentaerythritol are more preferred, and dipentaerythritol hexa (meth) acrylate is particularly preferred.
  • the ethylenic compound may be a monomer having an acid value.
  • the monomer having an acid value is, for example, an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and a non-aromatic carboxylic acid anhydride is reacted with an unreacted hydroxyl group of the aliphatic polyhydroxy compound.
  • a polyfunctional monomer having a group is preferable, and in this ester, the aliphatic polyhydroxy compound is pentaerythritol and / or dipentaerythritol.
  • These monomers may be used alone, but since it is difficult to obtain a single compound in production, a mixture of two or more kinds may be used. Moreover, you may use together the polyfunctional monomer which does not have an acid group, and the polyfunctional monomer which has an acid group as (d) monomer as needed.
  • a preferred acid value of the polyfunctional monomer having an acid group is 0.1 to 40 mg-KOH / g, and particularly preferably 5 to 30 mg-KOH / g. If the acid value of this polyfunctional monomer is too low, the development and dissolution properties tend to be lowered, and if it is too high, production and handling may be difficult, and photopolymerization performance may deteriorate, and the surface smoothness of the pixel, etc. Curability may be inferior. Accordingly, when two or more polyfunctional monomers having different acid groups are used in combination, or when a polyfunctional monomer having no acid group is used in combination, the acid groups as the entire polyfunctional monomer should be adjusted so as to fall within the above range. Is preferred.
  • a more preferred polyfunctional monomer having an acid group is dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, and succinic acid ester of dipentaerythritol pentaacrylate commercially available as “TO1382” manufactured by Toagosei Co., Ltd. It is a mixture containing the main component. It is also possible to use this polyfunctional monomer in combination with another polyfunctional monomer.
  • the content ratio of these (d) monomers is usually 1% by weight or more, preferably 5% by weight or more, more preferably 10% by weight or more, based on the total solid content. Usually, it is 80% by weight or less, preferably 70% by weight or less, more preferably 50% by weight or less, and particularly preferably 40% by weight or less.
  • the ratio of (d) monomer to the above-mentioned (c) coloring material is usually 1% by weight or more, preferably 5% by weight or more, more preferably 10% by weight or more, and particularly preferably 20% by weight or more.
  • the amount is usually 200% by weight or less, preferably 100% by weight or less, and more preferably 80% by weight or less.
  • the amount of the monomer (d) in the colored resin composition is too small, photocuring may be insufficient and may cause poor adhesion during development. Conversely, if too large, photocuring is too strong and after development.
  • the cross section of the film may have a reverse taper shape, or the solubility may be lowered to cause peeling development, or may cause a defect in omission.
  • the colored resin composition of the present invention preferably includes (e) a photopolymerization initiation system and / or a thermal polymerization initiation system for the purpose of curing the coating film.
  • the curing method may be other than those using these initiators.
  • the colored resin composition of the present invention includes a resin having an ethylenic double bond as the component (a), or includes an ethylenic compound as the component (d), it directly absorbs light, or It is preferable to contain a photopolymerization initiating system having a function of generating a polymerization active radical and / or a thermal polymerization initiating system for generating a polymerization active radical by heat.
  • the component (e) as the photopolymerization initiation system means a photopolymerization initiator (hereinafter arbitrarily referred to as (e1) component) to a polymerization accelerator (hereinafter arbitrarily referred to as (e2) component).
  • a mixture in which an additive such as a sensitizing dye hereinafter arbitrarily referred to as component (e3) is used in combination.
  • the photopolymerization initiation system that may be contained in the colored resin composition of the present invention is usually (e) a photopolymerization initiator, and (e3) a sensitizing dye that is added as necessary, and (e2) acceleration of polymerization. It is a component having a function of generating a polymerization active radical by being used as a mixture with an additive such as an agent and directly absorbing light or being photosensitized to cause a decomposition reaction or a hydrogen abstraction reaction.
  • Examples of the photopolymerization initiator constituting the photopolymerization initiation system (e1) include titanocene derivatives described in JP-A Nos. 59-152396 and 61-151197; JP-A-10-300922; Hexaarylbiimidazole derivatives described in JP-A-11-174224 and JP-A-2000-56118; halomethylated oxadiazole derivatives described in JP-A-10-39503, halomethyl-s -Radical activators such as triazine derivatives, N-aryl- ⁇ -amino acids such as N-phenylglycine, N-aryl- ⁇ -amino acid salts, N-aryl- ⁇ -amino acid esters, ⁇ -aminoalkylphenone derivatives And oxime ester derivatives described in JP-A No. 2000-80068 and the like.
  • titanocene derivatives include dicyclopentadienyl titanium dichloride, dicyclopentadienyl titanium bisphenyl, dicyclopentadienyl titanium bis (2,3,4,5,6-pentafluoro Phen-1-yl), dicyclopentadienyl titanium bis (2,3,5,6-tetrafluorophen-1-yl), dicyclopentadienyl titanium bis (2,4,6-trifluoropheny) 1-yl), dicyclopentadienyltitanium di (2,6-difluorophen-1-yl), dicyclopentadienyltitanium di (2,4-difluorophen-1-yl), di (methylcyclopenta Dienyl) titanium bis (2,3,4,5,6-pentafluorophen-1-yl), di (methylsilane) Lopentadienyl) titanium bis (2,6-difluorophen-1-yl), di
  • Biimidazole derivatives include 2- (2′-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (2′-chlorophenyl) -4,5-bis (3′-methoxyphenyl) imidazole. Dimer, 2- (2′-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (2′-methoxyphenyl) -4,5-diphenylimidazole dimer, (4′-methoxy) Phenyl) -4,5-diphenylimidazole dimer and the like.
  • halomethylated oxadiazole derivatives include 2-trichloromethyl-5- (2′-benzofuryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- [ ⁇ - (2′- Benzofuryl) vinyl] -1,3,4-oxadiazole, 2-trichloromethyl-5- [ ⁇ - (2 ′-(6 ′′ -benzofuryl) vinyl)]-1,3,4-oxadiazole, And 2-trichloromethyl-5-furyl-1,3,4-oxadiazole.
  • halomethyl-s-triazine derivatives examples include 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxynaphthyl) -4,6-bis ( Trichloromethyl) -s-triazine, 2- (4-ethoxynaphthyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-ethoxycarbonylnaphthyl) -4,6-bis (trichloromethyl) -S-triazine and the like.
  • ⁇ -aminoalkylphenone derivatives include 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4- Morpholinophenyl) -butanone-1,2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 4-dimethylaminoethylbenzoate, 4-dimethylaminoisoamylbenzoe -To, 4-diethylaminoacetophenone, 4-dimethylaminopropiophenone, 2-ethylhexyl-1,4-dimethylaminobenzoate, 2,5-bis (4-diethylaminobenzal) cyclohexanone, 7-diethylamino-3- (4 -Diethylaminobenzoyl) coumarin, 4- (diethylamino) chalcone, etc. It is
  • the oxime ester derivatives include 1,2-octanedione, 1- [4- (phenylthio) phenyl], 2- (o-benzoyloxime), ethanone, 1- [9-ethyl-6- (2 -Methylbenzoyl) -9H-carbazol-3-yl], 1- (o-acetyloxime) and the like.
  • benzoin alkyl ethers such as benzoin methyl ether, benzoin phenyl ether, benzoin isobutyl ether and benzoin isopropyl ether; anthraquinone derivatives such as 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone and 1-chloroanthraquinone 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, ⁇ -hydroxy-2-methylphenylpropanone, 1-hydroxy-1-methylethyl (P-isopropylphenyl) ketone, 1-hydroxy-1- (p-dodecylphenyl) ketone, 2-methyl- (4′-methylthiophenyl) -2-morpholino-1-propanone, 1, , 1-trichloromethyl- (p-butylphenyl)
  • ⁇ -aminoalkylphenone derivatives and thioxanthone derivatives are more preferable.
  • Examples of the (e2) polymerization accelerator used as necessary include N, N-dialkylaminobenzoic acid alkyl esters such as N, N-dimethylaminobenzoic acid ethyl ester; 2-mercaptobenzothiazole, 2-mercapto Examples include mercapto compounds having a heterocyclic ring such as benzoxazole and 2-mercaptobenzimidazole; mercapto compounds such as aliphatic polyfunctional mercapto compounds.
  • sensitizing dyes are used for the purpose of increasing the sensitivity as required.
  • the sensitizing dye an appropriate one is used depending on the wavelength of the image exposure light source. For example, xanthene dyes described in JP-A-4-221958 and JP-A-4-219756; No. 239703, JP-A-5-289335, etc.
  • sensitizing dyes preferred are amino group-containing sensitizing dyes, and more preferred are compounds having an amino group and a phenyl group in the same molecule.
  • Particularly preferred as the sensitizing dye is, for example, 4,4′-dimethylaminobenzophenone, 4,4′-diethylaminobenzophenone, 2-aminobenzophenone, 4-aminobenzophenone, 4,4′-diaminobenzophenone, 3,3 ′.
  • Benzophenone compounds such as diaminobenzophenone and 3,4-diaminobenzophenone; 2- (p-dimethylaminophenyl) benzoxazole, 2- (p-diethylaminophenyl) benzoxazole, 2- (p-dimethylaminophenyl) benzo [ 4,5] benzoxazole, 2- (p-dimethylaminophenyl) benzo [6,7] benzoxazole, 2,5-bis (p-diethylaminophenyl) -1,3,4-oxazole, 2- (p- Dimethylaminophenyl) benzothiazole 2- (p-diethylaminophenyl) benzothiazole, 2- (p-dimethylaminophenyl) benzimidazole, 2- (p-diethylaminophenyl) benzimidazole, 2,5-bis (p-diethylaminophenyl) -1,3 4-thiadia
  • a sensitizing dye may also be used alone or in combination of two or more.
  • the content ratio of these (e) photopolymerization initiation systems is usually 0.1% by weight or more, preferably 0.2% by weight or more, more preferably 0.8% by weight in the total solid content. It is 5% by weight or more, usually 40% by weight or less, preferably 30% by weight or less, and more preferably 20% by weight or less. If this content is extremely low, the sensitivity to exposure light may be reduced. Conversely, if it is extremely high, the solubility of the unexposed portion in the developer may be reduced, leading to poor development.
  • thermal polymerization initiation system thermal polymerization initiator
  • organic peroxides organic peroxides
  • hydrogen peroxide hydrogen peroxide
  • azo compound examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexene-1-carbonitrile), 2, 2′-azobis (2,4-dimethylvaleronitrile), 1-[(1-cyano-1-methylethyl) azo] formamide (2- (carbamoylazo) isobutyronitrile), 2,2-azobis ⁇ 2 -Methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2′-azobis [N- (2-propenyl) -2-methylpropionamide], 2,2 '-Azobis [N- (2-propenyl) -2-ethylpropionamide], 2,2'-azobis [N-butyl-2-methylpropionamide], 2,2'-azobis (N-cyclo Xyl-2-methylpropionamide), 2,2′-azobis (d
  • Organic peroxides include benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide and the like. Specifically, diisobutyryl peroxide, cumylperoxyneodecanoate, di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, di-sec-butylperoxydicarbonate, 1,1,3, 3-tetramethylbutylperoxyneodecanoate, di (4-t-butylcyclohexyl) peroxydicarbonate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, di (2-ethoxyethyl) peroxy Dicarbonate, di (2-ethylhexyl) peroxydicarbonate, t-hexylperoxyneodecanoate, dimethoxybutylperoxydicarbonate, t-butylperoxyneodecanoate,
  • thermal polymerization initiators may be used alone or in combination of two or more.
  • the content of the thermal polymerization initiator is preferably in the range of 0 to 30% by weight, particularly 0 to 20% by weight, based on the total solid content of the colored resin composition of the present invention.
  • the colored resin composition of the present invention may contain (f) a pigment within a range not impairing the effects of the present invention for the purpose of improving heat resistance.
  • pigments of various colors such as blue and purple can be used.
  • examples of the chemical structure include organic pigments such as phthalocyanine, quinacridone, benzimidazolone, dioxazine, indanthrene, and perylene.
  • various inorganic pigments can be used.
  • specific examples of usable pigments are indicated by pigment numbers.
  • the following “CI” means a color index (CI).
  • blue pigments examples include C.I. I. Pigment Blue 1, 1: 2, 9, 14, 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 17, 19, 25, 27, 28, 29, 33, 35, 36, 56, 56: 1, 60, 61, 61: 1, 62, 63, 66, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79 and the like. Of these, C.I. I. Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, etc., more preferably C.I. I. Pigment Blue 15: 6.
  • purple pigments examples include C.I. I. Pigment Violet 1, 1: 1, 2, 2: 2, 3, 3: 1, 3: 3, 5, 5: 1, 14, 15, 16, 19, 23, 25, 27, 29, 31, 32, 37, 39, 42, 44, 47, 49, 50 and the like. Of these, C.I. I. Pigment violet 19, 23, and the like, more preferably C.I. I. Pigment Violet 23.
  • examples of inorganic pigments include barium sulfate, lead sulfate, titanium oxide, yellow lead, bengara, and chromium oxide.
  • a plurality of the above-mentioned various pigments can be used in combination.
  • a blue pigment and a violet pigment can be used in combination as the pigment.
  • These pigments are used after being subjected to a dispersion treatment so that the average particle size in the colored resin composition is usually 1 ⁇ m or less, preferably 0.5 ⁇ m or less, more preferably 0.3 ⁇ m or less.
  • the content ratio of these (f) pigments is usually 80% by weight or less, preferably 50% by weight or less in the total solid content. Moreover, content with respect to 100 weight part of above-mentioned (c) color materials is 2000 weight part or less normally, Preferably it is 1000 weight part or less. (F) When the ratio of the pigment is too large, the effect of achieving both high color reproducibility and high luminance by the (c) color material according to the present invention is diminished.
  • the colored resin composition of the present invention includes a surfactant, an organic carboxylic acid and / or an organic carboxylic acid anhydride, a plasticizer, and a dye other than the above-mentioned (c) colorant according to the present invention, in addition to the above components. Further, it may contain a thermal polymerization inhibitor, a storage stabilizer, a surface protective agent, an adhesion improver, a development improver and the like. Moreover, when it contains (f) a pigment as a coloring agent, you may contain a dispersing agent and a dispersing aid. As these optional components, for example, various compounds described in JP-A No. 2007-113000 can be used.
  • the coloring material according to the present invention is composed of (a) a binder resin as an essential component, and (b) a solvent, and in some cases, an optional component (d) monomer or (e) a photopolymerization initiation system. And / or a thermal polymerization initiation system, a surfactant, and other components are mixed to obtain a uniform solution, whereby a colored resin composition is obtained.
  • a binder resin as an essential component
  • a solvent in some cases, an optional component (d) monomer or (e) a photopolymerization initiation system.
  • a thermal polymerization initiation system, a surfactant, and other components are mixed to obtain a uniform solution, whereby a colored resin composition is obtained.
  • fine dust may be mixed in each step such as mixing, it is preferable to filter the obtained ink-like liquid with a filter or the like.
  • a pigment is used in combination as a colorant
  • the above-mentioned (c) color material, (f) pigment, (b) solvent, and optional dispersing agent or dispersing aid according to the present invention are weighed in predetermined amounts, and in the dispersion treatment step, (f) the pigment is sufficiently dispersed to form an ink-like liquid.
  • a paint shaker, a sand grinder, a ball mill, a roll mill, a stone mill, a jet mill, a homogenizer, or the like can be used.
  • the pigment (f) is made fine, so that the coating characteristics of the colored resin composition are improved and the transmittance of the product color filter substrate and the like is improved.
  • (F) When dispersing the pigment, it is preferable that (a) a part of the binder resin is used as a dispersant, or a dispersion aid or the like is appropriately used in combination. Further, when the dispersion treatment is performed using a paint shaker or a sand grinder, it is preferable to use glass beads or zirconia beads having a diameter of 0.1 to several mm.
  • the temperature during the dispersion treatment is usually set to 0 ° C. or higher, preferably room temperature or higher, and usually 100 ° C. or lower, preferably 80 ° C. or lower.
  • the dispersion time needs to be appropriately adjusted because the appropriate time varies depending on the composition of the ink-like liquid and the size of the sand grinder apparatus.
  • a binder resin which is an essential component
  • a solvent and in some cases, an optional component (d) monomer or (e) a photopolymerization initiation system and
  • a colored resin composition is obtained by mixing a thermal polymerization initiation system, a surfactant, and other components to obtain a uniform dispersion solution.
  • distribution process and mixing since fine refuse may mix, it is preferable to filter the obtained ink-like liquid with a filter etc.
  • the colored resin composition of the present invention is usually in a state where all the constituent components are dissolved or dispersed in a solvent. Such a colored resin composition is supplied onto a substrate to form components such as a color filter, a liquid crystal display device, and an organic EL display.
  • a color filter a liquid crystal display device
  • an organic EL display a display of an organic EL.
  • the pixel of the color filter can be formed by various methods as will be described later.
  • the case of forming by photolithographic method using a photopolymerizable colored resin composition will be described in detail, but the manufacturing method is not limited to this.
  • the transparent substrate of the color filter is not particularly limited as long as it is transparent and has an appropriate strength.
  • the material include polyester resins such as polyethylene terephthalate; polyolefin resins such as polypropylene and polyethylene; polycarbonate resins; acrylic resins such as polymethyl methacrylate; sheets made of thermoplastic resins such as polysulfone resins; Examples thereof include thermosetting resin sheets such as unsaturated polyester resins; and various glasses.
  • glass and heat resistant resin are preferable from the viewpoint of heat resistance.
  • surface treatment such as corona discharge treatment or ozone treatment, thin film formation treatment with various resins such as silane coupling agents or urethane resins, etc. Etc. may be performed.
  • the thickness of the transparent substrate is usually 0.05 mm or more, preferably 0.1 mm or more, and usually 10 mm or less, preferably 7 mm or less. Moreover, when performing the thin film formation process by various resin, the film thickness is 0.01 micrometer or more normally, Preferably it is 0.05 micrometer or more, and is 10 micrometers or less normally, Preferably it is the range of 5 micrometers or less.
  • a color filter can be produced by providing a black matrix on the above-described transparent substrate and forming each pixel image of red, green and blue.
  • the black matrix is formed on the transparent substrate using the light shielding metal thin film or the colored resin composition of the present invention.
  • a chromium compound such as metal chromium, chromium oxide, chromium nitride, an alloy of nickel and tungsten, or the like may be used, and these may be laminated in a plurality of layers.
  • These light shielding metal thin films are generally formed by a sputtering method, and a desired pattern is formed in a film shape by a positive photoresist.
  • a black matrix can be formed by stripping the mold photoresist with a dedicated stripper. In this case, first, a thin film of these metals or metal / metal oxide is formed on the transparent substrate by vapor deposition or sputtering. Next, a coating film of a positive photoresist resin composition is formed on the thin film. Next, the coating film is exposed and developed using a photomask having a repetitive pattern such as a stripe, a mosaic, and a triangle to form an image. Thereafter, this coating film can be etched to form a black matrix.
  • a black matrix may be formed using a photopolymerizable colored resin composition containing a black (f) pigment.
  • a black (f) pigment obtained by mixing black pigments such as carbon black, graphite, iron black, titanium black, etc., alone or in combination, or pigments such as red, green, blue, etc., appropriately selected from inorganic or organic pigments
  • a black matrix can be formed in a manner similar to the method of forming red, green, and blue pixel images described later.
  • the resin black matrix forming surface formed on the transparent substrate, or the chromium compound or other light shielding metal material A pixel image of each color is formed on the metal black matrix forming surface formed using the coating, heat drying, image exposure, development, and thermosetting processes.
  • a colored resin composition containing a color material of one of red, green, and blue is applied and dried, and then a photomask is overlaid on the coating film. Then, a pixel image is formed by image exposure, development, and if necessary, heat curing or photocuring to create a colored layer.
  • a color filter image can be formed by performing this operation for each of the three colored resin compositions of red, green, and blue.
  • the colored resin composition of the present invention is particularly preferably used for forming a blue pixel.
  • a method for supplying the colored resin composition to the substrate there are conventionally known methods such as a spinner method, a wire bar method, a flow coating method, a slit and spin method, a die coating method, a roll coating method, a spray coating method and the like. Can be mentioned. Among these, the slit and spin method and the die coating method are preferable. Since the colored resin composition of the present invention hardly generates agglomerated foreign matter at the tip of the dispensing nozzle, it is possible to provide a coating film having a smooth and beautiful surface without reducing the yield. In addition, there is no coating unevenness during the coating or drying unevenness in the subsequent drying step, and a layer having an extremely smooth surface can be formed through an exposure step, a development step, a heat treatment step, and the like.
  • the coating conditions by the slit-and-spin method and the die coating method may be appropriately selected depending on the composition of the colored resin composition, the type of color filter to be produced, and the like.
  • the lip width at the nozzle tip is preferably 50 to 500 ⁇ m, and the distance between the nozzle tip and the substrate surface is preferably 30 to 300 ⁇ m.
  • the die coating method in order to adjust the thickness of the coating film, the running speed of the lip and the discharge amount of the liquid colored resin composition from the lip may be adjusted.
  • the slit and spin method Further, it may be adjusted depending on the spin rotation speed and the rotation time after slit coating.
  • the thickness of the coating film is usually 0.2 ⁇ m or more, preferably 0.5 ⁇ m or more, more preferably 0.8 ⁇ m or more, and usually 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m as the film thickness after drying. The range is as follows.
  • the coating film after the colored resin composition is applied to the substrate is preferably dried by a drying method using a hot plate, an IR oven, or a convection oven. Usually, after preliminary drying, it is heated again and dried. Conditions such as predrying temperature and drying time are appropriately selected according to the type of solvent component, the performance of the dryer used, and the like. Specifically, the drying temperature is usually 40 ° C. or higher, preferably 50 ° C. In addition, the temperature is usually 80 ° C. or lower, preferably 70 ° C. or lower, and the drying time is usually 15 seconds or longer, preferably 30 seconds or longer, and usually 5 minutes or shorter, preferably 3 minutes or shorter. The reheating drying temperature condition is preferably higher than the preliminary drying temperature, specifically, usually 50 ° C.
  • the drying time depends on the heating temperature, but it is usually 10 seconds or longer, preferably 15 seconds or longer, and usually 10 minutes or shorter, preferably 5 minutes or shorter. The higher the drying temperature, the better the adhesion to the transparent substrate. However, when the drying temperature is too high, the binder resin is decomposed, and thermal polymerization may be induced to cause development failure. In addition, as a drying process of this coating film, you may use the reduced pressure drying method which dries in a reduced pressure chamber, without raising temperature.
  • Image exposure is performed by superimposing a negative matrix pattern on the coating film of the colored resin composition and irradiating an ultraviolet or visible light source through this mask pattern. At this time, if necessary, exposure is performed after forming an oxygen blocking layer such as a polyvinyl alcohol layer on the photopolymerizable layer in order to prevent a decrease in sensitivity due to oxygen of the photopolymerizable layer formed of the colored resin composition. May be.
  • an oxygen blocking layer such as a polyvinyl alcohol layer
  • the light source used for the above image exposure is not particularly limited.
  • Examples of light sources include xenon lamps, halogen lamps, tungsten lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, medium-pressure mercury lamps, low-pressure mercury lamps, carbon arcs, and fluorescent lamps; argon ion lasers, YAG lasers, excimers Laser light sources such as laser, nitrogen laser, helium cadmium laser, and semiconductor laser are listed.
  • An optical filter can also be used when used by irradiating light of a specific wavelength.
  • the color filter is a substrate obtained by performing image exposure on the coating film of the colored resin composition with the above-mentioned light source and then developing with an organic solvent or an aqueous solution containing a surfactant and an alkaline compound. An image can be formed on the top.
  • This aqueous solution may further contain an organic solvent, a buffering agent, a complexing agent, a dye or a pigment.
  • alkaline compound sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium silicate, potassium silicate, sodium metasilicate, sodium phosphate, potassium phosphate
  • Inorganic alkaline compounds such as sodium hydrogen phosphate, potassium hydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, ammonium hydroxide; mono-di- or tri-ethanolamine, mono-di- or tri-methylamine , Mono-, di-, or tri-ethylamine, mono-, or diisopropylamine, n-butylamine, mono-, di-, or tri-isopropanolamine, ethyleneimine, ethylenediimine, tetramethylammonium hydroxide ( TMA ), The organic alkali compound choline and the like. These alkaline compounds may be used individually by 1 type, and may use 2 or more types together.
  • surfactant examples include nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl aryl ethers, polyoxyethylene alkyl esters, sorbitan alkyl esters, monoglyceride alkyl esters; and alkylbenzene sulfonic acids.
  • Anionic surfactants such as salts, alkylnaphthalene sulfonates, alkyl sulfates, alkyl sulfonates, sulfosuccinic acid ester salts; amphoteric surfactants such as alkyl betaines and amino acids. These surfactants may be used alone or in combination of two or more.
  • organic solvent examples include isopropyl alcohol, benzyl alcohol, ethyl cellosolve, butyl cellosolve, phenyl cellosolve, propylene glycol, diacetone alcohol and the like.
  • An organic solvent may be used individually by 1 type, may be used as a 2 or more types of mixed solvent, and can also be used in combination with aqueous solution.
  • the development temperature is usually 10 ° C. or higher, especially 15 ° C. or higher, more preferably 20 ° C. or higher, and usually 50 ° C. or lower, especially 45 ° C. or lower, more preferably 40 ° C. or lower. Is preferred.
  • the developing method can be any one of immersion developing method, spray developing method, brush developing method, ultrasonic developing method and the like.
  • thermosetting treatment conditions are such that the temperature is usually 100 ° C. or more, preferably 150 ° C. or more, and usually 280 ° C. or less, preferably 250 ° C. or less, and the time is 5 minutes or more and 60 minutes or less. Selected by range.
  • the patterning image formation for one color is completed. This process is sequentially repeated to pattern black (when forming a black matrix using a colored resin composition), red, green, and blue to form a color filter. Note that the patterning order of the three colors red, green, and blue is not limited to the order described above.
  • the color filter in the present invention is (1) a colored resin composition containing a polyimide resin as a solvent, a coloring material, and a binder resin is applied to a substrate, and a pixel image is obtained by an etching method.
  • a transparent electrode such as ITO is formed on the image as it is, and is used as a part of a color display, a liquid crystal display device, or the like.
  • a top coat layer such as polyamide or polyimide can be provided on the image as necessary.
  • the transparent electrode may not be formed.
  • ribs may be formed.
  • a column structure (photo spacer) made of photolithography may be formed instead of the bead dispersion type spacer.
  • the liquid crystal display device includes the above-described color filter (hereinafter sometimes referred to as “the color filter of the present invention”).
  • TFT thin film transistor
  • It can comprise by making it the structure which opposes opposing board
  • the alignment film is preferably a resin film such as polyimide.
  • a resin film such as polyimide.
  • gravure printing and / or flexographic printing methods are usually employed.
  • the alignment film is cured by thermal baking, and then subjected to surface treatment by ultraviolet irradiation or rubbing cloth treatment. Then, it is processed into a surface state in which the tilt of the liquid crystal can be adjusted.
  • the thickness of the alignment film thus formed is usually about several tens of nm.
  • a spacer having a size corresponding to a gap with the counter substrate is used, and usually a spacer having a size of 2 to 8 ⁇ m is preferable.
  • a photo spacer (PS) of a transparent resin film is formed on the color filter by photolithography, and this can be used instead of the spacer.
  • an array substrate is usually used, and a TFT (thin film transistor) substrate is particularly suitable.
  • a TFT (thin film transistor) substrate is particularly suitable.
  • the gap of bonding with a counter substrate changes with uses of a liquid crystal panel, it is normally selected in the range of 2 micrometers or more and 8 micrometers or less.
  • the part other than the liquid crystal injection port is sealed with a sealing material such as epoxy resin.
  • the sealing material is cured by ultraviolet (UV) irradiation and / or heating, and the periphery of the liquid crystal cell is sealed.
  • the liquid crystal cell whose periphery is sealed is cut into panel units, then decompressed in a vacuum chamber, the liquid crystal injection port is immersed in liquid crystal, and then the liquid crystal is injected into the liquid crystal cell by leaking in the chamber.
  • the degree of pressure reduction in the liquid crystal cell is usually 1 ⁇ 10 ⁇ 2 Pa or more, preferably 1 ⁇ 10 ⁇ 3 or more, and usually 1 ⁇ 10 ⁇ 7 Pa or less, preferably 1 ⁇ 10 ⁇ 6 Pa or less. It is a range.
  • the liquid crystal cell is preferably heated during decompression, and the heating temperature is usually 30 ° C. or higher, preferably 50 ° C. or higher, and usually 100 ° C. or lower, preferably 90 ° C. or lower.
  • the warming holding time during decompression is usually in the range of 10 minutes or more and 60 minutes or less, and then immersed in the liquid crystal.
  • the liquid crystal display device is completed by sealing the liquid crystal injection port by curing, for example, UV curable resin.
  • thermotropic liquid crystal any one of a lyotropic liquid crystal, a thermotropic liquid crystal, etc. are conventionally known liquid crystals, such as an aromatic type, an aliphatic type, a polycyclic compound.
  • thermotropic liquid crystal nematic liquid crystal, smectic liquid crystal, cholesteric liquid crystal, and the like are known, and any of these may be used.
  • ⁇ Organic EL display> When producing an organic EL display comprising the color filter of the present invention, for example, as shown in FIG. 3, a blue color filter in which blue pixels 20 are formed on the transparent support substrate 10 by the colored resin composition of the present invention.
  • a multicolor organic EL element can be produced by laminating the organic light-emitting body 500 via the organic protective layer 30 and the inorganic oxide film 40 thereon.
  • a transparent anode 50, a hole injection layer 51, a hole transport layer 52, a light emitting layer 53, an electron injection layer 54, and a cathode 55 are sequentially formed on the upper surface of the color filter.
  • a method of adhering the organic light-emitting body 500 formed on another substrate onto the inorganic oxide film 40 can be used.
  • the organic EL element 100 manufactured as described above can be applied to both a passive drive type organic EL display and an active drive type organic EL display.
  • DMF Dimethylformamide
  • phenylimidazole 3.86 g, 20 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.
  • sodium hydride (1 g, 21 mmol, manufactured by Wako Pure Chemical Industries, Ltd.
  • benzyl chloride 2.5 g, 20 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.
  • water was added, extracted with toluene, the organic layer was dried over calcium carbonate, and concentrated by filtration.
  • the obtained product was purified by column chromatography to obtain 3.5 g of Compound 2 in a yield of 62%.
  • Nitrogen line connection Three-way cock, Dimroth, thermometer, 100 ml four-necked flask equipped with a rotor was purged with nitrogen and dried under reduced pressure.
  • the compound 2 (1.13 g, 4.0 mmol, 1.0 eq.) Obtained above and 10 ml of canned toluene (manufactured by Junsei Chemical Co., Ltd.) were added thereto, and the mixture was stirred at room temperature.
  • Phosphorus oxychloride (613 mg, 4.0 mmol, 1.0 eq., Manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto and stirred for a while.
  • Phenylimidazole (5.8 g, 30 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.), iodotoluene (9.8 g, 45 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.), copper iodide (2.2 g, 12 mmol, manufactured by Kanto Chemical Co., Inc.), 1, To 9-phenanthroline (2.4 g, 12 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and potassium phosphate (9.5 g, 45 mmol, manufactured by Kanto Chemical Co., Inc.) were added 100 mL of toluene, and the mixture was heated to reflux for 6 hours. After completion of the reaction, the mixture was filtered, the precipitate was washed with methylene chloride, and the filtrate was concentrated. The obtained crude product was purified by column chromatography to obtain 2.0 g of Compound 5 in a yield of 23%.
  • Nitrogen line connection Three-way cock, Dimroth, thermometer, 100 ml four-necked flask equipped with a rotor was purged with nitrogen and dried under reduced pressure.
  • the compound 5 (850 mg, 3.0 mmol, 1.0 eq.) Obtained above and 10 ml of canned toluene (manufactured by Junsei Chemical Co., Ltd.) were added thereto, and the mixture was stirred at room temperature.
  • Phosphorus oxychloride (460 mg, 3.0 mmol, 1.0 eq., Manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto and stirred for a while.
  • Nitrogen line connection Three-way cock, Dimroth, thermometer, 100 ml four-necked flask equipped with a rotor was purged with nitrogen and dried under reduced pressure.
  • compound 7 (1.55 g, 7.0 mmol, 1.0 eq., Manufactured by Tokyo Chemical Industry Co., Ltd.) and 15 ml of canned toluene (manufactured by Junsei Chemical Co., Ltd.) were added and stirred at room temperature.
  • Phosphorus oxychloride (1.07 g, 7.0 mmol, 1.0 eq., Manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto and stirred for a while.
  • Nitrogen line connection Three-way cock, Dimroth, thermometer, 100 ml four-necked flask equipped with a rotor was purged with nitrogen and dried under reduced pressure.
  • Phenylimidazole (3.87 g, 20.0 mmol, 1.0 eq., Manufactured by Tokyo Chemical Industry Co., Ltd.) was added thereto, dissolved in dehydrated DMF (20 ml, manufactured by Kanto Chemical Co., Ltd.) at room temperature, and ice-cooled.
  • sodium hydride (960 mg, 22.0 mmol, 1.1 eq., Manufactured by Wako Pure Chemical Industries, Ltd.) was slowly added and stirred.
  • Nitrogen line connection Three-way cock, Dimroth, thermometer, 100 ml four-necked flask equipped with a rotor was purged with nitrogen and dried under reduced pressure.
  • the compound 9 (832 mg, 3.0 mmol, 1.0 eq.) Obtained above and 8 ml of canned toluene (manufactured by Junsei Chemical Co., Ltd.) were added to the solution and stirred at room temperature.
  • Phosphorus oxychloride (506 mg, 3.3 mmol, 1.1 eq., Manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto and stirred for a while.
  • Nitrogen line connection Three-way cock, Dimroth, thermometer, 100 ml four-necked flask equipped with a rotor was purged with nitrogen and dried under reduced pressure.
  • 4-Fluorophenylimidazole (6.3 g, 30 mmol, 1.0 eq., Manufactured by Tokyo Chemical Industry Co., Ltd.) was added, dissolved in dehydrated DMF (100 ml, manufactured by Kanto Chemical Co., Ltd.) at room temperature, and cooled with ice.
  • sodium hydride (2.16 mg, 45 mmol, manufactured by Wako Pure Chemical Industries, Ltd.) was slowly added and stirred.
  • Nitrogen line connection Three-way cock, Dimroth, thermometer, 100 ml four-necked flask equipped with a rotor was purged with nitrogen and dried under reduced pressure.
  • the compound 11 (975 mg, 3.3 mmol, 1.0 eq.) Obtained above and 10 ml of canned toluene (manufactured by Junsei Chemical Co., Ltd.) were added thereto, and the mixture was stirred at room temperature.
  • Phosphorus oxychloride (557 mg, 3.63 mmol, 1.1 eq., Manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto and stirred for a while.
  • Nitrogen line connection Three-way cock, Dimroth, thermometer, 100 ml four-necked flask equipped with a rotor was purged with nitrogen and dried under reduced pressure.
  • compound 14 (622 mg, 3.0 mmol, 1.0 eq., Manufactured by Tokyo Chemical Industry Co., Ltd.) and canned toluene 15 ml (manufactured by Junsei Chemical Co., Ltd.) were added and stirred at room temperature.
  • Phosphorus oxychloride (506 mg, 3.3 mmol, 1.1 eq., Manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto and stirred for a while.
  • Nitrogen line connection Three-way cock, Dimroth, thermometer, 100 ml four-necked flask equipped with a rotor was purged with nitrogen and dried under reduced pressure.
  • the compound 16 (1.13 g, 4.0 mmol, 1.0 eq.) Obtained above and 10 ml of canned toluene (manufactured by Junsei Chemical Co., Ltd.) were added thereto and stirred at room temperature.
  • Phosphorus oxychloride (675 mg, 4.4 mmol, 1.1 eq., Manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto and stirred for a while.
  • Diisobutylamine (1.62 g, 12.5 mmol, 2.5 eq.) was dissolved in 20 ml of dehydrated toluene, and t-butoxy sodium (1.2 g, 12.5 mmol, 2.5 eq.), 4,4 -Difluorobenzophenone (1.26 g, 5 mmol, 1.0 eq), palladium acetate (168 mg, 0.75 mmol, 0.15 eq), tri-t-butylphosphine (303 mg, 1.5 mmol, 0.3 e) Q.) was added and stirred at 100 ° C. for 5 hours.
  • compound 24 was synthesized in the same manner as the synthesis method of compound 22, and 800 mg (yield 71%) was obtained.
  • the target product VI was synthesized in the same manner as the synthesis method of the target product VH to obtain 990 mg (yield 91%).
  • N, N-diethyl-m-toluidine (21.1 g, 129 mmol) was added dropwise, brought to room temperature and then poured into ice water. The pH was adjusted to 10 or more with 4N aqueous sodium hydroxide solution, and the mixture was extracted with chloroform. The chloroform layer was washed with 1N aqueous sodium hydroxide solution and filtered through Celite to remove insolubles. This was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the concentrate was purified by silica gel column chromatography (silica gel 800 g, hexane / ethyl acetate 4/1), and the resulting crystals were washed with hexane to obtain compound 23 (14.6 g, yield 33%).
  • Phosphorous oxychloride (1.4 ml, 15 mmol) was added to a mixture of compound 23 (3.38 g, 10 mmol), N-ethyl-1-naphthylamine (1.71 g, 10 mmol) and toluene (15 ml), and the mixture was stirred at 120 ° C. for 2 hours. Stir. After cooling to room temperature, 1N aqueous hydrochloric acid solution was added, stirred for 15 minutes, and extracted with chloroform.
  • the chloroform layer was washed with water and saturated brine, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the concentrate was subjected to silica gel column chromatography (Kanto Chemical, silica gel 60 sphere, 400 g, chloroform / methanol 15/1 ⁇ 7/1), and the solid was washed with hexane to obtain Compound 26 (3.21 g, yield 61%).
  • the target product IG was synthesized in the same manner as the synthesis method of the target product VH to obtain 578 mg (yield 91%).
  • Compound 29 was synthesized in the same manner as the synthesis of Compound 26 using Compound 23 and Compound 28 as raw materials.
  • the target product IH was synthesized in the same manner as the synthesis of the target product VH to obtain 739 mg (yield 92%).
  • the toluene layer was concentrated under reduced pressure and purified by silica gel column chromatography (Merck 7734, 800 g, hexane / ethyl acetate 100/0 ⁇ 100/1 ⁇ 50/1 ⁇ 30/1) to obtain N, N-diisobutyl-m-toluidine 24. Obtained 0.4 g (yield 64%).
  • a Dimroth was set in a 500 ml reaction vessel, purged with nitrogen, and cooled on ice. Thereto were added aluminum chloride (8.75 g, 65.6 mmol) and 1,2-dichloroethane (10 ml). To this was added dropwise a solution of 4-bromobenzoic acid chloride (12.0 g, 54.7 mmol) in 1,2-dichloroethane (20 ml) over 15 minutes (internal temperature 0 ° C. or lower).
  • a Dimroth was set in a 500 ml reaction vessel and purged with nitrogen.
  • Compound 31 (8.5 g, 21.1 mmol) was taken there and dissolved in dehydrated toluene (100 ml). Then diisobutylamine (7.3 ml, 42.2 mmol, Tokyo Kasei), sodium t-butoxy (4.06 g, 42.2 mmol), palladium (II) acetate (284 mg, 1.27 mmol), and tri-t-butyl Phosphine (10% hexane solution, 552 mg, 2.53 mmol) was added, and the mixture was heated to reflux for 5.5 hours. After cooling to room temperature, a small amount of water was added, filtered through celite, washed with toluene, and the filtrate was extracted with toluene.
  • the target product IJ was synthesized in the same manner as the synthesis of the target product IF (Synthesis Example 17) (yield 386 mg, yield 92%).
  • the even-electron cationic blue dye (dye 1) and the even-electron anion dye ( For dye 2) the excitation energy ( ⁇ E S1 (dye 1) of the lowest singlet excited state (S 1 state) of dye 1 obtained by time-dependent density functional (B3LYP / 6-31G (d, p)) calculation ), The excitation energy of the lowest singlet excited state (S 1 state) of the dye 2 ( ⁇ E S1 (dye 2)), and the excitation energy of the lowest triplet excited state (T 1 state) of the dye 2 ( ⁇ E T1 (dye) Table 41 below shows whether 2)) and formulas (i) and (ii) are satisfied.
  • Table 41 shows the excitation energy ( ⁇ E lowest (dye 2)) in the lowest excited state and whether the expression (iii) is satisfied for the odd-electron dye 2.
  • the dye 2 is a phthalocyanine compound or anthraquinone compound part
  • the dye 1 is a triarylmethine compound part.
  • the excitation energy of was 1.97 eV.
  • the excitation energy in the T 1 state of the anion is expected to be smaller than the excitation energy of singlet oxygen.
  • the generation can be expected to be suppressed.
  • the binder resin a thus obtained had a weight average molecular weight (Mw) measured by GPC of about 15,000.
  • Mw weight average molecular weight
  • Example 9 and Comparative Example 5 ⁇ Preparation of Coloring Material (Dye and Pigment) System Composition with Low Solubility in Solvent (Example 9 and Comparative Example 5)> 11.36 parts by weight of the colorant described in Table 44 as the colorant (total of two types for Comparative Example 5), 57.5 parts by weight of propylene glycol monomethyl ether acetate as the solvent, and Avicia for Example 9 as the dispersant "Solsperth 55000" manufactured by KK and "Disperbic 2000” manufactured by BYK Chemie Co., Ltd. were each filled with 3.02 parts by weight in terms of solid content and 215.7 parts by weight of zirconia beads having a diameter of 0.5 mm in a stainless steel container. A blue color material dispersion was prepared by dispersing for 6 hours in a paint shaker.
  • the resulting colorant dispersion was mixed with the binder resin a obtained in Synthesis Example 23 and other components to prepare a colored resin composition having the formulation shown in Table 45.
  • the substrate is placed between two polarizing plates in close contact with no gap, and a light intensity A (cd) when the polarizing plates are orthogonal using a color luminance meter ("BM-5A" manufactured by Topcon). / from cm 2) and the ratio of the light amount B (cd / cm 2) when the parallel (B / a), and calculates the contrast ratio.
  • BM-5A color luminance meter
  • Comparative Example 3 is the highest in comparison with the same chromaticity (y) coordinate, and Examples 14, 10, 9, 16, 17, 15, 13, 12, 8, 11, Comparative Example 4, Examples 18, 7, 3, Comparative Example 5, Examples 1, 5, 6, 4, 2 in this order. Since Comparative Example 5 is a pigment system conventionally used, Examples 1, 5, 6, 4, and 2 are lower and harder to use than conventional products. On the other hand, regarding contrast, which is a very important characteristic in the liquid crystal display, Examples 1 to 8, 10 to 18, and Comparative Examples 1 to 4 show extremely high values compared to the conventional pigment system of Comparative Example 5. In other words, it can be said that the characteristics are more than compensated even if the luminance is low.
  • the colored resin compositions described in the examples represent a deep blue color at the same dye concentration and the same film thickness.
  • the colored resin compositions of Comparative Examples 1 and 2 only express light blue-green (see chromaticity data in Table 47), and thus show an overwhelming advantage in terms of color reproducibility. It can be said.
  • the substrate was baked at 200 ° C. and 230 ° C. for 30 minutes in a clean oven, and then the spectral transmittance was measured and the color difference ( ⁇ E * ab) was measured as shown in Table 49. .
  • Table 50 shows the results of measuring the color difference ( ⁇ E * ab) before and after irradiation when the substrate was baked at 180 ° C. for 30 minutes in a clean oven and then irradiated with ultraviolet rays for 16 hours with a xenon fade meter. .
  • light resistance is applied to a total of three conditions when the substrate is directly irradiated and when irradiation is performed through the UV cut filter having the transmission spectrum shown in FIG. 1 or the polarizing plate having the transmission spectrum shown in FIG. Sex assessment was performed.
  • the colored resin compositions of the examples are the compositions of Comparative Examples 3 and 4 in which the spectral characteristics were relatively good (Comparative Example 3 has a structure similar to the dye described in Patent Document 4). It can be seen that it has extremely high heat resistance and light resistance.
  • the organic electroluminescent device shown in FIG. 4 was produced by the following method.
  • An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate 1 having a thickness of 150 nm (sputtered film; sheet resistance 15 ⁇ ) is patterned into a 2 mm wide stripe using ordinary photolithography and hydrochloric acid etching. Thus, an anode 2 was formed.
  • ITO indium tin oxide
  • the patterned ITO substrate was cleaned in the order of ultrasonic cleaning with acetone, water with pure water, and ultrasonic cleaning with isopropyl alcohol, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning. Subsequently, 9,9-bis [4- (N, N-bisnaphthylamino) phenyl] -9H-fluorene (LT-N121, manufactured by Luminescent Technology) represented by the following structural formula is used as the hole transport layer 3 at a crucible temperature. Lamination was performed at a temperature of 285 to 310 ° C. and a film thickness of 40 nm at a deposition rate of 0.1 nm / second. The degree of vacuum during deposition was 1.7 ⁇ 10 ⁇ 4 Pa.
  • 2,2′-diperylenyl-9,9′-spirobifluorene represented by the following structural formula and 2,7-bis [9,9′-spiro] Bifluorenyl] -9,9′-spirobifluorene (LT-N628, manufactured by Luminescent Technology) was co-evaporated under the following conditions.
  • LT-N428 crucible temperature 320-330 ° C
  • LT-N628 crucible temperature 450-455 ° C
  • Deposition rate of LT-N428 0.1 nm / sec
  • Deposition rate of LT-N628 0.05 nm / sec
  • the light emitting layer 4 was formed by stacking with a film thickness of 30 nm.
  • the degree of vacuum during deposition was 1.7 to 1.9 ⁇ 10 ⁇ 4 Pa.
  • 1,3-bis [2- (2,2′-bipyridinyl) -1,3,4-oxadiazoyl] -benzene (LT—) represented by the following structural formula as the electron transport layer 5 is formed on the light emitting layer 4.
  • N820 manufactured by Luminescent Technology
  • the crucible temperature of LT-N820 was controlled in the range of 255 to 260 ° C.
  • the deposition rate was controlled in the range of 0.08 to 0.1 nm / second
  • the degree of vacuum during the deposition was 1.2 ⁇ 10 ⁇ 4 Pa.
  • the substrate temperature at the time of vacuum-depositing said hole transport layer 3, the light emitting layer 4, and the electron carrying layer 5 was kept at room temperature.
  • the element formed up to the electron transport layer 5 was once taken out from the vacuum deposition apparatus into the atmosphere.
  • a stripe shadow mask having a width of 2 mm was brought into close contact with the element so as to be orthogonal to the ITO stripe of the anode 2 as a mask for cathode vapor deposition.
  • this element was placed in another vacuum vapor deposition apparatus and evacuated until the degree of vacuum in the vacuum vapor deposition apparatus was 2.3 ⁇ 10 ⁇ 5 Pa or less, as in the case where the organic layer was formed.
  • lithium fluoride (LiF) was deposited at a deposition rate of 0.008 to 0.01 nm / second using a molybdenum boat at a vacuum degree of 3.7 ⁇ 10 ⁇ 6 Pa and 0.5 nm.
  • the film was formed on the electron transport layer 5 with a film thickness of.
  • aluminum was heated by a molybdenum boat, and the deposition rate was 0.1 to 0.2 nm / second, the degree of vacuum was 2.7 ⁇ 10 ⁇ 6 to 2.5 ⁇ 10 ⁇ 6 Pa, and the aluminum had a thickness of 80 nm.
  • a layer was formed to complete the cathode 6.
  • the substrate temperature during vapor deposition when forming the above two-layer cathode 6 was kept at room temperature.
  • an organic electroluminescent light emitting device having a light emitting area portion having a size of 2 mm ⁇ 2 mm was prepared.
  • the presence or absence of light emission and the color of light emitted when a voltage of 6 V was applied to the device were evaluated.
  • the maximum wavelength of the EL emission spectrum at this time was 436 nm, and the CIE chromaticity coordinates (CIE chromaticity coordinates when the front luminance was 10 to 1000 cd / m 2 ) were (0.16, 0.15).
  • the color filter satisfies the light resistance, which is an extremely important item in the long-term reliability of the color filter, has the heat resistance required in the color display manufacturing process, and is excellent in color purity and transmittance of a blue pixel.
  • Color filters can be obtained.
  • the light emission of the organic EL display and the light emission of the backlight of the color filter can be efficiently taken out, and the organic EL display and the liquid crystal display device that achieve both high color reproducibility and high brightness. Can be provided.
  • the contrast of the liquid crystal display device can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Filters (AREA)
  • Materials For Photolithography (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 耐光性に優れたカラーフィルターの青色画素を提供することができ、カラーディスプレイ製造工程で要求される耐熱性をも満たす着色樹脂組成物と、この着色樹脂組成物を用いることにより、青色画素の色純度および透過率に優れたカラーフィルター、および青色純度の良い有機ELディスプレイ並びに液晶表示装置を提供する。  (a)バインダー樹脂と(b)溶剤と、一般式(I)で表される特定構造のトリアリールメタン系色素を含有するカラーフィルター用着色樹脂組成物、およびこれを用いてなる カラーフィルター、有機ELディスプレイ並びに液晶表示装置。

Description

カラーフィルター用着色樹脂組成物、カラーフィルター、有機ELディスプレイおよび液晶表示装置
 本発明は、分光特性に優れたカラーフィルターの青色画素を提供しうる着色樹脂組成物、これを用いて形成された画素を有するカラーフィルター、並びに該カラーフィルターを用いて形成された有機ELディスプレイおよび液晶表示装置に関する。
 近年、フラットディスプレイとして、カラーの液晶表示装置や有機ELディスプレイが注目されており、これらのディスプレイにはカラーフィルターが用いられている。
 例えば、カラー液晶表示装置には、一例として、ブラックマトリックス、複数の色(通常、赤(R)、緑(G)、青(B)の3原色)からなる着色層、透明電極および配向層を備えたカラーフィルター基板と、薄膜トランジスタ(TFT素子)、画素電極および配向層を備えた対向電極基板と、これら両基板を所定の間隙をもたせて対向させ、シール部材で密封して、上記間隙に液晶材料を注入して形成された液晶層とから概略構成された透過型の液晶表示装置がある。また、上記のカラーフィルターの基板と着色層との間に反射層を設けた反射型の液晶表示装置もある。
 有機ELディスプレイは、原理的には、陽極と陰極との間に有機EL発光層をはさんだ構造の有機EL素子を有するものであるが、実際に、有機EL素子を用いてカラー表示の可能な有機ELディスプレイとするには、(1)三原色の各色をそれぞれ発光する有機EL素子どうしを配列する方式、(2)白色光に発光する有機EL素子を三原色のカラーフィルター層と組み合わせる方式、並びに(3)青色発光する有機EL素子と、青→緑、および青→赤にそれぞれ色変換する色変換層(CCM層)とを組み合わせるCCM方式等がある。
 (1)の方式は言うまでもなく、各色の有機EL素子を使用するため、高い色再現性を発現し得るのが特徴である。従って、各色の有機EL素子に対応してカラーフィルターを載置することにより、色再現性の向上や、反射光を吸収することによるコントラスト向上が期待できるため、有望な方式の一つとされている。
 また、(2)の白色有機ELとカラーフィルターとの組み合わせ方式および(3)のCCM方式は、同じ色に発光する有機EL素子を一種類使用すればよいので、上記(1)の方式の有機ELディスプレイにおけるように、各色の有機EL素子の特性を揃える必要が無く、工程数および材料の削減等が可能となり、製造コスト面でも注目を集めているフルカラー化方式である。
 カラーフィルターおよび色変換フィルターと有機発光体を構成要素とする色変換方式を用いた有機EL素子において、カラーディスプレイの製造工程で要求される耐熱性や、ディスプレイとして使用される際の耐候性、並びに高精細度の画像が要求されるものについては、顔料分散法で作成されたカラーフィルターを用いるのが主流となっており、感光性樹脂溶液中に赤色、青色または緑色の顔料を粒径1μm以下に微分散したものをガラス基板上に塗布した後、フォトリソグラフィーにより所望のパターンで画素を形成している(特許文献1,2)。
 カラーフィルターに関しては、色純度、彩度、光透過量の向上が求められており、従来は、光透過量の向上を目的として、画像形成用材料中の感光性樹脂に対する着色顔料の含有量を減らすか、もしくは画像形成用材料により形成される画素の形成膜厚を薄くするというような方法が採られてきた。しかしながら、これらの方法ではカラーフィルター自体の彩度が低下し、ディスプレイ全体が白っぽくなって表示に必要な色の鮮やかさが犠牲となってしまい、逆に彩度を優先して着色顔料含有量を増加させるとディスプレイ全体が暗くなり、この場合には、明るさを確保するためにバックライトの光量を大きくしなければならず、ディスプレイの消費電力増大を招いてしまうという問題がある。
 これに対して、光透過量の向上を目的として、顔料粒子の粒径をその呈色波長の1/2以下にまで微分散する方法が知られているが(非特許文献1)、青色顔料は他の赤色、緑色顔料に比較して呈色波長が短いため、この場合にはさらなる微分散を必要とし、コストアップ並びに分散後の安定性が問題となる。
 一方で、着色剤として染料を使用したカラーフィルターも依然開発が進められている。例えば特許文献3には、シー・アイ・アシッド・ブルー83(トリアリルアミン系色素)と、シー・アイ・ソルベント・ブルー67(銅フタロシアニン系色素)を含む青色フィルター層を設けたカラーフィルターが記載されている。
 しかし、該文献記載の染料を使用したカラーフィルターは、分光特性、耐熱性、耐光性ともに不十分であるという問題があった。
 また、特許文献4には、下記式で表される重合性トリフェニルメタン染料を含むポリマーを用いたカラーフィルターが記載されている。
 しかし、該文献記載の染料を使用したカラーフィルターは、分光特性には優れるものの耐光性が不十分であるという問題があった。
Figure JPOXMLDOC01-appb-C000022
(上記式におけるR1のうち、少なくとも一つは炭素-炭素二重結合を含む特定の重合性基)
特公平4-37987号公報 特公平4-39041号公報 特開2002-14222号公報 特開2000-162429号公報
橋爪清「色材協会誌」(1967年12月、p608)
 本発明は、耐光性に優れたカラーフィルターの青色画素を提供することができ、かつ前述したカラーディスプレイ製造工程で要求される耐熱性をも満たす着色樹脂組成物を提供することを目的とする。また、このような着色樹脂組成物を用いることにより、青色画素の色純度および透過率に優れたカラーフィルター、および青色純度の良い有機ELディスプレイ並びに液晶表示装置を提供することを目的とする。
 本発明者らは、カラーフィルターの青色画素形成用の色材として、特定の化合物からなる塩を使用することにより、上記課題を解決できることを見出し、本発明に至った。
 すなわち本発明の要旨は、以下に存する。
[1] (a)バインダー樹脂、(b)溶剤および(c)色材を含有し、(c)色材が下記一般式(I)で表される化合物を含有するカラーフィルター用着色樹脂組成物。
Figure JPOXMLDOC01-appb-C000023
(上記一般式(I)において、Zはアントラキノン骨格またはフタロシアニン骨格を有するm価のアニオンを表す。mは1~4の整数を表す。
 Rは水素原子、置換基を有していてもよい炭素数1~8のアルキル基、または置換基を有していてもよいフェニル基を表すか、或いは隣接するR同士が結合して環を形成する。該環は置換基を有していてもよい。それぞれのRは同一でも異なっていてもよい。
 R101は置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数2~6のアルケニル基、置換基を有していてもよいフェニル基、またはフッ素原子を表す。
 R102は水素原子、置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数2~6のアルケニル基、置換基を有していてもよいフェニル基、またはフッ素原子を表す。
 或いはR101とR102とが結合し、環を形成していてもよく、該環は置換基を有していてもよい。
 また、上記一般式(I)のカチオン部分における3つのベンゼン環は、いずれも、-NR、-R101および-R102以外の基で置換されていてもよい。
 なお、1分子中に複数の
Figure JPOXMLDOC01-appb-C000024
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
[2] 前記一般式(I)で表される化合物が、下記一般式(I’)で表される化合物である[1]に記載のカラーフィルター用着色樹脂組成物。
Figure JPOXMLDOC01-appb-C000025
(上記一般式(I’)において、Z、m、R、R101およびR102は、前記一般式(I)におけると同義である。
 R103およびR104は各々独立に、水素原子、ハロゲン原子、または炭素数1~8のアルキル基を表す。
 なお、1分子中に複数の
Figure JPOXMLDOC01-appb-C000026
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
[3] 前記一般式(I’)で表される化合物が、下記一般式(II)で表される化合物である[2]に記載のカラーフィルター用着色樹脂組成物。
Figure JPOXMLDOC01-appb-C000027
(上記一般式(II)において、Mは2個の水素原子、Cu、Mg、Al、Ni、Co、Fe、Zn、Ge、Mn、Si、Ti、VまたはSnを表し、各金属原子には、酸素原子、ハロゲン原子、水酸基、アルコキシ基またはアリールオキシ基が配位していてもよい。
 式中の-SO 基は、フタロシアニン骨格におけるベンゼン環を構成するいずれかの炭素原子に結合している。これら4つのベンゼン環を構成する炭素原子のうち、-SO 基が結合していない炭素原子は、任意の基で置換されていてもよい。
 m、R、R101~R104は一般式(I’)におけると同義であり、1分子中に複数の
Figure JPOXMLDOC01-appb-C000028
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
[4] 前記一般式(II)で表される化合物が、下記一般式(III)で表される化合物である[3]に記載のカラーフィルター用着色樹脂組成物。
Figure JPOXMLDOC01-appb-C000029
(上記一般式(III)において、-SO 基は、フタロシアニン骨格におけるベンゼン環を構成するいずれかの炭素原子に結合しており、該フタロシアニン骨格は-SO 基以外に置換基を有さない。
 m、M、R、R103およびR104は一般式(I’)におけると同義であり、1分子中に複数の
Figure JPOXMLDOC01-appb-C000030
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
[5] 前記一般式(I’)で表される化合物が、下記一般式(IV)で表される化合物である[2]に記載のカラーフィルター用着色樹脂組成物。
Figure JPOXMLDOC01-appb-C000031
(上記一般式(IV)において、アントラキノン骨格が有する置換基のうち、
 R31は水素原子、または置換基を有していてもよいフェニル基を表す。
 R32、R33、R34は、各々独立に、水素原子、水酸基、-NHR41(R41はR31と同義である。)、-SO 、ハロゲン原子、-CO42(R42は炭素数1~3のアルキル基を表す。)のいずれかであるが、R32~R34のうち、少なくとも一つは-NHR41基である。
 R35、R36、R37、R38は、各々独立に、水素原子、-SO 、ハロゲン原子、フェノキシ基、ナフチルオキシ基、炭素数1~12のアルコキシル基、-CO43、フェニル基、-SO44、または-SONHR45(但し、R43~R45は、各々独立に、炭素数1~6のアルキル基を表す。)を表す。
 なお、1つのアントラキノン骨格中に、-SO 基はm個結合している。
 m、R、R101~R104は一般式(I’)におけると同義であり、1分子中に複数の
Figure JPOXMLDOC01-appb-C000032
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
[6] 前記一般式(IV)で表される化合物が、下記一般式(IV’)で表される化合物である[5]に記載のカラーフィルター用着色樹脂組成物。
Figure JPOXMLDOC01-appb-C000033
(上記一般式(IV’)において、m、R、R31~R38、R103およびR104は前記一般式(IV)におけると同義であり、1分子中に複数の
Figure JPOXMLDOC01-appb-C000034
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
[7] 前記一般式(I)で表される化合物を、全固形分中1~50重量%含有する[1]~[6]のいずれかに記載のカラーフィルター用着色樹脂組成物。 
[8] (a)バインダー樹脂、(b)溶剤および(c)色材を含有し、(c)色材が下記一般式(V)で表される化合物を含有する、カラーフィルター用着色樹脂組成物。
Figure JPOXMLDOC01-appb-C000035
(上記一般式(V)において、Zはアントラキノン骨格またはフタロシアニン骨格を有するm価のアニオンを表す。mは1~4の整数を表す。
 Rは水素原子、置換基を有していてもよい炭素数1~8のアルキル基、または置換基を有していてもよいフェニル基を表すか、或いは隣接するR同士が結合して環を形成する。該環は置換基を有していてもよい。それぞれのRは同一でも異なっていてもよい。
 R201は水素原子、置換基を有していてもよい炭素数1~8のアルキル基、ベンジル基、置換基を有していてもよいフェニル基、または置換基を有していてもよいナフチル基を表す。
 R202は置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していても
よいフェニル基、置換基を有していてもよいナフチル基、または置換基を有していてもよい芳香族複素環基を表す。
 R203、R204、R205、R206は、各々独立に、水素原子、置換基を有していてもよい炭素数1~8のアルキル基、炭素数1~8のパーフルオロアルキル基、炭素数1~12のアルコキシル基、フェノキシ基、ナフチルオキシ基、フッ素原子、置換基を有していてもよいフェニル基、-CO46、-SO47、または-SONHR48(但し、R46~R48は、各々独立に、炭素数1~6のアルキル基を表す。)を表す。
 また上記一般式(V)のカチオン部分における2つのベンゼン環は、いずれも-NR以外の基で置換されていてもよい。
 なお、1分子中に複数の
Figure JPOXMLDOC01-appb-C000036
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
[9] 前記一般式(V)で表される化合物が、下記一般式(V’)で表される化合物である[8]に記載のカラーフィルター用着色樹脂組成物。
Figure JPOXMLDOC01-appb-C000037
(上記一般式(V’)において、Z、m、R、R201~R206は、いずれも前記一般式(V)におけると同義である。
 R207およびR208は各々独立に、水素原子、ハロゲン原子、または炭素数1~8のアルキル基を表す。
 なお、1分子中に複数の
Figure JPOXMLDOC01-appb-C000038
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
[10] 前記一般式(V’)で表される化合物が、下記一般式(VI)で表される化合物である[9]に記載のカラーフィルター用着色樹脂組成物。
Figure JPOXMLDOC01-appb-C000039
(上記一般式(VI)において、Mは2個の水素原子、Cu、Mg、Al、Ni、Co、Fe、Zn、Ge、Mn、Si、Ti、VまたはSnを表し、各金属原子には、酸素原子、ハロゲン原子、水酸基、アルコキシ基またはアリールオキシ基が配位していてもよい。
 式中の-SO 基は、フタロシアニン骨格におけるベンゼン環を構成するいずれかの炭素原子に結合している。これら4つのベンゼン環を構成する炭素原子のうち、-SO 基が結合していない炭素原子は、任意の基で置換されていてもよい。
 m、R、R201、R202、R207、R208は一般式(V’)におけると同義であり、1分子中に複数の
Figure JPOXMLDOC01-appb-C000040
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
[11] 前記一般式(VI)において、-SO 基は、フタロシアニン骨格におけるベンゼン環を構成するいずれかの炭素原子に結合しており、該フタロシアニン骨格は-SO 基以外に置換基を有していない[10]に記載のカラーフィルター用着色樹脂組成物。
[12] 前記一般式(V’)で表される化合物が、下記一般式(VII)で表される化合物である[9]に記載のカラーフィルター用着色樹脂組成物。
Figure JPOXMLDOC01-appb-C000041
(上記一般式(VII)において、アントラキノン骨格が有する置換基のうち、
 R31は水素原子、または置換基を有していてもよいフェニル基を表す。
 R32、R33、R34は、各々独立に、水素原子、水酸基、-NHR41(R41はR31と同義である。)、-SO 、ハロゲン原子、-CO42(R42は炭素数1~3のアルキル基を表す。)のいずれかであるが、R32~R34のうち、少なくとも一つは-NHR41基である。
 R35、R36、R37、R38は、各々独立に、水素原子、-SO 、ハロゲン原子、フェノキシ基、ナフチルオキシ基、炭素数1~12のアルコキシル基、-CO43、フェニル基、-SO44、または-SONHR45(但し、R43~R45は、各々独立に、炭素数1~6のアルキル基を表す。)を表す。
 なお、1つのアントラキノン骨格中に、-SO 基はm個結合している。
 m、R、R201、R202、R207、R208は一般式(V’)におけると同義であり、1分子中に複数の
Figure JPOXMLDOC01-appb-C000042
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
[13] 前記一般式(V)で表される化合物を、全固形分中1~50重量%含有する [8]ないし[12]のいずれかに記載のカラーフィルター用着色樹脂組成物。 
[14] (a)バインダー樹脂、(b)溶剤および(c)色材を含有し、
 (c)色材が、カチオン系青色色素(色素1)とアニオン系色素(色素2)からなる化合物を含有し、該化合物における色素1および色素2が、以下の(イ)または(ロ)を満たすことを特徴とするカラーフィルター用着色樹脂組成物。
(イ)色素2が偶数電子系化合物であり、時間依存密度汎関数(B3LYP/6-31G(d,p))計算により得られる、色素1の最低一重項励起状態(S状態)の励起エネルギー(ΔES1(色素1))と、色素2の最低一重項励起状態(S状態)の励起エネルギー(ΔES1(色素2))が下記式(i)を満たし、かつ色素2の最低三重項励起状態(T状態)の励起エネルギー(ΔET1(色素2))が下記式(ii)を満たす。
(ロ)色素2が奇数電子系化合物であり、時間依存密度汎関数(B3LYP/6-31G(d,p))計算により得られる、色素1の最低一重項励起状態(S状態)の励起エネルギー(ΔES1(色素1))と、色素2のエネルギー的に最も低い励起状態の励起エネルギー(ΔElowest(色素2))が、下記式(iii)を満たす。
Figure JPOXMLDOC01-appb-M000043
[15] 前記色素1が、骨格内にカチオン部位を有するか、もしくは置換基としてカチオン性置換基を有する、カチオン性色素であり、前記色素2が、アニオン性置換基を有するアニオン性色素である[14]に記載のカラーフィルター用着色樹脂組成物。
[16] 前記色素2が、フタロシアニン骨格またはアントラキノン骨格を有するアニオン性色素である[14] 又は[15]に記載のカラーフィルター用着色樹脂組成物。
[17] さらに(d)モノマーを含有する[1]ないし[16]のいずれかに記載のカラーフィルター用着色樹脂組成物。
[18] さらに(e)光重合開始系および熱重合開始系のうち少なくとも1つを含有する[1]ないし[17]のいずれかに記載のカラーフィルター用着色樹脂組成物。
[19] さらに(f)顔料を含有する[1]ないし[18]のいずれかに記載のカラーフィルター用着色樹脂組成物。
[20] [1]ないし[19]のいずれかに記載のカラーフィルター用着色樹脂組成物を用いて形成された画素を有するカラーフィルター。
[21] [20]に記載のカラーフィルターを備える有機ELディスプレイ。
[22] [20]に記載のカラーフィルターを備える液晶表示装置。
 本発明によれば、カラーフィルターの長期信頼性のうち極めて重要な項目である耐光性を満たし、かつカラーディスプレイ製造工程で要求される耐熱性を有し、青色画素の色純度および透過率に優れたカラーフィルターを得ることができる。このようなカラーフィルターを使用することにより、有機ELディスプレイの発光や、カラーフィルターのバックライトの発光を効率良く取り出すことができ、高色再現性および高輝度を両立した有機ELディスプレイや液晶表示装置を提供することができる。また、液晶表示装置のコントラストを向上させることもできる。
実施例における耐光性試験の際に用いたUVカットフィルターの透過スペクトルを示すチャートである。 実施例における耐光性試験の際に用いた偏光板の透過スペクトルを示すチャートである。 本発明の青色カラーフィルターを備えた有機EL素子の一例を示す断面概略図である。 実施例で作成した有機電界蛍光発光素子の構造を示す模式的断面図である。
符号の説明
 1、10 透明支持基板
 2、50 透明陽極
 3、52 正孔輸送層
 4、53 発光層
 5 電子輸送層
 6、55 陰極
 100 有機EL素子
 20 青色画素
 30 有機保護層
 40 無機酸化膜
 500 有機発光体
 51 正孔注入層
 54 電子注入層
 以下に本発明の実施の形態を詳細に説明するが、以下の記載は本発明の実施態様の一例であり、本発明はこれらの内容に限定されるものではない。
 なお、本発明において「(メタ)アクリル」、「(メタ)アクリレート」等は、「アクリルおよび/またはメタクリル」、「アクリレートおよび/またはメタクリレート」等を意味するものとし、例えば「(メタ)アクリル酸」は「アクリル酸および/またはメタクリル酸」を意味するものとする。
 また「全固形分」とは、後記する溶剤成分以外の本発明のカラーフィルター用着色樹脂組成物の全成分を意味するものとする。
 本発明のカラーフィルター用着色樹脂組成物は、(a)バインダー樹脂、(b)溶剤および(c)色材を含有し、(c)色材が下記(1)~(3)のいずれかであることを特徴とする。いずれも、従来の色材化合物より耐光性に優れることを特徴とする。
(1) 下記一般式(I)で表される化合物を含有する。
Figure JPOXMLDOC01-appb-C000044
(上記一般式(I)において、Zはアントラキノン骨格またはフタロシアニン骨格を有するm価のアニオンを表す。mは1~4の整数を表す。
 Rは水素原子、置換基を有していてもよい炭素数1~8のアルキル基、または置換基を有していてもよいフェニル基を表すか、或いは隣接するR同士が結合して環を形成する。該環は置換基を有していてもよい。それぞれのRは同一でも異なっていてもよい。
 R101は置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数2~6のアルケニル基、置換基を有していてもよいフェニル基、またはフッ素原子を表す。
 R102は水素原子、置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数2~6のアルケニル基、置換基を有していてもよいフェニル基、またはフッ素原子を表す。
 或いはR101とR102とが結合し、環を形成していてもよく、該環は置換基を有していて
もよい。
 また、上記一般式(I)のカチオン部分における3つのベンゼン環は、いずれも、-NR、-R101および-R102以外の基で置換されていてもよい。
 なお、1分子中に複数の
Figure JPOXMLDOC01-appb-C000045
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
(2) 下記一般式(V)で表される化合物を含有する。
Figure JPOXMLDOC01-appb-C000046
(上記一般式(V)において、Zはアントラキノン骨格またはフタロシアニン骨格を有するm価のアニオンを表す。mは1~4の整数を表す。
 Rは水素原子、置換基を有していてもよい炭素数1~8のアルキル基、または置換基を有していてもよいフェニル基を表すか、或いは隣接するR同士が結合して環を形成する。該環は置換基を有していてもよい。それぞれのRは同一でも異なっていてもよい。
 R201は水素原子、置換基を有していてもよい炭素数1~8のアルキル基、ベンジル基、置換基を有していてもよいフェニル基、または置換基を有していてもよいナフチル基を表す。
 R202は置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよいフェニル基、置換基を有していてもよいナフチル基、または置換基を有していてもよい芳香族複素環基を表す。
 R203、R204、R205、R206は、各々独立に、水素原子、置換基を有していてもよい炭
素数1~8のアルキル基、炭素数1~8のパーフルオロアルキル基、炭素数1~12のアルコキシル基、フェノキシ基、ナフチルオキシ基、フッ素原子、置換基を有していてもよいフェニル基、-CO46、-SO47、または-SONHR48(但し、R46~R48は、各々独立に、炭素数1~6のアルキル基を表す。)を表す。
 また上記一般式(V)のカチオン部分における2つのベンゼン環は、いずれも-NR以外の基で置換されていてもよい。
 なお、1分子中に複数の
Figure JPOXMLDOC01-appb-C000047
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
(3) カチオン系青色色素(色素1)とアニオン系色素(色素2)からなる化合物(以下、この化合物を「色素1-色素2化合物」と称す場合がある。)を含有し、この色素1-色素2化合物における色素1および色素2が以下の(イ)または(ロ)を満たす。
(イ)色素2が偶数電子系化合物であり、時間依存密度汎関数(B3LYP/6-31G(d,p))計算により得られる、色素1の最低一重項励起状態(S状態)の励起エネルギー(ΔES1(色素1))と、色素2の最低一重項励起状態(S状態)の励起エネルギー(ΔES1(色素2))が下記式(i)を満たし、かつ色素2の最低三重項励起状態(T状態)の励起エネルギー(ΔET1(色素2))が下記式(ii)を満たす。
(ロ)色素2が奇数電子系化合物であり、時間依存密度汎関数(B3LYP/6-31G(d,p))計算により得られる、色素1の最低一重項励起状態(S状態)の励起エネルギー(ΔES1(色素1))と、色素2のエネルギー的に最も低い励起状態の励起エネルギー(ΔElowest(色素2))が、下記式(iii)を満たす。
Figure JPOXMLDOC01-appb-M000048
 本発明の着色樹脂組成物において、(c)色材以外の成分としては、カラーフィルター形成材料として使用できるものであれば、特に制限無く使用できる。例えば、特開昭60-184202号公報などに記載された熱硬化性樹脂組成物、後述する光重合性樹脂組成物など、いずれのタイプの樹脂組成物であってもよい。フォトリソグラフィー法にてカラーフィルター用画素を形成する場合には、熱硬化性樹脂組成物を用いるとパターン形成のために、更にポジ型レジスト層などを1層設けて画像形成を行う必要があるため、プロセスの簡便性の点からは、光重合性樹脂組成物であることが好ましい。一方、インクジェット法にて画素形成を行う場合には、露光工程等が不要となることから、熱硬化性樹脂組成物が好ましい。
 本発明のカラーフィルター用着色樹脂組成物は、(a)バインダー樹脂、(b)溶剤、および(c)色材を必須成分とし、好ましくは更に(d)モノマー、(e)光重合開始系および/または熱重合開始系、(f)顔料を含み、更に必要に応じて配合されるその他の成分を含む。
[(c)色材]
 まず、本発明のカラーフィルター用着色樹脂組成物に含有される(c)色材について、態様毎に説明する。
<第1の態様に係る(c)色材>
 本発明の第1の態様に係る(c)色材は、下記一般式(I)で表される化合物を含有するものであり、一般式(I)で表される化合物のうち、特に、R101とR102とが結合して環を形成していない化合物の場合、耐熱性、耐光性、色味のいずれもバランスよく良好な画素を形成し得るカラーフィルター用着色樹脂組成物を提供し、また、R101とR102とが結合して後述の一般式(III)におけるようなナフタレン環を形成している化合物の場合、色味が著しく良好な画素を形成し得るカラーフィルター用着色樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-C000049
(上記一般式(I)において、Zはアントラキノン骨格またはフタロシアニン骨格を有するm価のアニオンを表す。mは1~4の整数を表す。
 Rは水素原子、置換基を有していてもよい炭素数1~8のアルキル基、または置換基を有していてもよいフェニル基を表すか、或いは隣接するR同士が結合して環を形成する。該環は置換基を有していてもよい。それぞれのRは同一でも異なっていてもよい。
 R101は置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数2~6のアルケニル基、置換基を有していてもよいフェニル基、またはフッ素原子を表す。
 R102は水素原子、置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数2~6のアルケニル基、置換基を有していてもよいフェニル基、またはフッ素原子を表す。
 或いはR101とR102とが結合し、環を形成していてもよく、該環は置換基を有していてもよい。
 また、上記一般式(I)のカチオン部分における3つのベンゼン環は、いずれも、-NR、-R101および-R102以外の基で置換されていてもよい。
 なお、1分子中に複数の
Figure JPOXMLDOC01-appb-C000050
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
 一般式(I)におけるRは、水素原子、置換基を有していてもよい炭素数1~8のアルキル基、または置換基を有していてもよいフェニル基を表すか、或いは隣接するRが結合して環を形成する。一般式(I)において、複数あるRは同一であっても異なるものであってもよい。従って、-NRR基は左右対称であっても、左右非対称であってもよい。
 隣接するRが結合して環を形成する場合、これらはヘテロ原子で架橋された環であってもよい。この環の具体例として、例えば以下のものが挙げられる。これらの環は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000051
 化学的安定性の点から、Rとして好ましくは、各々独立に、水素原子、置換基を有していてもよい炭素数2~8のアルキル基または置換基を有していてもよいフェニル基であるか、或いは隣接するRが結合して環を形成する場合であり、より好ましくは置換基を有していてもよい炭素数2~8のアルキル基または置換基を有していてもよいフェニル基である。
 R101は置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数2~6のアルケニル基、置換基を有していてもよいフェニル基、またはフッ素原子を表す。特にR101として水素原子以外の基を有するか、またはR102と結合して環の一部を構成することにより、トリアリールメチン構造の中心にあるsp2炭素と隣接するベンゼン環からなる平面に対して、R101が結合するベンゼン環がねじれの位置関係になるため、青色の吸収を有するようになり、これを用いたカラーフィルター用着色組成物の分光特性が向上し、青色表示部材のコントラストが改善されるため、好ましい。
 R102は水素原子、置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数2~6のアルケニル基、置換基を有していてもよいフェニル基、またはフッ素原子を表す。隣接するアミノ基の平面性を維持するの点から、R102として好ましくは水素原子、置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数2~6のアルケニル基、或いはR101と結合して環の一部を構成するものであり、より好ましくは水素原子、或いはR101と結合して環の一部を構成するものである。
 なお、R101とR102が結合し、環を形成していても良い。R101とR102が結合して形成される環の具体例としては、例えば以下のものが挙げられる。該環は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000052
 Rがアルキル基またはフェニル基である場合、並びにR101およびR102が各々独立してアルキル基、アルケニル基またはフェニル基である場合、これらの基は更に置換基を有していてもよい。また、隣接するR同士や、R101とR102とが結合して形成される環についても置換基を有していてもよい。
 該置換基としては、例えば、以下の置換基群Wに例示したものが挙げられる。
(置換基群W)
 フッ素原子、塩素原子、炭素数1~8のアルキル基、炭素数1~8のアルケニル基、炭素数1~8のアルコキシル基、フェニル基、メシチル基、トリル基、ナフチル基、シアノ基、アセチルオキシ基、炭素数2~9のアルキルカルボキシル基、スルホン酸アミド基、炭素数2~9のスルホンアルキルアミド基、炭素数2~9のアルキルカルボニル基、フェネチル基、ヒドロキシエチル基、アセチルアミド基、炭素数1~4のアルキル基が結合してなるジアルキルアミノエチル基、トリフルオロメチル基、炭素数1~8のトリアルキルシリル基、ニトロ基、炭素数1~8のアルキルチオ基、ビニル基。
 これらの内、R、R101、R102が有する置換基としては、炭素数2~8のアルキル基、炭素数2~8のアルコキシル基、シアノ基、アセチルオキシ基、炭素数2~8のアルキル
カルボキシル基、スルホン酸アミド基、炭素数2~8のスルホンアルキルアミド基が好ましい。
 また、隣接するR同士、或いはR101とR102が結合して形成される環が有する置換基としては、好ましくは炭素数1~8のアルキル基、炭素数1~8のアルコキシル基、シリル基、カルボキシル基、シアノ基、スルホン酸アミド基などが挙げられる。
 なお、一般式(I)で表される化合物において、そのカチオン部分における3つのベンゼン環は、いずれも-NR、-R101および-R102以外の基で置換されていてもよい。つまり、本発明の効果を損なわない範囲で、一般式(I)中に明記した以外の置換基を有していてもよい。
 このような置換基としては、例えばハロゲン原子、置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数1~8のアルコキシ基、シアノ基などが挙げられる。
 これらアルキル基及びアルコキシ基が有しうる置換基としては、ハロゲン原子、炭素数1~8のアルコキシ基、炭素数2~9のアシル基、炭素数2~9のアルコキシカルボニル基、シアノ基、上記いずれかの基で置換されていてもよいフェニル基、及び上記いずれかの基で置換されていてもよいナフチル基などが挙げられる。
 なお、これらのベンゼン環において、トリアリールメチン構造の中央に位置する炭素原子との結合に対し、o-位にあまり嵩高い基が結合すると、後述するように分子の平面性が阻害され、化合物の色純度が低下する傾向がある。従って、o-位には置換基を有さないか、またはハロゲン原子、炭素数1~4のアルキル基で置換されていることが好ましい。
 また、一般式(I)において、mは1~4の整数を表す。mの値が大きいと、得られる化合物が緑色を帯びてくる傾向があるため、コントラストの点から好ましくはmは1または2であり、特に好ましくはm=2である。
 一般式(I)で表される化合物は、好ましくは下記一般式(I’)で表される化合物である。
Figure JPOXMLDOC01-appb-C000053
(上記一般式(I’)において、Z、m、R、R101およびR102は、前記一般式(I)におけると同義である。
 R103およびR104は各々独立に、水素原子、ハロゲン原子、または炭素数1~8のアルキル基を表す。
 なお、1分子中に複数の
Figure JPOXMLDOC01-appb-C000054
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
 一般式(I’)において、R103およびR104は各々独立に、水素原子、ハロゲン原子、または炭素数1~8のアルキル基を表す。なおR103およびR104があまり嵩高い基であると、分子の平面性が阻害され、化合物の色調が変化するため、該化合物は色純度の高い青色を示さなくなる傾向がある。従って、R103およびR104が水素原子でない場合には、ハロゲン原子であるか、或いは炭素数1~4程度のアルキル基であることが好ましい。すなわち、R103およびR104として、より好ましくは各々独立に、ハロゲン原子、または炭素数1~4のアルキル基である。色純度及び耐熱性の点から特に好ましくは各々独立に、水素原子、塩素原子またはメチル基である。中でも、R103およびR104のうち少なくとも一方が水素原子以外である化合物は、耐熱性がより高いため好ましい。
 なお、高い色純度と、高い耐熱性を併せもつ点から、R103およびR104のうち一方が水素原子であり、他方がそれ以外の基である化合物が特に好ましい。
 一般式(I’)で表される化合物は、好ましくは下記一般式(II)で表される化合物、または、下記一般式(IV)で表される化合物である。一般式(II)で表される化合物のうち、下記一般式(III)で表される化合物が特に好ましい。また一般式(IV)で表される化合物のうち、下記一般式(IV’)で表される化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000055
(上記一般式(II)において、Mは2個の水素原子、Cu、Mg、Al、Ni、Co、F
e、Zn、Ge、Mn、Si、Ti、VまたはSnを表し、各金属原子には、酸素原子、ハロゲン原子、水酸基、アルコキシ基またはアリールオキシ基が配位していてもよい。
 式中の-SO 基は、フタロシアニン骨格におけるベンゼン環を構成するいずれかの炭素原子に結合している。これら4つのベンゼン環を構成する炭素原子のうち、-SO 基が結合していない炭素原子は、任意の基で置換されていてもよい。
 m、R、R101~R104は一般式(I’)におけると同義であり、1分子中に複数の
Figure JPOXMLDOC01-appb-C000056
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
Figure JPOXMLDOC01-appb-C000057
(上記一般式(III)において、-SO 基は、フタロシアニン骨格におけるベンゼン環を構成するいずれかの炭素原子に結合しており、該フタロシアニン骨格は-SO 基以外に置換基を有さない。
 m、M、R、R103およびR104は一般式(I’)におけると同義であり、1分子中に複数の
Figure JPOXMLDOC01-appb-C000058
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
Figure JPOXMLDOC01-appb-C000059
(上記一般式(IV)において、アントラキノン骨格が有する置換基のうち、
 R31は水素原子、または置換基を有していてもよいフェニル基を表す。
 R32、R33、R34は、各々独立に、水素原子、水酸基、-NHR41(R41はR31と同義である。)、-SO 、ハロゲン原子、-CO42(R42は炭素数1~3のアルキル基を表す。)のいずれかであるが、R32~R34のうち、少なくとも一つは-NHR41基である。
 R35、R36、R37、R38は、各々独立に、水素原子、-SO 、ハロゲン原子、フェノキシ基、ナフチルオキシ基、炭素数1~12のアルコキシル基、-CO43、フェニル基、-SO44、または-SONHR45(但し、R43~R45は、各々独立に、炭素数1~6のアルキル基を表す。)を表す。
 なお、1つのアントラキノン骨格中に、-SO 基はm個結合している。
 m、R、R101~R104は一般式(I’)におけると同義であり、1分子中に複数の
Figure JPOXMLDOC01-appb-C000060
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
Figure JPOXMLDOC01-appb-C000061
(上記一般式(IV’)において、m、R、R31~R38、R103およびR104は前記一般式(IV)におけると同義であり、1分子中に複数の
Figure JPOXMLDOC01-appb-C000062
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
 一般式(II),(III)において、Mは2個の水素原子、Cu、Mg、Al、Ni、Co、Fe、Zn、Ge、Mn、Si、Ti、VまたはSnを表し、各金属原子には、酸素原子、ハロゲン原子、水酸基、アルコキシ基またはアリールオキシ基が配位していてもよい。Mは、好ましくは2個の水素原子、Cu、AlCl、AlOH、NiまたはCoであり、中でも、青色表示部材のコントラスト向上の点から、より好ましくはCuである。
 前記一般式(II)における-SO 基は、フタロシアニン骨格におけるベンゼン環を構成するいずれかの炭素原子に結合している。これら4つのベンゼン環を構成する炭素原子のうち、-SO 基が結合していない炭素原子は、任意の基で置換されていてもよい。
 この「任意の基」の例としては、Rがアルキル基またはフェニル基である場合に有していてもよい置換基として例示した前記置換基群Wが挙げられ、好ましい基も前述したものと同様である。
 なお、フタロシアニン骨格における各ベンゼン環は、無置換であるか、-SO 基以外に置換基を有さない場合が特に好ましい。
 前記一般式(IV)および(IV’)において、アントラキノン骨格が有する置換基のうち、R31は水素原子、または置換基を有していてもよいフェニル基を表す。該置換基は、本発明の効果を損なわない限り、特に制限はないが、カチオン色素の色相を補助する役割も担っており、好ましくは炭素数1~8のアルキル基、-SO 、ベンジル基または-NHCOR40(R40は炭素数1~3のアルキル基を表す。)である。R31としてより好ましくは、水素原子、炭素数1~5のアルキル基、-SO 、または-NHCOR40である。
 また、R32、R33、R34は、各々独立に、水素原子、水酸基、-NHR41(R41はR31と同義である。)、-SO 、ハロゲン原子、-CO42(R42は炭素数1~3のアルキル基を表す。)のいずれかであり、R32~R34のうち、少なくとも一つは-NHR41基を表すが、カチオン色素の色相を補助する役割も担っていることから、好ましくは水素原子、水酸基または-NHR41である。
 また、R35、R36、R37、R38は、各々独立に、水素原子、-SO 、ハロゲン原子、フェノキシ基、ナフチルオキシ基、炭素数1~12のアルコキシル基、-CO43、フェニル基、-SO44、または-SONHR45(但し、R43~R45は、各々独立に、炭素数1~6のアルキル基を表す。)を表すが、カチオン色素の色相を補助する役割も担っていることから、好ましくは水素原子または-SO である。
 なお、前記一般式(I)~(IV’)および後述する一般式(V)~(VII)のいずれかで表される化合物の中で、前記一般式(III)または(IV’)で表される化合物、すなわちトリアリールメチン構造におけるベンゼン環の一つがナフタレン環である化合物の場合に、R103およびR104のうち少なくとも一方に、水素原子以外の基を有することによる耐熱性向上効果が、特に顕著に顕れる。
 前記一般式(I)で表される化合物は、例えばJ.Chem.Soc.,PerkinTrans.1998,2,297.、WO2006/120205号公報に記載の方法に準じて合成することができる。なお、前記一般式(I)で表される化合物は、その製造プロセスより、必然的にmの値が異なる複数種の化合物の混合物として得られる。本発明のカラーフィルター用着色樹脂組成物においては、前記一般式(I)で表される化合物は、混合物のまま使用しても、単離した単一化合物を使用してもよい。混合物の場合、前述した「好ましい」mの値を満たす化合物が、最も大きな割合を占める混合物であることが好ましい。
 前記一般式(I)で表される化合物の具体例としては、以下の化合物が挙げられるが、本発明はその主旨を超えない限り、これらに限定されるものではない。なお、以下の例示において、C-はフェニル基であり、Tはトシル基を示す。
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
 その他、一般式(I)で表される化合物のうち、一般式(IV),(IV’)で表される化合物として、次のようなものも挙げられる。
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
 本発明の第1態様に係るカラーフィルター用着色樹脂組成物は、前記一般式(I)で表される化合物を、好ましくは全固形分中1~50重量%、より好ましくは3~40重量%、特に好ましくは5~30重量%含む組成物である。
 この範囲よりも一般式(I)で表される化合物の含有量が多いと塗膜の硬化性が低下し、膜強度が不充分になる可能性があり、少ないと着色力が不充分となり、充分な濃度の色度が得られないか、膜厚が厚くなりすぎる場合がある。
 なお、前記一般式(I)で表される化合物の、着色樹脂組成物(特に該組成物中に含まれる溶剤)への溶解性が低い場合には、後述する任意成分である顔料と同様に、分散剤などを使用して組成物中へ分散させて使用してもよい。しかし、液晶表示装置に適用した場合のコントラストの高さ等の点からは、前記一般式(I)で表される化合物は、着色樹脂組成物中に溶解した状態で存在することが好ましい。
 なお、本発明のカラーフィルター用着色樹脂組成物中には、(c)色材として、一般式(I)で表される化合物の1種のみが含まれていてもよく、2種以上が含まれていてもよく、更に他の色材の1種または2種以上が含まれていてもよいが、本発明のカラーフィルター用着色樹脂組成物中の全(c)色材の含有割合は、該組成物中1~30重量%であることが好ましい。
<第2の態様に係る(c)色材>
 本発明の第2の態様に係る(c)色材は、下記一般式(V)で表される化合物を含有するものであり、耐光性、耐熱性がいずれも特に良好な画素を形成し得るカラーフィルター用着色樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-C000094
(上記一般式(V)において、Zはアントラキノン骨格またはフタロシアニン骨格を有するm価のアニオンを表す。mは1~4の整数を表す。
 Rは水素原子、置換基を有していてもよい炭素数1~8のアルキル基、または置換基を有していてもよいフェニル基を表すか、或いは隣接するR同士が結合して環を形成する。該環は置換基を有していてもよい。それぞれのRは同一でも異なっていてもよい。
 R201は水素原子、置換基を有していてもよい炭素数1~8のアルキル基、ベンジル基、置換基を有していてもよいフェニル基、または置換基を有していてもよいナフチル基を表す。
 R202は置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよいフェニル基、置換基を有していてもよいナフチル基、または置換基を有していてもよい芳香族複素環基を表す。
 R203、R204、R205、R206は、各々独立に、水素原子、置換基を有していてもよい炭素数1~8のアルキル基、炭素数1~8のパーフルオロアルキル基、炭素数1~12のア
ルコキシル基、フェノキシ基、ナフチルオキシ基、フッ素原子、置換基を有していてもよいフェニル基、-CO46、-SO47、または-SONHR48(但し、R46~R48は、各々独立に、炭素数1~6のアルキル基を表す。)を表す。
 また上記一般式(V)のカチオン部分における2つのベンゼン環は、いずれも-NR以外の基で置換されていてもよい。
 なお、1分子中に複数の
Figure JPOXMLDOC01-appb-C000095
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
 一般式(V)におけるRは、水素原子、置換基を有していてもよい炭素数1~8のアルキル基、または置換基を有していてもよいフェニル基を表すか、或いは隣接するRが結合して環を形成する。一般式(V)において、複数あるRは同一であっても異なるものであってもよい。従って、-NRR基は左右対称であっても、左右非対称であってもよい。
 隣接するRが結合して環形成する場合、これらはヘテロ原子で架橋された環であってもよい。この環の具体例として、例えば以下のものが挙げられる。これらの環は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000096
 化学的安定性の点から、Rとして好ましくは、各々独立に、水素原子、置換基を有していてもよい炭素数2~8のアルキル基または置換基を有していてもよいフェニル基であるか、或いは隣接するRが結合して環を形成する場合であり、より好ましくは置換基を有していてもよい炭素数2~8のアルキル基または置換基を有していてもよいフェニル基である。
 R201は水素原子、置換基を有していてもよい炭素数1~8のアルキル基、ベンジル基、置換基を有していてもよいフェニル基、または置換基を有していてもよいナフチル基を表すが、(b)溶剤への溶解性が高まることにより、好ましくは炭素数1~8のアルキル基、またはベンジル基である。
 R202は置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよいフェニル基、置換基を有していてもよいナフチル基、または置換基を有していてもよい芳香族複素環基を表すが、トリアリールメチン構造の中心にあるsp2炭素を主体的に保護する役割を果たすことから、好ましくは置換基を有していてもよいフェニル基、または置換基を有していてもよいナフチル基である。
 R203、R204、R205、R206は、各々独立に、水素原子、置換基を有していてもよい炭素数1~8のアルキル基、炭素数1~8のパーフルオロアルキル基、炭素数1~12のアルコキシル基、フェノキシ基、ナフチルオキシ基、フッ素原子、置換基を有していてもよいフェニル基、-CO46、-SO47、または-SONHR48(但し、R46~R48は、各々独立に、炭素数1~6のアルキル基を表す。)を表すが、(b)溶剤への溶解性が向上することより、好ましくは水素原子、炭素数1~8のアルキル基、炭素数1~8のパーフルオロアルキル基、またはフッ素原子である。
 R、R201、R203~R206が、各々独立に、アルキル基またはフェニル基である場合、並びにR202がアルキル基、フェニル基またはナフチル基である場合、これらの基は更に置換基を有していてもよい。また、隣接するR同士が結合して形成される環についても置換基を有していてもよい。
 該置換基としては、例えば、以下の置換基群Wに例示したものが挙げられる。
(置換基群W)
 フッ素原子、塩素原子、炭素数1~8のアルキル基、炭素数1~8のアルコキシル基、フェニル基、メシチル基、トリル基、ナフチル基、シアノ基、アセチルオキシ基、アルキルカルボキシル基、スルホン酸アミド基、スルホンアルキルアミド基、アルキルカルボニル基、フェネチル基、ヒドロキシエチル基、アセチルアミド基、ジアルキルアミノエチル基、トリフルオロメチル基、トリアルキルシリル基、ニトロ基、アルキルチオ基、ビニル基。
 これらの内、R、R201、R202が有する置換基としては、(b)溶剤への溶解性が向上することから、炭素数1~8のアルキル基、トリフロオロメチル基、または炭素数1~8のアルコキシ基が好ましく、R203~R206が有する置換基としては、(b)溶剤への溶解性が向上することから、炭素数1~8のアルキル基が好ましい。また、隣接するR同士が結合して形成される環が有する置換基としては、好ましくはアルキル基、アルコキシル基、シリル基、カルボキシル基、シアノ基、スルホン酸アミド基などが挙げられる。
 なお、一般式(V)で表される化合物において、そのカチオン部分における2つのベンゼン環は、いずれも-NR以外の基で置換されていてもよい。つまり、本発明の効果を損なわない範囲で、一般式(V)中に明記した以外の置換基を有していてもよい。
 このような置換基としては、例えばハロゲン原子、炭素数1~8のアルキル基などが挙げられる。
 なお、これらのベンゼン環において、トリアリールメチン構造の中央に位置する炭素原子との結合に対し、o-位にあまり嵩高い基が結合すると、後述するように分子の平面性が阻害され、化合物の色純度が低下する傾向がある。従って、o-位には置換基を有さないか、またはハロゲン原子、炭素数1~4のアルキル基などで置換されていることが好ましい。
 また、一般式(V)において、mは1~4の整数を表す。mの値が大きいと、得られる
化合物が緑色を帯びてくる傾向があるため、コントラストの点から好ましくはmは1または2であり、特に好ましくはm=2である。
 一般式(V)で表される化合物は、好ましくは下記一般式(V’)で表される化合物である。
Figure JPOXMLDOC01-appb-C000097
(上記一般式(V’)において、Z、m、R、R201~R206は、いずれも前記一般式(V)におけると同義である。
 R207およびR208は各々独立に、水素原子、ハロゲン原子、または炭素数1~8のアルキル基を表す。
 なお、1分子中に複数の
Figure JPOXMLDOC01-appb-C000098
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
 一般式(V’)におけるR207およびR208としては、前記一般式(I’)におけるR103およびR104として挙げた基と同様の基が挙げられる。好ましい基と、該基が好ましい理由も前述と同様である。
 一般式(V’)で表される化合物は、好ましくは下記一般式(VI)で表される化合物、または下記一般式(VII)で表される化合物である。
Figure JPOXMLDOC01-appb-C000099
(上記一般式(VI)において、Mは2個の水素原子、Cu、Mg、Al、Ni、Co、Fe、Zn、Ge、Mn、Si、Ti、VまたはSnを表し、各金属原子には、酸素原子、ハロゲン原子、水酸基、アルコキシ基またはアリールオキシ基が配位していてもよい。
 式中の-SO 基は、フタロシアニン骨格におけるベンゼン環を構成するいずれかの炭素原子に結合している。これら4つのベンゼン環を構成する炭素原子のうち、-SO 基が結合していない炭素原子は、任意の基で置換されていてもよい。
 m、R、R201、R202、R207、R208は一般式(V’)におけると同義であり、1分子中に複数の
Figure JPOXMLDOC01-appb-C000100
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
Figure JPOXMLDOC01-appb-C000101
(上記一般式(VII)において、アントラキノン骨格が有する置換基のうち、
 R31は水素原子、または置換基を有していてもよいフェニル基を表す。
 R32、R33、R34は、各々独立に、水素原子、水酸基、-NHR41(R41はR31と同義である。)、-SO 、ハロゲン原子、-CO42(R42は炭素数1~3のアルキル基を表す。)のいずれかであるが、R32~R34のうち、少なくとも一つは-NHR41基である。
 R35、R36、R37、R38は、各々独立に、水素原子、-SO 、ハロゲン原子、フェノキシ基、ナフチルオキシ基、炭素数1~12のアルコキシル基、-CO43、フェニル基、-SO44、または-SONHR45(但し、R43~R45は、各々独立に、炭素数1~6のアルキル基を表す。)を表す。
 なお、1つのアントラキノン骨格中に、-SO 基はm個結合している。
 m、R、R201、R202、R207、R208は一般式(V’)におけると同義であり、1分子中に複数の
Figure JPOXMLDOC01-appb-C000102
が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
 一般式(VI)において、Mは2個の水素原子、Cu、Mg、Al、Ni、Co、Fe、Zn、Ge、Mn、Si、Ti、VまたはSnを表し、各金属原子には、酸素原子、ハロゲン原子、水酸基、アルコキシ基またはアリールオキシ基が配位していてもよい。Mは、好ましくは2個の水素原子、Cu、AlCl、AlOH、NiまたはCoであり、中でも、青色表示部材のコントラスト向上の点から、好ましくはCuである。
 前記一般式(VI)における-SO 基は、フタロシアニン骨格におけるベンゼン環を構成するいずれかの炭素原子に結合している。これら4つのベンゼン環を構成する炭素原子のうち、-SO 基が結合していない炭素原子は、任意の基で置換されていてもよい。
 この「任意の基」の例としては、Rがアルキル基またはフェニル基である場合に有していてもよい置換基として例示した前記置換基群Wが挙げられ、好ましい基も前述したものと同様である。なお、フタロシアニン骨格における各ベンゼン環は、無置換であるか、-SO 基以外に置換基を有さない場合が特に好ましい。
 前記一般式(VII)において、アントラキノン骨格が有する置換基のうち、R31は水素原子、または置換基を有していてもよいフェニル基を表す。該置換基は、本発明の効果を損なわない限り、特に制限はないが、カチオン色素の色相を補助する役割も担っており、好ましくは炭素数1~8のアルキル基、-SO 、ベンジル基または-NHCOR40(R40は炭素数1~3のアルキル基を表す。)である。R31としてより好ましくは、水素原子、炭素数1~5のアルキル基、-SO 、または-NHCOR40である。
 また、R32、R33、R34は、各々独立に、水素原子、水酸基、-NHR41(R41はR31と同義である。)、-SO 、ハロゲン原子、-CO42(R42は炭素数1~3のアルキル基を表す。)のいずれかであり、R32~R34のうち、少なくとも一つは-NHR41基を表すが、カチオン色素の色相を補助する役割も担っていることから、好ましくは水素原子、水酸基または-NHR41である。
 また、R35、R36、R37、R38は、各々独立に、水素原子、-SO 、ハロゲン原子、フェノキシ基、ナフチルオキシ基、炭素数1~12のアルコキシル基、-CO43、フェニル基、-SO44、または-SONHR45(但し、R43~R45は、各々独立に、炭素数1~6のアルキル基を表す。)を表すが、カチオン色素の色相を補助する役割も担っていることから、好ましくは水素原子または-SO である。
 前記一般式(V)で表される化合物は、例えばJ.Chem.Soc.,PerkinTrans.1998,2,297.、WO2006/120205号公報に記載の方法に準じて合成することができる。なお、前記一般式(V)で表される化合物は、その製造プロセスより、必然的にmの値が異なる複数種の化合物の混合物として得られる。本発明のカラーフィルター用着色樹脂組成物においては、前記一般式(V)で表される化合物は、混合物のまま使用しても、単離した単一化合物を使用してもよい。混合物の場合、前述した「好ましい」mの値を満たす化合物が、最も大きな割合を占める混合物であることが好ましい。
 前記一般式(V)で表される化合物の具体例としては、以下の化合物が挙げられるが、本発明はその主旨を超えない限り、これらに限定されるものではない。なお、以下の例示において、C-、Ph-はフェニル基であり、Tはトシル基を示す。
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000106
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000108
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000115
 その他、一般式(V)で表される化合物のうち、一般式(VII)で表される化合物として、次のようなものも挙げられる。
Figure JPOXMLDOC01-appb-C000116
 本発明の第2態様に係るカラーフィルター用着色樹脂組成物は、前記一般式(V)で表される化合物を、好ましくは全固形分中1~50重量%、より好ましくは3~40重量%、特に好ましくは5~30重量%含有する組成物である。
 この範囲よりも一般式(V)で表される化合物の含有量が多いと塗膜の硬化性が低下し、膜強度が不充分になる可能性があり、少ないと着色力が不充分となり、充分な濃度の色度が得られないか、膜厚が厚くなりすぎる場合がある。
 なお、前記一般式(V)で表される化合物の、着色樹脂組成物(特に該組成物中に含まれる溶剤)への溶解性が低い場合には、後述する任意成分である顔料と同様に、分散剤などを使用して組成物中へ分散させて使用してもよい。しかし、液晶表示装置に適用した場合のコントラストの高さ等の点からは、前記一般式(V)で表される化合物は、着色樹脂組成物中に溶解した状態で存在することが好ましい。
 なお、本発明のカラーフィルター用着色樹脂組成物中には、(c)色材として、一般式(V)で表される化合物の1種のみが含まれていてもよく、2種以上が含まれていてもよく、更に他の色材の1種または2種以上が含まれていてもよいが、本発明のカラーフィルター用着色樹脂組成物中の全(c)色材の含有割合は、該組成物中1~30重量%であることが好ましい。
<第3の態様に係る(c)色材>
 本発明の第3の態様に係る(c)色材は、カチオン系青色色素(色素1)とアニオン系色素(色素2)からなる化合物(色素1-色素2化合物)を含有し、この色素1-色素2化合物における色素1および色素2が以下の(イ)または(ロ)を満たすものであり、耐光性の高い画素を形成し得るカラーフィルター用着色樹脂組成物を提供する。
 なお、色素1と色素2とからなる化合物の形態はカチオン系化合物である色素1とアニオン系化合物である色素2からなる塩である。また、色素1-色素2化合物を構成する色素1および色素2の数には特に制限はない。
(イ)色素2が偶数電子系化合物であり、時間依存密度汎関数(B3LYP/6-31G(d,p))計算により得られる、色素1の最低一重項励起状態(S状態)の励起エネルギー(ΔES1(色素1))と、色素2の最低一重項励起状態(S状態)の励起エネルギー(ΔES1(色素2))が下記式(i)を満たし、かつ色素2の最低三重項励起状態(T状態)の励起エネルギー(ΔET1(色素2))が下記式(ii)を満たす。
(ロ)色素2が奇数電子系化合物であり、時間依存密度汎関数(B3LYP/6-31G(d,p))計算により得られる、色素1の最低一重項励起状態(S状態)の励起エネルギー(ΔES1(色素1))と、色素2のエネルギー的に最も低い励起状態の励起エネルギー(ΔElowest(色素2))が、下記式(iii)を満たす。
Figure JPOXMLDOC01-appb-M000117
 このような関係を満たす色素1および色素2を選択することにより、得られる色素1-色素2化合物は、色素1の光励起に伴う活性酸素の発生を抑制し、光酸化反応による分解を制御出来るため、好ましい。また、色素1と色素2からなる化合物においては、色素1と色素2の間での分子間相互作用が充分に働く。従って、このような色素1-色素2化合物ではない単独色素化合物、もしくは色素1に相当する化合物と色素2に相当する化合物との混合物では得られなかった、高い耐光性や、独自の色彩を達成することも可能となる。
 なお本発明において、色素のエネルギー準位は、分子構造の構造最適を行った後、B3LYP/6-31G、TDDF計算により求めることができる。
 この第3の態様における関係を満たす組み合わせの色素よりなる化合物で、このような効果が得られることの理由の詳細は明らかではないが、次のように推定される。
 式(i)満たすことにより、カチオンの光吸収による最低一重項励起状態(S状態)の励起エネルギーがアニオンに効率よくエネルギー移動し、カチオンの一重項励起状態から三重項への緩和を経由して起こる基底状態の酸素へのエネルギー移動のパスを潰す効果がある。その結果、カチオンの励起状態からのエネルギー移動による、一重項酸素(1Δg状態の酸素)の生成が抑制される点で好ましい。
 計算によるアニオンの最低三重項励起状態(T状態)への励起エネルギーが式(ii)を満たすことは、アニオンのT状態が酸素の1Δg状態への励起エネルギーより小さいことに対応しており、アニオンの最低三重項励起状態からの基底状態の酸素へのエネルギー移動が起こらないことになり、一重項酸素(1Δg状態の酸素)の生成が抑制される点で好ましい。
 また、アニオンが奇数電子系の場合、式(iii)を満たすことはカチオンの光吸収による最低一重項励起状態(S状態)の励起エネルギーがアニオンに効率よくエネルギー移動し、カチオンの一重項励起状態から三重項への緩和を経由して起こる基底状態の酸素へのエネルギー移動のパスを潰す効果がある。さらにアニオンが奇数電子系なので最低励起状態は三重項にはならないため、三重項状態である酸素の基底状態とは相互作用が大きくならずアニオンの励起状態から基底状態酸素へのエネルギー移動の確率は小さく、一重項酸素(1Δg状態の酸素)の生成が抑制される点で好ましい。
 系中の一重項酸素(1Δg状態の酸素)は活性酸素の一種であり、色素1-色素2化合物を攻撃し結果的に色素1-色素2化合物が破壊されると考えられるが、本発明では色素1-色素2化合物の構造を工夫することにより、一重項酸素(1Δg状態の酸素)の発生を防ぎ、組成物の耐光性を向上させた。
 なお、式(i)におけるΔES1(色素1)とΔES1(色素2)の差、および式(iii)におけるΔES1(色素1)とΔElowest(色素2)の差は、各々、0.2eV程度以上であることが好ましい。
 上記色素1としては、骨格内にカチオン部位を有するか、もしくは置換基としてカチオン性置換基を有する、カチオン性色素が好ましい。
 また、色素2としては、アニオン性置換基を有するアニオン性色素が好ましい。
 なお、本発明において、カチオン性色素とは、分子全体が正に荷電している色素を意味し、アニオン性色素とは、分子全体が負に荷電している色素を意味する。
 カチオン性色素としては、カチオンが分子全体に非局在化しやすいπ共役系の構造を有しており、かつ可視広域に吸収をもち、分子吸光度がアニオン色素に比べて大きい方が好ましい。
 また、このようなカチオン性色素と塩を形成するアニオン性色素としては、カチオン性色素のLUMOよりも低いLUMOを有し、かつ、カチオン性色素の一重項エネルギーのバンドギャップより、狭いバンドギャップを有するものを組み合わせることが好ましい。なお、カチオン色素よりも長波長領域に吸収を有し、スルホ基などの酸性度の高い置換基を有するアニオン色素であることが望ましい。
 より具体的には、カチオン性色素としては、例えばポリエン系、ポリメチン系、トリア
リールメチン系、キサンテン系など骨格内にカチオンを有するものや、アンモニウムカチオンを置換基として有するアントラキノン系、インジゴ系、フタロシアニン系、アゾ系などの中性色素が挙げられる。中でも分子吸光度の大きさから、骨格内にカチオンを有するものが好ましく、溶解性の観点から放射状の分子構造をしている化合物が好ましい。具体的には、トリアリールメチン系色素がより好ましい。
 またアニオン性色素としては、カルボン酸、リン酸、スルホン酸などの酸性度の高い酸性基を有し、分子全体として、アニオン性を有するアゾ系、キノリン系、キサンテン系、フタロシアニン系、アントラキノン系、インジゴ系、トリアリールメチン系、金属錯体系などの色素が挙げられる。中でも励起状態における三重項励起エネルギー準位が小さい点から、好ましくはフタロシアニン系(フタロシアニン骨格を有する)色素、またはアントラキノン系(アントラキノン骨格を有する)色素が挙げられる。
 Cuなどとの金属錯体化が容易である点からは、より好ましくは酸性基を有するフタロシアニン系色素である。溶解性が高く、化学修飾が可能である点からは、より好ましくはアントラキノン系色素である。
 なお、上述の説明から分かるように、同じ骨格でも有する置換基によってカチオン性またはアニオン性とすることができる。
 本発明における、色素1および色素2からなる色素1-色素2化合物として、特に好ましくは、前記一般式(I)で表される化合物または前記一般式(V)で表される化合物が挙げられる。
 なお、前記一般式(I)で表される化合物のうち、より好ましくは前記一般式(I’)で表される化合物であり、更に好ましくは前記一般式(II)または(IV)で表される化合物である。前記一般式(II)で表される化合物のうち、特に好ましくは前記一般式(III)で表される化合物である。前記一般式(IV)で表される化合物のうち、特に好ましくは前記一般式(IV’)で表される化合物である。
 また、前記一般式(V)で表される化合物のうち、より好ましくは前記一般式(V’)で表される化合物であり、特に好ましくは前記一般式(VI)または(VII)で表される化合物である。
 この場合、本発明のカラーフィルター用着色樹脂組成物中には、(c)色材として、一般式(I)または(V)で表される化合物の1種のみが含まれていてもよく、一般式(I)で表される化合物の1種または2種以上と一般式(V)で表される化合物の1種または2種以上が含まれていてもよく、更に他の色材の1種または2種以上が含まれていてもよい。
[(a)バインダー樹脂]
 (a)バインダー樹脂としては、前述したように、どのような手段により硬化する着色樹脂組成物とするかにより、好ましい樹脂は異なる。
 本発明の着色樹脂組成物が光重合性樹脂組成物である場合、(a)バインダー樹脂としては、例えば特開平7-207211号、特開平8-259876号、特開平10-300922号、特開平11-140144号、特開平11-174224号、特開2000-56118号、特開2003-233179号などの各公報等に記載される公知の高分子化合物を使用することができるが、好ましくは以下の(a-1)~(a-5)の樹脂などが挙げられる。
 (a-1):エポキシ基含有(メタ)アクリレートと、他のラジカル重合性単量体との
共重合体に対し、該共重合体が有するエポキシ基の少なくとも一部に不飽和一塩基酸を付加させてなる樹脂、或いは該付加反応により生じた水酸基の少なくとも一部に多塩基酸無水物を付加させて得られる、アルカリ可溶性樹脂(以下「樹脂(a-1)と称す場合がある。)
 (a-2):カルボキシル基含有直鎖状アルカリ可溶性樹脂(a-2)(以下「樹脂(a-2)と称す場合がある。)
 (a-3):前記樹脂(a-2)のカルボキシル基部分に、エポキシ基含有不飽和化合物を付加させた樹脂(以下「樹脂(a-3)と称す場合がある。)
 (a-4):(メタ)アクリル系樹脂(以下「樹脂(a-4)と称す場合がある。)
 (a-5):カルボキシル基を有するエポキシアクリレート樹脂(以下「樹脂(a-5)と称す場合がある。)
 以下、これら各樹脂について説明する。
(a-1):エポキシ基含有(メタ)アクリレートと、他のラジカル重合性単量体との共重合体に対し、該共重合体が有するエポキシ基の少なくとも一部に不飽和一塩基酸を付加させてなる樹脂、或いは該付加反応により生じた水酸基の少なくとも一部に多塩基酸無水物を付加させて得られるアルカリ可溶性樹脂
 この樹脂(a-1)の特に好ましい樹脂の一つとして、エポキシ基含有(メタ)アクリレート5~90モル%と、他のラジカル重合性単量体10~95モル%との共重合体に対し、該共重合体が有するエポキシ基の10~100モル%に不飽和一塩基酸を付加させてなる樹脂、或いは該付加反応により生じた水酸基の10~100モル%に多塩基酸無水物を付加させて得られるアルカリ可溶性樹脂が挙げられる。
 そのエポキシ基含有(メタ)アクリレートとしては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシブチル(メタ)アクリレート、(3,4-エポキシシクロヘキシル)メチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等が例示できる。中でもグリシジル(メタ)アクリレートが好ましい。これらのエポキシ基含有(メタ)アクリレートは1種を単独で用いてもよく、2種以上を併用してもよい。
 上記エポキシ基含有(メタ)アクリレートと共重合させる他のラジカル重合性単量体としては、下記一般式(1)で表される構造を有するモノ(メタ)アクリレートが好ましい。
Figure JPOXMLDOC01-appb-C000118
 式(1)中、R1~R6は各々独立して、水素原子、または炭素数1~3のアルキル基を示し、R7およびR8は各々独立して、水素原子、炭素数1~3のアルキル基、または連結して環を形成していてもよい。
 式(1)において、R7とR8が連結して形成される環は、脂肪族環であるのが好ましく、飽和または不飽和の何れでもよく、又、炭素数が5~6であるのが好ましい。
 中でも、一般式(1)で表される構造としては、下記式(1a)、(1b)、または(1c)で表される構造が好ましい。
 バインダー樹脂にこれらの構造を導入することによって、本発明の着色樹脂組成物をカラーフィルターや液晶表示素子に使用する場合に、該着色樹脂組成物の耐熱性を向上させたり、該着色樹脂組成物を用いて形成された画素の強度を増すことが可能である。
 尚、一般式(1)で表される構造を有するモノ(メタ)アクリレートは、1種を単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000119
 バインダー樹脂にこれらの構造を導入することによって、本発明の着色樹脂組成物をカラーフィルターや液晶表示素子に使用する場合に、該着色樹脂組成物の耐熱性を向上させたり、該着色樹脂組成物を用いて形成された画素の強度を増すことが可能である。
 尚、一般式(1)で表される構造を有するモノ(メタ)アクリレートは、1種を単独で用
いてもよく、2種以上を併用してもよい。
 前記一般式(1)で表される構造を有するモノ(メタ)アクリレートとしては、当該構造を有する限り公知の各種のものが使用できるが、特に下記一般式(2)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000120
 式(2)中、R9は水素原子またはメチル基を示し、R10は前記一般式(1)の構造を示す。
 前記エポキシ基含有(メタ)アクリレートと、他のラジカル重合性単量体との共重合体において、前記一般式(1)で表される構造を有するモノ(メタ)アクリレートに由来す
る繰返し単位は、「他のラジカル重合性単量体」に由来する繰返し単位中、5~90モル%含有するものが好ましく、10~70モル%含有するものが更に好ましく、15~50モル%含有するものが特に好ましい。
 尚、前記一般式(1)で表される構造を有するモノ(メタ)アクリレート以外の、「他のラジカル重合性単量体」としては、特に限定されるものではない。具体的には、例えば、スチレン、スチレンのα-、o-、m-、p-アルキル、ニトロ、シアノ、アミド、エステル誘導体等のビニル芳香族類;ブタジエン、2,3-ジメチルブタジエン、イソプレン、クロロプレン等のジエン類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸-n-プロピル、(メタ)アクリル酸-iso-プロピル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸-sec-ブチル、(メタ)アクリル酸-tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ネオペンチル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸-2-メチルシクロヘキシル、(メタ)アクリル酸ジシクロヘキシル、(メタ)アクリル酸イソボロニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸プロパギル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ナフチル、(メタ)アクリル酸アントラセニル、(メタ)アクリル酸アントラニノニル、(メタ)アクリル酸ピペロニル、(メタ)アクリル酸サリチル、(メタ)アクリル酸フリル、(メタ)アクリル酸フルフリル、(メタ)アクリル酸テトラヒドロフリル、(メタ)アクリル酸ピラニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェネチル、(メタ)アクリル酸クレジル、(メタ)アクリル酸-1,1,1-トリフルオロエチル、(メタ)アクリル酸パーフルオルエチル、(メタ)アクリル酸パーフルオロ-n-プロピル、(メタ)アクリル酸パーフルオロ-iso-プロピル、(メタ)アクリル酸トリフェニルメチル、(メタ)アクリル酸クミル、(メタ)アクリル酸3-(N,N-ジメチルアミノ)プロピル、(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル等の(メタ)アクリル酸エステル類;(メタ)アクリル酸アミド、(メタ)アクリル酸N,N-ジメチルアミド、(メタ)アクリル酸N,N-ジエチルアミド、(メタ)アクリル酸N,N-ジプロピルアミド、(メタ)アクリル酸N,N-ジ-iso-プロピルアミド、(メタ)アクリル酸アントラセニルアミド等の(メタ)アクリル酸アミド類;(メタ)アクリル酸アニリド、(メタ)アクリロイルニトリル、アクロレイン、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、N-ビニルピロリドン、ビニルピリジン、酢酸ビニル等のビニル化合物類;シトラコン酸ジエチル、マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチル等の不飽和ジカルボン酸ジエステル類;N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-ラウリルマレイミド、N-(4-ヒドロキシフェニル)マレイミド等のモノマレイミド類;N-(メタ)アクリロイルフタルイミド等が挙げられる。
 これら「他のラジカル重合性単量体」の中で、着色樹脂組成物に優れた耐熱性および強度を付与させるためには、スチレン、ベンジル(メタ)アクリレート、およびモノマレイミドから選択された少なくとも1種を使用することが有効である。特に「他のラジカル重合性単量体」に由来する繰返し単位中、これらスチレン、ベンジル(メタ)アクリレート、およびモノマレイミドから選択された少なくとも1種に由来する繰返し単位の含有割合が、1~70モル%であるものが好ましく、3~50モル%であるものが更に好ましい。
 尚、前記エポキシ基含有(メタ)アクリレートと、前記他のラジカル重合性単量体との共重合反応には、公知の溶液重合法が適用される。使用する溶剤はラジカル重合に不活性なものであれば特に限定されるものではなく、通常用いられている有機溶剤を使用することができる。
 その溶剤の具体例としては、酢酸エチル、酢酸イソプロピル、セロソルブアセテート、ブチルセロソルブアセテート等のエチレングリコールモノアルキルエーテルアセテート類;ジエチレングリコールモノメチルエーテルアセテート、カルビトールアセテート、ブチルカルビトールアセテート等のジエチレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノアルキルエーテルアセテート類;ジプロピレングリコールモノアルキルエーテルアセテート類等の酢酸エステル類;エチレングリコールジアルキルエーテル類;メチルカルビトール、エチルカルビトール、ブチルカルビトール等のジエチレングリコールジアルキルエーテル類;トリエチレングリコールジアルキルエーテル類;プロピレングリコールジアルキルエーテル類;ジプロピレングリコールジアルキルエーテル類;1,4-ジオキサン、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、オクタン、デカン等の炭化水素類;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤;乳酸メチル、乳酸エチル、乳酸ブチル等の乳酸エステル類;ジメチルホルムアミド、N-メチルピロリドン等が挙げられる。
 これらの溶剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの溶剤の使用量は得られる共重合体100重量部に対し、通常30~1000重量部、好ましくは50~800重量部である。溶剤の使用量がこの範囲外では共重合体の分子量の制御が困難となる。
 又、共重合反応に使用されるラジカル重合開始剤は、ラジカル重合を開始できるものであれば特に限定されるものではなく、通常用いられている有機過酸化物触媒やアゾ化合物触媒を使用することができる。
 その有機過酸化物触媒としては、公知のケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアリルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネートに分類されるものが挙げられる。その具体例としては、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジイソプロピルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシル-3,3-イソプロピルヒドロパーオキサイド、t-ブチルヒドロパーオキサイド、ジクミルパーオキサイド、ジクミルヒドロパーオキサイド、アセチルパーオキサイド、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、イソブチルパーオキサイド、3,3,5-トリメチルヘキサノイルパーオキサイド、ラウリルパーオキサイド、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)3,3,5-トリメチルシクロヘキサン等が挙げられる。
 また、アゾ化合物触媒としては、アゾビスイソブチロニトリル、アゾビスカルボンアミド等が挙げられる。
 これらの中から、重合温度に応じて、適当な半減期のラジカル重合開始剤の1種または2種以上使用される。
 ラジカル重合開始剤の使用量は、共重合反応に使用される単量体の合計100重量部に対して、通常0.5~20重量部、好ましくは1~10重量部である。
 共重合反応は、共重合反応に使用される単量体およびラジカル重合開始剤を溶剤に溶解し、攪拌しながら昇温して行ってもよいし、ラジカル重合開始剤を添加した単量体を、昇温、攪拌した溶剤中に滴下して行ってもよい。また、溶剤中にラジカル重合開始剤を添加して昇温した中に単量体を滴下して行ってもよい。
 反応条件は目標とする分子量に応じて自由に変えることができる。
 本発明において、前記エポキシ基含有(メタ)アクリレートと前記他のラジカル重合性単量体との共重合体としては、エポキシ基含有(メタ)アクリレートに由来する繰返し単位5~90モル%と、他のラジカル重合性単量体に由来する繰返し単位10~95モル%と、からなるものが好ましく、前者20~80モル%と、後者80~20モル%とからなるものが更に好ましく、前者30~70モル%と、後者70~30モル%とからなるものが特に好ましい。
 共重合体中のエポキシ基含有(メタ)アクリレートに由来する繰返し単位が少なすぎると、後述する重合性成分およびアルカリ可溶性成分の付加量が不十分となるおそれがあり、一方、エポキシ基含有(メタ)アクリレートに由来する繰返し単位が多すぎて、他のラジカル重合性単量体に由来する繰返し単位が少なすぎると、耐熱性や強度が不十分となる可能性がある。
 続いて、エポキシ樹脂含有(メタ)アクリレートと、他のラジカル重合性単量体との共重合体のエポキシ基部分に、不飽和一塩基酸(重合性成分)と、更に多塩基酸無水物(アルカリ可溶性成分)とを反応させる。
 ここで、エポキシ基に付加させる不飽和一塩基酸としては、公知のものを使用することができ、例えば、エチレン性不飽和二重結合を有する不飽和カルボン酸が挙げられる。
 具体例としては、(メタ)アクリル酸、クロトン酸、o-、m-、p-ビニル安息香酸、α-位がハロアルキル基、アルコキシル基、ハロゲン原子、ニトロ基、またはシアノ基などで置換された(メタ)アクリル酸等のモノカルボン酸等が挙げられる。中でも好ましくは(メタ)アクリル酸である。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 このような成分を付加させることにより、本発明で用いるバインダー樹脂に重合性を付与することができる。
 これらの不飽和一塩基酸は、通常、前記共重合体が有するエポキシ基の10~100モル%に付加させるが、好ましくは30~100モル%、より好ましくは50~100モル%に付加させる。不飽和一塩基酸の付加割合が少なすぎると、着色樹脂組成物の経時安定性等に関して、残存エポキシ基による悪影響が懸念される。尚、共重合体のエポキシ基に不飽和一塩基酸を付加させる方法としては、公知の方法を採用することができる。
 更に、共重合体のエポキシ基に不飽和一塩基酸を付加させたときに生じる水酸基に付加させる多塩基酸無水物としては、公知のものが使用できる。
 例えば、無水マレイン酸、無水コハク酸、無水イタコン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水クロレンド酸等の二塩基酸無水物;無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、ビフェニルテトラカルボン酸無水物等の三塩基以上の酸の無水物が挙げられる。中でも、テトラヒドロ無水フタル酸、および/または無水コハク酸が好ましい。これらの多塩基酸無水物は1種を単独で用いてもよく、2種以上を併用してもよい。
 このような成分を付加させることにより、本発明で用いるバインダー樹脂にアルカリ可溶性を付与することができる。
 これらの多塩基酸無水物は、通常、前記共重合体が有するエポキシ基に、不飽和一塩基酸を付加させることにより生じる水酸基の10~100モル%に付加させるが、好ましくは20~90モル%、より好ましくは30~80モル%に付加させる。この付加割合が多すぎると、現像時の残膜率が低下するおそれがあり、少なすぎると溶解性が不十分となる可能性がある。尚、当該水酸基に多塩基酸無水物を付加させる方法としては、公知の方法を採用することができる。
 更に、光感度を向上させるために、前述の多塩基酸無水物を付加させた後、生成したカルボキシル基の一部にグリシジル(メタ)アクリレートや重合性不飽和基を有するグリシジルエーテル化合物を付加させてもよい。
 また、現像性を向上させるために、生成したカルボキシル基の一部に、重合性不飽和基を有さないグリシジルエーテル化合物を付加させてもよい。
 また、この両方を付加させてもよい。
 重合性不飽和基を有さないグリシジルエーテル化合物の具体例としては、フェニル基やアルキル基を有するグリシジルエーテル化合物等が挙げられる。市販品として、例えば、ナガセ化成工業社製の商品名「デナコールEX-111」、「デナコールEX-121」、「デナコールEX-141」、「デナコールEX-145」、「デナコールEX-146」、「デナコールEX-171」、「デナコールEX-192」等がある。
 尚、このような樹脂の構造に関しては、例えば特開平8-297366号公報や特開2001-89533号公報に記載されている。
 上述のバインダー樹脂(a-1)の、GPC(ゲルパーミエーションクロマトグラフィー)で測定したポリスチレン換算の重量平均分子量(Mw)は、3000~100000が好ましく、5000~50000が特に好ましい。分子量が3000未満であると、耐熱性や膜強度に劣る可能性があり、100000を超えると現像液に対する溶解性が不足する傾向がある。また、分子量分布の目安として、重量平均分子量(Mw)/数平均分子量(Mn)の比は、2.0~5.0が好ましい。
 なお、バインダー樹脂(a-1)の酸価は、通常10~200mg-KOH/g、好ましくは15~150mg-KOH/g、更に好ましくは25~100mg-KOH/gである。酸価が低くなりすぎると、現像液に対する溶解性が低下する場合がある。逆に、高
すぎると、膜荒れが生じることがある。
(a-2):カルボキシル基含有直鎖状アルカリ可溶性樹脂
 カルボキシル基含有直鎖状アルカリ可溶性樹脂としては、カルボキシル基を有していれば特に限定されず、通常、カルボキシル基を含有する重合性単量体を重合して得られる。
 カルボキシル基含有重合性単量体としては、例えば、(メタ)アクリル酸、マレイン酸、クロトン酸、イタコン酸、フマル酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルアジピン酸、2-(メタ)アクリロイルオキシエチルマレイン酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチルフタル酸、2-(メタ)アクリロイルオキシプロピルコハク酸、2-(メタ)アクリロイルオキシプロピルアジピン酸、2-(メタ)アクリロイルオキシプロピルマレイン酸、2-(メタ)アクリロイルオキシプロピルヒドロフタル酸、2-(メタ)アクリロイルオキシプロピルフタル酸、2-(メタ)アクリロイルオキシブチルコハク酸、2-(メタ)アクリロイルオキシブチルアジピン酸、2-(メタ)アクリロイルオキシブチルマレイン酸、2-(メタ)アクリロイルオキシブチルヒドロフタル酸、2-(メタ)アクリロイルオキシブチルフタル酸等のビニル系単量体;アクリル酸にε-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン等のラクトン類を付加させた単量体;ヒドロキシアルキル(メタ)アクリレートにコハク酸、マレイン酸、フタル酸、或いはそれらの無水物等の酸或いは無水物を付加させた単量体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 中でも好ましいのは、(メタ)アクリル酸、2-(メタ)アクリロイルオキシエチルコハク酸であり、更に好ましいのは、(メタ)アクリル酸である。
 また、カルボキシル基含有直鎖状アルカリ可溶性樹脂は、上記のカルボキシル基含有重合性単量体に、カルボキシル基を有さない他の重合性単量体を共重合させたものであってもよい。
 この場合、他の重合性単量体としては、特に限定されないが、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシメチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート等の(メタ)アクリル酸エステル類;スチレンおよびその誘導体等のビニル芳香族類;N-ビニルピロリドン等のビニル化合物類;N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-ベンジルマレイミド等のN-置換マレイミド類;ポリメチル(メタ)アクリレートマクロモノマー、ポリスチレンマクロモノマー、ポリ2-ヒドロキシエチル(メタ)アクリレートマクロモノマー、ポリエチレングリコールマクロモノマー、ポリプロピレングリコールマクロモノマー、ポリカプロラクトンマクロモノマー等のマクロモノマー類等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、特に好ましいのは、スチレン、メチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、N-シクロヘキシルマレイミド、N-ベンジルマレイミド、N-フェニルマレイミドである。
 カルボキシル基含有直鎖状アルカリ可溶性樹脂は、さらに水酸基を有していてもよい。水酸基含有単量体として、例えば、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート等を、上述の各種単量体と共重合させることにより、カルボキシル基および水酸基を有する樹脂(a-2)を得ることができる。
 カルボキシル基含有直鎖状アルカリ可溶性樹脂(a-2)として、具体的には、例えば、(メタ)アクリル酸と、メチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロヘキシルマレイミド等の水酸基を含まない重合性単量体と、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基含有単量体との共重合体;(メタ)アクリル酸と、メチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリル酸エステルとの共重合体;(メタ)アクリル酸とスチレンとの共重合体;(メタ)アクリル酸とスチレンとα-メチルスチレンとの共重合体;(メタ)アクリル酸とシクロヘキシルマレイミドとの共重合体等が挙げられる。
 顔料分散性に優れる点からは、樹脂(a-2)としては特にベンジル(メタ)アクリレートを含む共重合体樹脂が好ましい。
 本発明におけるカルボキシル基含有直鎖状アルカリ可溶性樹脂の酸価は、通常30~500KOH-mg/g、好ましくは40~350KOH-mg/g、さらに好ましくは50~300KOH-mg/gである。
 また、GPCで測定したポリスチレン換算の重量平均分子量(Mw)は、通常2000~80000、好ましくは3000~50000、さらに好ましくは4000~30000である。重量平均分子量が小さすぎると、着色樹脂組成物の安定性に劣る傾向があり、大きすぎると、後述するカラーフィルターや液晶表示装置に使用する場合に、現像液に対する溶解性が悪化する傾向がある。
(a-3):樹脂(a-2)のカルボキシル基部分に、エポキシ基含有不飽和化合物を付加させた樹脂
 樹脂(a-3)において、前記カルボキシル基含有直鎖状アルカリ可溶性樹脂(a-2)の、カルボキシル基部分に付加させるエポキシ基含有不飽和化合物としては、分子内にエチレン性不飽和基およびエポキシ基を有するものであれば特に限定されるものではない。
 このエポキシ基含有不飽和化合物としては、例えば、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、グリシジル-α-エチルアクリレート、クロトニルグリシジルエーテル、(イソ)クロトン酸グリシジルエーテル、N-(3,5-ジメチル-4-グリシジル)ベンジルアクリルアミド、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等の非環式エポキシ基含有不飽和化合物を挙げることができるが、耐熱性や、後述する顔料の分散性の観点から、脂環式エポキシ基含有不飽和化合物が好ましい。
 ここで、脂環式エポキシ基含有不飽和化合物としては、その脂環式エポキシ基として、例えば、2,3-エポキシシクロペンチル基、3,4-エポキシシクロヘキシル基、7,8-エポキシ〔トリシクロ[5.2.1.0]デシ-2-イル〕基等が挙げられる。また
、エチレン性不飽和基としては、(メタ)アクリロイル基に由来するものが好ましく、好適な脂環式エポキシ基含有不飽和化合物としては、下記一般式(3a)~(3m)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000121
 式(3a)~(3m)中、R11は水素原子またはメチル基を、R12はアルキレン基を、R13は2価の炭化水素基をそれぞれ示し、nは1~10の整数である。
 一般式(3a)~(3m)における、R12のアルキレン基は、炭素数1~10であるものが好ましい。具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基等が例示できるが、好ましくはメチレン基、エチレン基、プロピレン基である。また、R13の炭化水素基としては、炭素数が1~10であるものが好ましく、アルキレン基、フェニレン基等が挙げられる。
 これらの脂環式エポキシ基含有不飽和化合物は、1種類を単独で使用してもよく、2種以上を併用してもよい。
 中でも、一般式(3c)で表される化合物が好ましく、3,4-エポキシシクロヘキシル
メチル(メタ)アクリレートが特に好ましい。
 前記樹脂(a-2)のカルボキシル基部分に、上記エポキシ基含有不飽和化合物を付加させるには、公知の手法を用いることができる。例えば、樹脂(a-2)とエポキシ基含有不飽和化合物とを、トリエチルアミン、ベンジルメチルアミン等の3級アミン;ドデシルトリメチルアンモニウムクロライド、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラブチルアンモニウムクロライド、ベンジルトリエチルアンモニウムクロライド等の4級アンモニウム塩;ピリジン、トリフェニルホスフィン等の触媒の存在下、有機溶剤中、反応温度50~150℃で数時間~数十時間反応させることにより、樹脂(a-2)のカルボキシル基にエポキシ基含有不飽和化合物を導入することができる。
 樹脂(a-2)にエポキシ基含有不飽和化合物を導入したカルボキシル基含有樹脂(a-3)の酸価は、通常10~200KOH-mg/g、好ましくは20~150KOH-mg/g、より好ましくは30~150KOH-mg/gである。
 また、GPCで測定したポリスチレン換算の重量平均分子量(Mw)は、通常2000~100000、好ましくは4000~50000、更に好ましくは5000~30000である。重量平均分子量が小さすぎると、着色樹脂組成物の安定性に劣る傾向があり、大きすぎると、後述するカラーフィルターや液晶表示装置に使用する場合に、現像液に対する溶解性が悪化する傾向がある。
(a-4):(メタ)アクリル系樹脂
 (メタ)アクリル系樹脂(a-4)は、下記一般式(4)で表される化合物を必須とする単量体成分を重合してなるポリマー(以下「樹脂(a-4)と称す場合がある。)である。
Figure JPOXMLDOC01-appb-C000122
 上記一般式(4)中、R1aおよびR2aは、それぞれ独立して、水素原子または置換基を有していてもよい炭素数1~25の炭化水素基を表す。
 まず、一般式(4)で表される化合物について説明する。
 一般式(4)で表されるエーテルダイマーにおいて、R1aおよびR2aで表される置換基を有していてもよい炭素数1~25の炭化水素基としては、特に制限はないが、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、t-アミル、ステアリル、ラウリル、2-エチルヘキシル等の直鎖状または分岐状のアルキル基;フェニル等のアリール基;シクロヘキシル、t-ブチルシクロヘキシル、ジシクロペンタジエニル、トリシクロデカニル、イソボルニル、アダマンチル、2-メチル-2-アダマンチル等の脂環式基;1-メトキシエチル、1-エトキシエチル等のアルコキシで置換されたアルキル基;ベンジル等のアリール基で置換されたアルキル基;等が挙げられる。これらの中でも特に、メチル、エチル、シクロヘキシル、ベンジル等のような酸や熱で脱離しにくい1級または2級炭素の置換基が耐熱性の点で好ましい。なお、R1aおよびR2aは、同種の置換基であってもよいし、異なる置換基であってもよい。
 前記エーテルダイマーの具体例としては、例えば、ジメチル-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジエチル-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(n-プロピル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(イソプロピル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(n-ブチル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(イソブチル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(t-ブチル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(t-アミル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(ステアリル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(ラウリル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(2-エチルヘキシル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(1-メトキシエチル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(1-エトキシエチル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジベンジル-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジフェニル-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジシクロヘキシル-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(t-ブチルシクロヘキシル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(ジシクロペンタジエニル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(トリシクロデカニル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(イソボルニル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジアダマンチル-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(2-メチル-2-アダマンチル)-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート等が挙げられる。これらの中でも特に、ジメチル-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジエチル-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジシクロヘキシル-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエート、ジベンジル-2,2′-[オキシビス(メチレン)]ビス-2-プロペノエートが好ましい。これらエーテルダイマーは、1種のみ単独で使用してもよいし、2種以上併用してもよい。
 樹脂(a-4)を得る際の、単量体成分中における一般式(4)で表されるエーテルダイマーの割合は、特に制限されないが、全単量体成分中、通常2~60重量%、好ましくは5~55重量%、さらに好ましくは5~50重量%である。このエーテルダイマーの量が多すぎると、重合の際、低分子量のものを得ることが困難になったり、あるいはゲル化し易くなったりするおそれがあり、一方、少なすぎると、透明性や耐熱性などの塗膜性能が不充分となるおそれがある。
 樹脂(a-4)は、酸基を有することが好ましい。酸基を有することにより、得られる着色樹脂組成物が、酸基とエポキシ基が反応してエステル結合を形成する架橋反応(以下、酸-エポキシ硬化と略する)により硬化が可能な着色樹脂組成物、あるいは未硬化部をアルカリ現像液で顕像可能な組成物、とすることができる。前記酸基としては、特に制限されないが、例えば、カルボキシル基、フェノール性水酸基、カルボン酸無水物基等が挙げられる。樹脂(a-4)中のこれらの酸基は、1種のみであってもよいし、2種以上であってもよい。
 樹脂(a-4)に酸基を導入するには、例えば、酸基を有するモノマーおよび/または「重合後に酸基を付与しうるモノマー」(以下「酸基を導入するための単量体」と称することもある。)を、単量体成分として使用すればよい。なお「重合後に酸基を付与しうるモノマー」を単量体成分として使用する場合には、重合後に、後述するような酸基を付与するための処理が必要となる。
 前記酸基を有するモノマーとしては、例えば、(メタ)アクリル酸やイタコン酸等のカルボキシル基を有するモノマー;N-ヒドロキシフェニルマレイミド等のフェノール性水酸基を有するモノマー;無水マレイン酸、無水イタコン酸等のカルボン酸無水物基を有するモノマー等が挙げられるが、これらの中でも特に、(メタ)アクリル酸が好ましい。
 前記重合後に酸基を付与しうるモノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート等の水酸基を有するモノマー;グリシジル(メタ)アクリレート等のエポキシ基を有するモノマー;2-イソシアナートエチル(メタ)アクリレート等のイソシアネート基を有するモノマー等が挙げられる。
 これら酸基を導入するための単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 樹脂(a-4)を得る際の単量体成分が、前記酸基を導入するための単量体をも含む場合、その含有割合は特に制限されないが、通常は全単量体成分中5~70重量%、好ましくは10~60重量%である。
 また樹脂(a-4)は、ラジカル重合性二重結合を有するものであってもよい。
 前記樹脂(a-4)にラジカル重合性二重結合を導入するには、例えば「重合後にラジカル重合性二重結合を付与しうるモノマー」(以下「ラジカル重合性二重結合を導入するための単量体」と称することもある。)を、単量体成分として重合した後に、後述するようなラジカル重合性二重結合を付与するための処理を行えばよい。
 重合後にラジカル重合性二重結合を付与しうるモノマーとしては、例えば、(メタ)アクリル酸、イタコン酸等のカルボキシル基を有するモノマー;無水マレイン酸、無水イタコン酸等のカルボン酸無水物基を有するモノマー;グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、o-(またはm-、またはp-)ビニルベンジルグリシジルエーテル等のエポキシ基を有するモノマー等が挙げられる。これらラジカル重合性二重結合を導入するための単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 樹脂(a-4)を得る際の単量体成分が、前記ラジカル重合性二重結合を導入するための単量体をも含む場合、その含有割合は特に制限されないが、通常は全単量体成分中5~70重量%、好ましくは10~60重量%である。
 また、樹脂(a-4)は、エポキシ基を有することが好ましい。
 エポキシ基を導入するには、例えば、エポキシ基を有するモノマー(以下「エポキシ基を導入するための単量体」と称することもある。)を、単量体成分として重合すればよい。
 前記エポキシ基を有するモノマーとしては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、o-(またはm-、またはp-)ビニルベンジルグリシジルエーテル等が挙げられる。これらエポキシ基を導入するための単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 樹脂(a-4)を得る際の単量体成分が、前記エポキシ基を導入するための単量体をも含む場合、その含有割合は特に制限されないが、通常は全単量体成分中5~70重量%、好ましくは10~60重量%であるのがよい。
 樹脂(a-4)を得る際の単量体成分は、上記必須の単量体成分のほかに、必要に応じて、他の共重合可能なモノマーを含んでいてもよい。
 他の共重合可能なモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸メチル2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-ヒドロキシエチル等の(メタ)アクリル酸エステル類;スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル化合物;N-フェニルマレイミド、N-シクロヘキシルマレイミド等のN-置換マレイミド類;ブタジエン、イソプレン等のブタジエンまたは置換ブタジエン化合物;エチレン、プロピレン、塩化ビニル、アクリロニトリル等のエチレンまたは置換エチレン化合物;酢酸ビニル等のビニルエステル類等が挙げられる。
 これらの中でも、(メタ)アクリル酸メチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、スチレンが、透明性が良好で、耐熱性を損ないにくい点で好ましい。これら共重合可能な他のモノマーは、1種のみ用いても2種以上を併用してもよい。
 また、特に樹脂(a-4)の一部または全部を、後述するように分散剤として用いる場合は、(メタ)アクリル酸ベンジルを用いることが好ましく、その含有量は、通常全単量体成分中1~70重量%、好ましくは5~60重量%であるのがよい。
 前記樹脂(a-4)を得る際の単量体成分が、前記共重合可能な他のモノマーをも含む場合、その含有割合は特に制限されないが、通常全単量体成分中95重量%以下が好ましく、85重量%以下がより好ましい。
 なお、樹脂(a-4)は、例えば国際公開パンフレットWO2008/156148A1に記載の方法により製造することができる。
 樹脂(a-4)の重量平均分子量は、特に制限されないが、好ましくはGPCにて測定したポリスチレン換算の重量平均分子量(Mw)が2000~200000、より好ましくは4000~100000である。重量平均分子量が200000を超える場合、高粘度となりすぎ塗膜を形成しにくくなる場合があり、一方2000未満であると、十分な耐熱性を発現しにくくなる傾向がある。
 また、樹脂(a-4)が酸基を有する場合、好ましい酸価は30~500mg-KOH/g、より好ましくは50~400mg-KOH/gである。酸価が30mg-KOH/g未満の場合、アルカリ現像に適用することが難しくなる場合があり、500mg-KOH/gを超える場合、高粘度となりすぎ塗膜を形成しにくくなる傾向がある。
 尚、前記樹脂(a-4)の例としては、例えば、特開2004-300203号公報および特開2004-300204号公報に記載の化合物を挙げることが出来る。
(a-5):カルボキシル基を有するエポキシアクリレート樹脂
 エポキシアクリレート樹脂(a-5)は、エポキシ樹脂にα,β-不飽和モノカルボン酸またはエステル部分にカルボキシル基を有するα,β-不飽和モノカルボン酸エステルを付加させ、さらに、多塩基酸無水物を反応させることにより合成される。かかる反応生成物は化学構造上、実質的にエポキシ基を有さず、かつ「アクリレート」に限定されるものではないが、エポキシ樹脂が原料であり、かつ「アクリレート」が代表例であるので、慣用に従いこのように命名したものである。
 原料となるエポキシ樹脂として、例えばビスフェノールA型エポキシ樹脂(例えば、油化シェルエポキシ社製の「エピコート828」、「エピコート1001」、「エピコート1002」、「エピコート1004」等)、ビスフェノールA型エポキシ樹脂のアルコール性水酸基とエピクロルヒドリンの反応により得られるエポキシ樹脂(例えば、日本化薬社製の「NER-1302」(エポキシ当量323,軟化点76℃))、ビスフェノールF型樹脂(例えば、油化シェルエポキシ社製の「エピコート807」、「EP-4001」、「EP-4002」、「EP-4004等」)、ビスフェノールF型エポキシ樹脂のアルコール性水酸基とエピクロルヒドリンの反応により得られるエポキシ樹脂(例えば、日本化薬社製の「NER-7406」(エポキシ当量350,軟化点66℃))、ビスフェノールS型エポキシ樹脂、ビフェニルグリシジルエーテル(例えば、油化シェルエポキシ社製の「YX-4000」)、フェノールノボラック型エポキシ樹脂(例えば、日本化薬社製の「EPPN-201」、油化シェルエポキシ社製の「EP-152」、「EP-154」、ダウケミカル社製の「DEN-438」)、(o,m,p-)クレゾールノボラック型エポキシ樹脂(例えば、日本化薬社製の「EOCN-102S」、「EOCN-1020」、「EOCN-104S」)、トリグリシジルイソシアヌレート(例えば、日産化学社製の「TEPIC」)、トリスフェノールメタン型エポキシ樹脂(例えば、日本化薬社製の「EPPN-501」、「EPN-502」、「EPPN-503」)、フルオレンエポキシ樹脂(例えば、新日鐵化学社製のカルドエポキシ樹脂「ESF-300」)、脂環式エポキシ樹脂(ダイセル化学工業社製の「セロキサイド2021P」、「セロキサイドEHPE」)、ジシクロペンタジエンとフェノールの反応によるフェノール樹脂をグリシジル化したジシクロペンタジエン型エポキシ樹脂(例えば、日本化薬社製の「XD-1000」、大日本インキ社製の「EXA-7200」、日本化薬社製の「NC-3000」、「NC-7300」)、および下記構造式で示されるエポキシ樹脂(特許第2878486号公報参照)、等を好適に用いることができる。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000123
 エポキシ樹脂の他の例としては共重合型エポキシ樹脂が挙げられる。共重合型エポキシ樹脂としては、例えば、グリシジル(メタ)アクリレート、(メタ)アクリロイルメチルシクロヘキセンオキサイド、ビニルシクロヘキセンオキサイドなど(以下「共重合型エポキシ樹脂の第1成分」と称す。)と、これら以外の1官能エチレン性不飽和基含有化合物(以下、「共重合型エポキシ樹脂の第2成分」と称す。)、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、(メタ)アクリル酸、スチレン、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、α-メチルスチレン、グリセリンモノ(メタ)アクリレート、下記一般式(8)で表される化合物から選ばれる1種または2種以上、とを反応させて得られた共重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000124
 式(8)中、R61は水素原子またはエチル基を表し、R62は水素原子または炭素数1~6のアルキル基を表し、rは2~10の整数である。
 一般式(8)で表される化合物としては、例えば、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート等のポリエチレングリコールモノ(メタ)アクリレート;メトキシジエチレングリコールモノ(メタ)アクリレート、メトキシトリエチレングリコールモノ(メタ)アクリレート、メトキシテトラエチレングリコールモノ(メタ)アクリレート、等のアルコキシポリエチレングリコール(メタ)アクリレート等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 また、上記共重合型エポキシ樹脂の第1成分の使用量は、上記共重合型エポキシ樹脂の第2成分に対して好ましくは10重量%以上、特に好ましくは20重量%以上であり、好ましくは70重量%以下、特に好ましくは50重量%以下である。
 このような共重合型エポキシ樹脂としては、具体的には日本油脂社製の「CP-15」、「CP-30」、「CP-50」、「CP-20SA」、「CP-510SA」、「CP-50S」、「CP-50M」、「CP-20MA」等が例示される。
 原料エポキシ樹脂の分子量は、GPCで測定したポリスチレン換算の重量平均分子量(Mw)として、通常200~20万、好ましくは300~100000の範囲である。重量平均分子量が上記範囲未満であると被膜形成性に問題を生じる場合が多く、逆に、上記範囲を超えた樹脂ではα,β-不飽和モノカルボン酸の付加反応時にゲル化が起こりやすく製造が困難となるおそれがある。
 エポキシ樹脂に付加させるα,β-不飽和モノカルボン酸としては、イタコン酸、クロトン酸、桂皮酸、アクリル酸、メタクリル酸等が挙げられ、好ましくは、アクリル酸およびメタクリル酸であり、特にアクリル酸が反応性に富むため好ましい。
 エポキシ樹脂に付加させるエステル部分にカルボキシル基を有するα,β-不飽和モノカルボン酸エステルとしては、アクリル酸-2-サクシノイルオキシエチル、アクリル酸-2-マレイノイルオキシエチル、アクリル酸-2-フタロイルオキシエチル、アクリル酸-2-ヘキサヒドロフタロイルオキシエチル、メタクリル酸-2-サクシノイルオキシエチル、メタクリル酸-2-マレイノイルオキシエチル、メタクリル酸-2-フタロイルオキシエチル、メタクリル酸-2-ヘキサヒドロフタロイルオキシエチル、クロトン酸-2-サクシノイルオキシエチル等が挙げられ、好ましくは、アクリル酸-2-マレイノイルオキシエチルおよびアクリル酸-2-フタロイルオキシエチルであり、特にアクリル酸-2-マレイノイルオキシエチルが好ましい。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 上記α,β-不飽和モノカルボン酸またはそのエステルとエポキシ樹脂との付加反応は、公知の手法を用いることができ、例えば、エステル化触媒存在下、50~150℃の温度で反応させることにより実施することができる。エステル化触媒としてはトリエチルアミン、トリメチルアミン、ベンジルジメチルアミン、ベンジルジエチルアミン等の3級アミン;テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、ドデシルトリメチルアンモニウムクロライド等の4級アンモニウム塩等1種または2種以上を用いることができる。
 α,β-不飽和モノカルボン酸またはそのエステルの使用量は、原料エポキシ樹脂のエポキシ基1当量に対し0.5~1.2当量の範囲が好ましく、さらに好ましくは0.7~1.1当量の範囲である。α,β-不飽和モノカルボン酸またはそのエステルの使用量が少ないと不飽和基の導入量が不足し、引き続く多塩基酸無水物との反応も不十分となる。また、多量のエポキシ基が残存することも有利ではない。一方、該使用量が多いとα,β-不飽和モノカルボン酸またはそのエステルが未反応物として残存する。いずれの場合も硬化特性が悪化する傾向が認められる。
 α,β-不飽和カルボン酸またはそのエステルが付加したエポキシ樹脂に、更に付加させる多塩基酸無水物としては、無水マレイン酸、無水コハク酸、無水イタコン酸、無水フタル酸、無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水ピロメリット酸、無水トリメリット酸、ベンゾフェノンテトラカルボン酸二無水物、無水メチルヘキサヒドロフタル酸、無水エンドメチレンテトラヒドロフタル酸、無水クロレンド酸、無水メチルテトラヒドロフタル酸、ビフェニルテトラカルボン酸二無水物等が挙げられ、好ましくは、無水マレイン酸、無水コハク酸、無水イタコン酸、無水フタル酸、無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水ピロメリット酸、無水トリメリット酸、ビフェニルテトラカルボン酸二無水物であり、特に好ましい化合物は、無水テトラヒドロフタル酸およびビフェニルテトラカルボン酸二無水物である。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 多塩基酸無水物の付加反応に関しても公知の手法を用いることができ、α,β-不飽和カルボン酸またはそのエステルの付加反応と同様な条件下で継続反応させることにより実施することができる。
 多塩基酸無水物の付加量は、生成するエポキシアクリレート樹脂(a-5)の酸価が10~150mg-KOH/gの範囲となるような量が好ましく、更に20~140mg-KOH/gの範囲が特に好ましい。樹脂(a-5)の酸価が小さすぎるとアルカリ現像性に乏しくなる場合があり、また、樹脂(a-5)の酸価が大きすぎると硬化性能に劣る傾向が認められる。
 その他、カルボキシル基を有するエポキシアクリレート樹脂(a-5)としては、例えば特開平6-49174号公報記載のナフタレン含有樹脂;特開2003-89716、特開2003-165830、特開2005-325331、特開2001-354735号公報記載のフルオレン含有樹脂;特開2005-126674、特開2005-55814、特開2004-295084号公報等に記載の樹脂を挙げることができる。
 また、市販のカルボキシル基を有するエポキシアクリレート樹脂(a-5)を用いることもでき、市販品としては例えばダイセル社製の「ACA-200M」等を挙げることが出来る。
 本発明において、(a)バインダー樹脂としては、また、例えば特開2005-154708号公報などに記載のアクリル系のバインダー樹脂も用いることができる。
 上述した各種バインダー樹脂のうち、特に好ましいのは、樹脂(a-1)、即ち、エポキシ基含有(メタ)アクリレートと、他のラジカル重合性単量体との共重合体に対し、該共重合体が有するエポキシ基の少なくとも一部に不飽和一塩基酸を付加させてなる樹脂、或いは該付加反応により生じた水酸基の少なくとも一部に多塩基酸無水物を付加させて得られるアルカリ可溶性樹脂である。
 本発明における(a)バインダー樹脂としては、前述の各種バインダー樹脂のうち1種を単独で用いてもよく、2種以上を併用してもよい。前述の各種バインダー樹脂は、特に後述する任意成分である分散剤等との併用で、基板上の非画像部に未溶解物が残存することなく、基板との密着性に優れた、高濃度の色画素を形成し得るといった効果を奏し、好ましい。
 本発明の着色樹脂組成物において、(a)バインダー樹脂の含有割合は、全固形分中、通常0.1重量%以上、好ましくは1重量%以上であり、また、通常80重量%以下、好ましくは60重量%以下である。(a)バインダー樹脂の含有量がこの範囲よりも少ないと、膜が脆くなり、基板への密着性が低下することがある。逆に、この範囲よりも多いと、露光部への現像液の浸透性が高くなり、画素の表面平滑性や感度が悪化する場合がある。
[(b)溶剤]
 本発明の着色樹脂組成物は、(b)溶剤を必須成分とする。溶剤は、着色樹脂組成物に含まれる各成分を溶解または分散させ、粘度を調節する機能を有する。
 かかる(b)溶剤としては、着色樹脂組成物を構成する各成分を溶解または分散させることができるものであればよく、沸点が100~200℃の範囲のものを選択するのが好ましい。より好ましくは120~170℃の沸点をもつものである。
 このような溶剤としては、例えば、次のようなものが挙げられる。
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコール-モノt-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、メトキシメチルペンタノール、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、3-メチル-3-メトキシブタノール、トリプロピレングリコールモノメチルエーテルのようなグリコールモノアルキルエーテル類;
 エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテルのようなグリコールジアルキルエーテル類;
 エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、メトキシブチルアセテート、3-メトキシブチルアセテート、メトキシペンチルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテートのようなグリコールアルキルエーテルアセテート類;
 ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジアミルエーテル、エチルイソブチルエーテル、ジヘキシルエーテルのようなエーテル類;
 アセトン、メチルエチルケトン、メチルアミルケトン、メチルイソプロピルケトン、メチルイソアミルケトン、ジイソプロピルケトン、ジイソブチルケトン、メチルイソブチルケトン、シクロヘキサノン、エチルアミルケトン、メチルブチルケトン、メチルヘキシルケトン、メチルノニルケトンのようなケトン類;
 エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、グリセリンのような1価または多価アルコール類;
 n-ペンタン、n-オクタン、ジイソブチレン、n-ヘキサン、ヘキセン、イソプレン、ジペンテン、ドデカンのような脂肪族炭化水素類;
 シクロヘキサン、メチルシクロヘキサン、メチルシクロヘキセン、ビシクロヘキシルのような脂環式炭化水素類;
 ベンゼン、トルエン、キシレン、クメンのような芳香族炭化水素類;
 アミルホルメート、エチルホルメート、酢酸エチル、酢酸ブチル、酢酸プロピル、酢酸アミル、メチルイソブチレート、エチレングリコールアセテート、エチルプロピオネート、プロピルプロピオネート、酪酸ブチル、酪酸イソブチル、イソ酪酸メチル、エチルカプリレート、ブチルステアレート、エチルベンゾエート、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、γ-ブチロラクトンのような鎖状または環状エステル類;
 3-メトキシプロピオン酸、3-エトキシプロピオン酸のようなアルコキシカルボン酸類;
 ブチルクロライド、アミルクロライドのようなハロゲン化炭化水素類;
 メトキシメチルペンタノンのようなエーテルケトン類;
 アセトニトリル、ベンゾニトリルのようなニトリル類:
 上記に該当する市販の溶剤としては、ミネラルスピリット、バルソル#2、アプコ#18ソルベント、アプコシンナー、ソーカルソルベントNo.1およびNo.2、ソルベッ
ソ#150、シェルTS28 ソルベント、カルビトール、エチルカルビトール、ブチルカルビトール、メチルセロソルブ、エチルセロソルブ、エチルセロソルブアセテート、メチルセロソルブアセテート、ジグライム(いずれも商品名)などが挙げられる。
 これらの溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
 上記溶剤中、前述の本発明に係る(c)色材の溶解性の点から、グリコールモノアルキルエーテル類が好ましい。中でも、特に組成物中の各種構成成分の溶解性の点からプロピレングリコールモノメチルエーテルが特に好ましい。
 また、例えば任意成分として後述する(f)顔料を含む場合には、塗布性、表面張力などのバランスが良く、組成物中の構成成分の溶解度が比較的高い点からは、溶剤としてさらにグリコールアルキルエーテルアセテート類を混合して使用することがより好ましい。なお、(f)顔料を含む組成物中では、グリコールモノアルキルエーテル類は極性が高く、顔料を凝集させる傾向があり、着色樹脂組成物の粘度を上げる等、保存安定性を低下させる場合がある。このため、グリコールモノアルキルエーテル類の使用量は過度に多くない方が好ましく、(b)溶剤中のグリコールモノアルキルエーテル類の割合は5~50重量%が好ましく、5~30重量%がより好ましい。
 また、最近の大型基板等に対応したスリットコート方式への適性という観点からは、150℃以上の沸点をもつ溶剤を併用することも好ましい。この場合、このような高沸点溶剤の含有量は、(b)溶剤全体に対して3~50重量%が好ましく、5~40重量%がより好ましく、5~30重量%が特に好ましい。高沸点溶剤の量が少なすぎると、例えばスリットノズル先端で色材成分などが析出・固化して異物欠陥を惹き起こす可能性があり、また多すぎると組成物の乾燥速度が遅くなり、後述するカラーフィルター製造工程における、減圧乾燥プロセスのタクト不良や、プリベークのピン跡といった問題を惹き起こすことが懸念される。
 なお、沸点150℃以上の溶剤は、グリコールアルキルエーテルアセテート類であっても、またグリコールアルキルエーテル類であってもよく、この場合は、沸点150℃以上の溶剤を別途含有させなくてもかまわない。
 本発明の着色樹脂組成物は、インクジェット法によるカラーフィルター製造に供しても良いが、インクジェット法によるカラーフィルター製造においては、ノズルから発せられるインクは数~数十pLと非常に微小であるため、ノズル口周辺あるいは画素バンク内に着弾する前に、溶剤が蒸発してインクが濃縮・乾固する傾向がある。これを回避するためには溶剤の沸点は高い方が好ましく、具体的には、(b)溶剤が沸点180℃以上の溶剤を含むことが好ましい。特に、沸点が200℃以上、とりわけ沸点が220℃以上の溶剤を含有することが好ましい。また、沸点180℃以上である高沸点溶剤は、(b)溶剤中50重量%以上であることが好ましい。このような高沸点溶剤の割合が50重量%未満である場合には、インク液滴からの溶剤の蒸発防止効果が十分に発揮されないおそれがある。
 本発明の着色樹脂組成物において、(b)溶剤の含有割合に特に制限はないが、その上限は通常99重量%とする。組成物中の(b)溶剤の含有割合が99重量%を超える場合は、(b)溶剤を除く各成分の濃度が小さくなり過ぎて、塗布膜を形成するには不適当となるおそれがある。一方、(b)溶剤の含有割合の下限値は、塗布に適した粘性等を考慮して、通常75重量%、好ましくは80重量%、更に好ましくは82重量%である。
[(d)モノマー]
 本発明の着色樹脂組成物は、(d)モノマーを含有することが好ましい。(d)モノマーは、重合可能な低分子化合物であれば特に制限はないが、エチレン性二重結合を少なくとも1つ有する付加重合可能な化合物(以下、「エチレン性化合物」と言う場合がある。)が好ましい。
 エチレン性化合物は、本発明の着色樹脂組成物が活性光線の照射を受けた場合、後述する光重合開始系の作用により付加重合し、硬化するようなエチレン性二重結合を有する化合物である。尚、本発明における(d)モノマーは、いわゆる高分子物質に相対する概念を意味し、狭義の単量体以外に二量体、三量体、オリゴマーも包含する。
 エチレン性化合物としては、例えば、(メタ)アクリル酸等の不飽和カルボン酸;モノヒドロキシ化合物と不飽和カルボン酸とのエステル;脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル;芳香族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル;不飽和カルボン酸と多価カルボン酸および前述の脂肪族ポリヒドロキシ化合物、芳香族ポリヒドロキシ化合物等の多価ヒドロキシ化合物とのエステル化反応により得られるエステル;ポリイソシアネート化合物と(メタ)アクリロイル基含有ヒドロキシ化合物とを反応させたウレタン骨格を有するエチレン性化合物;等が挙げられる。
 脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルとしては、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセロール(メタ)アクリレート等の(メタ)アクリル酸エステルが挙げられる。また、これら(メタ)アクリル酸エステルの(メタ)アクリル酸部分を、イタコン酸部分に代えたイタコン酸エステル、クロトン酸部分に代えたクロトン酸エステル、或いは、マレイン酸部分に代えたマレイン酸エステル等が挙げられる。
 芳香族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルとしては、ハイドロキノンジ(メタ)アクリレート、レゾルシンジ(メタ)アクリレート、ピロガロールトリ(メタ)アクリレート等が挙げられる。
 不飽和カルボン酸と多価カルボン酸および多価ヒドロキシ化合物とのエステル化反応により得られるエステルは、必ずしも単一物ではなく、混合物であってもよい。代表例としては、(メタ)アクリル酸、フタル酸、およびエチレングリコールの縮合物;(メタ)アクリル酸、マレイン酸、およびジエチレングリコールの縮合物;(メタ)アクリル酸、テレフタル酸、およびペンタエリスリトールの縮合物;(メタ)アクリル酸、アジピン酸、ブタンジオール、およびグリセリンの縮合物等が挙げられる。
 ポリイソシアネート化合物と(メタ)アクリロイル基含有ヒドロキシ化合物とを反応させたウレタン骨格を有するエチレン性化合物としては、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート;シクロヘキサンジイソシアネート、イソホロンジイソシアネート等の脂環式ジイソシアネート;トリレンジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族ジイソシアネートと、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシ〔1,1,1-トリ(メタ)アクリロイルオキシメチル〕プロパン等の(メタ)アクリロイル基含有ヒドロキシ化合物との反応物が挙げられる。
 その他、本発明に用いられるエチレン性化合物の例としては、エチレンビス(メタ)アクリルアミド等の(メタ)アクリルアミド類;フタル酸ジアリル等のアリルエステル類;ジビニルフタレート等のビニル基含有化合物等が挙げられる。
 これらの中では脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましく、ペンタエリスリトールまたはジペンタエリスリトールの(メタ)アクリル酸エステルがより好ましく、ジペンタエリスリトールヘキサ(メタ)アクリレートが特に好ましい。
 また、エチレン性化合物は酸価を有するモノマーであってもよい。酸価を有するモノマーとしては、例えば、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルであり、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシル基に非芳香族カルボン酸無水物を反応させて酸基を持たせた多官能単量体が好ましく、特に好ましくは、このエステルにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトールおよび/またはジペンタエリスリトールであるものである。
 これらの単量体は1種を単独で用いてもよいが、製造上、単一の化合物を得ることは難しいことから、2種以上の混合物を使用してもよい。
 また、必要に応じて(d)モノマーとして酸基を有しない多官能モノマーと酸基を有する多官能モノマーを併用してもよい。
 酸基を有する多官能モノマーの好ましい酸価としては、0.1~40mg-KOH/gであり、特に好ましくは5~30mg-KOH/gである。この多官能モノマーの酸価が低すぎると現像溶解特性が低下する傾向があり、高すぎると製造や取扱いが困難になる場合があり、また光重合性能が落ちたり、画素の表面平滑性等の硬化性が劣る場合がある。従って、異なる酸基の多官能モノマーを2種以上併用する場合、或いは酸基を有しない多官能モノマーを併用する場合、全体の多官能モノマーとしての酸基が上記範囲に入るように調整することが好ましい。
 本発明において、より好ましい酸基を有する多官能モノマーは、東亞合成社製の「TO1382」として市販されているジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールペンタアクリレートのコハク酸エステルを主成分とする混合物である。この多官能モノマーと他の多官能モノマーを組み合わせて使用することもできる。
 本発明の着色樹脂組成物において、これらの(d)モノマーの含有割合は、全固形分中、通常1重量%以上、好ましくは5重量%以上、更に好ましくは10重量%以上であり、また、通常80重量%以下、好ましくは70重量%以下、更に好ましくは50重量%以下、特に好ましくは40重量%以下である。また、(d)モノマーの前述の(c)色材に対する比率は、通常1重量%以上、好ましくは5重量%以上、更に好ましくは10重量%以上、特に好ましくは20重量%以上であり、また、通常200重量%以下、好ましくは100重量%以下、更に好ましくは80重量%以下である。
 着色樹脂組成物中の(d)モノマー量が少なすぎると、光硬化が不十分となり現像時に密着不良を誘起する要因となるおそれがあり、逆に多すぎると、光硬化が強すぎて現像後の断面が逆テーパー形状となったり、また、溶解性が低下して剥離現像を起こしたり、抜け不良を発生させる原因となることがある。
[(e)光重合開始系および/または熱重合開始系]
 本発明の着色樹脂組成物は、塗膜を硬化させる目的で、(e)光重合開始系および/または熱重合開始系を含むことが好ましい。ただし、硬化の方法はこれらの開始剤によるもの以外でもよい。
 特に、本発明の着色樹脂組成物が、(a)成分としてエチレン性二重結合を有する樹脂を含む場合や、(d)成分としてエチレン性化合物を含む場合には、光を直接吸収し、または光増感されて分解反応または水素引き抜き反応を起こし、重合活性ラジカルを発生する機能を有する光重合開始系および/または熱によって重合活性ラジカルを発生する熱重合開始系を含有することが好ましい。なお、本発明において光重合開始系としての(e)成分とは、光重合開始剤(以下、任意に(e1)成分と称する)に重合加速剤(以下、任意に(e2)成分と称する)、増感色素(以下、任意に(e3)成分と称する)などの付加剤が併用されている混合物を意味する。
<光重合開始系>
 本発明の着色樹脂組成物に含有されていてもよい光重合開始系は、通常、(e)光重合開始剤、および必要に応じて添加される(e3)増感色素、(e2)重合加速剤等の付加剤との混合物として用いられ、光を直接吸収し、或いは光増感されて分解反応または水素引き抜き反応を起こし、重合活性ラジカルを発生する機能を有する成分である。
 光重合開始系を構成する(e1)光重合開始剤としては、例えば、特開昭59-152396号、特開昭61-151197号各公報等に記載のチタノセン誘導体類;特開平10-300922号、特開平11-174224号、特開2000-56118号各公報等に記載されるヘキサアリールビイミダゾール誘導体類;特開平10-39503号公報等に記載のハロメチル化オキサジアゾール誘導体類、ハロメチル-s-トリアジン誘導体類、N-フェニルグリシン等のN-アリール-α-アミノ酸類、N-アリール-α-アミノ酸塩類、N-アリール-α-アミノ酸エステル類等のラジカル活性剤、α-アミノアルキルフェノン誘導体類;特開2000-80068号公報等に記載のオキシムエステル系誘導体類等が挙げられる。
 具体的には、例えば、チタノセン誘導体類としては、ジシクロペンタジエニルチタニウムジクロライド、ジシクロペンタジエニルチタニウムビスフェニル、ジシクロペンタジエニルチタニウムビス(2,3,4,5,6-ペンタフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムビス(2,3,5,6-テトラフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムビス(2,4,6-トリフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムジ(2,6-ジフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムジ(2,4-ジフルオロフェニ-1-イル)、ジ(メチルシクロペンタジエニル)チタニウムビス(2,3,4,5,6-ペンタフルオロフェニ-1-イル)、ジ(メチルシクロペンタジエニル)チタニウムビス(2,6-ジフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウム〔2,6-ジ-フルオロ-3-(ピロ-1-イル)-フェニ-1-イル〕等が挙げられる。
 また、ビイミダゾール誘導体類としては、2-(2’-クロロフェニル)-4,5-ジフェニルイミダゾール2量体、2-(2’-クロロフェニル)-4,5-ビス(3’-メトキシフェニル)イミダゾール2量体、2-(2’-フルオロフェニル)-4,5-ジフェニルイミダゾール2量体、2-(2’-メトキシフエニル)-4,5-ジフェニルイミダゾール2量体、(4’-メトキシフエニル)-4,5-ジフェニルイミダゾール2量体等が挙げられる。
 また、ハロメチル化オキサジアゾール誘導体類としては、2-トリクロロメチル-5-(2’-ベンゾフリル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-〔β-(2’-ベンゾフリル)ビニル〕-1,3,4-オキサジアゾール、2-トリクロロメチル-5-〔β-(2’-(6''-ベンゾフリル)ビニル)〕-1,3,4-オキサジアゾール、2-トリクロロメチル-5-フリル-1,3,4-オキサジアゾール等が挙げられる。
 また、ハロメチル-s-トリアジン誘導体類としては、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシカルボニルナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン等が挙げられる。
 また、α-アミノアルキルフェノン誘導体類としては、2-メチル-1〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、4-ジメチルアミノエチルベンゾエ-ト、4-ジメチルアミノイソアミルベンゾエ-ト、4-ジエチルアミノアセトフェノン、4-ジメチルアミノプロピオフェノン、2-エチルヘキシル-1,4-ジメチルアミノベンゾエート、2,5-ビス(4-ジエチルアミノベンザル)シクロヘキサノン、7-ジエチルアミノ-3-(4-ジエチルアミノベンゾイル)クマリン、4-(ジエチルアミノ)カルコン等が挙げられる。
 また、オキシムエステル系誘導体類としては、1,2-オクタンジオン、1-〔4-(フェニルチオ)フェニル〕、2-(o-ベンゾイルオキシム)、エタノン、1-〔9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル〕、1-(o-アセチルオキシム)等が挙げられる。
 その他に、ベンゾインメチルエーテル、ベンゾインフェニルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル等のベンゾインアルキルエーテル類;2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等のアントラキノン誘導体類;2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシアセトフェノン、1-ヒドロキシシクロへキシルフェニルケトン、α-ヒドロキシ-2-メチルフェニルプロパノン、1-ヒドロキシ-1-メチルエチル-(p-イソプロピルフェニル)ケトン、1-ヒドロキシ-1-(p-ドデシルフェニル)ケトン、2-メチル-(4’-メチルチオフェニル)-2-モルホリノ-1-プロパノン、1,1,1-トリクロロメチル-(p-ブチルフェニル)ケトン等のアセトフェノン誘導体類;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン誘導体類;p-ジメチルアミノ安息香酸エチル、p-ジエチルアミノ安息香酸エチル等の安息香酸エステル誘導体類;9-フェニルアクリジン、9-(p-メトキシフェニル)アクリジン等のアクリジン誘導体類;9,10-ジメチルベンズフェナジン等のフェナジン誘導体類;ベンズアンスロン等のアンスロン誘導体類等も挙げられる。
 これら光重合開始剤の中では、α-アミノアルキルフェノン誘導体類およびチオキサントン誘導体類がより好ましい。
 必要に応じて用いられる(e2)重合加速剤としては、例えば、N,N-ジメチルアミノ安息香酸エチルエステル等のN,N-ジアルキルアミノ安息香酸アルキルエステル類;2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾイミダゾール等の複素環を有するメルカプト化合物;脂肪族多官能メルカプト化合物等のメルカプト化合物類等が挙げられる。
 これらの(e1)光重合開始剤および(e2)重合加速剤は、それぞれ1種を単独で用
いてもよく、2種以上を併用してもよい。
 また、必要に応じて感応感度を高める目的で、(e3)増感色素が用いられる。増感色素は、画像露光光源の波長に応じて、適切なものが用いられるが、例えば特開平4-221958号、特開平4-219756号各公報等に記載のキサンテン系色素;特開平3-239703号、特開平5-289335号各公報等に記載の複素環を有するクマリン系色素;特開平3-239703号、特開平5-289335号各公報等に記載の3-ケトクマリン系色素;特開平6-19240号公報等に記載のピロメテン系色素;特開昭47-2528号、特開昭54-155292号、特公昭45-37377号、特開昭48-84183号、特開昭52-112681号、特開昭58-15503号、特開昭60-88005号、特開昭59-56403号、特開平2-69号、特開昭57-168088号、特開平5-107761号、特開平5-210240号、特開平4-288818号各公報等に記載のジアルキルアミノベンゼン骨格を有する色素等を挙げることができる。
 これらの増感色素のうち好ましいものは、アミノ基含有増感色素であり、更に好ましいものは、アミノ基およびフェニル基を同一分子内に有する化合物である。増感色素として特に好ましいのは、例えば、4,4’-ジメチルアミノベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、2-アミノベンゾフェノン、4-アミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4-ジアミノベンゾフェノン等のベンゾフェノン系化合物;2-(p-ジメチルアミノフェニル)ベンゾオキサゾール、2-(p-ジエチルアミノフェニル)ベンゾオキサゾール、2-(p-ジメチルアミノフェニル)ベンゾ〔4,5〕ベンゾオキサゾール、2-(p-ジメチルアミノフェニル)ベンゾ〔6,7〕ベンゾオキサゾール、2,5-ビス(p-ジエチルアミノフェニル)-1,3,4-オキサゾール、2-(p-ジメチルアミノフェニル)ベンゾチアゾール、2-(p-ジエチルアミノフェニル)ベンゾチアゾール、2-(p-ジメチルアミノフェニル)ベンズイミダゾール、2-(p-ジエチルアミノフェニル)ベンズイミダゾール、2,5-ビス(p-ジエチルアミノフェニル)-1,3,4-チアジアゾール、(p-ジメチルアミノフェニル)ピリジン、(p-ジエチルアミノフェニル)ピリジン、(p-ジメチルアミノフェニル)キノリン、(p-ジエチルアミノフェニル)キノリン、(p-ジメチルアミノフェニル)ピリミジン、(p-ジエチルアミノフェニル)ピリミジン等のp-ジアルキルアミノフェニル基含有化合物等である。このうち最も好ましいものは、4,4’-ジメチルアミノベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン等の4,4’-ジアルキルアミノベンゾフェノンである。
 (e3)増感色素もまた1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の着色樹脂組成物において、これらの(e)光重合開始系の含有割合は、全固形分中、通常0.1重量%以上、好ましくは0.2重量%以上、更に好ましくは0.5重量%以上、また、通常40重量%以下、好ましくは30重量%以下、更に好ましくは20重量%以下の範囲である。この含有割合が著しく低いと、露光光線に対する感度が低下する原因となることがあり、反対に著しく高いと、未露光部分の現像液に対する溶解性が低下し、現像不良を誘起することがある。
<熱重合開始系>
 本発明の着色樹脂組成物に含有されていてもよい熱重合開始系(熱重合開始剤)の具体例としては、アゾ系化合物、有機過酸化物および過酸化水素等を挙げることができる。これらのうち、アゾ系化合物が好適に用いられる。
 アゾ系化合物としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス
(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキセン-1-カルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド(2-(カルバモイルアゾ)イソブチロニトリル)、2,2-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2’-アゾビス[N-(2-プロペニル)-2-エチルプロピオンアミド]、2,2’-アゾビス[N-ブチル-2-メチルプロピオンアミド]、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)、2,2’-アゾビス(ジメチル-2-メチルプロピオンアミド)、2,2’-アゾビス(ジメチル-2-メチルプロピオネート)、2,2’-アゾビス(2,4,4-トリメチルペンテン)等を挙げることができ、これらのうちでも、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等が好ましい。
 有機過酸化物としては、過酸化ベンゾイル、過酸化ジ-t-ブチル、クメンハイドロパーオキシド等が挙げられる。具体的には、ジイソブチリルパーオキシド、クミルパーオキシネオデカノエート、ジ-n-プロピルパーオキシジカルボネート、ジイソプロピルパーオキシジカルボネート、ジ-sec-ブチルパーオキシジカルボネート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカルボネート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、ジ(2-エトキシエチル)パーオキシジカルボネート、ジ(2-エチルヘキシル)パーオキシジカルボネート、t-ヘキシルパーオキシネオデカノエート、ジメトキシブチルパーオキシジカルボネート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、ジ(3,5,5-トリメチルヘキサノイル)パーオキシド、ジ-n-オクタノイルパーオキシド、ジラウロイルパーオキシド、ジステアロイルパーオキシド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、ジ(4-メチルベンゾイル)パーオキシド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジベンゾイルパーオキシド、t-ブチルパーオキシイソブチレート、1,1-ジ(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(4,4-ジ(t-ブチルパーオキシ)シクロヘキシル)プロパン、t-ヘキシルパーオキシイソプロピルモノカルボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(3-メチルベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカルボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカルボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ジ(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル-4,4-ジ(t-ブチルパーオキシ)バレレート、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキシド、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキシド、p-メンタンハイドロパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジイソプロピルベンゼンハイドロパーオキシド、1,1,3,3-テトラメチルブチルハイドロパーオキシド、クメンハイドロパーオキシド、t-ブチルハイドロパーオキシド、t-ブチルトリメチルシリルパーオキシド、2,3-ジメチル-2,3-ジフェニルブタン、ジ(3-メチルベンゾイル)パーオキシドとベンゾイル(3-メチルベンゾイル)パーオキシドとジベンゾイルパーオキシドの混合物等を挙げることができる。
 これらの熱重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 着色樹脂組成物中の熱重合開始剤の割合が少な過ぎると膜の硬化が不十分であり、カラーフィルターとしての耐久性が不足する場合がある。多過ぎると熱収縮の度合が大きくなり、熱硬化後にヒビ割れ、クラックの発生が起こるおそれがある。また、保存安定性が低下する傾向が見られる。従って、熱重合開始剤の含有割合は、本発明の着色樹脂組成物の全固形分中0~30重量%、特に0~20重量%の範囲とすることが好ましい。
[(f)顔料]
 本発明の着色樹脂組成物は、耐熱性を向上させるため等の目的で、本発明の効果を損なわない範囲で(f)顔料を含有していてもよい。
 (f)顔料としては、例えばカラーフィルターの画素等を形成する場合には、青色、紫色等各種の色の顔料を使用することができる。また、その化学構造としては、例えばフタロシアニン系、キナクリドン系、ベンツイミダゾロン系、ジオキサジン系、インダンスレン系、ペリレン系等の有機顔料が挙げられる。この他に種々の無機顔料等も利用可能である。以下、使用できる顔料の具体例をピグメントナンバーで示す。以下に挙げる「C.I.」は、カラーインデックス(C.I.)を意味する。
 青色顔料としては、例えばC.I.ピグメントブルー1、1:2、9、14、15、15:1、15:2、15:3、15:4、15:6、16、17、19、25、27、28、29、33、35、36、56、56:1、60、61、61:1、62、63、66、67、68、71、72、73、74、75、76、78、79などを挙げることができる。これらの中で、好ましくはC.I.ピグメントブルー15、15:1、15:2、15:3、15:4、15:6などであり、更に好ましくはC.I.ピグメントブルー15:6である。
 紫色顔料としては、例えばC.I.ピグメントバイオレット1、1:1、2、2:2、3、3:1、3:3、5、5:1、14、15、16、19、23、25、27、29、31、32、37、39、42、44、47、49、50などを挙げることができる。これらの中で、好ましくはC.I.ピグメントバイオレット19、23などであり、更に好ましくはC.I.ピグメントバイオレット23である。
 又、無機顔料として、硫酸バリウム、硫酸鉛、酸化チタン、黄色鉛、ベンガラ、酸化クロム等が挙げられる。
 上記の各種の顔料は、複数種を併用することもできる。例えば、色度の調整のために、顔料として、青色顔料と紫色顔料とを併用したりすることができる。
 尚、これらの顔料は、着色樹脂組成物中の平均粒径が通常1μm以下、好ましくは0.5μm以下、更に好ましくは0.3μm以下となるよう分散処理して使用する。
 本発明の着色樹脂組成物において、これら(f)顔料の含有割合は、全固形分中、通常80重量%以下、好ましくは50重量%以下である。また、前述の(c)色材100重量部に対する含有量は、通常2000重量部以下、好ましくは1000重量部以下である。(f)顔料の割合が多過ぎると、本発明に係る(c)色材による高色再現性と高輝度の両立という効果が薄れる。
[任意成分]
 本発明の着色樹脂組成物は、前記各成分の外に、界面活性剤、有機カルボン酸および/または有機カルボン酸無水物、可塑剤、前記本発明に係る前述の(c)色材以外の染料、熱重合防止剤、保存安定剤、表面保護剤、密着向上剤、現像改良剤等を含有していてもよい。また、着色剤として(f)顔料を含有する場合には、分散剤や分散助剤を含有してもよい。これら任意成分としては、例えば特開2007-113000号公報記載の各種化合物を使用することができる。
[着色樹脂組成物の調製方法]
 次に、本発明の着色樹脂組成物を調製する方法を説明する。
 先ず前述の本発明に係る(c)色材を、必須成分である(a)バインダー樹脂、および(b)溶剤、場合によっては、任意成分である(d)モノマーや(e)光重合開始系および/または熱重合開始系、界面活性剤、およびそれら以外の成分と混合し、均一な溶液とすることにより、着色樹脂組成物を得る。混合に際しては、(c)色材が十分に溶解するまで撹拌することが好ましい。また、混合等の各工程において、微細なゴミが混入することがあるため、得られたインキ状液体をフィルター等によって濾過処理することが好ましい。
 また、着色剤として(f)顔料を併用する場合には、まず前述の本発明に係る(c)色材、(f)顔料、(b)溶剤、および任意成分である分散剤や分散助剤などを各所定量秤量し、分散処理工程において、(f)顔料を十分に分散させてインキ状液体とする。この分散処理工程では、ペイントシェイカー、サンドグラインダー、ボールミル、ロールミル、ストーンミル、ジェットミル、ホモジナイザー等を使用することができる。この分散処理を行なうことによって(f)顔料が微粒子化されるため、着色樹脂組成物の塗布特性が向上し、製品のカラーフィルター基板等の透過率が向上する。
 (f)顔料を分散処理する際には、(a)バインダー樹脂の一部を分散剤として使用したり、分散助剤等を適宜併用したりすることが好ましい。また、ペイントシェイカーまたはサンドグラインダーを用いて分散処理を行なう場合は、0.1~数mm径のガラスビーズ、またはジルコニアビーズを用いることが好ましい。分散処理する際の温度は、通常0℃以上、好ましくは室温以上、また、通常100℃以下、好ましくは80℃以下の範囲に設定する。尚、分散時間は、インキ状液体の組成、およびサンドグラインダーの装置の大きさ等により適正時間が異なるため、適宜調整する必要がある。
 上記分散処理によって得られたインキ状液体に、更に必須成分である(a)バインダー樹脂、および(b)溶剤、場合によっては、任意成分である(d)モノマーや(e)光重合開始系および/または熱重合開始系、界面活性剤、およびそれら以外の成分を混合し、均一な分散溶液とすることにより、着色樹脂組成物を得る。尚、分散処理工程および混合の各工程において、微細なゴミが混入することがあるため、得られたインキ状液体をフィルター等によって濾過処理することが好ましい。
[着色樹脂組成物の応用]
 本発明の着色樹脂組成物は、通常、すべての構成成分が溶剤中に溶解或いは分散された状態である。このような着色樹脂組成物が基板上へ供給され、カラーフィルターや液晶表示装置、有機ELディスプレイなどの構成部材が形成される。
 以下、本発明の着色樹脂組成物の応用例として、カラーフィルターの画素としての応用、およびそれらを用いた液晶表示装置(パネル)および有機ELディスプレイについて、説明する。
<カラーフィルターの画素>
 カラーフィルターの画素は、後述するように様々な方法で形成することができる。ここでは光重合性の着色樹脂組成物を使用してフォトリソグラフィ法にて形成する場合を例に、詳細に説明するが、製造方法はこれに限定されるものではない。
 カラーフィルターの透明基板としては、透明で適度の強度のものであれば、その材質は特に限定されるものではない。材質としては、例えば、ポリエチレンテレフタレート等のポリエステル系樹脂;ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂;ポリカーボネート系樹脂;ポリメチルメタクリレート等のアクリル系樹脂;ポリスルホン系樹脂等の熱可塑性樹脂製シート;エポキシ樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂シート;または各種ガラス等が挙げられる。この中でも、耐熱性の観点からガラス、耐熱性樹脂が好ましい。これらの透明基板には、接着性等の表面物性の改良のため、必要に応じ、コロナ放電処理やオゾン処理等の表面処理、シランカップリング剤やウレタン系樹脂等の各種樹脂等による薄膜形成処理等を行なってもよい。透明基板の厚さは、通常0.05mm以上、好ましくは0.1mm以上、また、通常10mm以下、好ましくは7mm以下の範囲とされる。また、各種樹脂による薄膜形成処理を行なう場合、その膜厚は、通常0.01μm以上、好ましくは0.05μm以上、また、通常10μm以下、好ましくは5μm以下の範囲である。
 上述の透明基板上にブラックマトリックスを設け、更に通常は赤色、緑色、青色の各画素画像を形成することにより、カラーフィルターを作製することができる。
 ブラックマトリックスは、遮光金属薄膜、または本発明の着色樹脂組成物を利用して、透明基板上に形成される。
 その遮光金属材料としては、金属クロム、酸化クロム、窒化クロム等のクロム化合物、ニッケルとタングステンの合金等が用いられ、これらを複数層状に積層させたものであってもよい。これらの遮光金属薄膜は、一般にスパッタリング法によって形成され、ポジ型フォトレジストにより、膜状に所望のパターンを形成する。
 クロムに対しては硝酸第二セリウムアンモニウムと過塩素酸および/または硝酸とを混合したエッチング液を用い、その他の材料に対しては、材料に応じたエッチング液を用いて蝕刻され、最後にポジ型フォトレジストを専用の剥離剤で剥離することによって、ブラックマトリックスを形成することができる。この場合、先ず、蒸着またはスパッタリング法等により、透明基板上にこれら金属または金属・金属酸化物の薄膜を形成する。次いで、この薄膜上にポジ型フォトレジスト用樹脂組成物の塗布膜を形成する。次いで、ストライプ、モザイク、トライアングル等の繰り返しパターンを有するフォトマスクを用いて、塗布膜を露光・現像し、画像を形成する。その後、この塗布膜にエッチング処理を施してブラックマトリックスを形成することができる。
 また、黒色の(f)顔料を含有する光重合性着色樹脂組成物を使用して、ブラックマトリックスを形成してもよい。例えば、カーボンブラック、黒鉛、鉄黒、チタンブラック等の黒色顔料を単独または複数、もしくは、無機または有機の顔料の中から適宜選択される赤色、緑色、青色等の顔料を混合して得られる黒色顔料を含有する着色樹脂組成物を使用し、後述する赤色、緑色、青色の画素画像を形成する方法と同様にして、ブラックマトリックスを形成することができる。
 黒色の着色樹脂組成物に関しては透明基板上に、赤色、緑色、青色の着色樹脂組成物に関しては、透明基板上に形成された樹脂ブラックマトリックス形成面上、または、クロム化合物その他の遮光金属材料を用いて形成された金属ブラックマトリックス形成面上に、塗布、加熱乾燥、画像露光、現像および熱硬化の各処理を経て、各色の画素画像が形成される。
 ブラックマトリックスを設けた透明基板上に、赤色、緑色、青色のうち一色の色材を含有する着色樹脂組成物を塗布し、乾燥した後、塗布膜の上にフォトマスクを重ね、このフォトマスクを介して画像露光、現像、必要に応じて熱硬化または光硬化により画素画像を形成させ、着色層を作成する。この操作を、赤色、緑色、青色の三色の着色樹脂組成物について各々行うことによって、カラーフィルター画像を形成することができる。
 本発明の着色樹脂組成物は、ここで青色画素の形成に特に好適に使用される。
 着色樹脂組成物の基板への供給方法としては、従来公知の方法、例えば、スピナー法、ワイヤーバー法、フローコート法、スリット・アンド・スピン法、ダイコート法、ロールコート法、スプレーコート法等が挙げられる。中でも、スリット・アンド・スピン法、およびダイコート法が好ましい。本発明の着色樹脂組成物は、ディスペンスノズル先端に凝集異物が発生しにくいため、歩留まりを低下させることなく、平滑で美しい表面を有する塗布膜を提供することができる。また、その塗布の際の塗布ムラや、その後の乾燥工程における乾燥ムラ等も生じず、露光工程、現像工程、熱処理工程等を経て、極めて平滑な表面を有する層を形成することができる。
 スリット・アンド・スピン法、およびダイコート法による塗布条件は、着色樹脂組成物の組成や、作製するカラーフィルターの種類等によって適宜選択すればよい。例えば、両方法のいずれにおいても、ノズル先端のリップ幅は50~500μmとし、ノズル先端と基板面との間隔は30~300μmとするのが好ましい。
 ダイコート法において、塗布膜の厚さを調節するためには、リップの走行速度、およびリップからの液状の着色樹脂組成物の吐出量を調整すればよく、スリット・アンド・スピン法においては、主にスリット塗布後のスピン回転数および回転時間によって調整すればよい。
 塗布膜の厚さは、厚過ぎるとパターン現像が困難となるとともに、液晶セル化工程でのギャップ調整が困難となることがある一方で、薄過ぎると顔料濃度を高めることが困難となり、所望の色発現が不可能となることがある。塗布膜の厚さは、乾燥後の膜厚として、通常0.2μm以上、好ましくは0.5μm以上、より好ましくは0.8μm以上、また、通常20μm以下、好ましくは10μm以下、より好ましくは5μm以下の範囲である。
 基板に着色樹脂組成物を塗布した後の塗布膜の乾燥は、ホットプレート、IRオーブン、コンベクションオーブンを使用した乾燥法によるのが好ましい。通常は、予備乾燥の後、再度加熱させて乾燥させる。
 予備乾燥の温度および乾燥時間などの条件は、溶剤成分の種類、使用する乾燥機の性能等に応じて適宜選択されるが、具体的には、乾燥温度は通常40℃以上、好ましくは50℃以上、また、通常80℃以下、好ましくは70℃以下の範囲であり、乾燥時間は通常15秒以上、好ましくは30秒以上、また、通常5分間以下、好ましくは3分間以下の範囲である。
 また、再加熱乾燥の温度条件は、予備乾燥温度より高い温度が好ましく、具体的には、通常50℃以上、好ましくは70℃以上、また、通常200℃以下、好ましくは160℃以下、特に好ましくは130℃以下の範囲である。また、乾燥時間は、加熱温度にもよるが、通常10秒以上、好ましくは15秒以上、また、通常10分以下、好ましくは5分以下の範囲とするのが好ましい。乾燥温度は、高いほど透明基板に対する接着性が向上するが、高過ぎるとバインダー樹脂が分解し、熱重合を誘発して現像不良を生ずる場合がある。尚、この塗布膜の乾燥工程としては、温度を高めず減圧チャンバー内で乾燥を行なう減圧乾燥法を用いてもよい。
 画像露光は、着色樹脂組成物の塗布膜上に、ネガのマトリックスパターンを重ね、このマスクパターンを介し、紫外線または可視光線の光源を照射して行う。この際、必要に応じ、着色樹脂組成物により形成された光重合性層の酸素による感度の低下を防ぐため、光重合性層上にポリビニルアルコール層等の酸素遮断層を形成した後に露光を行ってもよい。
 上記の画像露光に使用される光源は、特に限定されるものではない。光源としては、例えば、キセノンランプ、ハロゲンランプ、タングステンランプ、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、中圧水銀灯、低圧水銀灯、カーボンアーク、蛍光ランプ等のランプ光源;アルゴンイオンレーザー、YAGレーザー、エキシマレーザー、窒素レーザー、ヘリウムカドミニウムレーザー、半導体レーザー等のレーザー光源等が挙げられる。特定の波長の光を照射して使用する場合には、光学フィルターを利用することもできる。
 カラーフィルターは、着色樹脂組成物の塗布膜に対し、上記の光源によって画像露光を行なった後、有機溶剤、または、界面活性剤とアルカリ性化合物とを含む水溶液を用いて現像を行うことによって、基板上に画像を形成して作製することができる。この水溶液には、更に有機溶剤、緩衝剤、錯化剤、染料または顔料を含ませることができる。
 ここで、アルカリ性化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、珪酸ナトリウム、珪酸カリウム、メタ珪酸ナトリウム、燐酸ナトリウム、燐酸カリウム、燐酸水素ナトリウム、燐酸水素カリウム、燐酸二水素ナトリウム、燐酸二水素カリウム、水酸化アンモニウム等の無機アルカリ性化合物;モノ-・ジ-・またはトリ-エタノールアミン、モノ-・ジ-・またはトリ-メチルアミン、モノ-・ジ-・またはトリ-エチルアミン、モノ-・またはジ-イソプロピルアミン、n-ブチルアミン、モノ-・ジ-・またはトリ-イソプロパノールアミン、エチレンイミン、エチレンジイミン、テトラメチルアンモニウムヒドロキシド(TMAH)、コリン等の有機アルカリ性化合物が挙げられる。これらのアルカリ性化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレンアルキルエステル類、ソルビタンアルキルエステル類、モノグリセリドアルキルエステル類等のノニオン系界面活性剤;アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸塩類、アルキル硫酸塩類、アルキルスルホン酸塩類、スルホコハク酸エステル塩類等のアニオン性界面活性剤;アルキルベタイン類、アミノ酸類等の両性界面活性剤が挙げられる。これらの界面活性剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 有機溶剤としては、例えば、イソプロピルアルコール、ベンジルアルコール、エチルセロソルブ、ブチルセロソルブ、フェニルセロソルブ、プロピレングリコール、ジアセトンアルコール等が挙げられる。有機溶剤は、1種を単独で用いても、2種以上の混合溶剤として用いてもよく、また、水溶液と併用して使用することもできる。
 現像処理の条件には特に制限はないが、現像温度は通常10℃以上、中でも15℃以上、更には20℃以上、また、通常50℃以下、中でも45℃以下、更には40℃以下の範囲が好ましい。
 現像方法は、浸漬現像法、スプレー現像法、ブラシ現像法、超音波現像法等の何れかの方法によることができる。
 現像の後のカラーフィルターには、熱硬化処理を施す。この際の熱硬化処理条件は、温度は通常100℃以上、好ましくは150℃以上、また、通常280℃以下、好ましくは250℃以下の範囲で選ばれ、時間は5分間以上、60分間以下の範囲で選ばれる。
 これら一連の工程を経て、一色のパターニング画像形成は終了する。この工程を順次繰り返し、ブラック(着色樹脂組成物を用いてブラックマトリックスを形成する場合)、赤色、緑色、青色をパターニングし、カラーフィルターを形成する。尚、赤色、緑色、青色の3色のパターニングの順番は、上記した順番に限定されるものではない。
 尚、本発明におけるカラーフィルターは、上記した作製方法の他に、(1)溶剤、色材、バインダー樹脂としてのポリイミド系樹脂を含む着色樹脂組成物を、基板に塗布し、エッチング法により画素画像を形成する方法によっても作製することができる。また、(2)色材を含む着色樹脂組成物を着色インキとして用い、印刷機によって、透明基板上に直接画素画像を形成する方法、(3)色材を含む着色樹脂組成物を電着液として用い、基板をこの電着液に浸漬させ所定パターンにされたITO電極上に、着色膜を析出させる方法、更に、(4)色材を含む着色樹脂組成物を塗布したフィルムを、透明基板に貼りつけて剥離し、画像露光、現像し画素画像を形成する方法、(5)色材を含む着色樹脂組成物を着色インキとして用い、インクジェットプリンターにより基板上に画素画像を形成する方法、等によっても作製することができる。カラーフィルターの作製方法は、本発明の着色樹脂組成物の組成に応じ、これに適した方法が採用される。
 このようにして作製されたカラーフィルターを液晶表示装置に使用する場合には、このままの状態で画像上にITO等の透明電極を形成して、カラーディスプレー、液晶表示装置等の部品の一部として使用されるが、表面平滑性や耐久性を高めるため、必要に応じ、画像上にポリアミド、ポリイミド等のトップコート層を設けることもできる。また、一部、平面配向型駆動方式(IPSモード)等の用途においては、透明電極を形成しないこともある。また、垂直配向型駆動方式(MVAモード)では、リブを形成することもある。また、ビーズ散布型スペーサに代わり、フォトリソによる柱構造(フォトスペーサー)を形成することもある。
<液晶表示装置(パネル)>
 本発明に係る液晶表示装置は、上述したカラーフィルター(以下、「本発明のカラーフィルター」と称す場合がある。)を備えてなり、例えば、上述した本発明のカラーフィルターと、薄膜トランジスタ(TFT)等の対向基板とを、液晶層を介して対向した構造とすることにより構成することができる。より具体的には、本発明のカラーフィルター上に配向膜を形成し、この配向膜上にスペーサを散布した後、対向基板と周辺シール材を介して貼り合わせて液晶セルを形成し、形成した液晶セルに液晶を注入し、対向電極に結線して作製される。
 配向膜は、ポリイミド等の樹脂膜が好適である。配向膜の形成には、通常、グラビア印刷法および/またはフレキソ印刷法が採用され、塗布後、熱焼成によって配向膜の硬化処理を行った後、紫外線の照射やラビング布による処理によって表面処理し、液晶の傾きを調整しうる表面状態に加工される。このようにして形成される配向膜の厚さは通常数10nm程度とされる。
 スペーサは、対向基板とのギャップ(隙間)に応じた大きさのものが用いられ、通常2~8μmの大きさのものが好適である。カラーフィルターに、フォトリソグラフィ法によって透明樹脂膜のフォトスペーサー(PS)を形成し、これをスペーサの代わりに活用することもできる。
 対向基板としては、通常、アレイ基板が用いられ、特にTFT(薄膜トランジスタ)基板が好適である。また、対向基板との貼り合わせのギャップは、液晶パネルの用途によって異なるが、通常2μm以上、8μm以下の範囲で選ばれる。
 カラーフィルターを対向基板と貼り合わせた後、液晶注入口以外の部分は、エポキシ樹脂等のシール材によって封止する。シール材は、紫外線(UV)照射および/または加熱することによって硬化させ、液晶セル周辺がシールされる。
 周辺をシールされた液晶セルは、パネル単位に切断した後、真空チャンバー内で減圧とし、上記液晶注入口を液晶に浸漬した後、チャンバー内をリークすることによって、液晶を液晶セル内に注入する。この場合、液晶セル内の減圧度は、通常1×10-2Pa以上、好ましくは1×10-3以上、また、通常1×10-7Pa以下、好ましくは1×10-6Pa以下の範囲である。また、減圧時に液晶セルを加温するのが好ましく、その加温温度は通常30℃以上、好ましくは50℃以上、また、通常100℃以下、好ましくは90℃以下の範囲である。減圧時の加温保持時間は、通常10分間以上、60分間以下の範囲とされ、その後、液晶中に浸漬される。
 液晶を注入した液晶セルは、液晶注入口を例えばUV硬化樹脂を硬化させて封止することによって、液晶表示装置が完成する。
 尚、用いる液晶の種類には特に制限がなく、芳香族系、脂肪族系、多環状化合物等、従来から知られている液晶であって、リオトロピック液晶、サーモトロピック液晶等の何れでもよい。サーモトロピック液晶には、ネマティック液晶、スメクティック液晶およびコレステリック液晶等が知られているが、これらの何れであってもよい。
<有機ELディスプレイ>
 本発明のカラーフィルターを備えてなる有機ELディスプレイを作成する場合、例えば図3に示すように、透明支持基板10上に、本発明の着色樹脂組成物により青色画素20が形成された青色カラーフィルター上に有機保護層30および無機酸化膜40を介して有機発光体500を積層することによって多色の有機EL素子を作製することができる。有機発光体500の積層方法としては、カラーフィルター上面へ透明陽極50、正孔注入層51、正孔輸送層52、発光層53、電子注入層54、および陰極55を逐次形成していく方法や、別基板上へ形成した有機発光体500を無機酸化膜40上に貼り合わせる方法などが挙げられる。このようにして作製された有機EL素子100は、パッシブ駆動方式の有機ELディスプレイにもアクティブ駆動方式の有機ELディスプレイにも適用可能である。
 次に、合成例、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
{合成例}
[1]染料の合成
[合成例1]
Figure JPOXMLDOC01-appb-C000125
 フェニルイミダゾール(3.86g,20mmol、東京化成工業社製)にジメチルホルムアミド(DMF)(100mL、関東化学社製)を加え、室温でゆっくりと水素化ナトリウム(1g,21mmol、和光純薬工業社製)を加え、水素が発生しなくなるまで撹拌した。その後、ベンジルクロライド(2.5g,20mmol、東京化成工業社製)を加え、室温で撹拌した。反応終了後、水を加え、トルエンで抽出し、有機層を炭酸カルシウムで乾燥し、濾過濃縮を行った。得られた生成物をカラムクロマトグラフィーにより精製し、化合物2を3.5g、62%の収率で得た。
Figure JPOXMLDOC01-appb-C000126
 窒素ライン接続三方コック、ジムロート、温度計、回転子を取り付けた100ml四口フラスコの窒素置換・減圧乾燥を行った。ここへ上記で得られた化合物2(1.13g,4.0mmol,1.0e.q.)、缶だしトルエン10ml(純正化学社製)を入れ、室温で撹拌した。そこにオキシ塩化リン(613mg,4.0mmol,1.0e.q.、和光純薬工業社製)を加えしばらく撹拌した。次いで、化合物1(1.30g,4.0mmol,1.0e.q.、東京化成工業社製)を加え、加熱撹拌を約5時間行い、放冷させてクロロホルム抽出を行った。シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=15:1→10:1)で精製し、化合物3を2.15g,85.5%の収率で得た。
Figure JPOXMLDOC01-appb-C000127
 200mlの三角フラスコに化合物3(1.0g,1.6mmol,2.0e.q.)を加え、メタノール(20ml、純正化学社製)で溶解させ、それに化合物4(銅フタロシアニンスルホン酸ナトリウム)(620mg,0.8mmol,1.0e.q.)を加えて、しばらく撹拌した。脱塩水40mlを加え、さらに室温で1時間撹拌した。その後、反応液を濾過し、濾取したものを取り出し、脱塩水を加え超音波洗浄をした後、濾過して、得られた固体を80℃の真空乾燥機で乾燥させ、目的物V-A(830mg,収率54.3%)を得た。
[合成例2]
Figure JPOXMLDOC01-appb-C000128
 フェニルイミダゾール(5.8g,30mmol、東京化成工業社製)、ヨードトルエン(9.8g,45mmol、東京化成工業社製)、ヨウ化銅(2.2g,12mmol、関東化学社製)、1,9-フェナントロリン(2.4g,12mmol、東京化成工業社製)、リン酸カリウム(9.5g,45mmol、関東化学社製)にトルエン100mLを加え、6時間加熱還流を行った。反応終了後、濾過し、沈殿を塩化メチレンで洗浄し、濾液を濃縮した。得られた粗生成物をカラムクロマトグラフィーにより精製し、化合物5を2.0g、23%の収率で得た。
Figure JPOXMLDOC01-appb-C000129
 窒素ライン接続三方コック、ジムロート、温度計、回転子を取り付けた100ml四口フラスコの窒素置換・減圧乾燥を行った。ここへ上記で得られた化合物5(850mg,3.0mmol,1.0e.q.)、缶だしトルエン10ml(純正化学社製)を入れ、室温で撹拌した。そこにオキシ塩化リン(460mg,3.0mmol,1.0e.q.、和光純薬工業社製)を加えしばらく撹拌した。次いで、化合物1(973mg,3.0mmol,1.0e.q.、東京化成工業社製)を加え、加熱撹拌を約5時間行い、放冷させてクロロホルム抽出を行った。シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=15:1→10:1)で精製し、化合物6を1.85g、98.5%の収率で得た。
Figure JPOXMLDOC01-appb-C000130
 200mlの三角フラスコに化合物6(925mg,1.64mmol,2.0e.q.)を加え、メタノール(15ml、純正化学社製)で溶解させ、それに化合物4(636mg,0.82mmol,1.0e.q.)を加えて、しばらく撹拌した。脱塩水40mlを加え、さらに室温で1時間撹拌した。その後、反応液を濾過し、濾取したものを取り出し、純水を加え超音波洗浄をした後、濾過して、得られた固体を80℃の真空乾燥機で乾燥させ、目的物V-B(1.17g,収率78.4%)を得た。
[合成例3]
Figure JPOXMLDOC01-appb-C000131
 窒素ライン接続三方コック、ジムロート、温度計、回転子を取り付けた100ml四口フラスコの窒素置換・減圧乾燥を行った。ここへ、化合物7(1.55g,7.0mmol,1.0e.q.、東京化成工業社製)、缶だしトルエン15ml(純正化学社製)を入れ、室温で撹拌した。そこにオキシ塩化リン(1.07g,7.0mmol,1.0e.q.、和光純薬工業社製)を加えしばらく撹拌した。次いで、化合物1(2.27g,7.0mmol,1.0e.q.、東京化成工業社製)を加え、加熱撹拌を約5時間行い、放冷させてクロロホルム抽出を行った。シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=15:1→10:1)で精製し、化合物8を3.82g、96.7%の収率で得た。
Figure JPOXMLDOC01-appb-C000132
 200mlの三角フラスコに化合物8(1.0g,1.6mmol,2.0e.q.)を加え、メタノール(15ml、純正化学社製)で溶解させ、それに化合物4(620mg,0.8mmol,1.0e.q.)を加えて、しばらく撹拌した。脱塩水40mlを加え、さらに室温で3時間撹拌した。その後、反応液を濾過し、濾取したものを取り出し、純水を加え超音波洗浄をした後、濾過して、得られた固体を80℃の真空乾燥機で乾燥させ、目的物V-C(1.25g,収率80.4%)を得た。
[合成例4]
Figure JPOXMLDOC01-appb-C000133
 窒素ライン接続三方コック、ジムロート、温度計、回転子を取り付けた100ml四口フラスコの窒素置換・減圧乾燥を行った。ここへフェニルイミダゾール(3.87g,20.0mmol,1.0e.q.、東京化成工業社製)を入れ、脱水DMF(20ml、関東化学社製)で室温で溶解させて、氷冷した。次いで、水素化ナトリウム(960mg,22.0mmol,1.1e.q.、和光純薬工業社製)をゆっくり加え、撹拌した。ここへ、ブロムヘキサン(3ml,3.63g,22.0mmol,1.1e.q.、和光純薬工業社製)をゆっくり滴下した後、昇温して室温で約2時間撹拌した。反応容器を氷冷し、水でクエンチしてエーテル抽出を行った後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=40:1)で精製して、化合物9を3.91g、70.5%の収率で得た。
Figure JPOXMLDOC01-appb-C000134
 窒素ライン接続三方コック、ジムロート、温度計、回転子を取り付けた100ml四口フラスコの窒素置換・減圧乾燥を行った。ここへ、上記で得られた化合物9(832mg,3.0mmol,1.0e.q.)、缶だしトルエン8ml(純正化学社製)を入れ、室温で撹拌した。そこにオキシ塩化リン(506mg,3.3mmol,1.1e.q.、和光純薬工業社製)を加えしばらく撹拌した。次いで、化合物1(973mg,3.0mmol,1.0e.q.、東京化成工業社製)を加え、加熱撹拌を約6.5時間行い、放冷させてクロロホルム抽出を行った。シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=15:1→10:1)で精製し、化合物10を1.67g、89.7%の収率で得た。
Figure JPOXMLDOC01-appb-C000135
 200mlの三角フラスコに化合物10(800mg,1.29mmol,2.0e.q.)を加え、メタノール(20ml、純正化学社製)で溶解させ、それに化合物4(500mg,0.65mmol,1.0e.q.)を加えて、しばらく撹拌した。脱塩水40mlを加え、さらに室温で1.5時間撹拌した。その後、反応液を濾過し、濾取したものを取り出し、純水を加え超音波洗浄をした後、濾過して、得られた固体を80℃の真空乾燥機で乾燥させ、目的物V-D(820mg,収率65.8%)を得た。
[合成例5]
Figure JPOXMLDOC01-appb-C000136
 窒素ライン接続三方コック、ジムロート、温度計、回転子を取り付けた100ml四口フラスコの窒素置換・減圧乾燥を行った。4-フルオロフェニルイミダゾール(6.3g,30mmol,1.0e.q.、東京化成工業社製)を入れ、脱水DMF(100ml、関東化学社製)で室温で溶解させて、氷冷した。次いで、水素化ナトリウム(2.16mg,45mmol、和光純薬工業社製)をゆっくり加え、撹拌した。ここへ、ブロムヘキサン(6.6g,40mmol、和光純薬工業社製)をゆっくり滴下した。昇温して室温で約3時間撹拌した。反応容器を氷冷し、水でクエンチしてヘキサン抽出を行い、濃縮した。得られた粗生成物をカラムクロマトグラフィー(ヘキサン:塩化メチレン=9:1)で精製し、化合物11を4.6g、52%の収率で得た。
Figure JPOXMLDOC01-appb-C000137
 窒素ライン接続三方コック、ジムロート、温度計、回転子を取り付けた100ml四口フラスコの窒素置換・減圧乾燥を行った。ここへ、上記で得られた化合物11(975mg,3.3mmol,1.0e.q.)、缶だしトルエン10ml(純正化学社製)を入れ、室温で撹拌した。そこにオキシ塩化リン(557mg,3.63mmol,1.1e.q.、和光純薬工業社製)を加えしばらく撹拌した。次いで、化合物1(1.07g,3.3mmol,1.0e.q.、東京化成工業社製)を加え、加熱撹拌を約4時間行い、放冷させてクロロホルム抽出を行った。シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=15:1→10:1)で精製し、化合物12を1.27g、60.3%の収率で得た。
Figure JPOXMLDOC01-appb-C000138
 100mlの三角フラスコに化合物12(638mg,1.0mmol,2.0e.q.)を加え、メタノール(15ml、純正化学社製)で溶解させ、それに化合物4(388mg,0.5mmol,1.0e.q.)を加えて、しばらく撹拌した。脱塩水50mlを加え、さらに室温で3時間撹拌した。その後、反応液を濾過し、濾取したものを取り出し、純水を加え超音波洗浄をした後、濾過して、得られた固体を80℃の真空乾燥機で乾燥させ、目的物V-E(790mg,収率80.3%)を得た。
[合成例6]
Figure JPOXMLDOC01-appb-C000139
 N-エチルアニリン(10g,90mmol)のDMF(100ml、関東化学社製)溶液に0℃で水素化ナトリウム(4.3g,90mmol、関東化学社製)を加え、水素が発生しなくなるまで撹拌した。その後、4,4’-ジフルオロベンゾフェノン(6.5g,30mmol、東京化成工業社製)を少しずつ加え、室温まで昇温し、5時間撹拌を行った。反応終了後、水を加え、ジクロロメタンで抽出を行い、有機層を炭酸カルシウムで乾燥し、濾過濃縮した。得られた粗生成物をカラムクロマトグラフィーにより精製し、化合物13を3.1g、24%の収率で得た。
Figure JPOXMLDOC01-appb-C000140
 窒素ライン接続三方コック、ジムロート、温度計、回転子を取り付けた100ml四口フラスコの窒素置換・減圧乾燥を行った。ここへ、化合物14(622mg,3.0mmol,1.0e.q.、東京化成工業社製)、缶だしトルエン15ml(純正化学社製)を入れ、室温で撹拌した。そこにオキシ塩化リン(506mg,3.3mmol,1.1e.q.、和光純薬工業社製)を加えしばらく撹拌した。次いで、上記で得られた化合物13(1.26g,3.0mmol,1.0e.q.)を加え、加熱撹拌を約4.5時間行い、放冷させてクロロホルム抽出を行った。シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=15:1→10:1)で精製し、化合物15を1.48g、76.3%の収率で得た。
Figure JPOXMLDOC01-appb-C000141
 100mlの三角フラスコに化合物15(982mg,1.52mmol,2.0e.q.)を加え、メタノール(15ml、純正化学社製)で溶解させ、それに化合物4(590mg,0.76mmol,1.0e.q.)を加えて、しばらく撹拌した。脱塩水50mlを加え、さらに室温で3時間撹拌した。その後、反応液を濾過し、濾取したもの取り出し、純水を加え超音波洗浄をした後、濾過して、得られた固体を80℃の真空乾燥機で乾燥させ、目的物V-F(980mg,収率65.0%)を得た。
[合成例7]
Figure JPOXMLDOC01-appb-C000142
 3-アミノビフェニル(5g,30mmol、東京化成工業社製)のエタノール溶液30mlにヨードブタン(11.6g,63mmol、東京化成工業社製)と、炭酸カリウム(8.7g,63mmol、純正化学社製)を加え、3日間加熱還流した。その後、濾過し、無機塩をトルエンで洗浄した後、カラムクロマトグラフィーにより化合物16を7g、83%の収率で得た。
Figure JPOXMLDOC01-appb-C000143
 窒素ライン接続三方コック、ジムロート、温度計、回転子を取り付けた100ml四口フラスコの窒素置換・減圧乾燥を行った。ここへ、上記で得られた化合物16(1.13g,4.0mmol,1.0e.q.)、缶だしトルエン10ml(純正化学社製)を入れ、室温で撹拌した。そこにオキシ塩化リン(675mg,4.4mmol,1.1e.q.、和光純薬工業社製)を加えしばらく撹拌した。次いで、化合物1(1.30g,4.0mmol,1.0e.q.、東京化成工業社製)を加え、加熱撹拌を約2.5時間行い、放冷させてクロロホルム抽出を行った。シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=15:1→10:1)で精製し、化合物17を1.46g、58.5%の収率で得た。
Figure JPOXMLDOC01-appb-C000144
 200mlのナスフラスコに化合物17(1.24g,2.0mmol,2.0e.q.)を加え、メタノール(10ml、純正化学社製)で溶解させ、それに化合物4(782mg,1.0mmol,1.0e.q.)を加えて、しばらく撹拌した。脱塩水55mlを加え、さらに室温で1時間撹拌した。その後、反応液を濾過し、濾取したものを取り出し、脱塩水を加え超音波洗浄をした後、濾過して、得られた固体を80℃の真空乾燥機で乾燥させた。さらに固体に脱塩水を加え、超音波洗浄を行って目的物I-A(900mg,収率47%)を得た。
[合成例8]
Figure JPOXMLDOC01-appb-C000145
 100mlの三角フラスコに合成例6で得られた化合物15(343mg,0.2mmol)を加え、メタノール(15ml、純正化学社製)で溶解させ、それに化合物18(
acid blue 80)(169mg,0.2mmol,1.0e.q.)を加えて、しばらく撹拌した。脱塩水40mlを加え、さらに室温で3時間撹拌した。その後、反応液を濾過し、濾取したものを取り出し、純水を加え超音波洗浄をした後、濾過して、得られた固体を80℃の真空乾燥機で乾燥させ、目的物V-G(300mg,収率80%)を得た。
[合成例9]
Figure JPOXMLDOC01-appb-C000146
 200mlの三角フラスコに化合物19(Basic Blue 7)(1.03g,2.0mmol、東京化成工業社製)を加え、メタノール(20ml、純正化学社製)に溶解させ、それに化合物4(776mg,1.0mmol)を加えて、均一になるまで30分程度撹拌した。ここに脱塩水70mlを加え、さらに室温で1時間撹拌した。得られた反応液を濾過し、濾取した固体を取り出し、水を加えて超音波洗浄をした。さらに濾過して、得られた固体を80℃の真空乾燥機で乾燥させ、目的物I-B(1.32g,収率78.2%)を得た。
[合成例10]
Figure JPOXMLDOC01-appb-C000147
 化合物19(Basic Blue 7)(東京化成工業社製)(CI-42595)
5.14重量部を水500重量部に溶解し、撹拌しながら1-ナフタレンスルホン酸ナトリウム4.60重量部を加え、室温で1時間撹拌した。氷冷し、沈殿を濾取し、水で洗浄した。得られたケーキを風乾した後、減圧乾燥して、上記構造式で表される目的物X-A(6.11重量部、収率89%)を得た。
[合成例11]
Figure JPOXMLDOC01-appb-C000148
 1-アミノナフタレン11.5gをN-メチル-2-ピロリドン120gに溶解し、室温で撹拌しながらナトリウムアミド3.74gを加えた。さらに触媒としてヨウ化ナトリウム1.20g、重合禁止剤として2,5-ジ-t-ブチルヒドロキノン0.89gを加えた後、p-クロロメチルスチレン13.4gを30分かけて添加し、室温で2時間撹拌した。撹拌後、クロロホルム200mlを加えて溶解し、水洗を3回行った。クロロホルム層を分離し溶媒留去して残留物を得た。これをシリカゲルカラムクロマトグラフィーで精製し、中間物であるp-ビニルベンジルナフチルアミン10.8gを得た。
 得られた中間体10.8g、4,4’-ビス(ジエチルアミノ)ベンゾフェノン17.6g、重合禁止剤として2,5-ジ-t-ブチルヒドロキノン0.46gおよびトルエン140gを溶媒として加え、窒素雰囲気下45℃に加熱し、オキシ塩化リン8.31gを10分かけて添加した。滴下終了後1時間かけて100℃まで昇温し、100℃で1時間撹拌した。撹拌終了後、室温まで冷却し、トルエンを減圧留去した。そこにクロロホルム200mlを加えて溶解し、水洗を3回行った。クロロホルム層を分離し、溶媒を留去して残留物を得、これをシリカゲルカラムクロマトグラフィーで精製し、目的物X-B(5.9g)を得た。
[合成例12]
Figure JPOXMLDOC01-appb-C000149
 200mlの三角フラスコに化合物19(Basic Blue 7)(1.03g,2.0mmol、東京化成工業社製)を加え、メタノール(20ml、純正化学社製)で溶解させ、それに化合物4(776mg,1.0mmol)を加えて、しばらく撹拌した。脱塩水70mlを加え、さらに室温で1時間撹拌した。その後、反応液を濾過し、濾取したものを取り出し、脱塩水を加え超音波洗浄をした後、濾過して、得られた固体を80℃の真空乾燥機で乾燥させ、目的物I-C(1.32g,収率78.2%)を得た。
[合成例13]
Figure JPOXMLDOC01-appb-C000150
 200mlの三角フラスコに化合物19(Basic Blue 7)(874g,1.7mmol、東京化成工業社製)を加え、メタノール(20ml、純正化学社製)で溶解させ、それに化合物20(Acid blue 40)(805mg,1.7mmol)を加えて、しばらく撹拌した。脱塩水70mlを加え、さらに室温で1時間撹拌した。その後、反応液を濾過し、濾取したものを取り出し、脱塩水を加え超音波洗浄をした後、濾過し、得られた固体を80℃の真空乾燥機で乾燥させ、目的物I-D(960mg,収率60%)を得た。
[合成例14]
Figure JPOXMLDOC01-appb-C000151
 300mlの三角フラスコに化合物19(Basic Blue 7)(2.06g,4.0mmol)と化合物18(Acid Blue 80)(2.47g,2.0mmol)を加え、メタノール(20ml、純正化学社製)で溶解させ、室温で3時間攪拌した。ここに脱塩水200mlを加え、更に室温で3時間攪拌した。その後、反応液を濾過し、濾取したものを取り出し、脱塩水を加えて超音波洗浄した後、再度濾過し、母液が透明になるまで、脱塩水にて洗浄を繰り返した。得られた固体を80℃の真空乾燥機で6時間以上乾燥させ、目的物I-E(2.87g,収率90%)を得た。
[合成例15]
Figure JPOXMLDOC01-appb-C000152
 ジイソブチルアミン(1.62g,12.5mmol,2.5e.q.)を脱水トルエン20mlに溶解させ、t-ブトキシナトリウム(1.2g,12.5mmol,2.5e.q.)、4,4-ジフルオロベンゾフェノン(1.26g,5mmol,1.0e.q.)、酢酸パラジウム(168mg,0.75mmol,0.15e.q.)、トリt-ブチルホスフィン(303mg,1.5mmol,0.3e.q.)を加え、100℃で5時間攪拌した。その後室温に戻し、1N塩酸水溶液、1N水酸化ナトリウム水溶液を加えpHを調整後、トルエンで抽出した。飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。濃縮物を、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=12:1)で精製し、化合物21を1.86g(収率85%)得た。
Figure JPOXMLDOC01-appb-C000153
 化合物14(573mg,2.77mmol,1.3e.q.)をトルエンに溶解し、オキシ塩化リン(652mg,4.3mmol,2.0e.q.)、化合物21(929mg,2.1mmol,1.0e.q.)を加え、120℃で5時間加熱還流させた。その後室温に戻し、1N塩酸を加え、クロロホルムで抽出し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。濃縮物をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノ-ル=12:1)で精製し、ヘキサンで洗浄して化合物22を1.34g(収率96%)得た。
Figure JPOXMLDOC01-appb-C000154
 300mlの三角フラスコに化合物22(662mg,1.0mmol,2.0e.q.)と化合物18(365mg,0.5mmol,1.0e.q.)を加え、メタノール20mlで溶解させ、室温で3時間攪拌した。脱塩水200mlを加え、更に室温で3時間攪拌した。その後、反応液を濾過し、濾取したものを取り出し、脱塩水を加えて超音波洗浄した後、再度濾過し、母液が透明になるまで、脱塩水にて洗浄を繰り返した。得られた固体を80℃の真空乾燥機で6時間以上乾燥させ、目的物V-H(789mg,収率84%)を得た。
[合成例16]
Figure JPOXMLDOC01-appb-C000155
 化合物23と化合物14を原料として用い、化合物22の合成法と同様に化合物24を合成し、その800mg(収率71%)を得た。
Figure JPOXMLDOC01-appb-C000156
 化合物24と化合物18を原料として用い、目的物V-Hの合成法と同様に目的物V-Iを合成し、その990mg(収率91%)を得た。
[合成例17]
Figure JPOXMLDOC01-appb-C000157
 4-ジエチルアミノ安息香酸(25g,129mmol)とトルエン(100ml)の混合物に塩化チオニル(14ml,200mmol)を加え80℃で1時間攪拌後、減圧濃縮し、酸クロリドを得た。別容器に無水塩化アルミニウム(20.4g,155mmol)および1,2-ジクロロエタン(100ml)の混合物を取り氷浴で冷却し、酸クロリドの1,2-ジクロロエタン(50ml)溶液を滴下した。15分攪拌後、N,N-ジエチル-m-トルイジン(21.1g,129mmol)を滴下し、室温にした後、氷水に注いだ。4N水酸化ナトリウム水溶液でpH10以上として、クロロホルムで抽出した。クロロホルム層を1N水酸化ナトリウム水溶液で洗い、セライト濾過して不溶物を除いた。このものを飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。濃縮物をシリカゲルカラムクロマトグラフィー(シリカゲル800g,ヘキサン/酢酸エチル4/1)で精製し、生じた結晶をヘキサンにて洗浄して化合物23を得た(14.6g,収率33%)。
Figure JPOXMLDOC01-appb-C000158
 化合物23(3.38g,10mmol)、N-エチル-1-ナフチルアミン(1.71g,10mmol)およびトルエン(15ml)の混合物にオキシ塩化リン(1.4ml,15mmol)を加え、120℃で2時間攪拌した。室温に冷却後、1N塩酸水溶液を加えて15分攪拌し、クロロホルムで抽出した。クロロホルム層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮し、濃縮物をシリカゲルカラムクロマトグラフィー(関東化学、シリカゲル60球状,400g,クロロホルム/メタノ-ル15/1→7/1)で精製し、固体をヘキサンで洗浄して化合物26(3.21g,収率61%)を得た。
 化合物26(1.06g,2.0mmol)、化合物18(0.70g,1.03mmol)、およびメタノール(10ml)の混合物を室温で1.5時間攪拌した。水(20ml)を加え、生じた塊を粉砕した後、室温で1.5時間攪拌した。その後、吸引濾過し、得られた固体を乾燥した。乾燥固体にメタノール(30ml)と水(60ml)の混合物を加え、2時間攪拌し、沈殿を濾取し、水で洗浄して目的物I-F(1.34g,収率83%)を得た。
[合成例18]
Figure JPOXMLDOC01-appb-C000160
 N,N-ジエチル-m-トルイジン(408mg,2.5mmol,1.0e.q.)を脱水トルエンに溶解させ、オキシ塩化リン(575mg,3.75mmol,1.5e.q.)と化合物1(973mg,3mmol,1.2e.q.)を加え、120℃で5時間加熱還流させた。その後室温に戻し、1N飽和食塩水を加え、クロロホルムで抽出し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。濃縮物をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノ-ル=15:1)で精製し、ヘキサンで洗浄して化合物27(485mg,収率38%)を得た。
Figure JPOXMLDOC01-appb-C000161
 化合物27と化合物18を原料として用い、目的物V-Hの合成法と同様に目的物I-Gを合成し、その578mg(収率91%)を得た。
[合成例19]
Figure JPOXMLDOC01-appb-C000162
 1-アミノナフタレン(14.3g,100mmol)、2-エチルヘキシルブロミド(19.2g,100mmol)、炭酸カリウム(15.2g,110mmol)、およびN-メチル-2-ピロリドン(100ml)の混合物を120℃で2時間、次いで140℃で2時間攪拌した。室温に冷却後、トルエン(100ml)加え、吸引濾過して沈殿を除去した。母液にトルエンと水を加えて分液し、トルエン層を水で4回洗浄した後、減圧濃縮してカラムクロマトグラフィー(Merck7734,300g,ヘキサン/酢酸エチル100/1→50/1→30/1)で精製して化合物28(8.88g,収率37%)を得た。
Figure JPOXMLDOC01-appb-C000163
 化合物23と化合物28を原料に用い、化合物26の合成と同様にして化合物29を合成した。
Figure JPOXMLDOC01-appb-C000164
 化合物29と化合物18を原料に用い、目的物V-Hの合成と同様にして目的物I-Hを合成し、その739mg(収率92%)を得た。
[合成例20]
 WO2008/003604A2に記載の方法にて得られた下記化合物30と、市販の4,4’-ビス(ジエチルアミノ)ベンゾフェノンを原料に用い、目的物I-Fの合成(合成例17)と同様にして目的物I-Iを合成した(収量4.17g,収率61%)。
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
[合成例21]
Figure JPOXMLDOC01-appb-C000167
 m-トルイジン(18.6g,174mmol)、ヨウ化イソブチル(50ml,434mmol)、炭酸カリウム(60g,435mmol)、及びN-メチルピロリドン(200ml)の混合物を120℃で3時間、次いで140℃で14時間攪拌した。室温に冷却後、トルエン(400ml)で希釈し、吸引濾過してトルエン(100ml)で洗い込んだ。濾液に水を加え、分液し、トルエン層を水で4回洗浄した。トルエン層を減圧濃縮し、シリカゲルカラムクロマトグラフィー(Merck7734,800g,ヘキサン/酢酸エチル100/0→100/1→50/1→30/1)で精製してN,N-ジイソブチル-m-トルイジン24.4g(収率64%)を得た。
 500ml反応容器にジムロートをセットして、窒素置換し、氷冷した。そこに塩化アルミニウム(8.75g,65.6mmol)と1,2-ジクロロエタン(10ml)を入れた。ここへ、4-ブロモ安息香酸クロリド(12.0g,54.7mmol)の1,2-ジクロロエタン(20ml)溶液を15分かけて滴下した(内温0℃以下)。20分撹拌し、次にN,N-ジイソブチル-m-トルイジン(12.0g,54.7mmol)の1,2-ジクロロエタン(20ml)溶液を10分かけて滴下し、そのまま1時間撹拌した。室温に昇温しながら、約2.5時間撹拌し続けた。このものを氷水に注ぎ、クロロホルムで洗い込んだ。次いで、4N水酸化ナトリウム水溶液でpH10以上にし(氷冷下)、クロロホルムで抽出した。クロロホルム層を1N水酸化ナトリウム水溶液で3回洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル15/1-10/1)で精製し、化合物31(8.85g,収率40%)を黄色粉末として得た。
 500ml反応容器にジムロートをセットして、窒素置換した。そこに化合物31(8.5g,21.1mmol)を取り、脱水トルエン(100ml)で溶解させた。次にジイソブチルアミン(7.3ml,42.2mmol,東京化成)、t-ブトキシナトリウム(4.06g,42.2mmol)、酢酸パラジウム(II)(284mg,1.27mmol)、およびトリ-t-ブチルホスフィン(10%ヘキサン溶液,552mg,2.53mmol)を加え、5.5時間加熱還流した。室温に冷却後、水を少量加えセライトで濾過し、トルエンで洗い込み、濾液をトルエンで抽出した。
 トルエン層を飽和食塩水で3回洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル15/1→10/1)で精製し、化合物32(8.3g,収率88%)を黄色オイルとして得た。
 化合物32と1-イソブチルアミノナフタレンを原料に用い、目的物I-Fの合成(合成例17)と同様にして目的物I-Jを合成した(収量386mg,収率92%)。
Figure JPOXMLDOC01-appb-C000168
[合成例22]
 化合物23とWO2008/003604A2に記載の方法で得られた化合物30を原料に用い、目的物I-Fの合成(合成例17)と同様にして目的物I-Kを合成した(収量791mg,収率88%)。
Figure JPOXMLDOC01-appb-C000169
 以上の合成例3、5~10、12~22で得られた各目的物を構成する色素1および2について、偶数電子系のカチオン系青色色素(色素1)と偶数電子系のアニオン系色素(色素2)について、時間依存密度汎関数(B3LYP/6-31G(d,p))計算により得られる、色素1の最低一重項励起状態(S状態)の励起エネルギー(ΔES1(色素1))と、色素2の最低一重項励起状態(S状態)の励起エネルギー(ΔES1(色素2))と、色素2の最低三重項励起状態(T状態)の励起エネルギー(ΔET1(色素2))および式(i)、式(ii)を満たしているか否かを、以下の表41に示す。
 また奇数電子系の色素2に関しては最低励起状態の励起エネルギー(ΔElowest(色素2))と、式(iii)を満たしているかどうかを表41に示す。
 なお、目的物において、色素2はフタロシアニン化合物またはアントラキノン化合物部分であり、色素1はトリアリールメチン化合物部分である。
Figure JPOXMLDOC01-appb-T000170
<参考例1>
 前記合成例10にて得られた目的物X-A 1mgを、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノメチルエーテル混合溶剤(重量比4/6)に溶解し、得られた溶液の吸光スペクトルを、(株)日立ハイテクノロジーズ製 日立分光光度UV-3500(Xe光源)にて測定した。
 溶液の極大吸収波長λmaxは630nmであり、励起エネルギー(ΔEobs)への換算式 ΔEobs(eV)=1239.8/λmax(nm) を用いて計算すると、目的物X-Aの実測の励起エネルギーは1.97eVであった。
 一方、時間依存密度汎関数(B3LYP/6-31G(d,p))計算による、目的物X-Aの強吸収励起状態の励起エネルギーは2.52eVであった。よって、本発明では実測値と計算値のシフト量を2.52eV-1.92eV=0.55eVと見積もった。
 一重項酸素を発生させるための励起エネルギーの実測値0.92eVに、このシフト量0.55eVを足した値、すなわち1.5eV(少数第2位を四捨五入)より、計算により求められたT状態の励起エネルギーが小さいアニオンを有する薄膜(例えばカラーフィルター用画素)では、アニオンのT状態の励起エネルギーが一重項酸素の励起エネルギーより小さくなることが期待され、励起エネルギー移動による一重項酸素の発生が抑制されることが期待できる。
[2]バインダー樹脂の合成
[合成例23]
 プロピレングリコールモノメチルエーテルアセテート145重量部を窒素置換しながら撹拌し、120℃に昇温した。ここにスチレン20重量部、グリシジルメタクリレート57部およびトリシクロデカン骨格を有するモノアクリレート(日立化成(株)製FA-513M)82重量部を滴下し、更に120℃で2時間撹拌し続けた。次に、反応容器内を空気置換し、アクリル酸27重量部にトリスジメチルアミノメチルフェノール0.7重量部およびハイドロキノン0.12重量部を投入し、120℃で6時間反応を続けた。その後、テトラヒドロ無水フタル酸(THPA)52重量部、トリエチルアミン0.7重量部を加え、120℃で3.5時間反応させ、固形分濃度62重量%の樹脂溶液を得た。こうして得られたバインダー樹脂aのGPCにより測定した重量平均分子量(Mw)は約15000であった。バインダー樹脂aの構造は以下に示す通り(以下の4種の繰り返し単位を含む高分子化合物)であった。
Figure JPOXMLDOC01-appb-C000171
{実施例および比較例}
[着色樹脂組成物の調製]
<染料系組成物の調製(実施例1~8,10~18および比較例1~4)>
 表42に、実施例1~8,10~18、および比較例1~4に含有される染料(色材)を示す。
Figure JPOXMLDOC01-appb-T000172
 表42記載の各染料および合成例23で得られたバインダー樹脂aに他の成分を混合して、表43に表す配合で着色樹脂組成物を調製した。混合に際しては、染料が十分に溶解するまで1時間以上撹拌し、最後に孔径5μmの駒型フィルターによって濾過し、異物を取り除いた。
Figure JPOXMLDOC01-appb-T000173
<溶剤に対する溶解度の低い色材(染料および顔料)系組成物の調製(実施例9および比較例5)>
 色材として表44に記載の色材11.36重量部(比較例5については2種類の合計量)、溶剤としてプロピレングリコールモノメチルエーテルアセテート57.5重量部、分散剤として実施例9についてはアビシア社製「ソルスパース55000」、比較例5についてはビックケミー社製「ディスパービック2000」をそれぞれ固形分換算で3.02重量部、径0.5mmのジルコニアビーズ215.7重量部をステンレス容器に充填し、ペイントシェーカーにて6時間分散させてブルー色材分散液を調製した。
Figure JPOXMLDOC01-appb-T000174
 得られた色材分散液に、合成例23で得られたバインダー樹脂aと他の成分を混合して表45に表す配合で着色樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-T000175
<分光特性および耐熱性・耐光性評価>
 5cm角に切断したガラス基板上に、上記各着色樹脂組成物をスピンコート法により乾燥膜厚1.8μmとなるように塗布し、減圧乾燥させた後、ホットプレート上にて80℃で3分間プリベークした。その後、60mJ/cmの露光量にて全面露光した後、日立製作所製分光光度計「U-3310」にて、分光透過率を測定し、XYZ表色系における色度(C光源)を算出した。これらの結果を表46、表47に示す。
 次に、上記基板を2枚の偏光板の間に、隙間を空けずに密着して挟み、色彩輝度計(トプコン社製「BM-5A」)を用いて偏光板が直交の時の光量A(cd/cm)と平行の時の光量B(cd/cm)の比(B/A)から、コントラスト比を算出した。この結果を表48に示した。
Figure JPOXMLDOC01-appb-T000176
Figure JPOXMLDOC01-appb-T000177
Figure JPOXMLDOC01-appb-T000178
 表46~48より次のことが分かる。
 有機ELディスプレイ、液晶ディスプレイの双方で要求される輝度(Y)については、同一色度(y)座標での比較では、比較例3が最も高く、以下、実施例14、10、9、16、17、15、13、12、8、11、比較例4、実施例18、7、3、比較例5、実施例1、5、6、4、2の順となっている。比較例5が従来使われている顔料系であるから、実施例1、5、6、4、2は、従来品より低く使いづらい。しかし一方、液晶ディスプレイにおいて極めて重要な特性であるコントラストに関しては、実施例1~8,10~18、および比較例1~4で、比較例5の従来顔料系に比べて極めて高い値を示しており、輝度が低いものであっても補って余りあるほどの特性と言える。
 尚、特許文献3に記載の染料(比較例1、2)との比較においては、同一染料濃度、同一膜厚において実施例に記載の着色樹脂組成物が濃い青色を表現しているのに対し、比較例1、2の着色樹脂組成物は淡い青緑色を表現しているに過ぎない(表47の色度データ参照)ことから、色再現性の点で圧倒的な優位性を示しているといえる。
 続いて、上記基板について、クリーンオーブンにて200℃および230℃にて30分焼成した後、上記と同様、分光透過率を測定し、色差(ΔE*ab)を測定した結果を表49に示す。また、同基板をクリーンオーブンにて180℃で30分焼成した後、キセノンフェードメーターにて紫外線を16時間照射した際の、照射前後の色差(ΔE*ab)を測定した結果を表50に示す。尚、照射条件としては基板に直接照射した場合と、図1に示した透過スペクトルを有するUVカットフィルター乃至図2に示した透過スペクトルを有する偏光板を介して照射した場合の計3条件について耐光性評価を実施した。
Figure JPOXMLDOC01-appb-T000179
Figure JPOXMLDOC01-appb-T000180
 表49,50より、実施例の着色樹脂組成物は、分光特性が比較的良好であった比較例3、4の組成物(比較例3は特許文献4に記載の染料に類似の構造)に比べて、極めて高い耐熱性、耐光性を有することがわかる。
 次に、上記塗布基板を、有機電界蛍光発光(EL)素子と組合せて色度測定を行った。<有機電界蛍光発光素子の作成>
 図4に示す有機電界蛍光発光素子を以下の方法で作製した。
 ガラス基板1の上にインジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(スパッター製膜品;シート抵抗15Ω)を通常のフォトリソグラフィ技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極2を形成した。パターン形成したITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアルコールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥し、最後に紫外線オゾン洗浄を行った。続いて、正孔輸送層3として、下記構造式に示す9,9-ビス[4-(N,N-ビスナフチルアミノ)フェニル]-9H-フルオレン(LT-N121,LuminescentTechnology社製)をるつぼ温度285~310℃として、蒸着速度0.1nm/秒で40nmの膜厚で積層した。蒸着時の真空度は1.7×10-4Paであった。
Figure JPOXMLDOC01-appb-C000181
 次に、発光層4として、下記構造式に示す2,2’-ジペリレニル-9,9’-スピロビフルオレン(LT-N428,LuminescentTechnology社製)と2,7-ビス[9,9’-スピロビフルオレニル]-9,9’-スピロビフルオレン(LT-N628、Luminescent Technology社製)とを、以下の条件で共蒸着した。
Figure JPOXMLDOC01-appb-C000182
 (発光層の蒸着条件)
 LT-N428のるつぼ温度:320~330℃
 LT-N628のるつぼ温度:450~455℃
 LT-N428の蒸着速度 :0.1nm/秒
 LT-N628の蒸着速度 :0.05nm/秒
 上記の条件により、30nmの膜厚で積層して発光層4を形成した。蒸着時の真空度は1.7~1.9×10-4Paであった。
 続いて、発光層4の上に、電子輸送層5として下記構造式に示す1,3-ビス[2-(2,2’-ビピリジニル)-1,3,4-オキサジアゾイル]-ベンゼン(LT-N820,Luminescent Technology社製)を同様にして30nmの膜厚で蒸着した。このときのLT-N820のるつぼ温度は255~260℃、蒸着速度は0.08~0.1nm/秒の範囲で制御し、蒸着時の真空度は1.2×10-4Paとした。
Figure JPOXMLDOC01-appb-C000183
 なお上記の正孔輸送層3、発光層4および電子輸送層5を真空蒸着する際の基板温度は室温に保持した。
 ここで、電子輸送層5まで形成した素子を、一旦、真空蒸着装置内より大気中に取り出した。次に、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極2のITOストライプと直交するように素子に密着させた。続いて、この素子を別の真空蒸着装置内に設置し、有機層を形成した場合と同様に、真空蒸着装置内の真空度が2.3×10-5Pa以下になるまで排気した。
 次に、陰極6として、先ず、フッ化リチウム(LiF)を、モリブデンボートを用いて、蒸着速度0.008~0.01nm/秒、真空度3.7×10-6Paで、0.5nmの膜厚で電子輸送層5の上に製膜した。続いて、同様に、アルミニウムをモリブデンボートにより加熱し、蒸着速度0.1~0.2nm/秒、真空度2.7×10-6~2.5×10-6Paで膜厚80nmのアルミニウム層を形成して陰極6を完成させた。以上の2層型の陰極6を形成する際の蒸着時の基板温度は室温に保持した。
 以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界蛍光発光素子を調製した。
 この素子に6Vの電圧を印加した際の発光の有無と発光色を評価した。この時のEL発光スペクトルの極大波長は436nmであり、CIE色度座標(正面輝度10~1000cd/m時のCIE色度座標)は(0.16、0.15)であった。
<分光特性評価>
 上記有機電界蛍光発光素子と、実施例1~18、比較例1~5の塗布基板を組合せて色度を測定した。結果を表51に示す。
Figure JPOXMLDOC01-appb-T000184
 表51より、有機電界蛍光発光素子を光源とした場合の比較においても、上記C光源での比較との序列は変わらないが、コントラストの概念が存在しないため、従来顔料系である比較例5に対して優位性を示す実施例は、実施例7~18であるといえる。(なお、表51によると実施例11及び12のYの値は比較例5より低い。しかし実施例11及び12のyの値を、比較例5と同じ値に換算すると、実施例11及び12の方が優位になる。)
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年2月27日出願の日本特許出願(特願2008-046323)、及び2008年10月09日出願の日本特許出願(特願2008-262952)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、カラーフィルターの長期信頼性のうち極めて重要な項目である耐光性を満たし、かつカラーディスプレイ製造工程で要求される耐熱性を有し、青色画素の色純度および透過率に優れたカラーフィルターを得ることができる。このようなカラーフィルターを使用することにより、有機ELディスプレイの発光や、カラーフィルターのバックライトの発光を効率良く取り出すことができ、高色再現性および高輝度を両立した有機ELディスプレイや液晶表示装置を提供することができる。また、液晶表示装置のコントラストを向上させることもできる。

Claims (22)

  1.  (a)バインダー樹脂、(b)溶剤および(c)色材を含有し、(c)色材が下記一般式(I)で表される化合物を含有する、カラーフィルター用着色樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(I)において、Zはアントラキノン骨格またはフタロシアニン骨格を有するm価のアニオンを表す。mは1~4の整数を表す。
     Rは水素原子、置換基を有していてもよい炭素数1~8のアルキル基、または置換基を有していてもよいフェニル基を表すか、或いは隣接するR同士が結合して環を形成する。該環は置換基を有していてもよい。それぞれのRは同一でも異なっていてもよい。
     R101は置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数2~6のアルケニル基、置換基を有していてもよいフェニル基、またはフッ素原子を表す。
     R102は水素原子、置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数2~6のアルケニル基、置換基を有していてもよいフェニル基、またはフッ素原子を表す。
     或いはR101とR102とが結合し、環を形成していてもよく、該環は置換基を有していてもよい。
     また、上記一般式(I)のカチオン部分における3つのベンゼン環は、いずれも、-N
    、-R101および-R102以外の基で置換されていてもよい。
     なお、1分子中に複数の
    Figure JPOXMLDOC01-appb-C000002
    が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
  2.  前記一般式(I)で表される化合物が、下記一般式(I’)で表される化合物である、請求項1に記載のカラーフィルター用着色樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (上記一般式(I’)において、Z、m、R、R101およびR102は、前記一般式(I)におけると同義である。
     R103およびR104は各々独立に、水素原子、ハロゲン原子、または炭素数1~8のアルキル基を表す。
     なお、1分子中に複数の
    Figure JPOXMLDOC01-appb-C000004
    が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
  3.  前記一般式(I’)で表される化合物が、下記一般式(II)で表される化合物である、請求項2記載のカラーフィルター用着色樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    (上記一般式(II)において、Mは2個の水素原子、Cu、Mg、Al、Ni、Co、Fe、Zn、Ge、Mn、Si、Ti、VまたはSnを表し、各金属原子には、酸素原子、ハロゲン原子、水酸基、アルコキシ基またはアリールオキシ基が配位していてもよい。
     式中の-SO 基は、フタロシアニン骨格におけるベンゼン環を構成するいずれかの炭素原子に結合している。これら4つのベンゼン環を構成する炭素原子のうち、-SO 基が結合していない炭素原子は、任意の基で置換されていてもよい。
     m、R、R101~R104は一般式(I’)におけると同義であり、1分子中に複数の
    Figure JPOXMLDOC01-appb-C000006
    が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
  4.  前記一般式(II)で表される化合物が、下記一般式(III)で表される化合物である、請求項3記載のカラーフィルター用着色樹脂組成物。
    Figure JPOXMLDOC01-appb-C000007
    (上記一般式(III)において、-SO 基は、フタロシアニン骨格におけるベンゼン環を構成するいずれかの炭素原子に結合しており、該フタロシアニン骨格は-SO 基以外に置換基を有さない。
     m、M、R、R103およびR104は一般式(I’)におけると同義であり、1分子中に複数の
    Figure JPOXMLDOC01-appb-C000008
    が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
  5.  前記一般式(I’)で表される化合物が、下記一般式(IV)で表される化合物である、請求項2記載のカラーフィルター用着色樹脂組成物。
    Figure JPOXMLDOC01-appb-C000009
    (上記一般式(IV)において、アントラキノン骨格が有する置換基のうち、
     R31は水素原子、または置換基を有していてもよいフェニル基を表す。
     R32、R33、R34は、各々独立に、水素原子、水酸基、-NHR41(R41はR31と同義である。)、-SO 、ハロゲン原子、-CO42(R42は炭素数1~3のアルキル基を表す。)のいずれかであるが、R32~R34のうち、少なくとも一つは-NHR41基である。
     R35、R36、R37、R38は、各々独立に、水素原子、-SO 、ハロゲン原子、フェノキシ基、ナフチルオキシ基、炭素数1~12のアルコキシル基、-CO43、フェニル基、-SO44、または-SONHR45(但し、R43~R45は、各々独立に、炭素数1~6のアルキル基を表す。)を表す。
     なお、1つのアントラキノン骨格中に、-SO 基はm個結合している。
     m、R、R101~R104は一般式(I’)におけると同義であり、1分子中に複数の
    Figure JPOXMLDOC01-appb-C000010
    が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
  6.  前記一般式(IV)で表される化合物が、下記一般式(IV’)で表される化合物である、請求項5に記載のカラーフィルター用着色樹脂組成物。
    Figure JPOXMLDOC01-appb-C000011
    (上記一般式(IV’)において、m、R、R31~R38、R103およびR104は前記一般式(IV)におけると同義であり、1分子中に複数の
    Figure JPOXMLDOC01-appb-C000012
    が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
  7.  前記一般式(I)で表される化合物を、全固形分中1~50重量%含有する、請求項1ないし6のいずれか一項に記載のカラーフィルター用着色樹脂組成物。 
  8.  (a)バインダー樹脂、(b)溶剤および(c)色材を含有し、(c)色材が下記一般式(V)で表される化合物を含有する、カラーフィルター用着色樹脂組成物。
    Figure JPOXMLDOC01-appb-C000013
    (上記一般式(V)において、Zはアントラキノン骨格またはフタロシアニン骨格を有するm価のアニオンを表す。mは1~4の整数を表す。
     Rは水素原子、置換基を有していてもよい炭素数1~8のアルキル基、または置換基を有していてもよいフェニル基を表すか、或いは隣接するR同士が結合して環を形成する。該環は置換基を有していてもよい。それぞれのRは同一でも異なっていてもよい。
     R201は水素原子、置換基を有していてもよい炭素数1~8のアルキル基、ベンジル基、置換基を有していてもよいフェニル基、または置換基を有していてもよいナフチル基を表す。
     R202は置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよいフェニル基、置換基を有していてもよいナフチル基、または置換基を有していてもよい芳香族複素環基を表す。
     R203、R204、R205、R206は、各々独立に、水素原子、置換基を有していてもよい炭素数1~8のアルキル基、炭素数1~8のパーフルオロアルキル基、炭素数1~12のアルコキシル基、フェノキシ基、ナフチルオキシ基、フッ素原子、置換基を有していてもよいフェニル基、-CO46、-SO47、または-SONHR48(但し、R46~R48は、各々独立に、炭素数1~6のアルキル基を表す。)を表す。
     また上記一般式(V)のカチオン部分における2つのベンゼン環は、いずれも-NR以外の基で置換されていてもよい。
     なお、1分子中に複数の
    Figure JPOXMLDOC01-appb-C000014
    が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
  9.  前記一般式(V)で表される化合物が、下記一般式(V’)で表される化合物である、請求項8に記載のカラーフィルター用着色樹脂組成物。
    Figure JPOXMLDOC01-appb-C000015
    (上記一般式(V’)において、Z、m、R、R201~R206は、いずれも前記一般式(V)におけると同義である。
     R207およびR208は各々独立に、水素原子、ハロゲン原子、または炭素数1~8のアルキル基を表す。
     なお、1分子中に複数の
    Figure JPOXMLDOC01-appb-C000016
    が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
  10.  前記一般式(V’)で表される化合物が、下記一般式(VI)で表される化合物である、請求項9記載のカラーフィルター用着色樹脂組成物。
    Figure JPOXMLDOC01-appb-C000017
    (上記一般式(VI)において、Mは2個の水素原子、Cu、Mg、Al、Ni、Co、Fe、Zn、Ge、Mn、Si、Ti、VまたはSnを表し、各金属原子には、酸素原子、ハロゲン原子、水酸基、アルコキシ基またはアリールオキシ基が配位していてもよい。
     式中の-SO 基は、フタロシアニン骨格におけるベンゼン環を構成するいずれかの炭素原子に結合している。これら4つのベンゼン環を構成する炭素原子のうち、-SO 基が結合していない炭素原子は、任意の基で置換されていてもよい。
     m、R、R201、R202、R207、R208は一般式(V’)におけると同義であり、1分子中に複数の
    Figure JPOXMLDOC01-appb-C000018
    が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
  11.  前記一般式(VI)において、-SO 基は、フタロシアニン骨格におけるベンゼン環を構成するいずれかの炭素原子に結合しており、該フタロシアニン骨格は-SO 基以外に置換基を有していない、請求項10記載のカラーフィルター用着色樹脂組成物。
  12.  前記一般式(V’)で表される化合物が、下記一般式(VII)で表される化合物である、請求項9記載のカラーフィルター用着色樹脂組成物。
    Figure JPOXMLDOC01-appb-C000019
    (上記一般式(VII)において、アントラキノン骨格が有する置換基のうち、
     R31は水素原子、または置換基を有していてもよいフェニル基を表す。
     R32、R33、R34は、各々独立に、水素原子、水酸基、-NHR41(R41はR31と同義である。)、-SO 、ハロゲン原子、-CO42(R42は炭素数1~3のアルキル基を表す。)のいずれかであるが、R32~R34のうち、少なくとも一つは-NHR41基である。
     R35、R36、R37、R38は、各々独立に、水素原子、-SO 、ハロゲン原子、フェノキシ基、ナフチルオキシ基、炭素数1~12のアルコキシル基、-CO43、フェニル基、-SO44、または-SONHR45(但し、R43~R45は、各々独立に、炭素数1~6のアルキル基を表す。)を表す。
     なお、1つのアントラキノン骨格中に、-SO 基はm個結合している。
     m、R、R201、R202、R207、R208は一般式(V’)におけると同義であり、1分子中に複数の
    Figure JPOXMLDOC01-appb-C000020
    が含まれる場合、それらは同じ構造であっても、異なる構造であってもよい。)
  13.  前記一般式(V)で表される化合物を、全固形分中1~50重量%含有する、請求項8ないし12のいずれか一項に記載のカラーフィルター用着色樹脂組成物。
  14.  (a)バインダー樹脂、(b)溶剤および(c)色材を含有し、
     (c)色材が、カチオン系青色色素(色素1)とアニオン系色素(色素2)からなる化合物を含有し、
     該化合物における色素1および色素2が、以下の(イ)または(ロ)を満たすことを特徴とする、カラーフィルター用着色樹脂組成物。
    (イ)色素2が偶数電子系化合物であり、時間依存密度汎関数(B3LYP/6-31G(d,p))計算により得られる、色素1の最低一重項励起状態(S状態)の励起エネルギー(ΔES1(色素1))と、色素2の最低一重項励起状態(S状態)の励起エネルギー(ΔES1(色素2))が下記式(i)を満たし、かつ色素2の最低三重項励起状態(T状態)の励起エネルギー(ΔET1(色素2))が下記式(ii)を満たす。
    (ロ)色素2が奇数電子系化合物であり、時間依存密度汎関数(B3LYP/6-31G(d,p))計算により得られる、色素1の最低一重項励起状態(S状態)の励起エネルギー(ΔES1(色素1))と、色素2のエネルギー的に最も低い励起状態の励起エネルギー(ΔElowest(色素2))が、下記式(iii)を満たす。
    Figure JPOXMLDOC01-appb-M000021
  15.  前記色素1が、骨格内にカチオン部位を有するか、もしくは置換基としてカチオン性置換基を有する、カチオン性色素であり、
     前記色素2が、アニオン性置換基を有するアニオン性色素である、請求項14記載のカラーフィルター用着色樹脂組成物。
  16.  前記色素2が、フタロシアニン骨格またはアントラキノン骨格を有するアニオン性色素である、請求項14又は15記載のカラーフィルター用着色樹脂組成物。
  17.  さらに(d)モノマーを含有する、請求項1ないし16のいずれか一項に記載のカラーフィルター用着色樹脂組成物。
  18.  さらに(e)光重合開始系および熱重合開始系のうち少なくとも1つを含有する、請求項1ないし17のいずれか一項に記載のカラーフィルター用着色樹脂組成物。
  19.  さらに(f)顔料を含有する、請求項1ないし18のいずれか一項に記載のカラーフィルター用着色樹脂組成物。
  20.  請求項1ないし19のいずれか一項に記載のカラーフィルター用着色樹脂組成物を用いて形成された画素を有するカラーフィルター。
  21.  請求項20記載のカラーフィルターを備える、有機ELディスプレイ。
  22.  請求項20記載のカラーフィルターを備える、液晶表示装置。
PCT/JP2009/053579 2008-02-27 2009-02-26 カラーフィルター用着色樹脂組成物、カラーフィルター、有機elディスプレイおよび液晶表示装置 WO2009107734A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020107018758A KR101298884B1 (ko) 2008-02-27 2009-02-26 컬러 필터용 착색 수지 조성물, 컬러 필터, 유기 el 디스플레이 및 액정 표시 장치
CN200980106409.9A CN101960337B (zh) 2008-02-27 2009-02-26 滤色片用着色树脂组合物、滤色片、有机el显示器及液晶显示装置
US12/870,140 US20110049444A1 (en) 2008-02-27 2010-08-27 Colored resin compositions for color filter, color filter, organic el display, and liquid-crystal display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008046323 2008-02-27
JP2008-046323 2008-02-27
JP2008262952 2008-10-09
JP2008-262952 2008-10-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/870,140 Continuation US20110049444A1 (en) 2008-02-27 2010-08-27 Colored resin compositions for color filter, color filter, organic el display, and liquid-crystal display device

Publications (1)

Publication Number Publication Date
WO2009107734A1 true WO2009107734A1 (ja) 2009-09-03

Family

ID=41016121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053579 WO2009107734A1 (ja) 2008-02-27 2009-02-26 カラーフィルター用着色樹脂組成物、カラーフィルター、有機elディスプレイおよび液晶表示装置

Country Status (5)

Country Link
US (1) US20110049444A1 (ja)
KR (1) KR101298884B1 (ja)
CN (1) CN101960337B (ja)
TW (1) TWI456008B (ja)
WO (1) WO2009107734A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037195A1 (ja) * 2009-09-25 2011-03-31 東洋インキ製造株式会社 着色組成物及びカラーフィルタ
JP2011132492A (ja) * 2009-11-30 2011-07-07 Dainippon Printing Co Ltd トリアリールメタン系染料
JP2011174987A (ja) * 2010-02-23 2011-09-08 Toyo Ink Sc Holdings Co Ltd カラーフィルタ用青色着色組成物、およびカラーフィルタ
WO2011152379A1 (ja) * 2010-06-03 2011-12-08 日本化薬株式会社 着色樹脂組成物、着色硬化膜、カラーフィルター、液晶表示装置、有機elディスプレイ及び固体撮像素子
JP2012017425A (ja) * 2010-07-09 2012-01-26 Toyo Ink Sc Holdings Co Ltd トリアリールメタン色素、およびその用途
JP2012036301A (ja) * 2010-08-06 2012-02-23 Dainippon Printing Co Ltd トリアリールメタン系染料
WO2012036085A1 (ja) * 2010-09-16 2012-03-22 日本化薬株式会社 着色樹脂組成物
JP2012067169A (ja) * 2010-09-22 2012-04-05 Mitsubishi Chemicals Corp 着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機el表示装置
JP2012113218A (ja) * 2010-11-26 2012-06-14 Toyo Ink Sc Holdings Co Ltd カラーフィルタ用青色着色組成物、およびカラーフィルタ
JP2012208165A (ja) * 2011-03-29 2012-10-25 Toyo Ink Sc Holdings Co Ltd カラーフィルタ用青色着色組成物、およびカラーフィルタ
WO2012144520A1 (ja) * 2011-04-21 2012-10-26 大日本印刷株式会社 色材、及びその製造方法
WO2012144521A1 (ja) * 2011-04-21 2012-10-26 大日本印刷株式会社 色材分散液、カラーフィルター用着色樹脂組成物、カラーフィルター、液晶表示装置及び有機発光表示装置
JPWO2011162217A1 (ja) * 2010-06-23 2013-08-22 三菱化学株式会社 着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機elディスプレイ
KR20150006425A (ko) 2012-04-23 2015-01-16 다이니폰 인사츠 가부시키가이샤 색재 분산액, 컬러 필터용 착색 수지 조성물, 컬러 필터, 및 액정 표시 장치 및 유기 발광 표시 장치
KR20150075086A (ko) 2012-10-18 2015-07-02 다이니폰 인사츠 가부시키가이샤 색재 및 그 제조 방법
US9213199B2 (en) 2014-03-19 2015-12-15 Dai Nippon Printing Co., Ltd. Liquid crystal display device and method for manufacturing same

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572332B2 (ja) * 2009-04-24 2014-08-13 凸版印刷株式会社 染料を含有する青色着色組成物、カラーフィルタ、それを具備する液晶表示装置並びに有機elディスプレイ
TW201125738A (en) * 2010-01-21 2011-08-01 More Sticker Internat Ltd Pronunciation coding technology and figure card
KR101400185B1 (ko) * 2011-11-29 2014-06-19 제일모직 주식회사 컬러 필터용 감광성 수지 조성물 및 이를 이용하여 제조한 컬러 필터
JP5803632B2 (ja) * 2011-12-07 2015-11-04 三菱化学株式会社 着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機el表示装置
TWI451164B (zh) * 2011-12-20 2014-09-01 Au Optronics Corp 液晶顯示器之濾光單元與液晶顯示器
KR101524486B1 (ko) 2012-02-03 2015-06-01 제일모직주식회사 다색성 발현 착색용 수지 조성물 및 이를 이용하여 제조된 수지 성형품
KR101467995B1 (ko) * 2012-12-03 2014-12-02 (주)경인양행 트리아릴메탄 염료 고분자 화합물, 이를 포함하는 컬러필터용 청색 수지 조성물 및 이를 이용한 컬러필터
KR101556280B1 (ko) 2012-12-07 2015-09-30 제일모직 주식회사 컬러필터용 감광성 수지 조성물 및 이를 이용한 컬러필터
US10252674B2 (en) * 2012-12-17 2019-04-09 Lg Innotek Co., Ltd. Blind spot detection module
KR102229653B1 (ko) * 2012-12-19 2021-03-18 가부시키가이샤 아데카 착색 감광성 조성물
US10011672B2 (en) 2013-05-16 2018-07-03 Samsung Sdi Co., Ltd. Photosensitive resin composition for color filter and color filter using the same
JP6417323B2 (ja) 2013-06-07 2018-11-07 株式会社Adeka 着色感光性組成物及び新規化合物
KR102215069B1 (ko) * 2013-07-16 2021-02-10 동우 화인켐 주식회사 착색 경화성 수지 조성물
JP6147181B2 (ja) * 2013-09-30 2017-06-14 富士フイルム株式会社 着色組成物、硬化膜、カラーフィルタ、カラーフィルタの製造方法、固体撮像素子および液晶表示装置
CN107079542B (zh) * 2014-12-09 2019-03-01 三井化学株式会社 有机el元件用面密封材及其固化物
KR102059235B1 (ko) * 2016-02-11 2019-12-24 주식회사 엘지화학 화합물, 이를 포함하는 색재 조성물 및 이를 포함하는 수지 조성물
KR102016619B1 (ko) * 2016-01-08 2019-08-30 주식회사 엘지화학 신규한 화합물, 이를 포함하는 색재 조성물 및 이를 포함하는 수지 조성물
KR101990515B1 (ko) * 2016-02-11 2019-10-01 주식회사 엘지화학 화합물, 이를 포함하는 색재 조성물 및 이를 포함하는 수지 조성물
JP6909093B2 (ja) 2016-09-13 2021-07-28 東京応化工業株式会社 感光性樹脂組成物、ポリアミド樹脂、ポリアミド樹脂の製造方法、化合物、化合物の製造方法、硬化膜の製造方法、及び硬化膜
CN110637052B (zh) * 2017-05-19 2021-12-03 株式会社Lg化学 树脂组合物以及其可靠性评估方法和包含其的色彩转换膜
TWI760424B (zh) * 2017-10-20 2022-04-11 南韓商東友精細化工有限公司 著色感光性樹脂組成物、包括使用著色感光性樹脂組成物製造之黑色矩陣、柱間隔物或黑色柱間隔物的彩色濾光片、以及包括彩色濾光片的顯示裝置
JP6886071B2 (ja) * 2018-02-28 2021-06-16 富士フイルム株式会社 樹脂組成物、膜、光学フィルター、画像表示装置、固体撮像素子、及び化合物
JP7310802B2 (ja) * 2018-04-10 2023-07-19 Dic株式会社 感光性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP7324046B2 (ja) * 2019-05-20 2023-08-09 東友ファインケム株式会社 着色樹脂組成物
CN111403335A (zh) * 2020-03-26 2020-07-10 武汉华星光电半导体显示技术有限公司 显示器件及其制作方法
JP2023112406A (ja) * 2022-02-01 2023-08-14 シャープディスプレイテクノロジー株式会社 表示装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130701A (en) * 1976-04-26 1977-11-02 Dynachem Corp Dye componds of new photootropy and photoosensitive composition containing same
JPS5323624A (en) * 1976-08-18 1978-03-04 Fuji Photo Film Co Ltd Photo-sens itive compoment substance for colored picture image formation
JPH0894826A (ja) * 1994-09-21 1996-04-12 Nippon Kayaku Co Ltd インク組成物及びそれを用いて作製するカラーフィルター
JP2001520637A (ja) * 1995-09-06 2001-10-30 ザ・リサーチ・ファンデーション・オブ・ステート・ユニバーシティ・オブ・ニューヨーク 二光子アップコンバーティング色素および応用
JP2002174714A (ja) * 2000-12-07 2002-06-21 Canon Inc カラーフィルタ形成用インク、該インクを用いたカラーフィルタの製造方法、該製造方法により得られるカラーフィルタ及び該カラーフィルタを用いた液晶パネル
JP2002228830A (ja) * 2000-11-13 2002-08-14 Orient Chem Ind Ltd レーザー光透過性着色樹脂組成物用着色剤及びその関連技術
JP2002258030A (ja) * 2001-02-28 2002-09-11 Canon Inc カラーフィルタの製造方法
JP2002350632A (ja) * 2001-05-30 2002-12-04 Asahi Denka Kogyo Kk 光学フィルター
JP2003119172A (ja) * 2001-10-15 2003-04-23 Nippon Kayaku Co Ltd 新規なテトラキスアミノフェニル(ジ)フェニレンジアミン骨格を有する化合物及びその使用方法
JP2003255124A (ja) * 2002-03-01 2003-09-10 Fuji Electric Co Ltd 青色カラーフィルター及びこれを用いた有機エレクトロルミネッセンス素子
JP2005049847A (ja) * 2003-07-11 2005-02-24 Asahi Glass Co Ltd 光学フィルム用組成物および光学フィルム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130435A (en) * 1975-09-18 1978-12-19 E. I. Du Pont De Nemours And Company Process for preparing a ball-point pen ink
EP1271243A3 (en) 2001-06-19 2003-10-15 Fuji Photo Film Co., Ltd. Image forming material, color filter master plate, and color filter
WO2004081070A1 (ja) * 2003-02-07 2004-09-23 Mitsubishi Chemical Corporation 着色樹脂組成物、カラーフィルタ、および液晶表示装置
JP2006257248A (ja) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd インク組成物、インクジェット記録方法、印刷物、平版印刷版の製造方法及び平版印刷版
KR101320894B1 (ko) * 2006-07-05 2013-10-24 삼성디스플레이 주식회사 포토레지스트 조성물 및 이를 이용한 컬러 필터 기판의제조방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130701A (en) * 1976-04-26 1977-11-02 Dynachem Corp Dye componds of new photootropy and photoosensitive composition containing same
JPS5323624A (en) * 1976-08-18 1978-03-04 Fuji Photo Film Co Ltd Photo-sens itive compoment substance for colored picture image formation
JPH0894826A (ja) * 1994-09-21 1996-04-12 Nippon Kayaku Co Ltd インク組成物及びそれを用いて作製するカラーフィルター
JP2001520637A (ja) * 1995-09-06 2001-10-30 ザ・リサーチ・ファンデーション・オブ・ステート・ユニバーシティ・オブ・ニューヨーク 二光子アップコンバーティング色素および応用
JP2002228830A (ja) * 2000-11-13 2002-08-14 Orient Chem Ind Ltd レーザー光透過性着色樹脂組成物用着色剤及びその関連技術
JP2002174714A (ja) * 2000-12-07 2002-06-21 Canon Inc カラーフィルタ形成用インク、該インクを用いたカラーフィルタの製造方法、該製造方法により得られるカラーフィルタ及び該カラーフィルタを用いた液晶パネル
JP2002258030A (ja) * 2001-02-28 2002-09-11 Canon Inc カラーフィルタの製造方法
JP2002350632A (ja) * 2001-05-30 2002-12-04 Asahi Denka Kogyo Kk 光学フィルター
JP2003119172A (ja) * 2001-10-15 2003-04-23 Nippon Kayaku Co Ltd 新規なテトラキスアミノフェニル(ジ)フェニレンジアミン骨格を有する化合物及びその使用方法
JP2003255124A (ja) * 2002-03-01 2003-09-10 Fuji Electric Co Ltd 青色カラーフィルター及びこれを用いた有機エレクトロルミネッセンス素子
JP2005049847A (ja) * 2003-07-11 2005-02-24 Asahi Glass Co Ltd 光学フィルム用組成物および光学フィルム

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037195A1 (ja) * 2009-09-25 2011-03-31 東洋インキ製造株式会社 着色組成物及びカラーフィルタ
CN102549460B (zh) * 2009-09-25 2014-09-24 东洋油墨Sc控股株式会社 着色组合物以及滤色器
JP5836126B2 (ja) * 2009-09-25 2015-12-24 東洋インキScホールディングス株式会社 着色組成物及びカラーフィルタ
CN102549460A (zh) * 2009-09-25 2012-07-04 东洋油墨Sc控股株式会社 着色组合物以及滤色器
JP2011132492A (ja) * 2009-11-30 2011-07-07 Dainippon Printing Co Ltd トリアリールメタン系染料
JP2011174987A (ja) * 2010-02-23 2011-09-08 Toyo Ink Sc Holdings Co Ltd カラーフィルタ用青色着色組成物、およびカラーフィルタ
WO2011152379A1 (ja) * 2010-06-03 2011-12-08 日本化薬株式会社 着色樹脂組成物、着色硬化膜、カラーフィルター、液晶表示装置、有機elディスプレイ及び固体撮像素子
JP2016176076A (ja) * 2010-06-23 2016-10-06 三菱化学株式会社 染料
JP5915526B2 (ja) * 2010-06-23 2016-05-11 三菱化学株式会社 着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機elディスプレイ
JPWO2011162217A1 (ja) * 2010-06-23 2013-08-22 三菱化学株式会社 着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機elディスプレイ
JP2012017425A (ja) * 2010-07-09 2012-01-26 Toyo Ink Sc Holdings Co Ltd トリアリールメタン色素、およびその用途
JP2012036301A (ja) * 2010-08-06 2012-02-23 Dainippon Printing Co Ltd トリアリールメタン系染料
WO2012036085A1 (ja) * 2010-09-16 2012-03-22 日本化薬株式会社 着色樹脂組成物
JP5856848B2 (ja) * 2010-09-16 2016-02-10 日本化薬株式会社 着色樹脂組成物
JP2012067169A (ja) * 2010-09-22 2012-04-05 Mitsubishi Chemicals Corp 着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機el表示装置
JP2012113218A (ja) * 2010-11-26 2012-06-14 Toyo Ink Sc Holdings Co Ltd カラーフィルタ用青色着色組成物、およびカラーフィルタ
JP2012208165A (ja) * 2011-03-29 2012-10-25 Toyo Ink Sc Holdings Co Ltd カラーフィルタ用青色着色組成物、およびカラーフィルタ
WO2012144521A1 (ja) * 2011-04-21 2012-10-26 大日本印刷株式会社 色材分散液、カラーフィルター用着色樹脂組成物、カラーフィルター、液晶表示装置及び有機発光表示装置
CN103380182A (zh) * 2011-04-21 2013-10-30 大日本印刷株式会社 色料分散液、彩色滤光片用着色树脂组合物、彩色滤光片、液晶显示装置及有机发光显示装置
CN103380182B (zh) * 2011-04-21 2015-12-23 大日本印刷株式会社 色料分散液、彩色滤光片用着色树脂组合物、彩色滤光片、液晶显示装置及有机发光显示装置
US9588256B2 (en) 2011-04-21 2017-03-07 Dai Nippon Printing Co., Ltd. Color material dispersion liquid, color resin composition for color filters, color filter, liquid crystal display device and organic light-emitting display device
WO2012144520A1 (ja) * 2011-04-21 2012-10-26 大日本印刷株式会社 色材、及びその製造方法
US9266905B2 (en) 2011-04-21 2016-02-23 Dai Nippon Printing Co., Ltd. Color material and method for producing the same
US9005722B2 (en) 2011-04-21 2015-04-14 Dai Nippon Printing Co., Ltd. Color material dispersion liquid, color resin composition for color filters, color filter, liquid crystal display device and organic light-emitting display device
US9354367B2 (en) 2012-04-23 2016-05-31 Dai Nippon Printing Co., Ltd. Color material dispersion liquid, color resin composition for color filters, color filter, liquid crystal display device, and organic light-emitting display device
KR20150006425A (ko) 2012-04-23 2015-01-16 다이니폰 인사츠 가부시키가이샤 색재 분산액, 컬러 필터용 착색 수지 조성물, 컬러 필터, 및 액정 표시 장치 및 유기 발광 표시 장치
US9513418B2 (en) 2012-04-23 2016-12-06 Dai Nippon Printing Co., Ltd. Color material dispersion liquid, color resin composition for color filters, color filter, liquid crystal display device, and organic light-emitting display device
KR20150075086A (ko) 2012-10-18 2015-07-02 다이니폰 인사츠 가부시키가이샤 색재 및 그 제조 방법
US9708244B2 (en) 2012-10-18 2017-07-18 Dai Nippon Printing Co., Ltd. Coloring material and method for producing the same
US9213199B2 (en) 2014-03-19 2015-12-15 Dai Nippon Printing Co., Ltd. Liquid crystal display device and method for manufacturing same
KR20160128325A (ko) 2014-03-19 2016-11-07 다이니폰 인사츠 가부시키가이샤 액정 표시 장치 및 그 제조 방법

Also Published As

Publication number Publication date
KR20100121494A (ko) 2010-11-17
KR101298884B1 (ko) 2013-08-21
CN101960337A (zh) 2011-01-26
CN101960337B (zh) 2013-01-09
TW200942583A (en) 2009-10-16
TWI456008B (zh) 2014-10-11
US20110049444A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP5804136B2 (ja) 色材
WO2009107734A1 (ja) カラーフィルター用着色樹脂組成物、カラーフィルター、有機elディスプレイおよび液晶表示装置
JP5703630B2 (ja) カラーフィルタ用着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機elディスプレイ
JP6489245B2 (ja) カラーフィルタ用顔料分散液、カラーフィルタ用着色組成物、カラーフィルタ、及び液晶表示装置
JP5724248B2 (ja) カラーフィルタ用着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機elディスプレイ
KR100984994B1 (ko) 안료 분산액, 컬러 필터용 착색 조성물, 컬러 필터, 액정 표시 장치 및 유기 el 디스플레이
JP2008304766A (ja) カラーフィルター用着色樹脂組成物、カラーフィルター、有機elディスプレイおよび液晶表示装置
KR102491715B1 (ko) 착색 수지 조성물, 컬러 필터, 및 화상 표시 장치
JP2011068866A (ja) 着色組成物、カラーフィルター、有機elディスプレイおよび液晶表示装置
JP5407199B2 (ja) 顔料分散液、着色組成物、カラーフィルタ、液晶表示装置及び有機elディスプレイ
JP7230558B2 (ja) 着色樹脂組成物、カラーフィルタ、及び画像表示装置
JP5509553B2 (ja) 顔料分散体、カラーフィルター用着色組成物、カラーフィルター、液晶表示装置および有機elディスプレイ
JP5018691B2 (ja) 顔料分散液、カラーフィルタ用着色組成物、カラーフィルタ、液晶表示装置及び有機elディスプレイ
JP2010164965A (ja) カラーフィルタ画素形成用組成物、カラーフィルタ、液晶表示装置及び有機elディスプレイ
JP2016038584A (ja) 顔料分散液、着色樹脂組成物、カラーフィルタ、液晶表示装置、及び有機el表示装置
JP5516208B2 (ja) 着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機elディスプレイ
JP2010144057A (ja) 着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機elディスプレイ
JP7180545B2 (ja) カラーフィルタ用着色組成物、及び感光性着色樹脂組成物
JP5838923B2 (ja) 着色組成物、カラーフィルタ及び表示素子
WO2024075837A1 (ja) 着色剤含有液、着色樹脂組成物、カラーフィルタ、画像表示装置、及び着色樹脂組成物の製造方法
WO2023176882A1 (ja) 着色樹脂組成物、硬化物、カラーフィルタ及び画像表示装置
WO2023176888A1 (ja) カラーフィルタの製造方法、及び画像表示装置の製造方法
JP2013053273A (ja) 着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機el表示装置
WO2023063336A1 (ja) 着色樹脂組成物、カラーフィルタ及び画像表示装置
KR20240163067A (ko) 착색 수지 조성물, 경화물, 컬러 필터 및 화상 표시 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106409.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107018758

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09714955

Country of ref document: EP

Kind code of ref document: A1