[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007118026A3 - Step coverage and pattern loading for dielectric films - Google Patents

Step coverage and pattern loading for dielectric films Download PDF

Info

Publication number
WO2007118026A3
WO2007118026A3 PCT/US2007/065592 US2007065592W WO2007118026A3 WO 2007118026 A3 WO2007118026 A3 WO 2007118026A3 US 2007065592 W US2007065592 W US 2007065592W WO 2007118026 A3 WO2007118026 A3 WO 2007118026A3
Authority
WO
WIPO (PCT)
Prior art keywords
layer
plasma
substrate
step coverage
pattern loading
Prior art date
Application number
PCT/US2007/065592
Other languages
French (fr)
Other versions
WO2007118026A2 (en
Inventor
Mihaela Balseanu
Li-Qun Xia
Mei-Yee Shek
Saad Hichem M
Original Assignee
Applied Materials Inc
Mihaela Balseanu
Li-Qun Xia
Mei-Yee Shek
Saad Hichem M
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/668,911 external-priority patent/US7601651B2/en
Priority claimed from US11/693,005 external-priority patent/US7780865B2/en
Application filed by Applied Materials Inc, Mihaela Balseanu, Li-Qun Xia, Mei-Yee Shek, Saad Hichem M filed Critical Applied Materials Inc
Priority to CN2007800121574A priority Critical patent/CN101416293B/en
Publication of WO2007118026A2 publication Critical patent/WO2007118026A2/en
Publication of WO2007118026A3 publication Critical patent/WO2007118026A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Methods of controlling the step coverage and pattern loading of a layer on a substrate are provided. In one aspect, a method includes exposing the substrate to a silicon-containing precursor in the presence of a plasma to deposit a layer, treating the deposited layer with a plasma, and repeating the exposing and treating until a desired thickness of the layer is obtained. The plasma may be generated from an oxygen-containing gas. In another aspect, a method comprises depositing a dielectric layer on a substrate having at least one formed feature across a surface of the substrate and etching the dielectric layer with a plasma from an oxygen or a halogen-containing gas to provide a desired profile of the dielectric layer on the feature. The deposition and etching may be repeated for multiple cycles to provide the desired profile.
PCT/US2007/065592 2006-03-31 2007-03-30 Step coverage and pattern loading for dielectric films WO2007118026A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800121574A CN101416293B (en) 2006-03-31 2007-03-30 Method to improve the step coverage and pattern loading for dielectric films

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US78827906P 2006-03-31 2006-03-31
US60/788,279 2006-03-31
US79025406P 2006-04-07 2006-04-07
US60/790,254 2006-04-07
US11/668,911 2007-01-30
US11/668,911 US7601651B2 (en) 2006-03-31 2007-01-30 Method to improve the step coverage and pattern loading for dielectric films
US11/693,005 US7780865B2 (en) 2006-03-31 2007-03-29 Method to improve the step coverage and pattern loading for dielectric films
US11/693,005 2007-03-29

Publications (2)

Publication Number Publication Date
WO2007118026A2 WO2007118026A2 (en) 2007-10-18
WO2007118026A3 true WO2007118026A3 (en) 2008-01-10

Family

ID=38581763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/065592 WO2007118026A2 (en) 2006-03-31 2007-03-30 Step coverage and pattern loading for dielectric films

Country Status (4)

Country Link
KR (1) KR20080106984A (en)
CN (1) CN101416293B (en)
TW (2) TWI424498B (en)
WO (1) WO2007118026A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8956983B2 (en) 2010-04-15 2015-02-17 Novellus Systems, Inc. Conformal doping via plasma activated atomic layer deposition and conformal film deposition
US8999859B2 (en) 2010-04-15 2015-04-07 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9230800B2 (en) 2010-04-15 2016-01-05 Novellus Systems, Inc. Plasma activated conformal film deposition
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US9355886B2 (en) 2010-04-15 2016-05-31 Novellus Systems, Inc. Conformal film deposition for gapfill
US9502238B2 (en) 2015-04-03 2016-11-22 Lam Research Corporation Deposition of conformal films by atomic layer deposition and atomic layer etch
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US9570290B2 (en) 2010-04-15 2017-02-14 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935643B2 (en) * 2009-08-06 2011-05-03 Applied Materials, Inc. Stress management for tensile films
US8574447B2 (en) * 2010-03-31 2013-11-05 Lam Research Corporation Inorganic rapid alternating process for silicon etch
US9076646B2 (en) 2010-04-15 2015-07-07 Lam Research Corporation Plasma enhanced atomic layer deposition with pulsed plasma exposure
US9892917B2 (en) 2010-04-15 2018-02-13 Lam Research Corporation Plasma assisted atomic layer deposition of multi-layer films for patterning applications
US9287113B2 (en) 2012-11-08 2016-03-15 Novellus Systems, Inc. Methods for depositing films on sensitive substrates
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US9390909B2 (en) 2013-11-07 2016-07-12 Novellus Systems, Inc. Soft landing nanolaminates for advanced patterning
US9611544B2 (en) * 2010-04-15 2017-04-04 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9685320B2 (en) 2010-09-23 2017-06-20 Lam Research Corporation Methods for depositing silicon oxide
US20130045605A1 (en) * 2011-08-18 2013-02-21 Applied Materials, Inc. Dry-etch for silicon-and-nitrogen-containing films
JP6199292B2 (en) * 2011-09-23 2017-09-20 ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated Plasma activated conformal dielectric films
US8592328B2 (en) 2012-01-20 2013-11-26 Novellus Systems, Inc. Method for depositing a chlorine-free conformal sin film
CN102832119B (en) * 2012-07-03 2015-12-16 上海华力微电子有限公司 The formation method of low temperature silicon dioxide film
CN102768955A (en) * 2012-07-03 2012-11-07 上海华力微电子有限公司 Method for forming low-loading-effect thin film
CN102820220A (en) * 2012-07-03 2012-12-12 上海华力微电子有限公司 Forming method of low-temperature silica film
US9355839B2 (en) 2012-10-23 2016-05-31 Lam Research Corporation Sub-saturated atomic layer deposition and conformal film deposition
US20140131308A1 (en) * 2012-11-14 2014-05-15 Roman Gouk Pattern fortification for hdd bit patterned media pattern transfer
CN103390703B (en) * 2013-08-05 2016-08-17 聚灿光电科技股份有限公司 The preparation method of low-damage and high-density film and there is the LED chip of this film
CN104752315B (en) * 2013-12-25 2018-03-06 旺宏电子股份有限公司 Semiconductor element and its manufacture method
US9214334B2 (en) 2014-02-18 2015-12-15 Lam Research Corporation High growth rate process for conformal aluminum nitride
CN105322013B (en) * 2014-07-17 2020-04-07 联华电子股份有限公司 Semiconductor device and method for forming the same
US9478438B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor
US9478411B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS
KR20160061129A (en) * 2014-11-21 2016-05-31 주식회사 원익아이피에스 Method of fabricating stacked film
KR102362534B1 (en) 2014-12-08 2022-02-15 주성엔지니어링(주) Substrate disposition method
US9508976B2 (en) 2015-01-09 2016-11-29 Applied Materials, Inc. Battery separator with dielectric coating
US10566187B2 (en) 2015-03-20 2020-02-18 Lam Research Corporation Ultrathin atomic layer deposition film accuracy thickness control
CN112599927B (en) * 2015-06-05 2023-01-13 应用材料公司 Battery separator with dielectric coating
US10526701B2 (en) 2015-07-09 2020-01-07 Lam Research Corporation Multi-cycle ALD process for film uniformity and thickness profile modulation
US20170178899A1 (en) * 2015-12-18 2017-06-22 Lam Research Corporation Directional deposition on patterned structures
CN107437503A (en) * 2016-05-26 2017-12-05 灿美工程股份有限公司 Substrate processing method using same
US9773643B1 (en) 2016-06-30 2017-09-26 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
JP6817168B2 (en) 2017-08-25 2021-01-20 東京エレクトロン株式会社 How to process the object to be processed
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
US10910216B2 (en) 2017-11-28 2021-02-02 Taiwan Semiconductor Manufacturing Co., Ltd. Low-k dielectric and processes for forming same
SG11202010449RA (en) * 2018-06-19 2021-01-28 Applied Materials Inc Pulsed plasma deposition etch step coverage improvement
CN110896050A (en) * 2018-09-12 2020-03-20 长鑫存储技术有限公司 Method for forming dielectric film
KR102513404B1 (en) * 2018-09-21 2023-03-27 주식회사 원익아이피에스 Method of forming SiCN layer
SG11202111962QA (en) 2019-05-01 2021-11-29 Lam Res Corp Modulated atomic layer deposition
TW202229613A (en) * 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800566B2 (en) * 2002-02-21 2004-10-05 Taiwan Semiconductor Manufacturing Company Adjustment of N and K values in a DARC film
US20060046427A1 (en) * 2004-08-27 2006-03-02 Applied Materials, Inc., A Delaware Corporation Gap-fill depositions introducing hydroxyl-containing precursors in the formation of silicon containing dielectric materials
US20060046519A1 (en) * 2004-08-31 2006-03-02 Asm Japan K.K. Method of forming fluorine-doped low-dielectric-constant insulating film

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641710A (en) * 1996-06-10 1997-06-24 Taiwan Semiconductor Manufacturing Company, Ltd. Post tungsten etch back anneal, to improve aluminum step coverage
US6303523B2 (en) * 1998-02-11 2001-10-16 Applied Materials, Inc. Plasma processes for depositing low dielectric constant films
US6068884A (en) * 1998-04-28 2000-05-30 Silcon Valley Group Thermal Systems, Llc Method of making low κ dielectric inorganic/organic hybrid films
US6297163B1 (en) * 1998-09-30 2001-10-02 Lam Research Corporation Method of plasma etching dielectric materials
TW460408B (en) * 1999-04-20 2001-10-21 Applied Materials Inc Remote plasma nitridation of silicon
JP4554011B2 (en) * 1999-08-10 2010-09-29 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor integrated circuit device
US6399208B1 (en) * 1999-10-07 2002-06-04 Advanced Technology Materials Inc. Source reagent composition and method for chemical vapor deposition formation or ZR/HF silicate gate dielectric thin films
US6410462B1 (en) * 2000-05-12 2002-06-25 Sharp Laboratories Of America, Inc. Method of making low-K carbon doped silicon oxide
TW447077B (en) * 2000-07-17 2001-07-21 Taiwan Semiconductor Mfg Method for improving the characteristics of dielectric layer with a low dielectric constant formed by chemical vapor deposition
TW563202B (en) * 2000-10-25 2003-11-21 Ibm An ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device and an electronic device containing the same
US6531412B2 (en) * 2001-08-10 2003-03-11 International Business Machines Corporation Method for low temperature chemical vapor deposition of low-k films using selected cyclosiloxane and ozone gases for semiconductor applications
TW497140B (en) * 2001-10-09 2002-08-01 Taiwan Semiconductor Mfg Process system for plasma etching and chemical vapor deposition
WO2003044843A2 (en) * 2001-11-16 2003-05-30 Trikon Holdings Limited Forming low k dielectric layers
US6858542B2 (en) * 2003-01-17 2005-02-22 Freescale Semiconductor, Inc. Semiconductor fabrication method for making small features

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800566B2 (en) * 2002-02-21 2004-10-05 Taiwan Semiconductor Manufacturing Company Adjustment of N and K values in a DARC film
US20060046427A1 (en) * 2004-08-27 2006-03-02 Applied Materials, Inc., A Delaware Corporation Gap-fill depositions introducing hydroxyl-containing precursors in the formation of silicon containing dielectric materials
US20060046519A1 (en) * 2004-08-31 2006-03-02 Asm Japan K.K. Method of forming fluorine-doped low-dielectric-constant insulating film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FURUSAWA ET AL.: "Oxygen Plasma Resistance of Low-k Organosilica Glass Films", ELECTROCHEMICAL AND SOLID-STATE LETTERS, vol. 4, no. 3, March 2001 (2001-03-01), pages G31 - G34 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8956983B2 (en) 2010-04-15 2015-02-17 Novellus Systems, Inc. Conformal doping via plasma activated atomic layer deposition and conformal film deposition
US8999859B2 (en) 2010-04-15 2015-04-07 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9230800B2 (en) 2010-04-15 2016-01-05 Novellus Systems, Inc. Plasma activated conformal film deposition
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US9355886B2 (en) 2010-04-15 2016-05-31 Novellus Systems, Inc. Conformal film deposition for gapfill
US9570274B2 (en) 2010-04-15 2017-02-14 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9570290B2 (en) 2010-04-15 2017-02-14 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US9502238B2 (en) 2015-04-03 2016-11-22 Lam Research Corporation Deposition of conformal films by atomic layer deposition and atomic layer etch

Also Published As

Publication number Publication date
KR20080106984A (en) 2008-12-09
CN101416293B (en) 2011-04-20
TW201415551A (en) 2014-04-16
TWI424498B (en) 2014-01-21
CN101416293A (en) 2009-04-22
TW200816310A (en) 2008-04-01
WO2007118026A2 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
WO2007118026A3 (en) Step coverage and pattern loading for dielectric films
KR102306470B1 (en) Method for trimming carbon containing film at reduced trimming rate
WO2008141158A3 (en) Substrate surface structures and processes for forming the same
WO2008048840A3 (en) Methods of patterning a deposit metal on a polymeric substrate
JP2006516833A5 (en)
WO2004064147A3 (en) Integration of ald/cvd barriers with porous low k materials
WO2009117565A3 (en) Method and apparatus of a substrate etching system and process
WO2005076918A3 (en) Barrier layer process and arrangement
WO2011087698A3 (en) Pecvd multi-step processing with continuous plasma
WO2004079796A3 (en) Atomic layer deposited dielectric layers
TW201214563A (en) Plasma-activated deposition of conformal films
WO2012121921A3 (en) Reduced pattern loading using silicon oxide multi-layers
WO2009062123A3 (en) Pitch reduction using oxide spacer
WO2008024566A3 (en) Overall defect reduction for pecvd films
US9938616B2 (en) Physical vapor deposition of low-stress nitrogen-doped tungsten films
WO2007140425A3 (en) Process chamber for dielectric gapfill
WO2007140426A3 (en) Process chamber for dielectric gapfill
WO2008121478A3 (en) Roll-to-roll plasma enhanced chemical vapor deposition method of barrier layers comprising silicon and carbon
JP2002539003A5 (en)
TW200711033A (en) Semiconductor devices including trench isolation structures and methods of forming the same
WO2005121396A3 (en) Controlled deposition of silicon-containing coatings adhered by an oxide layer
PL2132770T3 (en) Method of depositing localized coatings
TW200624589A (en) High-throughput HDP-CVD processes for advanced gapfill applications
JP2003203906A (en) Method for manufacturing and recycling ceramic semiconductor component utilizing plasma display system
CN101017793B (en) A making method for diffusing blocking layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07759783

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200780012157.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087026336

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07759783

Country of ref document: EP

Kind code of ref document: A2