經濟部智慧財產局員工消費合作社印製 4 6 υ 4 ο 8 Α7 , Β7五、發明説明() 5 - 4圊式簡單說明: 太發明的較丨圭實施刮籽於往後之說3弓文字口輔以下 列圖形從更詳細的Μ述: 某一園為本發明氮彳匕石夕製ΐ呈較佳實施例尹所探用之 反應設備的概略圖; 第二圖為本發明氮化矽製程進行中,基板形成氮化矽 薄獏的剖面圖; 第三圖為實施本發明的氮化矽製程時,反應速率對應 生成之氬化矽層厚度的關係1 ;及 第S圖為採用本發萌之氬化矽製程時,氮化矽薄祺厚 度對實施時間的關係圖3 i— n ----- ---Hi n h------ T . i (請先閱讀背靣之注意事項再填寫本頁) 5 - 5圖號對照說明: 10 基 板 20 反 應 3 0 矽 層 40 幫 送系统 5 0 氣 體 供 應 管 60 電 漿 管 70 微 波 產 生 器 80 氮 化 矽 層 90 含 氮 反 應 氣體 5-6發明詳細說明: 本發明揭露一氮化石夕製程,由氣雜源中提供氮成份1 與半導體基板上的固態矽成份進行化學反應,U生成氬化 本紙張尺度適用中國國家標皁(CNS ) A4規格(2IOX297公釐) 經濟部智慧財產局R工消費合作社印製 46040 8 a? B7五、發明説明() 矽材钭,藉著氣相(氮)與m相(矽)間的反應型態,控制n 化获生成薄膜的均勻度,而能適闬於低元件尺寸 '高m積 度的主導體積體電路製程T '以製作超薄的気化矽層=本 發明利用電毁生成万法以提升氣.態I成份的能量及活 性,催化反應的進行;並於製程反應室外遑行電漿產生程 序,在傳送的過程申,使電漿申的帶電粒子與原+ S產主 去離+化的電性中和現象’而不干擾氬化s夕的生成反應’ 也不會影響氬化5夕生成薄誤的材料特性,可以製作出介電 性能' 均勻度、緻密度及表面性質均達理想的超薄氮化矽 層。 第一圖中顯示出本發明氮化矽製程較佳實施例中,所 採罔之反應設餚的概芩圖,其t半導體製程基板1 0安置 於反應宣::0中的基座上。在基板1 0的表面上具有一矽層 3 〇 ’可提俣氮化矽生成反應中所需的矽成份來源。此一矽 層3 〇可以是基板1 〇的一部分,也可α是在基板上另行沈 積的矽質薄膜。若矽層3 0為基板的一部分,則一般為單 晶(S丨n g i e c r y s t a 1)矽結構;若為另行沈積的矽質薄膜,則 可為多晶石夕(Ρ ο 1 y s i 1 i c ο η)或非晶 5夕(a m 〇 r p h 〇 u s silicon;^# 構。 甴於半導體基板1 0上的矽層3 0暴露於大氣巾時,易 形成原生氧化5夕(N a t i v e s i 1 i c ο η ο X i d e),此一;生氧化石夕 將會影響氮化矽的生成反應,可能會造成氮氧化矽雜質的 (請先W讀背面之注意事項再填寫本頁) 9 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 經濟部智慧財產局員工消費合作社印製 i -f 4 6040 8 a? ‘ B7五、發明説明() 產生·並減低反應速率,所以在気化矽製程開始之前可以 選擇性述實施去氣化矽製程,退行前處理程序,此一去氣 化矽製程通常採用乾蝕刻方式進行,以免濕蝕刻法殘留蝕 刻:夜於基板表面上。以乾钱51丨法去「余氧化-δ夕可以採周含氟 'i c·藏巧渡如C F 4、C ? F j、C 2 F;;等微為:¾刻氣體,.¾刻後 的反應氣禮則甴幫浦柚送系統40抽離反應室3 在前鼠理程序實施之後,即可这行本發明的氮化矽製 程5製作氮化矽材質所需的氮成份甴含氮氣.趙提供,自氣 體供應管5 0送入電漿管6 0之中,在本發明最佳實施例 中,以氮氣(Ν 2 )為反應妫氮成份的最佳來源,在其它實施 例申,其它的含氮氣體如氨氣(ΝΗ;)等也可以採用作為氮 成份的來源3 在反應室外的電漿管6 0中,含氮氣體經由部分離子 化的作用而形成電漿氣體,亦即將含氮氣體電漿化。此一 電漿化的程序’係以電适波能量衝擊電漿管中的含氮氣 體,使氣體中的份子發生磁撞、解離(D i s s 〇 c i a t i ο η,份子 —原子)、激發(基態—激發態)、離子化(I 〇 n i z a t i ο η,失去 或獲得電子)等各種反應,而產生原子 '電子、正負離子、 激發態原子等各種帶電粒子與原子困,電漿於焉生成。在 一實施例中,可以採用微波產生器(M i c r 〇 w a ν e gene rat or) 70發射出微波能量到電漿管中,以衝擊含氬氣 體’產生電漿。而在最佳實施例t,採用的氬氣前導物的 (請先閲讀背面之注意事項再填寫本頁) 10 本紙張尺度適用中國國家標苹(CNS ) A4規格(210 X 297公釐) 經濟部智慧財產局Μ工消費合作社印製 460408 A7 B7五、發明説明() 情況r ,電;走氣體中將含有Μ、N * ' Μ-、Μ_、Ν':'、Μ _ ' e . 等手f有正負電或是電令性ί:7 .承-τ 13 ,其士 Ν *表币:¾發 通的氣原子°而若是採用氨氣為電渡前導物,則生成的電 进氣禮 T 释!L 含有 Ν'、 Ν' ' Η、Μ- ' Η〜' Ν Η- ' Ν Η等 等帶電或是電中性的原子團= 含有.5L成份的電或H禮產生之後,接著運轉幫浦择送 系統40 ’將電漿氣體傳送到反應宣20之中。甴於N-、H-、 NH' ' NH:'等帝電粒子與原子團的生合期(L i fe t i m e )極 短’在將電漿氣體由電漿管傳送到反應室的過程中,各帶 電丁與原十團將會相互作畀,與帶相反1g性的粒+重行 結合’而產生去離子化的電性中和現象。於是電漿氣禮中 大部分的帶電粒子與原子團,都在去離子化作同下形成電 中性粒子,使最後傳送到反應室内的氣體大致只包含不帶 電的令性粒子及原子1。在以氬氣為電漿前導物的最佳實 施例中’只有N、N*、N:等中性粒子能到達反應室内進行 反應。而在以氨氣為電漿前導物的實施例中,則有N、Η、 N、tr、ΝΗ、ΝΗ2等中性粒子能到達反應室。 在含氮氣體傳送到達反應室時,將反應室2 0中的製 程基板1 〇及基板上的<5夕層3 0,甴基座内的加熱元件(未 顯示)加熱至一特定溫度,以提升矽層30中之矽原子能 量,利於氮化石夕生成反應的進行》在一較佳實施例中,適 當的基板溫度宜維持在攝氏3 0 0度至攝氏9 0 0度左右,並 (請先閲讀背面之注意事項再填寫本頁) π 本紙張尺度適用中國國家標隼(CNS ) Α4規格(210Χ 297公釐) 經濟部智慧財產局員工消費合作社印製 B7 _五、發明説明() 於氮化矽製程進行中控制於此一溫度下, 當反應室円的含氮氣禮到達特定溫度下的s夕層3 0的 表靣拜’氙體t的氮成份將會與矽層3 0表面上的莎原-f 發生丨。/又應’叫生双固相氛化5夕材質於基坂表S Jl 3此 5甴反,:¾氣體中具有;敫發通的|i、改汾 ( N*).其能量及活 性皆遠高於基態的氮氣分子,利於反應的遠行,所以反應 室及反應氣體的溫度可以維待在相對的低溫條件下,显不 需要實施高溫製程= 在本發明最佳實施例中,β氮氣為反應電漿渌的前導 物’則到達反應室令的反應氣體兰要為気原子及氬分+ , 包含Ν、Ν,及等,其中的激發態氮原子(Ν*)極容易直 接與矽原子反應,生成氮化矽。此外,少部分的基態氮原 子也可能會發生反應。至於反應後的氣體,包含其它未参 予反應的氬成份,則甴幫浦抽送系統4 0抽離反應室,並 使電漿管令生成的含氮氣體繼續傳送到反應室中遠行反 應。 在本發明另一實施例中,以氨氣為反應電装源的前導 物,則到達反應室中的反應氣體將具有氮成汾及氩成份, 包含Ν、、Η、Η*、ΝΗ及ΝΗ:等等=其尹的基態及激發 態氮原子極容易與石夕原手反應生成氮化·ί;夕,而激發態氫原 子(Η )則易與·δ夕原子反應生成ΰ夕甲院(s j丨a n e , s i Η 4),也Τ (請先閔讀背面之注意事項再填寫木頁 -a 本紙張尺度適用中國®家橾準(CNS ) Λ4規格(210X297公釐) > ^ 460408 A7 經濟部智慧財產局員工消費合作社印製 B7五、發明説明() 能會有気& 9化物(SwN:,.Η:)產生,反應後的氣體,包含获 甲沒及其它未發生反應的氮與|成汾,則甴幫浦抽送系統 40柚離反應室,並使電漿管中生成的含氬氣體繼續涔送 到反應室T。 在本發明中所採角的反應方式,是氣態的氮成份與S 態的矽成份之間的反應,反應後氮化矽;a態生成物直接形 成於基板1 〇的表面上,沒有均勻性成核與氣相長晶的問 題,不會造成摒氣管路與真空抽氣幫浦的污染=而除此之 外,所造成的更重要影響則是有關於薄摸均句度的問題》 參見第二圖,在本發明製程開始實施之後,固態気化 矽層S 〇即開始形成=此圩反應氣體中的氬成份必須如箭 號9 0所示,穿透過氮化矽層S 0,方能與底層的S態矽成 份繼續進行氬化矽生成反應。當生成的氮化矽層S 0隨著 反應的進行越來越厚時,氣態氮成份越難穿過氬化矽層, 其穿透率及穿透速率也就越低,於是反應漸趨缓慢,使氮 化矽層S 0的厚度續增荜逐漸降低。第三圖令顯示出實施 本發明的氮化矽製程時,反應速率野應生成之氮化矽層厚 度的關係圖。當氮化矽層S 0的厚度達到一飽和值時,氣 態氮成份無法繼續穿過氮化矽層 8 0,生成反應即告終 止。 在此一反應機制中,若生成的氮化石夕層厚度不均勻 {請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X297公釐) 460408 A7 經濟部智慧財產局員工消費合作社印製 B7五、發明説明() 時,射気化矽層較厚笔將因1成份蛟難穿過,而具有較低 的’又..:.¾退午’於疋此尾氣化.获層的項增手減緩。而在I .丨匕 〇夕_考2父薄藏’則择3] I ,¾份较易穿過,而具育較高的反應 运率,此4氮化矽層的續增率也就轉高。於是不均勻處的 厚薄差距將因此逐;斩縮,i、,而不會增大,使不均句度聲 低‘均勻度因而大蝠提高, 第四圖令顯示出採用本發明之氮化矽製程時,氬化矽 薄强厚度對實施時間的關係圖,其_ T;及T:分別代表不 同的製程操作溫度,立溫度T 2大於T i。甴此圖令可以見 到’氮化矽層厚度的增加率,隨著製程進行的時間而趨 缓,最後厚度到達一兹和值而反應終土,此即氣態氮成份 無法穿透的厚度。厚度飽和值隨著製程操作溫度的升高而 變大;因為當操作溫度升高時,氣態氮成份動能增加,穿 透力增強.可以穿過較厚的氮化矽層道行反應,因此厚度 飽和值隨之增大。於本發明之較佳實跑例令,化學電漿法 在6 0秒的時間令,利用氮氣於溫度S 0 0。(;、8 5 0 及9 0 0 t狀況下,生成的氮化矽層厚度分別為I 2.4 7埃,1 3 . 5 2 埃及1 5 . S 4埃;而以傳統矽基板擴散方法在相同條件下之 S 0 0 °C、S 5 0 °C及9 0 0 3C生成的氮化矽層厚度分別為1 0.6 8 埃,12.04埃及12.74埃 利闬此一特性,籍著對製程操作溫度的控制,以及其 它製程參數的適當調整,可以掌握生成的氮化矽薄膜厚 度。配合本製程對薄膜均句度的調控.本發明可以形成極 (請先兒請背面之注意旱項再填寫本頁) 本紙張尺度通用中囤國家標隼(CNS ) A4現格(210X297公釐) 經濟部智惡財產局員工消費合作社印製 46〇4〇8 μ B7五、發明説明() 薄旦厚度均勻的気化矽薄獏,適罔於高集積度,深次激米 以下尺寸的主導體積體電路製裎。 此外,甴於本發明並不垛同提高溫度與動能的方法增 加反應物中氣態氮成份的反應活性,而诘採用電漿化的方 ;2^激發氛成份的,能階,錯以提高其反應活性.,例如使冃於 氣化 3L ( T a ;; 0 5)型之金屬絕緣 A^fiiMetaNInsuiator-5 5〇1丨(;〇:1(111(:1;〇11/1\[15)之氮化矽阻障層=在此一設計下,製 程操作溫度可以大幅译低,不會對製裎熱預算造成負讀, 而能不影響到積體電珞的其它製程,以及半導體元件士雜 質摻雜區域的分佈。在本發明之實施例令,氮化矽層的生 成溫度可以最低至3 0 0 t,S彳專統製程的溫度下限為6 5 0 L。而旦本發明所採圬的電漿產生程序係在製程反應室外 的電漿管中進行,電漿令的帶電粒子與原子S在傳送的過 程中,因再結合(Recombination)而產生去離子化的電性中 和現象,所以不會干擾氬化矽的生成反應,沒有電漿氣體 對基板材質產生離子為擊(bombardment)的效應,也不會 影響氮化矽生成薄膜的材料特性,可以在穩定的反應條件 下,製作出介電性能理想、均勻度佳、且緻密度及表面性 質良好的超薄氮化石夕層(u nt r a -1 h i η),例如約大於4埃之超 薄氮化矽層=> 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍:凡其它未脫離本發明所揭示之 (請先閱讀背面之注意事項再填寫本頁 訂 本纸張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) l A7 B7 五、發明説明() 精1 ~T所完成之等效改變或修热,均應包含在下述之申請 專利範圍巧,洌如,若要形成較厚的氮化咛層時,也可以 在23相的获材質之外、另行提供氣相的获材f <矽化合 物’ π Θ甲淀)作為汉應获亦。如此可以不受到厚度绝和 值的η制,又能在電焚ώ的帶!粒子已受到電中和的滑帝 下’獲致竣穩定的反應’及性能較丨圭的氪化矽材f。 (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作杜印製 16 本纸张尺度適用中國國家標擎(CNS ) A4規格(2丨0乂 297公釐)Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 4 6 υ 4 ο 8 Α7, Β7 V. Description of the invention () 5-4 Simple explanation: The invention is too invented. The following figures are used to describe in more detail: a certain park is a schematic diagram of the reaction equipment used in the preferred embodiment of the present invention for the production of nitrogen and dagger stone; the second diagram is the silicon nitride of the present invention A cross-sectional view of the substrate forming a silicon nitride thin film during the process; the third figure is the relationship between the reaction rate corresponding to the thickness of the silicon argon layer 1 when the silicon nitride process of the present invention is implemented; Fig. 3 i— n ----- --- Hi n h ------ T. I (Please read the back first Please note this page before filling in this page) 5-5 Drawing number comparison description: 10 substrate 20 reaction 3 0 silicon layer 40 help system 5 0 gas supply tube 60 plasma tube 70 microwave generator 80 silicon nitride layer 90 nitrogen Detailed description of the invention of the reaction gas 5-6: The present invention discloses a process of nitrite, Nitrogen component 1 is provided in the gas source to chemically react with the solid silicon component on the semiconductor substrate. U generates argonization. The paper size is applicable to the Chinese National Standard Soap (CNS) A4 specification (2IOX297 mm). R Industrial Consumption, Intellectual Property Bureau, Ministry of Economic Affairs Cooperative printed 46040 8 a? B7 V. Description of the invention () Silicon material 钭, by controlling the reaction mode between the gas phase (nitrogen) and m phase (silicon), the uniformity of the resulting thin film can be controlled, which can In the low component size 'high m product volume of the main volume body circuit process T' to produce ultra-thin silicon oxide layer = the invention uses electrical destruction to generate a method to improve the energy and activity of the gas phase I component, which catalyzes the reaction Carry out the plasma generation process outside the process reaction chamber. During the transmission process, the charged particles of the plasma can be neutralized with the original + S producer + ionization without interfering with the argonization process. The formation reaction in the evening will not affect the material characteristics of the thin argon formation, and it can produce the ultra-thin silicon nitride layer with dielectric properties, uniformity, density and surface properties that are ideal. The first figure shows a schematic diagram of the reaction setup adopted in the preferred embodiment of the silicon nitride manufacturing process of the present invention. The t semiconductor process substrate 10 is placed on the base in the reaction declaration: 0. A silicon layer 3 0 'is provided on the surface of the substrate 10 to improve the source of silicon components required for the silicon nitride generation reaction. This silicon layer 30 may be a part of the substrate 10, or α may be a silicon thin film which is separately deposited on the substrate. If the silicon layer 30 is a part of the substrate, it is generally a monocrystalline (S 丨 ngiecrysta 1) silicon structure; if it is a separately deposited silicon film, it may be polycrystalline (P ο 1 ysi 1 ic ο η) Or amorphous 5 eve (am 〇rph 〇us silicon; ^ # structure. When the silicon layer 30 on the semiconductor substrate 10 is exposed to the atmosphere, it is easy to form a native oxide 5 eve (Nativesi 1 ic ο η ο X ide), this one; raw oxidized stone will affect the formation reaction of silicon nitride, which may cause silicon oxynitride impurities (please read the precautions on the back before filling this page) 9 This paper size applies to Chinese national standards (CNS) A4 specification (210X297 mm) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs i-f 4 6040 8 a? 'B7 V. Description of the invention () Generate and reduce the reaction rate, so before the siliconized silicon process begins The degassed silicon process and the pre-treatment process can be selectively described. This degassed silicon process is usually carried out by dry etching to avoid residual etching by wet etching: night on the substrate surface. Use dry money 51 丨 method to remove "Co-Oxide To collect the fluorine containing 'ic · Zang Qiaodu, such as CF 4, C? F j, C 2 F ;; etc .: ¾ engraved gas, the reaction gas after ¾ engraved 甴 pupu delivery system 40 pump Leaving the reaction chamber 3 After the implementation of the previous mouse procedure, this line of the silicon nitride process 5 of the present invention can be used to make the nitrogen component of the silicon nitride material. It contains nitrogen. Provided by Zhao from the gas supply pipe 50 Among the slurry tubes 60, in the preferred embodiment of the present invention, nitrogen (N 2) is used as the best source for the reaction nitrogen component. In other embodiments, other nitrogen-containing gas such as ammonia (N 气;) It can also be used as the source of nitrogen component. 3 In the plasma tube 60 outside the reaction chamber, the nitrogen-containing gas is formed into plasma gas through partial ionization, that is, the nitrogen-containing gas is plasmatized. This plasmaization The procedure is to shock the nitrogen-containing gas in the plasma tube with the electric wave energy to cause the molecules in the gas to collide and dissociate (D iss 〇ciati ο η, molecules-atoms), excitation (ground state-excited state), Ionization (I 〇nizati ο η, loss or gain of electrons) and other reactions to generate atoms' electrons Various charged particles and atoms such as positive and negative ions, excited atoms, and the like are trapped, and the plasma is generated in tritium. In one embodiment, a microwave generator (Micr 〇wa ν e gene rat or) 70 may be used to emit microwave energy to the plasma. In the tube, the plasma is generated by impinging argon-containing gas. In the best embodiment, the argon precursor is used (please read the precautions on the back before filling this page). (CNS) A4 size (210 X 297 mm) Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, M Industrial Consumer Cooperative, 460408 A7 B7 V. Description of the invention () Case r, electricity; M, N * 'M-, Μ_, Ν ':', Μ_'e. Either the hand f has positive or negative electricity or electric order ί: 7. Cheng-τ13, notable for N * table currency: ¾ gas atom if it is ammonia and if ammonia is used Qi is the lead of the electric crossing, and the generated electric air is released! L contains Ν ', Ν' 'Η, Μ-' Η ~ 'Ν Η-' Ν Η, etc. Charged or electrically neutral atomic groups = Electricity or H with a content of .5L is generated, and then the pump is selected Sending system 40 'transfers plasma gas into reaction declaration 20. The N-, H-, NH ', NH:' and other electric particles and atomic groups have a very short life time (L i fe time) 'In the process of transferring plasma gas from the plasma tube to the reaction chamber, Each of the charged D groups and the original ten groups will interact with each other, and will combine with the opposite 1g particles + heavy rows' to produce a deionized electrical neutralization phenomenon. Therefore, most of the charged particles and atomic groups in the plasma gas ceremony are deionized to form electrically neutral particles at the same time, so that the gas finally transferred into the reaction chamber contains only uncharged ordered particles and atoms1. In a preferred embodiment using argon as a plasma precursor, only N, N *, N: and other neutral particles can reach the reaction chamber for reaction. In the embodiment where ammonia gas is used as the plasma precursor, neutral particles such as N, 、, N, tr, NΗ, and NΗ2 can reach the reaction chamber. When the nitrogen-containing gas is delivered to the reaction chamber, the process substrate 10 in the reaction chamber 20 and the <50th layer 30 on the substrate, and the heating element (not shown) in the base are heated to a specific temperature, In order to increase the energy of the silicon atoms in the silicon layer 30, it is beneficial to the progress of the nitride generation reaction. "In a preferred embodiment, the appropriate substrate temperature should be maintained at 300 degrees Celsius to 900 degrees Celsius, and ( Please read the notes on the back before filling in this page) π This paper size is applicable to China National Standard (CNS) Α4 size (210 × 297 mm) Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economics B7 _V. Description of the invention () Controlled at this temperature during the silicon nitride process, when the nitrogen contained in the reaction chamber reaches the temperature of the layer 30 at a specific temperature, the nitrogen content of the xenon body t will be equal to that of the silicon layer 30. On the surface, Sahara-f occurs 丨. / Also 'is called the dual-solid-phase atmosphere. The material is based on the Kisaka table S Jl 3, which has: ¾ in the gas; 敫 | i, Kaifen (N *). Its energy and activity The nitrogen molecules are much higher than the ground state, which facilitates the long-distance reaction. Therefore, the temperature of the reaction chamber and the reaction gas can be maintained at relatively low temperature conditions, which obviously does not require high temperature processes. In the preferred embodiment of the present invention, β Nitrogen is the precursor of the reaction plasma, and the reaction gas that reaches the reaction chamber must be a hafnium atom and argon +, including N, N, and so on. Among them, the excited nitrogen atom (N *) is easy to directly interact with The silicon atoms react to form silicon nitride. In addition, a small number of ground-state nitrogen atoms may also react. As for the reacted gas, which contains other argon components that are not involved in the reaction, the pump pumping system 40 pumps out of the reaction chamber, and the plasma tube causes the generated nitrogen-containing gas to continue to be transmitted to the reaction chamber for long-range reaction. In another embodiment of the present invention, if the ammonia is used as the precursor of the reaction source, the reaction gas reaching the reaction chamber will have nitrogen and argon components, including Ν, Η, Η *, ΝΗ, and ΝΗ: Etc. = The ground and excited nitrogen atoms of Yin can easily react with Shi Xiyuan to form nitrides; Xi, and excited hydrogen atoms (Η) can easily react with δ Xi atoms to form Xi Xijiayuan ( sj 丨 ane, si Η 4), also Τ (please read the notes on the back before filling in the wood page-a This paper size is applicable to China® furniture standard (CNS) Λ4 specification (210X297 mm) > ^ 460408 A7 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs B7 V. Invention Description () There may be 気 & 9 compounds (SwN:,. Η :), the reacted gases include those that have not been reacted and others that did not react Nitrogen and Chengfen, the pump pumping system 40 leaves the reaction chamber, and continues to purge the argon-containing gas generated in the plasma tube to the reaction chamber T. The reaction mode of the mining angle in the present invention is gaseous The reaction between the nitrogen component of S and the silicon component of the S state, the silicon nitride after the reaction; the product of the a state directly It is formed on the surface of the substrate 10, and there is no problem of uniform nucleation and gas phase growth, and it will not cause pollution of the exhaust pipe and vacuum pump = In addition, the more important impact is There is a question about the average degree of thin touch. "Referring to the second figure, after the process of the present invention is implemented, the solid siliconized silicon layer S0 begins to form = the argon component in the reaction gas must be as shown by arrow 90. By passing through the silicon nitride layer S 0, the argon silicon generation reaction with the underlying S-state silicon component can continue. When the generated silicon nitride layer S 0 becomes thicker and thicker as the reaction proceeds, the gaseous nitrogen component The harder it is to pass through the silicon argon layer, the lower its transmittance and penetration rate, so the reaction gradually slows down, causing the thickness of the silicon nitride layer S 0 to continue to increase and gradually decrease. The third figure shows the implementation Relation diagram of the thickness of the silicon nitride layer due to the reaction rate field during the silicon nitride process of the present invention. When the thickness of the silicon nitride layer S 0 reaches a saturation value, the gaseous nitrogen component cannot continue to pass through the silicon nitride layer 8 0, the generation reaction is terminated. In this reaction mechanism, if The thickness of the nitrided layer is uneven (please read the precautions on the back before filling this page) This paper size is applicable to the Chinese National Standard (CNS) Λ4 specification (210X297 mm) 460408 A7 Printed by the Employees ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs B7 V. Description of the invention (), when the thicker silicon layer is shot, it will be difficult to pass through because of the 1 component, and it will have a lower 'again .. :: ¾ retreat' in the tail gasification. Hand slows down. And in I. 丨 匕 〇 夕 _ 考 2 Father Bo Zang's choice 3] I, ¾ is easier to pass, and has a higher reaction rate, the continuation rate of this 4 silicon nitride layer is also Turn high. Therefore, the thickness gap at the unevenness will be reduced accordingly; shrinking, i, without increasing, so that the unevenness sound is low, and the uniformity is increased, and the fourth figure shows the nitriding using the present invention In the silicon manufacturing process, a graph of the relationship between the thickness and thickness of argon silicon and the implementation time, where _ T; and T: respectively represent different process operating temperatures, and the standing temperature T 2 is greater than T i.图 This figure shows that the increase rate of the thickness of the silicon nitride layer will slow down with the progress of the process, and the final thickness will reach the sum of the values to reflect the final soil. This is the thickness that the gaseous nitrogen component cannot penetrate. The thickness saturation value increases with the increase of process operating temperature; because when the operating temperature increases, the kinetic energy of the gaseous nitrogen component increases and the penetrating force increases. It can react through the thicker silicon nitride layer, so the thickness is saturated The value increases accordingly. In the preferred practice example of the present invention, the chemical plasma method was used at a time of 60 seconds, using nitrogen at a temperature of S 0 0. (;, Under the conditions of 850 and 900 t, the thickness of the generated silicon nitride layer is I 2.4 7 Angstroms, 1 3.5 2 Egypt 1 15. S 4 Angstroms; and the traditional silicon substrate diffusion method is the same Under the conditions of S 0 0 ° C, S 50 ° C and 9 0 0 3C, the thickness of the silicon nitride layer is 10.8 Angstroms, 12.04 Egypt 12.74 Angstroms. This characteristic is based on the characteristics of the process operating temperature. Control and appropriate adjustment of other process parameters can grasp the thickness of the silicon nitride film produced. In conjunction with the control of the film's uniformity of the film. The present invention can form a pole (please pay attention to the dry item on the back before filling this page) ) This paper is a universal medium-sized national standard (CNS) A4 (210X297 mm). Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 46040.0 μ B7 V. Description of the invention () Thin denier with uniform thickness The siliconized silicon thin film is suitable for the main volume body circuit system of high accumulation degree and the size below the sub-meter. In addition, the invention does not stack the method of increasing the temperature and kinetic energy to increase the gaseous nitrogen content in the reaction. Reactive, and 诘 uses a plasma-based method; 2 ^ Energy level, wrong to improve its reactivity. For example, metallized A ^ fiiMetaNInsuiator-5 501 (; 0: 1 (111 (: 1;); 〇11 / 1 \ [15) silicon nitride barrier layer = Under this design, the process operating temperature can be greatly reduced, which will not cause a negative reading of the heating budget of the heating system, and will not affect the integrated circuit. Other processes, as well as the distribution of impurity-doped regions of semiconductor elements. In the embodiment of the present invention, the formation temperature of the silicon nitride layer can be as low as 3 0 t, and the lower limit of the temperature of the special manufacturing process is 6 5 0 L. However, the plasma generation process of the radon collected in the present invention is performed in a plasma tube outside the process reaction chamber. The plasma causes the charged particles and atoms S to be recombined during the transfer process to generate the plasma particles. Ionized electrical neutralization phenomenon, so it will not interfere with the argon silicon generation reaction. There is no plasma gas on the substrate material to produce ion bombardment effect, nor will it affect the material characteristics of the silicon nitride generation film. Can produce stable and uniform dielectric properties under stable reaction conditions Ultra-thin silicon nitride layer (u nt ra -1 hi η) with good degree and good density and surface properties, such as an ultra-thin silicon nitride layer with a thickness greater than about 4 Angstroms = > The preferred embodiments are not intended to limit the scope of patent application of the present invention: all others that do not depart from the disclosure of the present invention (please read the notes on the back before filling in this page. The paper size is applicable to Chinese National Standards (CNS) A4 specifications (210 × 297 mm) l A7 B7 V. Description of the invention () Equivalent changes or heat repairs completed by fines 1 to T should be included in the scope of patent application below. For example, if a thicker In the case of the hafnium nitride layer, in addition to the 23-phase material, a material obtained in a vapor phase (f < silicon compound 'π Θ methyl lake) can also be used as the Han Ying. In this way, it is not subject to the absolute thickness of the η system, and it can also be used in electric burning! The particles have been subjected to a neutralization of the emperor ’s “stabilized reaction” and the performance is better than that of siliconized silicon f. (Please read the precautions on the back before filling out this page) Order Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs of the People's Republic of China. This paper size is applicable to China National Standard Engine (CNS) A4 specification (2 丨 0 乂 297 mm)