WO2007111263A1 - 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents
含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 Download PDFInfo
- Publication number
- WO2007111263A1 WO2007111263A1 PCT/JP2007/056061 JP2007056061W WO2007111263A1 WO 2007111263 A1 WO2007111263 A1 WO 2007111263A1 JP 2007056061 W JP2007056061 W JP 2007056061W WO 2007111263 A1 WO2007111263 A1 WO 2007111263A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituted
- unsubstituted
- carbon atoms
- general formula
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/56—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/64—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D235/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
- C07D235/02—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
- C07D235/04—Benzimidazoles; Hydrogenated benzimidazoles
- C07D235/18—Benzimidazoles; Hydrogenated benzimidazoles with aryl radicals directly attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
- H10K85/225—Carbon nanotubes comprising substituents
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1014—Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/103—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
Definitions
- the present invention relates to a novel nitrogen-containing heterocyclic derivative having a specific substituent, an organic electroluminescence (EL) device material using the same, and an organic EL device, and in particular, a component of the organic EL device
- the present invention relates to an organic EL device having a high luminous efficiency and a long life by using a nitrogen-containing heterocyclic derivative useful as at least one organic thin film layer.
- an EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer.
- light emission when an electric field is applied between both electrodes, electrons are injected from the cathode side, and positive holes are injected from the anode side. Furthermore, the electrons recombine with holes in the light emitting layer to generate an excited state, and energy is emitted as light when the excited state returns to the ground state.
- Patent Document 1 discloses an element using a compound having a benzimidazole structure as a light-emitting material, and the element emits light at a luminance of 200 cd / m 2 at a voltage of 9 V.
- Patent Document 2 describes a compound having a benzimidazole ring and an anthracene skeleton.
- Patent Document 3 a compound having an imidazole ring is used for a force light emitting layer and a hole blocking layer.
- Patent Document 1 US Pat. No. 5,645,948
- Patent Document 2 Japanese Patent Laid-Open No. 2002-38141
- Patent Document 3 Japanese Patent Application Laid-Open No. 2004-146368
- the present invention has been made to solve the above-mentioned problems, and provides a novel nitrogen-containing heterocyclic derivative useful as a constituent component of an organic EL device, and the nitrogen-containing heterocyclic derivative is an organic thin film. By using it for at least one layer, it is an object to realize an organic EL device having a high luminance and light emission efficiency with a low voltage.
- the present inventors have obtained a novel nitrogen-containing heterocyclic derivative having a specific structure in at least one organic thin film layer of an organic EL device. As a result, it was found that the use of the organic EL device can achieve low voltage, high luminance and high efficiency, and the present invention has been completed.
- the present invention provides a nitrogen-containing heterocyclic derivative represented by the following general formula (1).
- Ri to R 3 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted nuclear atom having 5 to 60 nuclear atoms.
- Teroaryl group substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 6 to 50 nucleus atoms, Substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted An alkoxycarbo group having 1 to 50 carbon atoms, An amino group, a halogen atom, a cyano group, a nitro group, a hydroxyl group, or a carboxyl group substituted with a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms,
- R a is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 60 nuclear atoms, a substituted or unsubstituted carbon atom having 1 to 5 carbon atoms.
- At least one of Ri to R 3 and R a is a substituent represented by the following general formula (2).
- (L is a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 5 to 60 nuclear atoms, or a substituted or unsubstituted fluorenylene group.
- Ar 1 is a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 5 to 60 nuclear atoms, or a substituted or unsubstituted fluorenylene group,
- Ar 2 is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 60 nuclear atoms, a substituted or unsubstituted carbon atom having 1 to 5 carbon atoms.
- substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms substituted or unsubstituted aralkyl group having 6 to 50 nuclear atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms
- substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms
- a substituted or unsubstituted alkoxycarbon group having 1 to 50 carbon atoms substituted or unsubstituted alkoxycarbon group having 1 to 50 carbon atoms.
- the nitrogen-containing heterocyclic derivative of the present invention is suitable as a material for an organic EL device.
- an organic thin film layer composed of one or more layers including at least a light emitting layer is sandwiched between a cathode and an anode, and at least one of the organic thin film layers is the nitrogen-containing layer of the present invention. It contains a heterocyclic derivative alone or as a component of a mixture.
- the nitrogen-containing heterocyclic derivative of the present invention and the organic EL device using the same are excellent in electron transport property, high light emission efficiency and high light emission efficiency at low voltage.
- the present invention provides a nitrogen-containing heterocyclic derivative represented by the following general formula (1).
- R a is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 60 nuclear atoms, a substituted or unsubstituted carbon atom having 1 to 5 carbon atoms.
- At least one of Ri to R 3 and R a is a substituent represented by the following general formula (2).
- L is a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted nuclear atom number of 5 to 60 heteroarylene groups, or substituted or unsubstituted fluorenylene groups.
- Ar 1 is a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 5 to 60 nuclear atoms, or a substituted or unsubstituted fluorenylene group.
- Ar 2 is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 60 nuclear atoms, a substituted or unsubstituted carbon atom having 1 to 5 carbon atoms.
- substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms substituted or unsubstituted aralkyl group having 6 to 50 nuclear atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms
- substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms
- a substituted or unsubstituted alkoxycarbon group having 1 to 50 carbon atoms substituted or unsubstituted alkoxycarbon group having 1 to 50 carbon atoms.
- the nitrogen-containing heterocyclic derivative represented by the general formula (1) is preferably a compound represented by the following general formula (1a), (1b) or (1c).
- R 4 to R 9 are independently the same as Ri to R 3 in the general formula (1).
- Ar 7 and Ar 9 are each independently the same as Ar 1 in the general formula (1).
- Ar 6 , Ar 8 and Ar 1Q are each independently the same as Ar 2 in the general formula (1).
- L 1 , L 2 , L 3 and L 4 are each independently the same as L in the general formula (1).
- the nitrogen-containing heterocyclic derivative represented by the general formula (1) is preferably the following general formula (1d) or
- R 1Q to R 15 are independently the same as Ri to R 3 in the general formula (1).
- R d and are each independently the same as R a in the general formula (1).
- Ri ⁇ R 15 , R a ⁇ , Ar 2 , Ar 8 and Ar substituted or unsubstituted nuclei C6-C60 aryl groups and C5-C60 heteroaryl groups include, for example, phenol groups, 1-naphthyl groups, 2-naphthyl groups.
- a phenyl group, a naphthyl group, a biphenyl group, an anthracenyl group, a phenanthryl group, a pyraryl group, a chrysyl group, a fluoranthuric group, and a fluorine group are preferable.
- Examples of the alkyl group having 1 to 50 carbon atoms that are Ar 8 and Ar 1Q include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, and n-pentyl group.
- Ri ⁇ R 15 , R a ⁇ , Ar 2 Specific examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms that are Ar 8 and Ar 1Q include, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a 4-methylcyclohexyl group.
- Examples of substituted or unsubstituted aralkyl groups having 6 to 50 atoms as Ar 8 and Ar 1Q include benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2 Hue - Le isopropyl, Hue - Lou t-butyl radical, a naphthylmethyl group, 1 alpha Nafuchiruechiru group, 2-a- Nafuchiruechiru group, 1 - a naphthyl isopropyl, 2-a naphthylisopropyl group, 13 naphthylmethyl group , 1- ⁇ naphthylethyl group, 2- ⁇ naphthylethyl group, 1 ⁇ naphthylisopropyl group, 2- ⁇ naphthylisopropyl group, 1 pyrrolylmethyl group, 2- (1 pyrrolylmethyl group, 2- (1 pyrrolylmethyl group, 2- (1 pyr
- the substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms which is Ar 8 and Ar 1Q is a group represented by OY, and examples of Y include the same examples as those described for the alkyl group. It is done.
- the ⁇ 50 allyloxy group is represented as OY ′, and examples of Y ′ include the same examples as described for the allyl group.
- the substituted or unsubstituted arylenethio group having 5 to 50 nuclear atoms, which is Ar 8 and Ar 1Q , is represented as SY ′, and examples of Y ′ include the same examples as those described for the aryl group.
- the substituted or unsubstituted alkoxycarbo group having 1 to 50 carbon atoms which is Ar 8 and Ar 1Q is a group represented by COOY, and examples of Y are the same as those described for the alkyl group above. Examples are given.
- Ri ⁇ R 15 examples of aryl groups in an amino group substituted with a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms that are ⁇ / and A r 1Q are the same as those described for the aryl group. An example is given.
- halogen atom that is Ar 8 and Ar 1 () include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- Specific examples of the substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms which are Ar 7 and Ar 9 include a diene group formed by removing one hydrogen atom from the substituent described in the aryl group. And a phenylene group, a naphthylene group, a biphenylene group, an anthrene group, a phenanthrylene group, a pyrylene group, a chrysylene group, a fluoranthylene group, and a fluorenylene group.
- substituted or unsubstituted heteroarylene group having 5 to 60 nuclear atoms that are Ar 7 and Ar 9 include, by substituting one hydrogen atom from the substituent described for the heteroaryl group.
- Divalent substituents such as pyridyl, birazyl, quinolyl, isoquinolyl, phenanthryl, furyl, benzofuryl, dibenzofuryl, chael, dibenzocher,
- divalent groups in which a hydrogen atom is removed from a benzocher group, pyrrolyl group, indolyl group, carbazolyl group, imidazolyl group, benzimidazolyl group, etc. preferably a pyridyl group, a quinolyl group, a carbazolyl group, an indolyl group It is a divalent group except for a hydrogen atom.
- the nitrogen-containing heterocyclic derivative of the present invention is a material for an organic EL device.
- the nitrogen-containing heterocyclic derivative of the present invention is preferably an electron injection material or an electron transport material for organic EL devices.
- the nitrogen-containing heterocyclic derivative of the present invention is preferably a light emitting material for an organic EL device.
- the organic EL device of the present invention is an organic EL device in which an organic thin film layer composed of one or more layers including at least a light emitting layer is sandwiched between a cathode and an anode, and at least one of the organic thin film layers is the nitrogen-containing layer. Contains a heterocyclic derivative alone or as a component of a mixture.
- the organic thin film layer has an electron injection layer or an electron transport layer, and the electron injection layer or the electron transport layer is a component of the nitrogen-containing heterocyclic derivative of the present invention alone or as a component of a mixture. It is preferable to contain as.
- the organic EL device of the present invention is an organic EL device in which one or more organic thin film layers including at least a light emitting layer are sandwiched between a cathode and an anode, and the nitrogen-containing complex of the present invention is included in the light emitting layer.
- the ring derivative is preferably contained alone or as a component of a mixture.
- the electron injection layer or the electron transport layer containing the nitrogen-containing heterocyclic derivative of the invention contains a reducing dopant.
- the reducing dopant of the organic EL device of the present invention is preferably an alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkaline earth metal oxide, alkali.
- Anode z Inorganic semiconductor layer Z insulating layer Z light emitting layer Z insulating layer Z cathode (14) Anode Z Organic semiconductor layer Z insulating layer Z light emitting layer Z insulating layer Z cathode
- the nitrogen-containing heterocyclic derivative of the present invention may be used in any organic thin film layer of an organic EL device.
- it can be used in an emission band or an electron transport band, and particularly preferably an electron injection layer, an electron transport layer and a light emission. Used for layers.
- the organic EL device of the present invention is manufactured on a light-transmitting substrate.
- the translucent substrate mentioned here is a substrate that supports the organic EL device, and a smooth substrate with a light transmittance in the visible region of 400 to 700 nm of 50% or more is preferable.
- a glass plate, a polymer plate, etc. are mentioned.
- the glass plate include soda lime glass, norium'strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
- the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyethersulfide, and polysulfone.
- the anode of the organic EL device of the present invention has a function of injecting holes into the hole transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
- Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), acid-tin tin (NE SA), indium-zinc oxide (IZO), gold, silver, platinum, copper, and the like. Can be mentioned.
- the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
- the transmittance for light emission of the anode Is preferably greater than 10%.
- the sheet resistance of the anode is preferably several hundred ⁇ or less.
- the film thickness of the anode is a force depending on the material. Usually, it is selected in the range of 10 nm to l ⁇ m, preferably 10 to 200 nm.
- the light emitting layer of the organic EL device has the following functions (1) to (3).
- Injection function a function that can inject holes from the anode or hole injection layer when an electric field is applied, and a function that can inject electrons from the cathode or electron injection layer
- Transport function Function to move injected charges (electrons and holes) by the force of electric field
- Luminescent function a function that provides a field for recombination of electrons and holes, and connects this to light emission.However, there is no difference between the ease of hole injection and the ease of electron injection. Although the transport capacity expressed by the mobility of holes and electrons is large or small, it is preferable to move one of the charges.
- the light emitting layer is particularly preferably a molecular deposited film.
- the molecular deposition film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state.
- a film can be classified from a thin film (accumulated film) formed by the LB method by the difference in aggregated structure and higher-order structure and functional differences resulting from it.
- a binder such as rosin and a material compound are dissolved in a solvent to form a solution, which is then thin-filmed by spin coating or the like.
- the light emitting layer can also be formed by twisting.
- a known light emitting material other than the light emitting material comprising the nitrogen-containing heterocyclic derivative of the present invention may be contained in the light emitting layer as desired, as long as the object of the present invention is not impaired.
- a light emitting layer containing another known light emitting material may be laminated on the light emitting layer containing the light emitting material comprising the nitrogen-containing heterocyclic derivative of the present invention.
- Examples of the light emitting material or doping material that can be used for the light emitting layer include allylamin compounds and Z or styrylamine compounds, anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, tarisene, fluorescein, perylene, lidar perylene, naphtholene.
- Taloperylene perinone, lidar perinone, naphtalin perinone, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxaziazole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentagen, quinoline metal complex, aminoquinoline metal complex, benzo Examples include quinoline metal complexes, imine, diphenylethylene, buranthracene, diaminocarbazole, pyran, thiopyran, polymethine, merocyanine, imidazole chelated oxinoid compounds, quinacridone, rubrene, and fluorescent dyes. It is not limited.
- the light emitting layer preferably contains an arylamine compound and Z or styrylamine compound.
- arylamine compounds include compounds represented by the following general formula (A), and examples of styrylamine compounds include compounds represented by the following general formula (B).
- Ar represents a fuel, a bifuel, a terpheal, a stilbene, a distil
- Luaryl force is a selected group, Ar and Ar are each a hydrogen atom or a carbon number.
- Ar to Ar may be substituted.
- p is an integer from 1 to 4.
- the aromatic group having 6 to 20 carbon atoms is preferably a phenyl group, a naphthyl group, an anthracyl group, a phenanthryl group, a terphenyl group, or the like.
- aryl groups having 5 to 40 nuclear atoms include phenyl, naphthyl, anthracenyl, phenanthryl, pyrenyl, coloninole, biphenyl, terphenyl, pyrrolyl, furanyl, thiophenyl, benzothiophenyl, oxadiazolyl, Preference is given to diphenylanthracenyl, indolyl, carbazolyl, pyridyl, benzoquinolyl, fluoranthenyl, isenaftfluoroolturyl, stilbene and the like.
- the aryl group having 5 to 40 nucleus atoms may be further substituted with a substituent.
- alkyl groups having 1 to 6 carbon atoms ethyl group, methyl group, isopropyl group, n —Propyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, etc.
- alkoxy group having 1 to 6 carbon atoms ethoxy group, methoxy group, isopropoxy group, n— Propoxy group, s-butoxy group, t-butoxy group, pentoxy group, hexyloxy group, cyclopentoxy group, cyclohexyloxy group, etc.
- aryl group having 5-40 nuclear atoms aryl group having 5-40 nuclear atoms
- Ar is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms
- Ar is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms
- X is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
- a, b and c are each an integer of 0-4.
- n is an integer of 1 to 3. When n is 2 or more, the values in [] may be the same or different. )
- Ar 1 and Ar 2 are each independently a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, and m and n are each an integer of 1 to 4)
- ⁇ ! ⁇ Is independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted Is an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, Substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, Substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted alkoxycarbon group having 1 to 50 carbon atoms, substituted or unsubstituted silyl group
- Ar and Ar are each a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
- L and L are each a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group.
- n is an integer from 1 to 4
- s is an integer from 0 to 2
- t is an integer from 0 to 4.
- L or Ar is bonded to any of the 1-5 positions of pyrene, and L or Ar, is bonded to any of the 6-10 positions of pyrene.
- substitution positions of L and L 'or Ar and Ar in pyrene are not the 1st and 6th positions or the 2nd and 7th positions.
- a 1 and A 2 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
- Ar 1 and Ar 2 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms.
- R 1 -I ⁇ each independently represents a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, or a substituted group.
- Substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted alkoxycarbo group having 1 to 50 carbon atoms, substituted or An unsubstituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group.
- Ar 2 , R 9 and R 1Q may be plural or adjacent to each other and may be saturated. Alternatively, an unsaturated cyclic structure may be formed.
- 1 ⁇ to 1 ⁇ ° are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an optionally substituted aryl group, an alkoxyl group, an aryloxy group, an alkylamino group, or an alkyl group.
- An arylamino group or an optionally substituted heterocyclic group, a and b each represent an integer of 1 to 5, and when they are 2 or more, R 1 or R 2 are each it is the same or different Yogumata R1 s or R2 may be bonded to each other to form a ring, R 3 and R 4, R 5 and R 6, R 7 and R 8, R 9 and R 1 (> may be bonded to each other to form a ring.
- L 1 is a single bond, — O—, — S—, — N (R) — (R is an alkyl group or an optionally substituted aryl Group), an alkylene group or an arylene group.
- L 2 represents a single bond, —O—, 1 S—, —N (R) — (where R is an alkyl group or an optionally substituted aryl group), an alkylene group or an arylene group.
- a 5 to A 8 are each independently a substituted or unsubstituted biphenyl group or a substituted or unsubstituted naphthyl group.
- R 21 to R 23 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, An alkoxyl group having 1 to 6 carbon atoms, an aryloxy group having 5 to 18 carbon atoms, an aralkyloxy group having 7 to 18 carbon atoms, an arylamino group having 5 to 16 carbon atoms, a nitro group, a cyano group, and an ester group having 1 to 6 carbon atoms. Or a halogen atom, and at least one of A 9 to A 14 is a group having three or more condensed aromatic rings.
- R and R are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or
- R 1 2 may be the same or different.
- R and R bonded to the loulene group may be the same or different.
- Ar and Ar Is a substituted or unsubstituted condensed polycyclic aromatic group having a total of 3 or more benzene rings, or a condensed polycyclic ring having a total of 3 or more substituted or unsubstituted carbons of the benzene ring and heterocyclic ring bonded to a fluorene group. Represents a heterocyclic group, Ar and Ar are the same or different
- n an integer of 1 to 10.
- anthracene derivatives are preferable, monoanthracene derivatives are more preferable, and asymmetric anthracene is particularly preferable.
- a phosphorescent compound can also be used as the dopant light-emitting material.
- a compound containing a force rubazole ring as a host material is preferable.
- the dopant is a compound capable of emitting triplet exciton force, and is not particularly limited as long as the triplet exciton force also emits light. However, at least one group force including Ir, Ru, Pd, Pt, Os and Re force is also selected.
- a metal complex containing two metals is preferred.
- a host suitable for phosphorescence emission with a compound power containing a strong rubazole ring is a compound having the function of emitting a phosphorescent compound as a result of energy transfer from its excited state to the phosphorescent compound. is there.
- the host compound is not particularly limited as long as it is a compound that can transfer the exciton energy to the phosphorescent compound, and can be appropriately selected according to the purpose. It may have an arbitrary heterocyclic ring in addition to the force rubazole ring.
- host compounds include force rubazole derivatives, triazole derivatives, oxazole derivatives, oxaziazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, furan diamine derivatives, arylamine derivatives , Amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquinodis Methane derivatives, anthrone derivatives, diphenylquinone derivatives, thiobilane dioxide derivatives, carpositimide derivatives, fluorenylidenemethane derivatives, distyrylvirazine derivatives, naphthalene derivatives Heterocycl
- the phosphorescent dopant is a compound capable of emitting triplet exciton power.
- the triplet exciton force is not particularly limited as long as it emits light, but a group complex of Ir, Ru, Pd, Pt, Os, and Re force is preferably a metal complex containing at least one selected metal, and is preferably a porphyrin metal complex or ortho metal ion. ⁇ Metal complexes are preferred.
- the porphyrin metal complex is preferably a porphyrin platinum complex.
- the phosphorescent compound may be used alone or in combination of two or more.
- ligands that form ortho-metal complexes
- preferred ligands include 2 phenyl pyridine derivatives, 7, 8 benzoquinoline derivatives, and 2- (2-Che) pyridine derivatives. , 2- (1 naphthyl) pyridine derivatives, 2-phenol-quinoline derivatives, and the like. These derivatives may have a substituent as necessary. In particular, fluorinated compounds and trifluoromethyl groups are introduced. Yes. Further, it may have a ligand other than the above ligands such as acetylylacetonate and picric acid as an auxiliary ligand.
- the content of the phosphorescent dopant in the light-emitting layer is a force that can be appropriately selected according to the purpose of restriction, for example, 0.1 to 70% by mass, and 1 to 30% by mass. preferable.
- the phosphorescent emissive compound content is less than 0.1% by mass, the light emission is weak and the effect of the content is not fully exhibited.
- the content exceeds 70% by mass a phenomenon called concentration quenching occurs. It becomes remarkable and the device performance deteriorates.
- the light emitting layer may contain a hole transport material, an electron transport material, and a polymer binder as necessary.
- the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and most preferably 10 to 50 nm. If the thickness is less than 5 nm, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity. If it exceeds 50 nm, the driving voltage may increase.
- the hole injection 'transport layer is a layer that helps injecting holes into the light emitting layer and transports it to the light emitting region, and has a high ion mobility with a high hole mobility, usually less than 5.5 eV.
- a hole injection / transport layer a material that transports holes to the light-emitting layer with a lower electric field strength is preferable.
- the mobility force of holes for example, 10 4 ⁇ : When an electric field of LO Zcm is applied, At least 10 4 cm 2 ZV ⁇ sec is preferred! /.
- the material for forming the hole injecting / transporting layer is not particularly limited as long as it has the above-mentioned preferable properties. Conventionally, materials commonly used as hole charge transporting materials in photoconductive materials, organic materials Any known material used for the hole-injecting / transporting layer of EL devices can be selected and used.
- JP-A 55-880 64 Gazette, 55-88065, 49-105537, 55-51086, 56-80051, 56-88141, 57-45545, 54-1 12637 No. 55-74546, etc.), Phylenediamine derivatives (US Pat. No. 3,615,404, JP-B 51-10105, 46-3712, 47-25336) JP, 54-53435, 54-110536, 54-119925, etc.), arylamine derivatives (US Pat. No. 3,567,450, 3,180,703) No. 3,240,597, No. 3,658,520, No. 4,232,103, No. 4,175,961, No. 4, 012, 3 No.
- Hole injection ⁇ Hole injection that can be used in the transport layer ⁇ As a transport material, the following general formula
- a compound represented by (X) is preferred.
- 4 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms
- Ri to R 2 are each independently a hydrogen atom, substituted or unsubstituted nuclear carbon number.
- a phenyl group, a naphthyl group, a biphenyl group, a terphenyl group, a phenanthryl group and the like are preferable.
- the aryl group having 6 to 50 nuclear carbon atoms may be further substituted with a substituent.
- Preferred substituents include alkyl groups having 1 to 6 carbon atoms (methyl group, ethyl group, isopropyl group, n Propyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, etc.), and an amino group substituted with an aryl group having 6 to 50 nuclear carbon atoms.
- NPD 1-bis (N— (1-naphthyl) N phenol having two condensed aromatic rings described in US Pat. No. 5,061,569 in the molecule.
- NPD 1-bis (N— (1-naphthyl) N phenol having two condensed aromatic rings described in US Pat. No. 5,061,569 in the molecule.
- NPD 1-bis (N— (1-naphthyl) N phenol having two condensed aromatic rings described in US Pat. No. 5,061,569 in the molecule.
- NPD 1-bis (N— (1-naphthyl) N phenol having two condensed aromatic rings described in US Pat. No. 5,061,569 in the molecule.
- NPD 1-bis (N— (1-naphthyl) N phenol having two condensed aromatic rings described in US Pat. No. 5,061,569 in the molecule.
- NPD 1-bis (N— (1-naphthyl) N phenol having two conden
- p-type Inorganic compounds such as Si and p-type SiC can also be used as the material for the hole injection / transport layer.
- the hole injecting / transporting layer can be formed by thin-filming the above compound by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
- the thickness of the hole injecting / transporting layer is not particularly limited, but is usually 5 ⁇ to 5 / ⁇ .
- the hole injection / transport layer may be composed of one or more of the above-described materials as long as it contains the above compound in the hole transport zone. A layer in which a hole injecting / transporting layer made of a different kind of compound is laminated may be used.
- a hole injection or electron injection organic semiconductor layer provided as a layer to help Moyogu 10- 1Q SZcm more of the conductivity of the light-emitting layer.
- Examples of the material of such an organic semiconductor layer include thiophene oligomers, conductive oligomers such as allylamin oligomers disclosed in JP-A-8-193191, and conductive properties such as allylamin dendrimers. Dendrimers, tetracyanoquinodimethane derivatives, hexocyanohexazatriphenylene (Patent Publication No. 03614405) and the like can be used.
- Electron injection 'transport layer (electron transport zone)
- the electron injection layer 'transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a large electron mobility and usually a high electron affinity of 2.5 eV or more.
- a material that transports electrons to the light emitting layer with a lower electric field strength is preferred.
- an electron mobility force of, for example, 10 4 to: at least 10 6 cm when an electric field of LO Zcm is applied. 2 ZV 'seconds are preferred!
- the electron-injecting / transporting layer may be formed of the nitrogen-containing heterocyclic derivative of the present invention alone or may be mixed with other materials.
- the material for mixing with the nitrogen-containing heterocyclic derivative of the present invention to form an electron injecting / transporting layer is not particularly limited as long as it has the above-mentioned preferable properties. Any one of commonly used ones and known ones used for the electron injection / transport layer of organic EL devices can be selected and used.
- the adhesion improving layer is a layer made of a material that has a particularly good adhesion to the cathode in the electron injection layer.
- the compound of the present invention is transferred to the electron injection layer ′ It is preferable to use it as a feeding layer or an adhesion improving layer.
- the organic EL device of the present invention there is a device containing a reducing dopant in an electron transporting region or an interface region between a cathode and an organic layer.
- an organic EL device containing a reducing dopant in the compound of the present invention is preferable.
- the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earths.
- At least one substance selected from can be preferably used.
- preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1).
- 95eV) Force Group force At least one selected alkali metal, Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.52 eV) ) Force group force It is particularly preferred that the work function in which at least one alkaline earth metal is selected is 2.9 eV or less.
- a more preferable reducing dopant is at least one alkali metal selected from the group power consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs. It is.
- alkali metals can improve emission brightness and extend the life of organic EL devices by adding a relatively small amount to the electron injection region, which has a particularly high reducing ability.
- a reducing dopant having a work function of 2.9 eV or less a combination of these two or more alkali metals is also preferred.
- combinations containing Cs, such as Cs and Na, Cs and K, A combination of Cs and Rb or Cs, Na and ⁇ is preferred.
- an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer. At this time, the current injection is effectively prevented and the electron injection property is improved. Can be made.
- an insulator at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides may be used. Preferred. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
- preferred alkali metal strength rucogates include, for example, Li 0, K 0, Na S, Na Se and Na 2 O, and are preferred.
- New alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, BeO, BaS, and CaSe.
- preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KC1, and NaCl.
- Preferred examples of the alkaline earth metal halide include CaF, BaF, SrF, MgF, and BeF.
- V iodofluoride
- halides other than fluoride
- the inorganic compound constituting the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the above-mentioned alkali metal chalcogenides, alkaline earth metal strength alkoxides, alkali metal halides and alkaline earth metal halides.
- the cathode in order to inject electrons into the electron injecting / transporting layer or the light emitting layer, a material having a small work function (4 eV or less) metal, an alloy, an electrically conductive compound, and a mixture thereof is used.
- electrode materials include sodium, sodium 'potassium alloy, magnesium, lithium, magnesium' silver alloy, aluminum / acid aluminum, aluminum 'lithium alloy, indium, and rare earth metals. It is done.
- This cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
- the transmittance for the light emission of the cathode is preferably larger than 10%.
- the sheet resistance as a cathode is several hundred ⁇ or less.
- the preferred film thickness is usually ⁇ ! To 1 m, preferably 50 to 200 nm.
- organic EL devices apply an electric field to ultra-thin films, pixel defects are likely to occur due to leaks and shorts. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
- Examples of materials used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, and titanium oxide. , Silicon oxide, oxide germanium, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide, and the like, and a mixture or laminate thereof may be used.
- anode By forming the anode, the light-emitting layer, the hole injection 'transport layer, and the electron injection' transport layer as necessary, and the cathode by forming the anode and the light-emitting layer, if necessary, by the materials and formation methods exemplified above, and further forming the cathode
- An element can be manufactured.
- An organic EL element can also be fabricated from the cathode to the anode in the reverse order.
- an organic EL device having a configuration in which an anode, a hole injection layer, a Z light emitting layer, a Z electron injection layer, and a Z cathode are sequentially provided on a light transmitting substrate will be described.
- a thin film made of an anode material is formed on a suitable translucent substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm, to produce an anode.
- a hole injection layer is provided on the anode.
- the hole injection layer can be formed by a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like, but a homogeneous film can be obtained immediately and pinholes are generated. It is preferable to form by a vacuum vapor deposition method.
- the deposition conditions vary depending on the compound used (material of the hole injection layer), the crystal structure and recombination structure of the target hole injection layer, etc.
- Deposition source temperature 50 ⁇ 450 ° C, degree of vacuum 10— ⁇ 10 Torr, deposition rate 0.01 to 50 nmZ second, substrate temperature ⁇ 50 to 300 ° C., film thickness 5 nm to 5 ⁇ m are preferably selected as appropriate.
- the formation of a light-emitting layer in which a light-emitting layer is provided on a hole injection layer is also performed using a desired organic light-emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting.
- a method such as vacuum deposition, sputtering, spin coating, or casting.
- the deposition conditions vary depending on the compound used, but can generally be selected from the same condition range as the hole injection layer.
- an electron injection layer is provided on the light emitting layer.
- a vacuum deposition method because a uniform film is required.
- the vapor deposition conditions can be selected from the same condition ranges as those for the hole injection layer and the light emitting layer.
- the nitrogen-containing heterocyclic derivative of the present invention varies depending on which layer in the emission band or the hole transport band, but when using the vacuum evaporation method, co-evaporation with other materials should be performed. Can do. Moreover, when using a spin coat method, it can be contained by mixing with other materials.
- a cathode can be stacked to obtain an organic EL device.
- the cathode also has a metallic force, and vapor deposition and sputtering can be used. In order to protect the underlying organic layer from the damage when forming the film, vacuum deposition is preferred. It is preferable to fabricate the organic EL element from the anode to the cathode consistently by a single vacuum.
- the method for forming each layer of the organic EL device of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
- the organic thin film layer containing the compound represented by the general formula (1) used in the organic EL device of the present invention is a vacuum deposition method, a molecular beam deposition method (MBE method) or a dating method of a solution dissolved in a solvent, It can be formed by a known method such as a spin coating method, a casting method, a bar coating method, or a roll coating method.
- each organic layer of the organic EL device of the present invention is not particularly limited, but in general, if the film thickness is too thin, defects such as pinholes occur, and conversely, if it is too thick, a high applied voltage is required. Usually, the range of several nm to 1 ⁇ m is preferable.
- a direct current voltage When a direct current voltage is applied to the organic EL element, light emission can be observed by applying a voltage of 5 to 40 V with the anode set to + and the cathode set to one polarity. In addition, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Furthermore, when AC voltage is applied, uniform light emission is observed only when the anode is + and the cathode is of the same polarity.
- the alternating current waveform to be applied may be arbitrary.
- Example 1 (Preparation of an organic EL device using the compound of the present invention in an electron transport layer)
- This TPD232 film functions as a hole injection layer.
- a 4,4, -bis [N— (1-naphthyl) -N-phenolamino] bi-film film (hereinafter “NPD film”) with a thickness of 20 nm is formed on the TPD232 film. Abbreviated as “)”.
- NPD film functions as a hole transport layer.
- an anthracene derivative A1 and a styrylamine derivative S1 represented by the following formula were formed on the NPD film at a film thickness ratio of 40: 2 to form a blue light emitting layer.
- Al S1 Compound (1) was deposited on this film by vapor deposition as an electron transport layer with a thickness of 20 nm. Thereafter, LiF was deposited to a thickness of 1 nm. On this LiF film, 150 nm of metal A1 was deposited to form a metal cathode to form an organic EL light emitting device.
- Example 2 An organic EL device was produced in the same manner as in Example 1, except that compound (2) was used instead of compound (1).
- Example 1 an organic EL device was produced in the same manner except that the compound (3) was used instead of the compound (1).
- An organic EL device was produced in the same manner as in Example 1, except that compound (4) was used instead of compound (1).
- Example 1 an organic EL device was produced in the same manner except that the following compound A described in International Publication No. WO 2004/080975 A1 was used instead of the compound (1).
- Example 1 an organic EL device was produced in the same manner except that the following compound B described in International Publication No. WO 2004/080975 A1 was used instead of the compound (1).
- the organic EL device of the present invention is extremely useful as a light source for various electronic devices.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Nanotechnology (AREA)
- Electroluminescent Light Sources (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07739502A EP2000463A2 (en) | 2006-03-27 | 2007-03-23 | Nitrogen-containing heterocyclic derivative and organic electroluminescent device using same |
JP2008507472A JPWO2007111263A1 (ja) | 2006-03-27 | 2007-03-23 | 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-086026 | 2006-03-27 | ||
JP2006086026 | 2006-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007111263A1 true WO2007111263A1 (ja) | 2007-10-04 |
Family
ID=38541180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/056061 WO2007111263A1 (ja) | 2006-03-27 | 2007-03-23 | 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20080018237A1 (ja) |
EP (1) | EP2000463A2 (ja) |
JP (1) | JPWO2007111263A1 (ja) |
KR (1) | KR20080105113A (ja) |
CN (1) | CN101410380A (ja) |
TW (1) | TW200745046A (ja) |
WO (1) | WO2007111263A1 (ja) |
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101460361B1 (ko) * | 2008-01-16 | 2014-11-10 | 주식회사 엘지화학 | 새로운 이미다졸 유도체 및 이를 이용한 유기전자소자 |
EP3056504A1 (en) | 2015-02-16 | 2016-08-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3061763A1 (en) | 2015-02-27 | 2016-08-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3098229A1 (en) | 2015-05-15 | 2016-11-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3101021A1 (en) | 2015-06-01 | 2016-12-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3124488A1 (en) | 2015-07-29 | 2017-02-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3159350A1 (en) | 2015-09-03 | 2017-04-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3205658A1 (en) | 2016-02-09 | 2017-08-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3231809A2 (en) | 2016-04-11 | 2017-10-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3261147A1 (en) | 2016-06-20 | 2017-12-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3261146A2 (en) | 2016-06-20 | 2017-12-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3270435A2 (en) | 2016-06-20 | 2018-01-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3297051A1 (en) | 2016-09-14 | 2018-03-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3301088A1 (en) | 2016-10-03 | 2018-04-04 | Universal Display Corporation | Condensed pyridines as organic electroluminescent materials and devices |
EP3305796A1 (en) | 2016-10-07 | 2018-04-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3321258A1 (en) | 2016-11-09 | 2018-05-16 | Universal Display Corporation | 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds |
EP3323822A1 (en) | 2016-09-23 | 2018-05-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3345914A1 (en) | 2017-01-09 | 2018-07-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3354654A2 (en) | 2016-11-11 | 2018-08-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3381927A1 (en) | 2017-03-29 | 2018-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3401318A1 (en) | 2017-05-11 | 2018-11-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3418286A1 (en) | 2017-06-23 | 2018-12-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3444258A2 (en) | 2017-08-10 | 2019-02-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3489243A1 (en) | 2017-11-28 | 2019-05-29 | University of Southern California | Carbene compounds and organic electroluminescent devices |
EP3492480A2 (en) | 2017-11-29 | 2019-06-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3492528A1 (en) | 2017-11-30 | 2019-06-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3613751A1 (en) | 2018-08-22 | 2020-02-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3690973A1 (en) | 2019-01-30 | 2020-08-05 | University Of Southern California | Organic electroluminescent materials and devices |
EP3689889A1 (en) | 2019-02-01 | 2020-08-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3715353A1 (en) | 2019-03-26 | 2020-09-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3750897A1 (en) | 2019-06-10 | 2020-12-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3771717A1 (en) | 2019-07-30 | 2021-02-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3778614A1 (en) | 2019-08-16 | 2021-02-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3816175A1 (en) | 2019-11-04 | 2021-05-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3845545A1 (en) | 2020-01-06 | 2021-07-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3858945A1 (en) | 2020-01-28 | 2021-08-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3937268A1 (en) | 2020-07-10 | 2022-01-12 | Universal Display Corporation | Plasmonic oleds and vertical dipole emitters |
EP4001287A1 (en) | 2020-11-24 | 2022-05-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4001286A1 (en) | 2020-11-24 | 2022-05-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4016659A1 (en) | 2020-11-16 | 2022-06-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4019526A1 (en) | 2018-01-26 | 2022-06-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4039692A1 (en) | 2021-02-03 | 2022-08-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4053137A1 (en) | 2021-03-05 | 2022-09-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4056578A1 (en) | 2021-03-12 | 2022-09-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4059915A2 (en) | 2021-02-26 | 2022-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4059941A1 (en) | 2021-03-15 | 2022-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4060758A2 (en) | 2021-02-26 | 2022-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4075531A1 (en) | 2021-04-13 | 2022-10-19 | Universal Display Corporation | Plasmonic oleds and vertical dipole emitters |
EP4074723A1 (en) | 2021-04-05 | 2022-10-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4075530A1 (en) | 2021-04-14 | 2022-10-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4079743A1 (en) | 2021-04-23 | 2022-10-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4086266A1 (en) | 2021-04-23 | 2022-11-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4112701A2 (en) | 2021-06-08 | 2023-01-04 | University of Southern California | Molecular alignment of homoleptic iridium phosphors |
EP4151699A1 (en) | 2021-09-17 | 2023-03-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4185086A1 (en) | 2017-07-26 | 2023-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4212539A1 (en) | 2021-12-16 | 2023-07-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4231804A2 (en) | 2022-02-16 | 2023-08-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4242285A1 (en) | 2022-03-09 | 2023-09-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4265626A2 (en) | 2022-04-18 | 2023-10-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4282863A1 (en) | 2022-05-24 | 2023-11-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4293001A1 (en) | 2022-06-08 | 2023-12-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4299693A1 (en) | 2022-06-28 | 2024-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4326030A1 (en) | 2022-08-17 | 2024-02-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4362645A2 (en) | 2022-10-27 | 2024-05-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4362631A2 (en) | 2022-10-27 | 2024-05-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4362630A2 (en) | 2022-10-27 | 2024-05-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4369898A1 (en) | 2022-10-27 | 2024-05-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4376583A2 (en) | 2022-10-27 | 2024-05-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4386065A1 (en) | 2022-12-14 | 2024-06-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7719180B2 (en) * | 2007-10-16 | 2010-05-18 | Global Oled Technology Llc | Inverted OLED device with improved efficiency |
EP2236501A1 (en) * | 2007-12-27 | 2010-10-06 | Idemitsu Kosan Co., Ltd. | Nitrogen-containing heterocyclic derivative and organic electroluminescent device using the same |
CN107011271A (zh) | 2008-07-18 | 2017-08-04 | Udc 爱尔兰有限责任公司 | 用于电子应用的氮杂芘及其电子器件 |
WO2015064558A1 (ja) * | 2013-11-01 | 2015-05-07 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子、表示装置及び照明装置 |
CN106008467B (zh) * | 2016-05-27 | 2019-01-22 | 上海道亦化工科技有限公司 | 一种基于咪唑的化合物及其有机电致发光器件 |
CN109912609A (zh) * | 2017-12-12 | 2019-06-21 | 江苏三月光电科技有限公司 | 一种以含氮五元杂环为母核的化合物及其在有机电致发光器件上的应用 |
CN108586533A (zh) * | 2018-05-08 | 2018-09-28 | 马鞍山南大高新技术研究院有限公司 | 一种含氮杂环的有机发光材料及其应用 |
Citations (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1110518B (de) | 1959-04-09 | 1961-07-06 | Kalle Ag | Material fuer die elektrophotographische Bilderzeugung |
US3112197A (en) | 1956-06-27 | 1963-11-26 | Azoplate Corp | Electrophotographic member |
US3180729A (en) | 1956-12-22 | 1965-04-27 | Azoplate Corp | Material for electrophotographic reproduction |
US3180703A (en) | 1963-01-15 | 1965-04-27 | Kerr Mc Gee Oil Ind Inc | Recovery process |
US3189447A (en) | 1956-06-04 | 1965-06-15 | Azoplate Corp | Electrophotographic material and method |
US3240597A (en) | 1961-08-21 | 1966-03-15 | Eastman Kodak Co | Photoconducting polymers for preparing electrophotographic materials |
US3257203A (en) | 1958-08-20 | 1966-06-21 | Azoplate Corp | Electrophotographic reproduction material |
JPS45555B1 (ja) | 1966-03-24 | 1970-01-09 | ||
US3526501A (en) | 1967-02-03 | 1970-09-01 | Eastman Kodak Co | 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography |
US3542544A (en) | 1967-04-03 | 1970-11-24 | Eastman Kodak Co | Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types |
JPS463712B1 (ja) | 1966-04-14 | 1971-01-29 | ||
US3567450A (en) | 1968-02-20 | 1971-03-02 | Eastman Kodak Co | Photoconductive elements containing substituted triarylamine photoconductors |
US3615404A (en) | 1968-04-25 | 1971-10-26 | Scott Paper Co | 1 3-phenylenediamine containing photoconductive materials |
US3615402A (en) | 1969-10-01 | 1971-10-26 | Eastman Kodak Co | Tetra-substituted methanes as organic photoconductors |
US3658520A (en) | 1968-02-20 | 1972-04-25 | Eastman Kodak Co | Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups |
JPS4725336B1 (ja) | 1969-11-26 | 1972-07-11 | ||
US3717462A (en) | 1969-07-28 | 1973-02-20 | Canon Kk | Heat treatment of an electrophotographic photosensitive member |
US3820989A (en) | 1969-09-30 | 1974-06-28 | Eastman Kodak Co | Tri-substituted methanes as organic photoconductors |
JPS4935702B1 (ja) | 1969-06-20 | 1974-09-25 | ||
JPS49105537A (ja) | 1973-01-15 | 1974-10-05 | ||
JPS5110105B2 (ja) | 1972-02-09 | 1976-04-01 | ||
JPS5110983B2 (ja) | 1971-09-10 | 1976-04-08 | ||
JPS5193224A (ja) | 1974-12-20 | 1976-08-16 | ||
US4012376A (en) | 1975-12-29 | 1977-03-15 | Eastman Kodak Company | Photosensitive colorant materials |
JPS5327033A (en) | 1976-08-23 | 1978-03-13 | Xerox Corp | Image forming member and image forming method |
US4127412A (en) | 1975-12-09 | 1978-11-28 | Eastman Kodak Company | Photoconductive compositions and elements |
JPS5453435A (en) | 1977-10-01 | 1979-04-26 | Yoshikatsu Kume | Portable bicycle equipped with foldable type triangle frame |
JPS5458445A (en) | 1977-09-29 | 1979-05-11 | Xerox Corp | Electrostatic photosensitive device |
JPS5459143A (en) | 1977-10-17 | 1979-05-12 | Ibm | Electronic photographic material |
JPS5464299A (en) | 1977-10-29 | 1979-05-23 | Toshiba Corp | Beam deflector for charged particles |
JPS54110837A (en) | 1978-02-17 | 1979-08-30 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS54110536A (en) | 1978-02-20 | 1979-08-30 | Ichikoh Ind Ltd | Device for time-lag putting out room lamp for motorcar |
JPS54112637A (en) | 1978-02-06 | 1979-09-03 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS54119925A (en) | 1978-03-10 | 1979-09-18 | Ricoh Co Ltd | Photosensitive material for electrophotography |
JPS54149634A (en) | 1978-05-12 | 1979-11-24 | Xerox Corp | Image forming member and method of forming image using same |
US4175961A (en) | 1976-12-22 | 1979-11-27 | Eastman Kodak Company | Multi-active photoconductive elements |
JPS5517105A (en) | 1978-07-21 | 1980-02-06 | Konishiroku Photo Ind Co Ltd | Electrophotographic photoreceptor |
JPS5546760A (en) | 1978-09-29 | 1980-04-02 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS5551086A (en) | 1978-09-04 | 1980-04-14 | Copyer Co Ltd | Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it |
JPS5552064A (en) | 1978-10-13 | 1980-04-16 | Ricoh Co Ltd | Electrophotographic receptor |
JPS5552063A (en) | 1978-10-13 | 1980-04-16 | Ricoh Co Ltd | Electrophotographic receptor |
JPS5574546A (en) | 1978-11-30 | 1980-06-05 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS5579450A (en) | 1978-12-04 | 1980-06-14 | Xerox Corp | Image formation device |
JPS5585495A (en) | 1978-12-18 | 1980-06-27 | Pacific Metals Co Ltd | Method of composting organic waste |
JPS5588065A (en) | 1978-12-12 | 1980-07-03 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS5588064A (en) | 1978-12-05 | 1980-07-03 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS55108667A (en) | 1979-02-13 | 1980-08-21 | Ricoh Co Ltd | Electrophotographic receptor |
US4232103A (en) | 1979-08-27 | 1980-11-04 | Xerox Corporation | Phenyl benzotriazole stabilized photosensitive device |
JPS55144250A (en) | 1979-04-30 | 1980-11-11 | Xerox Corp | Image formation device |
JPS55156953A (en) | 1979-05-17 | 1980-12-06 | Mitsubishi Paper Mills Ltd | Organic semiconductor electrophotographic material |
JPS564148A (en) | 1979-06-21 | 1981-01-17 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS5622437A (en) | 1979-08-01 | 1981-03-03 | Ricoh Co Ltd | Electrophotographic receptor |
JPS5636656A (en) | 1979-09-03 | 1981-04-09 | Mitsubishi Paper Mills Ltd | Electrophotographic material |
JPS5646234A (en) | 1979-09-21 | 1981-04-27 | Ricoh Co Ltd | Electrophotographic receptor |
JPS5680051A (en) | 1979-12-04 | 1981-07-01 | Ricoh Co Ltd | Electrophotographic receptor |
US4278746A (en) | 1978-06-21 | 1981-07-14 | Konishiroku Photo Industry Co., Ltd. | Photosensitive elements for electrophotography |
JPS5688141A (en) | 1979-12-20 | 1981-07-17 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS56119132A (en) | 1979-11-23 | 1981-09-18 | Xerox Corp | Image forming element |
JPS5711350A (en) | 1980-06-24 | 1982-01-21 | Fuji Photo Film Co Ltd | Electrophotographic receptor |
JPS5745545A (en) | 1980-09-03 | 1982-03-15 | Mitsubishi Paper Mills Ltd | Electrophotographic receptor |
JPS5751781A (en) | 1980-07-17 | 1982-03-26 | Eastman Kodak Co | Organic electroluminiscent cell and method |
JPS57148749A (en) | 1981-03-11 | 1982-09-14 | Fuji Photo Film Co Ltd | Electrophotographic receptor |
JPS6093445A (ja) | 1983-10-28 | 1985-05-25 | Ricoh Co Ltd | 電子写真用感光体 |
JPS6094462A (ja) | 1983-10-28 | 1985-05-27 | Ricoh Co Ltd | スチルベン誘導体及びその製造法 |
JPS60174749A (ja) | 1984-02-21 | 1985-09-09 | Ricoh Co Ltd | スチリル化合物及びその製造法 |
JPS6114642A (ja) | 1984-06-29 | 1986-01-22 | Konishiroku Photo Ind Co Ltd | 電子写真感光体 |
JPS6172255A (ja) | 1984-09-14 | 1986-04-14 | Konishiroku Photo Ind Co Ltd | 電子写真感光体 |
JPS6198353A (ja) | 1984-10-19 | 1986-05-16 | ゼロツクス コーポレーシヨン | 芳香族エーテル正孔移送層を含む感光装置 |
JPS61210363A (ja) | 1985-03-15 | 1986-09-18 | Canon Inc | 電子写真感光体 |
JPS61228451A (ja) | 1985-04-03 | 1986-10-11 | Canon Inc | 電子写真感光体 |
JPS61295558A (ja) | 1985-06-24 | 1986-12-26 | ゼロツクス コ−ポレ−シヨン | アルコキシアミン電荷移送分子を含有する光導電性像形成部材 |
JPS6210652A (ja) | 1985-07-08 | 1987-01-19 | Minolta Camera Co Ltd | 感光体 |
JPS6230255A (ja) | 1985-07-31 | 1987-02-09 | Minolta Camera Co Ltd | 電子写真感光体 |
JPS6236674A (ja) | 1985-08-05 | 1987-02-17 | Fuji Photo Film Co Ltd | 電子写真感光体 |
JPS6247646A (ja) | 1985-08-27 | 1987-03-02 | Konishiroku Photo Ind Co Ltd | 感光体 |
JPS63256965A (ja) | 1987-04-15 | 1988-10-24 | Canon Inc | 静電荷像現像用トナ− |
JPS63295695A (ja) | 1987-02-11 | 1988-12-02 | イーストマン・コダック・カンパニー | 有機発光媒体をもつ電場発光デバイス |
JPH01211399A (ja) | 1988-02-19 | 1989-08-24 | Toshiba Corp | スキャン機能付きダイナミックシフトレジスタ |
JPH02204996A (ja) | 1989-02-01 | 1990-08-14 | Nec Corp | 有機薄膜el素子 |
US4950950A (en) | 1989-05-18 | 1990-08-21 | Eastman Kodak Company | Electroluminescent device with silazane-containing luminescent zone |
JPH02282263A (ja) | 1988-12-09 | 1990-11-19 | Nippon Oil Co Ltd | ホール輸送材料 |
JPH02311591A (ja) | 1989-05-25 | 1990-12-27 | Mitsubishi Kasei Corp | 有機電界発光素子 |
US5061569A (en) | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
JPH04308688A (ja) | 1991-04-08 | 1992-10-30 | Pioneer Electron Corp | 有機エレクトロルミネッセンス素子 |
JPH06175052A (ja) | 1992-12-11 | 1994-06-24 | Sumitomo Electric Ind Ltd | 光スイッチおよび光スイッチアレイ |
JPH08193191A (ja) | 1995-01-19 | 1996-07-30 | Idemitsu Kosan Co Ltd | 有機電界発光素子及び有機薄膜 |
US5645948A (en) | 1996-08-20 | 1997-07-08 | Eastman Kodak Company | Blue organic electroluminescent devices |
JP2002038141A (ja) | 2000-07-28 | 2002-02-06 | Fuji Photo Film Co Ltd | 新規縮合へテロ環化合物、発光素子材料およびそれを使用した発光素子 |
JP2002097465A (ja) * | 2000-09-25 | 2002-04-02 | Toyo Ink Mfg Co Ltd | 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子 |
JP2004146368A (ja) | 2002-10-03 | 2004-05-20 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子及び表示装置 |
WO2004080975A1 (ja) | 2003-03-13 | 2004-09-23 | Idemitsu Kosan Co., Ltd. | 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 |
JP3614405B2 (ja) | 1999-12-31 | 2005-01-26 | エルジー・ケミカル・カンパニー・リミテッド | p−型半導体性質を有する有機化合物を含む電子素子 |
WO2005085208A1 (ja) * | 2004-03-09 | 2005-09-15 | Nissan Chemical Industries, Ltd. | 2,4,5−トリアリール置換イミダゾール化合物及び1,2,4,5−テトラアリール置換イミダゾール化合物 |
JP3716096B2 (ja) | 1998-04-02 | 2005-11-16 | 三菱重工業株式会社 | 微粉炭セパレータ装置 |
JP3927577B2 (ja) | 1994-11-10 | 2007-06-13 | マイケルスン、ガーリー、ケィー | 電動骨鉗子 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5904994A (en) * | 1995-09-13 | 1999-05-18 | Lucent Technologies Inc. | Blue-emitting materials and electroluminescent devices containing these materials |
EP1489155A4 (en) * | 2002-03-22 | 2006-02-01 | Idemitsu Kosan Co | MATERIAL FOR ORGANIC ELECTROLUMINESCENT DEVICES AND ORGANIC ELECTROLUMINESCENT DEVICES PRODUCED WITH THIS MATERIAL |
US20060251918A1 (en) * | 2003-12-11 | 2006-11-09 | Toshihiro Iwakuma | Organic electroluminescent device material and organic electroluminescent device using same |
TWI348463B (en) * | 2006-03-06 | 2011-09-11 | Lg Chemical Ltd | Novel anthracene derivative and organic electronic device using the same |
-
2007
- 2007-03-23 EP EP07739502A patent/EP2000463A2/en not_active Withdrawn
- 2007-03-23 CN CNA2007800105872A patent/CN101410380A/zh active Pending
- 2007-03-23 WO PCT/JP2007/056061 patent/WO2007111263A1/ja active Application Filing
- 2007-03-23 JP JP2008507472A patent/JPWO2007111263A1/ja active Pending
- 2007-03-23 KR KR1020087023442A patent/KR20080105113A/ko not_active Application Discontinuation
- 2007-03-26 US US11/691,101 patent/US20080018237A1/en not_active Abandoned
- 2007-03-27 TW TW096110631A patent/TW200745046A/zh unknown
Patent Citations (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3189447A (en) | 1956-06-04 | 1965-06-15 | Azoplate Corp | Electrophotographic material and method |
US3112197A (en) | 1956-06-27 | 1963-11-26 | Azoplate Corp | Electrophotographic member |
US3180729A (en) | 1956-12-22 | 1965-04-27 | Azoplate Corp | Material for electrophotographic reproduction |
US3257203A (en) | 1958-08-20 | 1966-06-21 | Azoplate Corp | Electrophotographic reproduction material |
DE1110518B (de) | 1959-04-09 | 1961-07-06 | Kalle Ag | Material fuer die elektrophotographische Bilderzeugung |
US3240597A (en) | 1961-08-21 | 1966-03-15 | Eastman Kodak Co | Photoconducting polymers for preparing electrophotographic materials |
US3180703A (en) | 1963-01-15 | 1965-04-27 | Kerr Mc Gee Oil Ind Inc | Recovery process |
JPS45555B1 (ja) | 1966-03-24 | 1970-01-09 | ||
JPS463712B1 (ja) | 1966-04-14 | 1971-01-29 | ||
US3526501A (en) | 1967-02-03 | 1970-09-01 | Eastman Kodak Co | 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography |
US3542544A (en) | 1967-04-03 | 1970-11-24 | Eastman Kodak Co | Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types |
US3567450A (en) | 1968-02-20 | 1971-03-02 | Eastman Kodak Co | Photoconductive elements containing substituted triarylamine photoconductors |
US3658520A (en) | 1968-02-20 | 1972-04-25 | Eastman Kodak Co | Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups |
US3615404A (en) | 1968-04-25 | 1971-10-26 | Scott Paper Co | 1 3-phenylenediamine containing photoconductive materials |
JPS4935702B1 (ja) | 1969-06-20 | 1974-09-25 | ||
US3717462A (en) | 1969-07-28 | 1973-02-20 | Canon Kk | Heat treatment of an electrophotographic photosensitive member |
US3820989A (en) | 1969-09-30 | 1974-06-28 | Eastman Kodak Co | Tri-substituted methanes as organic photoconductors |
US3615402A (en) | 1969-10-01 | 1971-10-26 | Eastman Kodak Co | Tetra-substituted methanes as organic photoconductors |
JPS4725336B1 (ja) | 1969-11-26 | 1972-07-11 | ||
JPS5110983B2 (ja) | 1971-09-10 | 1976-04-08 | ||
JPS5110105B2 (ja) | 1972-02-09 | 1976-04-01 | ||
JPS49105537A (ja) | 1973-01-15 | 1974-10-05 | ||
JPS5193224A (ja) | 1974-12-20 | 1976-08-16 | ||
US4127412A (en) | 1975-12-09 | 1978-11-28 | Eastman Kodak Company | Photoconductive compositions and elements |
US4012376A (en) | 1975-12-29 | 1977-03-15 | Eastman Kodak Company | Photosensitive colorant materials |
JPS5327033A (en) | 1976-08-23 | 1978-03-13 | Xerox Corp | Image forming member and image forming method |
US4175961A (en) | 1976-12-22 | 1979-11-27 | Eastman Kodak Company | Multi-active photoconductive elements |
JPS5458445A (en) | 1977-09-29 | 1979-05-11 | Xerox Corp | Electrostatic photosensitive device |
JPS5453435A (en) | 1977-10-01 | 1979-04-26 | Yoshikatsu Kume | Portable bicycle equipped with foldable type triangle frame |
JPS5459143A (en) | 1977-10-17 | 1979-05-12 | Ibm | Electronic photographic material |
JPS5464299A (en) | 1977-10-29 | 1979-05-23 | Toshiba Corp | Beam deflector for charged particles |
JPS54112637A (en) | 1978-02-06 | 1979-09-03 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS54110837A (en) | 1978-02-17 | 1979-08-30 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS54110536A (en) | 1978-02-20 | 1979-08-30 | Ichikoh Ind Ltd | Device for time-lag putting out room lamp for motorcar |
JPS54119925A (en) | 1978-03-10 | 1979-09-18 | Ricoh Co Ltd | Photosensitive material for electrophotography |
JPS54149634A (en) | 1978-05-12 | 1979-11-24 | Xerox Corp | Image forming member and method of forming image using same |
US4278746A (en) | 1978-06-21 | 1981-07-14 | Konishiroku Photo Industry Co., Ltd. | Photosensitive elements for electrophotography |
JPS5517105A (en) | 1978-07-21 | 1980-02-06 | Konishiroku Photo Ind Co Ltd | Electrophotographic photoreceptor |
JPS5551086A (en) | 1978-09-04 | 1980-04-14 | Copyer Co Ltd | Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it |
JPS5546760A (en) | 1978-09-29 | 1980-04-02 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS5552064A (en) | 1978-10-13 | 1980-04-16 | Ricoh Co Ltd | Electrophotographic receptor |
JPS5552063A (en) | 1978-10-13 | 1980-04-16 | Ricoh Co Ltd | Electrophotographic receptor |
JPS5574546A (en) | 1978-11-30 | 1980-06-05 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS5579450A (en) | 1978-12-04 | 1980-06-14 | Xerox Corp | Image formation device |
JPS5588064A (en) | 1978-12-05 | 1980-07-03 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS5588065A (en) | 1978-12-12 | 1980-07-03 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS5585495A (en) | 1978-12-18 | 1980-06-27 | Pacific Metals Co Ltd | Method of composting organic waste |
JPS55108667A (en) | 1979-02-13 | 1980-08-21 | Ricoh Co Ltd | Electrophotographic receptor |
JPS55144250A (en) | 1979-04-30 | 1980-11-11 | Xerox Corp | Image formation device |
JPS55156953A (en) | 1979-05-17 | 1980-12-06 | Mitsubishi Paper Mills Ltd | Organic semiconductor electrophotographic material |
JPS564148A (en) | 1979-06-21 | 1981-01-17 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS5622437A (en) | 1979-08-01 | 1981-03-03 | Ricoh Co Ltd | Electrophotographic receptor |
US4232103A (en) | 1979-08-27 | 1980-11-04 | Xerox Corporation | Phenyl benzotriazole stabilized photosensitive device |
JPS5636656A (en) | 1979-09-03 | 1981-04-09 | Mitsubishi Paper Mills Ltd | Electrophotographic material |
JPS5646234A (en) | 1979-09-21 | 1981-04-27 | Ricoh Co Ltd | Electrophotographic receptor |
JPS56119132A (en) | 1979-11-23 | 1981-09-18 | Xerox Corp | Image forming element |
JPS5680051A (en) | 1979-12-04 | 1981-07-01 | Ricoh Co Ltd | Electrophotographic receptor |
JPS5688141A (en) | 1979-12-20 | 1981-07-17 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS5711350A (en) | 1980-06-24 | 1982-01-21 | Fuji Photo Film Co Ltd | Electrophotographic receptor |
JPS5751781A (en) | 1980-07-17 | 1982-03-26 | Eastman Kodak Co | Organic electroluminiscent cell and method |
JPS5745545A (en) | 1980-09-03 | 1982-03-15 | Mitsubishi Paper Mills Ltd | Electrophotographic receptor |
JPS57148749A (en) | 1981-03-11 | 1982-09-14 | Fuji Photo Film Co Ltd | Electrophotographic receptor |
JPS6093445A (ja) | 1983-10-28 | 1985-05-25 | Ricoh Co Ltd | 電子写真用感光体 |
JPS6094462A (ja) | 1983-10-28 | 1985-05-27 | Ricoh Co Ltd | スチルベン誘導体及びその製造法 |
JPS60174749A (ja) | 1984-02-21 | 1985-09-09 | Ricoh Co Ltd | スチリル化合物及びその製造法 |
JPS6114642A (ja) | 1984-06-29 | 1986-01-22 | Konishiroku Photo Ind Co Ltd | 電子写真感光体 |
JPS6172255A (ja) | 1984-09-14 | 1986-04-14 | Konishiroku Photo Ind Co Ltd | 電子写真感光体 |
JPS6198353A (ja) | 1984-10-19 | 1986-05-16 | ゼロツクス コーポレーシヨン | 芳香族エーテル正孔移送層を含む感光装置 |
JPS61210363A (ja) | 1985-03-15 | 1986-09-18 | Canon Inc | 電子写真感光体 |
JPS61228451A (ja) | 1985-04-03 | 1986-10-11 | Canon Inc | 電子写真感光体 |
JPS61295558A (ja) | 1985-06-24 | 1986-12-26 | ゼロツクス コ−ポレ−シヨン | アルコキシアミン電荷移送分子を含有する光導電性像形成部材 |
JPS6210652A (ja) | 1985-07-08 | 1987-01-19 | Minolta Camera Co Ltd | 感光体 |
JPS6230255A (ja) | 1985-07-31 | 1987-02-09 | Minolta Camera Co Ltd | 電子写真感光体 |
JPS6236674A (ja) | 1985-08-05 | 1987-02-17 | Fuji Photo Film Co Ltd | 電子写真感光体 |
JPS6247646A (ja) | 1985-08-27 | 1987-03-02 | Konishiroku Photo Ind Co Ltd | 感光体 |
JPS63295695A (ja) | 1987-02-11 | 1988-12-02 | イーストマン・コダック・カンパニー | 有機発光媒体をもつ電場発光デバイス |
JPS63256965A (ja) | 1987-04-15 | 1988-10-24 | Canon Inc | 静電荷像現像用トナ− |
JPH01211399A (ja) | 1988-02-19 | 1989-08-24 | Toshiba Corp | スキャン機能付きダイナミックシフトレジスタ |
JPH02282263A (ja) | 1988-12-09 | 1990-11-19 | Nippon Oil Co Ltd | ホール輸送材料 |
JPH02204996A (ja) | 1989-02-01 | 1990-08-14 | Nec Corp | 有機薄膜el素子 |
US4950950A (en) | 1989-05-18 | 1990-08-21 | Eastman Kodak Company | Electroluminescent device with silazane-containing luminescent zone |
JPH02311591A (ja) | 1989-05-25 | 1990-12-27 | Mitsubishi Kasei Corp | 有機電界発光素子 |
US5061569A (en) | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
JPH04308688A (ja) | 1991-04-08 | 1992-10-30 | Pioneer Electron Corp | 有機エレクトロルミネッセンス素子 |
JPH06175052A (ja) | 1992-12-11 | 1994-06-24 | Sumitomo Electric Ind Ltd | 光スイッチおよび光スイッチアレイ |
JP3927577B2 (ja) | 1994-11-10 | 2007-06-13 | マイケルスン、ガーリー、ケィー | 電動骨鉗子 |
JPH08193191A (ja) | 1995-01-19 | 1996-07-30 | Idemitsu Kosan Co Ltd | 有機電界発光素子及び有機薄膜 |
US5645948A (en) | 1996-08-20 | 1997-07-08 | Eastman Kodak Company | Blue organic electroluminescent devices |
JP3716096B2 (ja) | 1998-04-02 | 2005-11-16 | 三菱重工業株式会社 | 微粉炭セパレータ装置 |
JP3614405B2 (ja) | 1999-12-31 | 2005-01-26 | エルジー・ケミカル・カンパニー・リミテッド | p−型半導体性質を有する有機化合物を含む電子素子 |
JP2002038141A (ja) | 2000-07-28 | 2002-02-06 | Fuji Photo Film Co Ltd | 新規縮合へテロ環化合物、発光素子材料およびそれを使用した発光素子 |
JP2002097465A (ja) * | 2000-09-25 | 2002-04-02 | Toyo Ink Mfg Co Ltd | 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子 |
JP2004146368A (ja) | 2002-10-03 | 2004-05-20 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子及び表示装置 |
WO2004080975A1 (ja) | 2003-03-13 | 2004-09-23 | Idemitsu Kosan Co., Ltd. | 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 |
WO2005085208A1 (ja) * | 2004-03-09 | 2005-09-15 | Nissan Chemical Industries, Ltd. | 2,4,5−トリアリール置換イミダゾール化合物及び1,2,4,5−テトラアリール置換イミダゾール化合物 |
Non-Patent Citations (1)
Title |
---|
K. BUTTKE ET AL., JOURNAL FUR PRAKTISCHE CHEMIE CHEMIKER-ZEITUNG, vol. 339, 1997, pages 721 - 728 |
Cited By (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101460361B1 (ko) * | 2008-01-16 | 2014-11-10 | 주식회사 엘지화학 | 새로운 이미다졸 유도체 및 이를 이용한 유기전자소자 |
EP3056504A1 (en) | 2015-02-16 | 2016-08-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3061763A1 (en) | 2015-02-27 | 2016-08-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3098229A1 (en) | 2015-05-15 | 2016-11-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3101021A1 (en) | 2015-06-01 | 2016-12-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3124488A1 (en) | 2015-07-29 | 2017-02-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3159350A1 (en) | 2015-09-03 | 2017-04-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3760635A1 (en) | 2015-09-03 | 2021-01-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3858842A1 (en) | 2016-02-09 | 2021-08-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3205658A1 (en) | 2016-02-09 | 2017-08-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4122941A1 (en) | 2016-04-11 | 2023-01-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3231809A2 (en) | 2016-04-11 | 2017-10-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3270435A2 (en) | 2016-06-20 | 2018-01-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3843171A1 (en) | 2016-06-20 | 2021-06-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3758084A1 (en) | 2016-06-20 | 2020-12-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3261146A2 (en) | 2016-06-20 | 2017-12-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3261147A1 (en) | 2016-06-20 | 2017-12-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4349935A2 (en) | 2016-06-20 | 2024-04-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3920254A1 (en) | 2016-06-20 | 2021-12-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3297051A1 (en) | 2016-09-14 | 2018-03-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3323822A1 (en) | 2016-09-23 | 2018-05-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3301088A1 (en) | 2016-10-03 | 2018-04-04 | Universal Display Corporation | Condensed pyridines as organic electroluminescent materials and devices |
EP3858844A1 (en) | 2016-10-07 | 2021-08-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3305796A1 (en) | 2016-10-07 | 2018-04-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3789379A1 (en) | 2016-11-09 | 2021-03-10 | Universal Display Corporation | 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds |
EP3321258A1 (en) | 2016-11-09 | 2018-05-16 | Universal Display Corporation | 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds |
EP3354654A2 (en) | 2016-11-11 | 2018-08-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4092036A1 (en) | 2016-11-11 | 2022-11-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4212540A1 (en) | 2017-01-09 | 2023-07-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3345914A1 (en) | 2017-01-09 | 2018-07-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3689890A1 (en) | 2017-01-09 | 2020-08-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3985012A1 (en) | 2017-03-29 | 2022-04-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3730506A1 (en) | 2017-03-29 | 2020-10-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3381927A1 (en) | 2017-03-29 | 2018-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4141010A1 (en) | 2017-05-11 | 2023-03-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3401318A1 (en) | 2017-05-11 | 2018-11-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3418286A1 (en) | 2017-06-23 | 2018-12-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4185086A1 (en) | 2017-07-26 | 2023-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3444258A2 (en) | 2017-08-10 | 2019-02-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3783006A1 (en) | 2017-08-10 | 2021-02-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3878855A1 (en) | 2017-11-28 | 2021-09-15 | University of Southern California | Carbene compounds and organic electroluminescent devices |
EP3489243A1 (en) | 2017-11-28 | 2019-05-29 | University of Southern California | Carbene compounds and organic electroluminescent devices |
EP3492480A2 (en) | 2017-11-29 | 2019-06-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3492528A1 (en) | 2017-11-30 | 2019-06-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4019526A1 (en) | 2018-01-26 | 2022-06-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3613751A1 (en) | 2018-08-22 | 2020-02-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4206210A1 (en) | 2018-08-22 | 2023-07-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3690973A1 (en) | 2019-01-30 | 2020-08-05 | University Of Southern California | Organic electroluminescent materials and devices |
EP3689889A1 (en) | 2019-02-01 | 2020-08-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4301117A2 (en) | 2019-02-01 | 2024-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4134371A2 (en) | 2019-03-26 | 2023-02-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3715353A1 (en) | 2019-03-26 | 2020-09-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3750897A1 (en) | 2019-06-10 | 2020-12-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4219515A1 (en) | 2019-07-30 | 2023-08-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3771717A1 (en) | 2019-07-30 | 2021-02-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3778614A1 (en) | 2019-08-16 | 2021-02-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3816175A1 (en) | 2019-11-04 | 2021-05-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3845545A1 (en) | 2020-01-06 | 2021-07-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4151644A1 (en) | 2020-01-06 | 2023-03-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4294157A2 (en) | 2020-01-28 | 2023-12-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3858945A1 (en) | 2020-01-28 | 2021-08-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3937268A1 (en) | 2020-07-10 | 2022-01-12 | Universal Display Corporation | Plasmonic oleds and vertical dipole emitters |
EP4016659A1 (en) | 2020-11-16 | 2022-06-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4329463A2 (en) | 2020-11-24 | 2024-02-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4001287A1 (en) | 2020-11-24 | 2022-05-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4001286A1 (en) | 2020-11-24 | 2022-05-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4039692A1 (en) | 2021-02-03 | 2022-08-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4059915A2 (en) | 2021-02-26 | 2022-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4060758A2 (en) | 2021-02-26 | 2022-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4053137A1 (en) | 2021-03-05 | 2022-09-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4056578A1 (en) | 2021-03-12 | 2022-09-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4059941A1 (en) | 2021-03-15 | 2022-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4074723A1 (en) | 2021-04-05 | 2022-10-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4075531A1 (en) | 2021-04-13 | 2022-10-19 | Universal Display Corporation | Plasmonic oleds and vertical dipole emitters |
EP4075530A1 (en) | 2021-04-14 | 2022-10-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4401530A2 (en) | 2021-04-14 | 2024-07-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4086266A1 (en) | 2021-04-23 | 2022-11-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4079743A1 (en) | 2021-04-23 | 2022-10-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4112701A2 (en) | 2021-06-08 | 2023-01-04 | University of Southern California | Molecular alignment of homoleptic iridium phosphors |
EP4151699A1 (en) | 2021-09-17 | 2023-03-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4212539A1 (en) | 2021-12-16 | 2023-07-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4231804A2 (en) | 2022-02-16 | 2023-08-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4242285A1 (en) | 2022-03-09 | 2023-09-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4265626A2 (en) | 2022-04-18 | 2023-10-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4282863A1 (en) | 2022-05-24 | 2023-11-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4293001A1 (en) | 2022-06-08 | 2023-12-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4299693A1 (en) | 2022-06-28 | 2024-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4326030A1 (en) | 2022-08-17 | 2024-02-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4362645A2 (en) | 2022-10-27 | 2024-05-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4362631A2 (en) | 2022-10-27 | 2024-05-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4362630A2 (en) | 2022-10-27 | 2024-05-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4369898A1 (en) | 2022-10-27 | 2024-05-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4376583A2 (en) | 2022-10-27 | 2024-05-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4386065A1 (en) | 2022-12-14 | 2024-06-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
Also Published As
Publication number | Publication date |
---|---|
EP2000463A9 (en) | 2009-03-25 |
EP2000463A2 (en) | 2008-12-10 |
US20080018237A1 (en) | 2008-01-24 |
CN101410380A (zh) | 2009-04-15 |
KR20080105113A (ko) | 2008-12-03 |
JPWO2007111263A1 (ja) | 2009-08-13 |
TW200745046A (en) | 2007-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007111263A1 (ja) | 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
KR101551591B1 (ko) | 방향족 아민 유도체 및 그들을 이용한 유기 전기 발광 소자 | |
WO2007018004A1 (ja) | 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2007007464A1 (ja) | 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2007063993A1 (ja) | 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2007111262A1 (ja) | 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2006073054A1 (ja) | 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2008023550A1 (fr) | Dérivé d'amine aromatique et dispositif électroluminescent organique utilisant celui-ci | |
WO2007018007A1 (ja) | 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2008032631A1 (fr) | Dérivé d'amine aromatique et dispositif électroluminescent organique l'employant | |
WO2007100010A1 (ja) | 有機エレクトロルミネッセンス素子 | |
WO2008072400A1 (ja) | 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子 | |
WO2007080704A1 (ja) | 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2006046441A1 (ja) | 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2007007463A1 (ja) | 電子吸引性置換基を有する含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2007102361A1 (ja) | 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子 | |
WO2006114921A1 (ja) | 芳香族トリアミン化合物及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2007017995A1 (ja) | 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2009084268A1 (ja) | 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子 | |
KR20100038193A (ko) | 방향족 아민 유도체 및 그것을 사용한 유기 전기 발광 소자 | |
WO2008001551A1 (fr) | Dérivé d'amine aromatique et dispositif a électroluminescence organique utilisant celui-ci | |
WO2006001333A1 (ja) | 多環芳香族系化合物、発光性塗膜形成用材料及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2007099983A1 (ja) | フルオランテン誘導体及びインデノペリレン誘導体を用いた有機エレクトロルミネッセンス素子 | |
WO2007105448A1 (ja) | ナフタセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2006006505A1 (ja) | 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07739502 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008507472 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007739502 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200780010587.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5111/CHENP/2008 Country of ref document: IN Ref document number: 1020087023442 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |