[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006004108A1 - 圧電アクチュエータおよび機器 - Google Patents

圧電アクチュエータおよび機器 Download PDF

Info

Publication number
WO2006004108A1
WO2006004108A1 PCT/JP2005/012389 JP2005012389W WO2006004108A1 WO 2006004108 A1 WO2006004108 A1 WO 2006004108A1 JP 2005012389 W JP2005012389 W JP 2005012389W WO 2006004108 A1 WO2006004108 A1 WO 2006004108A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
vibration mode
piezoelectric actuator
phase difference
drive
Prior art date
Application number
PCT/JP2005/012389
Other languages
English (en)
French (fr)
Inventor
Reiko Nagahama
Yutaka Yamazaki
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to DE200560020028 priority Critical patent/DE602005020028D1/de
Priority to JP2006528905A priority patent/JP4479725B2/ja
Priority to CN2005800228197A priority patent/CN1981427B/zh
Priority to EP20050758234 priority patent/EP1786091B1/en
Publication of WO2006004108A1 publication Critical patent/WO2006004108A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/202Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • G04C3/12Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by piezoelectric means; driven by magneto-strictive means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/003Driving devices, e.g. vibrators using longitudinal or radial modes combined with bending modes
    • H02N2/004Rectangular vibrators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing

Definitions

  • the present invention relates to a piezoelectric actuator that drives a driven body by vibration of a piezoelectric element, and a device including the piezoelectric actuator.
  • a piezoelectric actuator that drives a driven body by vibration of a piezoelectric element
  • a piezoelectric actuator that excites a plurality of vibration modes at the same time and drives the driven body by a combination of these vibration modes.
  • the driving signal applied to the piezoelectric element and the piezoelectric element are required.
  • a method for controlling a drive signal based on a phase difference from a detection signal detected by vibration of the motor see, for example, Patent Document 1).
  • a detection electrode is provided on the piezoelectric actuator, and a phase difference between a drive signal applied to the piezoelectric element and a detection signal detected from the detection electrode is monitored. Then, by adjusting the drive frequency of the drive signal applied to the piezoelectric element so that this phase difference becomes a predetermined value, the vibration component of each vibration mode of the piezoelectric actuator is appropriately controlled, and efficient. It is to drive.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-291264 (Pages 12 to 13, Figures 26 and 27)
  • FIG. 31 shows a phase difference characteristic with respect to the drive frequency of the piezoelectric actuator disclosed in Patent Document 1.
  • Piezoelectric actuators are longitudinal elements that expand and contract in the longitudinal direction of the piezoelectric element.
  • the primary vibration mode and the bending secondary vibration mode are bent in a direction substantially perpendicular to the vibration direction of the longitudinal primary vibration mode.As shown in Fig. 31, the resonance frequency fl, f2 of each vibration mode
  • the phase difference increases in the vicinity. Therefore, a plurality of drive frequencies (three drive frequencies fbl, fb2, and fb3 in FIG. 31) exist for a predetermined phase difference 0 0 to be controlled.
  • An object of the present invention is to provide a piezoelectric actuator and a device that can improve the certainty of driving performance.
  • the piezoelectric actuator of the present invention is a piezoelectric actuator that drives a driven body by vibration of a piezoelectric element having two or more vibration modes.
  • the piezoelectric element applies a drive signal to the piezoelectric element.
  • a control means for controlling the drive signal wherein the detection electrode is formed at a position where a phase difference due to a vibration mode other than a vibration mode is less than a target phase difference that is a target at the time of control. It is a feature.
  • the control means can adjust the drive signal optimally by controlling the frequency of the drive signal based on this phase difference. Therefore, even in a piezoelectric actuator having a plurality of vibration modes, each vibration component is appropriately adjusted, and the reliability of the driving performance is improved.
  • the detection electrode mainly detects the vibration in the vibration mode used mainly, it is possible to directly control the vibration in the required vibration mode, and the piezoelectric The control of the actuator becomes more accurate.
  • the detection electrode may be formed at a position where the phase difference due to all vibration modes other than the vibration mode to be used is less than the target phase difference.
  • the detection electrode is formed at a position where a phase difference caused by a vibration mode other than the vibration mode is 20 degrees or less.
  • the rotational speed increases as the phase difference increases, and the current consumption decreases as the phase difference decreases.
  • the target phase difference it is only necessary to determine whether the number of rotations or current consumption is important according to the product specifications.
  • the phase difference is reduced to reduce current consumption, it may not be driven if it is too low, so the lower limit of the target phase difference setting value is about 20 degrees for most products. Therefore, if the phase difference caused by vibration modes other than the vibration mode is 20 degrees or less, the piezoelectric actuator can be used in almost all products, and can meet various product specifications.
  • the piezoelectric actuator of the present invention is a piezoelectric actuator that drives a driven body by vibration of a piezoelectric element having two or more vibration modes.
  • the piezoelectric element applies a drive signal to the piezoelectric element.
  • the detection electrode is formed at a position where the signal level resulting from a vibration mode other than a mode that mainly vibrates is less than a target signal level that is a target at the time of control.
  • the detection electrode is formed at a position where the signal level mainly caused by the vibration mode other than the vibration mode used is lower than the target signal level, only the signal level caused mainly by the vibration mode used is used. Becomes the value of the target signal level. For this reason, since the drive frequency for the target signal level is determined to be one, the control means can adjust the drive signal optimally by controlling the frequency of the drive signal based on this signal level. Therefore, even in a piezoelectric actuator having a plurality of vibration modes, each vibration component is appropriately adjusted, and the reliability of the driving performance is improved. [0010] In the present invention, the detection electrode is formed at a position where an extended portion and a contracted portion are generated simultaneously due to vibration modes other than the vibration mode, and the amount of charge generated in each portion is canceled out. It is preferable.
  • a piezoelectric element generates a positive charge when compressed, and a negative charge when extended.
  • the detection electrode includes a position where distortion due to a vibration mode other than a vibration mode to be used is minimized.
  • the vibration behavior detected by the detection electrode is mainly the vibration used.
  • the influence of vibration in modes other than the mode is minimized, and the vibration is mainly due to the vibration mode used mainly. Therefore, if the phase difference or detection signal level at which the vibration component of the vibration mode to be used is appropriate is set as a predetermined value, the drive signal for the phase difference or detection signal level is determined as one, so that the control means By controlling the drive signal based on this phase difference, the drive signal can be optimally adjusted. Therefore, even in a piezoelectric actuator having a plurality of vibration modes, each vibration component is appropriately adjusted, and the reliability of drive performance is improved.
  • the vibration mode includes a longitudinal vibration mode that expands and contracts in a predetermined direction and a bending vibration mode that bends in a direction substantially perpendicular to the vibration direction of the longitudinal vibration mode. Desirably, formed in a position that includes the vibration node of the flexural vibration mode.
  • the vibration mode includes a longitudinal vibration mode and a bending vibration mode.
  • the longitudinal vibration mode has a larger driving force than the flexural vibration mode. Therefore, a large driving force can be obtained by setting the longitudinal vibration mode to a vibration mode mainly used.
  • the detection electrode since the detection electrode is formed at a position including the node of the vibration in the bending vibration mode, the distortion of the vibration in the bending vibration mode at the detection electrode is minimized. Therefore, the detection electrode mainly detects the vibration behavior in the longitudinal vibration mode, and enables accurate control based on the vibration behavior in the longitudinal vibration mode. This ensures a good driving force due to the vibration in the longitudinal vibration mode.
  • the piezoelectric element is formed in a substantially rectangular plate shape, and the vibration mode is substantially perpendicular to the longitudinal primary vibration mode that expands and contracts along the longitudinal direction of the piezoelectric element and the vibration direction of the longitudinal primary vibration mode. It is desirable that the detection electrode be formed at a position including the vibration node of the longitudinal primary vibration mode and the vibration node of the bending secondary vibration mode.
  • the entire piezoelectric element is a vibration that combines these longitudinal primary vibration mode and bending secondary vibration mode. Draw a trajectory and vibrate.
  • the detection electrode is formed at a position including the vibration node of the longitudinal primary vibration mode and the vibration node of the bending secondary vibration mode, the distortion due to the vibration of the longitudinal primary vibration mode is maximized at this position.
  • distortion caused by vibration in the bending secondary vibration mode is minimized. Therefore, the detection electrode mainly detects the vibration behavior due to the vibration in the longitudinal primary vibration mode, and performs accurate control based on the vibration behavior in the longitudinal primary vibration mode. Therefore, a vibration component in an appropriate longitudinal primary vibration mode can be obtained, and a necessary driving force can be reliably ensured.
  • the piezoelectric actuator is configured to be able to change the vibration direction of the bending vibration mode forward and backward.
  • the vibration direction of the bending vibration mode is configured to be able to change forward and reverse
  • the vibration locus can be changed to forward and reverse, and the driven body can be driven in both forward and reverse directions.
  • the driveable operation range of the driven body is widened.
  • the detection power Since the pole is formed including the position of the node in the bending vibration mode, the vibration behavior in the longitudinal vibration mode can be detected well even when the vibration direction in the bending vibration mode is changed forward and reverse.
  • the bending vibration mode includes a bending secondary vibration mode.
  • the longitudinal vibration mode includes a longitudinal primary vibration mode.
  • the area of the detection electrode is not less than 1/30 and not more than 1/7 of the area of the drive electrode.
  • the area of the detection electrode is appropriately set, the area of the detection electrode necessary for vibration detection is ensured, and the area of the drive electrode is not excessively reduced. The driving force is ensured satisfactorily.
  • the area of the detection electrode when the area of the detection electrode is smaller than 1/30 of the area of the drive electrode, the area force of the detection electrode itself is too small, so that vibration of the piezoelectric element cannot be detected well.
  • the area of the detection electrode when the area of the detection electrode is larger than 1/7 of the area of the drive electrode, the area of the drive electrode becomes relatively small, so that it becomes difficult to secure a necessary driving force and Therefore, vibrations in vibration modes other than the vibration mode to be used are easily detected, and the accuracy of the detection signal is lowered.
  • a device according to the present invention includes the above-described piezoelectric actuator.
  • the device since the device includes the above-described piezoelectric actuator, the same effect as that of the above-described piezoelectric actuator can be obtained. That is, since one drive signal is determined with respect to the phase difference between the drive signal and the detection signal and the detection signal level, when the control means controls the phase difference and the detection signal level to be a predetermined value, the drive signal is It is always kept constant, and the vibration components of multiple vibration modes are controlled appropriately, improving the accuracy of drive performance. This stabilizes the operation of the device.
  • the device since the device includes the driving unit that drives the lens by the vibration of the piezoelectric actuator, the driving of the lens is ensured.
  • the device is a small device such as a portable device, the force that reduces the lens size This is particularly useful because a relatively large driving force can be obtained with a small size.
  • the device is preferably a timepiece driven by vibration of a piezoelectric actuator.
  • the device is a timepiece and this timepiece is driven by the vibration of the piezoelectric actuator described above, the same effect as that of the piezoelectric actuator described above can be obtained, and vibrations in a plurality of vibration modes can be obtained.
  • Each component is appropriately controlled, improving the accuracy of the driving performance of the watch. This is particularly useful when, for example, the watch is small, such as a wristwatch, because the piezoelectric actuator can obtain a relatively large driving force with a small size.
  • the phase difference and the detection signal level caused by the vibration mode other than the vibration mode mainly used by the detection electrode are formed at positions where the phase difference and the detection signal level are less than the target phase difference and the target signal level. Therefore, mainly the vibration behavior of the vibration mode to be used can be mainly detected, and the drive signal for the appropriate phase difference and detection signal level is determined as one, so the control means can control the drive signal appropriately and reliably. Thus, the reliability of driving performance can be improved.
  • FIG. 1 is a perspective view showing a lens unit that works according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a lens unit that works according to the first embodiment.
  • FIG. 3A is an operation diagram of the cam member of the first embodiment.
  • FIG. 3B is an operation diagram of the cam member of the first embodiment.
  • FIG. 4A is an operation diagram of the cam member of the first embodiment.
  • FIG. 4B is an operation diagram of the cam member of the first embodiment.
  • FIG. 5 is an enlarged perspective view of the piezoelectric actuator according to the first embodiment.
  • FIG. 6 is a block diagram showing the configuration of the applying device according to the first embodiment.
  • FIG. 7 is a diagram showing a phase difference between a drive signal and a detection signal according to the first embodiment.
  • FIG. 8 is a diagram showing the relationship between the phase difference and the driving speed with respect to the driving frequency in the first embodiment.
  • [9] A diagram showing a timepiece that works well in the second embodiment of the present invention.
  • FIG. 13 is a diagram showing a relationship between a phase difference and a driving speed with respect to a driving frequency that is used in the second embodiment.
  • FIG. 14A is a view showing a modification of the detection electrode of the piezoelectric actuator.
  • FIG. 14B is a diagram showing a modification of the detection electrode of the piezoelectric actuator.
  • FIG. 14C is a diagram showing a modification of the detection electrode of the piezoelectric actuator.
  • FIG. 14D is a diagram showing a modification of the detection electrode of the piezoelectric actuator.
  • FIG. 14E is a diagram showing a modification of the detection electrode of the piezoelectric actuator.
  • FIG. 14F is a view showing a modification of the detection electrode of the piezoelectric actuator.
  • FIG. 15 is a plan view showing a modification of the detection electrode of the piezoelectric actuator.
  • FIG. 16 is a sectional view showing a modification of the detection electrode of the piezoelectric actuator.
  • ⁇ 17 A graph showing the relationship between the phase difference, rotation speed, and power consumption with respect to the drive frequency of the piezoelectric actuator.
  • ⁇ 18] A graph showing the relationship between the detection signal level, rotation speed, and power consumption with respect to the drive frequency of the piezoelectric actuator.
  • FIG. 19 is a diagram showing a piezoelectric actuator of Example 1 of the present invention.
  • FIG. 20 is a view showing a piezoelectric actuator according to Comparative Example 1 of the present invention.
  • FIG. 21 shows the results of Example 1.
  • FIG. 22 shows the results of Comparative Example 1.
  • Example 2 of the present invention A graph showing a phase difference characteristic result of Example 2 of the present invention.
  • FIG. 24 is a diagram showing the detection signal characteristic results of Example 2 of the present invention.
  • FIG. 25 is a view showing a phase difference characteristic result of Comparative Example 2 of the present invention.
  • FIG. 26 is a diagram showing the detection signal characteristic result of Comparative Example 2 of the present invention.
  • FIG. 27 is a view showing a phase difference characteristic result of Comparative Example 2 of the present invention.
  • FIG. 29 is a view showing a phase difference characteristic result of Comparative Example 2 of the present invention.
  • FIG. 30 is a diagram showing a detection signal characteristic result of Comparative Example 2 of the present invention.
  • FIG. 31 is a diagram showing a phase difference characteristic with respect to a driving frequency of a conventional piezoelectric actuator. Explanation of symbols
  • the lens unit 10 is mounted on a camera as a device, or is manufactured and used integrally with the camera.
  • this camera drives a recording medium for recording an image formed by the lenses 30, 40, 50 constituting the lens unit 10 and the lenses 30, 40, 50.
  • a driving device 1 as a driving unit and a case in which all of them are stored are provided. However, illustration of a camera, a storage medium, and a case is omitted.
  • FIG. 1 is a perspective view of the lens unit 10 as viewed from the upper right
  • FIG. 2 is a perspective view of the lens unit 10 as viewed from the upper left
  • 3A and 3B are operation diagrams of the cam member 60
  • FIGS. 4A and 4B are operation diagrams of the cam member 70
  • FIG. 5 is an enlarged perspective view of the vibrating body 66 that drives the cam member 60.
  • the lens unit 10 includes a generally rectangular housing 20 and a driven body.
  • a member 70, a vibrating body 66 as a piezoelectric actuator for rotating the cam member 60, and a vibrating body 76 as a piezoelectric actuator for rotating the cam member 70 are provided.
  • the cam members 60, 70 and the vibrating bodies 66, 76 constitute a drive device 1 for driving the lenses 30, 40, 50. The following is a detailed description of each component. .
  • the casing 20 is provided with two rod-shaped guide shafts 21 in parallel with the frontal force directed toward the rear.
  • the guide shaft 21 is a member that guides the lenses 30, 40, and 50 to be driven forward and backward, and penetrates the lenses 30, 40, and 50 in the forward and backward directions (optical axis direction).
  • the guide shaft 21 plays a role of preventing the lenses 30, 40 and 50 from falling back and forth.
  • side holes 22 on both sides of the casing 20 are provided with long hole-shaped openings 23A, 23B, 23C.
  • These opening rods 23B, 23C are cam bars provided on the lenses 30, 40, 50. 3 1, 41, 51 are formed to be large enough to move.
  • the first lens 30 includes a cam bar 31 that is disposed inside the housing 20 and is located in the opening 23C of the housing 20 at the same time.
  • the second lens 40 is provided with a cam bar 41 located in the opening 23B of the housing 20 at the same time as being installed in the housing 20.
  • the third lens 50 is arranged inside the housing 20 and at the same time includes a force bar 51 located in the opening 23A of the housing 20.
  • These first to third lenses 30, 40, 50 include a central condensing part 32, 42, and a condensing part of the third lens 50 (not shown) and surrounding frame attaching parts 33, 43, and A frame mounting portion of the third lens 50 (not shown) is integrally formed of a lens material, and includes holding frames 34, 44, and 54 for holding them.
  • the holding frames 34, 44, 54 are provided with the aforementioned cam bars 31, 41, 51.
  • the first lens 30 is a focus lens
  • the second lens 40 and the third lens 50 are zoom lenses.
  • the third lens 50 is not limited to a zoom lens, and may be a focus lens.
  • the lens unit 10 can be used as a focus lens unit by appropriately setting the configuration of each lens 30, 40, 50 and the optical characteristics of each lens 30, 40, 50. Is available.
  • the second lens 40 has a configuration in which a concave lens and a convex lens are combined.
  • the structure of each of the force lenses 30, 40, 50 may be arbitrarily determined in consideration of the purpose.
  • the lenses 30, 40, and 50 include the condensing portions 32 and 42, the condensing portion of the third lens 50, the frame attaching portions 33 and 43, and the frame attaching portion of the third lens 50.
  • the force that was formed integrally with the lens material Only the condensing part of the condensing parts 32 and 42 and the third lens 50 is made of lens material, and the frame attaching parts 33 and 43 and the third lens 50 are attached to the frame.
  • the part side may be formed integrally with the holding frames 34, 44, 54 using a different material.
  • the condensing part 32, 42, and the condensing part of the third lens 50, the frame attaching part 33, 43, the frame attaching part of the third lens 50, and the holding frame 34, 4 4, 54 are the body lens material. May consist of
  • Cam members 60 and 70 are provided between outer surface portions 25A and 25B on both sides of casing 20, and cover members 10A fixed to the outside of outer surface portions 25A and 25B by three feet 26, respectively. It is installed in.
  • the cam member 60 has a substantially fan shape having a rotation shaft 61, and is supported to be rotatable about the rotation shaft 61 with respect to the outer surface portion 25A of the housing 20. ing. Further, two cam grooves 62A and 62B as drive guide portions are formed in the planar portion of the cam member 60. The cam grooves 62A and 62B are formed in a substantially circular arc shape. The cam rod 41 of the second lens 40 is engaged with the cam groove 62B, and the cam rod 51 of the third lens 50 is engaged with the cam groove 62A.
  • the cam rods 51 and 41 are guided to the cam grooves 62A and 62B, and move within the speed and movement range according to the shape of the cam grooves 62A and 62B. 50, the second lens 40 moves forward and backward.
  • the cam member 70 has a substantially lever-like shape having a rotation shaft 71, and is supported rotatably with respect to the outer surface portion 25B of the housing 20 around the rotation shaft 71. ing. Further, one cam groove 62C as a driving guide portion is formed in the planar portion of the cam member 70. The cam groove 62C is formed in a substantially arc shape. When the cam rod 31 of the first lens 30 is engaged with the cam groove 62C, and the cam member 60 is rotated by this, the cam rod 31 is moved to the cam groove 62C. The first lens 30 moves forward and backward as the cam groove 62C moves in a speed and a moving range according to the shape of the cam groove 62C.
  • an opening is provided in the planar portion of the cam members 60, 70, and the vibrating bodies 66, 76 are disposed in the openings, and the vibrating bodies 66, 76 are brought into contact with the outer peripheral surfaces of the rotating shafts 61, 71. Good.
  • the size of the opening is such that the cam members 60 and 70 do not contact the vibrating bodies 66 and 76 even when the cam members 60 and 70 rotate.
  • the vibrating bodies 66 and 76 are not supported by the outer surface portions 25A and 25B of the casing 20 or the force bar member 10A.
  • the contact portions of the vibrating bodies 66 and 76 are finished without unevenness in order to prevent wear.
  • the outer-diameter shape of the rotating shafts 61 and 71 only a contact part is a circular arc, and the other surface does not need to be a circular arc in particular.
  • the vibrating body 66 includes a reinforcing plate 81 formed in a substantially rectangular flat plate shape, and a substantially rectangular flat plate-shaped piezoelectric element 82 provided on both the front and back surfaces of the reinforcing plate 81.
  • the reinforcing plate 81 is formed with a concave portion 811 at substantially the center of the short side at both ends in the longitudinal direction, and a substantially elliptical convex member 81A is disposed in the concave portion 811.
  • These convex members 81 A are made of any material having high rigidity such as ceramic, and approximately half of the convex members 81 A are disposed in the recesses 811 of the reinforcing plate 81, and the remaining approximately half of the convex member 81 A also has the short side force of the reinforcing plate 81. Protrusively arranged. Of these convex members 81 A, the tip of one convex member 81 A is in contact with the outer peripheral surface of the contact rotation shaft 61.
  • Arm portions 81 B projecting on both sides in the width direction are formed substantially in the center in the longitudinal direction of the reinforcing plate 81.
  • Such a reinforcing plate 81 is made of stainless steel or other materials.
  • the piezoelectric element 82 bonded to the substantially rectangular portions on both sides of the reinforcing plate 81 is composed of lead zirconate titanate (PZT), crystal, lithium niobate, barium titanate, lead titanate, metaniobic acid. It is made of a material selected appropriately from materials such as lead, polyvinylidene fluoride, lead zinc niobate, and lead scandium niobate.
  • a nickel plating layer, a gold plating layer, and the like are formed to form electrodes.
  • a plurality of electrodes electrically insulated from each other by a notch groove are formed symmetrically about a center line along the longitudinal direction. That is, a groove 83A is formed along the longitudinal direction at the center in the short direction of the piezoelectric element 82, and a groove 83B is formed along the short direction at the center in the long direction.
  • a groove 83C in which four corners of a substantially rectangular shape are respectively disposed on the grooves 83A and 83B is formed in the approximate center of the piezoelectric element 82.
  • a pair of grooves 83A, 83B, 83C are provided on the surface of the piezoelectric element 82 on both sides of the diagonal line, and drive electrodes 82A, 82B for driving the rotating shaft 61 by vibrating the vibrating body 66 are provided.
  • drive electrodes 82A, 82B for driving the rotating shaft 61 by vibrating the vibrating body 66 are provided.
  • five electrodes, which are formed in a substantially rectangular shape (substantially diamond shape) and a detection electrode 82C for detecting the vibration behavior of the vibrating body 66, are formed.
  • the piezoelectric element 82 is formed in a rectangular shape having a short side of about 1 mm and a long side of about 3.5 mm.
  • the area of the detection electrode 82C is not less than 1/30 and not more than 1/7 of the area of the drive electrodes 82A and 82B, that is, the total area of the pair of drive electrodes 82A or the total area of the pair of drive electrodes 82B. More preferably, it is set to 1 or more and 1/10 or less of 15 minutes.
  • the area of the detection electrode 82C is useful because the distortion of vibration caused by a vibration mode other than the vibration mode that is mainly desired to vibrate can be removed as the area is small, but it is 1/30 of the area of the drive electrode 82A or the drive electrode 82B. If it is smaller than this, the detection signal itself becomes small, and a good detection signal cannot be extracted.
  • the larger the area of the detection electrode 82C the larger the detection signal itself, but if it exceeds 1/7 of the area of the drive electrode 82A or the drive electrode 82B, vibration other than the vibration mode to be vibrated mainly. Since this vibration is also detected when the vibration distortion component due to the mode becomes large, a desired detection signal cannot be obtained.
  • the vibrating body 66 of the present embodiment is very small, it is difficult to form a large number of electrodes by forming grooves.
  • the detection electrode 82C is excluded from the piezoelectric element 82. By dividing the section into four parts, the longitudinal primary vibration mode and the bending secondary vibration mode can be performed with as few grooves as possible. The shape of the drive electrodes 82A and 82B that can excite the electrodes is realized.
  • the pair of drive electrodes 82A and the pair of drive electrodes 82B are connected to each other by lead wires, and these lead wires are application devices as control means for controlling the vibration behavior of the vibrator 66. 84 (see Figure 6).
  • the detection electrode 82C is connected to the application device 84 by a lead wire (not shown), and the reinforcing plate 81 is connected to the ground by a lead wire (not shown).
  • Electrodes 82A, 82B, 82C are similarly provided on both the front and back piezoelectric elements 82 sandwiching the reinforcing plate 81.
  • the electrode 82A is formed on the back side of the electrode 82A.
  • the piezoelectric element 82 formed in this manner has a longer length of the vibrator 66 by selecting a predetermined electrode from among the drive electrodes 82A and 82B on the surface and applying a voltage by the applying device 84.
  • the vibration body 66 can generate vibration in the bending secondary vibration mode as the bending vibration mode.
  • the piezoelectric element 82 in the portion where the drive electrode 82A is formed expands and contracts in the in-plane direction of the plate, thereby exciting the vibration in the longitudinal primary vibration mode.
  • the vibration in the longitudinal primary vibration mode is hindered in this portion, and the vibration behavior of the entire vibrator 66 becomes unbalanced along the longitudinal center line. As a result, the vibrating body
  • the convex member 81A of the vibrating body 66 vibrates while drawing a substantially elliptical orbit combining a vibration in the longitudinal primary vibration mode and a vibration in the bending secondary vibration mode.
  • the convex member 81A rotates the rotation shaft 61 in the tangential direction. Therefore, at this time, the detection electrode 82C is located at a position where the distortion due to the vibration in the longitudinal primary vibration mode is maximum at the vibration node in the longitudinal primary vibration mode, and at the vibration node in the bending secondary vibration mode. It is formed around the position where distortion due to vibration in the vibration mode is minimized.
  • the vibrating body 66 is changed.
  • the rotation direction of the rotation shaft 61 can be rotated forward and backward.
  • the drive frequency of the drive voltage (drive signal) applied to the piezoelectric element 82 is such that when the vibrating body 66 vibrates, a resonance point of vibration in the bending secondary vibration mode appears in the vicinity of the resonance point of vibration in the longitudinal primary vibration mode.
  • the convex member 81A is set to draw a good substantially elliptical orbit.
  • the dimensions, thickness, material, aspect ratio, and electrode division form of the piezoelectric element 82 are such that the convex member 81A can easily draw a good substantially elliptical orbit when a voltage is applied to the piezoelectric element 82. It is decided accordingly.
  • the waveform of the AC voltage applied to the vibrating body 66 is not particularly limited, and for example, a sine wave, a rectangular wave, a trapezoidal wave, or the like can be employed.
  • the vibrating body 76 has the same configuration as that of the vibrating body 66, and can be understood by describing the vibrating body 66. Therefore, the description thereof is omitted here.
  • FIG. 6 shows a configuration block diagram of the application device 84.
  • the application device 84 includes a phase difference-voltage conversion circuit 841, a constant voltage circuit 842, a comparison circuit 843, a voltage adjustment circuit 844, a voltage controlled oscillation circuit 845, a driver circuit 846, and a reset. Circuit 847.
  • the phase difference-voltage conversion circuit 841 detects the phase difference between the phase of the detection signal Va detected by the detection electrode 82C and the phase of the drive signal Vh applied to the drive electrode 82A or the drive electrode 82B, and calculates the average.
  • a phase difference voltage signal Vj having a voltage value corresponding to the phase difference is output to the comparison circuit 843.
  • FIG. 7 is a diagram showing the phase difference ⁇ between the drive signal Vh and the detection signal Va.
  • the phase difference-voltage conversion circuit 841 includes a phase difference detection unit 841A and an average voltage conversion unit 841B.
  • the phase difference detection unit 841A When the detection signal Va and the drive signal Vh are input, the phase difference detection unit 841A generates a phase difference signal Vpd having a pulse width corresponding to the phase difference between the two signals, and outputs the phase difference signal Vpd to the average voltage conversion unit 841B.
  • the average voltage converter 841B generates a phase difference voltage signal Vj having an average voltage value corresponding to the pulse width of the phase difference signal Vpd by an integration circuit (not shown), and outputs the phase difference voltage signal Vj to the comparison circuit 843.
  • the constant voltage circuit 842 compares a predetermined reference phase difference signal Vk obtained in advance with a voltage value corresponding to the optimum phase difference (target phase difference) between the phase of the detection signal Va and the phase of the drive signal Vh. Is output.
  • the reference phase difference signal Vk is set to a phase difference corresponding to the driving frequency at which the vibration body 66 vibrates most efficiently and the ratio of the vibration component between the longitudinal primary vibration mode and the bending secondary vibration mode is appropriate. Hope that will be.
  • Fig. 8 shows the behavior characteristics of the vibrator 66 with respect to the drive frequency
  • Fig. 8 (A) shows the relationship of the phase difference ⁇ with respect to the drive frequency
  • Fig. 8 (B) shows the drive characteristic. This shows the relationship of the drive (rotation) speed of the rotation shaft 61 to the frequency.
  • Fig. 8 (A) when the driving frequency of the vibrating body 66 is changed, the vibration frequency fl in the longitudinal primary vibration mode and the resonance frequency f2 in the bending secondary vibration mode are different. It can be seen that the phase difference 0 increases. Further, as shown in FIG.
  • the drive frequency is close to the resonance frequency fl of the longitudinal primary vibration mode between the resonance frequency fl of the vibration of the longitudinal primary vibration mode and the resonance frequency f 2 of the vibration of the bending secondary vibration mode. It ’s desirable to set the frequency!
  • the frequency at which the drive speed of the rotary shaft 61 is maximized is selected as the drive frequency, and the reference phase difference signal Vk is the phase difference (target position) at this frequency.
  • the phase difference is set to a value having a voltage value corresponding to ⁇ k.
  • the detection electrode 82C is formed to include a position where the distortion due to the vibration in the bending secondary vibration mode is minimized, the detection signal is hardly affected by the vibration in the bending secondary vibration mode. Therefore, the detection signal detected by the detection electrode 82C has a phase difference ⁇ that increases in the vicinity of the resonance frequency fl of the vibration in the longitudinal primary vibration mode and the resonance frequency f2 of the vibration in the bending secondary vibration mode. It can be seen that the variation of phase difference ⁇ due to vibration of is smaller than the variation of phase difference 0 due to vibration in the longitudinal primary vibration mode. As shown in FIG. 8 (A), the phase difference ⁇ k is larger than the phase difference ⁇ 2 at the resonance frequency f 2 of the bending secondary vibration mode. Therefore, the corresponding drive frequency is always determined as one.
  • the detection electrode 82C is formed at a position where the phase difference ⁇ force is less than the target phase difference ⁇ k due to a vibration mode (bending secondary vibration mode) other than the vibration mode (vertical primary vibration mode) used mainly. Therefore, only the phase difference ⁇ caused mainly by the longitudinal primary vibration mode to be used reaches the target phase difference. For this reason, since the drive signal for the target phase difference ⁇ k is determined as one, the application device 84 can control the drive signal based on this phase difference, so that the drive signal can be optimally adjusted.
  • the comparison circuit 843 receives the phase difference voltage signal Vj from the phase difference-voltage conversion circuit 841 and the reference phase difference signal Vk from the constant voltage circuit 842, and compares them. That is, when the phase difference voltage signal Vj ⁇ the reference phase difference signal Vk, the comparison circuit 843 outputs the comparison result signal Ve that becomes “H” to the voltage adjustment circuit 844, and the phase difference voltage signal Vj becomes the reference phase. In the case of the difference signal Vk, the comparison circuit 843 outputs the comparison result signal Ve that becomes “L” to the voltage adjustment circuit 844.
  • the voltage adjustment circuit 844 receives the comparison result signal Ve from the comparison circuit 843 and changes the voltage value of the adjustment signal Vf output to the voltage controlled oscillation circuit 845 in units of a predetermined voltage value VfO. That is, when the “H” comparison result signal Ve is input, the voltage adjustment circuit 844 increases the voltage value of the adjustment signal Vf by the predetermined voltage value VfO, and the “L” comparison result signal Ve is input. For this, the voltage value of the adjustment signal Vf is lowered by a predetermined voltage value VfO.
  • the voltage adjustment circuit 844 stores an initial value Vfl that is an initial adjustment signal. When the application device 84 is activated, an adjustment signal Vf having the initial value Vfl as a voltage value is output to the voltage controlled oscillation circuit 845.
  • the initial value Vfl is the upper limit value of the preset adjustment range of the drive frequency, and in this embodiment, the adjustment range of the drive frequency is more predetermined than the resonance frequency fl of vibration in the longitudinal primary vibration mode.
  • the frequency is set from a low frequency to a predetermined value higher than the resonance frequency f2 of the vibration in the bending secondary vibration mode.
  • the initial value Vfl is higher than the resonance frequency f2 of the vibration in the bending secondary vibration mode.
  • the frequency is set higher than the specified value.
  • the voltage control oscillation circuit 845 receives the adjustment signal Vf from the voltage adjustment circuit 844 and adjusts the frequency of the reference signal Vg output to the driver circuit 846. That is, the voltage controlled oscillation circuit 845 increases the frequency of the reference signal Vg by a predetermined value fO when the voltage value of the adjustment signal Vf becomes higher than the voltage value of the previous adjustment signal Vf, and the voltage value of the adjustment signal Vf. When becomes lower than the voltage value of the previous adjustment signal Vf, the frequency of the reference signal Vg is adjusted to be lowered by the predetermined value fO. In addition, when the adjustment signal Vf of the initial value Vfl is input when the application device 84 is started, the voltage controlled oscillation circuit 845 outputs a reference signal Vg having a preset frequency.
  • the driver circuit 846 receives the reference signal Vg from the voltage controlled oscillation circuit 845, and applies the drive signal Vh having a constant voltage value at the frequency of the reference signal Vg to the drive electrode 82A or the drive electrode 82B of the vibrator 66. Output.
  • the reset circuit 847 sends a reset signal for changing the frequency of the reference signal Vg to the frequency of the initial value Vfl to the voltage adjustment circuit 844 when the frequency of the drive signal Vh from the driver circuit 846 falls below a predetermined value.
  • the predetermined value of the frequency at which the reset signal is output is set to the lower limit value of the adjustment range of the drive frequency, and in this embodiment, the predetermined value is lower than the resonance frequency fl of the vibration in the longitudinal primary vibration mode. The frequency is set.
  • the voltage adjustment circuit 844 outputs an adjustment signal Vf having the initial value Vf 1 as a voltage value to the voltage controlled oscillation circuit 845.
  • the voltage controlled oscillation circuit 845 adjusts the frequency of the reference signal Vg based on the adjustment signal Vf.
  • the application device 84 first applies the drive signal Vh to the vibrating body 66 based on the reference signal Vg having a frequency corresponding to the voltage value of the initial value Vfl at the time of activation.
  • the initial value Since Vfl is set to the upper limit of the adjustment range of the drive frequency
  • the phase difference voltage signal Vj due to the phase difference 0 between the drive signal Vh and the detection signal Va is usually the reference from the constant voltage circuit 842 at the initial stage. It becomes smaller than the phase difference signal Vk. Therefore, the comparison circuit 843 outputs the comparison result signal Ve of “L”, and the voltage adjustment circuit 844 decreases the voltage value of the adjustment signal Vf by the predetermined voltage value VfO based on the comparison result signal Ve.
  • the frequency of the reference signal Vg from the voltage controlled oscillation circuit 845 decreases by the predetermined value fO.
  • the frequency of the drive signal Vh applied to the vibrator 66 decreases, and when the phase difference voltage signal Vj ⁇ reference phase difference signal Vk, the drive signal Vh is reversed. Since the frequency increases, the phase difference voltage signal Vj corresponding to the phase difference 0 between the drive signal Vh and the detection signal Va is controlled in the vicinity of the reference phase difference signal Vk.
  • the adjustment signal Vf of the voltage adjustment circuit 844 is reset to the initial value Vfl ⁇ corresponding value.
  • An application device (not shown) having the same configuration is also provided for the vibrating body 76, and the same control as that of the vibrating body 66 is performed for the vibration control of the vibrating body 76.
  • the rotating shaft 61 rotates at a predetermined angle.
  • the cam member 60 integrated with the rotating shaft 61 also rotates at a predetermined angle.
  • the cam grooves 62A and 62B formed in the cam member 60 also rotate, and the outer peripheral surfaces of the cam bars 51 and 41 fitted in the cam grooves 62A and 62B are caused by the inner peripheral surfaces of the cam grooves 62A and 62B. It moves in the openings 23A and 23B while being guided.
  • FIGS. 4A and 4B when the vibrating body 76 in contact with the outer periphery of the rotation shaft 71 vibrates, the rotation shaft 71 rotates at a predetermined angle. By turning, the turning shaft 71 and the cam member 70 are also turned at a predetermined angle. Then, the cam groove 62C formed in the cam member 70 also rotates, and the outer peripheral surface of the cam rod 31 fitted to the 62C moves within the opening 23C while being guided by the inner peripheral surface of the cam groove 62C. To do.
  • the first lens 30 functions as a focus lens.
  • the vibration is directly applied to the rotating shafts 61 and 71 of the cam members 60 and 70 while appropriately switching between the drive electrode 82A and the drive electrode 82B of the voltage applied to the piezoelectric element 82, thereby 1 lens 30, 2nd lens 40, 3rd lens 50 force S As shown in Fig. 3 A, 3B, 4A, 4B, it will be moved forward and backward.
  • the positions of the lenses 30, 40, 50 are read by a reading sensor (not shown), and are fed back to the control circuit to control the drive, so that the lenses 30, 40, 50 can be stopped at an arbitrary position.
  • the detection electrode 82C is provided at substantially the center of the piezoelectric element 82, and is formed to include a position where distortion due to vibration in the bending secondary vibration mode is minimized, that is, in the bending secondary vibration mode. Since it is formed at the position including the vibration node, the influence on the detection signal Va due to the vibration in the bending secondary vibration mode can be minimized. Therefore, as shown in FIG. 8, the phase difference 0 between the drive signal Vh and the detection signal Va can be reduced in the vicinity of the resonance frequency f2 of the vibration in the bending secondary vibration mode.
  • phase difference (target phase difference) ⁇ k corresponding to the drive frequency at which the drive speed of the rotating shafts 61 and 71 becomes the largest is the phase difference ⁇ 2 at the resonance frequency f2 of the vibration in the bending secondary vibration mode. Therefore, the voltage corresponding to the phase difference ⁇ k
  • the drive signal Vh (drive frequency) with respect to the reference phase difference signal Vk having a value can be determined as one.
  • the frequency of the drive signal Vh can always be determined as one, so that the vibration control of the vibrating bodies 66 and 76 can be ensured.
  • the driving efficiency of the driving device 1 can be improved.
  • the detection electrode 82C is located at a position including the vibration node of the longitudinal primary vibration mode, and the vibration amplitude of the longitudinal primary vibration mode is maximized at the position of the node. Can be easily detected.
  • the area force of the detection electrode 82C is set to 1/30 to 1/7, more preferably 1/15 to 1/10 of the area of the drive electrodes 82A and 82B. Therefore, the detection electrode 82C can reliably detect vibration, and by securing the area of the drive electrodes 82A and 82B, it is possible to secure the drive force necessary to drive the rotating shafts 61 and 71. In addition, since the area of the detection electrode 82 C is appropriately set !, the influence on the phase difference due to the vibration in the bending secondary vibration mode can be suppressed well, and a more accurate detection signal can be detected.
  • the vibration direction of the vibrating bodies 66 and 76 (the vibration direction of the bending secondary vibration mode) ) Vibration can be detected regardless. This is because, for example, when an unused portion of the drive electrode is used as a detection electrode, when the drive electrode is switched to switch the vibration direction, the detection electrode needs to be switched accordingly. Wiring and control operations become complicated. On the other hand, since the detection electrode 82C of this embodiment is provided separately from the drive electrodes 82A and 82B, the configuration of the application device 84 can be simplified.
  • the control target variation is limited to the range of 0 ° to 180 °.
  • the application device 84 is configured with a control circuit that can be controlled in this phase difference range in advance, a common control circuit can be used even when the voltage of the drive signal is changed. Can be improved.
  • the voltage or current of the drive signal is used as the control target of the drive signal Vh, the voltage value and current value of the detection signal are also changed accordingly.
  • the phase difference ⁇ between the drive signal Vh and the detection signal Va is adopted as the control target, so that the voltage without changing the reference phase difference signal Vk significantly in a common circuit. It is possible to cope with the setting of different V, and the drive signal Vh can be controlled reliably.
  • the vibrating bodies 66 and 76 are formed in a plate shape, it is possible to promote a reduction in the thickness of the drive device 1, thereby promoting a reduction in the size of the lens unit 10. Further, since the convex member 81A is in contact with the rotating shafts 61 and 71, when the vibration of the vibrating bodies 66 and 76 is stopped, friction between the convex member 81A and the outer periphery of the rotating shafts 61 and 71 is caused. The rotation angle of the rotation shafts 61 and 71 can be maintained.
  • the piezoelectric actuator according to the present invention is applied to a timepiece as a device.
  • FIG. 9 is a plan view showing the date display mechanism 90 of the timepiece 9 according to the second embodiment of the present invention.
  • the main part of the date display mechanism 90 includes a piezoelectric actuator 91, a rotor 92 as a driven body that is driven to rotate by the piezoelectric actuator 91, and a deceleration that transmits the rotation of the mouth 92 while reducing the rotation.
  • the train wheel is generally composed of a train wheel and a date wheel 93 that is rotated by the driving force transmitted through the reduction train wheel.
  • the decelerating wheel train includes a date turning intermediate wheel 94 and a date turning wheel 95.
  • the piezoelectric actuator 91, the rotor 92, the date driving intermediate wheel 94, and the date driving wheel 95 are supported by the bottom plate 9A.
  • a disk-shaped dial (not shown) is provided above the date display mechanism 90, and a window for displaying the date is provided on a part of the outer periphery of the dial.
  • the date of the date wheel 9 3 can be made from the window.
  • a hand train wheel train (not shown) connected to a stepping motor to drive a pointer, a secondary battery 9B as a power source, and the like are provided below the bottom plate 9A (on the back side).
  • Secondary battery 9B is a stepping motor or piezoelectric actuator 91 The power is supplied to each circuit of the applying device (not shown).
  • the secondary battery 9B is connected to a generator that generates power using solar (solar) power generation or rotation of a rotating spindle, and the power generated by this generator is charged to the secondary battery 9B. May be.
  • the power source is not limited to the secondary battery 9B charged by the generator, but may be a general primary battery (for example, a lithium ion battery).
  • the date indicator driving intermediate wheel 94 includes a large-diameter portion 941 and a small-diameter portion 942, and a force.
  • the small-diameter portion 942 has a cylindrical shape slightly smaller in diameter than the large-diameter portion 941, and a substantially square-shaped notch portion 943 is formed on the outer peripheral surface thereof.
  • the small diameter portion 942 is fixed to the large diameter portion 941 so as to be concentric.
  • a gear 921 at the top of the rotor 92 is engaged with the large diameter portion 941. Accordingly, the date turning intermediate wheel 94 having a force with the large diameter portion 941 and the small diameter portion 942 rotates in conjunction with the rotation of the rotor 92.
  • a plate panel 944 is provided on the bottom plate 9A on the side of the intermediate date wheel 94, and the base end of the plate panel 944 is fixed to the bottom plate 9A, and the tip is bent into a substantially V shape. It has been.
  • the front end portion of the panel panel 944 is provided so as to be able to enter and leave the notch 943 of the intermediate date wheel 94.
  • a contact 945 is disposed in the vicinity of the panel 944, and this contact 945 is rotated when the intermediate wheel 94 is rotated and the front end of the panel 944 enters the notch 943. In addition, it comes into contact with the panel 944.
  • a predetermined voltage is applied to the plate panel 944, and when the contact with the contact 945, the voltage is also applied to the contact 945. Therefore, by detecting the voltage of the contact 945, the date feeding state can be detected, and the amount of rotation of the date wheel 93 for one day can be detected.
  • the rotation amount of the date wheel 93 is not limited to the one using the panel panel 944 or the contact 945, but the rotation state of the rotor 92 or the date driving intermediate wheel 94 is detected and a predetermined pulse signal is output.
  • various rotary encoders such as known photo reflectors, photo interrupters, and MR sensors can be used.
  • the date wheel 93 has a ring shape, and an internal gear 931 is formed on the inner peripheral surface thereof.
  • the date driving wheel 95 has a five-tooth gear and meshes with the internal gear 931 of the date wheel 93.
  • a shaft 951 is provided at the center of the date driving wheel 95, and this shaft 951 is loosely inserted into a through hole 9C formed in the bottom plate 9A. Through hole 9C It is long along the direction.
  • the date driving wheel 95 and the shaft 951 are urged in the upper right direction in FIG. 9 by a plate panel 952 fixed to the bottom plate 9A. The urging action of the plate panel 952 prevents the date wheel 93 from swinging.
  • FIG. 10 shows an enlarged view of the piezoelectric actuator 91 and the rotor 92.
  • the piezoelectric actuator 91 includes a substantially rectangular plate-shaped reinforcing plate 911 and piezoelectric elements 912 bonded to both surfaces of the reinforcing plate 911.
  • Arm portions 913 projecting on both sides are formed at substantially the center in the longitudinal direction of the reinforcing plate 911, and one of these arm portions 913 is fixed to the bottom plate 9A with screws or the like.
  • the other arm portion 913 is not fixed to the bottom plate 9A but is in a free state, and serves as a weight that balances vibration when the piezoelectric actuator 91 vibrates.
  • substantially semicircular convex portions 914 that protrude along the longitudinal direction of the reinforcing plate 911 are formed.
  • One of the convex portions 914 is in contact with the side surface of the rotor 92.
  • the piezoelectric element 912 is formed in a substantially rectangular plate shape, and is attached to substantially rectangular portions on both sides of the reinforcing plate 911. Electrodes are formed on both surfaces of the piezoelectric element 912 by adhesive layers as in the first embodiment. On the surface of the piezoelectric element 912, a substantially rectangular detection electrode 912B is formed by insulating the plating layer with a groove. As shown in FIG. 11, the detection electrode 912B is formed on the rotor 92 side with respect to the longitudinal center of the piezoelectric element 912 and on the convex portion 914 side with respect to the lateral center of the piezoelectric element 912.
  • the convex portion 914 is formed on the diagonal line of the reinforcing plate 911, the unbalance is generated by the projection at the tip end (convex portion 914), and the bending secondary vibration mode is excited. Yes.
  • the convex portion 914 is shifted in a direction. Therefore, in this embodiment, the detection electrode 912B is formed on the Y axis at a position shifted from the Y axis in the positive direction of the X axis! /
  • L be the dimension in the width direction (short direction) of the piezoelectric element 912
  • L be the dimension in the longitudinal direction
  • the pole 912B is formed in the area ABCD on the positive direction side (right side in the figure) of the X axis and the positive direction side (upper side in the figure) of the X axis with respect to the intersection O of the X axis and Y axis.
  • the position of each point of ABCD depends on the dimensional ratio of L and L, weight unbalance due to convex part 914, etc.
  • the detection electrode 912B may be provided in the area EGFH indicated by the dotted line in FIG. .
  • the portion other than the detection electrode 912B is a drive electrode 912A.
  • the area of the detection electrode 912B is set to 1/30 to 1/7 of the area of the drive electrode 912A, and more preferably 1/15 to 1/10. Yes.
  • the piezoelectric element 912 excites vibrations in the longitudinal primary vibration mode that expands and contracts along the longitudinal direction.
  • the piezoelectric actuator 91 since the convex portions 914 are provided at both diagonal ends of the piezoelectric actuator 91, the piezoelectric actuator 91 as a whole is unbalanced in weight with respect to the longitudinal center line. Due to this unbalance, the piezoelectric actuator 91 excites vibrations in a bending secondary vibration mode that bends in a direction substantially orthogonal to the longitudinal direction. Therefore, the piezoelectric actuator 91 excites vibrations that combine these longitudinal primary vibration mode and bending secondary vibration mode, and the convex portion 914 vibrates in a substantially elliptical orbit.
  • the detection electrode 912B has a portion where the electrode extends due to the bending secondary vibration mode (arrow ⁇ portion) and a portion where the electrode contracts (arrow B portion). Piezoelectric elements generate positive charges when compressed and negative charges when stretched. If the detection signal of the detection electrode 912B is extracted by using this, a charge is generated according to the expansion and contraction of the detection electrode 912B, and a signal corresponding to the vibration can be extracted.
  • the state of the detection electrode 912B for a certain period of time can be taken only as an extension force, contraction! /.
  • the state of the detection electrode 912B for a certain period of time may include an extended portion and a contracted portion depending on the formation position of the detection electrode 912B.
  • the detection electrode 912B in which the expanded portion and the contracted portion coexist the positive charge and the negative charge cancel each other, and the detection signal becomes small.
  • the phase difference between the drive signal and the detection signal seen in the vicinity of the resonance frequency is also reduced.
  • the charge amount due to the expansion and contraction is canceled out, and the phase difference due to the bending secondary vibration mode is also substantially zero, for example, 20 degrees or less. Small value.
  • the position of the detection electrode 912B in the X-axis direction is moved in the negative direction of the X-axis, that is, in the Y-axis side, the phase difference due to the bending secondary vibration mode increases.
  • the phase difference due to the bending secondary vibration mode becomes a negative value.
  • the phase difference is 0 to 180 degrees. It is necessary to detect and control between 180 to +180 degrees, which is sufficient to detect and control between them, and the control processing mechanism becomes complicated. Therefore, the position of the detection electrode 912B in the X-axis direction needs to be arranged within an appropriate range (for example, between A and B in FIG. 11) between the Y-axis and the edge of the piezoelectric element.
  • the phase difference due to the bending secondary vibration mode increases and the detection signal The level of will fall. That is, when the detection electrode 912B is moved in the positive direction of the Y axis, distortion due to the longitudinal primary vibration mode is reduced, electric charges generated by the distortion are reduced, and the detection signal level is also lowered.
  • the detection signal generated from the detection electrode is used for control, the signal level is low, and it is affected by electrical noise, mechanical vibration, and light impact, and the control is unstable immediately. May be.
  • the position of the detection electrode 912B in the Y-axis direction needs to be arranged within a predetermined range (for example, between A and C in FIG. 11) between the X-axis and the longitudinal end of the piezoelectric element.
  • the drive electrode 912 ⁇ , the detection electrode 912 ⁇ , and the reinforcing plate 911 are each connected to an application device (not shown) by a lead wire or the like. Similar to the application device 84 of the first embodiment, the application device controls the drive signal so that the phase difference between the drive signal and the detection signal becomes an appropriate value.
  • FIG. 13 shows the vibration characteristics of the piezoelectric actuator 91 and the operating characteristics of the date display mechanism 90 with respect to the drive frequency applied to the piezoelectric actuator 91 in the date display mechanism 90 of the present embodiment.
  • the phase difference with respect to the driving frequency gradually decreases as the driving frequency increases within a certain driving frequency range.
  • the rotational speed of the rotor 92 with respect to the drive frequency increases in the range of the drive frequency where the phase difference decreases.
  • this drive frequency range is between the resonance frequency of the vibration in the longitudinal primary vibration mode and the resonance frequency of the vibration in the bending secondary vibration mode, and these vibration modes appear well at the same time. It can be said.
  • the reference phase difference signal Vk of the applying device is set to a value having a voltage value corresponding to a phase difference 0 k (for example, between 70 ° and 80 °) corresponding to this drive frequency range.
  • the leaf spring 922 is attached to the rotor 92, and the rotor 92 is biased toward the piezoelectric actuator 91 side.
  • an appropriate frictional force is generated between the convex portion 914 and the side surface of the rotor 92, and the transmission efficiency of the driving force of the piezoelectric actuator 91 is improved.
  • the piezoelectric actuator 91 when a driving signal having a predetermined frequency is applied by the application device controlling the driving signal to the piezoelectric actuator 91 as in the first embodiment, the piezoelectric actuator 91 is In addition, a vibration combining a longitudinal primary vibration mode and a bending secondary vibration mode is excited.
  • the convex portion 914 vibrates by drawing a substantially elliptical orbit combining these vibration modes, and presses the rotor 92 with a part of the vibration orbit to drive the rotor 92 to rotate.
  • the rotational movement of the rotor 92 is transmitted to the date indicator driving intermediate wheel 94, and when the teeth of the date indicator driving wheel 95 are engaged with the notch 943, the date indicator driving wheel 95 is rotated by the date indicator driving intermediate wheel 94, and the date indicator 93 is rotated. The Make it. By this rotation, the date displayed by the date wheel 93 is changed.
  • the convex portions 914 are provided at both ends of the diagonal line of the piezoelectric actuator 91, only one drive electrode 912A can be provided, and the bending secondary vibration mode can be excited by switching to the longitudinal primary vibration mode due to weight imbalance. Therefore, the configuration of the electrodes of the piezoelectric element 912 can be simplified. Along with this, it is possible to simplify the control of the drive signal in the application device. This is particularly useful when, for example, the piezoelectric actuator 91 is small in size, because it is difficult to form an electrode having a complicated shape by a groove in the small piezoelectric element 912.
  • the piezoelectric actuator 91 Since the piezoelectric actuator 91 is used in the date display mechanism 90 of the watch 9, the drive efficiency of the piezoelectric actuator 91 is always optimally controlled. The date can be displayed accurately. In addition, the miniaturization of the timepiece 9 can be promoted by the miniaturization of the piezoelectric actuator 91 being promoted.
  • the shape, arrangement, and the like of the detection electrode are formed in a substantially rhombus at the approximate center of the piezoelectric element 82, and in the second embodiment, the detection electrode is formed in a substantially rectangular shape near the convex portion 914 of the piezoelectric element 912.
  • the present invention is not limited to this, and for example, the shape and arrangement shown in FIGS.
  • a substantially square detection electrode 101A is formed substantially at the center of the surface of the piezoelectric element.
  • a pair of drive electrodes 102A and 103A having a substantially rectangular shape are formed on both ends of the diagonal line on the surface of the piezoelectric element excluding the detection electrode 101A.
  • one drive electrode 102A is continuous with each other at the approximate center of the piezoelectric element to form one drive electrode 102A. Therefore, in this piezoelectric actuator 100A, three drive electrodes 102A and 103A and one detection electrode 101A are formed.
  • the drive electrode 102A, 103A and the detection electrode 101A are provided with a lead wire connection position 104A to which a lead wire is connected. It is
  • the drive electrodes 102A and 103A are formed with a concave / convex portion in the vicinity of the center in the longitudinal direction of the piezoelectric element, so that these lead wire connection positions 104A are arranged substantially in a straight line at the approximately center in the longitudinal direction of the piezoelectric element. Yes.
  • Such an arrangement facilitates connection of the lead wire to each electrode.
  • the drive electrodes 102A are continuous with each other substantially at the center of the piezoelectric element, the number of lead wires connected to the piezoelectric element can be reduced, so that the structure of the piezoelectric actuator 100A can be simplified.
  • the electrodes are divided into three along the longitudinal direction of the piezoelectric element, and the electrodes at both ends of these electrodes are further divided into two along the short direction.
  • four drive electrodes 101B are formed.
  • the substantially square detection electrode 102B is formed at the approximate center of the piezoelectric element, so that the drive electrodes 103B are formed on both sides thereof.
  • the lead wire connection position 104B is preferably concentrated at the approximate center of the piezoelectric element.
  • the approximate center of the piezoelectric element is a node of vibration in the longitudinal primary vibration mode and a node of vibration in the bending secondary vibration mode, so the displacement width of the piezoelectric actuator 100B is reduced, so that problems such as disconnection of the lead wire occur. This is because it can be prevented.
  • a substantially square detection electrode 101C is formed at the same position as the detection electrode 82C of the first embodiment.
  • the detection electrode 101D is formed in a polygonal shape (hexagonal shape).
  • the detection electrode may have any shape such as a circular shape, an elliptical shape, or a deformed shape in addition to a substantially square shape or a polygonal shape.
  • the arrangement of the detection electrode is not limited to the position of the vibration node of the longitudinal primary vibration mode and the position including the vibration node of the bending secondary vibration mode, as shown in FIG.
  • it is not a vibration node in the longitudinal primary vibration mode, but may be formed at a position including a vibration node in the bending secondary vibration mode.
  • the detection electrode when the piezoelectric actuator is operated mainly using the longitudinal primary vibration mode, the detection electrode has the longitudinal primary vibration mode. It may be formed at a position including a node of vibration other than the mode, for example, the vibration of the bending secondary vibration mode.
  • the arrangement of the detection electrode is not limited to the position including the vibration node of the bending secondary vibration mode.
  • the piezoelectric actuator mainly uses the vibration of the bending secondary vibration mode
  • the bending secondary vibration mode is used. What is necessary is just to form including the node of vibrations other than vibration mode.
  • the detection electrode 101E shown in FIG. 14E and the detection electrode 101F shown in FIG. You may provide in an edge part.
  • the detection electrode 101F may be formed so as to include a position where distortion due to vibration in the longitudinal primary vibration mode is minimized.
  • the detection electrode includes a position where the distortion due to vibrations of vibration modes other than the vibration mode used mainly is minimized, and the phase difference caused by vibration modes other than the vibration mode used is less than the target phase difference. If it is formed with ⁇ .
  • the position of the detection electrode is not limited to the position where the distortion due to vibration in a vibration mode other than the vibration mode used is mainly the same as the center of gravity of the shape of the detection electrode. If it is formed in a position that includes
  • vibrations in vibration modes other than the vibration mode used mainly as in the second embodiment are arranged on the Y-axis and is not unbalanced as in the first embodiment. Because of this, there are a mixture of extending parts and shrinking parts, and the detection electrodes are arranged at positions where the amounts of charge generated in each part cancel each other, and there is a phase difference caused by vibration modes other than the vibration mode used mainly. In other words, it may be formed including a position that is less than the target phase difference.
  • the shape of the detection electrode 912B formed at the position where the stretchable parts are mixed is not limited to the rectangular (quadrangle) shape as in the second embodiment.
  • it may be formed in a flat L shape.
  • the shape of the detection electrode 912B is not particularly limited as long as it is installed at a position where positive and negative charges are generated and cancel each other.
  • the wiring 915 such as a lead wire is connected from the side of the piezoelectric element 912 as shown in FIG.
  • the vibration mode is not limited to the longitudinal primary vibration mode or the bending secondary vibration mode, and any other vibration mode such as the longitudinal secondary vibration mode or the bending primary vibration mode can be adopted.
  • the piezoelectric actuator is not limited to having two vibration modes, and may have three or more vibration modes.
  • the detection electrode is mainly formed when there are three or more vibration modes that should be formed so as to include a position where distortion due to vibration in a vibration mode other than the vibration mode to be used is minimized.
  • the vibration mode having the greatest influence on the detection signal may include the position where the distortion due to the vibration is minimized.
  • the detection electrode is selected from vibration modes other than the vibration mode that is mainly used, and a vibration mode that is similar to the detection mode for detecting the detection signal is selected mainly. It may be formed including the position.
  • the initial value Vf 1 is set to the upper limit value of the preset drive frequency adjustment range!
  • the present invention is not limited to this, and may be set to the lower limit value of the drive frequency adjustment range, for example. .
  • the driving frequency with respect to the phase difference is determined as one, the driving frequency applied to the piezoelectric actuator can be optimally controlled by controlling the phase difference to a predetermined value.
  • the drive frequency is controlled based on the phase difference between the drive signal and the detection signal.
  • the drive frequency is controlled based on the signal level of the detection signal. May be.
  • the drive frequency is controlled based on the phase difference as in each of the embodiments described above, for example, as shown in FIG. 17, a predetermined target phase difference ⁇ k at which the rotational speed is the highest is set,
  • the drive frequency is adjusted to the frequency at which the phase difference due to the longitudinal primary vibration mode becomes the target phase difference ⁇ k, and the phase difference due to the bending secondary vibration mode is detected at a position where it is less than the target phase difference ⁇ k.
  • An electrode may be provided. In other words, if the detection electrodes are arranged so that the phase difference ⁇ caused by the bending secondary vibration mode is less than the target phase difference ⁇ k
  • phase difference such as the phase difference ⁇ caused by the bending secondary vibration mode
  • the drive frequency can be controlled based on the detection signal level. .
  • the drive frequency may be controlled so that the detection signal level resulting from the longitudinal primary vibration mode becomes the target level V.
  • the detection electrode is set so that the detection signal level (for example, V) due to the bending secondary vibration mode is less than the target level V.
  • the detection electrode may be arranged at a position where the detection signal level is substantially zero.
  • five electrodes are formed on the surface of the piezoelectric element 111A, and two electrodes formed on the diagonal ends of these electrodes are the drive electrodes 112A and 113A, respectively, and the center electrode Driven It is electrode 114A.
  • a substantially rectangular detection electrode 115A is formed in the drive electrode 114A at the approximate center of the piezoelectric element 111A.
  • the piezoelectric actuator 110A excites vibration that combines the longitudinal primary vibration mode and the bending secondary vibration mode, and the convex portion 116A vibrates in a substantially elliptical orbit. Further, when a drive signal is applied to the drive electrodes 113A and 114A, the vibration direction of the bending secondary vibration mode is reversed, and the convex portion 116A vibrates while drawing a substantially elliptic orbit in the reverse direction. Therefore, the vibration node in the longitudinal primary vibration mode is the point A at the center of the piezoelectric actuator 110A, and the vibration node in the bending secondary vibration mode is the three points A along the longitudinal direction of the piezoelectric actuator 110A. Become. That is, the detection electrode 115A is formed so as to include the position of the vibration node in the longitudinal primary vibration mode and the vibration node in the bending secondary vibration mode.
  • the convex portion 116A of such piezoelectric actuator 11OA was brought into contact with the side surface of the rotor, the drive frequency of the drive signal was changed, and the relationship between the rotational speed of the rotor and each drive frequency was investigated. In addition, the relationship between the phase difference between the drive signal and the detection signal for each drive frequency was examined.
  • FIG. 21 shows the results of the example. As shown in FIG. 21, it can be seen that the rotational speed of the rotor with respect to the drive frequency increases within a certain range, and the speed is 0 in other ranges, that is, the rotor does not rotate. Therefore, this drive frequency range It can be seen that if the drive signal is adjusted, the rotational speed of the rotor can be sufficiently secured.
  • the phase difference with respect to the drive frequency is about 180 ° at a drive frequency smaller than the lower limit of the drive frequency range where the rotational speed of the rotor increases, but at a drive frequency higher than that, the drive frequency increases.
  • the phase difference gradually decreases with time, and at a drive frequency that is greater than the upper limit of the drive frequency range in which the rotational speed of the rotor increases, it is about 0 ° to about 30 °. Therefore, in the piezoelectric actuator 110A of the embodiment, the phase difference gradually decreases as the drive frequency increases. For example, if the phase difference is set appropriately between 70 ° and 80 ° and controlled, It can be seen that the rotation speed can be secured satisfactorily, and in this case, the driving frequency for the phase difference is determined as one.
  • FIG. 22 shows the result of the comparative example.
  • the rotational speed of the rotor with respect to the drive frequency is a force that increases within a certain range as in the embodiment.
  • the phase difference with respect to the drive frequency is the drive frequency. It decreases once near the lower limit in the range, but as the drive frequency increases, the phase difference increases again to about 180 °, and then decreases again. That is, for example, even if the phase difference is set to a predetermined value between 70 ° and 80 ° and controlled, there are three drive frequencies for one phase difference. Therefore, the drive frequency is set to be a deviation between these three drive frequencies. In some cases, the drive frequency may be a satisfactory drive speed, but the other drive frequencies. In this case, the rotational speed of the rotor cannot be maintained satisfactorily, and the reliability of the rotational drive performance of the rotor is lacking.
  • the driving frequency with respect to the phase difference can be determined as one, and the piezoelectric actuator is always vibrated at the optimum driving frequency by controlling the phase difference between the driving signal and the detection signal to a predetermined value.
  • the effect of the present invention that it can be confirmed.
  • Figures 25 and 26 are graphs of phase difference characteristics and detection signals when they are shifted in the negative direction of the X axis.
  • Figures 27 and 28 are phase difference characteristics and detection results when they are shifted in the positive direction of the X axis.
  • 29 and 30 are graphs of phase difference characteristics and detection signals when they are formed shifted in the positive axis direction.
  • the drive frequency can be determined as one.
  • the detection electrode 912B is formed by shifting the area ABCD force in the negative X-axis direction or the positive Y-axis direction, the phase difference signal due to the bending secondary vibration mode is large and the target phase difference is increased.
  • this there are two drive frequencies, and the drive may occur at a frequency inferior to the drive characteristics.
  • the detection signal level when the detection electrode 912B is formed in the predetermined area ABCD, a sufficient level of signal is output, but the detection signal level is shifted in the negative direction of the X axis. In this case, it can be seen that a relatively high level signal is output even in the portion caused by the bending secondary vibration mode, which is a problem when the drive frequency is controlled based on the detection signal level. Furthermore, when the detection electrode 912B is formed shifted in the Y-axis positive direction However, since the detection signal level becomes very small, it becomes a problem when the drive frequency is controlled based on the detection signal level.
  • the detection electrode 912B is formed at a position where the portion extending and contracting due to the bending secondary vibration mode can be mixed and the amount of charge generated in each portion can be canceled, the phase difference and the detection signal level
  • the drive frequency can be determined as one, and the piezoelectric actuator can be vibrated at the optimum drive frequency at all times by controlling the phase difference between the drive signal and the detection signal and the detection signal level to a predetermined value. The effect of the present invention was confirmed.
  • the present invention can be used as a piezoelectric actuator that drives a driven body by the vibration of a piezoelectric element, and a device that includes this piezoelectric actuator.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Lens Barrels (AREA)

Abstract

 圧電素子82の略中央に略菱形の検出電極82Cを形成する。この検出電極82Cは、縦一次振動モードの振動の節でかつ屈曲二次振動モードの振動の節を含んで形成されているので、屈曲二次振動モードの振動による歪みが最小となる。したがって、駆動信号と検出信号との位相差を取った場合に、屈曲二次振動モードの振動による位相差への影響を最小限に抑制できるから、所定の位相差に対する駆動周波数が一つに決定される。よって、位相差が所定値となるように制御することにより、振動体66を所望の駆動周波数で振動させることができ、各振動モードが所望の振動成分で振動するので、駆動性能の確実性を向上させることができる。

Description

圧電ァクチユエータおよび機器
技術分野
[0001] 本発明は、圧電素子の振動により被駆動体を駆動する圧電ァクチユエータおよびこ の圧電ァクチユエータを備えた機器に関する。
背景技術
[0002] 圧電素子の振動によって被駆動体を駆動する圧電ァクチユエータとしては、複数の 振動モードを同時に励振し、これらの振動モードの組み合わせによって被駆動体を 駆動するものがある。このような圧電ァクチユエータでは、所望の振動軌跡や駆動力 を得るために、各振動モードの振動成分を適切に保持する必要があり、これを実現 するために圧電素子に印加する駆動信号と圧電素子の振動によって検出される検 出信号との位相差によって駆動信号を制御する方法が提案されている(例えば、特 許文献 1参照)。
この圧電ァクチユエータでは、圧電ァクチユエータに検出電極を設け、圧電素子に 印加する駆動信号と検出電極から検出される検出信号との位相差を監視する。そし て、この位相差が所定の値となるように圧電素子に印加する駆動信号の駆動周波数 を調整することにより、圧電ァクチユエ一タの各振動モードの振動成分を適切に制御 し、効率的な駆動を行うものである。
[0003] 特許文献 1 :特開 2002— 291264号公報 (第 12頁〜第 13頁、第 26, 27図)
発明の開示
発明が解決しょうとする課題
[0004] しカゝしながら、この特許文献 1の圧電ァクチユエータでは、検出電極で検出される検 出信号として複数の振動モードによる振動が同時に検出されるため、これら複数の振 動モードの振動の共振周波数近傍でそれぞれ位相差が変動し、最適とされる所定の 位相差に対して複数の振動周波数が存在する場合がある。
例えば、図 31には、特許文献 1の圧電ァクチユエータの駆動周波数に対する位相 差特性が示されている。圧電ァクチユエータは、圧電素子の長手方向に伸縮する縦 一次振動モードと縦一次振動モードの振動方向に略直交する方向に屈曲する屈曲 二次振動モードとを有し、図 31に示されるように、それぞれの振動モードの振動の共 振周波数 fl, f2近傍で位相差が高くなる。したがって、制御しょうとする所定の位相 差 0 0に対して駆動周波数が複数(図 31では三つの駆動周波数 fbl, fb2, fb3)存 在することとなる。
このような場合には、位相差が所定値 Θ 0となるように駆動周波数を制御しても、駆 動周波数が一つに決まらないため、所望の振動モードの振動成分比が得られない 場合があり、圧電ァクチユエータの駆動性能の確実性に欠ける。
[0005] 本発明の目的は、駆動性能の確実性を向上させることができる圧電ァクチユエータ および機器を提供することにある。
課題を解決するための手段
[0006] 本発明の圧電ァクチユエータは、二つ以上の振動モードを有する圧電素子の振動 により、被駆動体を駆動する圧電ァクチユエータであって、前記圧電素子に駆動信 号を印加して当該圧電素子を振動させるための駆動電極と、前記圧電素子の振動 挙動を検出するための検出電極と、前記駆動電極に印加する駆動信号と前記検出 電極で検出される検出信号との位相差に基づいて前記駆動信号を制御する制御手 段とを備え、前記検出電極は、主として振動するモード以外の振動モードに起因する 位相差が制御時の目標となる目標位相差未満となる位置に形成されることを特徴と する。
この発明によれば、主として使用する振動モード以外の振動モードに起因する位相 差が、目標位相差未満となる位置に検出電極を形成しているので、主として使用す る振動モードに起因する位相差のみが目標位相差の値となる。このため、目標位相 差に対する駆動周波数が一つに決まるので、制御手段がこの位相差に基づいて駆 動信号の周波数を制御することにより、駆動信号を最適に調整することが可能となる 。したがって、複数の振動モードを有する圧電ァクチユエータであっても、それぞれの 振動成分が適切に調整され、駆動性能の確実性が向上する。
[0007] またこのとき、検出電極が主として使用する振動モードによる振動を主に検出する ので、必要な振動モードの振動をより直接的に制御することが可能となり、圧電ァク チユエータの制御がより的確になる。
ここで、振動モードが三つ以上ある場合には、検出電極は、主として使用する振動 モード以外の全ての振動モードに起因する位相差が、目標位相差未満となる位置に 形成すればよい。
[0008] ここで、前記検出電極は、主として振動するモード以外の振動モードに起因する位 相差が 20度以下となる位置に形成されることが好ましい。
圧電ァクチユエータの一般的な特性として、位相差が大きくなると回転数が上がり、 位相差を低くすると消費電流が低下する。 目標位相差は、製品の仕様によって、回 転数および消費電流のどちらを重視するかを決めればよい。ただし、消費電流を低 下するために位相差を低くする場合、あまり低すぎると駆動しなくなる可能性があるた め、殆どの製品で目標位相差の設定値の下限は 20度程度となる。従って、主として 振動するモード以外の振動モードに起因する位相差が 20度以下であれば、殆どの 製品において利用可能な圧電ァクチユエータにすることができ、様々な商品仕様に 対応できる。
[0009] 本発明の圧電ァクチユエータは、二つ以上の振動モードを有する圧電素子の振動 により、被駆動体を駆動する圧電ァクチユエータであって、前記圧電素子に駆動信 号を印加して当該圧電素子を振動させるための駆動電極と、前記圧電素子の振動 挙動を検出するための検出電極と、前記検出電極で検出される検出信号の信号レ ベルに基づいて前記駆動信号を制御する制御手段とを備え、前記検出電極は、主と して振動するモード以外の振動モードに起因する前記信号レベルが制御時の目標と なる目標信号レベル未満となる位置に形成されることを特徴とする。
この発明によれば、主として使用する振動モード以外の振動モードに起因する信号 レベルが、目標信号レベル未満となる位置に検出電極を形成しているので、主として 使用する振動モードに起因する信号レベルのみが目標信号レベルの値となる。この ため、目標信号レベルに対する駆動周波数が一つに決まるので、制御手段がこの信 号レベルに基づいて駆動信号の周波数を制御することにより、駆動信号を最適に調 整することが可能となる。したがって、複数の振動モードを有する圧電ァクチユエータ であっても、それぞれの振動成分が適切に調整され、駆動性能の確実性が向上する [0010] 本発明では、前記検出電極は、主として振動するモード以外の振動モードに起因 して伸びる部分と縮み部分とが同時に発生してそれぞれの部分で発生する電荷量が 打ち消される位置に形成されることが好ましい。
圧電素子は、圧縮するとプラスの電荷を生じ、伸ばすとマイナスの電荷を生じる。こ れを利用して、主として振動するモード以外の振動モードによって、伸びた部分と縮 んだ部分とが混在する位置(同時に発生する位置)に検出電極を形成すれば、ブラ スの電荷とマイナスの電荷が互いに打ち消しあい、検出信号レベルが小さくなる。そ れに伴い、共振周波数近傍で見られる駆動信号と検出信号の位相差も小さくできる 従って、主として振動するモード以外の振動モードに起因する伸縮部分が混在す る検出電極では、伸びと縮みそれぞれによる電荷量が打ち消され、その振動モード に起因する位相差や検出信号レベルを小さな値にできるので、目標位相差や目標 信号レベル未満に確実に抑えることができる。
[0011] 本発明では、前記検出電極は、主として使用する振動モード以外の振動モードに よる歪みが最小となる位置を含んで形成されることが好ましい。
この発明によれば、検出電極が主として使用する振動モード以外の振動モードによ る歪みが最小となる位置を含んで形成されているので、検出電極によって検出される 振動挙動は、主として使用する振動モード以外の振動モードの振動による影響が最 小限に抑制され、主に、当該主として使用する振動モードによる振動となる。したがつ て、主として使用する振動モードの振動成分が適切となる位相差や検出信号レベル を所定値として設定すると、位相差や検出信号レベルに対する駆動信号が一つに決 まるので、制御手段がこの位相差に基づいて駆動信号を制御することにより、駆動信 号を最適に調整することが可能となる。したがって、複数の振動モードを有する圧電 ァクチユエータであっても、それぞれの振動成分が適切に調整され、駆動性能の確 実性が向上する。
[0012] 本発明では、振動モードは、所定の一方向に伸縮する縦振動モードと、縦振動モ ードの振動方向に略直交する方向に屈曲する屈曲振動モードとを含み、検出電極 は、屈曲振動モードの振動の節を含む位置に形成されることが望ま 、。
この発明によれば、振動モードは、縦振動モードと屈曲振動モードとを含んでいる。 一般に、縦振動モードは屈曲振動モードよりも駆動力が大きくなるため、縦振動モー ドを主として使用する振動モードに設定することにより、大きな駆動力が得られる。こ こで、検出電極が屈曲振動モードの振動の節を含む位置に形成されているので、検 出電極での屈曲振動モードの振動の歪みが最小となる。したがって、検出電極では 主に縦振動モードの振動挙動を検出することとなり、縦振動モードの振動挙動に基 づいた的確な制御が可能となる。これにより、縦振動モードの振動による良好な駆動 力の確保が確実となる。
[0013] 本発明では、圧電素子は略矩形板状に形成され、振動モードは、圧電素子の長手 方向に沿って伸縮する縦一次振動モードと、縦一次振動モードの振動方向の略直 交方向に屈曲する屈曲二次振動モードとを有し、検出電極は、縦一次振動モードの 振動の節で、かつ屈曲二次振動モードの振動の節を含む位置に形成されることが望 ましい。
この発明によれば、振動モードが縦一次振動モードと屈曲二次振動モードとを有す るので、圧電素子全体は、これらの縦一次振動モードと屈曲二次振動モードとを組 み合わせた振動軌跡を描いて振動する。このとき、検出電極が縦一次振動モードの 振動の節でかつ屈曲二次振動モードの振動の節を含む位置に形成されているので 、この位置では、縦一次振動モードの振動による歪みが最大となり、かつ屈曲二次振 動モードの振動による歪みが最小となる。したがって、検出電極では、主に縦一次振 動モードの振動による振動挙動が検出され、縦一次振動モードの振動挙動に基づ いた的確な制御が行われる。よって、適切な縦一次振動モードの振動成分が得られ 、必要な駆動力が確実に確保される。
[0014] 本発明では、当該圧電ァクチユエータは、屈曲振動モードの振動方向を正逆変更 可能に構成されて ヽることが望ま ヽ。
この発明によれば、屈曲振動モードの振動方向を正逆変更可能に構成されている ので、振動軌跡が正逆変更可能となり、被駆動体を正逆両方向に駆動可能となる。 これにより、被駆動体の駆動可能動作範囲が広くなる。なお、この場合にも、検出電 極は屈曲振動モードの節の位置を含んで形成されて 、るので、屈曲振動モードの振 動方向が正逆変更となった場合でも、縦振動モードの振動挙動が良好に検出される ここで、屈曲振動モードとしては、屈曲二次振動モードが含まれる。また、縦振動モ ードには、縦一次振動モードが含まれる。
[0015] 本発明では、検出電極の面積は、駆動電極の面積の 30分の 1以上 7分の 1以下で あることが望ましい。
この発明によれば、検出電極の面積が適切に設定されているので、振動検出に必 要な検出電極の面積が確保されるとともに、駆動電極の面積を過度に小さくすること がないので圧電ァクチユエータの駆動力が良好に確保される。
ここで、検出電極の面積が駆動電極の面積の 30分の 1より小さい場合には、検出 電極自体の面積力 、さすぎるため、圧電素子の振動を良好に検出できない。また、 検出電極の面積が駆動電極の面積の 7分の 1より大きい場合には、駆動電極の面積 が相対的に小さくなるため、必要な駆動力を確保することが困難となるとともに、主と して使用する振動モード以外の振動モードの振動も検出されやすくなり、検出信号の 正確性が低くなる。
[0016] 本発明の機器は、前述の圧電ァクチユエータを備えたことを特徴とする。
この発明によれば、機器が前述の圧電ァクチユエータを備えているので、前述の圧 電ァクチユエータの効果と同様の効果が得られる。つまり、駆動信号と検出信号との 位相差や検出信号レベルに対して駆動信号が一つに定まるので、制御手段が、位 相差や検出信号レベルが所定値となるように制御すると、駆動信号が常に一定に保 持され、複数の振動モードの振動成分がそれぞれ適切に制御されて駆動性能の確 実性が向上する。これにより機器の動作が安定する。
[0017] 本発明では、レンズと、圧電ァクチユエータの振動によりレンズを駆動する駆動ュニ ットとを備えたことが望ましい。
この発明によれば、機器が圧電ァクチユエータの振動によりレンズを駆動する駆動 ユニットを備えているので、レンズの駆動が確実となる。これは例えば機器が携帯機 器などの小型のものである場合には、レンズも小型となる力 圧電ァクチユエータは 小さな寸法で比較的大きな駆動力が得られるため、特に有用である。
[0018] 本発明では、当該機器は、圧電ァクチユエータの振動によって駆動される時計であ ることが望ましい。
この発明によれば、機器が時計であり、この時計が前述の圧電ァクチユエ一タの振 動によって駆動されるので、前述の圧電ァクチユエータの効果と同様の効果が得られ 、複数の振動モードの振動成分がそれぞれ適切に制御され、時計の駆動性能の確 実性が向上する。これは例えば時計が腕時計などの小型のものである場合には、圧 電ァクチユエータは小さな寸法で比較的大きな駆動力が得られるため、特に有用で ある。
発明の効果
[0019] 本発明の圧電ァクチユエータおよび機器によれば、検出電極が主として使用する 振動モード以外の振動モードに起因する位相差や検出信号レベルが目標位相差や 目標信号レベル未満となる位置に形成されて!ヽるので、主として使用する振動モード の振動挙動を主に検出でき、適切な位相差や検出信号レベルに対する駆動信号が 一つに決まるので、制御手段が駆動信号を適切かつ確実に制御できるから、駆動性 能の確実性を向上させることができるという効果が得られる。
図面の簡単な説明
[0020] [図 1]本発明の第一実施形態に力かるレンズユニットを示す斜視図。
[図 2]第一実施形態に力かるレンズユニットを示す斜視図。
[図 3A]第一実施形態のカム部材の動作図。
[図 3B]第一実施形態のカム部材の動作図。
[図 4A]第一実施形態のカム部材の動作図。
[図 4B]第一実施形態のカム部材の動作図。
[図 5]第一実施形態の圧電ァクチユエータの拡大斜視図。
[図 6]第一実施形態の印加装置の構成ブロック図。
[図 7]第一実施形態の駆動信号と検出信号との位相差を示す図。
[図 8]第一実施形態の駆動周波数に対する位相差および駆動速度の関係を示す図 圆 9]本発明の第二実施形態に力かる時計を示す図。
圆 10]第二実施形態に力かる圧電ァクチユエータを示す拡大図。
圆 11]第二実施形態に力かる圧電素子の検出電極位置を示す平面図。
圆 12]第二実施形態に力かる圧電素子の振動状態を示す平面図。
圆 13]第二実施形態に力かる駆動周波数に対する位相差および駆動速度の関係を 示す図。
[図 14A]圧電ァクチユエータの検出電極の変形例を示す図。
[図 14B]圧電ァクチユエータの検出電極の変形例を示す図。
[図 14C]圧電ァクチユエータの検出電極の変形例を示す図。
[図 14D]圧電ァクチユエータの検出電極の変形例を示す図。
[図 14E]圧電ァクチユエータの検出電極の変形例を示す図。
[図 14F]圧電ァクチユエータの検出電極の変形例を示す図。
[図 15]圧電ァクチユエータの検出電極の変形例を示す平面図。
[図 16]圧電ァクチユエータの検出電極の変形例を示す断面図。
圆 17]圧電ァクチユエータの駆動周波数に対する位相差、回転数、消費電力の関係 を示すグラフ。
圆 18]圧電ァクチユエータの駆動周波数に対する検出信号レベル、回転数、消費電 力の関係を示すグラフ。
[図 19]本発明の実施例 1の圧電ァクチユエータを示す図。
[図 20]本発明の比較例 1の圧電ァクチユエータを示す図。
[図 21]実施例 1の結果を示す図。
[図 22]比較例 1の結果を示す図。
圆 23]本発明の実施例 2の位相差特性結果を示す図。
圆 24]本発明の実施例 2の検出信号特性結果を示す図。
圆 25]本発明の比較例 2の位相差特性結果を示す図。
圆 26]本発明の比較例 2の検出信号特性結果を示す図。
圆 27]本発明の比較例 2の位相差特性結果を示す図。
圆 28]本発明の比較例 2の検出信号特性結果を示す図。 [図 29]本発明の比較例 2の位相差特性結果を示す図。
[図 30]本発明の比較例 2の検出信号特性結果を示す図。
[図 31]従来の圧電ァクチユエータの駆動周波数に対する位相差特性を示す図。 符号の説明
[0021] 1…駆動装置 (駆動ユニット)、 9…時計 (機器)、 10…レンズユニット、 30, 40, 50 …レンズ (被駆動体)、 66, 76…振動体(圧電ァクチユエ一タ)、 82, 111A, 111B …圧電素子、 82A, 82B, 101B, 102A, 103A, 112A, 113A, 114A, 112B, 1 13B, 114Β· ··駆動電極、 82C, 101A, 101C, 101D, 101E, 101F, 102B, 11 5A, 912Β· ··検出電極、 84· ··印カロ装置(制御手段)、 91, 100A, 100B, 100C, 1 00D, 100E, 100F, 11 OA, 110Β· ··圧電ァクチユエータ、 92· ··ロータ(被駆動体) 発明を実施するための最良の形態
[0022] 以下、本発明の各実施形態を図面に基づいて説明する。なお、後述する第二実施 形態以降で、以下に説明する第一実施形態での構成部品と同じ部品および同様な 機能を有する部品には同一符号を付し、説明を簡単にあるいは省略する。
[0023] [第一実施形態]
以下、本発明の第一実施形態に係るレンズユニット 10について説明する。なお、レ ンズユニット 10は、機器としてのカメラに搭載され、または、カメラと一体に製造され、 利用されるものである。
また、このカメラは、レンズユニット 10の他、このレンズユニット 10を構成するレンズ 3 0, 40, 50によって結像される像を記録する記録媒体と、各レンズ 30, 40, 50を駆 動する駆動ユニットとしての駆動装置 1と、これら全てが収納されるケースとを備えて いる。ただし、カメラ,記憶媒体,およびケースの図示は省略してある。
図 1は、レンズユニット 10を右上方から見た斜視図であり、図 2は、レンズユニット 10 を左上方から見た斜視図である。図 3A、 3Bは、カム部材 60の動作図であり、図 4A、 4Bは、カム部材 70の動作図である。図 5は、カム部材 60を駆動する振動体 66の拡 大斜視図である。
[0024] 図 1ないし図 5において、レンズユニット 10は、全体略角筒状の筐体 20と、被駆動 体としての第 1レンズ 30,第 2レンズ 40,および第 3レンズ 50と、第 2レンズ 40,およ び第 3レンズ 50を進退駆動するカム部材 60と、第 1レンズ 30を進退駆動するカム部 材 70と、カム部材 60を回動駆動する圧電ァクチユエータとしての振動体 66と、カム 部材 70を回動駆動する圧電ァクチユエータとしての振動体 76とを備えて 、る。そして 、これらのうち、カム部材 60, 70および振動体 66, 76により、各レンズ 30, 40, 50を 駆動するための駆動装置 1が構成されている。以下には、各構成について具体的に 述べ。。
[0025] 筐体 20は、正面力も背面に向力つて棒状の案内軸 21が平行に 2本設置されてい る。この案内軸 21は、レンズ 30, 40, 50が進退駆動されるのを案内する部材であり、 レンズ 30, 40, 50を進退方向(光軸方向)に貫通している。また、この案内軸 21は、 レンズ 30, 40, 50が前後に倒れるのを防止する役目を担っている。
さらに、筐体 20の両側の側部 22には、長孔形状の開口部 23A, 23B, 23Cが設け られ、これらの開口咅 23B, 23Cは、レンズ 30, 40, 50に設けられたカム棒 3 1, 41, 51が十分動ける大きさに形成されている。
[0026] 第 1レンズ 30は、筐体 20の内部に配置されると同時に、筐体 20の開口部 23C内に 位置するカム棒 31を備えている。第 2レンズ 40は、筐体 20の内部に設置されると同 時に、筐体 20の開口部 23B内に位置するカム棒 41を備えている。第 3レンズ 50も同 様に、筐体 20の内部に配置されると同時に、筐体 20の開口部 23A内に位置する力 ム棒 51を備えている。
[0027] これらの第 1〜第 3レンズ 30, 40, 50は、中央の集光部 32, 42,および図示しない 第 3レンズ 50の集光部とその周囲の枠取付部 33, 43,および図示しない第 3レンズ 50の枠取付部とが、レンズ材料で一体に形成されたものであり、これらを保持する保 持枠 34, 44, 54を備えて!/ヽる。そして、この保持枠 34, 44, 54【こ、前述のカム棒 31 , 41, 51力設けられている。
[0028] なお、第 1レンズ 30はフォーカスレンズであり、第 2レンズ 40,第 3レンズ 50はズー ムレンズである。また、第 3レンズ 50は、ズームレンズに限らず、フォーカスレンズであ つてもよい。その場合、各レンズ 30, 40, 50の構成や、各レンズ 30, 40, 50の光学 特性を適宜設定することで、レンズユニット 10をフォーカスレンズ用ユニットとして利 用可能である。
[0029] そして、第 2レンズ 40は、凹レンズおよび凸レンズを組み合わせた構成となっている 力 各レンズ 30, 40, 50の構造等もその目的を考慮して任意に決められてもよい。 さらに、レンズ 30, 40, 50は、本実施例では、集光部 32, 42,および第 3レンズ 50 の集光部と枠取付部 33, 43,および第 3レンズ 50の枠取付部とがレンズ材料で一体 に形成されていた力 集光部 32, 42,および第 3レンズ 50の集光部のみをレンズ材 料で形成し、枠取付部 33, 43,および第 3レンズ 50の枠取付部側を別材料で保持 枠 34, 44, 54と一体に形成してもよい。また集光部 32, 42,および第 3レンズ 50の 集光部、枠取付部 33, 43,および第 3レンズ 50の枠取付部、ならびに保持枠 34, 4 4, 54がー体のレンズ材で構成されていてもよい
[0030] カム部材 60, 70は、筐体 20の両側にある外面部 25A, 25Bと、この外面部 25A, 25Bの外側にそれぞれ 3本の足部 26により固定されたカバー部材 10Aとの間に設 置されている。
[0031] カム部材 60は、回動軸 61を有する略扇状の形状をしており、筐体 20の外面部 25 Aに対して、回動軸 61を回動中心として回動自在に支持されている。また、カム部材 60の面状部分には、駆動用案内部としての 2つのカム溝 62A, 62Bが形成されてい る。このカム溝 62A, 62Bは、略円弧状に形成されており、カム溝 62Bには第 2レンズ 40のカム棒 41が係合し、カム溝 62Aには第 3レンズ 50のカム棒 51が係合し、これに よりカム部材 60が回動すると、カム棒 51, 41がカム溝 62A, 62Bに誘導され、これら カム溝 62A, 62Bの形状に応じたスピードおよび移動範囲で動き、第 3レンズ 50、第 2レンズ 40が進退する。
[0032] カム部材 70は、回動軸 71を有する略レバー状の形状をしており、筐体 20の外面部 25Bに対して、回動軸 71を回動中心として回動自在に支持されている。また、カム部 材 70の面状部分には、駆動用案内部としての 1つのカム溝 62Cが形成されている。 このカム溝 62Cは、略円弧状に形成されており、カム溝 62Cには第 1レンズ 30のカム 棒 31が係合し、これによりカム部材 60が回動すると、カム棒 31がカム溝 62Cに誘導 され、これらカム溝 62Cの形状に応じたスピードおよび移動範囲で動き、第 1レンズ 3 0が進退する。 [0033] これらのカム部材 60, 70において、回動軸 61, 71の外周面には、回動軸 61, 71 に略直交する平面内で振動する振動体 66, 76が当接されている。この際、回動軸 6 1, 71に対する振動体 66, 76の当接方向は特に限定されず、回動軸 61, 71を回動 させることができる方向であればよい。
また、カム部材 60, 70の面状部分に開口を設け、この開口内に振動体 66, 76を配 置し、回動軸 61, 71の外周面に振動体 66, 76を当接してもよい。この場合、開口の 大きさは、カム部材 60, 70が回動しても、振動体 66, 76と接触しない大きさを有する 。そして、この場合の振動体 66, 76の支持は、筐体 20の外面部 25A, 25B又は力 バー部材 10Aのどちら側であっても力まわない。
また、回動軸 61, 71の外周面においては、特に振動体 66, 76の当接部分は、摩 耗を防ぐために、凹凸無く仕上げられている。振動体 66, 76の当接部分の外径は、 大きければ大きいほどよぐこのことで振動数に対する回動角度が少なくなるため、レ ンズ 30, 40, 50を微細に駆動可能となる。そして、回動軸 61, 71の外径形状は、当 接部分のみが円弧で、それ以外の面は特に円弧でなくてもよい。
[0034] 振動体 66は、図 5に示すように、略矩形平板状に形成された補強板 81と、この補 強板 81の表裏両面に設けられた略矩形平板状の圧電素子 82とを備えている。 補強板 81は、その長手方向の両端の短辺略中央に凹部 811が形成され、この凹 部 811に略楕円形状の凸部材 81 Aが配置されている。これらの凸部材 81 Aは、セラ ミックスなどの高剛性の任意の材料で構成され、その略半分が補強板 81の凹部 811 内に配置され、残りの略半分は、補強板 81の短辺力も突出して配置されている。これ らの凸部材 81 Aのうち、一方の凸部材 81 A先端が当接回動軸 61の外周面に当接さ れている。
補強板 81の長手方向略中央には、幅方向両側に突出する腕部 81 Bがー体的に 形成されている。腕部 81Bは、補強板 81からほぼ直角に突出しており、これらの端部 がそれぞれ図示しないビスによってカバー部材 10Aに固定されている。このような補 強板 81は、ステンレス鋼、その他の材料から形成されている。
[0035] 補強板 81の両面の略矩形状部分に接着された圧電素子 82は、チタン酸ジルコン 酸鉛 (PZT)、水晶、ニオブ酸リチウム、チタン酸バリウム、チタン酸鉛、メタニオブ酸 鉛、ポリフッ化ビ-リデン、亜鉛ニオブ酸鉛、スカンジウムニオブ酸鉛等の材料の中か ら、適宜選択した材料により形成されている。
また、圧電素子 82の両面には、ニッケルめっき層および金めつき層などが形成され て電極が形成されている。この電極は、切欠溝によって互いに電気的に絶縁された 複数の電極が長手方向に沿った中心線を軸として線対称に形成されている。つまり 、圧電素子 82の短手方向中央には、長手方向に沿って溝 83Aが形成され、また、長 手方向中央には、短手方向に沿って溝 83Bが形成されている。そして、圧電素子 82 の略中央には、略矩形の四つの角がそれぞれ溝 83A, 83B上に配置される溝 83C が形成されている。これらの溝 83A, 83B, 83Cにより、圧電素子 82の表面には、対 角線上両側にそれぞれ一対設けられるとともに振動体 66を振動させて回動軸 61を 駆動するための駆動電極 82A, 82Bと、圧電素子 82中央に略矩形 (略菱形)に形成 され、振動体 66の振動挙動を検出するための検出電極 82Cとの 5つの電極が形成 される。
[0036] ここで本実施形態においては、圧電素子 82は短辺が約 lmm、長辺が約 3. 5mm の矩形状に形成されている。また、検出電極 82Cの面積は、駆動電極 82A, 82Bの 面積、つまり一対の駆動電極 82Aの面積の合計または一対の駆動電極 82Bの面積 の合計に対して 30分の 1以上 7分の 1以下に設定されており、より望ましくは、 15分 の 1以上 10分の 1以下に設定されている。ここで、検出電極 82Cの面積は、小さいほ ど主として振動させたい振動モード以外の振動モードによる振動の歪みを除去できる ので有用であるが、駆動電極 82Aまたは駆動電極 82Bの面積の 30分の 1よりも小さ いと検出信号自体が小さくなり、良好な検出信号を取り出すことができない。また、検 出電極 82Cの面積は、大きいほど検出信号自体は大きくなるが、駆動電極 82Aまた は駆動電極 82Bの面積の 7分の 1よりも大きくなると、主として振動させたい振動モー ド以外の振動モードによる振動の歪みの成分が大きくなつてこの振動も検出してしま うため、所望の検出信号が得られない。
[0037] なお、本実施形態の振動体 66は非常に小型であるので、溝を形成して電極を多数 形成することが難し 、が、圧電素子 82にお 、て検出電極 82Cを除 、た部分を四分 割することにより、なるべく少ない溝数で縦一次振動モードおよび屈曲二次振動モー ドを励振できる駆動電極 82A, 82Bの形状を実現して 、る。
一対の駆動電極 82Aおよび一対の駆動電極 82Bは、それぞれ互いに図示しな!ヽ リード線で接続されており、これらのリード線は、振動体 66の振動挙動を制御する制 御手段としての印加装置 84 (図 6参照)に接続されている。また、検出電極 82Cは、 図示しないリード線によって印加装置 84に接続され、さらに補強板 81は図示しないリ ード線によってグラウンドに接続されて 、る。
なお、これらの電極 82A, 82B, 82Cは、補強板 81を挟む表裏両方の圧電素子 82 に同様に設けられており、例えば電極 82Aの裏面側には電極 82Aが形成されている
[0038] このように形成された圧電素子 82は、表面の駆動電極 82Aおよび 82Bのうち、所 定の電極を選択して、印加装置 84により電圧を印加することにより、振動体 66の長 手方向に沿って伸縮する縦振動モードとしての縦一次振動モードの振動と、振動体 66の幅方向(短手方向)に屈曲振動する、つまり縦一次振動モードの振動方向に略 直交する方向に屈曲する屈曲振動モードとしての屈曲二次振動モードの振動とを振 動体 66に生じさせることができる。つまり、例えば、駆動電極 82Aのみに電圧を印加 すると、駆動電極 82Aが形成された部分の圧電素子 82が板状面内方向に伸縮する ことにより縦一次振動モードの振動を励振する。このとき、駆動電極 82Bには電圧が 印加されないので、当該部分では縦一次振動モードの振動が阻害され振動体 66全 体の振動挙動は長手方向の中心線に沿ってアンバランスとなる。これにより、振動体
66は、振動体 66の長手方向に略直交する方向に屈曲する屈曲二次振動モードの 振動を励振する。この結果、振動体 66の凸部材 81Aは、縦一次振動モードの振動と 屈曲二次振動モードの振動とを組み合わせた略楕円軌道を描いて振動する。この略 楕円軌道の一部において、凸部材 81Aが回動軸 61を接線方向に回転させる。 したがって、このとき検出電極 82Cは、縦一次振動モードの振動の節で縦一次振 動モードの振動による歪みが最大となる位置であって、かつ屈曲二次振動モードの 振動の節で屈曲二次振動モードの振動による歪みが最小となる位置を中心として形 成されている。
[0039] また、圧電素子 82に印加する電圧の電極を適宜切り替えることにより、振動体 66を 振動させると、回動軸 61の回動方向を正転および逆転させることができる。
例えば、駆動電極 82Aに電圧を印加した時の回転方向を正転とすれば、電極 82B に電圧を印加すると、屈曲二次振動モードの振動の方向が逆になり、回動軸 61の回 転方向が逆転するのである。
ここで、圧電素子 82に印加する駆動電圧 (駆動信号)の駆動周波数は、振動体 66 の振動時に縦一次振動モードの振動の共振点近傍に屈曲二次振動モードの振動の 共振点が現れて、凸部材 81Aが良好な略楕円軌道を描くように設定される。
さらに、振動体 66全体の振動により検出電極 82Cが形成された部分の圧電素子 8
2に歪みが生じるため、この歪みによって検出電極 82Cからは振動体 66の振動に応 じた検出信号が検出される。
[0040] また、圧電素子 82の寸法や、厚さ、材質、縦横比、電極の分割形態などは、圧電 素子 82に電圧が印加された時に、凸部材 81Aが良好な略楕円軌道を描きやすいよ うに適宜決定される。
なお、振動体 66に印加される交流電圧の波形は特に限定されず、例えばサイン波 、矩形状波、台形波などが採用できる。
また、振動体 76については、振動体 66と同様な構成であり、振動体 66を説明する ことで理解できるため、ここでの説明を省略する。
[0041] 図 6には、印加装置 84の構成ブロック図が示されている。この図 6において、印加 装置 84は、位相差—電圧変換回路 841と、定電圧回路 842と、比較回路 843と、電 圧調整回路 844と、電圧制御発振回路 845と、ドライバ回路 846と、リセット回路 847 とを備えている。
位相差—電圧変換回路 841は、検出電極 82Cカゝら検出された検出信号 Vaの位相 と、駆動電極 82Aまたは駆動電極 82Bに印加される駆動信号 Vhの位相との位相差 を検出し、平均位相差に相当する電圧値を有する位相差電圧信号 Vjを比較回路 84 3に出力する。
図 7は、駆動信号 Vhと検出信号 Vaとの位相差 Θを示した図である。この図 7に示さ れるように、位相差 Θは、駆動信号 Vhを基準として検出信号 Vaが進む方向にずれ た場合をプラス(+ )として検出される。 位相差—電圧変換回路 841は、位相差検出部 841Aと、平均電圧変換部 841Bと を備えている。位相差検出部 841Aは、検出信号 Vaおよび駆動信号 Vhが入力され ると、両信号の位相差に相当するパルス幅を有する位相差信号 Vpdを生成し、平均 電圧変換部 841Bに出力する。平均電圧変換部 841Bは、図示しない積分回路によ り位相差信号 Vpdのパルス幅に相当する平均電圧値を有する位相差電圧信号 Vjを 生成し、比較回路 843に出力する。
定電圧回路 842は、検出信号 Vaの位相と駆動信号 Vhの位相との最適な位相差( 目標位相差)に相当する電圧値を有する、予め求めた所定の基準位相差信号 Vkを 比較回路 843に出力するものである。
ここで、基準位相差信号 Vkは、振動体 66が最も効率よく振動し、縦一次振動モー ドと屈曲二次振動モードとの振動成分の比が適切となる駆動周波数に対応した位相 差に設定されることが望まし 、。
図 8は、駆動周波数に対する振動体 66の挙動特性を示したものであり、図 8(A)は 駆動周波数に対する位相差 Θの関係を示したものであり、また図 8(B)は、駆動周波 数に対する回動軸 61の駆動(回動)速度の関係を示したものである。図 8(A)に示さ れるように、振動体 66の駆動周波数を変化させると、縦一次振動モードの振動の共 振周波数 fl付近および屈曲二次振動モードの振動の共振周波数 f2付近でそれぞ れ位相差 0が高くなることが分かる。また、図 8(B)に示されるように、振動体 66の駆 動周波数を変化させると、回動軸 61の駆動速度は、縦一次振動モードの振動の共 振周波数 flと、屈曲二次振動モードの振動の共振周波数 f2との間で大きくなり、特 に縦一次振動モードの振動の共振周波数 flに近 、側の駆動周波数にぉ 、て最大と なることが分かる。これは、一般的に縦一次振動モードの振動の方が屈曲二次振動 モードの振動よりも振動体 66の駆動トルクを確保しやすいことからも明らかである。そ こで、駆動周波数は、縦一次振動モードの振動の共振周波数 flと屈曲二次振動モ ードの振動の共振周波数 f 2との間で縦一次振動モードの振動の共振周波数 flに近 V、周波数に設定するのが望ま 、と!/、うことが!、える。
したがって、本実施形態では、駆動周波数として回動軸 61の駆動速度が最大とな る周波数が選択され、基準位相差信号 Vkは、この周波数における位相差(目標位 相差) Θ kに対応する電圧値を有する値に設定されている。
[0043] ここで、検出電極 82Cは、屈曲二次振動モードの振動による歪みが最小となる位置 を含んで形成されているので、検出信号が屈曲二次振動モードの振動の影響を受け にくい。したがって、検出電極 82Cで検出される検出信号は、縦一次振動モードの 振動の共振周波数 flおよび屈曲二次振動モードの振動の共振周波数 f2付近で位 相差 Θが大きくなるものの、屈曲二次振動モードの振動による位相差 Θの変動は縦 一次振動モードの振動による位相差 0の変動に比べて小さいことが分かる。そして、 図 8(A)からわ力るように、位相差 Θ kは、屈曲二次振動モードの振動の共振周波数 f 2における位相差 Θ 2よりも大きくなるので、位相差 Θ kに対して、対応する駆動周波 数は常に一つに決定される。
すなわち、主として使用する振動モード (縦一次振動モード)以外の振動モード (屈 曲二次振動モード)に起因する位相差 Θ力 目標位相差 Θ k未満となる位置に検出 電極 82Cを形成しているので、主として使用する縦一次振動モードに起因する位相 差 Θのみが目標位相差に達することになる。このため、目標位相差 Θ kに対する駆動 信号が一つに決まるので、印加装置 84がこの位相差に基づいて駆動信号を制御す ることにより、駆動信号を最適に調整することが可能となる。
[0044] 比較回路 843は、位相差—電圧変換回路 841からの位相差電圧信号 Vjと定電圧 回路 842からの基準位相差信号 Vkとを入力し、両者を比較するものである。つまり、 位相差電圧信号 Vj≥基準位相差信号 Vkである場合には、比較回路 843は" H"とな る比較結果信号 Veを電圧調整回路 844に出力し、位相差電圧信号 Vjく基準位相 差信号 Vkである場合には、比較回路 843は" L"となる比較結果信号 Veを電圧調整 回路 844に出力する。
電圧調整回路 844は、比較回路 843からの比較結果信号 Veを入力し、電圧制御 発振回路 845に出力される調整信号 Vfの電圧値を所定電圧値 VfO単位で変化させ るものである。すなわち、電圧調整回路 844は、 "H"の比較結果信号 Veを入力した 場合には、調整信号 Vfの電圧値を所定電圧値 VfOだけ上昇させ、 "L"の比較結果 信号 Veを入力した場合には、調整信号 Vfの電圧値を所定電圧値 VfOだけ下降させ る。また、電圧調整回路 844には、初期の調整信号である初期値 Vflが記憶されて おり、印加装置 84の起動時には、この初期値 Vflを電圧値とする調整信号 Vfを電圧 制御発振回路 845に出力する。なお、初期値 Vflは、予め設定された駆動周波数の 調整範囲の上限値とされており、本実施形態では、駆動周波数の調整範囲は、縦一 次振動モードの振動の共振周波数 flよりも所定値低い周波数から、屈曲二次振動 モードの振動の共振周波数 f 2よりも所定値高 、周波数までに設定され、この場合に 初期値 Vflは、屈曲二次振動モードの振動の共振周波数 f2よりも所定値高い周波 数に設定されている。
[0045] 電圧制御発振回路 845は、電圧調整回路 844からの調整信号 Vfを入力して、ドラ ィバ回路 846に出力する基準信号 Vgの周波数を調整するものである。すなわち、電 圧制御発振回路 845は、調整信号 Vfの電圧値が前回の調整信号 Vfの電圧値よりも 高くなつた場合、基準信号 Vgの周波数を所定値 fOだけ上げ、調整信号 Vfの電圧値 が前回の調整信号 Vfの電圧値よりも低くなつた場合には、基準信号 Vgの周波数を 所定値 fOだけ下げるように調整される。また、電圧制御発振回路 845は印加装置 84 の起動時に初期値 Vflの調整信号 Vfを入力した場合には、予め設定された周波数 の基準信号 Vgを出力する。
ドライバ回路 846は、電圧制御発振回路 845からの基準信号 Vgを受けて、この基 準信号 Vgの周波数で一定の電圧値となる駆動信号 Vhを振動体 66の駆動電極 82 Aまたは駆動電極 82Bに出力する。
[0046] リセット回路 847は、ドライバ回路 846からの駆動信号 Vhの周波数が所定値以下と なった場合に、基準信号 Vgの周波数を初期値 Vflの周波数に変更するリセット信号 を電圧調整回路 844に出力するものである。ここで、リセット信号が出力される周波数 の所定値は、駆動周波数の調整範囲の下限値に設定されており、本実施形態では 縦一次振動モードの振動の共振周波数 flよりも所定値低!ヽ周波数に設定されて 、 る。電圧調整回路 844は、リセット回路 847からリセット信号を入力すると、初期値 Vf 1を電圧値とする調整信号 Vfを電圧制御発振回路 845に出力する。電圧制御発振 回路 845は、この調整信号 Vfに基づいて、基準信号 Vgの周波数を調整する。
[0047] したがって、印加装置 84は、まず起動時に、初期値 Vflの電圧値に対応する周波 数の基準信号 Vgに基づいて振動体 66に駆動信号 Vhを印加する。このとき、初期値 Vflは、駆動周波数の調整範囲の上限値に設定されているので、通常初期の段階 では駆動信号 Vhと検出信号 Vaとの位相差 0による位相差電圧信号 Vjは、定電圧 回路 842からの基準位相差信号 Vkよりも小さくなる。したがって、比較回路 843では "L"の比較結果信号 Veを出力し、電圧調整回路 844は、この比較結果信号 Veに基 づ 、て調整信号 Vfの電圧値を所定電圧値 VfOだけ下降させ、よって電圧制御発振 回路 845からの基準信号 Vgの周波数が所定値 fOだけ下がる。
このような動作を繰り返すことにより、振動体 66に印加される駆動信号 Vhの周波数 は減少し、位相差電圧信号 Vj≥基準位相差信号 Vkとなった場合には、逆に駆動信 号 Vhの周波数が増加するため、駆動信号 Vhと検出信号 Vaとの位相差 0に相当す る位相差電圧信号 Vjは基準位相差信号 Vk近辺で制御されることとなる。
また、何かの具合により駆動信号 Vhの周波数が低くなりつづけ、リセット回路 847 の所定値以下となった場合には、電圧調整回路 844の調整信号 Vfが初期値 Vfl〖こ 対応した値にリセットされ、もう一度駆動周波数の調整範囲の上限値力 周波数の制 御を行う。
なお、振動体 76についても同様の構成の印加装置(図示せず)が設けられており、 振動体 76の振動の制御についても、振動体 66と同様の制御を行う。
次に、図 3に基づいて、レンズユニット 10の動作を説明する。
まず、回動軸 61の外周に当接している振動体 66が振動することにより、回動軸 61が 所定角度で回動する。回動することにより回動軸 61と一体のカム部材 60も所定の角 度で回動する。するとカム部材 60に形成されたカム溝 62A, 62Bも回動し、それぞれ のカム溝 62A, 62Bに嵌合されているカム棒 51, 41の外周面がカム溝 62A, 62Bの 内周面により誘導されながら開口部 23A, 23Bの中で移動する。
例えば、図 3Aの位置から回動軸 61を反時計方向(R1)に回動させると、カム棒 41 , 51を有する第 2レンズ 40と第 3レンズ 50とは、互いに離間する方向に移動し、図 3B のように、第 2レンズ 40と第 3レンズ 50との間隔が広がることになる。
反対に、電圧が印加される駆動電極 82Aと駆動電極 82Bとを切り替えて、図 3Bの 位置から回動軸 61を時計方向(R2)に回動させると、第 2レンズ 40と第 3レンズ 50と は、互いに近接する方向に移動し、図 3Aのように戻る。 これにより第 2レンズ 40と第 3レンズ 50は、ズームレンズとして機能することになる。
[0049] 図 4A, 4Bにおいても同様に、回動軸 71の外周に当接している振動体 76が振動 することにより、回動軸 71が所定角度で回動する。回動することにより回動軸 71と一 体のカム部材 70も所定の角度で回動する。するとカム部材 70に形成されたカム溝 6 2Cも回動し、この 62Cに嵌合されているカム棒 31の外周面がカム溝 62Cの内周面 により誘導されながら開口部 23Cの中で移動する。
例えば、図 4Aの位置から回動軸 71を反時計方向(R1)に回動させると、カム棒 51 と連結された第 1レンズ 30は、筐体 20の中心方向力も外側方向に移動し、図 4Bのよ うに、筐体 20の端部側に寄る。
反対に、図 4Bの位置から回動軸 71を時計方向(R2)に回動させると、第 1レンズ 3 0は、筐体 20の中央側へ移動し、図 4Aのように戻る。
これにより第 1レンズ 30は、フォーカスレンズとして機能することになる。
[0050] 以上のように圧電素子 82に印加する電圧の駆動電極 82Aと駆動電極 82Bとを適 宜切り替えながら、カム部材 60, 70の回動軸 61, 71に直接振動を与えることにより、 第 1レンズ 30,第 2レンズ 40,第 3レンズ 50力 S図 3 A, 3B、図 4A, 4Bのように進退馬区 動されること〖こなる。
この際、図示しない読み取りセンサによってレンズ 30, 40, 50の位置を読み取り、 制御回路にフィードバックして駆動制御することにより、レンズ 30, 40, 50を任意の 位置に静止可能となっている。
[0051] 以上の第一実施形態によれば、次のような効果が得られる。
(1)検出電極 82Cが、圧電素子 82の略中央に設けられ、屈曲二次振動モードの振 動による歪みが最小となる位置を含んで形成されている、つまり、屈曲二次振動モー ドの振動の節を含んだ位置に形成されているので、屈曲二次振動モードの振動によ る検出信号 Vaへの影響を最小限に抑制できる。したがって、図 8に示されるように、 屈曲二次振動モードの振動の共振周波数 f2近傍では、駆動信号 Vhと検出信号 Va との位相差 0を小さくできる。このため、回動軸 61, 71の駆動速度が一番大きくなる 駆動周波数に対応する位相差(目標位相差) Θ kが、屈曲二次振動モードの振動の 共振周波数 f2における位相差 Θ 2よりも大きくなるので、位相差 Θ kに相当する電圧 値を有する基準位相差信号 Vkに対する駆動信号 Vh (駆動周波数)を一つに決定す ることがでさる。
[0052] これに対して、前述の図 31に示されるような従来の圧電ァクチユエータでは、位相 差に対する駆動周波数が一つに決まらないので、駆動信号 Vhの周波数を常に最適 に制御することができない。
以上のように、検出電極 82Cの位置を適切に設定したことにより、駆動信号 Vhの周 波数を常に一つに決定できるから、振動体 66, 76の振動制御を確実にできる。また 、常に最適の駆動速度を確保できるので、駆動装置 1の駆動効率を向上させることが できる。
またこのとき、検出電極 82Cは、縦一次振動モードの振動の節も含んだ位置となつ ており、当該節の位置では、縦一次振動モードの振動の振幅が最大となるので、縦 一次振動モードの振動を検出し易くできる。
[0053] (2)検出電極 82Cの面積力 駆動電極 82A, 82Bの面積に対して 30分の 1以上 7分 の 1以下、より望ましくは 15分の 1以上 10分の 1以下に設定されているので、検出電 極 82Cでは確実に振動を検出できるとともに、駆動電極 82A, 82Bの面積を確保す ることにより、回動軸 61, 71の駆動に必要な駆動力を確保できる。また、検出電極 82 Cの面積が適切に設定されて!、るので、屈曲二次振動モードの振動による位相差へ の影響を良好に抑制でき、より正確な検出信号を検出できる。
[0054] (3)検出電極 82Cを振動体 66, 76の略中心に、駆動電極 82A, 82Bとは別個に設 けたので、振動体 66, 76の振動方向(屈曲二次振動モードの振動方向)に関わりな く振動を検出できる。これは、例えば駆動電極のうち使用していない部分を検出電極 として兼用して使用する場合などでは、振動方向を切り替えるために駆動電極を切り 替えると、これに伴って検出電極も切り替える必要があり、配線や制御動作が複雑と なる。これに対して、本実施形態の検出電極 82Cは、駆動電極 82A, 82Bとは別個 に設けられて 、るので、印加装置 84の構成を簡略ィ匕できる。
[0055] (4)駆動信号 Vhの制御対象として駆動信号 Vhと検出信号 Vaとの位相差 Θを採用し ているので、制御対象の変動が 0° 〜180° の範囲内に限られる。つまり、例えば駆 動信号の電圧を変更した場合でも、制御する位相差 0は 0° 〜180° の範囲内とな るため、印加装置 84を予めこの位相差範囲で制御できる制御回路で構成しておけ ば、駆動信号の電圧を変更した場合でも共通の制御回路を用いることができるから、 制御回路の汎用性を向上させることができる。一方、駆動信号 Vhの制御対象として 駆動信号の電圧や電流を採用した場合には、検出信号の電圧値や電流値もこれに 応じて大きく変更されるため、この変動に応じて耐圧等を変更した別の制御回路を用 意する必要があり、制御回路の共通化を図ることができない。したがって、本実施形 態の印加装置 84では、駆動信号 Vhと検出信号 Vaとの位相差 Θを制御対象として 採用しているので、共通の回路で基準位相差信号 Vkを大幅に変えることなく電圧違 V、の設定にも対応でき、確実に駆動信号 Vhを制御できる。
[0056] (5)振動体 66, 76が板状に形成されているので、駆動装置 1の薄型化を促進でき、 これによつてレンズユニット 10の小型化を促進できる。また、凸部材 81Aが回動軸 61 , 71に接触しているので、振動体 66, 76の振動を停止した場合には、凸部材 81Aと 回動軸 61, 71外周との間の摩擦により回動軸 61, 71の回動角度を維持できる。
[0057] [第二実施形態]
次に、本発明の第二実施形態について説明する。第二実施形態は、本発明にかか る圧電ァクチユエータを機器としての時計に適用したものである。
図 9は、本発明の第二実施形態にかかる時計 9の日付表示機構 90を示す平面図 である。この図 9において、日付表示機構 90の主要部は、圧電ァクチユエータ 91と、 この圧電ァクチユエータ 91によって回転駆動される被駆動体としてのロータ 92と、口 ータ 92の回転を減速しつつ伝達する減速輪列と、減速輪列を介して伝達される駆動 力により回転する日車 93とから大略構成されている。減速輪列は、日回し中間車 94 と日回し車 95とを備えている。これらの圧電ァクチユエータ 91、ロータ 92、日回し中 間車 94、および日回し車 95は、底板 9Aに支持されている。
[0058] 日付表示機構 90の上方には、円盤状の文字板(図示せず)が設けられており、この 文字板の外周部の一部には日付を表示するための窓部が設けられ、窓部から日車 9 3の日付を覼けるようになつている。また、底板 9Aの下方 (裏側)には、ステッピングモ ータに接続されて指針を駆動する運針輪列(図示せず)や、電源としての二次電池 9 B等が設けられている。二次電池 9Bは、ステッピングモータや圧電ァクチユエータ 91 、印加装置(図示せず)の各回路に電力を供給する。なお、二次電池 9Bに、ソーラ( 太陽光)発電や回転錘の回転を利用した発電を行う発電器が接続され、この発電器 によって発電した電力が二次電池 9Bに充電される構造であってもよい。また、電源 は、発電器で充電される二次電池 9Bに限らず、一般的な一次電池 (例えば、リチウ ムイオン電池)でもよい。
[0059] 日回し中間車 94は、大径部 941と小径部 942と力も構成されている。小径部 942 は、大径部 941よりも若干小径の円筒形であり、その外周面には、略正方形状の切 欠部 943が形成されている。この小径部 942は、大径部 941に対し、同心をなすよう に固着されている。大径部 941には、ロータ 92の上部の歯車 921が嚙合している。し たがって、大径部 941と小径部 942と力もなる日回し中間車 94は、ロータ 92の回転 に連動して回転する。
日回し中間車 94の側方の底板 9Aには、板パネ 944が設けられており、この板パネ 944の基端部が底板 9Aに固定され、先端部が略 V字状に折り曲げられて形成され ている。板パネ 944の先端部は、日回し中間車 94の切欠部 943に出入可能に設け られている。板パネ 944に近接した位置には、接触子 945が配置されており、この接 触子 945は、日回し中間車 94が回転し、板パネ 944の先端部が切欠部 943に入り 込んだときに、板パネ 944と接触するようになっている。そして、板パネ 944には、所 定の電圧が印加されており、接触子 945に接触すると、その電圧が接触子 945にも 印加される。従って、接触子 945の電圧を検出することによって、日送り状態を検出 でき、日車 93の 1日分の回転量が検出できる。
なお、日車 93の回転量は、板パネ 944や接触子 945を用いたものに限らず、ロー タ 92や日回し中間車 94の回転状態を検出して所定のパルス信号を出力するものな どが利用でき、具体的には、公知のフォトリフレクタ、フォトインタラプタ、 MRセンサ等 の各種の回転エンコーダ等が利用できる。
[0060] 日車 93は、リング状の形状をしており、その内周面に内歯車 931が形成されている 。 日回し車 95は、五歯の歯車を有しており、日車 93の内歯車 931に嚙合している。 また、日回し車 95の中心には、シャフト 951が設けられており、このシャフト 951は、 底板 9Aに形成された貫通孔 9Cに遊挿されている。貫通孔 9Cは、日車 93の周回方 向に沿って長く形成されている。そして、日回し車 95およびシャフト 951は、底板 9A に固定された板パネ 952によって図 9の右上方向に付勢されている。この板パネ 952 の付勢作用によって日車 93の揺動も防止される。
[0061] 図 10には、圧電ァクチユエータ 91およびロータ 92の拡大図が示されている。この 図 10に示されるように、圧電ァクチユエータ 91は、略矩形板状の補強板 911と、補強 板 911の両面に接着された圧電素子 912とを備えている。
補強板 911の長手方向略中央には、両側に突出する腕部 913が形成されており、 これらの腕部 913の一方がビスなどによって底板 9Aに固定されている。なお、他方 の腕部 913は、底板 9Aには固定されず、フリーの状態となっており、圧電ァクチユエ ータ 91が振動する場合に振動のバランスをとる錘となっている。
補強板 911の対角線上両端には、補強板 911の長手方向に沿つて突出する略半 円形の凸部 914がそれぞれ形成されている。これらの凸部 914のうち一方は、ロータ 92の側面に当接されている。
[0062] 圧電素子 912は、略矩形板状に形成され、補強板 911両面の略矩形状部分に接 着されている。圧電素子 912の両面には、第一実施形態と同様にめつき層によって 電極が形成されている。圧電素子 912の表面には、溝でめっき層が絶縁されることに より略矩形状の検出電極 912Bが形成されている。この検出電極 912Bは、図 11にも 示すように、圧電素子 912の長手方向中央よりもロータ 92側で、かつ、圧電素子 912 の短手方向中央よりも凸部 914側に形成されている。
[0063] すなわち、本実施形態では、補強板 911の対角線上に凸部 914を形成し、この先 端の突起(凸部 914)によってアンバランスを生じさせ、屈曲二次振動モードを励震し ている。アンバランスが無い状態では、 Y軸 (圧電素子 912の長手方向の中心軸)上 に、伸びと縮みそれぞれによる電荷量をお互いに打ち消す位置が存在する力 本実 施形態のように、アンバランスがある状態では、凸部 914がある方向にずれる。従つ て、本実施形態では、検出電極 912Bを Y軸上ではなぐ Y軸から X軸の正方向にず らした位置に形成して!/、る。
[0064] 例えば、圧電素子 912の幅方向(短手方向)の寸法を L、長手方向の寸法を Lとし
1 2
、長手方向および幅方向の各中心軸部分に X軸および Y軸を設定した場合、検出電 極 912Bは、 X軸および Y軸の交点 Oに対して X軸の正方向側(図中右側)で、かつ、 Y軸の正方向側(図中上側)のエリア ABCD内に形成されている。ここで、 ABCDの 各点の位置は、 Lおよび Lの寸法比や、凸部 914による重量アンバランスなどに応
1 2
じて設定され、例えば、次の通りである。 A(X, Y) = (0.12L,0.02し)、 B (X, Y) = (0
1 2
.45L,0.02し)、 C (X, Y) = (0.12L,0.25し)、 D (X, Y) = (0.45L,0.25し)。
1 2 1 2 1 2
[0065] なお、圧電素子 912の伸縮動作は、 X軸および Υ軸の交点 Οに対して点対称となつ ているので、検出電極 912Bは、図 11の点線で示すエリア EGFHに設けてもよい。 要するに、検出電極 912Bの形成位置は、屈曲二次振動モードに起因する伸びと縮 みそれぞれによる電荷量をお互いに打ち消す位置に設ければよい。例えば、 Ε (Χ, Υ) = (-0.12L ,- 0.02L )、 F (X, Y) = (- 0.45L ,- 0.02L )、 G (X, Y) = (- 0.12L ,-0.2
1 2 1 2 1
5L )、 Η (X, Υ) = (-0.45L ,- 0.25L )である。
2 1 2
また、検出電極 912B以外の部分は駆動電極 912Aとなっている。ここで、検出電 極 912Bの面積は、駆動電極 912Aの面積の 30分の 1以上 7分の 1以下に設定され ており、より望ましくは 15分の 1以上 10分の 1以下に設定されている。
[0066] このような圧電ァクチユエータ 91の駆動電極 912Αに所定周波数の電圧を印加す ると、圧電素子 912が長手方向に沿って伸縮する縦一次振動モードの振動を励振す る。このとき、圧電ァクチユエータ 91の対角線上両端には凸部 914が設けられている ので、圧電ァクチユエータ 91は全体として長手方向中心線に対して重量がアンバラ ンスとなる。このアンバランスにより、圧電ァクチユエータ 91は長手方向に略直交する 方向に屈曲する屈曲二次振動モードの振動を励振する。したがって、圧電ァクチュ エータ 91は、これらの縦一次振動モードおよび屈曲二次振動モードを組み合わせた 振動を励振し、凸部 914は、略楕円軌道を描いて振動する。
[0067] このとき、図 12に示すように、検出電極 912Bには、屈曲二次振動モードに起因し て電極が伸びる部分 (矢印 Α部分)と、縮む部分 (矢印 B部分)とが生じる。圧電素子 は、圧縮するとプラスの電荷を生じ、伸ばすとマイナスの電荷を生じる。これを利用し て検出電極 912B力も検出信号を取り出すと、検出電極 912Bの伸縮に応じて電荷 が生じ、振動に応じた信号を取り出せる。
すなわち、駆動電極 912Aに信号を与えて圧電素子 912を伸縮させた場合、縦一 次振動モードに着目すると、ある時間の検出電極 912Bの状態は伸びている力、縮 んで!、るかの!/、ずれか一方の状態しか取らな!/、。
一方、屈曲二次振動モードにおいては、ある時間の検出電極 912Bの状態は、検 出電極 912Bの形成位置によっては、伸びた部分と縮んだ部分とが混在することがあ る。この伸びた部分と縮んだ部分とが混在する検出電極 912Bでは、プラスの電荷と マイナスの電荷が互いに打ち消しあい、検出信号が小さくなる。それに伴い、共振周 波数近傍で見られる駆動信号と検出信号の位相差も小さくなる。
従って、屈曲二次振動モードに起因する伸縮部分が混在する検出電極 912Bでは 、伸びと縮みそれぞれによる電荷量が打ち消され、屈曲二次振動モードに起因する 位相差も略零、例えば 20度以下の小さな値になる。
ここで、検出電極 912Bの X軸方向の位置を X軸の負の方向つまり Y軸側に移動す ると、屈曲二次振動モードに起因する位相差が大きくなつてしまう。また、 X軸の正の 方向つまり圧電素子 912の端面側に移動すると、屈曲二次振動モードに起因する位 相差が負の値になってしまい、通常であれば位相差は 0〜180度の間で検出制御す ればよいのである力 180〜+ 180度の間で検出制御しなければならず、制御処 理機構が複雑ィ匕してしまう。従って、検出電極 912Bの X軸方向の位置は、 Y軸と圧 電素子の端縁間の適切な範囲内(例えば図 11における A— B間)に配置する必要が ある。
また、検出電極 912Bの Y軸方向の位置を Y軸の正の方向つまり圧電素子 912の 長手方向端部側に移動すると、屈曲二次振動モードに起因する位相差が大きくなり 、かつ、検出信号のレベルが低下してしまう。すなわち、 Y軸の正の方向に検出電極 912Bを移動すると、縦一次振動モードによる歪みが小さくなり、歪みによって発生す る電荷が少なくなり、検出信号レベルも低くなる。本実施形態では、検出電極から発 生する検出信号を制御に用いるため、信号レベルが低 、と電気的なノイズの影響や 、機械的な振動、軽衝撃の影響を受けやすぐ制御が不安定になることがある。 また、屈曲二次振動モードの歪みによって発生する電荷量の割合が大きくなつてし まう。その結果、屈曲振動の影響が強く出るため、屈曲二次振動モードに起因する位 相差が大きくなつてしまう。 従って、検出電極 912Bの Y軸方向の位置は、 X軸と圧電素子の長手方向端部間 の所定の範囲内(例えば図 11における A—C間)に配置する必要がある。
[0069] 駆動電極 912Α、検出電極 912Β、および補強板 911は、それぞれリード線などに より図示しない印加装置に接続されている。印加装置は、第一実施形態の印加装置 84と同様に、駆動信号と検出信号との位相差が適切な値となるように駆動信号の制 御を行う。
図 13は、本実施形態の日付表示機構 90において、圧電ァクチユエータ 91に印加 する駆動周波数に対する圧電ァクチユエータ 91の振動特性および日付表示機構 90 の動作特性を示したものである。この図 13において、駆動周波数に対する位相差は 、ある駆動周波数の範囲で、駆動周波数が増えるにつれて徐々に減少している。ま た、駆動周波数に対するロータ 92の回転数は、位相差が減少する駆動周波数の範 囲で大きくなつていることが分かる。つまり、この駆動周波数の範囲は、縦一次振動モ ードの振動の共振周波数と屈曲二次振動モードの振動の共振周波数との間であつ て、これらの振動モードが同時に良好に現れる範囲であるといえる。そこで、本実施 形態では印加装置の基準位相差信号 Vkは、この駆動周波数の範囲に対応する位 相差 0 k (例えば 70° 〜80° の間)に相当する電圧値を有する値に設定されている ロータ 92には、板ばね 922が取り付けられており、ロータ 92が圧電ァクチユエータ 9 1側に付勢されている。これにより凸部 914とロータ 92側面との間に適切な摩擦力が 発生し、圧電ァクチユエータ 91の駆動力の伝達効率が良好となる。
[0070] このような時計 9では、第一実施形態と同様に印加装置が圧電ァクチユエータ 91へ の駆動信号を制御することにより、所定の周波数の駆動信号が印加されると、圧電ァ クチユエータ 91は、縦一次振動モードと屈曲二次振動モードとを組み合わせた振動 を励振する。凸部 914は、これらの振動モードを組み合わせた略楕円軌道を描いて 振動し、その振動軌道の一部でロータ 92を押圧することによりロータ 92を回転駆動 する。
ロータ 92の回転運動は、日回し中間車 94に伝達され、切欠部 943に日回し車 95 の歯が係合すると、日回し中間車 94によって日回し車 95が回転し、日車 93を回転さ せる。この回転により日車 93が表示する日付が変更される。
[0071] このような第二実施形態によれば、第一実施形態とは構成が異なるものの、第一実 施形態の (1)、(2)、および (4)の効果と同様の効果が得られる他、次のような効果が得 られる。
(6)凸部 914を圧電ァクチユエータ 91の対角線両端に設けたので、駆動電極 912A を一つ設けるだけで、重量のアンバランスにより縦一次振動モードにカ卩えて屈曲二次 振動モードを励振できる。したがって圧電素子 912の電極の構成を簡単にできる。こ れに伴って、印加装置での駆動信号の制御も簡略ィ匕できる。これは例えば圧電ァク チユエータ 91が小型である場合などでは、小さな圧電素子 912に、溝によって複雑 な形状の電極を形成するのが困難であるため、特に有用である。
[0072] (7)圧電ァクチユエータ 91が時計 9の日付表示機構 90に利用されているので、圧電 ァクチユエータ 91の駆動効率が常に最適に制御されるから、日付表示機構 90の駆 動の確実性を向上させることができ、日付を正確に表示できる。また、圧電ァクチユエ ータ 91の小型化を促進できることにより、時計 9の小型化も促進できる。
[0073] なお、本発明は前述の実施形態に限定されるものではなぐ本発明の目的を達成 できる範囲での変形、改良等は本発明に含まれるものである。
検出電極の形状、配置などは、第一実施形態では圧電素子 82の略中央に略菱形 に形成され、第二実施形態では圧電素子 912の凸部 914寄りに略矩形状に形成さ れていたが、これに限らず、例えば図 14A〜14Fに示されるような形状、配置であつ てもよい。
図 14Aに示される圧電ァクチユエータ 100Aでは、圧電素子表面の略中央に略正 方形の検出電極 101Aが形成されている。また、圧電素子表面の検出電極 101Aを 除いた部分には、対角線上両端に略矩形状の一対の駆動電極 102A, 103Aが形 成されている。これらの駆動電極 102A, 103Aのうち、一方の駆動電極 102Aは圧 電素子略中央で互いに連続しており、一つの駆動電極 102Aを形成している。した がって、この圧電ァクチユエータ 100Aでは、三つの駆動電極 102A, 103Aおよび 一つの検出電極 101Aが形成されている。またこの場合において、駆動電極 102A, 103Aおよび検出電極 101Aにはリード線が接続されるリード線接続位置 104Aが設 けられている。駆動電極 102A, 103Aには、圧電素子の長手方向略中央付近に凹 凸が形成されることにより、これらのリード線接続位置 104Aが、圧電素子の長手方 向略中央にほぼ一直線に配置されている。このような配置により、それぞれの電極へ のリード線の接続が容易になる。また、駆動電極 102Aが圧電素子略中央で互いに 連続しているので、圧電素子に接続されるリード線の本数を減少させることができる から、圧電ァクチユエータ 100Aの構造を簡略ィ匕できる。
[0074] 図 14Bに示される圧電ァクチユエータ 100Bでは、圧電素子の長手方向に沿って 電極が三分割され、これらの電極のうち両端の電極では短手方向に沿って電極がさ らに二分割されることにより四つの駆動電極 101Bが形成されている。また、真ん中の 電極では、圧電素子の略中央に略正方形の検出電極 102Bが形成されることにより 、その両側に駆動電極 103Bが形成される。駆動電極 101Bのうち対角線上両端の 駆動電極 101Bと、駆動電極 103Bに電圧を印加すると、圧電ァクチユエータ 100B が縦一次振動モードおよび屈曲二次振動モードの振動を組み合わせた振動を励振 することとなる。なお、リード線接続位置 104Bは圧電素子の略中央に集中させること が望ましい。圧電素子の略中央は、縦一次振動モードの振動の節でありかつ屈曲二 次振動モードの振動の節でもあるため、圧電ァクチユエータ 100Bの変位幅が小さく なるため、リード線の断線などの不具合が防止できるからである。
[0075] 図 14Cに示される圧電ァクチユエータ 100Cでは、第一実施形態の検出電極 82C と同様の位置に、略正方形の検出電極 101Cが形成されている。
また図 14Dに示される圧電ァクチユエータ 100Dでは、検出電極 101Dは、多角形 状 (六角形)に形成されている。
以上のように、検出電極の形状は、略正方形状、多角形状などの他、円形状、楕円 形状、変形形状など、任意の形状を採用できる。
[0076] 検出電極の配置は、縦一次振動モードの振動の節でかつ屈曲二次振動モードの 振動の節を含んだ位置に形成されているものに限らず、図 14Eに示されるように、例 えば縦一次振動モードの振動の節ではないが、屈曲二次振動モードの振動の節を 含んだ位置に形成されていてもよい。要するに、主として縦一次振動モードを主とし て使用して圧電ァクチユエータを動作させる場合には、検出電極は、縦一次振動モ ード以外の振動、例えば屈曲二次振動モードの振動の節を含んだ位置に形成され ていればよい。
検出電極の配置は、屈曲二次振動モードの振動の節を含んだ位置に形成されるも のに限らず、圧電ァクチユエータが主として屈曲二次振動モードの振動を使用する 場合には、屈曲二次振動モード以外の振動の節を含んで形成すればよい。つまり、 圧電ァクチユエータが主として屈曲二次振動モードを使用する場合には、例えば図 1 4Eに示される検出電極 101Eや図 14Fに示される検出電極 101Fのように、検出電 極を圧電素子の長手方向端部に設けてもよい。つまり、検出電極 101Fは、縦一次 振動モードの振動による歪みが最小となる位置を含んで形成されて 、ればよ 、。 要するに、検出電極は、主として使用する振動モード以外の振動モードの振動によ る歪みが最小となり、主として使用する振動モード以外の振動モードに起因する位相 差が、目標位相差未満となる位置を含んで形成されて ヽればよ ヽ。
また、検出電極の配置は、主として使用する振動モード以外の振動モードの振動に よる歪みが最小となる位置が、検出電極の形状の重心に一致するものに限らず、歪 みが最小となる位置を含んだ位置に形成されて 、ればよ!/、。
さらに、第 1実施形態のように、凸部材 81Aが Y軸上に配置されてアンバランスとな つていない場合も、第 2実施形態のように、主として使用する振動モード以外の振動 モードの振動に起因して、伸びる部分と縮む部分とが混在し、各部分で発生する電 荷量が互いに打ち消し合う位置に検出電極を配置し、主として使用する振動モード 以外の振動モードに起因する位相差が、目標位相差未満となる位置を含んで形成さ れていればよい。
さらに、伸縮部分が混在する位置に形成された検出電極 912Bの形状は、前記第 2 実施形態のように矩形状(四角形)のものに限らない。例えば、図 15に示すように、平 面 L字状に形成されたものでも良い。要するに、検出電極 912Bは、正および負の電 荷が生じてこれらが打ち消し合う位置に設置されていればよぐその形状は特に限定 されない。
なお、図 15のように検出電極 912Bの一部を圧電素子 912の端縁まで延長した形 状であれば、図 16に示すように、リード線等の配線 915を圧電素子 912の側方から 延長させて検出電極 912B上に接触させるだけで配線でき、配線構造が容易になる という利点がある。
[0078] 振動モードは、縦一次振動モードや屈曲二次振動モードに限らず、縦二次振動モ ードゃ屈曲一次振動モードなど、その他の任意の振動モードを採用できる。また、圧 電ァクチユエータは、二つの振動モードを有するものに限らず、三つ以上の複数の 振動モードを有していてもよい。この場合には、検出電極は、主として使用する振動 モード以外の振動モードの振動による歪みが最小となる位置を含んで形成されて ヽ ればよぐ振動モードが三つ以上ある場合には、主として使用する振動モード以外の 振動モードのうち、検出信号への影響が最も大きい振動モードの振動による歪みが 最小となる位置を含んで形成してもよい。あるいは、検出電極は、主として使用する 振動モード以外の振動モードのうち、主として使用する振動モードと検出信号の検出 ノターンが類似する振動モードを選択して、この振動モードの振動による歪みが最 小となる位置を含んで形成してもよ 、。
[0079] 初期値 Vf 1は、予め設定された駆動周波数の調整範囲の上限値に設定されて!、 たが、これに限らず例えば駆動周波数の調整範囲の下限値に設定していてもよい。 この場合でも位相差に対する駆動周波数が一つに決まるので、位相差を所定値に 制御すれば、圧電ァクチユエ一タに印加される駆動周波数が最適に制御される。
[0080] さらに、前記各実施形態では、駆動信号および検出信号の位相差に基づいて駆動 周波数の制御を行って 、たが、検出信号の信号レベルに基づ 、て駆動周波数の制 御を行ってもよい。
すなわち、前記各実施形態のように位相差に基づいて駆動周波数の制御を行う場 合には、図 17に示すように、例えば回転数が最も高くなる所定の目標位相差 Θ kを 設定し、縦一次振動モードに起因する位相差の値が目標位相差 Θ kとなる周波数に 駆動周波数を調整するとともに、屈曲二次振動モードに起因する位相差が目標位相 差 Θ k未満となる位置に検出電極を設ければよい。すなわち、屈曲二次振動モード に起因する位相差 Θ などが目標位相差 Θ k未満となるように検出電極を配置すれば
2
良ぐより好ましくは屈曲二次振動モードに起因する位相差 Θ のように、その位相差
3
が 20度以下になる位置に検出電極を配置すればよ!/、。 一方で、図 18に示すように、検出信号のレベルも、位相差と同様に、回転数や消 費電流と相関関係を有するため、検出信号レベルに基づいて駆動周波数を制御す ることもできる。すなわち、縦一次振動モードに起因する検出信号レベルが目標レべ ル Vとなるように駆動周波数を制御すればよい。この場合も、屈曲二次振動モードに 起因する検出信号レベル (例えば V )が目標レベル V未満となるように検出電極を
2 1
配置すれば良ぐより好ましくは屈曲二次振動モードに起因する検出信号レベル V
3 のように、その検出信号レベルが略 0となる位置に検出電極を配置すればよい。
[0081] 本発明を実施するための最良の構成、方法などは、以上の記載で開示されている
1S 本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実 施形態に関して特に図示され、かつ、説明されているが、本発明の技術的思想およ び目的の範囲力 逸脱することなぐ以上述べた実施形態に対し、形状、材質、数量 、その他の詳細な構成において、当業者が様々な変形を加えることができるものであ る。
したがって、上記に開示した形状、材質などを限定した記載は、本発明の理解を容 易にするために例示的に記載したものであり、本発明を限定するものではな 、から、 それらの形状、材質などの限定の一部もしくは全部の限定を外した部材の名称での 記載は、本発明に含まれるものである。
実施例 1
[0082] 本発明の効果を確認するために以下の実験を行った。
[実施例 1]
図 19に示す圧電ァクチユエータ 110Aを用いて実験を行った。圧電ァクチユエータ 110Aの圧電素子 111A表面のめっき層には、切欠溝によって互いに電気的に絶縁 された複数の電極が長手方向に沿った中心線を軸として線対称に形成されている。 つまり、圧電素子 111Aを幅方向(短手方向)にほぼ三等分するように二本の溝が形 成され、これらの溝で分割された三つの電極のうち、両側の電極ではさらに長手方向 をほぼ二等分するように溝が形成されている。これらの溝により、圧電素子 111Aの 表面には五つの電極が形成され、これらの電極のうち対角線上両端に形成される二 つの電極がそれぞれ駆動電極 112A, 113Aとなっており、また中央の電極が駆動 電極 114Aとなっている。圧電素子 111Aの略中央で、駆動電極 114Aの内部には、 略矩形状の検出電極 115Aが形成されている。これらの駆動電極 112A, 113A, 1 14Aおよび検出電極 115Aはいずれも第一実施形態と同様の印加装置に接続され ている。駆動電極 112A, 114Aに駆動信号を印加すると、圧電ァクチユエータ 110 Aは縦一次振動モードと屈曲二次振動モードを組み合わせた振動を励振し、凸部 1 16Aが略楕円軌道を描いて振動する。また駆動電極 113A, 114Aに駆動信号を印 加すると、屈曲二次振動モードの振動方向が逆となり、凸部 116Aが逆方向に略楕 円軌道を描いて振動する。したがって、縦一次振動モードの振動の節は、圧電ァク チユエータ 110A中心の点 Aとなり、また屈曲二次振動モードの振動の節は、圧電ァ クチユエータ 110Aの長手方向に沿った三つの点 Aとなる。つまり、検出電極 115A は、縦一次振動モードの振動の節で、かつ屈曲二次振動モードの振動の節の位置 を含んで形成されている。
このような圧電ァクチユエータ 11 OAの凸部 116 Aをロータ側面に当接し、駆動信号 の駆動周波数を変化させ、各駆動周波数に対するロータの回転速度の関係を調べ た。また各駆動周波数に対する駆動信号と検出信号との位相差の関係を調べた。
[0083] [比較例 1]
図 20に示す圧電ァクチユエータ 110Bを用いて実験を行った。圧電ァクチユエータ 110Bの圧電素子 111B表面には、実施例の圧電ァクチユエータ 110Aと同様に五 つの駆動電極 112B, 113B, 114Bが形成されている。駆動電極 112Bに駆動信号 が入力されて 、る場合には、一対の駆動電極 113Bのうち凸部 116B力ら遠 、側の 一方を検出電極として使用し、駆動電極 113Bに駆動信号が入力されている場合に は、一対の駆動電極 112Bのうち凸部 116B力も遠い側の一方を検出電極として使 用した。
その他の条件は、実施例と同じである。
[0084] [実施例 1および比較例 1の結果]
図 21には、実施例の結果が示されている。この図 21に示されるように、駆動周波数 に対するロータの回転速度は、ある一定の範囲内で大きくなり、その他の範囲では速 度が 0、つまりロータが回転しないことがわかる。したがって、この駆動周波数の範囲 内で駆動信号を調整すれば、ロータの回転速度を十分に確保できることがわかる。ま た、駆動周波数に対する位相差は、ロータの回転速度が大きくなる駆動周波数範囲 の下限より小さい駆動周波数では約 180° となっているが、それよりも大きな駆動周 波数では、駆動周波数が大きくなるに従って位相差が徐々に減少し、ロータの回転 速度が大きくなる駆動周波数範囲の上限より大きい駆動周波数では、約 0° 〜約 30 ° 程度となっている。したがって、実施例の圧電ァクチユエータ 110Aでは、駆動周 波数の増加に伴って位相差が徐々に減少しているので、例えば位相差を 70° 〜80 ° の間で適宜設定して制御すると、ロータの回転速度を良好に確保でき、この場合 において、位相差に対する駆動周波数が一つに決定されることがわかる。
[0085] これに対して、図 22には、比較例の結果が示されている。この図 22に示されるよう に、駆動周波数に対するロータの回転速度は、実施例と同様にある一定の範囲内で 大きくなつている力 この駆動周波数の範囲内において、駆動周波数に対する位相 差は駆動周波数の範囲内の下限近傍で一度小さくなるが、駆動周波数が増加すると 再び位相差が増加して約 180° となり、その後再び減少していることがわかる。つまり 、例えば位相差を 70° 〜80° の間の所定値に設定して制御しても、一つの位相差 に対する駆動周波数が三つ存在する。したがって、駆動周波数はこれら三つの駆動 周波数の 、ずれかに設定されることとなってしま 、、ロータの回転速度を良好に確保 できる駆動周波数となる場合もあるが、その他の駆動周波数となった場合にはロータ の回転速度を良好に維持できないこととなり、ロータの回転駆動性能の確実性に欠 ける。
[0086] 以上より、位相差に対する駆動周波数を一つに決めることができ、駆動信号と検出 信号との位相差を所定値に制御することで圧電ァクチユエータを常に最適な駆動周 波数で振動させることができるという本発明の効果を確認できた。
実施例 2
[0087] 次に、前記第 2実施形態の圧電ァクチユエータを用いて検出電極 912Bの位置を 変化させた場合の位相差および検出信号レベルの変化を実験した。
[0088] [実施例 2]
図 11に示す圧電ァクチユエータ 91を用いて実験を行った。圧電ァクチユエータ 91 の圧電素子 912は、 L = 1. 98mm, L = 7. Ommとし、検出電極 912Bは前記エリア
1 2
ABCD内に含まれるように、 A, (X, Y) = (0.595,0.15)、 B, (X, Y) = (0.891,0.15)、 C, (X, Y) = (0.595,1.73)、 D, (X, Y) = (0.891,1.73)の 4点を結ぶ矩形状に形成し た。
そして、このような圧電ァクチユエータ 91の凸部 914をロータ側面に当接し、駆動信 号の駆動周波数を変化させ、各駆動周波数に対する駆動信号および検出信号の位 相差の変化を示す位相差特性と、検出信号レベルの変化を示す検出信号特性の関 係を調べた。この位相差特性および検出信号特性のグラフを図 23, 24に示す。
[0089] [比較例 2]
一方、検出信号 912Bをエリア ABCDよりも X軸負方向にずらして形成した場合、 X 軸正方向にずらして形成した場合、 Υ軸正方向にずらして形成した場合の位相差特 性および検出信号特性を調べた。図 25, 26は、 X軸負方向にずらして形成した場合 の位相差特性および検出信号のグラフであり、図 27, 28は X軸正方向にずらして形 成した場合の位相差特性および検出信号のグラフであり、図 29, 30は Υ軸正方向に ずらして形成した場合の位相差特性および検出信号のグラフである。
[0090] [実施例 2および比較例 2の結果]
図 23〜30に示すように、所定のエリア ABCD内に検出電極 912Bを形成した場合 には、屈曲二次振動モードに起因する位相差信号は非常に小さくなり、目標位相差 を設定した場合に駆動周波数を一つに決定できることがわかる。
これに対し、検出電極 912Bをエリア ABCD力も X軸負方向や Y軸正方向にずらし て形成した場合には、屈曲二次振動モードに起因する位相差信号が大きくなつてお り、目標位相差を設定した場合に駆動周波数が二つ存在してしまい、駆動特性に劣 る周波数で駆動してしまう場合が生じてしまうことになる。
[0091] また、検出信号レベルに関しても、所定のエリア ABCD内に検出電極 912Bを形成 した場合には、十分なレベルの信号が出力されているが、 X軸負方向にずらして形 成した場合では屈曲二次振動モードに起因する部分でも比較的高いレベルの信号 が出力されてしまい、検出信号レベルに基づいて駆動周波数の制御を行う場合に問 題となることが分かる。さらに、検出電極 912Bを Y軸正方向にずらして形成した場合 には、検出信号レベルが非常に小さくなるため、検出信号レベルに基づいて駆動周 波数の制御を行う場合に問題となることが分力る。
[0092] 以上より、屈曲二次振動モードによって伸びる部分と縮む部分とが混在して各部分 で発生する電荷量を打ち消すことができる位置に検出電極 912Bを形成すれば、位 相差や検出信号レベルに対する駆動周波数を一つに決めることができ、駆動信号と 検出信号との位相差や検出信号レベルを所定値に制御することで圧電ァクチユエ一 タを常に最適な駆動周波数で振動させることができるという本発明の効果を確認でき た。
産業上の利用可能性
[0093] 本発明は、圧電素子の振動により被駆動体を駆動する圧電ァクチユエータおよびこ の圧電ァクチユエータを備えた機器として利用できる。

Claims

請求の範囲
[1] 二つ以上の振動モードを有する圧電素子の振動により、被駆動体を駆動する圧電 ァクチユエータであって、
前記圧電素子に駆動信号を印カロして当該圧電素子を振動させるための駆動電極 と、
前記圧電素子の振動挙動を検出するための検出電極と、
前記駆動電極に印加する駆動信号と前記検出電極で検出される検出信号との位 相差に基づいて前記駆動信号を制御する制御手段とを備え、
前記検出電極は、主として振動するモード以外の振動モードに起因する位相差が 制御時の目標となる目標位相差未満となる位置に形成される
ことを特徴とする圧電ァクチユエータ。
[2] 請求項 1に記載の圧電ァクチユエータにお ヽて、
前記検出電極は、主として振動するモード以外の振動モードに起因する位相差が 20度以下となる位置に形成される
ことを特徴とする圧電ァクチユエータ。
[3] 二つ以上の振動モードを有する圧電素子の振動により、被駆動体を駆動する圧電 ァクチユエータであって、
前記圧電素子に駆動信号を印カロして当該圧電素子を振動させるための駆動電極 と、
前記圧電素子の振動挙動を検出するための検出電極と、
前記検出電極で検出される検出信号の信号レベルに基づいて前記駆動信号を制 御する制御手段とを備え、
前記検出電極は、主として振動するモード以外の振動モードに起因する前記信号 レベルが制御時の目標となる目標信号レベル未満となる位置に形成される
ことを特徴とする圧電ァクチユエータ。
[4] 請求項 1から請求項 3のいずれかに記載の圧電ァクチユエータにおいて、
前記検出電極は、主として振動するモード以外の振動モードに起因して伸びる部 分と縮み部分とが同時に発生してそれぞれの部分で発生する電荷量が打ち消される 位置に形成される
ことを特徴とする圧電ァクチユエータ。
[5] 請求項 1から請求項 3のいずれかに記載の圧電ァクチユエータにおいて、
前記検出電極は、主として使用する振動モード以外の振動モードによる歪みが最 小となる位置を含んで形成される
ことを特徴とする圧電ァクチユエータ。
[6] 請求項 5に記載の圧電ァクチユエータにお ヽて、
前記振動モードは、所定の一方向に伸縮する縦振動モードと、前記縦振動モード の振動方向に略直交する方向に屈曲する屈曲振動モードとを含み、
前記検出電極は、前記屈曲振動モードの振動の節を含む位置に形成される ことを特徴とする圧電ァクチユエータ。
[7] 請求項 5または請求項 6に記載の圧電ァクチユエータにお ヽて、
前記圧電素子は略矩形板状に形成され、
前記振動モードは、前記圧電素子の長手方向に沿って伸縮する縦一次振動モー ドと、前記縦一次振動モードの振動方向の略直交方向に屈曲する屈曲二次振動モ 一ドとを有し、
前記検出電極は、前記縦一次振動モードの振動の節で、かつ前記屈曲二次振動 モードの振動の節を含む位置に形成される
ことを特徴とする圧電ァクチユエータ。
[8] 請求項 1から請求項 7のいずれかに記載の圧電ァクチユエータにおいて、
当該圧電ァクチユエータは、前記屈曲振動モードの振動方向を正逆変更可能に構 成されている
ことを特徴とする圧電ァクチユエータ。
[9] 請求項 1から請求項 8のいずれかに記載の圧電ァクチユエータにおいて、
前記検出電極の面積は、前記駆動電極の面積の 30分の 1以上 7分の 1以下である ことを特徴とする圧電ァクチユエータ。
[10] 請求項 1から請求項 9の 、ずれかに記載の圧電ァクチユエータを備えたことを特徴 とする機器。
[11] 請求項 10に記載の機器において、
レンズと、
前記圧電ァクチユエータの振動により前記レンズを駆動する駆動ユニットとを備えた ことを特徴とする機器。
[12] 請求項 10に記載の機器において、
当該機器は、前記圧電ァクチユエータの振動によって駆動される時計である ことを特徴とする機器。
PCT/JP2005/012389 2004-07-07 2005-07-05 圧電アクチュエータおよび機器 WO2006004108A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE200560020028 DE602005020028D1 (de) 2004-07-07 2005-07-05 Piezoelektrischer aktuator und einrichtung
JP2006528905A JP4479725B2 (ja) 2004-07-07 2005-07-05 圧電アクチュエータおよび機器
CN2005800228197A CN1981427B (zh) 2004-07-07 2005-07-05 压电致动器和钟表
EP20050758234 EP1786091B1 (en) 2004-07-07 2005-07-05 Piezoelectric actuator and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-200794 2004-07-07
JP2004200794 2004-07-07

Publications (1)

Publication Number Publication Date
WO2006004108A1 true WO2006004108A1 (ja) 2006-01-12

Family

ID=35782907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012389 WO2006004108A1 (ja) 2004-07-07 2005-07-05 圧電アクチュエータおよび機器

Country Status (6)

Country Link
US (1) US7514843B2 (ja)
EP (1) EP1786091B1 (ja)
JP (1) JP4479725B2 (ja)
CN (1) CN1981427B (ja)
DE (1) DE602005020028D1 (ja)
WO (1) WO2006004108A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043123A (ja) * 2006-08-09 2008-02-21 Olympus Corp 超音波モータ及び超音波モータの振動検出方法
JP2019161823A (ja) * 2018-03-12 2019-09-19 セイコーエプソン株式会社 圧電駆動装置、ロボット、電子部品搬送装置、プリンターおよびプロジェクター
JP2020021026A (ja) * 2018-08-03 2020-02-06 株式会社シグマ レンズ駆動装置及びそれを有するレンズ鏡筒
WO2023048001A1 (ja) * 2021-09-27 2023-03-30 株式会社ニコン レンズ鏡筒および撮像装置
WO2023084829A1 (ja) * 2021-11-10 2023-05-19 株式会社村田製作所 励振回路、振動装置および車両

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7545076B1 (en) * 2005-07-11 2009-06-09 Itt Manufacturing Enterprises, Inc. System and method for tracking drive frequency of piezoelectric motor
US7638932B2 (en) * 2006-02-07 2009-12-29 Panasonic Corporation Piezoelectric element and ultrasonic actuator
US7646136B2 (en) * 2007-05-07 2010-01-12 Panasonic Corporation Piezoelectric element, vibratory actuator and drive unit
JP2008301673A (ja) * 2007-06-04 2008-12-11 Konica Minolta Opto Inc 摩擦駆動アクチュエータおよびそれを用いるハードディスク装置
JP2009254198A (ja) * 2008-04-10 2009-10-29 Sharp Corp 超音波モータおよび超音波振動子
JP5382320B2 (ja) * 2009-03-26 2014-01-08 セイコーエプソン株式会社 圧電モーター、液体噴射装置及び時計
JP2010233339A (ja) * 2009-03-26 2010-10-14 Seiko Epson Corp 圧電モーター、液体噴射装置及び時計
JP5467821B2 (ja) * 2009-09-07 2014-04-09 パナソニック株式会社 振動型アクチュエータ
EP2505870A1 (en) * 2009-11-25 2012-10-03 Sinfonia Technology Co., Ltd. Vibration damping device and vehicle provided therewith
JP5693310B2 (ja) * 2011-03-17 2015-04-01 キヤノン株式会社 異物除去装置およびそれを備える光学機器
US8801742B2 (en) 2011-06-01 2014-08-12 Devicor Medical Products, Inc. Needle assembly and blade assembly for biopsy device
JP6172975B2 (ja) 2012-03-19 2017-08-02 キヤノン株式会社 振動型アクチュエータの不要振動検出装置、駆動制御装置、振動型アクチュエータ、および電子機器
JP2014018027A (ja) 2012-07-11 2014-01-30 Canon Inc 振動型アクチュエータ、撮像装置、及びステージ
JP6112835B2 (ja) * 2012-11-26 2017-04-12 キヤノン株式会社 振動型アクチュエータの駆動装置及び駆動制御方法
CN103199603B (zh) * 2013-03-20 2015-01-21 瑞声科技(南京)有限公司 压电发电充电系统以及应用该系统的电子设备
JP6164044B2 (ja) * 2013-10-30 2017-07-19 セイコーエプソン株式会社 圧電モーター、ロボットハンド、ロボット、指アシスト装置、電子部品搬送装置、電子部品検査装置、送液ポンプ、印刷装置、電子時計、投影装置
JP2019030091A (ja) * 2017-07-28 2019-02-21 セイコーエプソン株式会社 圧電駆動装置、圧電駆動装置の駆動方法、ロボット、電子部品搬送装置、プリンター、及び、プロジェクター
JP6946893B2 (ja) * 2017-09-22 2021-10-13 セイコーエプソン株式会社 圧電駆動装置、圧電モーター、ロボット、電子部品搬送装置、プリンターおよびプロジェクター
JP6882685B2 (ja) * 2017-10-20 2021-06-02 シンフォニアテクノロジー株式会社 振動系の制御装置およびワーク搬送装置
JP7200550B2 (ja) * 2018-08-31 2023-01-10 セイコーエプソン株式会社 圧電駆動装置、ロボットおよびプリンター

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078164A1 (de) * 2001-03-09 2002-10-03 Fronius International Gmbh Verfahren zum regeln eines wechselrichtersystems
JP2002291264A (ja) * 2001-03-27 2002-10-04 Seiko Epson Corp 圧電アクチュエータ、圧電アクチュエータの駆動装置、圧電アクチュエータの駆動方法、時計および携帯機器
WO2003077410A1 (fr) * 2002-03-11 2003-09-18 Seiko Epson Corporation Verin a transformation de rotation/mouvement
JP2004166479A (ja) * 2002-06-14 2004-06-10 Seiko Epson Corp 回転型駆動装置およびこれを備えた装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69517232T2 (de) * 1994-03-23 2000-10-26 Nikon Corp., Tokio/Tokyo Ultraschallmotor
JPH11155290A (ja) * 1997-09-22 1999-06-08 Nikon Corp 振動アクチュエータ
JP3148729B2 (ja) * 1998-04-13 2001-03-26 セイコーインスツルメンツ株式会社 超音波モータ及び超音波モータ付電子機器
CN1297062C (zh) * 2001-03-27 2007-01-24 精工爱普生株式会社 压电致动器及其驱动电路
JP3719249B2 (ja) * 2002-02-06 2005-11-24 セイコーエプソン株式会社 圧電アクチュエータ、圧電アクチュエータの駆動制御回路、時計、携帯機器、圧電アクチュエータ駆動回路の制御方法、時計の制御方法および携帯機器の制御方法
JP4314088B2 (ja) * 2003-09-25 2009-08-12 キヤノン株式会社 振動型アクチュエータの制御装置および制御方法、振動型アクチュエータを駆動源とする装置
JP4795162B2 (ja) * 2006-08-09 2011-10-19 オリンパス株式会社 超音波モータ及び超音波モータの振動検出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078164A1 (de) * 2001-03-09 2002-10-03 Fronius International Gmbh Verfahren zum regeln eines wechselrichtersystems
JP2002291264A (ja) * 2001-03-27 2002-10-04 Seiko Epson Corp 圧電アクチュエータ、圧電アクチュエータの駆動装置、圧電アクチュエータの駆動方法、時計および携帯機器
WO2003077410A1 (fr) * 2002-03-11 2003-09-18 Seiko Epson Corporation Verin a transformation de rotation/mouvement
JP2004166479A (ja) * 2002-06-14 2004-06-10 Seiko Epson Corp 回転型駆動装置およびこれを備えた装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1786091A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043123A (ja) * 2006-08-09 2008-02-21 Olympus Corp 超音波モータ及び超音波モータの振動検出方法
JP2019161823A (ja) * 2018-03-12 2019-09-19 セイコーエプソン株式会社 圧電駆動装置、ロボット、電子部品搬送装置、プリンターおよびプロジェクター
JP7077682B2 (ja) 2018-03-12 2022-05-31 セイコーエプソン株式会社 圧電駆動装置、ロボット、電子部品搬送装置、プリンターおよびプロジェクター
US11430938B2 (en) 2018-03-12 2022-08-30 Seiko Epson Corporation Piezoelectric driving device having a detection element at the center of a vibrating portion
JP2020021026A (ja) * 2018-08-03 2020-02-06 株式会社シグマ レンズ駆動装置及びそれを有するレンズ鏡筒
JP7074987B2 (ja) 2018-08-03 2022-05-25 株式会社シグマ レンズ駆動装置及びそれを有するレンズ鏡筒
WO2023048001A1 (ja) * 2021-09-27 2023-03-30 株式会社ニコン レンズ鏡筒および撮像装置
WO2023084829A1 (ja) * 2021-11-10 2023-05-19 株式会社村田製作所 励振回路、振動装置および車両

Also Published As

Publication number Publication date
EP1786091A1 (en) 2007-05-16
US20070188048A1 (en) 2007-08-16
EP1786091B1 (en) 2010-03-17
US7514843B2 (en) 2009-04-07
JP4479725B2 (ja) 2010-06-09
CN1981427A (zh) 2007-06-13
DE602005020028D1 (de) 2010-04-29
EP1786091A4 (en) 2008-01-16
CN1981427B (zh) 2011-06-01
JPWO2006004108A1 (ja) 2008-04-24

Similar Documents

Publication Publication Date Title
WO2006004108A1 (ja) 圧電アクチュエータおよび機器
JP4141990B2 (ja) 圧電アクチュエータおよび機器
US7078847B2 (en) Piezoelectric actuator, timepiece, and portable device
US7535153B2 (en) Drive control method for a piezoelectric actuator, drive control apparatus for a piezoelectric actuator, and electronic device
US20070159507A1 (en) Piezoelectric actuator drive control method, piezoelectric actuator drive control apparatus, and electronic device
JP2007221924A (ja) 圧電アクチュエータ、圧電アクチュエータの駆動制御方法、および電子機器
US7439650B2 (en) Piezoactuator drive detection device and electronic device
JP2007221865A (ja) 圧電振動体、圧電振動体の固有振動数調整方法、圧電アクチュエータ、および電子機器
JP4222208B2 (ja) 圧電アクチュエータおよび圧電アクチュエータを備えた時計並びに携帯機器
EP1355412A1 (en) Piezoelectric actuator and its drive circuit
JP4848853B2 (ja) 圧電アクチュエータの駆動方法、圧電アクチュエータの駆動装置、電子機器
JP4265493B2 (ja) 圧電アクチュエータの駆動装置、電子機器
JPH1155971A (ja) 超音波モータ、電子機器、及びアナログ式時計
JP4830449B2 (ja) 圧電アクチュエータの位置制御駆動装置、および電子機器
US7298066B2 (en) Drive apparatus for piezoelectric actuator, drive method for piezoelectric actuator, electronic device, control program for drive apparatus for piezoelectric actuator, and recording medium
JP4951955B2 (ja) 圧電アクチュエータ、圧電アクチュエータの駆動方法、および電子機器
JP2010252471A (ja) 圧電駆動装置、圧電駆動装置の制御方法および電子機器
JP4265255B2 (ja) 圧電アクチュエータの駆動装置、駆動方法、時計、および電子機器
JP2010252422A (ja) 圧電駆動装置、圧電駆動装置の制御方法および電子機器
JP2009219212A (ja) 圧電アクチュエータの駆動制御装置、圧電アクチュエータの駆動制御方法および電子機器
US20040233793A1 (en) Analog electronic timepiece
JP2000188882A (ja) 駆動装置、カレンダー表示装置、携帯機器および時計
JP4270058B2 (ja) 圧電アクチュエータの駆動速度調整方法、圧電アクチュエータの駆動装置、電子機器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528905

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580022819.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005758234

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005758234

Country of ref document: EP