[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005108496A1 - ケイ素含有硬化性組成物、及びこれを熱硬化させた硬化物 - Google Patents

ケイ素含有硬化性組成物、及びこれを熱硬化させた硬化物 Download PDF

Info

Publication number
WO2005108496A1
WO2005108496A1 PCT/JP2005/008490 JP2005008490W WO2005108496A1 WO 2005108496 A1 WO2005108496 A1 WO 2005108496A1 JP 2005008490 W JP2005008490 W JP 2005008490W WO 2005108496 A1 WO2005108496 A1 WO 2005108496A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
group
component
containing polymer
weight
Prior art date
Application number
PCT/JP2005/008490
Other languages
English (en)
French (fr)
Inventor
Takashi Sueyoshi
Ken-Ichiro Hiwatari
Tadashi Janado
Yoshikazu Shoji
Yoshitaka Sugawara
Original Assignee
Adeka Corporation
The Kansai Electric Power Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corporation, The Kansai Electric Power Company, Inc. filed Critical Adeka Corporation
Priority to CN2005800079614A priority Critical patent/CN1930245B/zh
Priority to KR1020067018727A priority patent/KR101178632B1/ko
Priority to US10/594,221 priority patent/US7939614B2/en
Priority to EP05739080.9A priority patent/EP1746132B1/en
Publication of WO2005108496A1 publication Critical patent/WO2005108496A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature

Definitions

  • Silicon-containing curable composition and cured product obtained by thermally curing the same
  • the present invention relates to a silicon-containing curable composition and a cured product obtained by thermally curing the same.
  • the present invention relates to a silicon-containing curable composition having excellent storage stability, transparency, handling properties, and curability, and a cured product having excellent heat resistance.
  • Such an organic-inorganic composite material has a chemical bond type in which one material and the other material are bonded at a molecular level via a covalent bond, and one material as a matrix. There is a mixed type in which the other material is finely dispersed and compounded.
  • the sol-gel method is often used as a technique for synthesizing inorganic materials used in these organic-inorganic composite materials.
  • the sol-gel method is based on the hydrolysis of precursor molecules and the subsequent polycondensation reaction. Is a reaction in which a crosslinked inorganic oxide is obtained at a low temperature.
  • the inorganic material obtained by the sol-gel method has a problem of poor storage stability, such as gelling in a short period of time.
  • Non-Patent Document 1 describes an alkyl trialkoxy sila Focusing on the difference in the condensation rate due to the chain length of the alkyl group of the resin, after the polycondensation of methyltrimethoxysilane, a long-chain alkyltrialkoxysilane with a slow polycondensation rate was added to block the silanol groups in the polysiloxane. Further, a polycondensation reaction of methyltrimethoxysilane is carried out using an aluminum catalyst, and when a predetermined molecular weight is reached, acetyl aceton is added, ligand exchange is performed in the reaction system, and storage is performed. Attempts to improve stability. However, these methods did not sufficiently improve the storage stability. In addition, the inorganic material obtained by the sol-gel method had a problem in flexibility.
  • Patent Document 1 JP-A-2002-356617
  • Non-Patent Document 1 The Chemical Society of Japan, No. 9, 571 (1998)
  • An object of the present invention is to provide a silicon-containing curable composition having excellent storage stability, handling properties and curability, and a cured product thereof having excellent heat resistance and flexibility. Means for solving the problem
  • the present inventors have conducted studies to solve the above problems, and as a result, completed the present invention by focusing on the structure of the silicon-containing curable composition and the weight average molecular weight thereof.
  • the present invention contains at least one silicon-containing polymer of the following components (A), (B) and (C) (provided that component (C) is not contained). Is the component (A) and
  • R 3 is an alkylene group having 1 to 9 carbon atoms and Z or an arylene group which may contain an alkylene group and Z or an arylene group, and R 4 is hydrogen or One or two reactive groups (') whose group power is also selected.
  • a silicon-containing polymer having at least one component having a weight-average molecular weight of 1000 or less and 20% by weight or less;
  • R 3 is an alkylene group having 1 to 9 carbon atoms and Z or an arylene group which may contain an alkylene group and Z or an arylene group
  • R 4 is hydrogen or A reactive group ( ⁇ ') selected from the group consisting of a methyl group], a Si— ⁇ group, and one or more cross-linking structures by Si—O—Si bonds.
  • a silicon-containing polymer having a weight-average molecular weight of 1000 or less and 20% by weight or less;
  • the present invention also relates to a total content of aryl groups and arylene groups of a silicon-containing polymer obtained by combining the components (A), (B) and (C) contained in the silicon-containing curable composition. Is 0.1 to 50% by weight of the silicon-containing curable composition.
  • the present invention provides the above-mentioned silicon-containing curable composition further containing a metal oxide fine powder as a component (E).
  • the present invention also provides a cured product obtained by thermally curing the above-mentioned silicon-containing curable composition.
  • the component (A) of the present invention is a silicon-containing polymer, wherein R 1 and
  • R 2 may contain an alkylene group and Z or an arylene group, and is a C 2-20 alkyl group;
  • R 3 is an alkylene group having 1 to 9 carbon atoms and Z or an arylene group;
  • 4 is hydrogen or a methyl group.
  • the compound has one or more reactive groups ( ⁇ ′) selected from the group consisting of one or more, and has one or more bridged structures by Si—O—Si bonds.
  • components having a weight average molecular weight of 1000 or less are 20% by weight or less.
  • R 1 of Si- R 1 reactive group (Alpha ') is Aruke - a group, the Aruke - le group, Yogu alkylene group directly bonded to the Kei MotoHara child, Ariren Group or alkylene group and aryl It may be bonded to a silicon atom through one ren group.
  • the alkyl group (which may contain an alkylene group and a Z or arylene group) has 2 to 20 carbon atoms, and preferably 2 to 5 from the viewpoint of heat resistance.
  • R 1 is preferably a vinyl group or an aryl group from the viewpoint of heat resistance and curability.
  • R 2 of Si- O-a R 2 reactive groups (A,) is Aruke - a group, the Aruke - le group, Yogu alkylene group directly bonded to an oxygen atom, Ariren Or an oxygen atom via an alkylene group and an arylene group.
  • the alkyl group (which may contain an alkylene group and a Z or arylene group) has 2 to 20 carbon atoms, and the heat resistance is preferably 2 to 5.
  • R 2 is preferably a bullet group or an aryl group from the viewpoint of heat resistance and curability.
  • R 4 is hydrogen or a methyl group, preferably hydrogen.
  • the component (A) is not limited as long as it has one or more cross-linking structures formed by Si-O-Si bonds. Needless to say, a plurality of Si-O-Si bonds may be continuously repeated. . Further, depending on the cross-linking structure, for example, it may have a ladder-like (ladder-like), chin-like, or ring-like structure.
  • Ladder-like (ladder-like), power-like, and ring-like structures may all be formed with Si—O—Si bonds! / ⁇ , and some may be formed with Si—O—Si bonds. You can do it.
  • the component (A) of the present invention is obtained by forming a Si— ⁇ —Si siloxane bond by a hydrolysis-condensation reaction of an alkoxysilane having a reactive group ( ⁇ ′) and ⁇ or chlorosilane.
  • a hydrolysis-condensation reaction of an alkoxysilane having a reactive group ( ⁇ ′) and ⁇ or chlorosilane.
  • an alkoxysilane and / or chlorosilane having a reactive group ( ⁇ ′) may be used, and an alkoxysilane and / or chlorosilane having no reactive group ( ⁇ ,) may be used.
  • a reactive group ( ⁇ ') may be introduced using a reactive functional group such as Si- ⁇ or Si-C1, or both may be used in combination. Is also good.
  • alkoxysilanes and chlorosilanes having a reactive group ( ⁇ ') include diaryldimethoxysilane, arlinoletrimethoxysilane, arlinoletriethoxysilane, diarinoletritoxysilane, butenyltriethoxysilane, vinyl Methyl ethoxysilane, vinyl methyl dimethoxy Sisilane, vinyltriethoxysilane, vinyltrimethoxysilane, and chlorosilanes in which some or all of the alkoxy groups of these alkoxysilanes have been substituted with chlorine groups, and the like.
  • deuterides in which all or part of the hydrogen atoms of these alkoxysilanes and chlorosilanes are substituted with deuterium, or fluorinated compounds in which fluorine atoms are substituted with fluorine atoms, may be mentioned.
  • Two or more types can be used.
  • trimethoxyvinylsilane, dimethylmethoxybutylsilane, and those alkoxyl groups are substituted with a chloro group as preferable ones in terms of heat resistance, electrical properties, curability, mechanical properties, storage stability, handling properties, and the like. Chlorosilane and the like.
  • alkoxysilane and chlorosilane having no reactive group ( ⁇ ') examples include acetomethoxymethyltrimethoxysilane, benzyltriethoxysilane, bis (triethoxysilyl) methane, bis (triethoxysilyl) ethane, and bis (triethoxysilyl).
  • Xanthane 3-bromopropyltrimethoxysilane, butyltrimethoxysilane, chloromethyltriethoxysilane, phenyltriethoxysilane, 3-chloropropyltrimethoxysilane, ethynolegetoxysilane, dimethylinomethoxysilane, dimethyl Noreethoxy silane, dimethinoresimethoxysilane, dodecinoletrimethoxysilane, ethyltriethoxysilane, ethyltrimethoxysilane, butyltrimethoxysilane, methoxypropyltrimethoxysilane, methyltrie Toxoxysilane, methyltrimethoxysilane, octyltrimethoxysilane, phenylmethylethoxysilane, phenylmethyldimethoxysilane, phenyltriethoxysilane, phenyltrime
  • Organosilanes having alkoxysilyl at both terminals such as bis (dimethylmethoxysilyl) benzene, can also be used. Further, chlorosilanes in which part or all of the alkoxy groups of these alkoxysilanes have been replaced with chlorine groups, and the like can be mentioned. In addition, the alkoxy groups of the alkoxysilanes or the chlorine groups of the chlorosilanes are hydrolyzed to form silanol groups. Even if it is powerful. Furthermore All or a part of the hydrogen atoms of these alkoxysilanes and chlorosilanes are substituted with deuterium, and deuterides or fluorine atoms are substituted.
  • phenyltrimethoxysilane, methyltriethoxysilane, dimethylethoxysilane, diphenyldimethoxysilane are particularly preferable in terms of heat resistance, electrical properties, curability, mechanical properties, storage stability, handling properties, and the like.
  • methylphenyldimethoxysilane and the like, and silane conjugates obtained by substituting these alkoxy groups with a chloro group are particularly preferable in terms of heat resistance, electrical properties, curability, mechanical properties, storage stability, handling properties, and the like.
  • the alkoxysilane and Z or chlorosilane used for obtaining the silicon-containing polymer of the component (A) may be used in combination of two or more, and if desired, other metal alcoholates and metal chlorides may be used. , A metal complex or the like, or a hydrolytic / condensation reaction in combination with them, and an element other than silicon such as boron, magnesium, aluminum, phosphorus, titanium, iron, zinc is added to the silicon-containing polymer. , Zirconium, niobium, tin, tellurium, tantalum, etc. can also be incorporated.
  • the number thereof can be adjusted by reacting the silanol group with an alkylchlorosilane.
  • an alkylchlorosilane a monochlorinated (monochrome) silane such as trimethylchlorosilane can be used.
  • a so-called sol-gel reaction may be carried out without a solvent or in a solvent using a catalyst such as an acid or a base.
  • Hydrolysis A method of performing a condensation reaction is exemplified.
  • the solvent used at this time is not particularly limited, and specific examples include water, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, acetone, methylethylketone dioxane, tetrahydrofuran, and the like. Can be used, or two or more can be used in combination.
  • the alkoxysilane and chlorosilane are hydrolyzed by water to generate silanol groups (Si-OH groups), and the generated silanol groups or silanol groups
  • the process proceeds by condensation of a group and an alkoxyl group or a silanol and a chlorosilane group.
  • a catalyst in which it is preferable to add an appropriate amount of water in water, and to carry out calcination. Also air This hydrolysis reaction proceeds even by the water contained therein or a trace amount of water contained in a solvent other than water.
  • the catalyst such as an acid or a base used in the hydrolysis-condensation reaction is not particularly limited as long as it promotes the hydrolysis-condensation reaction.
  • Inorganic acids organic acids such as acetic acid, p-toluenesulfonic acid, and monoisopropyl phosphate
  • inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and ammonia
  • trimethylamine, triethylamine Amine compounds (organic bases) such as amine, monoethanolamine and diethanolamine
  • titanium compounds such as tetraisopropyl titanate and tetrabutyl titanate
  • tin compounds such as dibutyltin laurate and octyl stannic acid
  • Boron compounds such as orchid
  • Aluminum compounds such as aluminum trisacetyl acetate; Iron, phenol, manganese, zinc, etc. Chloride genus, and metal carboxylates such as naphthenates and Ok
  • hydrolysis' condensation reaction is not particularly limited. Alternatively, a hydrolysis / condensation reaction may be further performed, and all may be mixed and subjected to hydrolysis / condensation reaction at once.
  • the reactive group ( ⁇ ⁇ ') in the silicon-containing polymer of the component (A) of the present invention is a sol-gel which may be introduced from chlorosilane and / or alkoxysilane during the sol-gel reaction. It may be introduced again after the reaction. For example, by leaving a Si- ⁇ group and a — or Si-C1 group after the sol-gel reaction, and reacting with chlorosilane and Z or silanol each having a reactive group ( ⁇ '), a covalent bond is formed. Let me introduce you.
  • the silicon-containing polymer of the component ( ⁇ ) of the present invention includes the above-mentioned alkoxysilane and / or chlorosilane having a reactive group ( ⁇ '), an alkoxysilane having no reactive group ( ⁇ ')! It may be obtained by reacting silicon-containing polymer precursors obtained in the same manner as described above with sol-gel reaction using silane and ⁇ ⁇ or chlorosilane! For the reaction between the precursors, a part of the reactive group ( ⁇ ') may be used, a sol-gel reaction may be used, or a Si—OH group and a Z or Si—C1 group may be used. May be.
  • a reactive group ( ⁇ ′) may be introduced to obtain a silicon-containing polymer as the component ( ⁇ ).
  • a curable composition having excellent heat resistance and excellent binding property can be preferably obtained.
  • a bifunctional alkoxysilane and ⁇ or chlorosilane are used to carry out a hydrolysis-condensation reaction.
  • Jetino reethoxy silane Jetino remethoxy silane, Dimethino reethoxy silane, Dimethyl dimethoxy lan, Phenyl methyl ethoxy silane, Phenyl methyl dimethoxy silane, Diphenyl dimethoxy silane, Diphenyl methoxy silane, etc.
  • organic silanes having alkoxysilyl at both terminals such as 1,4 bis (dimethylmethoxysilyl) benzene can be used, and further, a part or all of the alkoxy groups of these alkoxysilanes can be used.
  • chlorosilanes substituted with Black port group an alkoxy group or a chlorosilane of ⁇ alkoxysilane is may be made and hydrolyzed to silanol Lumpur group.
  • deuterides in which all or part of the hydrogen atoms of these alkoxysilanes and chlorosilanes are substituted with deuterium, or fluorinated compounds in which the hydrogen atoms are substituted with fluorine atoms are also mentioned.
  • the bifunctional alkoxysilane and ⁇ or chlorosilane may contain a reactive group ( ⁇ ′). Particularly preferred are dichlorodimethylsilane, dichlorodiphenylsilane and the like.
  • the concentration of the reactive group ( ⁇ ') contained in the silicon-containing polymer of the component ( ⁇ ) is preferably from 0.0001 mmol Zg to 100 mmol Zg, more preferably from 0.0001 mmol Zg, from the viewpoint of curability and storage stability.
  • ⁇ : LOmmolZg is preferred.
  • the number of reactive groups ( ⁇ ') in the silicon-containing polymer of the component (A) is, on average, one or more per silicon-containing polymer molecule from the viewpoint of curability and storage stability. It is preferably 1 or less per atom.
  • the component having a weight average molecular weight of 1,000 or less is 20% by weight or less, preferably 10% by weight or less, more preferably 0% by weight from the viewpoint of heat resistance. It is.
  • the weight average molecular weight of the component is 5,000 to 1,000,000 from the viewpoint of heat resistance and nodling properties. Is preferred.
  • the measurement of the weight average molecular weight of the component (A) may be obtained by using GPC and converting to polystyrene.
  • the content of the component (A) is determined in consideration of the number of reactive groups ( ⁇ '), the number of Si— ⁇ groups in the component ( ⁇ ), and the like.
  • ⁇ ' the number of reactive groups
  • the number of Si— ⁇ groups in the component ( ⁇ )
  • the like the number of Si— ⁇ groups in the component ( ⁇ )
  • curability for example, 1 to 99% by weight is preferable, and 35 to 50% by weight is more preferable.
  • the component (B) of the present invention is a silicon-containing polymer, has a Si—H group, and has at least one cross-linking structure formed by Si—O—Si bonds. Further, the component having a weight average molecular weight of 1,000 or less is 20% by weight or less.
  • the component (B) is not limited as long as it has at least one cross-linked structure formed by Si-O-Si bonds, and a plurality of Si-O-Si bonds may be continuously repeated. . Further, depending on the cross-linking structure, for example, it may have a ladder-like (ladder-like), chin-like, or ring-like structure.
  • Ladder-like (ladder-like), power-like, and ring-like structures may all be formed with Si—O—Si bonds! / ⁇ , and some may be formed with Si—O—Si bonds. You can do it.
  • the component (B) of the present invention is obtained by forming a Si—O—Si siloxane bond by a hydrolysis-condensation reaction of an alkoxysilane having a functional group Si—H group and Z or chlorosilane.
  • Can be Introduction of the functional group Si-H group can be carried out by hydrolysis of the alkoxysilane having no Si-H group and Z or chlorosilane.
  • a reactive functional group such as Si—OH or Si—C1 may be used to introduce a Si—H group, or both may be used in combination.
  • alkoxysilanes and chlorosilanes having a functional group Si—H group examples include dimethoxysilane, trimethoxysilane, triethoxysilane, diethoxysilane, phenylinomethoxysilane, methinoresmethoxysilane, and dimethinolemethoxysilane.
  • Examples include chlorosilanes, etc., all of which are substituted with chloro groups, and in addition, the alkoxy groups of alkoxysilanes or chlorosilanes are hydrolyzed. It may be a silanol group.
  • deuterides in which all or a part of the hydrogen atoms of these alkoxysilanes and chlorosilanes are substituted with deuterium, or fluorinated compounds in which a fluorine atom is substituted, are also included.
  • two or more kinds can be used.
  • methyl methoxy silane, dimethyl methoxy silane, diphenyl methoxy silane, phenyl methyl methoxy silane, etc. are preferable in terms of heat resistance, electrical properties, curability, mechanical properties, storage stability, handling properties and the like.
  • silane conjugates in which these alkoxy groups are substituted with a chloro group.
  • alkoxysilanes and chlorosilanes having no functional Si—H group examples include acetomethyltrimethoxysilane, benzyltriethoxysilane, bis (triethoxysilyl) methane, bis (triethoxysilyl) ethane, and bis (triethoxysilyl) ethane.
  • Triethoxysilyl) hexane 3-bromopropyltrimethoxysilane, butyltrimethoxysilane, chloromethyltriethoxysilane, phenyltriethoxysilane, 3-chloropropylpropylmethoxysilane, getyl ethoxysilane, Tinoresimethoxysilane, dimethinoremethoxysilane, dimethinoresimethoxysilane, dodecyltrimethoxysilane, ethyltriethoxysilane, ethyltrimethoxysilane, butyltrimethoxysilane, methoxypropyltrimethoxysilane, methylto Ethoxysilane, methyltrimethoxysilane, octyltrimethoxysilane, phenylmethylethoxysilane, phenylmethyldimethoxysilane, phenyltriethoxys
  • deuterides in which all or a part of the hydrogen atoms of these alkoxysilanes and chlorosilanes are substituted with deuterium, or fluorinated compounds in which a fluorine atom is substituted, are also included.
  • two or more kinds can be used.
  • point strengths such as heat resistance, electrical properties, curability, mechanical properties, storage stability, handling properties, and the like. Examples thereof include phenylmethoxysilane, methylenoletriethoxysilane, dimethinolejetoxysilane, and diphenylinoresmethoxy.
  • Silane, Methynoreff Examples include enyldimethoxysilane and the like, and silane conjugates in which these alkoxy groups are substituted with a chloro group.
  • the alkoxysilane and Z or chlorosilane used to obtain the silicon-containing polymer of the component (B) may be used in combination of two or more, and if desired, other metal alcoholates, metal chlorides, and metals. Hydrogenation / condensation reaction is performed by treating with a complex or the like, or in combination with them, and an element other than silicon such as boron, magnesium, aluminum, phosphorus, titanium, and iron is added to the silicon-containing polymer. , Zinc, zirconium, niobium, tin, tellurium, tantalum, etc. can also be incorporated.
  • the number thereof can be adjusted by reacting it with an alkylchlorosilane.
  • an alkylchlorosilane a monochlorinated (monochrome) silane such as trimethylchlorosilane can be used.
  • the hydrolysis-condensation reaction of these alkoxysilanes and chlorosilanes proceeds by the above-described reaction mechanism by performing the above-mentioned sol-gel reaction, as described in the above-mentioned component (A). In order to make this reaction proceed, it is preferable to add an appropriate amount of water as described above. Further, various catalysts for promoting the hydrolysis and condensation reactions described above may be used. For example, an acid catalyst that promotes the hydrolysis / condensation reaction is added, and the reaction is allowed to proceed under acidic conditions (pH 7 or less), and then a neutral catalyst is added by adding a base catalyst that promotes the hydrolysis / condensation reaction. A method in which the reaction is performed under the same conditions is also a preferable example. The order of the hydrolysis and condensation reactions is not limited as described above.
  • the functional group Si-H group in the silicon-containing polymer of the component (B) of the present invention is a sol-gel which may be introduced from chlorosilane and / or alkoxysilane during the sol-gel reaction. It may be introduced again after the reaction. For example, after the sol-gel reaction, a Si-OH group and Z or Si-C1 group are left, and chlorosilane and Z or silanol having a functional group Si-H group are reacted with each other to form a covalent bond. Let me introduce you.
  • the silicon-containing polymer of the component (B) of the present invention includes the above-mentioned alkoxysilane and Z or chlorosilane having a functional group Si-H, alkoxysilane and Z having no functional group Si-H.
  • it may be obtained by reacting the silicon-containing polymer precursors obtained in the same manner as described above with the sol-gel reaction using chlorosilane! Reaction between precursors
  • a part of the functional group Si—H may be used, a sol-gel reaction may be used, or a Si—OH group and a Z or Si—C1 group may be used.
  • the functional group Si—H may be introduced to obtain the silicon-containing polymer of the component (B).
  • the functional group Si—H may be introduced to obtain the silicon-containing polymer of the component (B).
  • a curable composition having excellent heat resistance and binding property can be preferably obtained.
  • a bifunctional alkoxysilane and Z or chlorosilane are used to carry out a hydrolysis-condensation reaction.
  • Examples thereof include jetino remethoxy silane, jetinoresimethoxysilane, dimethinoresiethoxyethoxysilane, dimethyldimethoxysilane, phenylmethyl ethoxysilane, phenylmethyldimethoxysilane, diphenyldimethoxysilane, diphenylethoxymethoxysilane, and the like.
  • organic silanes having alkoxysilyl at both terminals such as 1,4-bis (dimethylmethoxysilyl) benzene, can also be used.
  • some or all of the alkoxy groups of these alkoxysilanes can be used as the port groups. Substituted chlorosilanes, etc.
  • Alkoxy black port group an alkoxy group or a chlorosilane of the silane is not Mawa force be made with hydrolyzed to silanol groups.
  • deuterides in which all or part of the hydrogen atoms of these alkoxysilanes and chlorosilanes are substituted with deuterium, or fluorinated compounds in which fluorine atoms are substituted are also included. Two or more types can be used.
  • the bifunctional alkoxysilane and / or chlorosilane may contain the functional groups Si-H. Particularly preferred are dichlorodimethylsilane, dichlorodiphenylsilane and the like.
  • the concentration of the reactive group Si-H group contained in the silicon-containing polymer of the component (B) is preferably 0.0001 to 100 mmol Zg, more preferably 0.001 to 100 mmol Zg, from the viewpoint of curability and storage stability. mmolZ g ⁇ 10mmoiz g force preferred ⁇ .
  • the number of reactive groups Si-H groups in the silicon-containing polymer of the component (B) is preferably 1 or more on average per 1 molecule of silicon-containing polymer and 1 or less per silicon atom. .
  • the component having a weight average molecular weight of 1,000 or less is 20% by weight or less, preferably 10% by weight or less, more preferably 0% by weight from the viewpoint of heat resistance. It is.
  • the weight average molecular weight of the component (B) is preferably from 5,000 to 1,000,000 from the viewpoint of heat resistance and nodling properties.
  • the measurement of the weight average molecular weight of the component (B) may be obtained by using GPC and converting to polystyrene.
  • the content of component (B) is determined in consideration of the number of Si-H groups, the number of reactive groups (') in component (A), and the like.
  • the content of component (B) is determined in consideration of the number of Si-H groups, the number of reactive groups (') in component (A), and the like.
  • 1 to 99% by weight is preferable, and 35 to 50% by weight is more preferable.
  • the component (C) of the present invention is a silicon-containing polymer, wherein R 1 and R 2
  • R 3 is an alkylene group having 1 to 9 carbon atoms and Z or an arylene group
  • R 4 is , Hydrogen or a methyl group], which has one or more reactive groups ( ⁇ ') which are also selected from group forces, and further has a Si- ⁇ group, and has a cross-linking structure formed by Si-O-Si bonds. Have more than one place.
  • the component having a weight average molecular weight of 1,000 or less is 20% by weight or less.
  • R 1 of Si- R 1 reactive group (A,) is Aruke - a group, the Aruke - le group, Yogu alkylene group directly bonded to the Kei MotoHara child, Ariren Or a bond to a silicon atom via an alkylene group or an arylene group.
  • the alkyl group (which may contain an alkylene group and a Z or arylene group) has 2 to 20 carbon atoms, and preferably 2 to 5 from the viewpoint of heat resistance.
  • R 1 is preferably a vinyl group or an aryl group from the viewpoint of heat resistance and curability.
  • R 2 of Si-O-R 2 reactive groups (A,) is Aruke - a group, the Aruke - le group, Yogu alkylene group directly bonded to an oxygen atom, Ariren Or an oxygen atom via an alkylene group and an arylene group.
  • the alkyl group (which may contain an alkylene group and a Z or arylene group) has 2 to 20 carbon atoms, and preferably has a heat resistance of 25.
  • R 2 is preferably a bullet group or an aryl group from the viewpoint of heat resistance and curability.
  • R 4 is hydrogen or a methyl group And preferably hydrogen.
  • the component (C) is not limited as long as it has at least one crosslinked structure formed by Si-O-Si bonds, and a plurality of Si-O-Si bonds may be continuously repeated. . Further, depending on the cross-linking structure, for example, it may have a ladder-like (ladder-like), chin-like, or ring-like structure.
  • Ladder-like (ladder-like), power-like, and ring-like structures may all be formed with Si—O—Si bonds! / ⁇ , and some may be formed with Si—O—Si bonds. You can do it.
  • the component (C) of the present invention is obtained by subjecting the alkoxysilane and Z or chlorosilane having a reactive group ( ⁇ ') and the alkoxysilane and / or chlorosilane having a Si-— group to a hydrolysis-condensation reaction. It is obtained by forming a siloxane bond of Si—O—Si.
  • an alkoxysilane having both a reactive group ( ⁇ ′) and a Si—H group and a Z- or chlorosilane may be used, or both may be used in combination.
  • the introduction of the reactive group (A ') and the Si-H group is performed by using a reactive group ( ⁇ ') and an alkoxysilane having a ⁇ or Si-— group and a reactive group ( ⁇ ' ) And the hydrolysis of alkoxysilanes and Z or chlorosilanes that do not have ⁇ or Si- ⁇ groups.Condensation reaction is performed to form a polymer, and then a reactive functional group such as Si-OH or Si-C1 is added.
  • a reactive group (A ′) and a Z or Si—H group may be introduced.
  • alkoxysilanes and chlorosilanes having a reactive group ( ⁇ ') include diaryldimethoxysilane, arlinoletrimethoxysilane, arlinoletriethoxysilane, diarinoletriethoxysilane, butenyltriethoxysilane, vinyl Examples include methyl ethoxy silane, vinyl methyl dimethoxy silane, vinyl triethoxy silane, vinyl trimethoxy silane, and chloro silane in which some or all of the alkoxy groups of these alkoxy silanes are substituted with a chloro group.
  • alkoxy group of alkoxysilane or the chloro group of chlorosilane is hydrolyzed to form a silanol group, it does not matter.
  • deuterides in which all or part of the hydrogen atoms of these alkoxysilanes and chlorosilanes are substituted with deuterium, or fluorinated compounds in which fluorine atoms are substituted with fluorine atoms may be mentioned. Two or more types can be used.
  • trimethoxyvinylsilane, dimethylmethoxybutylsilane, and those alkoxyl groups are substituted with a chloro group as preferable ones in terms of heat resistance, electrical properties, curability, mechanical properties, storage stability, handling properties, and the like.
  • Done Lorosilane and the like are substituted with a chloro group as preferable ones in terms of heat resistance, electrical properties, curability, mechanical properties, storage stability, handling properties, and the like.
  • alkoxysilanes and chlorosilanes having a functional group Si-H group examples include dimethoxysilane, trimethoxysilane, triethoxysilane, diethoxysilane, phenyldimethoxysilane, methinoresmethoxysilane, dimethinolemethoxy.
  • Silane methyl methoxy silane, diphenyl methoxy silane, phenylinoleethoxy silane, methino reethoxy silane, dimethinoleethoxy silane, methyl ethoxy silane, diphenyl ethoxy silane and some of the alkoxy groups of these alkoxysilanes Or a chlorosilane or the like in which all is substituted with a chloro group.
  • the alkoxy group of the alkoxysilane or the chloro group of the chlorosilane may be hydrolyzed to be a silanol group.
  • deuterides in which all or a part of the hydrogen atoms of these alkoxysilanes and chlorosilanes are substituted with deuterium, or fluorinated compounds in which a fluorine atom is substituted, are also included.
  • two or more kinds can be used.
  • methyl methoxy silane, dimethyl methoxy silane, diphenyl methoxy silane, phenyl methyl methoxy silane, etc. are preferable in terms of heat resistance, electrical properties, curability, mechanical properties, storage stability, handling properties and the like.
  • silane conjugates in which these alkoxy groups are substituted with a chloro group.
  • alkoxysilanes and chlorosilanes having both a reactive group ( ⁇ ′) and a Si—H group include dimethoxyvinylsilane, diethoxyvinylsilane, methylmethoxyvinylsilane, phenylmethoxyvinylsilane, and methylethoxyvinylsilane.
  • Examples include chlorosilanes in which some or all of the alkoxy groups of the silane have been substituted with chlorine groups.
  • chlorosilanes in which some or all of the alkoxy groups of the silane have been substituted with chlorine groups.
  • the alkoxy groups of the alkoxysilanes or the chlorine groups of the chlorosilanes are hydrolyzed to silanol groups, I don't know.
  • all or some of the hydrogen atoms of these alkoxysilanes and chlorosilanes are substituted with deuterium, and deuterides or fluorine atoms are substituted with fluorine atoms.
  • One or more types can be used.
  • Points such as heat resistance, electric properties, curability, mechanical properties, storage stability, and handling properties, such as methylmethoxyvinylsilane, phenylmethoxyvinylsilane, and dimethoxyvinylsilane.
  • silane conjugates obtained by substituting these alkoxy groups with black groups.
  • the alkoxysilane and the chlorosilane which do not have a reactive group ( ⁇ ') and a Si- ⁇ group, include acetomethoxymethinoletrimethoxysilane, benzyltriethoxysilane, bis (triethoxysilinole) methane, Bis (triethoxysilyl) ethane, bis (triethoxysilyl) hexane, 3-bromopropyltrimethoxysilane, butyltrimethoxysilane, chloromethyltriethoxysilane, chlorophenyltriethoxysilane, 3-chloropropyltrimethoxysilane Silane, getyl jetoxy silane, ethino remethoxy silane, dimethino reethoxy silane, dimethino res methoxy lan, dodecyl trimethoxy silane, ethyl triethoxy silane,
  • chlorosilanes in which a part or all of the alkoxy groups of these alkoxysilanes are substituted with a chloro group are exemplified. It doesn't matter.
  • deuterides in which all or a part of the hydrogen atoms of these alkoxysilanes and chlorosilanes are substituted with deuterium, or fluorinated compounds in which fluorine atoms are substituted with fluorine atoms, may also be mentioned. Alternatively, two or more types can be used.
  • phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane are also preferred in terms of heat resistance, electrical properties, curability, mechanical properties, storage stability, power, and dringability.
  • methylphenyldimethoxysilane and the like, and silane compounds in which these alkoxy groups are substituted with a chloro group are also preferred.
  • the alkoxysilane and Z or chlorosilane used for obtaining the silicon-containing polymer as the component (C) are characterized in that both the reactive group ( ⁇ ′) and the functional group Si—H group are added to the component (C). Contained If desired, two or more types may be used, and if desired, treated with another metal alcoholate, metal chloride, metal complex, or the like, or used together with them to carry out hydrolysis / condensation reactions.
  • Elements other than silicon such as boron, magnesium, aluminum, phosphorus, titanium, iron, zinc, zirconium, niobium, tin, tellurium, tantalum, and the like can be incorporated into the silicon-containing polymer.
  • the number can be adjusted by reacting the silanol group with an alkylchlorosilane.
  • an alkylchlorosilane a monochlorinated (monochrome) silane such as trimethylchlorosilane can be used.
  • the hydrolysis and condensation reaction of these alkoxysilanes and chlorosilanes is carried out by the above-mentioned reaction mechanism by performing the above-mentioned sol-gel reaction as described in the above-mentioned components (A) and (B). proceed. In order to make this reaction proceed, it is preferable to add an appropriate amount of water as described above. Further, various catalysts for promoting the hydrolysis and condensation reaction described above may be used. For example, add an acid catalyst that promotes the hydrolysis-condensation reaction and allow the reaction to proceed under acidic conditions (pH 7 or lower), and then add a base catalyst that promotes the hydrolysis-condensation reaction to neutral or basic conditions. Is also a preferred example. The order of the hydrolysis-condensation reaction is not limited as described above.
  • the reactive group ( ⁇ ′) and the ⁇ or functional group Si—H group in the silicon-containing polymer of the component (C) of the present invention are formed by introducing chlorosilane and Z or alkoxysilane during the sol-gel reaction. It may be introduced again after the sol-gel reaction. For example, after the sol-gel reaction, a chlorosilane and a ⁇ or silanol having a reactive group ( ⁇ ') and a ⁇ or functional group Si-— group are left, respectively, while leaving a Si—OH group and a Z or Si—C1 group after the sol-gel reaction. The reaction may be introduced by a covalent bond.
  • the silicon-containing polymer of the component (C) of the present invention is characterized in that the above-mentioned alkoxysilane and / or chlorosilane having a reactive group ( ⁇ ′) and a ⁇ or functional group Si— ⁇ group, and a reactive group ( ⁇ ′) ) And a functional group Si— ⁇ group, which is obtained by the above-mentioned sol-gel reaction using an alkoxysilane and Z or chlorosilane, by reacting the silicon-containing polymer precursors obtained in the same manner. You may get it.
  • a reactive group ( ⁇ ′) and a part of the Z or functional group Si— ⁇ group may be used, a sol-gel reaction may be used, — OH groups and Z or Si—CI groups may be used.
  • a reactive group ( ⁇ ′) and Z or a functional group Si—H group may be introduced to obtain a silicon-containing polymer as the component (C).
  • the precursors as a linear polysiloxane conjugate, it is possible to preferably obtain a curable composition excellent in heat resistance and binding property.
  • a bifunctional alkoxysilane and Z or chlorosilane are used to carry out a hydrolysis-condensation reaction.
  • organic silanes having alkoxysilyl at both terminals such as 1,4-bis (dimethylmethoxysilyl) benzene, can also be used, and a part or all of the alkoxy groups of these alkoxysilanes can be used as a liquid.
  • the concentration of the reactive group ( ⁇ ') contained in the silicon-containing polymer as the component (C) is preferably from 0.0001 mmol Zg to 100 mmol Zg, more preferably from 0.001 mmol Zg, from the viewpoint of curability and storage stability. ⁇ : LOmmolZg is preferred.
  • the concentration of the reactive Si—H group of the silicon-containing polymer of the component (C) is preferably from 0.0001 mmol Zg to 100 mmol Zg, more preferably from 0.001 mmol Zg, from the viewpoint of curability and storage stability. 10 mmol Zg is preferred.
  • the number of reactive groups ( ⁇ ′) in the silicon-containing polymer of the component (C) is, on average, one or more per silicon-containing polymer molecule from the viewpoint of curability and storage stability. It is preferably 1 or less per atom.
  • the number of reactive Si— ⁇ groups in the silicon-containing polymer of the component (C) is The average is preferably one or more per contained polymer molecule and one or less per silicon atom.
  • the component having a weight average molecular weight of 1000 or less is 20% by weight or less, preferably 10% by weight or less, more preferably 0% by weight from the viewpoint of heat resistance. It is.
  • the weight-average molecular weight of the component (C) is preferably from 5,000 to 10,000 in terms of heat resistance and nodling properties.
  • the measurement of the weight average molecular weight of the component (C) may be obtained by conversion into polystyrene using GPC.
  • the content of the component (C) is determined by the number of the reactive group ( ⁇ ') and the number of the ⁇ or functional group Si—— groups in the component (C),
  • component (A) and component (Z) or component (B) are included, they may be appropriately selected in consideration of the number of reactive groups ( ⁇ ′) and Z or functional groups Si—H groups contained in the component!
  • both (A) component and (B) component are not contained, for example, 1 to 99% by weight is preferable from the viewpoint of curability.
  • the preferred total content of aryl and arylene groups in the silicon-containing polymer of component (A), component (B) and component (C) will be described.
  • the total content of aryl groups and arylene groups of the silicon-containing polymer contained in the silicon-containing curable composition greatly affects heat resistance and handleability.
  • the heat resistance is improved by including an aryl group or an arylene group, but when the amount is too large, the fluidity is deteriorated and the handling property is affected.
  • the silicon-containing polymer obtained by combining the component (A), the component (B) and the component (C) contained in the silicon-containing curable composition of the present invention has heat resistance and handleability.
  • the total content of aryl and arylene groups is preferably 0.1 to 50% by weight, more preferably 1 to 25% by weight, and still more preferably 5 to 15% by weight. If the total content is more than 50% by weight, the fluidity becomes poor and the handling properties are poor.
  • the ratio of the content of the component (A) to the component (B), including the aryl group and the arylene group [the component (A), the aryl group and the arylene group] Is the total content of the aryl group and the arylene group of the component (B)] in a weight ratio of 0.5 to 1.5: 0.5 to 1.5, preferably 0.8 to 1.5. 2: 0.8 ⁇ 1.2 Power ⁇ Preferred! / ⁇ .
  • the aryl group and the arylene group include a phenyl group and a phenylene group.
  • the curing reaction catalyst which is the platinum catalyst of the component (D) of the present invention will be described.
  • the platinum-based catalyst as the component (D) of the present invention is a known catalyst containing one or more metals of platinum, palladium, and rhodium that promote a hydrosilylation reaction.
  • platinum-based catalyst used as a catalyst for these hydrosilyl-dani reactions examples include a platinum carbylmethyl complex, a platinum dibutyltetramethyldisiloxane complex, a platinum-cyclobutylmethylsiloxane complex, and a platinum-octylaldehyde complex.
  • platinum-based catalysts compounds containing palladium, rhodium, etc., which are also platinum-based metals instead of platinum, are listed, and one or more of these may be used in combination.
  • those containing platinum are preferred, and specifically, platinum carbylmethyl complex is preferred.
  • Wilkinson catalyst containing the above-mentioned platinum-based metal such as chlorotris triphenylphosphine rhodium (I) is also included in the platinum-based catalyst of the present invention.
  • the content of the component (D) in the silicon-containing curable composition of the present invention is preferably 5% by weight or less from the viewpoint of curability and storage stability. % Is more preferred. When the content of the component (D) is more than 5% by weight, the stability of the silicon-containing curable composition tends to be poor.
  • the silicon-containing curable composition of the present invention preferably contains a metal oxide fine powder as the component (E).
  • the metal oxide fine powder of the component (E) in the present invention refers to so-called fillers, inorganic materials such as minerals, and organically modified inorganic materials.
  • colloidal silica, silica filler, silica gel, minerals such as myriki and montmorillonite, metal oxides such as aluminum oxide and zinc oxide, and the like may be modified by an organic modification treatment or the like.
  • suitable physical properties can be obtained.
  • a fine powder of silicon dioxide is particularly preferred.
  • the particle diameter of these metal oxide fine particles is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, from the viewpoint of heat resistance.
  • the content of the component (E) in the silicon-containing curable composition of the present invention is preferably 90% by weight or less, more preferably 50% by weight or less, from the viewpoint of heat resistance and handling.
  • the silicon-containing curable composition of the present invention may further contain a free radical force benzene as an optional component.
  • the free radical scavenger in this case is an antioxidant As long as it is an antioxidant substance such as a stopper or a stabilizer, for example, triethylene glycol bis
  • the content of the free radical scavenger in the silicon-containing curable composition of the present invention depends on the heat resistance, electrical properties, curability, mechanical properties, storage stability and handling properties. % By weight is more preferable, and 1 to 30% by weight is more preferable.
  • the silicon-containing curable composition of the present invention comprises at least one silicon-containing polymer of component (A), component (B) and component (C) (provided that it does not contain component (C)).
  • component (A) and component (B) components both (A) and (B) components) and the platinum catalyst of (D) component are mixed, and can be cured by heating.
  • the curing reaction may be any of a method of mixing these components immediately before use, a method of mixing all of them in advance, and curing by heating or the like when performing the curing reaction.
  • the heating temperature for curing is preferably from 0 to 300 ° C, more preferably from 100 to 200 ° C.
  • the curing time is preferably from 0.1 to 10 hours, more preferably from 1 to 6 hours.
  • the silicon-containing curable composition of the present invention has good fluidity at room temperature (25 ° C), is excellent in handling properties, and has a heat resistance and a crack resistance in terms of the performance of the cured product. Excellent in nature. Specifically, a cured product having a temperature at which a weight loss of 5% by weight of the cured product is at least 300 ° C, more preferably at least 370 ° C is suitably obtained. In addition, a cured product with less occurrence of cracks can be suitably obtained.
  • the viscosity measured by an E-type viscometer is preferably 50 Pa'S or less, and more preferably lOPa'S or less! / ,.
  • the silicon-containing curable composition of the present invention has a curing reaction due to the reaction of the reactive group (A ′) and the Si—H group due to the effect of the curing reaction catalyst which is the platinum catalyst of the component (D). Since the cured product proceeds rapidly, the obtained cured product has excellent physical properties, particularly excellent heat resistance, solvent resistance, and alkali resistance. Furthermore, since the silicone curable composition of the present invention is uniform and transparent, it can be photocured by adding a photoreactive catalyst that also improves the transmittance of light such as ultraviolet rays. . Of course, a photoreactive monomer or resin may be further added, or at least one of the component (A), the component (B) and the component (C) may have a photoreactive group. Furthermore, mechanical properties such as weather resistance, hardness, stain resistance, flame retardancy, moisture resistance, gas barrier properties, flexibility, elongation and strength, electrical insulation, low dielectric constant, optical properties, electrical properties, etc. Excellent material can be obtained.
  • the silicon-containing curable composition of the present invention may further contain, as optional components other than those described above, the object of the present invention.
  • Other known resins, fillers, additives and the like can also be blended within a range that does not impair the performance of the resin.
  • various organic functional groups can be bonded to any one or more of the components (A), (B) and (C) to provide further functions.
  • a high-functional composite material in which the silicon-containing curable composition of the present invention or a cured product thereof is used as a matrix and other useful compounds are dispersed therein can be produced.
  • Examples of various resins that can be arbitrarily compounded include polyimide resins, polyether resins such as polyethylene glycol and polypropylene glycol, polyurethane resins, epoxy resins, phenol resins, polyester resins, polyester resins, melamine resins, and polyamide resins. And polyphenylene sulfide resin.
  • additives examples include an ultraviolet absorber, an antistatic agent, an antioxidant, and the like.
  • silicon-containing polymer precursor 5 obtained in Synthesis Example 5 50 parts of the silicon-containing polymer precursor 5 obtained in Synthesis Example 5 was mixed with 5 parts of pyridine, and the mixture was divided into halves.
  • One part of dimethylchlorosilane (5 parts) and the other part of dimethylvinylchlorosilane (5 parts) were stirred at room temperature for 30 minutes and at 70 ° C for 30 minutes, and then washed with ion-exchanged water to remove pyridine hydrochloride.
  • a silicon-containing polymer (the former is referred to as silicon-containing polymer 5-B, and the latter is referred to as silicon-containing polymer 5-A).
  • the components below 00 were 0%.
  • the silicon-containing polymer precursor-3 obtained in Synthesis Example 3 was added to 50 parts of pyridine, 5 parts of pyridine was added, and 0.5 part of phenol trichlorosilane was further added to kaolin at room temperature for 30 minutes. After further stirring at 70 ° C. for 30 minutes, the mixture was divided into halves. 2.5 parts of dimethylchlorosilane on one side and 2.5 parts of dimethylvinylchlorosilane on the other side are stirred at room temperature for 30 minutes and at 70 ° C for 30 minutes, and then washed with ion-exchanged water to give pyridine hydrochloride.
  • Excluding salt containing silicon Polymers (the former was designated as a silicon-containing polymer 7-B and the latter as a silicon-containing polymer 7-A) were obtained.
  • the molecular weight of both the silicon-containing polymers 7-A and 7-B was MW 130,000, the content of the aryl group was 8.4% by weight from H 1 —NMR and GPC analysis, and the weight average molecular weight The components below 1000 were 0%.
  • silicon-containing polymer precursor-8 obtained in Synthesis Example 9 50 parts of the silicon-containing polymer precursor-8 obtained in Synthesis Example 9 was mixed with 5 parts of pyridine, and the mixture was divided into halves.
  • One part of dimethylchlorosilane (5 parts) and the other part of dimethylvinylchlorosilane (5 parts) are stirred at room temperature for 30 minutes and at 70 ° C for 30 minutes, and then washed with ion-exchanged water to remove pyridine hydrochloride.
  • a silicon-containing polymer (the former is referred to as silicon-containing polymer 8-B, and the latter is referred to as silicon-containing polymer 8-A).
  • the silicon-containing polymer precursor-10 obtained in Synthesis Example 12 was mixed with 50 parts of pyridine and 5 parts of pyridine, and divided into halves. 5 parts of dimethylchlorosilane on the one side and 5 parts of dimethylvinylchlorosilane on the other side were stirred at room temperature for 30 minutes and further at 70 ° C. for 30 minutes, and then washed with deionized water to remove pyridine hydrochloride.
  • a silicon-containing polymer (the former is referred to as a silicon-containing polymer 10-B, and the latter is referred to as a silicon-containing polymer 10-A) was obtained.
  • the content of aryl groups in both the silicon-containing polymers 10-A and 10-B was 44.0% by weight based on H 1 -NMR and GPC analysis, and 0% of components with a weight average molecular weight of 1000 or less were determined by GPC analysis. there were.
  • the content of aryl groups in both the silicon-containing polymers 12—A and 12—B is 13.0% by weight based on H 1 —NMR and GPC analysis, and 0% for components with a weight average molecular weight of 1000 or less based on GPC analysis. %Met.
  • composition-1 100 parts of an equal mixture of a silicon-containing polymer 5-A and a silicon-containing polymer 5-B was mixed with 0.005 part of a platinum-carbylvinylmethyl complex as a curing reaction catalyst to obtain a silicon-containing curable resin. Composition-1 was obtained.
  • silicon-containing curable composition-2 100 parts of the silicon-containing polymer 6 was mixed with 0.005 part of a platinum-carbonylvinylmethyl complex as a curing reaction catalyst to obtain a silicon-containing curable composition-2.
  • composition 3 100 parts of an equal mixture of a silicon-containing polymer 7-A and a silicon-containing polymer 7-B is mixed with 0.005 part of a platinum-carbonylvinylmethyl complex as a curing reaction catalyst to obtain a silicon-containing curable resin.
  • Composition 3 was obtained.
  • the component (a) having a weight average molecular weight of 1000 or less obtained in Synthesis Example 4 was mixed to obtain a silicon-containing curable composition-7.
  • the component (a) having a weight average molecular weight of 1000 or less obtained in Synthesis Example 4 refers to a low molecular weight component which was distilled off under reduced pressure while heating the reaction solution at 250 ° C. in Synthesis Example 4. Things.
  • the curable composition 2 was cured at 250 ° C for 3 hours, and the heat resistance of the obtained cured products 1 to 11, and comparative cured products 1 to 2 was evaluated.
  • the curable composition 2 was cured at 250 ° C for 3 hours, and the heat resistance of the obtained cured products 1 to 11, and comparative cured products 1 to 2 was evaluated.
  • the evaluation measured the temperature at which the weight of each cured product decreased by 5%.
  • the results are shown in Table 1. From the results in Table 1, comparing the cured products 1, 2, 3, 9, 10, and 11, the cured products 1, 2, 3, 9, and 10 containing aryl groups are better, and the content of aryl groups The higher the number, the better. Further, as the content of the fine powder of diacid silicate is increased as the power of the cured products 1, 4, 5, and 6 increases, the heat resistance increases, but the amount of the fine powder can be appropriately adjusted according to the application. Cured products 7 and 8 and comparative cured products 1 and 2 showed the effect of the component content with a weight average molecular weight of 1000 or less. Up to 20 parts by weight. .
  • Table 2 shows the handling properties at room temperature of the silicon-containing curable compositions-1, -9, and 10 obtained in Examples 1, 9, and 10 above.
  • the handling properties were measured at 25 ° C using an E-type viscometer.
  • lOPa 'S or less at 25 ° C Although it is excellent in handleability, it becomes slightly difficult in Example 9.
  • the silicon-containing curable composition of the present invention is excellent in storage stability, transparency, handling properties, curability, etc., and further has its cured material strength, crack resistance, heat resistance, solvent resistance, alkali resistance, and weather resistance. It can be used as a curable composition having excellent physical properties such as properties, optical properties, and electrical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)

Description

明 細 書
ケィ素含有硬化性組成物、及びこれを熱硬化させた硬化物
技術分野
[0001] 本発明は、ケィ素含有硬化性組成物、及びこれを熱硬化させた硬化物に関する。
詳しくは、保存安定性、透明性、ハンドリング性及び硬化性に優れ、その硬化物が耐 熱性に優れた、ケィ素含有硬化性組成物に関する。
背景技術
[0002] 有機性素材及び無機性素材を組み合わせた複合材料は、さまざまな研究がなされ ており、工業的にも有機高分子に無機充填剤を複合させたり、金属表面を有機高分 子で修飾するコーティングの手法等が利用されている。これらの有機'無機複合材料 では、それを構成して 、る素材がマイクロメートルオーダー以上の大きさを持って 、る ため、一部の物性を予想以上に向上させることはできるものの、他の多くの性能や物 性は、単純に有機性素材及び無機性素材それぞれの性能や物性の加成則力 予 想される値を示すに過ぎな ヽ。
[0003] 一方、近年、有機性素材及び無機性素材の各素材のドメインの大きさがナノメート ルオーダー、更には分子レベルで組み合わされた有機 ·無機複合材料が盛んに研 究されている。このような材料は、各素材としての特性を併せ持つのみならず、各素 材の長所を兼ね備え、更には加成則では予想ができない、各素材自体とは全く異な る新しい機能性を有する材料となることが期待される。
[0004] このような有機 ·無機複合材料には、共有結合を介して一方の素材及び他方の素 材が分子レベルで結合された化学結合型、ならびに、一方の素材をマトリックスとして 、この中に他方の素材を微細に分散 ·複合化させた混合型がある。これら有機'無機 複合材料に使用される無機性素材を合成する手法としてゾル ·ゲル法がよく利用され ているが、このゾル ·ゲル法とは、前駆体分子の加水分解とそれに続く重縮合反応に より、架橋した無機酸化物が低温で得られる反応である。このゾル 'ゲル法で得られる 無機性素材は、短期間でゲルィ匕するなど、保存安定性が悪いという問題がある。 日 本化学会誌、 No.9、 571 (1998) (非特許文献 1)には、アルキルトリアルコキシシラ ンのアルキル基の鎖長による縮合速度の相違に着目し、メチルトリメトキシシランの重 縮合後に、重縮合速度の遅い長鎖アルキルトリアルコキシシランを添加して、ポリシ口 キサン中のシラノール基を封止すること、更には、アルミニウム触媒を用いてメチルトリ メトキシシランの重縮合反応を行 、、所定の分子量に到達した時点でァセチルァセト ンを添加して、反応系中で配位子交換を行い、保存安定性の改良を試みている。し かし、これらの方法では、保存安定性の改善は不充分であった。またゾル—ゲル法 で得られた無機性素材は可とう性に問題があった。
[0005] これに対し、化学結合型の有機 ·無機複合材料として、特定のケィ素含有重合体を 含有する硬化性組成物が提案されている(特許文献 1)。しかし、このケィ素含有重合 体を含有する硬化性組成物の性能は充分でなぐ特にその硬化物の耐熱性やハン ドリング性等にお!、て満足!、くものではなかった。
[0006] 特許文献 1 :特開 2002— 356617号公報
非特許文献 1 :日本化学会誌、 No. 9、 571 (1998)
発明の開示
発明が解決しょうとする課題
[0007] 本発明の目的は、保存安定性、ハンドリング性及び硬化性に優れ、且つその硬化 物が耐熱性及び可とう性に優れたケィ素含有硬化性組成物を提供することにある。 課題を解決するための手段
[0008] 本発明者らは、上記課題を解決すべく検討を進めた結果、ケィ素含有硬化性組成 物の構造と、その重量平均分子量に着目し、本発明を完成するに至った。
[0009] すなわち、本発明は、下記の (A)成分、(B)成分及び (C)成分のうちの少なくとも 一つのケィ素含有重合体を含有 (ただし (C)成分を含有しな ヽ場合は (A)成分及び
(B)成分の両方を含有)し、かつ下記 (D)成分の触媒を含有する、ケィ素含有硬化 性組成物を提供するものである。
[0010] (A): 、 [式中、 R1及び R2は、
Figure imgf000004_0001
アルキレン基及び Zまたはァリーレン基を含んでもよい炭素数 2〜20のァルケ-ル 基であり、 R3は、炭素数 1〜9のアルキレン基及び Zまたはァリーレン基であり、 R4は 、水素またはメチル基である]からなる群力も選ばれる反応基 (Α' )を一種または二種 以上有し、 Si— O— Si結合による橋かけ構造を一箇所以上有する、重量平均分子量 1000以下の成分が 20重量%以下のケィ素含有重合体;
(B): Si— H基を有し、 Si— 0— Si結合による橋かけ構造を一箇所以上有する、重量 平均分子量 1000以下の成分が 20重量%以下のケィ素含有重合体;
(C): 、 [式中、 R1及び R2は、
Figure imgf000005_0001
アルキレン基及び Zまたはァリーレン基を含んでもよい炭素数 2〜20のァルケ-ル 基であり、 R3は、炭素数 1〜9のアルキレン基及び Zまたはァリーレン基であり、 R4は 、水素またはメチル基である]からなる群力も選ばれる反応基 (Α' )を一種または二種 以上有し、さらに Si— Η基を有し、 Si— O— Si結合による橋かけ構造を一箇所以上 有する、重量平均分子量 1000以下の成分が 20重量%以下のケィ素含有重合体;
(D):白金系触媒である硬化反応触媒
[0011] また本発明は、ケィ素含有硬化性組成物が含有する (A)成分、 (B)成分及び (C) 成分を合わせたケィ素含有重合体のァリール基及びァリーレン基の合計含有量が 0 . 1〜50重量%である前記ケィ素含有硬化性組成物を提供するものである。
[0012] また本発明は、さらに (E)成分として金属酸化物微粉末を含有する前記ケィ素含有 硬化性組成物を提供するものである。
[0013] また本発明は、前記ケィ素含有硬化性組成物を熱硬化させた硬化物を提供するも のである。
発明を実施するための最良の形態
[0014] まず、本発明の (A)成分について説明する。本発明の (A)成分は、ケィ素含有重 合体であり、 、 [式中、 R1及び
Figure imgf000005_0002
R2は、アルキレン基及び Zまたはァリーレン基を含んでもょ 、炭素数 2〜20のァルケ -ル基であり、 R3は、炭素数 1〜9のアルキレン基及び Zまたはァリーレン基であり、 R4は、水素またはメチル基である]からなる群力 選ばれる反応基 (Α' )を一種または 二種以上有し、 Si— O— Si結合による橋かけ構造を一箇所以上有する。さらに重量 平均分子量 1000以下の成分が 20重量%以下である。
[0015] 反応基 (Α' )の Si— R1の R1は、ァルケ-ル基であり、該ァルケ-ル基は、ケィ素原 子に直接結合していてもよぐアルキレン基、ァリーレン基、またはアルキレン基とァリ 一レン基を介してケィ素原子に結合して 、てもよ 、。該ァルケ-ル基 (アルキレン基 及び Zまたはァリーレン基を含んでいてもよい)の炭素数は 2〜20であり、耐熱性の 点から好ましくは 2〜5である。 R1は、耐熱性及び硬化性の点から、ビニル基またはァ リル基が好ましい。
[0016] 反応基 (A,)の Si— O— R2の R2は、ァルケ-ル基であり、該ァルケ-ル基は、酸素 原子に直接結合していてもよぐアルキレン基、ァリーレン基、またはアルキレン基と ァリーレン基を介して酸素原子に結合して 、てもよ 、。該ァルケ-ル基 (アルキレン 基及び Zまたはァリーレン基を含んでいてもよい)の炭素数は 2〜20であり、耐熱性 の点力も好ましくは 2〜5である。 R2は、耐熱性及び硬化性の点から、ビュル基または ァリル基が好ましい。
[0017] 反応基(八,)の31—1^ 0じ0じ(1^) =CHの R3は炭素数 1
2 〜9のアルキレン基及 び Zまたはァリーレン基であり、好ましくは 1〜5である。 R4は、水素またはメチル基で あり、好ましくは水素である。
[0018] (A)成分は、 Si— O— Si結合による橋かけ構造を一箇所以上有していればよぐも ちろん Si— O— Si結合が複数個連続して繰り返されていてもよい。また、その橋かけ 構造により、例えば、はしご状 (ラダー状)、力ご状、環状等の構造を有していてもよい
。はしご状 (ラダー状)、力ご状、環状等の構造は、その全てが Si— O— Si結合で形 成されて!/ヽてもよく、一部が Si— O— Si結合で形成されて ヽてもよ ヽ。
[0019] 本発明の (A)成分は、反応基 (Α' )を有するアルコキシシラン及び Ζまたはクロロシ ランの加水分解 ·縮合反応によって、 Si— Ο— Siのシロキサン結合を形成することに より得られる。反応基 (Α' )の導入は、反応基 (Α' )を有するアルコキシシラン及び Ζ またはクロロシランを用いてもよく、反応基 (Α, )を有さな 、アルコキシシラン及び Ζま たはクロロシランの加水分解 ·縮合反応を行い、重合体とした後に、 Si— ΟΗや Si— C1等の反応性の官能基を用いて、反応基 (Α' )を導入してもよぐ両者を併用しても よい。
[0020] 反応基 (Α' )を有するアルコキシシラン及びクロロシランの例としては、ジァリルジメト キシシラン、ァリノレトリメトキシシラン、ァリノレトリエトキシシラン、ジァリノレジェトキシシラ ン、ブテニルトリエトキシシラン、ビニルメチルジェトキシシラン、ビニルメチルジメトキ シシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、及びこれらのアルコキシ シランのアルコキシ基の一部または全部をクロ口基に置換したクロロシラン等が挙げら れ、加えてアルコキシシランのアルコキシ基もしくはクロロシランのクロ口基が加水分 解されてシラノール基となっていても力まわない。更には、これらのアルコキシシラン 及びクロロシランの持つ水素原子の全部または一部が重水素に置換されている重水 素化物、あるいはフッ素原子に置換されているフッ素化物等も挙げられ、これらの一 種または二種以上を用いることが出来る。特に耐熱性、電気特性、硬化性、力学特 性、保存安定性、ハンドリング性等の点から好ましいものとして、トリメトキシビニルシラ ン、ジメチルメトキシビュルシランと、これらのアルコキシル基がクロ口基に置換したク ロロシラン等が挙げられる。
反応基 (Α' )を有さないアルコキシシラン及びクロロシランとしては、ァセトキシメチ ルトリメトキシシラン、ベンジルトリエトキシシラン、ビス(トリエトキシシリル)メタン、ビス( トリエトキシシリル)ェタン、ビス(トリエトキシシリル)へキサン、 3—ブロモプロピルトリメ トキシシラン、ブチルトリメトキシシラン、クロロメチルトリエトキシシラン、クロ口フエニル トリエトキシシラン、 3—クロ口プロピルトリメトキシシラン、ジェチノレジェトキシシラン、ジ ェチノレジメトキシシラン、ジメチノレジェトキシシラン、ジメチノレジメトキシラン、ドデシノレト リメトキシシラン、ェチルトリエトキシシラン、ェチルトリメトキシシラン、ブチルトリメトキシ シラン、メトキシプロピルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシ シラン、ォクチルトリメトキシシラン、フエ二ルメチルジェトキシシラン、フエニルメチルジ メトキシシラン、フエニルトリエトキシシラン、フエニルトリメトキシシラン、テトラエトキシシ ラン、テトラメトキシシラン、トリルトリメトキシシラン、ジフエ二ルジメトキシシラン、ジフエ 二ルジェトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリェチルェ トキシシラン、トリフエニルエトキシシラン、ジフエ二ルジメトキシシラン、メチルフエニル ジメトキシシラン等が好ましく利用でき、さらに、 1, 4—ビス (ジメチルメトキシシリル)ベ ンゼンのように両末端にアルコキシシリルを有する有機シランも利用することが出来る 。更には、これらのアルコキシシランのアルコキシ基の一部または全部をクロ口基に置 換したクロロシラン等が挙げられ、加えてアルコキシシランのアルコキシ基もしくはクロ ロシランのクロ口基が加水分解されてシラノール基となって ヽても力まわな 、。更には 、これらのアルコキシシラン及びクロロシランの持つ水素原子の全部または一部が重 水素に置換されて 、る重水素化物、あるいはフッ素原子に置換されて 、るフッ素ィ匕 物等も挙げられ、これらの一種または二種以上を用いることが出来る。特に耐熱性、 電気特性、硬化性、力学特性、保存安定性、ハンドリング性等の点カゝら好ましいもの として、フエニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジェトキシシラン 、ジフエ-ルジメトキシシラン、メチルフエ-ルジメトキシシラン等や、これらのアルコキ シ基をクロ口基に置換したシランィ匕合物が挙げられる。
[0022] (A)成分のケィ素含有重合体を得るために使用される前記アルコキシシラン及び Zまたはクロロシランは二種類以上を使用してもよぐ所望により他の金属アルコラ一 ト、金属塩化物、金属錯体等で処理したり、あるいはそれらと併用して加水分解 ·縮 合反応を行い、ケィ素含有重合体にケィ素以外の元素、例えばホウ素、マグネシウム 、アルミニウム、リン、チタン、鉄、亜鉛、ジルコニウム、ニオブ、スズ、テルル、タンタル 等を組み入れることも可能である。また、(A)成分のケィ素含有重合体がシラノール 基を有して 、る場合、その数はアルキルクロロシランと反応させることによって調整す ることが出来る。アルキルクロロシランとしては、トリメチルクロロシランをはじめとする一 塩素置換 (モノクロ口)シランを用いることが出来る。
[0023] 本発明において行われる、前記アルコキシシランやクロロシランの加水分解 '縮合 反応は、いわゆるゾル ·ゲル反応を行えばよぐ無溶媒もしくは溶媒中で、酸または塩 基等の触媒を使用して加水分解。縮合反応を行う方法が挙げられる。この時に用い られる溶媒は特に限定されず、具体的には、水、メタノール、エタノール、 n—プロパ ノール、イソプロパノール、 n—ブタノール、イソブタノール、アセトン、メチルェチルケ トンジォキサン、テトラヒドロフラン等が挙げられ、これらの一種を用いることも二種以 上を混合して用いることも出来る。
[0024] アルコキシシランやクロロシランの加水分解 ·縮合反応は、アルコキシシランやクロ口 シランが水によって加水分解しシラノール基 (Si— OH基)を生成し、この生成したシ ラノール基同士、または、シラノール基とアルコキシル基、またはシラノールとクロロシ ラン基が縮合することにより進行する。この加水分解反応を速やかに進ませるために は、適量の水を加えることが好ましぐ触媒を水に溶解してカ卩えてもよい。また、空気 中の水分、または、水以外の溶媒中にも含まれる微量の水によってもこの加水分解 反応は進行する。
[0025] この加水分解 '縮合反応で用いられる酸、塩基等の触媒は、加水分解 '縮合反応を 促進するものであれば特に限定されず、具体的には、塩酸、リン酸、硫酸等の無機 酸類;酢酸、 p—トルエンスルホン酸、リン酸モノイソプロピル等の有機酸類;水酸ィ匕ナ トリウム、水酸ィ匕カリウム、水酸化リチウム、アンモニア等の無機塩基類;トリメチルアミ ン、トリエチルァミン、モノエタノールァミン、ジエタノールァミン等のアミン化合物(有 機塩基)類;テトライソプロピルチタネート、テトラブチルチタネート等のチタン化合物 類;ジブチル錫ラウレート、ォクチル錫酸等の錫化合物類;トリフルォロボラン等のホウ 素化合物類;アルミニウムトリスァセチルアセテート等のアルミニウム化合物類;鉄、コ ノ レト、マンガン、亜鉛等の金属の塩化物、並びにこれらの金属のナフテン酸塩及び ォクチル酸塩等の金属カルボン酸塩類等が挙げられ、これらの一種を用いることも、 二種以上を併用することも出来る。
[0026] 上記加水分解 '縮合反応の順序は特に限定されず、二種以上のアルコキシシラン またはクロロシランの加水分解 '縮合反応を行う場合、それぞれ単独である程度加水 分解を行ってから、両者を混合して更に加水分解 '縮合反応を行ってもよぐすべて を混合して一度に加水分解 '縮合反応を行ってもよい。
[0027] 本発明の (A)成分のケィ素含有重合体おける反応基 (Α' )は、前記ゾル,ゲル反応 中にクロロシラン及び/またはアルコキシシランカゝら導入されてもよぐゾル'ゲル反応 後に改めて導入されてもよい。例えば、ゾル ·ゲル反応後に Si— ΟΗ基及び Ζまたは Si— C1基を残し、これに対してそれぞれ反応基 (Α' )を有するクロロシラン及び Zま たはシラノールを反応させることで、共有結合によって導入させてもょ 、。
[0028] また本発明の (Α)成分のケィ素含有重合体は、前記、反応基 (Α' )を有するアルコ キシシラン及び/またはクロロシラン、反応基 (Α' )を有さな!/、アルコキシシラン及び Ζまたはクロロシランを用いて、前記ゾル ·ゲル反応により得られる力 同様にして得 られるケィ素含有重合体前駆体同士を反応させて得てもよ!、。前駆体同士の反応に は、反応基 (Α' )の一部を利用してもよいし、ゾル 'ゲル反応を利用してもよいし、 Si — OH基及び Zまたは Si— C1基を利用してもよい。もちろん、前駆体同士を反応させ てから、反応基 (Α' )を導入して、(Α)成分のケィ素含有重合体としてもよい。本発明 では、前駆体のひとつを線状のポリシロキサンィ匕合物とすることで、耐熱性やノヽンドリ ング性に優れた硬化性組成物を好ましく得ることができる。この前駆体の線状ポリシ口 キサンを得るためには、二官能のアルコキシシラン及び Ζまたはクロロシランを使用し て、加水分解 '縮合反応を行なえばよぐ二官能のアルコキシシランとクロロシランの 例としては、ジェチノレジェトキシシラン、ジェチノレジメトキシシラン、ジメチノレジェトキシ シラン、ジメチルジメトキシラン、フエ二ルメチルジェトキシシラン、フエニルメチルジメト キシシラン、ジフエ-ルジメトキシシラン、ジフエ-ルジェトキシシラン等挙げられ、さら に、 1, 4 ビス(ジメチルメトキシシリル)ベンゼンのように両末端にアルコキシシリル を有する有機シランも利用することができ、さらにはこれらのアルコキシシランのアル コキシ基の一部または全部をクロ口基に置換したクロロシラン等が挙げられ、カロえてァ ルコキシシランのアルコキシ基もしくはクロロシランのクロ口基が加水分解されてシラノ ール基となっていてもかまわない。さらには、これらのアルコキシシラン及びクロロシラ ンの持つ水素原子の全部または一部が重水素に置換されている重水素化物、ある いはフッ素原子に置換されて 、るフッ素化物等も挙げられ、これらの一種または二種 以上を用いることが出来る。もちろん、この二官能のアルコキシシラン及び Ζまたはク ロロシランは反応基 (Α' )を含んでいてもよい。特に好ましいものとしては、ジクロロジ メチルシラン、ジクロロジフエ-ルシラン等が挙げられる。
[0029] (Α)成分のケィ素含有重合体が有する反応基 (Α' )の濃度は、硬化性及び保存安 定性の点から、 0. 0001mmolZg〜100mmolZgが好ましぐ更には 0. OOlmmol Zg〜: LOmmolZgが好ましい。
[0030] (A)成分のケィ素含有重合体中の反応基 (Α' )の数は、硬化性及び保存安定性の 点から、ケィ素含有重合体 1分子当たり平均 1個以上、ケィ素原子 1個当たり 1個以下 が好ましい。
[0031] (Α)成分のケィ素含有重合体は、耐熱性の点から、重量平均分子量が 1000以下 の成分が 20重量%以下であり、好ましくは 10重量%以下、より好ましくは 0重量%で ある。
(Α)成分の重量平均分子量は耐熱性及びノヽンドリング性の点から、 5000〜100万 が好ましい。
(A)成分の重量平均分子量の測定は GPCを使用すればよぐポリスチレン換算に より求めればよい。
[0032] 本発明のケィ素含有硬化性組成物中、(A)成分の含有量は、反応基 (Α' )の数や 、(Β)成分中の Si— Η基の数などを考慮して適宜選択すればよいが、硬化性の点か ら、例えば 1〜99重量%が好ましぐ 35〜50重量%がより好ましい。
[0033] 次に、本発明の(B)成分について説明する。本発明の (B)成分は、ケィ素含有重 合体であり、 Si— H基を有し、 Si— O— Si結合による橋かけ構造を一箇所以上有す る。さらに重量平均分子量 1000以下の成分が 20重量%以下である。
[0034] (B)成分は、 Si— O— Si結合による橋かけ構造を一箇所以上有していればよぐも ちろん Si— O— Si結合が複数個連続して繰り返されていてもよい。また、その橋かけ 構造により、例えば、はしご状 (ラダー状)、力ご状、環状等の構造を有していてもよい
。はしご状 (ラダー状)、力ご状、環状等の構造は、その全てが Si— O— Si結合で形 成されて!/ヽてもよく、一部が Si— O— Si結合で形成されて ヽてもよ ヽ。
[0035] 本発明の(B)成分は、官能基 Si— H基を有するアルコキシシラン及び Zまたはクロ ロシランの加水分解 ·縮合反応によって、 Si— O— Siのシロキサン結合を形成するこ とにより得られる。官能基 Si— H基の導入は、 Si— H基を有するアルコキシシラン及 び Zまたはクロロシランを用いてもよぐ Si— H基を有さないアルコキシシラン及び Z またはクロロシランの加水分解 '縮合反応を行い、重合体とした後に、 Si— OHや Si —C1等の反応性の官能基を用いて、 Si-H基を導入してもよぐ両者を併用してもよ い。
[0036] 官能基 Si— H基を有するアルコキシシラン及びクロロシランの例としては、ジメトキシ シラン、トリメトキシシラン、トリエトキシシラン、ジエトキシシラン、フエニノレジメトキシシラ ン、メチノレジメトキシシラン、ジメチノレメトキシシラン、メチルメトキシシラン、ジフエ二ノレ メトキシシラン、フエニノレジェトキシシラン、メチノレジェトキシシラン、ジメチノレエトキシ シラン、メチルエトキシシラン、ジフエニルエトキシシラン及び、これらのアルコキシシラ ンのアルコキシ基の一部または全部をクロ口基に置換したクロロシラン等が挙げられ、 加えてアルコキシシランのアルコキシ基もしくはクロロシランのクロ口基が加水分解さ れてシラノール基となっていてもかまわない。更には、これらのアルコキシシラン及び クロロシランの持つ水素原子の全部または一部が重水素に置換されている重水素化 物、あるいはフッ素原子に置換されているフッ素化物等も挙げられ、これらの一種ま たは二種以上を用いることが出来る。特に耐熱性、電気特性、硬化性、力学特性、保 存安定性、ハンドリング性等の点力も好ましいものとして、メチルメトキシシラン、ジメチ ルメトキシシラン、ジフエ-ルメトキシシラン、フエ-ルメチルメトキシシラン等や、これら のアルコキシ基をクロ口基に置換したシランィ匕合物が挙げられる。
官能基 Si— H基を有さないアルコキシシラン及びクロロシランの例としては、ァセト キシメチルトリメトキシシラン、ベンジルトリエトキシシラン、ビス(トリエトキシシリル)メタ ン、ビス(トリエトキシシリル)ェタン、ビス(トリエトキシシリル)へキサン、 3—ブロモプロ ピルトリメトキシシラン、ブチルトリメトキシシラン、クロロメチルトリエトキシシラン、クロ口 フエニルトリエトキシシラン、 3—クロ口プロピルトリメトキシシラン、ジェチルジェトキシ シラン、ジェチノレジメトキシシラン、ジメチノレジェトキシシラン、ジメチノレジメトキシラン、 ドデシルトリメトキシシラン、ェチルトリエトキシシラン、ェチルトリメトキシシラン、ブチル トリメトキシシラン、メトキシプロピルトリメトキシシラン、メチルトリエトキシシラン、メチル トリメトキシシラン、ォクチルトリメトキシシラン、フエ二ルメチルジェトキシシラン、フエ二 ルメチルジメトキシシラン、フエニルトリエトキシシラン、フエニルトリメトキシシラン、テト ラエトキシシラン、テトラメトキシシラン、トリノレトリメトキシシラン、ジフエニノレジメトキシシ ラン、ジフエ二ルジェトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、 トリェチルエトキシシラン、トリフエニルエトキシシラン、及び、これらのアルコキシシラン のアルコキシ基の一部または全部をクロ口基に置換したクロロシラン等が挙げられ、 加えてアルコキシシランのアルコキシ基もしくはクロロシランのクロ口基が加水分解さ れてシラノール基となっていてもかまわない。更には、これらのアルコキシシラン及び クロロシランの持つ水素原子の全部または一部が重水素に置換されている重水素化 物、あるいはフッ素原子に置換されているフッ素化物等も挙げられ、これらの一種ま たは二種以上を用いることが出来る。特に耐熱性、電気特性、硬化性、力学特性、保 存安定性、ハンドリング性等の点力も好ましいものとして、フエ-ルメトキシシラン、メチ ノレトリエトキシシラン、ジメチノレジェトキシシラン、ジフエニノレジメトキシシラン、メチノレフ ェニルジメトキシシラン等や、これらのアルコキシ基をクロ口基に置換したシランィ匕合 物が挙げられる。
[0038] (B)成分のケィ素含有重合体を得るために使用される前記アルコキシシラン及び Z またはクロロシランは二種類以上を使用してもよぐ所望により他の金属アルコラート、 金属塩化物、金属錯体等で処理したり、あるいはそれらと併用して加水分解 ·縮合反 応を行い、ケィ素含有重合体にケィ素以外の元素、例えばホウ素、マグネシウム、ァ ルミ-ゥム、リン、チタン、鉄、亜鉛、ジルコニウム、ニオブ、スズ、テルル、タンタル等 を組み入れることも可能である。また、(B)成分のケィ素含有重合体がシラノール基 を有して!/、る場合、その数はアルキルクロロシランと反応させることによって調整する ことが出来る。アルキルクロロシランとしては、トリメチルクロロシランをはじめとする一 塩素置換 (モノクロ口)シランを用いることが出来る。
[0039] これらのアルコキシシランやクロロシランの加水分解 '縮合反応は、前記 (A)成分に おいて説明したように、前記のゾル ·ゲル反応を行えばよぐ前記の反応機構により進 行する。この反応を進行させるためには、前記のように適量の水をカ卩えることが好まし い。また、前記の加水分解 '縮合反応促進用の種々の触媒を使用してもよい。例えば 、加水分解 '縮合反応を促進する酸触媒を加えて酸性下 (pH7以下)で反応を進ま せた後、加水分解 ·縮合反応を促進する塩基触媒を加えて中性な!/ヽし塩基性下で反 応を行う方法も、好ましい例である。この加水分解 '縮合反応の順序も、前記同様限 定されない。
[0040] 本発明の (B)成分のケィ素含有重合体おける官能基 Si— H基は、前記ゾル ·ゲル 反応中にクロロシラン及び/またはアルコキシシランカゝら導入されてもよぐゾル'ゲル 反応後に改めて導入されてもよい。例えば、ゾル ·ゲル反応後に Si— OH基及び Zま たは Si— C1基を残し、これに対してそれぞれ官能基 Si— H基を有するクロロシラン及 び Zまたはシラノールを反応させることで、共有結合によって導入させてもょ 、。
[0041] また本発明の(B)成分のケィ素含有重合体は、前記、官能基 Si— Hを有するアル コキシシラン及び Zまたはクロロシラン、官能基 Si— Hを有さな 、アルコキシシラン及 び Zまたはクロロシランを用いて、前記ゾル ·ゲル反応により得られる力 同様にして 得られるケィ素含有重合体前駆体同士を反応させて得てもよ!ヽ。前駆体同士の反応 には、官能基 Si— Hの一部を利用してもよいし、ゾル 'ゲル反応を利用してもよいし、 Si— OH基及び Zまたは Si— C1基を利用してもよい。もちろん、前駆体同士を反応さ せてから、官能基 Si— Hを導入して、(B)成分のケィ素含有重合体としてもよい。本 発明では、前駆体のひとつを線状のポリシロキサンィ匕合物とすることで、耐熱性ゃノヽ ンドリング性に優れた硬化性組成物を好ましく得ることができる。この前駆体の線状ポ リシロキサンを得るためには、二官能のアルコキシシラン及び Zまたはクロロシランを 使用して、加水分解 '縮合反応を行なえばよぐ二官能のアルコキシシランとクロロシ ランの例としては、ジェチノレジェトキシシラン、ジェチノレジメトキシシラン、ジメチノレジ エトキシシラン、ジメチルジメトキシラン、フエ二ルメチルジェトキシシラン、フエニルメ チルジメトキシシラン、ジフエ二ルジメトキシシラン、ジフエ-ルジェトキシシラン等挙げ られ、さらに、 1, 4 ビス(ジメチルメトキシシリル)ベンゼンのように両末端にアルコキ シシリルを有する有機シランも利用することができ、さらにはこれらのアルコキシシラン のアルコキシ基の一部または全部をクロ口基に置換したクロロシラン等が挙げられ、 加えてアルコキシシランのアルコキシ基もしくはクロロシランのクロ口基が加水分解さ れてシラノール基となっていても力まわない。さらには、これらのアルコキシシラン及 びクロロシランの持つ水素原子の全部または一部が重水素に置換されている重水素 化物、あるいはフッ素原子に置換されているフッ素化物等も挙げられ、これらの一種 または二種以上を用いることが出来る。もちろん、この二官能のアルコキシシラン及び /またはクロロシランは官能基 Si— Hを含んでいてもよい。特に好ましいものとしては 、ジクロロジメチルシラン、ジクロロジフエ-ルシラン等が挙げられる。
[0042] (B)成分のケィ素含有重合体が有する反応基 Si— H基の濃度は、硬化性及び保 存安定性の点から、 0. 0001mmolZg〜100mmolZgが好ましぐ更には 0. 001 mmolZ g〜10mmoiz g力好まし ヽ。
[0043] (B)成分のケィ素含有重合体中の反応基 Si— H基の数は、ケィ素含有重合体 1分 子当たり平均 1個以上、ケィ素原子 1個当たり 1個以下が好ましい。
[0044] (B)成分のケィ素含有重合体は、耐熱性の点から、重量平均分子量が 1000以下 の成分が 20重量%以下であり、好ましくは 10重量%以下、より好ましくは 0重量%で ある。 (B)成分の重量平均分子量は耐熱性及びノヽンドリング性の点から、 5000〜100万 が好ましい。
(B)成分の重量平均分子量の測定は GPCを使用すればよぐポリスチレン換算によ り求めればよい。
[0045] 本発明のケィ素含有硬化性組成物中、(B)成分の含有量は、 Si— H基の数や、 ( A)成分中の反応基 (Α' )の数などを考慮して適宜選択すればよ!、が、硬化性の点 から、例えば 1〜99重量%が好ましぐ 35〜50重量%がより好ましい。
[0046] 次に、本発明の(C)成分について説明する。本発明の (C)成分は、ケィ素含有重合 体であり、 、 [式中、 R1及び R2
Figure imgf000015_0001
は、アルキレン基及び Zまたはァリーレン基を含んでもょ 、炭素数 2〜20のァルケ- ル基であり、 R3は、炭素数 1〜9のアルキレン基及び Zまたはァリーレン基であり、 R4 は、水素またはメチル基である]からなる群力も選ばれる反応基 (Α' )を一種または二 種以上有し、さらに Si— Η基を有し、 Si— O— Si結合による橋かけ構造を一箇所以 上有する。さらに重量平均分子量 1000以下の成分が 20重量%以下である。
[0047] 反応基 (A, )の Si— R1の R1は、ァルケ-ル基であり、該ァルケ-ル基は、ケィ素原 子に直接結合していてもよぐアルキレン基、ァリーレン基、またはアルキレン基とァリ 一レン基を介してケィ素原子に結合して 、てもよ 、。該ァルケ-ル基 (アルキレン基 及び Zまたはァリーレン基を含んでいてもよい)の炭素数は 2〜20であり、耐熱性の 点から好ましくは 2〜5である。 R1は、耐熱性及び硬化性の点から、ビニル基またはァ リル基が好ましい。
[0048] 反応基 (A,)の Si—O—R2の R2は、ァルケ-ル基であり、該ァルケ-ル基は、酸素 原子に直接結合していてもよぐアルキレン基、ァリーレン基、またはアルキレン基と ァリーレン基を介して酸素原子に結合して 、てもよ 、。該ァルケ-ル基 (アルキレン 基及び Zまたはァリーレン基を含んでいてもよい)の炭素数は 2〜20であり、耐熱性 の点力も好ましくは 25である。 R2は、耐熱性及び硬化性の点から、ビュル基またはァ リル基が好ましい。
[0049] 反応基(八,)の31—1^3—0じ0じ(1^4) =CHの R3は炭素数 1〜9のアルキレン基及
2
び Zまたはァリーレン基であり、好ましくは 1〜5である。 R4は、水素またはメチル基で あり、好ましくは水素である。
[0050] (C)成分は、 Si— O— Si結合による橋かけ構造を一箇所以上有していればよぐも ちろん Si— O— Si結合が複数個連続して繰り返されていてもよい。また、その橋かけ 構造により、例えば、はしご状 (ラダー状)、力ご状、環状等の構造を有していてもよい
。はしご状 (ラダー状)、力ご状、環状等の構造は、その全てが Si— O— Si結合で形 成されて!/ヽてもよく、一部が Si— O— Si結合で形成されて ヽてもよ ヽ。
[0051] 本発明の(C)成分は、反応基 (Α' )を有するアルコキシシラン及び Zまたはクロロシ ラン、及び、 Si— Η基を有するアルコキシシラン及び/またはクロロシランの加水分解 '縮合反応によって、 Si— O— Siのシロキサン結合を形成することにより得られる。も ちろん反応基 (Α' )と Si— H基の両方を有するアルコキシシラン及び Zまたはクロ口 シランを使用してもよぐ両者を併用してもよい。また、反応基 (A' )、 Si-H基の導入 は、反応基 (Α' )及び Ζまたは Si— Η基を有するアルコキシシラン及び Ζまたはクロ ロシランを用いてもよぐ反応基 (Α' )及び Ζまたは Si— Η基を有さな 、アルコキシシ ラン及び Zまたはクロロシランの加水分解 '縮合反応を行い、重合体とした後に、 Si - OHや Si - C1等の反応性の官能基を用 V、て、反応基 (A ' )及び Zまたは Si - H基 を導入してもよぐ両者の方法を併用してもよい。
[0052] 反応基 (Α' )を有するアルコキシシラン及びクロロシランの例としては、ジァリルジメト キシシラン、ァリノレトリメトキシシラン、ァリノレトリエトキシシラン、ジァリノレジェトキシシラ ン、ブテニルトリエトキシシラン、ビニルメチルジェトキシシラン、ビニルメチルジメトキ シシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、及びこれらのアルコキシ シランのアルコキシ基の一部または全部をクロ口基に置換したクロロシラン等が挙げら れ、加えてアルコキシシランのアルコキシ基もしくはクロロシランのクロ口基が加水分 解されてシラノール基となっていても力まわない。更には、これらのアルコキシシラン 及びクロロシランの持つ水素原子の全部または一部が重水素に置換されている重水 素化物、あるいはフッ素原子に置換されているフッ素化物等も挙げられ、これらの一 種または二種以上を用いることが出来る。特に耐熱性、電気特性、硬化性、力学特 性、保存安定性、ハンドリング性等の点から好ましいものとして、トリメトキシビニルシラ ン、ジメチルメトキシビュルシランと、これらのアルコキシル基がクロ口基に置換したク ロロシラン等が挙げられる。
[0053] 官能基 Si— H基を有するアルコキシシラン及びクロロシランの例としては、ジメトキシ シラン、トリメトキシシラン、トリエトキシシラン、ジエトキシシラン、フエ二ルジメトキシシラ ン、メチノレジメトキシシラン、ジメチノレメトキシシラン、メチルメトキシシラン、ジフエ二ノレ メトキシシラン、フエニノレジェトキシシラン、メチノレジェトキシシラン、ジメチノレエトキシ シラン、メチルエトキシシラン、ジフエニルエトキシシラン及び、これらのアルコキシシラ ンのアルコキシ基の一部または全部をクロ口基に置換したクロロシラン等が挙げられ、 加えてアルコキシシランのアルコキシ基もしくはクロロシランのクロ口基が加水分解さ れてシラノール基となっていてもかまわない。更には、これらのアルコキシシラン及び クロロシランの持つ水素原子の全部または一部が重水素に置換されている重水素化 物、あるいはフッ素原子に置換されているフッ素化物等も挙げられ、これらの一種ま たは二種以上を用いることが出来る。特に耐熱性、電気特性、硬化性、力学特性、保 存安定性、ハンドリング性等の点力も好ましいものとして、メチルメトキシシラン、ジメチ ルメトキシシラン、ジフエ-ルメトキシシラン、フエ-ルメチルメトキシシラン等や、これら のアルコキシ基をクロ口基に置換したシランィ匕合物が挙げられる。
[0054] 反応基 (Α' )及び Si— H基の両方を有するアルコキシシラン、クロロシランの例とし ては、ジメトキシビニルシラン、ジエトキシビニルシラン、メチルメトキシビニルシラン、 フエ-ルメトキシビュルシラン、メチルエトキシビュルシラン、フエ-ルエトキシビュルシ ラン、ジメトキシァリルシラン、ジェトキシァリルシラン、メチルメトキシァリルシラン、フエ ニルメトキシァリルシラン、メチルエトキシァリルシラン、フエニルエトキシァリルシラン、 及びこれらのアルコキシシランのアルコキシ基の一部または全部をクロ口基に置換し たクロロシラン等が挙げられ、加えてアルコキシシランのアルコキシ基もしくはクロロシ ランのクロ口基が加水分解されてシラノール基となっていても力まわない。更には、こ れらのアルコキシシラン及びクロロシランの持つ水素原子の全部または一部が重水 素に置換されて 、る重水素化物、あるいはフッ素原子に置換されて 、るフッ素化物 等も挙げられ、これらの一種または二種以上を用いることが出来る。特に耐熱性、電 気特性、硬化性、力学特性、保存安定性、ハンドリング性等の点力も好ましいものとし て、メチルメトキシビニルシラン、フエニルメトキシビニルシラン、ジメトキシビニルシラン 等や、これらのアルコキシ基をクロ口基に置換したシランィ匕合物が挙げられる。
[0055] 反応基 (Α' )及び Si— Η基を有さな!/、アルコキシシラン及びクロロシランとしては、 ァセトキシメチノレトリメトキシシラン、ベンジルトリエトキシシラン、ビス(トリェトキシシリノレ )メタン、ビス(トリエトキシシリル)ェタン、ビス(トリエトキシシリル)へキサン、 3—ブロモ プロピルトリメトキシシラン、ブチルトリメトキシシラン、クロロメチルトリエトキシシラン、ク ロロフェニルトリエトキシシラン、 3—クロ口プロピルトリメトキシシラン、ジェチルジェトキ シシラン、ジェチノレジメトキシシラン、ジメチノレジェトキシシラン、ジメチノレジメトキシラ ン、ドデシルトリメトキシシラン、ェチルトリエトキシシラン、ェチルトリメトキシシラン、ブ チルトリメトキシシラン、メトキシプロピルトリメトキシシラン、メチルトリエトキシシラン、メ チルトリメトキシシラン、ォクチルトリメトキシシラン、フエ二ルメチルジェトキシシラン、フ ェニルメチルジメトキシシラン、フエニルトリエトキシシラン、フエニルトリメトキシシラン、 テトラエトキシシラン、テトラメトキシシラン、トリノレトリメトキシシラン、ジフエニノレジメトキ シシラン、ジフエニノレジェトキシシラン、トリメチノレメトキシシラン、トリメチノレエトキシシラ ン、トリェチルエトキシシラン、トリフエニルエトキシシラン、ジフエ二ルジメトキシシラン、 メチルフエ二ルジメトキシシラン等が好ましく利用でき、さら〖こ、 1, 4—ビス(ジメチルメ トキシシリル)ベンゼンのように両末端にアルコキシシリルを有する有機シランも利用 することが出来る。更には、これらのアルコキシシランのアルコキシ基の一部または全 部をクロ口基に置換したクロロシラン等が挙げられ、加えてアルコキシシランのアルコ キシ基もしくはクロロシランのクロ口基が加水分解されてシラノール基となって ヽてもか まわない。更には、これらのアルコキシシラン及びクロロシランの持つ水素原子の全 部または一部が重水素に置換されている重水素化物、あるいはフッ素原子に置換さ れているフッ素化物等も挙げられ、これらの一種または二種以上を用いることが出来 る。とくに耐熱性、電気特性、硬化性、力学特性、保存安定性、ノ、ンドリング性等の点 力も好ましいものとして、フエニルトリメトキシシラン、メチルトリエトキシシラン、ジメチル ジエトキシシラン、ジフエ二ルジメトキシシラン、メチルフエ-ルジメトキシシラン等や、 これらのアルコキシ基をクロ口基に置換したシラン化合物が挙げられる。
[0056] (C)成分のケィ素含有重合体を得るために使用される前記アルコキシシラン及び Zまたはクロロシランは、(C)成分に反応基 (Α' )と官能基 Si— H基の両方が含有さ れるのであれば、二種類以上を使用してもよぐ所望により他の金属アルコラート、金 属塩化物、金属錯体等で処理したり、あるいはそれらと併用して加水分解 ·縮合反応 を行い、ケィ素含有重合体にケィ素以外の元素、例えばホウ素、マグネシウム、アル ミニゥム、リン、チタン、鉄、亜鉛、ジルコニウム、ニオブ、スズ、テルル、タンタル等を 組み入れることも可能である。また、(C)成分のケィ素含有重合体がシラノール基を 有している場合、その数はアルキルクロロシランと反応させることによって調整すること が出来る。アルキルクロロシランとしては、トリメチルクロロシランをはじめとする一塩素 置換 (モノクロ口)シランを用いることが出来る。
[0057] これらのアルコキシシランやクロロシランの加水分解 '縮合反応は、前記の (A)成分 及び (B)成分において説明したように、前記のゾル,ゲル反応を行えばよぐ前記の 反応機構により進行する。この反応を進行させるためには、前記のように適量の水を 加えることが好ましい。また、前記の加水分解 '縮合反応促進用の種々の触媒を使用 してもよい。例えば、加水分解 '縮合反応を促進する酸触媒を加えて酸性下 (PH7以 下)で反応を進ませた後、加水分解 '縮合反応を促進する塩基触媒を加えて中性な いし塩基性下で反応を行う方法も、好ましい例である。この加水分解 '縮合反応の順 序も、前記同様限定されない。
[0058] 本発明の (C)成分のケィ素含有重合体おける反応基 (Α' )及び Ζまたは官能基 Si —H基は、前記ゾル 'ゲル反応中にクロロシラン及び Zまたはアルコキシシラン力 導 入されてもよぐゾル ·ゲル反応後に改めて導入されてもよい。例えば、ゾル'ゲル反 応後に Si— OH基及び Zまたは Si— C1基を残し、これに対してそれぞれ反応基 (Α' )及び Ζまたは官能基 Si— Η基を有するクロロシラン及び Ζまたはシラノールを反応 させることで、共有結合によって導入させてもよい。
[0059] また本発明の(C)成分のケィ素含有重合体は、前記、反応基 (Α' )及び Ζまたは 官能基 Si— Η基を有するアルコキシシラン及び Ζまたはクロロシラン、反応基 (Α' ) 及び官能基 Si— Η基を有さな 、アルコキシシラン及び Zまたはクロロシランを用いて 、前記ゾル ·ゲル反応により得られるが、同様にして得られるケィ素含有重合体前駆 体同士を反応させて得てもよい。前駆体同士の反応には、反応基 (Α' )及び Zまた は官能基 Si— Η基の一部を利用してもよいし、ゾル 'ゲル反応を利用してもよいし、 Si — OH基及び Zまたは Si— CI基を利用してもよい。もちろん、前駆体同士を反応させ てから、反応基 (Α' )及び Zまたは官能基 Si— H基を導入して、(C)成分のケィ素含 有重合体としてもよい。本発明では、前駆体のひとつを線状のポリシロキサンィ匕合物 とすることで、耐熱性ゃノヽンドリング性に優れた硬化性組成物を好ましく得ることがで きる。この前駆体の線状ポリシロキサンを得るためには、二官能のアルコキシシラン及 び Zまたはクロロシランを使用して、加水分解 '縮合反応を行なえばよぐ二官能のァ ルコキシシランとクロロシランの例としては、ジェチルジェトキシシラン、ジェチルジメト キシシラン、ジメチノレジェトキシシラン、ジメチノレジメトキシラン、フエニノレメチノレジエト キシシラン、フエ二ルメチルジメトキシシラン、ジフエ二ルジメトキシシラン、ジフエニル ジエトキシシラン等挙げられ、さらに、 1, 4 ビス(ジメチルメトキシシリル)ベンゼンの ように両末端にアルコキシシリルを有する有機シランも利用することができ、さらにはこ れらのアルコキシシランのアルコキシ基の一部または全部をクロ口基に置換したクロ口 シラン等が挙げられ、加えてアルコキシシランのアルコキシ基もしくはクロロシランのク ロロ基が加水分解されてシラノール基となっていても力まわない。さらには、これらの アルコキシシラン及びクロロシランの持つ水素原子の全部または一部が重水素に置 換されて 、る重水素化物、ある!/、はフッ素原子に置換されて 、るフッ素化物等も挙げ られ、これらの一種または二種以上を用いることが出来る。もちろん、この二官能のァ ルコキシシラン及び Zまたはクロロシランは反応基 (A, )を含んで 、てもよ 、。特に好 ましいものとしては、ジクロロジメチルシラン、ジクロロジフエ-ルシラン等が挙げられる
[0060] (C)成分のケィ素含有重合体が有する反応基 (Α' )の濃度は、硬化性及び保存安 定性の点から、 0. 0001mmolZg〜100mmolZgが好ましぐ更には 0. OOlmmol Zg〜: LOmmolZgが好ましい。また、(C)成分のケィ素含有重合体が有する反応基 Si— H基の濃度は、硬化性及び保存安定性の点から、 0. 0001mmolZg〜100m molZgが好ましぐ更には 0. 001mmolZg〜10mmolZgが好ましい。
[0061] (C)成分のケィ素含有重合体中の反応基 (Α' )の数は、硬化性及び保存安定性の 点から、ケィ素含有重合体 1分子当たり平均 1個以上、ケィ素原子 1個当たり 1個以下 が好ましい。また、(C)成分のケィ素含有重合体中の反応基 Si— Η基の数は、ケィ素 含有重合体 1分子当たり平均 1個以上、ケィ素原子 1個当たり 1個以下が好ましい。
[0062] (C)成分のケィ素含有重合体は、耐熱性の点から、重量平均分子量が 1000以下 の成分が 20重量%以下であり、好ましくは 10重量%以下、より好ましくは 0重量%で ある。
(C)成分の重量平均分子量は耐熱性及びノヽンドリング性の点から、 5000〜: LOO万 が好ましい。(C)成分の重量平均分子量の測定は GPCを使用すればよぐポリスチ レン換算により求めればよい。
[0063] 本発明のケィ素含有硬化性組成物中、(C)成分の含有量は、(C)成分中の反応 基 (Α' )及び Ζまたは官能基 Si— Η基の数や、 (A)成分及び Zまたは (B)成分を含 有する場合は、それらの有する反応基 (Α' )及び Zまたは官能基 Si— H基の数など を考慮して適宜選択すればよ!ヽが、 (A)成分と (B)成分の両者を含有しな!ヽ場合は 、硬化性の点から、例えば 1〜99重量%が好ましい。
[0064] 次に、(A)成分、(B)成分及び (C)成分のケィ素含有重合体の好ましいァリール基 及びァリーレン基の合計含有量について説明する。本発明では、ケィ素含有硬化性 組成物の含有するケィ素含有重合体のァリール基及びァリーレン基の合計含有量が 、耐熱性とハンドリング性に大きく影響することを見出した。つまり、ァリール基または ァリーレン基が含まれることにより耐熱性が良くなるが、多すぎると流動性が悪くなり ハンドリング性に影響してしまうことである。
[0065] 詳しく説明すると、本発明のケィ素含有硬化性組成物の含有する (A)成分、 (B)成 分及び (C)成分を合わせたケィ素含有重合体は、耐熱性とハンドリング性の点から、 ァリール基及びァリーレン基の合計含有量が、 0. 1〜50重量%となるものが好ましく 、より好ましくは 1〜25重量%、さらに好ましくは 5〜15重量%である。上記合計含有 量が 50重量%を超えると、流動性が悪くなり、ハンドリング性が劣ってしまう。
[0066] (C)成分を含有しな!、場合の、 (A)成分と (B)成分の、ァリール基及びァリーレン 基を合わせた含有量の比率〔 (A)成分のァリール基及びァリーレン基の合計含有量 : (B)成分のァリール基及びァリーレン基の合計含有量〕は、重量比で、 0. 5〜1. 5 : 0. 5〜1. 5力好ましく、 0. 8〜1. 2 : 0. 8〜1. 2力 ^より好まし!/ヽ。
ァリール基、ァリーレン基の例としてはフエ-ル基またはフエ-レン基が好まし 、。 [0067] 次に、本発明の(D)成分の白金系触媒である硬化反応触媒について説明する。 本発明の (D)成分の白金系触媒は、ヒドロシリル化反応を促進する白金、パラジゥ ム及びロジウムの一種以上の金属を含有する公知の触媒の事である。これらのヒドロ シリルイ匕反応用の触媒として用いられる白金系触媒としては、白金 カルボ-ルビ- ルメチル錯体、白金ージビュルテトラメチルジシロキサン錯体、白金ーシクロビュルメ チルシロキサン錯体、白金ーォクチルアルデヒド錯体等の白金系触媒をはじめ、白 金の代わりに同じく白金系金属であるパラジウム、ロジウム等を含有する化合物が挙 げられ、これらの一種または二種以上を併用してもよい。特に硬化性の点から、白金 を含有するものが好ましぐ具体的には、白金 カルボ-ルビ-ルメチル錯体が好ま しい。また、クロロトリストリフエ-ルホスフィンロジウム(I)等の、上記白金系の金属を 含有するいわゆる Wilkinson触媒も、本発明の白金系触媒に含まれる。
[0068] 本発明のケィ素含有硬化性組成物中の(D)成分の含有量は、硬化性及び保存安 定性の点から、 5重量%以下が好ましぐ 0. 0001-1. 0重量%がより好ましい。 (D) 成分の含有量が 5重量%よりも多いと、ケィ素含有硬化性組成物の安定性が乏しくな る傾向がある。
[0069] さらに本発明のケィ素含有硬化性組成物は、(E)成分として金属酸化物微粉末を 含有することが好ましい。本発明の (E)成分の金属酸化物微粉末とは、いわゆる充 填剤、鉱物等の無機材料やこれを有機変性したものを指す。例えば、コロイダルシリ 力、シリカフィラー、シリカゲル、マイ力やモンモリロナイト等の鉱物、酸ィ匕アルミニウム や酸化亜鉛等の金属酸化物等であり、これらを有機変性処理等によって改質したも のでもよ 、。これらの金属酸ィ匕物微粉末を加えることで好適な諸物性を得ることが出 来る。特に好ましいものとしては、二酸化ケイ素微粉末が挙げられる。これら金属酸 化物微粒子の粒径は、耐熱性の点から 100 μ m以下が好ましぐ 50 μ m以下がより 好ましい。
[0070] 本発明のケィ素含有硬化性組成物中の(E)成分の含有量は、耐熱性及びハンドリ ングの点から、 90重量%以下が好ましぐ 50重量%以下がより好ましい。
[0071] 本発明のケィ素含有硬化性組成物には、更に任意の成分として、フリーラジカルス 力ベンジャーを配合してもよい。この場合のフリーラジカルスカベンジャーは、酸化防 止剤、安定剤等の抗酸ィ匕性物質であればよぐ例えば、トリエチレングリコール ビス
[3—(3— t—ブチルー 5—メチルー 4ーヒドロキシフエ-ル)プロピオネート]、ジブチ ルヒドロキシトルエン(BHT)、 2, 6 ジ— t ブチル—パラクレゾール(DBPC)等が 挙げられる。
[0072] 本発明のケィ素含有硬化性組成物中の上記フリーラジカルスカベンジャーの含有 量は、耐熱性、電気特性、硬化性、力学特性、保存安定性及びハンドリング性の点 力 0. 1〜50重量%が好ましぐさらに好ましくは 1〜30重量%が好ましい。
[0073] 本発明のケィ素含有硬化性組成物は、(A)成分、(B)成分及び (C)成分のうちの 少なくとも一つのケィ素含有重合体 (ただし (C)成分を含有しな!ヽ場合は (A)成分及 び (B)成分の両方)と、(D)成分の白金系触媒が混合されており、加熱することにより 硬化させることが出来る。硬化反応は、それらの成分を使用直前に混合する方法、あ らかじめ全部を混合しておき硬化反応を行うときに加熱等により硬化する方法等、い ずれでもよい。
[0074] 硬化させる場合の加熱温度は 0〜300°Cが好ましぐ 100〜200°Cがより好ましい。
硬化時間は 0. 1〜10時間が好ましぐ 1〜6時間がより好ましい。これらの硬化反応 条件下に硬化反応を行うことにより、本発明の硬化性組成物から、耐熱性、耐クラック 性等に優れた性能を有する硬化物を得ることができる。
[0075] 本発明のケィ素含有硬化性組成物は、室温 (25°C)で良好な流動性があり、ハンド リング性に優れ、また、この硬化物の性能に関しては、耐熱性、耐クラック性に優れて いる。詳しくは、硬化物の 5重量%の重量減少を来たす温度が 300°C以上、より好ま しくは 370°C以上の硬化物が好適に得られる。また、クラック発生の少ない硬化物が 好適に得られる。流動性に関しては、室温(25°C)で、 E型粘度計で測定した粘度が 50Pa' S以下であるのが好ましく、 lOPa' S以下であるのがより好まし!/、。
[0076] 本発明のケィ素含有硬化性組成物は、 (D)成分の白金系触媒である硬化反応触 媒の効果により、反応基 ( A ' )及び Si— H基の反応による硬化反応が速やかに進行 するため、得られた硬化物は優れた物性を有し、特に耐熱性、耐溶剤性、耐アルカリ 性に優れている。さらに、本発明のケィ素硬化性組成物は、均一で透明なため、紫 外線等の光の透過性もよぐ光反応性の触媒を添加することで、光硬化も可能である 。もちろん光反応性のモノマーや榭脂を更に配合してもよいし、(A)成分、(B)成分 及び (C)成分のいずれか一種以上が光反応性基を有していてもよい。更にまた、耐 候性、硬度、耐汚染性、難燃性、耐湿性、ガスバリヤ性、可撓性、伸びや強度、電気 絶縁性、低誘電率性等の力学特性、光学特性、電気特性等に優れた材料を得ること ができる。
[0077] また、本発明のケィ素含有硬化性組成物には、前記 (A)〜(D)成分さらには (E) 成分の他に、前記した以外の任意成分として、本発明の目的とする性能を損なわな い範囲で、その他の公知の各種榭脂、充填剤、添加剤等をも配合することができる。 さらに、(A)成分、(B)成分及び (C)成分のいずれか一種以上に、各種の有機官能 基を結合させ、更なる機能を付与することができる。また、本発明のケィ素含有硬化 性組成物またはその硬化物をマトリックスとし、この中に他の有用な化合物を分散さ せた高機能複合材料を作製することもできる。
任意に配合できる各種樹脂の例としては、ポリイミド榭脂、ポリエチレングリコールや ポリプロピレングリコール等のポリエーテル榭脂、ポリウレタン榭脂、エポキシ榭脂、フ エノール榭脂、ポリエステル榭脂、メラミン榭脂、ポリアミド榭脂、ポリフエ二レンスノレフ イド榭脂等が挙げられる。
任意に配合できる添加剤の例としては、紫外線吸収剤、帯電防止剤、酸化防止剤 等が挙げられる。
実施例
[0078] 以下、実施例により本発明を更に説明する力 本発明はこれらの実施例によって限 定されるものではない。尚、実施例中の「部」や「%」は重量基準によるものである。
[0079] 〔合成例 1〕
メチルトリエトキシシラン 100部に、 0. 4%のリン酸水溶液 86部を加えて 10〜15°C に保って 3時間攪拌した。この反応液にエタノール 80部を加え、水酸ィ匕ナトリウム水 溶液で反応液を中和後、 60°Cで 30分間攪拌した。反応後、 900部のトルエンを加え ながら溶媒中のエタノールと水を留去し、ケィ素含有重合体前駆体 1を得た。 GPC による分析の結果、ケィ素含有重合体前駆体— 1の分子量は、 Mw= 5000であった 。分子量は以下の測定条件で、ポリスチレン換算により求めた。以下の合成例、実施 例及び比較例の GPC測定も同様の測定条件で行なった。
分子量の測定条件
カラム:東ソー株式会社製 TSK- GEL MULTIPORE HXL M、 7.8mm X 300mm,展開 溶媒:テトラヒドロフラン
[0080] 〔合成例 2〕
ジクロロジメチルシラン 90部とジクロロジフエ-ルシラン 9部を混合し、 100部のィォ ン交換水中に滴下した。この反応液から、水相を取り除き溶媒を留去しながら 250°C で 2時間重合した。得られた反応溶液にピリジンを 20部加え、これにさらにジメチル ジクロロシラン 20部を加えて 30分間攪拌した。その後、反応溶液を 250°Cで熱しな 力 減圧して、低分子量成分とピリジン塩酸塩を除き、ケィ素含有重合体前駆体— 2 を得た。 GPCによる分析の結果、ケィ素含有重合体前駆体 2の分子量は、 Mw= 50, 000であった。
[0081] 〔合成例 3〕
ジクロロジメチルシラン 90部とジクロロジフエ-ルシラン 9部を混合し、 100部のィォ ン交換水中に滴下した。この反応液から、水相を取り除き溶媒を留去しながら 250°C で 2時間重合した。得られた反応溶液にジォキサン 50部とイオン交換水 5部を加え 3 0分間攪拌した後に沈殿物を回収した。その後、得られた沈殿物にトルエン 50部を 加え、 100°Cで溶媒を減圧留去し、ケィ素含有重合体前駆体— 3を得た。 GPCによ る分析の結果、ケィ素含有重合体前駆体 3の分子量は、 Mw= 50, 000であった
[0082] 〔合成例 4〕
ジクロロジメチルシラン 100部を 100部のイオン交換水中に滴下した。この反応液 から、水相を取り除き溶媒を留去しながら 250°Cで 2時間重合した。得られた反応溶 液にピリジンを 20部加え、これにさらにジメチルジクロロシラン 20部を加えて 30分間 攪拌した。その後、反応溶液を 250°Cで熱しながら減圧して、低分子量成分とピリジ ン塩酸塩を除き、ケィ素含有重合体前駆体ー4を得た。 GPCによる分析の結果、ケィ 素含有重合体前駆体 4の分子量は、 Mw= 60, 000であった。
[0083] 〔合成例 5〕 トルエンを溶媒として、合成例 1で得られたケィ素含有重合体前駆体 1を 5部にピ リジンを 10部、トリメチルクロロシランを 1. 5部加えて、室温で 30分間攪拌した。これ に合成例 2で得られたケィ素含有重合体前駆体 2を 100部加えて攪拌しながら 4 時間共重合を行い、イオン交換水を加えて反応を止めた。水洗によってピリジン塩酸 塩等を除き、ケィ素含有重合体前駆体 5を得た。 GPCによる分析の結果、ケィ素 含有重合体前駆体 5の分子量は、 MW= 92, 000であった。
[0084] 〔合成例 6〕
トルエンを溶媒として、合成例 5で得られたケィ素含有重合体前駆体 5を 50部に ピリジン 5部をカ卩え、半分に分割した。一方にジメチルクロロシラン 5部、他方にジメチ ルビ-ルクロロシラン 5部をカ卩ぇ室温で 30分間、さらに 70°Cで 30分間攪拌した後、ィ オン交換水で水洗することによりピリジン塩酸塩を除き、ケィ素含有重合体 (前者をケ ィ素含有重合体 5— Bとし、後者をケィ素含有重合体 5— Aとする)をそれぞれ得た。 ケィ素含有重合体 5— A及び 5— B共に、分子量は MW= 92, 000であり、ァリール 基の含有量は H1— NMR及び GPC分析から 8. 4重量%であり、重量平均分子量 10 00以下の成分は 0%であった。
[0085] 〔合成例 7〕
トルエンを溶媒として、合成例 5で得られたケィ素含有重合体前駆体 5を 50部に ピリジン 5部を加え、さらにジメチルクロロシラン 5部とジメチルビ-ルクロロシラン 5部 の混合物を加え室温で 30分間、さらに 70°Cで 30分間攪拌した後、イオン交換水で 水洗することによりピリジン塩酸塩を除き、ケィ素含有重合体 6を得た。ケィ素含有重 合体 6の分子量は MW= 92, 000であり、ァリール基の含有量は P^—NMR及び G PC分析力 8. 4重量%であり、重量平均分子量 1000以下の成分は 0%であった。
[0086] 〔合成例 8〕
トルエンを溶媒として、合成例 3で得られたケィ素含有重合体前駆体ー3を 50部に ピリジン 5部をカ卩え、さらにフエ-ルトリクロロシラン 0. 5部をカ卩ぇ室温で 30分間、さら に 70°Cで 30分間攪拌した後、半分に分割した。一方にジメチルクロロシラン 2. 5部、 他方にジメチルビ-ルクロロシラン 2. 5部をカ卩ぇ室温で 30分間、さらに 70°Cで 30分 間攪拌した後、イオン交換水で水洗することによりピリジン塩酸塩を除き、ケィ素含有 重合体 (前者をケィ素含有重合体 7— Bとし、後者をケィ素含有重合体 7— Aとする) をそれぞれ得た。ケィ素含有重合体 7— A及び 7— B共に、分子量は MW= 130, 0 00であり、ァリール基の含有量は H1— NMR及び GPC分析から 8. 4重量%であり 、重量平均分子量 1000以下の成分は 0%であった。
[0087] 〔合成例 9〕
トルエンを溶媒として、合成例 1で得られたケィ素含有重合体前駆体 1を 5部にピ リジンを 10部、トリメチルクロロシランを 1. 5部加えて、室温で 30分間攪拌した。これ に合成例 4で得られたケィ素含有重合体前駆体 4を 100部加えて攪拌しながら 4 時間共重合を行い、イオン交換水を加えて反応を止めた。水洗によってピリジン塩酸 塩等を除き、ケィ素含有重合体前駆体 8を得た。 GPCによる分析の結果、ケィ素 含有重合体前駆体 8の分子量は、 MW= 92, 000であった。
[0088] 〔合成例 10〕
トルエンを溶媒として、合成例 9で得られたケィ素含有重合体前駆体ー8を 50部に ピリジン 5部をカ卩え、半分に分割した。一方にジメチルクロロシラン 5部、他方にジメチ ルビ-ルクロロシラン 5部をカ卩ぇ室温で 30分間、さらに 70°Cで 30分間攪拌した後、ィ オン交換水で水洗することによりピリジン塩酸塩を除き、ケィ素含有重合体 (前者をケ ィ素含有重合体 8— Bとし、後者をケィ素含有重合体 8— Aとする)をそれぞれ得た。 ケィ素含有重合体 8— A及び 8— B共に、分子量は MW= 92, 000であり、重量平均 分子量 1000以下の成分は 0%であった。
[0089] 〔合成例 11〕
ジクロロジメチルシラン 38部とジクロロジフエ-ルシラン 50部を混合し、 100部のィ オン交換水中に滴下した。この反応液から、水相を取り除き溶媒を留去しながら 250 °Cで 2時間重合した。得られた反応溶液にピリジンを 20部加え、これにさらにジメチ ルジクロロシラン 20部を加えて 30分間攪拌した。その後、反応溶液を 250°Cで熱し ながら減圧して、低分子量成分とピリジン塩酸塩を除き、ケィ素含有重合体前駆体 9を得た。 GPCによる分析の結果、ケィ素含有重合体前駆体 9の分子量は、 Mw = 30, 000であった。
[0090] 〔合成例 12〕 トルエンを溶媒として、合成例 1で得られたケィ素含有重合体前駆体 1を 5部にピ リジンを 10部、トリメチルクロロシランを 1. 5部加えて、室温で 30分間攪拌した。これ に合成例 11で得られたケィ素含有重合体前駆体— 9を 100部加えて攪拌しながら 4 時間共重合を行い、イオン交換水を加えて反応を止めた。水洗によってピリジン塩酸 塩等を除き、ケィ素含有重合体前駆体 10を得た。 GPCによる分析の結果、ケィ素 含有重合体前駆体 10の分子量は、 MW=88, 000であった。
[0091] 〔合成例 13〕
トルエンを溶媒として、合成例 12で得られたケィ素含有重合体前駆体— 10を 50部 にピリジン 5部をカ卩え、半分に分割した。一方にジメチルクロロシラン 5部、他方にジメ チルビ-ルクロロシラン 5部をカ卩ぇ室温で 30分間、さらに 70°Cで 30分間攪拌した後 、イオン交換水で水洗することによりピリジン塩酸塩を除き、ケィ素含有重合体 (前者 をケィ素含有重合体 10— Bとし、後者をケィ素含有重合体 10— Aとする)をそれぞれ 得た。ケィ素含有重合体 10— A及び 10— B共に、ァリール基の含有量は H1— NMR 及び GPC分析から 44. 0重量%であり、 GPC分析より重量平均分子量 1000以下の 成分は 0%であった。
[0092] 〔合成例 14〕
ジクロロジメチルシラン 80部とジクロロジフエ-ルシラン 20部を混合し、 100部のィ オン交換水中に滴下した。この反応液から、水相を取り除き溶媒を留去しながら 250 °Cで 2時間重合した。得られた反応溶液にピリジンを 20部加え、これにさらにジメチ ルジクロロシラン 20部を加えて 30分間攪拌した。その後、反応溶液を 250°Cで熱し ながら減圧して、低分子量成分とピリジン塩酸塩を除き、ケィ素含有重合体前駆体 11を得た。 GPCによる分析の結果、ケィ素含有重合体前駆体— 11の分子量は、 M w= 30, 000であった。
[0093] 〔合成例 15〕
トルエンを溶媒として、合成例 1で得られたケィ素含有重合体前駆体 1を 5部にピ リジンを 10部、トリメチルクロロシランを 1. 5部加えて、室温で 30分間攪拌した。これ に合成例 14で得られたケィ素含有重合体前駆体— 11を 100部加えて攪拌しながら 4時間共重合を行い、イオン交換水をカ卩えて反応を止めた。水洗によってピリジン塩 酸塩等を除き、ケィ素含有重合体前駆体 12を得た。 GPCによる分析の結果、ケィ 素含有重合体前駆体 12の分子量は、 MW= 90, 000であった。
[0094] 〔合成例 16〕
トルエンを溶媒として、合成例 15で得られたケィ素含有重合体前駆体 12を 50部 にピリジン 5部をカ卩え、半分に分割した。一方にジメチルクロロシラン 5部、他方にジメ チルビ-ルクロロシラン 5部をカ卩ぇ室温で 30分間、さらに 70°Cで 30分間攪拌した後 、イオン交換水で水洗することによりピリジン塩酸塩を除き、ケィ素含有重合体 (前者 をケィ素含有重合体 12— B、後者をケィ素含有重合体 12— Aとする)をそれぞれ得 た。ケィ素含有重合体 12— A及び 12— B共に、ァリール基の含有量は H1— NMR及 び GPC分析から 13. 0重量%であり、 GPC分析より重量平均分子量 1000以下の成 分は 0%であった。
[0095] 〔実施例 1〕
ケィ素含有重合体 5— Aとケィ素含有重合体 5— Bとの等量混合物 100部に、硬化 反応触媒として白金-カルボ二ルビユルメチル錯体 0. 005部を混合して、ケィ素含有 硬化性組成物— 1を得た。
[0096] 〔実施例 2〕
ケィ素含有重合体 6を 100部に、硬化反応触媒として白金-カルボ二ルビ二ルメチ ル錯体 0. 005部を混合して、ケィ素含有硬化性組成物— 2を得た。
[0097] 〔実施例 3〕
ケィ素含有重合体 7— Aとケィ素含有重合体 7— Bとの等量混合物 100部に、硬化 反応触媒として白金-カルボ二ルビユルメチル錯体 0. 005部を混合して、ケィ素含有 硬化性組成物 3を得た。
[0098] 〔実施例 4〕
ケィ素含有重合体 5— Aとケィ素含有重合体 5— Bとの等量混合物 90部に、二酸ィ匕 ケィ素微粉末 10部及び硬化反応触媒として白金-カルボ二ルビ二ルメチル錯体 0. 0 05部を混合して、ケィ素含有硬化性組成物— 4を得た。
[0099] 〔実施例 5〕
ケィ素含有重合体 5— Aとケィ素含有重合体 5— Bとの等量混合物 80部に、二酸ィ匕 ケィ素微粉末 20部及び硬化反応触媒として白金-カルボ二ルビ二ルメチル錯体 0. 0 05部を混合して、ケィ素含有硬化性組成物― 5を得た。
[0100] 〔実施例 6〕
ケィ素含有重合体 5— Aとケィ素含有重合体 5— Bとの等量混合物 70部に、二酸ィ匕 ケィ素微粉末 30部及び硬化反応触媒として白金-カルボ二ルビ二ルメチル錯体 0. 0 05部を混合し、ケィ素含有硬化性組成物― 6を得た。
[0101] 〔実施例 7〕
ケィ素含有重合体 5— Aとケィ素含有重合体 5— Bとの等量混合物 90部に、合成例 4で得られた重量平均分子量 1000以下の成分 (ァ)を 10部及び硬化反応触媒とし て白金-カルボ-ルビ-ルメチル錯体 0. 005部を混合して、ケィ素含有硬化性組成 物— 7を得た。ここで合成例 4で得られた重量平均分子量 1000以下の成分 (ァ)とは 、合成例 4にお ヽて反応溶液を 250°Cで熱しながら減圧して留去した低分子量成分 を回収したものである。
[0102] 〔実施例 8〕
ケィ素含有重合体 5— Aとケィ素含有重合体 5— Bとの等量混合物 80部に、合成例 4で得られた重量平均分子量 1000以下の成分 (ァ)を 20部及び硬化反応触媒とし て白金-カルボ-ルビ-ルメチル錯体 0. 005部を混合して、ケィ素含有硬化性組成 物 8を得た。
[0103] 〔実施例 9〕
ケィ素含有重合体 10— Aとケィ素含有重合体 10— Bとの等量混合物 100部に、硬 化反応触媒として白金-カルボ二ルビ二ルメチル錯体 0. 005部を混合して、ケィ素含 有硬化性組成物― 9を得た。
[0104] 〔実施例 10〕
ケィ素含有重合体 12— Aとケィ素含有重合体 12— Bとの等量混合物 100部に、硬 化反応触媒として白金-カルボ二ルビ二ルメチル錯体 0. 005部を混合して、ケィ素含 有硬化性組成物― 10を得た。
[0105] 〔実施例 11〕
ケィ素含有重合体 8— Aとケィ素含有重合体 8— Bとの等量混合物 100部に、硬化 反応触媒として白金-カルボ二ルビユルメチル錯体 0. 005部を混合して、ケィ素含有 硬化性組成物― 11を得た。
[0106] 〔比較例 1〕
ケィ素含有重合体 5— Aとケィ素含有重合体 5— Bとの等量混合物 70部に、合成例 4で得られた重量平均分子量 1000以下の成分 (ァ)を 30部及び硬化反応触媒とし て白金-カルボ-ルビ-ルメチル錯体 0. 005部を混合して、比較ケィ素含有硬化性 組成物— 1を得た。
[0107] 〔比較例 2〕
ケィ素含有重合体 5— Aとケィ素含有重合体 5— Bとの等量混合物 50部に、合成例 4で得られた重量平均分子量 1000以下の成分 (ァ)を 50部及び硬化反応触媒とし て白金-カルボ-ルビ-ルメチル錯体 0. 005部を混合して、比較ケィ素含有硬化性 組成物— 2を得た。
[0108] 〔物性評価〕
上記実施例 1〜11で得られたケィ素含有硬化性組成物 1〜ケィ素含有硬化性 組成物 11及び比較例 1〜2で得られた比較ケィ素含有硬化性組成物 1〜比較 ケィ素含有硬化性組成物 2を 250°Cで 3時間硬化を行 ヽ、得られた硬化物 1〜 硬化物 11、比較硬化物 1〜比較硬化物 2につ 、て、耐熱性の評価を行なつ た。
評価は、それぞれの硬化物の重量が 5%減少する温度を測定した。その結果を表 1 に示す。表 1の結果より、硬化物 1、 2、 3、 9、 10、 11を比較すると、ァリール基を含む 硬化物 1、 2、 3、 9、 10の方が良好であり、ァリール基の含有量が多いほど良好であ る。また、硬化物 1、 4、 5、 6から分力るように二酸ィ匕ケィ素微粉末の含有量が多いほ ど耐熱性は高いが、配合量は用途に応じて適時に対応できる。硬化物 7、 8及び比 較硬化物 1、 2は重量平均分子量 1000以下の成分含有量の影響を示した力 20重 量部までは 5重量%減温度が 300°C以上であり良好である。
また、上記実施例 1、 9及び 10で得られたケィ素含有硬化性組成物— 1、—9及び 10について、室温におけるハンドリング性を表 2に示した。ハンドリング性は E型粘 度計を用いて 25°Cにおける粘度を測定した。実施例 1、 10は 25°Cで lOPa' S以下 でありハンドリング性に優れているが、実施例 9ではやや困難になる。
[表 1] 素蔞意有合住ケィ 5 A—、
塞^) (有リ MK84ァ Λの -».
溢 ¾ S萆 8 ς—
) (»8¥ ·
¾尊 9
¾尊 V—
董尊 3—
ο 素翕 ¾有#ケ A—fl,
基 (含有リ»量 0ァルの- ο
σ¾
婁素翕有住合ケィ B 8 - 塞 ¾晉有»0ルの
o
挲 i单 8 oi—
昼)ft聲 (¾0S Κ - ο
重# ^荩挲 ν— 素 ¾有重合せケィ B一,
¾蒼基 (有 0%) Jァ1ルの- ^重分子量霉^以下 1000
()の了
酸素微粉末化ケイ二
90 s0 Q0 9000 50 ς so0ο eooοooο 50000 500000 5000οοoοο · · · · · · · · · · · 白金系触媒
1耐熱結価硬物評果(重量のの ¾%減す(が少温)) 5度る
<
[0110] [表 2]
Figure imgf000033_0001
産業上の利用可能性
[0111] 本発明によれば、保存安定性、透明性、ハンドリング性及び硬化性に優れたケィ素 含有硬化性組成物、及び耐熱性及び可とう性に優れた硬化物を提供することができ る。
[0112] 本発明のケィ素含有硬化性組成物は、保存安定性、透明性、ハンドリング性、硬化 性等に優れ、更にその硬化物力 耐クラック性、耐熱性、耐溶剤性、耐アルカリ性、 耐候性、光学特性、電気特性等の諸物性に優れた硬化性組成物として利用すること が出来る。電気 ·電子材料分野における表示材料 ·光材料 ·記録材料 ·半導体等の 封止材料、高電圧絶縁材料、絶縁 ·防振'防水 ·防湿を目的としたポッティング'シー リング材、プラスチック部品の試作母型、コーティング材料、層間絶縁膜、絶縁用パッ キング、熱収縮ゴムチューブ、 O—リング、表示デバイス用シール剤 ·保護材、光導波 路、光ファイバ一保護材、光学レンズ、光学機器用接着剤、高耐熱性接着剤、高放 熱性材料、高耐熱シール材、太陽電池,燃料電池用部材、電池用固体電解質、絶 縁被覆材、複写機用感光ドラム、ガス分離膜にも応用できる。また、土木 ·建材分野 におけるコンクリート保護材、ライニング、土壌注入剤、シーリング剤、蓄冷熱材、ガラ スコーティング等への応用、さらに医療用材料分野においても、チューブ、シール材 、コーティング材料、滅菌処理装置用シール材、コンタクトレンズ、酸素富化膜等に 応用することが可能である。

Claims

請求の範囲
[1] 下記の (A)成分、(B)成分及び (C)成分のうちの少なくとも一つのケィ素含有重合 体を含有 (ただし (C)成分を含有しな!ヽ場合は (A)成分及び (B)成分の両方を含有 )し、かつ下記 (D)成分の触媒を含有する、ケィ素含有硬化性組成物。
(A): 、 [式中、 R1及び R2は、
Figure imgf000034_0001
アルキレン基及び Zまたはァリーレン基を含んでもよい炭素数 2〜20のァルケ-ル 基であり、 R3は、炭素数 1〜9のアルキレン基及び Zまたはァリーレン基であり、 R4は 、水素またはメチル基である]からなる群力も選ばれる反応基 (Α' )を一種または二種 以上有し、 Si— O— Si結合による橋かけ構造を一箇所以上有する、重量平均分子量 1000以下の成分が 20重量%以下のケィ素含有重合体;
(B): Si— H基を有し、 Si— O— Si結合による橋かけ構造を一箇所以上有する、重量 平均分子量 1000以下の成分が 20重量%以下のケィ素含有重合体;
(C): 、 [式中、 R1及び R2は、
Figure imgf000034_0002
アルキレン基及び Zまたはァリーレン基を含んでもよい炭素数 2〜20のァルケ-ル 基であり、 R3は、炭素数 1〜9のアルキレン基及び/またはァリーレン基であり、 R4は 、水素またはメチル基である]からなる群力も選ばれる反応基 (Α' )を一種または二種 以上有し、さらに Si— Η基を有し、 Si— O— Si結合による橋かけ構造を一箇所以上 有する、重量平均分子量 1000以下の成分が 20重量%以下のケィ素含有重合体;
(D):白金系触媒である硬化反応触媒
[2] ケィ素含有硬化性組成物の含有する (A)成分、 (B)成分及び (C)成分を合わせた ケィ素含有重合体は、ァリール基及びァリーレン基の合計含有量が 0. 1〜50重量
%である請求の範囲第 1項記載のケィ素含有硬化性組成物。
[3] さらに (E)成分として金属酸化物微粉末を含有する請求の範囲第 1または 2項に記 載のケィ素含有硬化性組成物。
[4] 請求の範囲第 1〜3項の 、ずれか 1項記載のケィ素含有硬化性組成物を熱硬化さ せた硬化物。
PCT/JP2005/008490 2004-05-12 2005-05-10 ケイ素含有硬化性組成物、及びこれを熱硬化させた硬化物 WO2005108496A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800079614A CN1930245B (zh) 2004-05-12 2005-05-10 含硅固化性组合物以及使该组合物热固化而得到的固化物
KR1020067018727A KR101178632B1 (ko) 2004-05-12 2005-05-10 규소함유 경화성 조성물, 및 이를 열경화시킨 경화물
US10/594,221 US7939614B2 (en) 2004-05-12 2005-05-10 Silicon-containing curing composition and heat cured product thereof
EP05739080.9A EP1746132B1 (en) 2004-05-12 2005-05-10 Silicon-containing curable composition and cured object obtained by thermally curing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-142607 2004-05-12
JP2004142607A JP5132027B2 (ja) 2004-05-12 2004-05-12 ケイ素含有硬化性組成物、及びこれを熱硬化させた硬化物

Publications (1)

Publication Number Publication Date
WO2005108496A1 true WO2005108496A1 (ja) 2005-11-17

Family

ID=35320212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008490 WO2005108496A1 (ja) 2004-05-12 2005-05-10 ケイ素含有硬化性組成物、及びこれを熱硬化させた硬化物

Country Status (7)

Country Link
US (1) US7939614B2 (ja)
EP (1) EP1746132B1 (ja)
JP (1) JP5132027B2 (ja)
KR (1) KR101178632B1 (ja)
CN (1) CN1930245B (ja)
TW (1) TW200613450A (ja)
WO (1) WO2005108496A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125785A1 (ja) * 2006-04-25 2007-11-08 Enikolopov Institute Of Synthetic Polymeric Materials (Ispm) Of The Russian Academy Of Sciences 硬化性樹脂組成物

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206721A (ja) * 2005-01-27 2006-08-10 Kansai Electric Power Co Inc:The 高耐熱合成高分子化合物及びこれで被覆した高耐電圧半導体装置
KR20080111480A (ko) * 2006-03-16 2008-12-23 제이에스알 가부시끼가이샤 산화물 미립자 함유 폴리실록산 조성물 및 그의 제조 방법
JP2007277505A (ja) * 2006-03-16 2007-10-25 Jsr Corp 酸化物微粒子分散体およびその製造方法
JP2007291324A (ja) * 2006-03-31 2007-11-08 Jsr Corp 酸化物微粒子含有ポリシロキサン組成物およびその製造方法
JP2007277072A (ja) * 2006-03-16 2007-10-25 Jsr Corp 酸化物微粒子分散体およびその製造方法
JP2007277073A (ja) * 2006-03-16 2007-10-25 Jsr Corp 酸化物微粒子分散体およびその製造方法
JP2007270056A (ja) * 2006-03-31 2007-10-18 Jsr Corp 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法
JP2007270055A (ja) * 2006-03-31 2007-10-18 Jsr Corp 多官能ポリシロキサンおよび金属酸化物微粒子含有ポリシロキサン組成物、ならびにそれらの製造方法
CN101646959B (zh) * 2007-03-26 2012-06-27 新日铁化学株式会社 透镜
US8026035B2 (en) * 2007-03-30 2011-09-27 Cheil Industries, Inc. Etch-resistant disilane and saturated hydrocarbon bridged silicon-containing polymers, method of making the same, and method of using the same
JP5248033B2 (ja) 2007-04-23 2013-07-31 株式会社Adeka ケイ素含有化合物、硬化性組成物及び硬化物
JP5248034B2 (ja) * 2007-04-23 2013-07-31 株式会社Adeka ケイ素含有化合物、硬化性組成物及び硬化物
JP2009091547A (ja) * 2007-09-21 2009-04-30 Shin Etsu Chem Co Ltd 付加硬化型シリコーンゴム組成物及びその硬化物並びに架橋剤
JP5393373B2 (ja) * 2009-09-16 2014-01-22 関西電力株式会社 半導体装置
EP2599836B1 (en) * 2010-07-27 2015-03-25 Adeka Corporation Curable composition for semiconductor encapsulation
JP2012097225A (ja) * 2010-11-04 2012-05-24 Daicel Corp 硬化性樹脂組成物及び硬化物
US9297950B2 (en) * 2011-05-10 2016-03-29 Sumitomo Electric Industries, Ltd. Optical fiber
JP6011230B2 (ja) 2011-10-25 2016-10-19 セントラル硝子株式会社 シロキサン系組成物およびその硬化物ならびにその用途
JP6213257B2 (ja) 2013-01-25 2017-10-18 セントラル硝子株式会社 シリコーンを含む硬化性組成物およびその硬化物
JP2016169358A (ja) * 2014-07-24 2016-09-23 セントラル硝子株式会社 硬化性シリコーン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置
WO2016013421A1 (ja) * 2014-07-24 2016-01-28 セントラル硝子株式会社 硬化性シリコーン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置
TWI738743B (zh) 2016-03-23 2021-09-11 美商道康寧公司 金屬-聚有機矽氧烷
EP3555213B1 (en) * 2016-12-19 2022-01-26 Saint-Gobain Performance Plastics Corporation Silicone-based composition and article made therefrom
JP7046385B2 (ja) * 2017-12-28 2022-04-04 国立研究開発法人産業技術総合研究所 ポリマーブラシ形成用基体及び該基体の製造方法並びに該方法に用いる前駆液
CN110330653B (zh) * 2019-07-05 2020-10-23 北京化工大学 一种耐高温高折射率的主链含亚苯基的钛杂化硅树脂、其制备方法及应用
TW202428780A (zh) * 2022-12-05 2024-07-16 美商陶氏有機矽公司 Uv可固化聚矽氧組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156166A (ja) * 1991-03-27 1993-06-22 Japan Synthetic Rubber Co Ltd 導電性エラストマー用組成物
JP2002173661A (ja) * 2000-09-13 2002-06-21 Nippon Sheet Glass Co Ltd 接着剤組成物およびそれを用いた光学装置
JP2002356617A (ja) * 2001-05-30 2002-12-13 Asahi Denka Kogyo Kk 硬化性組成物

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284406A (en) 1963-12-18 1966-11-08 Dow Corning Organosiloxane encapsulating resins
US4310678A (en) * 1980-12-02 1982-01-12 Dow Corning Corporation Liquid copolymeric organopolysiloxanes comprising SiO2 and method therefor
US5217811A (en) * 1989-05-18 1993-06-08 At&T Bell Laboratories Devices featuring silicone elastomers
US5215801A (en) * 1990-08-22 1993-06-01 At&T Bell Laboratories Silicone resin electronic device encapsulant
JP2623380B2 (ja) * 1991-06-03 1997-06-25 信越化学工業株式会社 熱伝導性に優れたシリコーン組成物
JP3615784B2 (ja) * 1994-04-21 2005-02-02 ダウ コーニング アジア株式会社 光学素子用樹脂組成物及び光学素子
JPH07306301A (ja) * 1994-05-13 1995-11-21 Dow Corning Kk 光学素子及びその製造方法
US5536803A (en) * 1994-06-06 1996-07-16 Shin-Etsu Chemical Co., Ltd. Adhesive silicone compositions
US5623030A (en) * 1994-12-01 1997-04-22 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Curable composition and process for producing molded articles using the same
US6307081B1 (en) * 1997-11-24 2001-10-23 Dow Corning Silicone Company, Ltd. Hyperbranched polymers and methods for the preparation, cure, and stabilization thereof
JP2000231001A (ja) * 1999-02-10 2000-08-22 Konica Corp 光学用レンズ
JP2000231002A (ja) * 1999-02-10 2000-08-22 Konica Corp 光学用レンズ
DE19957276A1 (de) * 1999-11-29 2001-10-11 Abb Research Ltd Additionsvernetzende Siliconkautschukmischungen
CN1388823A (zh) * 2000-08-17 2003-01-01 日本板硝子株式会社 粘结剂组合物和使用该组合物的光学装置
JP3718123B2 (ja) * 2000-12-18 2005-11-16 信越化学工業株式会社 型取り用オルガノポリシロキサン組成物
JP4009067B2 (ja) * 2001-03-06 2007-11-14 信越化学工業株式会社 付加硬化型シリコーン樹脂組成物
JP3757264B2 (ja) * 2001-03-27 2006-03-22 独立行政法人産業技術総合研究所 シルセスキオキサン系ポリマー成形体及びその製造方法
JP2002348473A (ja) * 2001-05-23 2002-12-04 Asahi Denka Kogyo Kk 硬化性組成物
JP3865639B2 (ja) * 2002-01-28 2007-01-10 信越化学工業株式会社 半導体封止用シリコーン組成物および半導体装置
JP2005516702A (ja) * 2002-02-08 2005-06-09 オプテック ビー.ヴイ. 高屈折率の可撓性シリコーン
WO2003080753A1 (en) * 2002-03-22 2003-10-02 Dow Corning Corporation Silicone resins and their preparation
US6907176B2 (en) * 2002-06-24 2005-06-14 Dow Corning Corporation Planar optical waveguide assembly and method of preparing same
JP4663969B2 (ja) * 2002-07-09 2011-04-06 東レ・ダウコーニング株式会社 硬化性シリコーンレジン組成物およびその硬化物
JP3919001B2 (ja) * 2002-08-08 2007-05-23 信越化学工業株式会社 付加反応硬化型オルガノポリシロキサン組成物
JP4409160B2 (ja) * 2002-10-28 2010-02-03 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
JP2004186168A (ja) * 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
US7241823B2 (en) * 2002-12-11 2007-07-10 Shin-Etsu Chemical Co., Ltd. Radiation curing silicone rubber composition, adhesive silicone elastomer film formed from same, semiconductor device using same, and method of producing semiconductor device
JP3912525B2 (ja) * 2002-12-12 2007-05-09 信越化学工業株式会社 付加硬化型シリコーンゴム組成物及び粘着ゴムシート
US7160972B2 (en) * 2003-02-19 2007-01-09 Nusil Technology Llc Optically clear high temperature resistant silicone polymers of high refractive index
JP2004359756A (ja) * 2003-06-03 2004-12-24 Wacker Asahikasei Silicone Co Ltd Led用封止剤組成物
TWI373150B (en) * 2003-07-09 2012-09-21 Shinetsu Chemical Co Silicone rubber composition, light-emitting semiconductor embedding/protecting material and light-emitting semiconductor device
JP2005272697A (ja) * 2004-03-25 2005-10-06 Shin Etsu Chem Co Ltd 硬化性シリコーン樹脂組成物、光半導体用封止材および光半導体装置
JP4494077B2 (ja) * 2004-04-22 2010-06-30 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 光学材料封止用硬化性組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156166A (ja) * 1991-03-27 1993-06-22 Japan Synthetic Rubber Co Ltd 導電性エラストマー用組成物
JP2002173661A (ja) * 2000-09-13 2002-06-21 Nippon Sheet Glass Co Ltd 接着剤組成物およびそれを用いた光学装置
JP2002356617A (ja) * 2001-05-30 2002-12-13 Asahi Denka Kogyo Kk 硬化性組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125785A1 (ja) * 2006-04-25 2007-11-08 Enikolopov Institute Of Synthetic Polymeric Materials (Ispm) Of The Russian Academy Of Sciences 硬化性樹脂組成物

Also Published As

Publication number Publication date
TW200613450A (en) 2006-05-01
EP1746132A1 (en) 2007-01-24
JP5132027B2 (ja) 2013-01-30
US7939614B2 (en) 2011-05-10
KR20070007313A (ko) 2007-01-15
KR101178632B1 (ko) 2012-08-30
CN1930245A (zh) 2007-03-14
US20070197755A1 (en) 2007-08-23
JP2005325174A (ja) 2005-11-24
CN1930245B (zh) 2010-05-05
EP1746132B1 (en) 2013-07-10
EP1746132A4 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
WO2005108496A1 (ja) ケイ素含有硬化性組成物、及びこれを熱硬化させた硬化物
CN101657491B (zh) 含硅化合物、固化性组合物及固化物
Robeyns et al. Synthesis, characterization and modification of silicone resins: An “Augmented Review”
JP6082267B2 (ja) 分岐状ポリシロキサンおよびこれらの使用
CN101616961B (zh) 含硅化合物、固化性组合物以及固化物
JP4088764B2 (ja) 室温硬化性オルガノポリシロキサン組成物
KR102326223B1 (ko) 실온 경화성 오르가노폴리실록산 조성물 및 해당 실온 경화성 오르가노폴리실록산 조성물의 경화물인 성형물
US20070225465A1 (en) Composition for Sealing Optical Semiconductor, Optical Semiconductor Sealing Material, and Method for Producing Composition for Sealing Optical Semiconductor
JP6922917B2 (ja) 脱アルコール型室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でシールされた物品
EP3543304B1 (en) Organofunctional siloxanes, method for its preparation and use for the treatment of fillers and surfaces
JP2006283012A (ja) ケイ素含有硬化性組成物、及びこれを熱硬化させた硬化物
CN103936999A (zh) 含硅化合物、固化性组合物以及固化物
KR20130094715A (ko) 폴리실록산계 조성물, 경화물, 및, 광학 디바이스
JP2002356617A (ja) 硬化性組成物
JP2010084062A (ja) 室温硬化性オルガノポリシロキサン組成物
JP5031436B2 (ja) 低透湿性ポリオルガノシロキサン組成物
JP2003327829A (ja) 室温硬化性オルガノポリシロキサン組成物
JP6313722B2 (ja) 付加硬化型シリコーン組成物および半導体装置
WO2015178475A1 (ja) 分岐鎖状ポリオルガノシロキシシルアルキレン、その製造方法、硬化性樹脂組成物、及び半導体装置
JP7353026B2 (ja) 室温硬化性ポリオルガノシロキサン組成物及びその硬化物
JP2005023132A (ja) 接着性ポリオルガノシロキサン組成物
JP7353027B2 (ja) 室温硬化性ポリオルガノシロキサン組成物及びその硬化物
JP6393659B2 (ja) 付加硬化型シリコーン組成物および半導体装置
JP2002348473A (ja) 硬化性組成物
COSY Aggregation. See 18-Nonadecyltrichlorosilane (NTS) monolayer Ahmad-Rolfes-Stepto (ARS) theory of gelation. See Gelation studies

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580007961.4

Country of ref document: CN

Ref document number: 1020067018727

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10594221

Country of ref document: US

Ref document number: 2005739080

Country of ref document: EP

Ref document number: 2007197755

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067018727

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005739080

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10594221

Country of ref document: US