[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20080296087A1 - Sound Absorbing and Heat Insulating Material - Google Patents

Sound Absorbing and Heat Insulating Material Download PDF

Info

Publication number
US20080296087A1
US20080296087A1 US11/659,457 US65945705A US2008296087A1 US 20080296087 A1 US20080296087 A1 US 20080296087A1 US 65945705 A US65945705 A US 65945705A US 2008296087 A1 US2008296087 A1 US 2008296087A1
Authority
US
United States
Prior art keywords
sound absorbing
heat insulating
nonwoven fabric
insulating material
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/659,457
Other languages
English (en)
Inventor
Shigeki Tanaka
Hiroyuki Sakamoto
Hiroyasu Sakaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Assigned to TOYO BOSEKI KABUSHIKI KAISHA reassignment TOYO BOSEKI KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAKAGUCHI, HIROYASU, SAKAMOTO, HIROYUKI, TANAKA, SHIGEKI
Publication of US20080296087A1 publication Critical patent/US20080296087A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0815Acoustic or thermal insulation of passenger compartments
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • B32B2038/042Punching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption

Definitions

  • the present invention relates to a sound absorbing material having a light weight, a smaller thickness, and outstanding sound absorbing property and heat insulating property. Specifically, the present invention relates to a sound absorbing material excellent in sound absorption property in 500 Hz to 4000 Hz. Furthermore, the present invention relates to a sound absorbing and heat insulating material exhibiting especially excellent sound absorption property and heat insulating property when used as interior materials, such as ceilings, floors, and door trims of vehicles of automobiles.
  • nonwoven fabrics including superfine fibers have outstanding properties, such as sound absorption property, filtering property, shielding property and have been used for many usages, they have problems, such as low strength or shape stability. Therefore, they have been used in a state of laminated compounded material with other nonwoven fabrics in order to improve the problems.
  • resins or thermal adhesive fibers are used as a binder in spraying or transferring method etc. (for example, refer to Patent document 1).
  • the methods need heat treatment for drying, or for melting and adhesion of the resins, and therefore, these methods are not very preferable methods in consideration of problems of environmental pollution caused by exhaust gas, or of energy consumption.
  • These methods also have problems, such as deterioration of the sound absorbing property caused by film formation of the binder resin in an interface between the nonwoven fabrics.
  • Conventional sound absorbing materials have a problem of drop of sound absorbing performance in a higher frequency region when a higher absorption coefficient is realized in a lower frequency region with larger thickness of a nonwoven fabric.
  • attachment of a sheet with a shape of a film on a surface of a porous sound absorbing material can improve sound absorbing performance in a lower frequency region of 500 to 1000 Hz, but this measure causes a problem that the sound absorbing performance in a higher frequency region not less than 2000 Hz is low.
  • Non-patent document 1 Building materials and its construction method series W-5 “structural noise absorbing material” written by Masaru Koyasu, issued by Gijutsu Shoin
  • Patent document 1 Japanese Patent Laid-open No. 06-4075 official report
  • Patent document 2 Japanese Patent Laid-open No. 09-221334 official report
  • the present invention aims at providing a thinner and lighter weight sound absorbing material exhibiting higher sound absorbing performance in a lower frequency region, and having excellent shape stability at a lower price. Automobile related business needs lighter weight sound absorbing materials realizing improvement in fuel consumption and in comfortableness.
  • the present invention specifically also aims at providing a sound absorbing material in response to the needs.
  • the present invention aims at providing a sound absorbing and heat insulating material having outstanding thermal efficiency, in usages that need heat insulating properties for air-conditioner etc.
  • a first aspect of the present invention provides a sound absorbing and heat insulating material having at least one peak of normal incident sound absorption coefficient in a range of 315 to 5000 Hz, a peak absorption coefficient not less than 80%, and a thickness of 5 to 30 mm.
  • a second aspect of the present invention provides a sound absorbing and heat insulating material wherein a layer obtained by laminating a porous film layer B including a resin having a melting point not less than 120 degrees C. to a nonwoven fabric A having a fiber with not less than 1 micron and not more than 25 microns of a fiber diameter, as a principal component, and a mass per unit area of 10 to 70 g/m 2 ; and a staple fiber nonwoven fabric C having a fiber diameter of 7 to 50 microns, a mass per unit area of 50 to 2000 g/m 2 , and a thickness of 4 to 30 mm; are integrated by compounding by a plurality of through-passing fibers.
  • a third aspect of the present invention provides the sound absorbing and heat insulating material according to the first or the second aspect, wherein a Frazier gas permeability is between 0.05 and 100 cm 3 /cm 2 .second.
  • a fourth aspect of the present invention provides the sound absorbing and heat insulating material according to any one of the second and the third aspect, wherein the nonwoven fabric A and the film layer B are compounded by an extrusion laminating method, and further integrated by compounding with the staple fiber nonwoven fabric C layer by a needle punch method.
  • a fifth aspect of the present invention provides the sound absorbing and heat insulating material according to the fourth aspect, wherein 5 to 200 numbers/cm 2 of loops having a height not less than 0.3 mm exist at least on one side of the film layer B by compounding using the needle punch method.
  • a sixth aspect of the present invention provides the sound absorbing and heat insulating material according to the second aspect, wherein the film layer B is constituted by a copolymer including polypropylene or any one of polypropylene, polyethylene, and polyoctene, and the film layer B has a thickness of 10 to 50 microns.
  • a seventh aspect of the present invention provides the sound absorbing and heat insulating material according to any one of the second to the sixth aspects, wherein aluminum is vapor-deposited on at least one side of the film layer.
  • the sound absorbing and heat insulating material obtained by the present invention can provide a thin and light weight sound absorbing material, at low costs, having high sound absorbing performance in a lower frequency region, and excellent shape stability. Automobile related business need lighter weight sound absorbing materials for realizing improvement in fuel consumption and in comfortableness.
  • the present invention can provide a sound absorbing material in response to the needs.
  • the present invention can provide a sound absorbing and heat insulating material having outstanding thermal efficiency, in usages that need heat insulating properties for air-conditioner etc.
  • FIG. 1 is a graph illustrating the sound absorption property of a sound absorbing material according to the present invention.
  • the sound absorbing and heat insulating material used in the present invention has a very small thickness of 5 to 30 mm, it has outstanding sound absorbing performance.
  • the sound absorbing and heat insulating material according to the present invention preferably has at least one peak in a range of 315 to 5000 Hz, in a graph having 1 ⁇ 3 octave frequency in an abscissa, and an absorption coefficient in an ordinate, and preferably has a peak absorption coefficient not less than 80%.
  • Different sound absorption properties may be needed according to a mode wherein the sound absorbing and heat insulating material is used, and in automobile usages, the peak of the normal incident sound absorption coefficient more preferably exists in a range of 1000 to 4000 Hz, and especially preferably in a range 1600 to 3150 Hz.
  • the peak position of the characteristic frequency varies based on a structure of the sound absorbing and heat insulating material, thickness, gas permeability, etc.
  • the peak absorption coefficient is preferably at least 70%, and especially preferably not less than 90%.
  • the absorption coefficients at 1000 Hz, 2000 Hz, and 4000 Hz are not less than 20, 50, or 60%, respectively, from a viewpoint of giving less trouble in conversations in automobiles.
  • larger thicknesses and weights generally allow establish of higher sound absorbing performances in sound absorbing materials, installation of the sound absorbing material in a limited space in automobiles gives restrictions to a thickness thereof.
  • sound absorbing materials having lighter weight is needed by a relation with fuel consumption of the automobiles, and therefore, suitable adjustment of a structure thereof is needed.
  • control of structures, thicknesses, etc. of nonwoven fabrics can control the peak position of the absorption coefficient, and can maximize the sound absorption efficiency in a frequency region needed.
  • the sound absorbing and heat insulating material of the present invention it is preferred that at least a nonwoven fabric and a porous film layer are integrated by compounding. It is because the compounding may give better sound absorbing performance.
  • compounding of a nonwoven fabric layer including a superfine fiber is also one of desirable embodiments. It is also preferred to compound with clothes, textiles, etc. depending on types of usages.
  • designed surface nonwoven fabrics having colors and patterns may also be attached to the outside of this composite nonwoven fabric, allowing suitable use as acoustic insulations for vehicles interior materials or building materials.
  • the nonwoven fabric A is used as a reinforcement layer of a film layer or for gas permeability control, and the finer fibers are included, the more sound absorbing performance advantageously improves.
  • Whole of the nonwoven fabric may include only superfine fibers, and excessively small contents do not disadvantageously allow the effect by the superfine fiber characteristic to be exhibited, and moreover deteriorate reinforcing effect.
  • the fiber diameter is not more than 25 microns, especially preferably not more than 3 to 18 microns, and most preferably approximately 5 to 16 microns.
  • the manufacturing method of the fiber is not in particular limited, and filaments and staple fibers may be used. Nonwoven fabrics obtained by a melt blowing method and a spunbond method that enable random arrangement of fibers and cheaper production costs is especially preferred.
  • melt-blown nonwoven fabrics have lower strength
  • nonwoven fabrics obtained by bonding with nonwoven fabrics for reinforcement such as spunbond nonwoven fabrics
  • spunbond nonwoven fabrics or to use simultaneous lamination of three or more layers of nonwoven fabrics in a lamination process.
  • spunbond nonwoven fabric having outstanding wear resistance it is preferred for the spunbond nonwoven fabric having outstanding wear resistance to be disposed so that it may be arranged on a surface side in use.
  • Laminated nonwoven fabrics obtained by emboss processing of a melt-blown nonwoven fabric and a spunbond nonwoven fabric together are marketed under names of S/M/S, S/M, etc., and these may preferably be used (S represents a spunbond nonwoven fabric and M represents a melt blown nonwoven fabric.)
  • the nonwoven fabric A preferably has a mass per unit area of 20 to 200 g/m 2 .
  • Mass per unit areas smaller than 20 g/m 2 makes difficult exhibition of desired reinforcing effects or the gas permeability control effects.
  • Mass per unit areas more than 200 g/m 2 makes difficult provision of sound absorbing materials with lighter weight as an object of the present invention.
  • application of the needle punch method as a suitable compounding method of the nonwoven fabric A layer and the film layer B and the staple fiber nonwoven fabric C layer gives many needle breaks, causing frequent problems.
  • a mass per unit area is 20 to 50 g/m 2 .
  • a mass per unit area less than 20 g/m 2 gives a weak entanglement between fibers, and disadvantageously tends to cause peeling.
  • the film layer B is preferably made from a resin having a melting point not less than 120 degrees C. Lower melting points of the resin not only limit applicable usages thereof, but friction in needle penetration also produces heat in compounding by the needle punch method, and then excessive hooking of the molten resin to a barb portion unpreferably induces needle breakage.
  • resins having a melting point not less than 120 degrees C. polypropylene homopolymer may generally be mentioned. Copolymers including any one of polypropylene, polyethylene, and polyoctene may especially preferably be mentioned as resins having moderate softness, and allow avoidance of unusual noise generation at the time of film deformation.
  • the thickness is preferably 10 to 50 microns, and especially preferably 15 to 30 microns.
  • Films having a thickness less than 15 microns often have a problem in a mechanical strength, and a thickness not less than 30 microns tends to generate unusual noise.
  • a film having a thickness not less than 30 microns tends to induce a needle breakage, requiring special care.
  • Use of the needle punch method can perforate a film, allowing resultant control of gas permeability.
  • a film layer thickness more than 30 microns unpreferably makes adjustment of a desired peak frequency difficult.
  • adhesive methods, heat laminating methods, etc. are usable, and the methods are not in particular limited.
  • a method of extrusion lamination of the resin that forms the film layer B onto the nonwoven fabric layer A is especially preferable from viewpoints of adhesive strengths, processing costs, etc.
  • heat insulating property is important factor, it is preferred to use a film having vapor-deposited aluminum thereon.
  • the sound absorbing and heat insulating material of the present invention preferably 5 to 200 numbers/cm 2 of loops having a height not less than 0.3 mm obtained by a needle punch method etc. exist on at least one side of the film layer B.
  • the existence on the surface of the sound absorbing and heat insulating material of this film layer may in some case generate rubbing noise with contact to other materials.
  • Introduction of the fiber loop on the surface can solve this problem.
  • the number of fiber loops smaller than 5 numbers/cm 2 disadvantageously reduces this improvement effect.
  • the number of fiber loops more than 200 numbers/cm 2 unpreferably deteriorates the mechanical strength of the film layer.
  • polyesters or polyolefins are preferable as main components constituting the staple fiber nonwoven fabric C, but the components are not limited to them.
  • inclusion of approximately 10 to 80% of thermally fusible fibers, or a three-dimensionally crimped fiber may be mentioned as one of preferable embodiments. It is preferred that a fiber diameter is 7 to 50 microns, and a mass per unit area is 50 to 2000 g/m 2 , and thickness 4 to 30 mm. Investigations of the present inventors illustrate that the fiber diameter is preferably 7 to 50 microns, and especially preferably 7 to 20 microns.
  • the fiber diameter smaller than 7 microns does not directly cause a large problem, it is not so preferred in consideration of productivity, such as spinnability from a carding machine.
  • a fiber diameter greatly smaller than 7 microns reduces lamination effect by the present invention, and may cause another problem such as easy formation of fluffs from the nonwoven fabric.
  • a fiber diameter thicker than 50 microns lowers contribution to sound absorbing performance, being not so preferred.
  • the length of the staple fiber as component is preferably not less than 38 mm and not more than 150 mm, and especially preferably it is in a range 50 to 150 mm. Investigations of the present inventors illustrate that a larger fiber length gives more excellent sound absorption coefficient. However, excessively large fiber length disadvantageously worsens the spinnability from a carding machine.
  • the staple fiber may be made of single component, and may be a composite fiber including two or more kinds of components. Blending of a coarser fiber with a weight fraction of approximately not more than 30% in order to adjust hardness of the nonwoven fabric does not largely change the characteristics. Excessive weight fraction of a coarser fiber disadvantageously tends to cause problems, such as excessively large hardness, for a nonwoven fabric touch. It is also preferred to use the thermally fusible fibers with a different melting point, from a viewpoint of improving dimensional stability. It is preferred that a pack density based on the weight of the staple fiber nonwoven fabric is between 0.005 to 0.3 g/cm 3 from a viewpoint of bulkiness. Excessively smaller pack density disadvantageously worsens shape stability.
  • Recovered materials as recycling nonwoven fabrics etc. may also be used from a viewpoint of environmental problems.
  • the material may be of natural fibers or of synthetic fibers, contact of water should be avoided when using hydrophilic fibers. This is because entry of water to the vacancy of the nonwoven fabric may deteriorate sound absorbing performance.
  • the sound absorbing and heat insulating material of the present invention preferably has a Frazier gas permeability between 0.05 and 100 cm 3 /cm 2 .second, more preferably between 1 and 70 cm 3 /cm 2 .second, and especially preferably between 5 and 50 cm 3 /cm 2 .second.
  • the Frazier gas permeability of the sound absorbing and heat insulating material of the present invention smaller than 0.05 cm 3 /cm 2 .second causes reflection of sounds on the surface of the sound absorbing and heat insulating material, and thus disadvantageously deteriorates sound absorbing performance.
  • Excessively large Frazier gas permeability makes difficult setting of existence of at least one peak of the normal incident sound absorption coefficient in a range of 315 to 5000 Hz.
  • the sound absorbing and heat insulating material of the present invention is a staple fiber nonwoven fabric having a mass per unit area of 80 to 2000 g/m 2 .
  • a mass per unit area smaller than 80 g/m 2 deteriorates sound absorption effect, and is not so preferred in the viewpoints of bulkiness of the nonwoven fabric.
  • a mass per unit area larger than 2000 g/m 2 increases thickness, and disadvantageously needs a larger space, leading to excessive weight.
  • the thickness of this nonwoven fabric is between 5 to 30 mm.
  • the thickness smaller than 5 mm unpreferably deteriorates sound absorbing performance and insulation efficiency.
  • the larger thickness can provide the higher sound absorption coefficient in a lower frequency region, but a thickness exceeding 30 mm disadvantageously promotes bulkiness. It is preferred that the thickness is 5 to 20 mm from a viewpoint of handling or cost performance.
  • the integration by compounding method of the nonwoven fabric is not in particular limited, use of adhesives, adhesive powder, etc. are also possible, and integration by a needle punching method or a water stream intermingling method is preferred.
  • the needle punching method is generally carried into effect as a nonwoven fabric processing method, and details of the method are described in “The foundation of a nonwoven fabric, application”, etc. edited by nonwoven fabric study group of The Textile Machinery Society of Japan.
  • a needle enters from the staple fiber nonwoven fabric side, and preferably forms loops of the staple fibers on an outside of the nonwoven fabric including the superfine fiber.
  • the fiber is hooked by other materials, or cut thereby to easily form fluffs.
  • loops of the staple fiber prevent surface fluffing of the nonwoven fabric including the superfine fiber, and form a cushioning layer, thereby being useful for prevention of destruction by relieving an external force applied to the superfine fiber nonwoven fabric layer.
  • adhesion of this loop, and a third material as a lamination partner can prevent destruction of the nonwoven fabric including the superfine fiber with external force applied thereto, such as bending and tension, in the case of lamination with another nonwoven fabric having an elongation percentage higher than 30%, a film, etc.
  • the depth of the needle in needle punching is not more than 15 mm. With the depth more than the above mentioned value, impact in penetration of a needle and a staple fiber into a superfine fiber nonwoven fabric disadvantageously destroys the nonwoven fabric, or often excessively enlarges pinholes after penetration. Needle depth is dependent on the position of the barb of the needle, and in order to increase the intermingling in the nonwoven fabric and to prevent peeling, it is preferably not less than 5 mm. It is preferred that penetration density is 5 to 200 times/cm 2 . A penetration density smaller than 30 times/cm 2 tends to cause a problem of peeling of the nonwoven fabric.
  • a penetration density larger than 200 times/cm 2 disadvantageously gives an excessive large opening gross area, leading to easy tear and destruction of the nonwoven fabric including the superfine fiber.
  • Either of the surface of the laminated product of the nonwoven fabric A and the film layer B to be compounded with the staple fiber nonwoven fabric layer C may be attached to the staple fiber nonwoven fabric layer C.
  • a heat adhesive fiber is mixed in the staple fiber nonwoven fabric layer C, it is more preferred to make the surface having a better adhesive property to the melting components of the heat adhesive fiber to be contacted.
  • heat insulating property when a film layer having aluminum vapor-deposited thereonto is used at least for one side, it is preferred that a surface having the vapor-deposited aluminum thereonto faces to a direction opposite to the staple fiber nonwoven fabric layer C.
  • the larger thickness of the heat insulating material can give the higher heat insulating property. Heat insulating property not less than 60% with a thickness of 10 mm is preferred, and not less than 70% with a thickness of 20 mm is especially preferred.
  • the tensile elongation of the laminated sound absorbing material is preferably not less than 30%, more preferably not less than 50%, and especially preferably not less than 100%.
  • the nonwoven fabric having a tensile elongation not more than 30% is not preferred, and the nonwoven fabric cannot follow the deformation in molding to destroy the superfine fiber layer etc., leading to large drop in sound absorption coefficient.
  • ability of deformation allows easy avoidance of problems, such as cutting caused by poor control of stress. Molding temperatures of the processing may be around 200 degrees C. from room temperatures, and the molding temperature will hardly cause problems if the requirements of the present invention are satisfied. Since the elongation percentage of the nonwoven fabric having a compression bonded portion becomes smaller in the constituent of the sound absorbing material of the present invention, it is preferred to set the elongation percentage of this nonwoven fabric as a simple substance to not less 30%.
  • One of preferable embodiments is compounded use with textiles having sensuousness by coloring and print of patterns onto the surface of the sound absorbing and heat insulating material of the present invention.
  • Such methods enable visual harmonization avoiding sense of incongruity with the environments as the sound absorbing material for building construction, or the sound absorbing material used for automobile interior materials.
  • the nonwoven fabric A and the staple fiber nonwoven fabric B are preferably of fire-resistant types. It is preferred to use methods of application of flame resistant agents of phosphorus compounds without halogen, or copolymerization with fire-resistant components. Even if other components have a little flammable character, if the nonwoven fabric A layer forming a surface has high fire retardancy, the fire retardancy of the whole compounded material will improve.
  • a scanning electron microscope photograph was taken at a suitable magnification for a side of not less than 20 of fibers, and an average value was calculated.
  • a superfine fiber nonwoven fabric is a nonwoven fabric by the melt blowing method, since the variation in a fiber diameter was large, not less than 100 of fibers were measured for fiber diameters and an average value was calculated.
  • a nonwoven fabric of 20 cm of each side was taken, and a measured value of the weight was converted per 1 m 2 to obtain amass per unit area.
  • the mass per unit area of a nonwoven fabric was divided by a thickness under a load of 20 g/cm 2 to obtain a value, and the value obtained was converted into a unit of g/cm 3 to give a pack density.
  • a nonwoven fabric was cut into a rectangle with 20 cm width and 5 cm length.
  • a tensile elongation in low-speed measuring was obtained under the conditions of room temperature of 25 degrees C., sample length 10 cm, and crosshead 10 cm/minute.
  • a polypropylene resin (approximately 170 degrees C. of melting point) was extruded on a spunbond nonwoven fabric made of polyester having an average fiber diameter of 14 microns, and a mass per unit area of 30 g/m 2 (Ecule 6301A by Toyo Boseki Kabushiki Kaisha), and laminated thereon, forming a 20-micron film layer.
  • thermal bond staple fiber nonwoven fabric made of polyethylene terephthalate having a mass per unit area of 200 g/m 2 , and a thickness of 10 mm, and including a 30 percentage by weight of thermal adhesive fiber
  • the thermal bond staple fiber nonwoven fabric including a staple fiber with a 14 microns of average fiber diameter, 51 mm of a fiber length, and a number of crimp 12 time/inch.
  • Compound processing was carried out by the needle punching method on condition of needle of count 40 , and a penetration density 50 times/cm 2 , and a needle depth of 10 mm. Subsequently, the material obtained was integrated by heat adhesion at a temperature 30 degrees higher than an adhesive temperature of the fiber.
  • FIG. 1 illustrates a sound absorption coefficient.
  • a peak frequency gave a sound absorption coefficient of 92% at 2000 Hz, and the sound absorption coefficients (1000 Hz and 4000 Hz) gave 37% and 71%, respectively.
  • the thermal insulation rate gave an excellent value of 72%.
  • Example 2 Except for having extruded a film, having a thickness of 30 microns, made of a low density polyethylene with a melting point of approximately 110 degrees C. for lamination, a sound absorbing and heat insulating material was manufactured in a same manner as in Example 1. Needle breakages occurred frequently in a processing step made production impossible.
  • a sound absorbing and heat insulating material having a thickness of 10 mm and a mass per unit area of 200 g/m 2 was manufactured so as to give 15% of a weight fraction for a polyester staple fiber with 58 mm, using a co-form method.
  • a peak frequency did not exist between 315 and 5000 Hz.
  • the sound absorption coefficients (1000 Hz, 2000 Hz, and 4000 Hz) gave 23, 52 and 91%, respectively.
  • the thermal insulation rate gave a poor value of 52%.
  • the present invention provides a sound absorbing material having a smaller thickness, a light weight, and outstanding sound absorbing property and heat insulating property even in a lower frequency region.
  • the sound absorbing material concerned may be useful for improvement in fuel consumption and comfortableness improvement of products, and may be usable for broad usages, such as automobiles and air conditioning instruments, greatly contributing to industrial fields.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
US11/659,457 2004-08-04 2005-08-01 Sound Absorbing and Heat Insulating Material Abandoned US20080296087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004227832A JP2006047628A (ja) 2004-08-04 2004-08-04 吸音断熱材
PCT/JP2005/014018 WO2006013810A1 (ja) 2004-08-04 2005-08-01 吸音断熱材

Publications (1)

Publication Number Publication Date
US20080296087A1 true US20080296087A1 (en) 2008-12-04

Family

ID=35787095

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/659,457 Abandoned US20080296087A1 (en) 2004-08-04 2005-08-01 Sound Absorbing and Heat Insulating Material

Country Status (5)

Country Link
US (1) US20080296087A1 (de)
EP (1) EP1775714A4 (de)
JP (1) JP2006047628A (de)
CN (1) CN1993731A (de)
WO (1) WO2006013810A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100304109A1 (en) * 2007-09-19 2010-12-02 Carl Freudenberg Kg Acoustic nonwoven fabric for perforated ceiling elements
US20120247868A1 (en) * 2009-12-15 2012-10-04 Kazufumi Kato Noise absorbing fabric technical field
US20140008145A1 (en) * 2011-03-22 2014-01-09 San Shang Technology Co., Ltd. Sound absorbing and insulation composition material composition
CN107657946A (zh) * 2017-11-15 2018-02-02 苏州岸肯电子科技有限公司 一种特殊结构的吸声尖劈
CN108621974A (zh) * 2017-03-17 2018-10-09 科德宝两合公司 吸声纺织复合材料
US10113322B2 (en) 2014-12-08 2018-10-30 Zephyros, Inc. Vertically lapped fibrous flooring
US20190051282A1 (en) * 2015-10-16 2019-02-14 Auralex Acoustics Acoustic system and method
US10460715B2 (en) 2015-01-12 2019-10-29 Zephyros, Inc. Acoustic floor underlay system
US10755686B2 (en) 2015-01-20 2020-08-25 Zephyros, Inc. Aluminized faced nonwoven materials
EP3763521A4 (de) * 2018-03-08 2021-12-01 JNC Corporation Laminiertes akustisches absorptionselement
US20220219425A1 (en) * 2017-07-10 2022-07-14 Zephyros, Inc. Polymeric nonwoven structure for use in high temperature applications
US11541626B2 (en) 2015-05-20 2023-01-03 Zephyros, Inc. Multi-impedance composite

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4842048B2 (ja) * 2006-08-11 2011-12-21 日東紡績株式会社 複合シート及びシートパッド補強材
DE102007011665A1 (de) * 2007-03-09 2008-09-11 Btf Produktentwicklungs- Und Vertriebs-Gmbh Vlies oder Vliesverbund bei Bauanwendungen
JP2008299073A (ja) * 2007-05-31 2008-12-11 Mitsui Chemicals Inc 吸音材
FR2919749A1 (fr) * 2007-08-02 2009-02-06 Cera Dispositif d'insonorisation comprenant un film etanche associe par aiguilletage a un non tisse
WO2009129139A2 (en) 2008-04-14 2009-10-22 3M Innovative Properties Company Multilayer sound absorbing sheet
US8371419B2 (en) 2008-04-22 2013-02-12 3M Innovative Properties Company Hybrid sound absorbing sheet
US8573358B2 (en) 2008-05-22 2013-11-05 3M Innovative Properties Company Multilayer sound absorbing structure comprising mesh layer
US10427624B2 (en) 2014-10-30 2019-10-01 Autoneum Management Ag Fibrous automotive cladding
CN107454872A (zh) * 2015-02-13 2017-12-08 泽费罗斯股份有限公司 非织造的红外反射纤维材料
JP6566802B2 (ja) * 2015-05-14 2019-08-28 日本バイリーン株式会社 成形用繊維シート
CN107033393B (zh) * 2016-11-15 2019-11-08 济南大学 一种具有低频吸声隔声功能的纤维材料的制备方法
JP7191656B2 (ja) * 2017-11-27 2022-12-19 日本バイリーン株式会社 成型用基材不織布及びこれによって得られる成型体
JP2019098603A (ja) * 2017-11-30 2019-06-24 ダイニック株式会社 壁装材料
JP6751278B1 (ja) * 2019-06-21 2020-09-02 Jnc株式会社 積層吸音材
CN110843316B (zh) * 2019-10-30 2022-08-09 上海新安汽车隔音毡有限公司 一种汽车用复合结构隔音垫及其制作方法
WO2021177274A1 (ja) * 2020-03-02 2021-09-10 三菱ケミカル株式会社 吸音/遮音材用繊維成型体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296076B1 (en) * 1999-05-11 2001-10-02 John J. Hiers Acoustical insulating barrier and method of making the barrier
US20040192145A1 (en) * 2003-03-10 2004-09-30 Richard Theoret Non-woven sheet material for building construction

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247629B2 (ja) * 1997-03-03 2002-01-21 カネボウ株式会社 自動車用内装材
JPH10264293A (ja) * 1997-03-27 1998-10-06 Sekiyu Sangyo Kasseika Center 防音材料
JPH11309798A (ja) * 1998-04-27 1999-11-09 Nhk Spring Co Ltd 形状保持性に優れた立体的に成形された軟質ポリウレタンフォーム熱成形体
JP2001228879A (ja) * 2000-02-18 2001-08-24 Kanebo Ltd 吸音材及びその製造方法
JP3705419B2 (ja) * 2000-11-27 2005-10-12 東洋紡績株式会社 軽量吸音材
US8637414B2 (en) * 2002-04-22 2014-01-28 Lydall, Inc. Gradient density padding material and method of making same
JP3972296B2 (ja) * 2002-06-18 2007-09-05 東洋紡績株式会社 吸音材及び車両用内装材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296076B1 (en) * 1999-05-11 2001-10-02 John J. Hiers Acoustical insulating barrier and method of making the barrier
US20040192145A1 (en) * 2003-03-10 2004-09-30 Richard Theoret Non-woven sheet material for building construction

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100304109A1 (en) * 2007-09-19 2010-12-02 Carl Freudenberg Kg Acoustic nonwoven fabric for perforated ceiling elements
US20120247868A1 (en) * 2009-12-15 2012-10-04 Kazufumi Kato Noise absorbing fabric technical field
US9972913B2 (en) * 2009-12-15 2018-05-15 Asahi Kasei Fibers Corporation Noise absorbing fabric
US20140008145A1 (en) * 2011-03-22 2014-01-09 San Shang Technology Co., Ltd. Sound absorbing and insulation composition material composition
US11542714B2 (en) 2014-12-08 2023-01-03 Zephyros, Inc. Vertically lapped fibrous flooring
US10113322B2 (en) 2014-12-08 2018-10-30 Zephyros, Inc. Vertically lapped fibrous flooring
US10460715B2 (en) 2015-01-12 2019-10-29 Zephyros, Inc. Acoustic floor underlay system
US10755686B2 (en) 2015-01-20 2020-08-25 Zephyros, Inc. Aluminized faced nonwoven materials
US11541626B2 (en) 2015-05-20 2023-01-03 Zephyros, Inc. Multi-impedance composite
US20190051282A1 (en) * 2015-10-16 2019-02-14 Auralex Acoustics Acoustic system and method
US11955106B2 (en) * 2015-10-16 2024-04-09 Auralex Acoustics Inc Acoustic system and method
CN108621974A (zh) * 2017-03-17 2018-10-09 科德宝两合公司 吸声纺织复合材料
US20220219425A1 (en) * 2017-07-10 2022-07-14 Zephyros, Inc. Polymeric nonwoven structure for use in high temperature applications
CN107657946A (zh) * 2017-11-15 2018-02-02 苏州岸肯电子科技有限公司 一种特殊结构的吸声尖劈
EP3763521A4 (de) * 2018-03-08 2021-12-01 JNC Corporation Laminiertes akustisches absorptionselement

Also Published As

Publication number Publication date
WO2006013810A1 (ja) 2006-02-09
EP1775714A1 (de) 2007-04-18
JP2006047628A (ja) 2006-02-16
CN1993731A (zh) 2007-07-04
EP1775714A4 (de) 2009-01-07

Similar Documents

Publication Publication Date Title
US20080296087A1 (en) Sound Absorbing and Heat Insulating Material
US20030077969A1 (en) Sound absorption material having excellent moldability
US12005692B2 (en) Nonwoven laminate
JP3705419B2 (ja) 軽量吸音材
JP4574262B2 (ja) 吸音性積層体およびその製造法
JP2009184296A (ja) 吸音材およびその製造方法
JPH09226480A (ja) 自動車用サイレンサーパッド
JP7392649B2 (ja) 不織布構造体およびその製造方法
JP3968648B2 (ja) 吸音材
JP4977633B2 (ja) エアバッグカバー、その製造方法及びエアバッグ収納部材
JP6349019B1 (ja) メルトブローン不織布及びその用途ならびにその製造方法
JP6498454B2 (ja) 多層成形用シート及びシート成形体
JP6713873B2 (ja) 軽量性に優れた自動車内装用のウェブ及びそれを用いたニードルパンチ不織布、それらの製造方法、ならびにそれらを用いた自動車内装部品
JP3972296B2 (ja) 吸音材及び車両用内装材
JP6646267B1 (ja) 積層吸音材
JP5143110B2 (ja) 吸音材
JP3705420B2 (ja) 吸音材
JP2006285086A (ja) 吸音断熱材
WO2019026798A1 (ja) 積層吸音材
JP3786250B2 (ja) 車両用天井材およびその製造方法
KR20190005499A (ko) 경량화와 흡음성이 향상된 부직포 및 이의 제조방법
JP2003286637A (ja) ポリオレフィン系吸音材
WO2019230837A1 (ja) カーテン用不織布およびその製造方法
JP3705412B2 (ja) 吸音材およびその製造方法
KR101524690B1 (ko) 저배향 고신도 폴리에스터 단섬유로 제조된 열접착 부직포 및 그 제조 방법

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYO BOSEKI KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANAKA, SHIGEKI;SAKAMOTO, HIROYUKI;SAKAGUCHI, HIROYASU;REEL/FRAME:018895/0823

Effective date: 20070118

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION