TW202326744A - Test system and test circuit thereof - Google Patents
Test system and test circuit thereof Download PDFInfo
- Publication number
- TW202326744A TW202326744A TW110147398A TW110147398A TW202326744A TW 202326744 A TW202326744 A TW 202326744A TW 110147398 A TW110147398 A TW 110147398A TW 110147398 A TW110147398 A TW 110147398A TW 202326744 A TW202326744 A TW 202326744A
- Authority
- TW
- Taiwan
- Prior art keywords
- test
- delay
- circuit
- command
- signal
- Prior art date
Links
- 238000005070 sampling Methods 0.000 claims abstract description 34
- 230000001934 delay Effects 0.000 claims abstract description 14
- 239000003990 capacitor Substances 0.000 claims description 12
- 239000000872 buffer Substances 0.000 claims description 8
- 230000003111 delayed effect Effects 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 15
- 101100420795 Schizosaccharomyces pombe (strain 972 / ATCC 24843) sck1 gene Proteins 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 6
- 101100524516 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RFA2 gene Proteins 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 4
- 101150110971 CIN7 gene Proteins 0.000 description 3
- 101150110298 INV1 gene Proteins 0.000 description 3
- 101100397044 Xenopus laevis invs-a gene Proteins 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/12015—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising clock generation or timing circuitry
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/10—Test algorithms, e.g. memory scan [MScan] algorithms; Test patterns, e.g. checkerboard patterns
Landscapes
- Tests Of Electronic Circuits (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
本發明是有關於一種測試系統以及其測試電路,且特別是有關於一種記憶體測試系統以及記憶體測試電路。The present invention relates to a test system and its test circuit, and in particular to a memory test system and a memory test circuit.
現今動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)之主流輸入/輸出架構為雙倍資料率(Double Data Rate,DDR)架構。由於DDR架構於匯流排時脈的上升緣及下降緣各傳輸一次資料,因此其資料傳輸頻率為匯流排時脈頻率的兩倍。以現今第四代雙倍資料率(DDR4)的規格為例,於一般使用情況下,其匯流排時脈頻率可高達約1.6GHz,因此DDR4的資料傳輸頻率可高達3.2GHz。The current mainstream I/O architecture of Dynamic Random Access Memory (DRAM) is Double Data Rate (DDR) architecture. Since the DDR architecture transmits data on the rising and falling edges of the bus clock, its data transmission frequency is twice the bus clock frequency. Taking the current fourth-generation double data rate (DDR4) specification as an example, under normal usage conditions, the bus clock frequency can be as high as about 1.6GHz, so the data transmission frequency of DDR4 can be as high as 3.2GHz.
然而,於記憶體晶片的產品測試應用中,尤其在晶圓級的測試條件下,難以提供記憶體高達一般使用情況下的所需頻率(例如:1.6GHz)。於晶圓級的高速測試機,通常所能提供的測試頻率最高僅能達到約100MHz,遠低於DDR記憶體於一般使用情況下的所需頻率。更由於高速測試機造價昂貴,若要更大幅提高其測試頻率,於現今條件下幾乎難以達成。因此現今的晶圓級的記憶體測試,將受限於測試機的測試頻率,使得測試時所提供給記憶體的時脈頻率,遠低於一般使用情況下記憶體的所需時脈頻率,而使測試時間大幅拉長,進而拉高了記憶體晶片的製造成本。However, in the application of product testing of memory chips, especially under wafer-level test conditions, it is difficult to provide memory with a frequency as high as that required in general use (for example: 1.6 GHz). A high-speed testing machine at the wafer level can usually provide a test frequency up to about 100MHz, which is far lower than the required frequency of DDR memory in general use. Furthermore, due to the high cost of high-speed testing machines, it is almost impossible to achieve a greater increase in testing frequency under current conditions. Therefore, the current wafer-level memory test will be limited by the test frequency of the testing machine, so that the clock frequency provided to the memory during the test is much lower than the required clock frequency of the memory under normal use. As a result, the test time is greatly lengthened, thereby raising the manufacturing cost of the memory chip.
本發明提供一種測試電路,可透過具有較低頻率的時脈信號來完成記憶體內部的測試動作。The invention provides a test circuit, which can complete the test action inside the memory through the clock signal with a lower frequency.
本發明的測試電路包括命令解碼電路、觸發信號產生器、延遲控制信號產生器、延遲電路以及測試資料產生器。命令解碼電路根據解碼測試命令以產生調整信號。觸發信號產生器根據輸入時脈信號以產生觸發信號。延遲控制信號產生器耦接於命令解碼電路,並根據調整信號以產生延遲控制信號。延遲電路耦接於延遲控制信號產生器以及觸發信號產生器,以依據延遲控制信號產生單位延遲,並基於單位延遲對觸發信號進行延遲以產生多個取樣時脈。測試資料產生器依據多個取樣時脈取樣測試資料,以獲得測試輸出信號。The test circuit of the present invention includes a command decoding circuit, a trigger signal generator, a delay control signal generator, a delay circuit and a test data generator. The command decoding circuit generates an adjustment signal according to the decoded test command. The trigger signal generator generates a trigger signal according to the input clock signal. The delay control signal generator is coupled to the command decoding circuit and generates a delay control signal according to the adjustment signal. The delay circuit is coupled to the delay control signal generator and the trigger signal generator to generate a unit delay according to the delay control signal, and delay the trigger signal based on the unit delay to generate a plurality of sampling clocks. The test data generator samples test data according to a plurality of sampling clocks to obtain test output signals.
本發明的測試系統包括測試機以及測試電路。測試機耦接測試電路。測試電路包括命令解碼電路、觸發信號產生器、延遲控制信號產生器、延遲電路以及測試資料產生器。命令解碼電路根據解碼測試命令以產生調整信號。觸發信號產生器根據輸入時脈信號以產生觸發信號。延遲控制信號產生器耦接於命令解碼電路,並根據調整信號以產生延遲控制信號。延遲電路耦接於延遲控制信號產生器以及觸發信號產生器,以依據延遲控制信號產生單位延遲,並基於單位延遲對觸發信號進行延遲以產生多個取樣時脈。測試資料產生器依據多個取樣時脈取樣測試資料,以獲得測試輸出信號。其中測試機用以提供測試命令以及輸入時脈信號至測試電路,以及接收該測試輸出信號,並根據該測試輸出信號以產生測試結果。The testing system of the present invention includes a testing machine and a testing circuit. The testing machine is coupled to the testing circuit. The test circuit includes a command decoding circuit, a trigger signal generator, a delay control signal generator, a delay circuit and a test data generator. The command decoding circuit generates an adjustment signal according to the decoded test command. The trigger signal generator generates a trigger signal according to the input clock signal. The delay control signal generator is coupled to the command decoding circuit and generates a delay control signal according to the adjustment signal. The delay circuit is coupled to the delay control signal generator and the trigger signal generator to generate a unit delay according to the delay control signal, and delay the trigger signal based on the unit delay to generate a plurality of sampling clocks. The test data generator samples test data according to a plurality of sampling clocks to obtain test output signals. The testing machine is used to provide test commands and input clock signals to the test circuit, receive the test output signals, and generate test results according to the test output signals.
基於上述,本發明的測試電路以及測試系統,可使用較低頻率的外部時脈信號輸入測試電路,得到較高的時脈信號頻率的測試輸出信號,以完成記憶體內部的測試動作。在不增加測試機硬體成本的前提下,測試電路可輸出相對外部輸入時脈信號較高頻的輸出信號以縮短測試時間。另外本發明的技術方案,除了不增加測試機硬體成本外,亦不須使用於測試電路的時脈輸入端耦接倍頻器的技術,例如使用鎖相迴路(Phase Locked Loop,PLL)等技術方案,因此不會提高測試系統的成本以及複雜度。Based on the above, the test circuit and test system of the present invention can use a lower frequency external clock signal to input the test circuit to obtain a test output signal with a higher clock signal frequency to complete the internal test operation of the memory. On the premise of not increasing the hardware cost of the tester, the test circuit can output an output signal with a higher frequency than the external input clock signal to shorten the test time. In addition, the technical solution of the present invention, in addition to not increasing the hardware cost of the testing machine, also does not need to use the technology of coupling the clock pulse input end of the testing circuit to the frequency multiplier, such as using a phase locked loop (Phase Locked Loop, PLL), etc. Therefore, the cost and complexity of the test system will not be increased.
請參照圖1,圖1為本發明一實施例的測試電路的示意圖。測試電路100包括命令解碼器110、觸發信號產生器120、延遲控制信號產生器130、延遲電路140以及測試資料產生器150。其中延遲控制信號產生器130耦接命令解碼器110以及延遲電路140,延遲電路140還耦接觸發信號產生器120以及測試資料產生器150。Please refer to FIG. 1 , which is a schematic diagram of a test circuit according to an embodiment of the present invention. The
命令解碼器110接收並解碼來自外部例如測試機所提供的測試命令CMD。觸發信號產生器120接收來自外部例如測試機所提供的時脈信號CLK,時脈信號CLK可以為一週期性時脈信號,觸發信號產生器120依據時脈信號CLK以產生一觸發信號TG。觸發信號產生器120可依據時脈信號CLK的轉態緣來產生觸發信號TG,其中轉態緣可以為上升緣及/或下降緣。測試資料產生器150則用以輸出測試輸出信號DOUT。The
命令解碼器110針對測試命令CMD進行解碼,並產生調整信號TCODE。命令解碼器110並提供調整信號TCODE至延遲控制信號產生器130。延遲控制信號產生器130依據調整信號TCODE來產生延遲控制信號Dctrl。延遲電路140可依據延遲控制信號Dctrl來設定單位延遲,並基於所設定的單位延遲,延遲觸發信號TG一次至多次,以依序產生多個取樣時脈SCK1~SCKn。值得注意的是,由於觸發信號TG是依據時脈信號CLK的波形的觸發所產生,並且延遲電路140依據所述單位延遲,將觸發信號TG多次延遲而產生取樣時脈SCK1~SCKn;亦即,時脈信號CLK的每個週期將產生取樣時脈SCK1~SCKn。此意味著取樣時脈SCK1~SCKn的頻率將高於時脈信號CLK的頻率,且取樣時脈SCK1~SCKn的頻率可以由所述單位延遲的時間決定。The
測試資料產生器150依據取樣時脈SCK1~SCKn,以分別取樣多個測試資料PD1~PDn,以產生測試輸出信號DOUT。其中測試資料PD1~PDn可以為預先被寫入至測試電路100的暫存器(圖1未示出)的預設測試資料,或為由積體電路根據測試動作所產生的測試資料(例如記憶體的讀出資料)。測試資料產生器150可以為一並列轉序列轉換器(parrel to serial converter),用以依據取樣時脈SCK1~SCKn,將測試資料PD1~PDn轉換成一串列資料,並藉以產生測試輸出信號DOUT。The
本實施例的測試電路100,可以內嵌在待測記憶體晶片中。依據上述實施方式,本實施例的測試電路100,可依據所輸入的測試命令CMD以及時脈信號CLK,輸出測試輸出信號DOUT,以完成記憶體內部的測試動作。且測試電路100的特徵在於,測試輸出信號DOUT的頻率較時脈信號CLK的頻率高。The
請參照圖2,圖2為本發明另一實施例的測試電路的示意圖。測試電路200包括命令解碼器210、觸發信號產生器220、延遲控制信號產生器230、延遲電路240以及測試資料產生器250。其中延遲控制信號產生器230耦接命令解碼器210以及延遲電路240,延遲電路240還耦接觸發信號產生器220以及測試資料產生器250。其中命令解碼器210用以接收測試命令CMD,觸發信號產生器220用以接收時脈信號CLK,以及測試資料產生器250用以產生輸出測試信號DOUT。Please refer to FIG. 2 , which is a schematic diagram of a test circuit according to another embodiment of the present invention. The
測試電路200與圖1實施例的測試電路的不同處在於,延遲電路240包括依序串接的多個電壓控制延遲器VCD1~VCDn。如圖2所示,其中電壓控制延遲器VCD1的輸入端耦接至觸發信號產生器220,電壓控制延遲器VCD1的輸出端依序串接電壓控制延遲器VCD2~VCDn。其中電壓控制延遲器VCD1~VCDn共同耦接至延遲控制信號產生器230,且電壓控制延遲器VCD1~VCDn之輸出端分別耦接至測試資料產生器250。The difference between the
延遲控制信號產生器230依據來自命令解碼器210解碼測試命令CMD所產生的調整信號TCODE,以產生延遲控制信號Dctrl。其中延遲控制信號Dctrl可具有一電壓值,電壓控制延遲器VCD1~VCDn的每一者可依據延遲控制信號Dctrl的電壓值來產生單位延遲,並依序延遲觸發信號TG來產生多個取樣時脈SCK1~SCKn。在本實施例中,單位延遲的時間長度可由延遲控制信號Dctrl的電壓值決定。其中,單位延遲的時間長度可以與延遲控制信號Dctrl的電壓值正相關或負相關,沒有一定的限制。The delay
請參照圖3,圖3為本發明另一實施例的測試電路的示意圖。測試電路300包括命令解碼器310、觸發信號產生器320、延遲控制信號產生器330、延遲電路340以及測試資料產生器350。其中延遲控制信號產生器330耦接命令解碼器310以及延遲電路340,延遲電路340還耦接觸發信號產生器320以及測試資料產生器350。其中命令解碼器310用以接收測試命令CMD,觸發信號產生器320用以接收時脈信號CLK,以及測試資料產生器350用以產生輸出測試信號DOUT。Please refer to FIG. 3 , which is a schematic diagram of a test circuit according to another embodiment of the present invention. The
測試電路300與圖1實施例的測試電路的不同處在於,延遲電路340包括延遲線341以及選擇電路342,其中延遲線341可包括多個依序串接的延遲器D1~Dn。如圖3所示,其中延遲器D1的輸入端耦接至觸發信號產生器320,延遲器D1的輸出端依序串接延遲器D2~Dn。且其中延遲器D1~Dn之輸出端分別耦接至選擇電路342。選擇電路342耦接延遲控制信號產生器330與測試資料產生器350,並且選擇電路342將延遲器D1~Dn的輸出端的多個輸出訊號選擇性的提供至測試資料產生器350。The difference between the
其中延遲器D1~Dn中的每一者,可產生單位解析延遲,並依序延遲觸發訊號TG且輸出至選擇電路342。延遲控制信號產生器330依據調整信號TCODE來產生一延遲控制信號Dctrl,選擇電路342則可依據延遲控制信號Dctrl來選擇延遲器D1~Dn中的部份的輸出,來產生多個取樣時脈SCK1~SCKn,其中相位相近的二取樣時脈中具有一單位延遲。舉例而言,所設定的單位延遲的長度若為單位解析延遲長度的3倍,則延遲控制信號產生器330將延遲控制信號Dctrl提供給選擇電路342,選擇電路342將選擇延遲器D3、D6、D9…所產生的延遲訊號,提供給測試資料產生器350,以產生多個取樣時脈SCK1~SCKn。Each of the delays D1 ˜Dn can generate a unit resolution delay, and sequentially delay the trigger signal TG and output it to the
請參照圖4A~4D,圖4A~4D例示圖3實施例的延遲線341的多個實施方式。在圖4A中,延遲線341包括依序串接的多個緩衝器BUF1~BUFn。另外在圖4B中,延遲線341另包括多個電阻電容網路,其中的每一個電阻電容網路可分別耦接至對應的緩衝器BUF1~BUFn的輸入端或輸出端,並用以提升上述的單位解析延遲的長度。在圖4B中,以電阻電容網路RCN為例,電阻電容網路RCN耦接緩衝器BUF1的輸出端。其中電阻R的一端耦接至緩衝器BUF1的輸出端,電阻R的另一端耦接電容C的一端,電容C的另一端則可耦接至參考接地端。Please refer to FIGS. 4A˜4D , which illustrate multiple implementations of the
在圖4C中,延遲線341包括相互串接的多個反相器INV1~INVn。而在圖4D中,延遲線341還包括多個電阻電容網路。電阻電容網路可耦接於反相器INV1~INVn的每一個的輸入端或輸出端,並用以提升上述的單位解析延遲的長度。In FIG. 4C , the
請參照圖5,為本發明一實施例的測試系統示意圖。測試系統500包括測試電路510以及測試機520。測試機520連接至測試電路510以執行測試。其中測試機520用以提供測試命令CMD以及時脈信號CLK至測試電路510,並且接收來自測試電路510的測試輸出信號DOUT。在本實施例中,測試機520還可以提供測試選擇信號SEL至測試電路510,以致能測試電路510執行測試。Please refer to FIG. 5 , which is a schematic diagram of a test system according to an embodiment of the present invention. The
其中,如圖5所示,測試電路510包括命令解碼器511、觸發信號產生器512、延遲控制信號產生器513、延遲電路514、測試資料產生器515、輸出驅動器516、以及測試接收器517。其中命令解碼器511耦接至觸發信號產生器512、延遲控制信號產生器513以及測試接收器517。觸發信號產生器512還耦接至延遲電路514以及輸出驅動器516。延遲控制信號產生器513還耦接至延遲電路514。延遲電路514還耦接至測試資料產生器515。測試資料產生器515還耦接輸出驅動器516。其中命令解碼器511耦接至測試機520以接收測試命令CMD。觸發信號產生器512耦接至測試機520以接收時脈信號CLK。測試接收器517則耦接至測試機520以接收測試選擇信號SEL。輸出驅動器516耦接至測試機520,並用以輸出測試輸出信號DOUT以完成測試。Wherein, as shown in FIG. 5 , the
在本實施例中的測試電路510,與圖1的測試電路不同處在於,命令解碼器511可解碼測試命令CMD以提供潛時控制信號LTctrl至觸發信號產生器512。觸發信號產生器512並可依據潛時控制信號LTctrl來設定一潛伏時間(Latency)。觸發信號產生器512可根據潛伏時間來調整產生觸發信號TG的時間點。The
此外,在本實施例中的測試電路510,測試資料產生器515依據多個取樣時脈SCK1~SCKn取樣測試資料PD1~PDn,以產生串列資料SDA並提供至輸出驅動器516,且輸出驅動器516還接收來自觸發信號產生器512產生的觸發信號TG。輸出驅動器516依據觸發信號TG以及串列資料SDA以產生測試輸出信號DOUT。其中,測試輸出信號DOUT可包括前置(Preamble)信號部分以及一測試資料信號部分。前置信號部分可為輸出驅動器516依據觸發信號TG來對應產生,而測試資料信號部分為輸出驅動器516依據串列資料SDA所對應產生。In addition, in the
在本實施例中的測試電路510還透過測試接收器517以接收來自測試機520的測試選擇信號SEL。在當測試電路510對應的積體電路為被測試元件(device under test, DUT)時,測試電路510可依據選擇信號SEL來產生致能訊號EN,並提供致能訊號EN給命令解碼器511,以致能命令解碼器511可執行測試命令CMD的解碼動作,並進以執行後續的測試動作。The
以下請參照圖5及圖6,圖6例示如同圖5測試系統的實施例中,輸入時脈信號以及測試輸出信號的波形圖。其中,在圖6中,測試輸出信號DOUT具有前置信號部分PB以及所述測試資料信號部分,例如圖6所示測試資料信號d1~d9 …。前置信號部分PB為依據觸發信號產生器512提供的觸發信號TG所產生,因此相對於時脈信號CLK的上升緣觸發時間點,具有潛伏時間LT_T的延遲。在本實施例中,時脈信號CLK的一個週期,可對應八筆的測試資料信號(例如測試資料信號d1~d8)。Please refer to FIG. 5 and FIG. 6 below. FIG. 6 illustrates waveform diagrams of the input clock signal and the test output signal in the embodiment of the test system as in FIG. 5 . Wherein, in FIG. 6 , the test output signal DOUT has a preamble signal part PB and the test data signal part, such as the test data signals d1~d9 . . . shown in FIG. 6 . The preamble signal part PB is generated according to the trigger signal TG provided by the
值得一提的是觸發信號產生器512可依據時脈信號CLK的多個上升緣,來週期性的產生觸發信號TG。It is worth mentioning that the
以下請同步參照圖5以及圖7,圖7為本發明實施例的測試系統的潛伏時間調校模式的測試動作的波形圖。本發明實施例的測試系統可依據多次的測試結果,來進行潛伏時間的設定動作。在圖7中,測試系統500的命令解碼器511可透過產生不同的潛時控制信號LTctrl來分別執行測試動作T1~T4。其中,測試動作T1~T4的潛伏時間可分別為不相同的第一至第四潛伏時間。對應不同的潛伏時間,輸出驅動器516在測試動作T1~T4可分別產生前置信號部分出現時間不同的測試輸出信號DOUT。於本實施例中,測試輸出信號DOUT前置信號部分可為邏輯0。測試機520則可依據所設定的取樣點S0來對測試輸出信號DOUT進行取樣。因此,在潛伏時間調校模式中,測試機520可依據上述的取樣結果來與邏輯0進行比較,就可以得知測試輸出信號的DOUT的前置信號部分出現時間是否正確。Please refer to FIG. 5 and FIG. 7 synchronously below. FIG. 7 is a waveform diagram of a test operation in the latency adjustment mode of the test system according to an embodiment of the present invention. The test system of the embodiment of the present invention can perform the setting action of the latency time according to the test results of multiple times. In FIG. 7 , the
在圖7中,在測試動作T1以及T4中,測試機520可判斷出測試輸出信號DOUT的前置信號出現時間是不正確的,而在測試動作T2以及T3中,測試機520可判斷出測試輸出信號DOUT的前置信號出現時間是正確的。據此,測試機520可進一步將測試動作T2及T3所對應的第二潛伏時間及第三單位潛伏時間兩者平均,以產生設定潛伏時間。In FIG. 7 , in the test actions T1 and T4, the
以下請同步參照圖5以及圖8,圖8為本發明實施例的測試系統的單位延遲調校模式的測試動作的波形圖。本發明實施例的測試系統可依據多次的測試結果,來進行單位延遲的設定動作。在圖8中,測試系統500中的延遲控制信號產生器513可透過產生不同的延遲控制信號Dctrl來分別執行測試動作T1’~T4’。其中,測試動作T1’~T4’的單位延遲可分別為不相同的第一至第四單位延遲。對應不同的單位延遲,輸出驅動器516在測試動作T1’~T4’可分別產生不同相位的測試輸出信號DOUT。測試機520則可依據所設定的取樣點S1~S8來對測試輸出信號DOUT進行取樣。在單位延遲調校模式中,測試輸出信號DOUT是依據預先設定好的測試資料PD1~PDn來產生。因此,測試機520可依據上述的取樣結果來與測試資料PD1~PDn進行比較,就可以得知測試輸出信號DOUT是否正確。Please refer to FIG. 5 and FIG. 8 synchronously below. FIG. 8 is a waveform diagram of a test operation in the unit delay adjustment mode of the test system according to an embodiment of the present invention. The test system of the embodiment of the present invention can perform the setting action of the unit delay according to multiple test results. In FIG. 8, the delay
在圖8中,在測試動作T1’以及T4’中,測試機520可判斷出測試輸出信號DOUT是不正確的,而在測試動作T2’以及T3’中,測試機520可判斷出測試輸出信號DOUT是正確的。據此,測試機520可進一步將測試動作T2’及T3’所對應的第二單位延遲及第三單位延遲兩者平均,以產生設定單位延遲。In FIG. 8, in the test actions T1' and T4', the
在本發明實施例中,當潛伏時間以及單位延遲設定完成後,測試資料產生器510可變更以接收積體電路內部的資料,例如記憶體的讀出資料。測試機520則可依據所設定的取樣點,取樣測試輸出信號DOUT,以得到記憶體的讀出資料的輸出資料,來完成記憶體內部的測試。In the embodiment of the present invention, after the setting of the latency and the unit delay is completed, the
綜上所述,本發明所揭露的測試系統以及其測試電路,可依據輸入至測試電路的時脈信號來產生相對高頻的取樣信號,並透過取樣信號來產生輸出測試信號,以完成記憶體內部的測試動作,進以縮短測試時間。如此一來,在不需要設置鎖相迴路(Phase Locked Loop,PLL)的前題下,本發明所揭示的測試系統以及其測試電路可執行相對高頻率的測試動作,在不使用高階測試機的條件下,有效提升測試速率,並降低測試成本。In summary, the test system and its test circuit disclosed in the present invention can generate a relatively high-frequency sampling signal according to the clock signal input to the test circuit, and generate an output test signal through the sampling signal to complete the memory Part of the test action to shorten the test time. In this way, under the premise that no phase-locked loop (Phase Locked Loop, PLL) is required, the test system and its test circuit disclosed in the present invention can perform relatively high-frequency test actions without using a high-end test machine. Under certain conditions, the test rate can be effectively increased and the test cost can be reduced.
100、200、300、510:測試電路
110、210、310、511:命令解碼器
120、220、320、512:觸發信號產生器
130、230、330、513:延遲控制信號產生器
140、240、340、514:延遲電路
150、250、350、515:測試資料產生器
341:延遲線
342:選擇電路
500:測試系統
516:輸出驅動器
517:測試接收器
520:測試機
BUF1~BUFn:緩衝器
C:電容
CLK:時脈信號
CMD:測試命令
d1~d9:測試資料信號
D1~Dn:延遲器
Dctrl:延遲控制信號
DOUT:測試輸出信號
EN:致能信號
INV1~INVn:反相器
LT_T:潛伏時間
LTctrl:潛時控制信號
PB:前置信號部分
PD1~PDn:測試資料
R:電阻
RCN:電阻電容網路
S0、S1~S8:取樣點
SCK1~SCKn:取樣時脈
SDA:串列資料
SEL:測試選擇信號
T1、T2、T3、T4、T1’、T2’、T3’、T4’:測試動作
TCODE:調整信號
TG:觸發信號
VCD1~VCDn:電壓控制延遲器
100, 200, 300, 510:
圖1繪示本發明一實施例的測試電路的示意圖。 圖2繪示本發明另一實施例的測試電路的示意圖。 圖3繪示本發明另一實施例的測試電路的示意圖。 圖4A至圖4D繪示本發明圖3實施例中的延遲線的實施方式示意圖。 圖5繪示本發明一實施例的示意圖。 圖6繪示本發明圖5測試系統實施例的輸入時脈信號以及測試輸出信號的波形圖。 圖7繪示本發明測試系統的潛伏時間調校模式的測試動作的波形圖。 圖8繪示本發明測試系統的單位延遲調校模式的測試動作的波形圖。 FIG. 1 is a schematic diagram of a test circuit according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a test circuit according to another embodiment of the present invention. FIG. 3 is a schematic diagram of a test circuit according to another embodiment of the present invention. FIG. 4A to FIG. 4D are schematic diagrams illustrating the implementation of the delay line in the embodiment of FIG. 3 of the present invention. FIG. 5 is a schematic diagram of an embodiment of the present invention. FIG. 6 is a waveform diagram of an input clock signal and a test output signal of the embodiment of the test system shown in FIG. 5 of the present invention. FIG. 7 is a waveform diagram of a test action in the latency adjustment mode of the test system of the present invention. FIG. 8 is a waveform diagram of a test operation in the unit delay adjustment mode of the test system of the present invention.
100:測試電路 100: Test circuit
110:命令解碼器 110: command decoder
120:觸發信號產生器 120: Trigger signal generator
130:延遲控制信號產生器 130: delay control signal generator
140:延遲電路 140: delay circuit
150:測試資料產生器 150: Test data generator
CMD:測試命令 CMD: test command
CLK:時脈信號 CLK: clock signal
DOUT:測試輸出信號 DOUT: Test output signal
TCODE:調整信號 TCODE: adjust the signal
Dctrl:延遲控制信號 Dctrl: delay control signal
TG:觸發信號 TG: trigger signal
SCK1~SCKn:取樣時脈 SCK1~SCKn: sampling clock
PD1~PDn:測試資料 PD1~PDn: test data
Claims (18)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110147398A TWI781017B (en) | 2021-12-17 | 2021-12-17 | Test system and test circuit thereof |
CN202210004695.5A CN116266471A (en) | 2021-12-17 | 2022-01-05 | Test system and test circuit thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110147398A TWI781017B (en) | 2021-12-17 | 2021-12-17 | Test system and test circuit thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI781017B TWI781017B (en) | 2022-10-11 |
TW202326744A true TW202326744A (en) | 2023-07-01 |
Family
ID=85462516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110147398A TWI781017B (en) | 2021-12-17 | 2021-12-17 | Test system and test circuit thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116266471A (en) |
TW (1) | TWI781017B (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4229998B2 (en) * | 1998-01-19 | 2009-02-25 | 株式会社ルネサステクノロジ | Semiconductor device and manufacturing method of semiconductor device |
KR100800483B1 (en) * | 2006-09-06 | 2008-02-04 | 삼성전자주식회사 | Synchronous semiconductor memory device for high frequency operation |
TWI366196B (en) * | 2007-09-21 | 2012-06-11 | Faraday Tech Corp | Programmable memory built-in self test circuit |
JP2009282721A (en) * | 2008-05-21 | 2009-12-03 | Nec Electronics Corp | Memory controller, memory control system, and method of controlling amount of delay in memory |
KR20150064452A (en) * | 2013-12-03 | 2015-06-11 | 에스케이하이닉스 주식회사 | Built-in self test circuit and semiconductor device the same |
-
2021
- 2021-12-17 TW TW110147398A patent/TWI781017B/en active
-
2022
- 2022-01-05 CN CN202210004695.5A patent/CN116266471A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN116266471A (en) | 2023-06-20 |
TWI781017B (en) | 2022-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7969802B2 (en) | Apparatus and method of generating output enable signal for semiconductor memory apparatus | |
US7675791B2 (en) | Synchronous memory device | |
US7385861B1 (en) | Synchronization circuit for DDR IO interface | |
US6333893B1 (en) | Method and apparatus for crossing clock domain boundaries | |
US7633324B2 (en) | Data output strobe signal generating circuit and semiconductor memory apparatus having the same | |
US8115529B2 (en) | Device and control method of device | |
US7394722B2 (en) | Method for controlling data output timing of memory device and device therefor | |
US10725950B2 (en) | Peripheral interface circuit for serial memory | |
US9196349B2 (en) | Semiconductor device | |
JP4419067B2 (en) | Semiconductor device, memory device and memory module having digital interface | |
US7801259B2 (en) | Frequency detecting circuit and method, and semiconductor apparatus including frequency detecting circuit | |
KR20180069565A (en) | Semiconductor Apparatus, Semiconductor System and Training Method | |
US7982511B2 (en) | DLL circuit and method of controlling the same | |
TWI781017B (en) | Test system and test circuit thereof | |
US20190267057A1 (en) | Semiconductor device, semiconductor system including the semiconductor device, and method of operating the semiconductor device and system | |
US7920008B2 (en) | Data output clock generating circuit and method of generating data output clock of semiconductor memory apparatus | |
KR101869692B1 (en) | Data output circuit | |
JP2001006400A (en) | Memory device | |
CN110364220B (en) | Circuit system and chip for measuring data reading time of embedded memory | |
US10777243B2 (en) | Semiconductor device and semiconductor system including the semiconductor device for aligning an internal data strobe signal using an offset code | |
JPH07262076A (en) | Semiconductor device | |
TWI820783B (en) | Frequency detection device for clock signal and detection method thereof | |
JP4945616B2 (en) | Semiconductor device having digital interface | |
US10591538B2 (en) | Data reading device and data reading method for design-for-testing | |
CN117471165A (en) | Clock signal frequency detection device and detection method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |