[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN116266471A - Test system and test circuit thereof - Google Patents

Test system and test circuit thereof Download PDF

Info

Publication number
CN116266471A
CN116266471A CN202210004695.5A CN202210004695A CN116266471A CN 116266471 A CN116266471 A CN 116266471A CN 202210004695 A CN202210004695 A CN 202210004695A CN 116266471 A CN116266471 A CN 116266471A
Authority
CN
China
Prior art keywords
test
circuit
delay
command
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210004695.5A
Other languages
Chinese (zh)
Inventor
石原政广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powerchip Technology Corp
Original Assignee
Powerchip Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powerchip Technology Corp filed Critical Powerchip Technology Corp
Publication of CN116266471A publication Critical patent/CN116266471A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/12015Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising clock generation or timing circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/10Test algorithms, e.g. memory scan [MScan] algorithms; Test patterns, e.g. checkerboard patterns 

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提出一种测试系统以及其测试电路。测试电路包括命令解码器、触发信号产生器、延迟控制信号产生器、延迟电路以及测试数据产生器。命令解码器根据解码测试命令以产生调整信号。触发信号产生器根据时钟信号产生触发信号。延迟控制信号产生器根据调整信号产生延迟控制信号。延迟电路根据延迟控制信号产生单位延迟且基于单位延迟对触发信号进行延迟以产生多个采样时钟。测试数据产生器依据采样时钟采样测试数据以获得测试输出信号。

Figure 202210004695

The invention provides a test system and its test circuit. The test circuit includes a command decoder, a trigger signal generator, a delay control signal generator, a delay circuit and a test data generator. The command decoder generates an adjustment signal according to the decoded test command. The trigger signal generator generates a trigger signal according to the clock signal. The delay control signal generator generates a delay control signal according to the adjustment signal. The delay circuit generates a unit delay according to the delay control signal and delays the trigger signal based on the unit delay to generate a plurality of sampling clocks. The test data generator samples the test data according to the sampling clock to obtain the test output signal.

Figure 202210004695

Description

测试系统以及其测试电路Test system and its test circuit

技术领域technical field

本发明涉及一种测试系统以及其测试电路,且特别涉及一种存储器测试系统以及存储器测试电路。The invention relates to a test system and its test circuit, and in particular to a memory test system and a memory test circuit.

背景技术Background technique

现今动态随机存取存储器(Dynamic Random Access Memory,DRAM)的主流输入/输出架构为双倍数据率(Double Data Rate,DDR)架构。由于DDR架构在总线时钟的上升沿及下降沿各传输一次数据,因此其数据传输频率为总线时钟频率的两倍。以现今第四代双倍数据率(DDR4)的规格为例,在一般使用情况下,其总线时钟频率可高达约1.6GHz,因此DDR4的数据传输频率可高达3.2GHz。The current mainstream I/O architecture of Dynamic Random Access Memory (DRAM) is Double Data Rate (DDR) architecture. Since the DDR architecture transmits data once on the rising edge and falling edge of the bus clock, its data transmission frequency is twice the frequency of the bus clock. Taking the current fourth-generation double data rate (DDR4) specification as an example, under normal usage conditions, its bus clock frequency can be as high as about 1.6 GHz, so the data transmission frequency of DDR4 can be as high as 3.2 GHz.

然而,在存储器芯片的产品测试应用中,尤其在晶圆级的测试条件下,难以提供存储器高达一般使用情况下的所需频率(例如:1.6GHz)。在晶圆级的高速测试机,通常所能提供的测试频率最高仅能达到约100MHz,远低于DDR存储器在一般使用情况下的所需频率。更由于高速测试机造价昂贵,若要更大幅提高其测试频率,在现今条件下几乎难以达成。因此现今的晶圆级的存储器测试,将受限于测试机的测试频率,使得测试时所提供给存储器的时钟频率,远低于一般使用情况下存储器的所需时钟频率,而使测试时间大幅拉长,进而拉高了存储器芯片的制造成本。However, in the application of product testing of memory chips, especially under wafer-level test conditions, it is difficult to provide the required frequency (for example: 1.6 GHz) of the memory up to the general usage. A high-speed testing machine at the wafer level can usually provide a test frequency up to only about 100 MHz, which is far lower than the required frequency of DDR memory in general use. Furthermore, due to the high cost of high-speed testing machines, it is almost impossible to achieve a greater increase in testing frequency under current conditions. Therefore, the current wafer-level memory test will be limited by the test frequency of the tester, so that the clock frequency provided to the memory during the test is far lower than the required clock frequency of the memory in general use, and the test time will be significantly reduced. Elongated, which in turn increases the manufacturing cost of the memory chip.

发明内容Contents of the invention

本发明提供一种测试电路,可通过具有较低频率的时钟信号来完成存储器内部的测试动作。The invention provides a test circuit, which can complete the test action inside the memory through a clock signal with a lower frequency.

本发明的测试电路包括命令解码电路、触发信号产生器、延迟控制信号产生器、延迟电路以及测试数据产生器。命令解码电路根据解码测试命令以产生调整信号。触发信号产生器根据输入时钟信号以产生触发信号。延迟控制信号产生器耦接于命令解码电路,并根据调整信号以产生延迟控制信号。延迟电路耦接于延迟控制信号产生器以及触发信号产生器,以依据延迟控制信号产生单位延迟,并基于单位延迟对触发信号进行延迟以产生多个采样时钟。测试数据产生器依据多个采样时钟采样测试数据,以获得测试输出信号。The test circuit of the present invention includes a command decoding circuit, a trigger signal generator, a delay control signal generator, a delay circuit and a test data generator. The command decoding circuit generates an adjustment signal according to the decoded test command. The trigger signal generator generates a trigger signal according to the input clock signal. The delay control signal generator is coupled to the command decoding circuit and generates a delay control signal according to the adjustment signal. The delay circuit is coupled to the delay control signal generator and the trigger signal generator to generate a unit delay according to the delay control signal, and delay the trigger signal based on the unit delay to generate multiple sampling clocks. The test data generator samples test data according to a plurality of sampling clocks to obtain test output signals.

本发明的测试系统包括测试机以及测试电路。测试机耦接测试电路。测试电路包括命令解码电路、触发信号产生器、延迟控制信号产生器、延迟电路以及测试数据产生器。命令解码电路根据解码测试命令以产生调整信号。触发信号产生器根据输入时钟信号以产生触发信号。延迟控制信号产生器耦接于命令解码电路,并根据调整信号以产生延迟控制信号。延迟电路耦接于延迟控制信号产生器以及触发信号产生器,以依据延迟控制信号产生单位延迟,并基于单位延迟对触发信号进行延迟以产生多个采样时钟。测试数据产生器依据多个采样时钟采样测试数据,以获得测试输出信号。其中测试机用以提供测试命令以及输入时钟信号至测试电路,以及接收该测试输出信号,并根据该测试输出信号以产生测试结果。The testing system of the present invention includes a testing machine and a testing circuit. The testing machine is coupled to the testing circuit. The test circuit includes a command decoding circuit, a trigger signal generator, a delay control signal generator, a delay circuit and a test data generator. The command decoding circuit generates an adjustment signal according to the decoded test command. The trigger signal generator generates a trigger signal according to the input clock signal. The delay control signal generator is coupled to the command decoding circuit and generates a delay control signal according to the adjustment signal. The delay circuit is coupled to the delay control signal generator and the trigger signal generator to generate a unit delay according to the delay control signal, and delay the trigger signal based on the unit delay to generate multiple sampling clocks. The test data generator samples test data according to a plurality of sampling clocks to obtain test output signals. The testing machine is used to provide test commands and input clock signals to the test circuit, receive the test output signals, and generate test results according to the test output signals.

基于上述,本发明的测试电路以及测试系统,可使用较低频率的外部时钟信号输入测试电路,得到较高的时钟信号频率的测试输出信号,以完成存储器内部的测试动作。在不增加测试机硬件成本的前提下,测试电路可输出相对外部输入时钟信号较高频的输出信号以缩短测试时间。另外本发明的技术方案,除了不增加测试机硬件成本外,亦不须使用于测试电路的时钟输入端耦接倍频器的技术,例如使用锁相回路(Phase Locked Loop,PLL)等技术方案,因此不会提高测试系统的成本以及复杂度。Based on the above, the test circuit and test system of the present invention can use a lower frequency external clock signal to input the test circuit to obtain a test output signal with a higher clock signal frequency to complete the internal test operation of the memory. On the premise of not increasing the hardware cost of the tester, the test circuit can output an output signal with a higher frequency than the external input clock signal to shorten the test time. In addition, the technical solution of the present invention, in addition to not increasing the hardware cost of the testing machine, also does not need to use the technology of coupling the clock input end of the test circuit to the frequency multiplier, such as using technical solutions such as phase locked loop (Phase Locked Loop, PLL) , so the cost and complexity of the test system will not be increased.

附图说明Description of drawings

图1绘示本发明一实施例的测试电路的示意图。FIG. 1 is a schematic diagram of a test circuit according to an embodiment of the present invention.

图2绘示本发明另一实施例的测试电路的示意图。FIG. 2 is a schematic diagram of a test circuit according to another embodiment of the present invention.

图3绘示本发明另一实施例的测试电路的示意图。FIG. 3 is a schematic diagram of a test circuit according to another embodiment of the present invention.

图4A至图4D绘示本发明图3实施例中的延迟线的实施方式示意图。FIG. 4A to FIG. 4D are schematic diagrams illustrating the implementation of the delay line in the embodiment of FIG. 3 of the present invention.

图5绘示本发明一实施例的示意图。FIG. 5 is a schematic diagram of an embodiment of the present invention.

图6绘示本发明图5测试系统实施例的输入时钟信号以及测试输出信号的波形图。FIG. 6 is a waveform diagram of an input clock signal and a test output signal of the embodiment of the test system shown in FIG. 5 of the present invention.

图7绘示本发明测试系统的潜伏时间调校模式的测试动作的波形图。FIG. 7 is a waveform diagram of a test action in the latency adjustment mode of the test system of the present invention.

图8绘示本发明测试系统的单位延迟调校模式的测试动作的波形图。FIG. 8 is a waveform diagram of a test operation in the unit delay adjustment mode of the test system of the present invention.

【符号说明】【Symbol Description】

100、200、300、510:测试电路110、210、310、511:命令解码器120、220、320、512:触发信号产生器130、230、330、513:延迟控制信号产生器140、240、340、514:延迟电路150、250、350、515:测试数据产生器341:延迟线100, 200, 300, 510: test circuit 110, 210, 310, 511: command decoder 120, 220, 320, 512: trigger signal generator 130, 230, 330, 513: delay control signal generator 140, 240, 340, 514: delay circuit 150, 250, 350, 515: test data generator 341: delay line

342:选择电路342: Select Circuit

500:测试系统500: Test System

516:输出驱动器516: output driver

517:测试接收器517: Test Receiver

520:测试机520: Test machine

BUF1~BUFn:缓冲器BUF1~BUFn: buffer

C:电容C: Capacitance

CLK:时钟信号CLK: clock signal

CMD:测试命令CMD: test command

d1~d9:测试数据信号d1~d9: test data signal

D1~Dn:延迟器D1~Dn: delayer

Dctrl:延迟控制信号Dctrl: delay control signal

DOUT:测试输出信号DOUT: Test output signal

EN:致能信号EN: enable signal

INV1~INVn:反相器INV1~INVn: Inverter

LT_T:潜伏时间LT_T: Latency time

LTctrl:潜时控制信号LTctrl: Latency control signal

PB:前置信号部分PB: Pre-signal part

PD1~PDn:测试数据PD1~PDn: test data

R:电阻R: Resistance

RCN:电阻电容网络RCN: Resistor Capacitor Network

S0、S1~S8:采样点S0, S1~S8: Sampling points

SCK1~SCKn:采样时钟SCK1~SCKn: sampling clock

SDA:串行数据SDA: serial data

SEL:测试选择信号SEL: test selection signal

T1、T2、T3、T4、T1’、T2’、T3’、T4’:测试动作T1, T2, T3, T4, T1’, T2’, T3’, T4’: test action

TCODE:调整信号TCODE: adjust signal

TG:触发信号TG: trigger signal

VCD1~VCDn:电压控制延迟器VCD1~VCDn: voltage control delay

具体实施方式Detailed ways

请参照图1,图1为本发明一实施例的测试电路的示意图。测试电路100包括命令解码器110、触发信号产生器120、延迟控制信号产生器130、延迟电路140以及测试数据产生器150。其中延迟控制信号产生器130耦接命令解码器110以及延迟电路140,延迟电路140还耦接触发信号产生器120以及测试数据产生器150。Please refer to FIG. 1 , which is a schematic diagram of a test circuit according to an embodiment of the present invention. The test circuit 100 includes a command decoder 110 , a trigger signal generator 120 , a delay control signal generator 130 , a delay circuit 140 and a test data generator 150 . The delay control signal generator 130 is coupled to the command decoder 110 and the delay circuit 140 , and the delay circuit 140 is also coupled to the trigger signal generator 120 and the test data generator 150 .

命令解码器110接收并解码来自外部例如测试机所提供的测试命令CMD。触发信号产生器120接收来自外部例如测试机所提供的时钟信号CLK,时钟信号CLK可以为一周期性时钟信号,触发信号产生器120依据时钟信号CLK以产生一触发信号TG。触发信号产生器120可依据时钟信号CLK的转态缘来产生触发信号TG,其中转态缘可以为上升沿和/或下降沿。测试数据产生器150则用以输出测试输出信号DOUT。The command decoder 110 receives and decodes a test command CMD from an external source such as a test machine. The trigger signal generator 120 receives a clock signal CLK provided by an external device such as a testing machine. The clock signal CLK may be a periodic clock signal. The trigger signal generator 120 generates a trigger signal TG according to the clock signal CLK. The trigger signal generator 120 can generate the trigger signal TG according to a transition edge of the clock signal CLK, wherein the transition edge can be a rising edge and/or a falling edge. The test data generator 150 is used to output the test output signal DOUT.

命令解码器110针对测试命令CMD进行解码,并产生调整信号TCODE。命令解码器110并提供调整信号TCODE至延迟控制信号产生器130。延迟控制信号产生器130依据调整信号TCODE来产生延迟控制信号Dctrl。延迟电路140可依据延迟控制信号Dctrl来设定单位延迟,并基于所设定的单位延迟,延迟触发信号TG一次至多次,以依序产生多个采样时钟SCK1~SCKn。值得注意的是,由于触发信号TG是依据时钟信号CLK的波形的触发所产生,并且延迟电路140依据所述单位延迟,将触发信号TG多次延迟而产生采样时钟SCK1~SCKn;亦即,时钟信号CLK的每个周期将产生采样时钟SCK1~SCKn。此意味着采样时钟SCK1~SCKn的频率将高于时钟信号CLK的频率,且采样时钟SCK1~SCKn的频率可以由所述单位延迟的时间决定。The command decoder 110 decodes the test command CMD and generates an adjustment signal TCODE. The command decoder 110 provides the adjustment signal TCODE to the delay control signal generator 130 . The delay control signal generator 130 generates the delay control signal Dctrl according to the adjustment signal TCODE. The delay circuit 140 can set a unit delay according to the delay control signal Dctrl, and delay the trigger signal TG once or multiple times based on the set unit delay, so as to sequentially generate a plurality of sampling clocks SCK1˜SCKn. It should be noted that, since the trigger signal TG is generated according to the triggering of the waveform of the clock signal CLK, and the delay circuit 140 delays the trigger signal TG multiple times according to the unit delay to generate the sampling clocks SCK1-SCKn; that is, the clock Each period of the signal CLK will generate sampling clocks SCK1-SCKn. This means that the frequency of the sampling clocks SCK1-SCKn will be higher than the frequency of the clock signal CLK, and the frequency of the sampling clocks SCK1-SCKn can be determined by the time of the unit delay.

测试数据产生器150依据采样时钟SCK1~SCKn,以分别采样多个测试数据PD1~PDn,以产生测试输出信号DOUT。其中测试数据PD1~PDn可以为预先被写入至测试电路100的暂存器(图1未示出)的预设测试数据,或为由集成电路根据测试动作所产生的测试数据(例如存储器的读出数据)。测试数据产生器150可以为一并行转串行转换器(parrel toserial converter),用以依据采样时钟SCK1~SCKn,将测试数据PD1~PDn转换成一串行数据,并藉以产生测试输出信号DOUT。The test data generator 150 respectively samples a plurality of test data PD1 ˜ PDn according to the sampling clocks SCK1 ˜ SCKn to generate the test output signal DOUT. The test data PD1-PDn can be preset test data written into the temporary register (not shown in FIG. read data). The test data generator 150 can be a parallel-to-serial converter (parrel to serial converter), used to convert the test data PD1 ˜ PDn into a serial data according to the sampling clocks SCK1 ˜ SCKn to generate the test output signal DOUT.

本实施例的测试电路100,可以内嵌在待测存储器芯片中。依据上述实施方式,本实施例的测试电路100,可依据所输入的测试命令CMD以及时钟信号CLK,输出测试输出信号DOUT,以完成存储器内部的测试动作。且测试电路100的特征在于,测试输出信号DOUT的频率较时钟信号CLK的频率高。The test circuit 100 of this embodiment may be embedded in a memory chip to be tested. According to the above-mentioned implementation, the test circuit 100 of this embodiment can output the test output signal DOUT according to the input test command CMD and the clock signal CLK, so as to complete the internal test operation of the memory. Moreover, the test circuit 100 is characterized in that the frequency of the test output signal DOUT is higher than the frequency of the clock signal CLK.

请参照图2,图2为本发明另一实施例的测试电路的示意图。测试电路200包括命令解码器210、触发信号产生器220、延迟控制信号产生器230、延迟电路240以及测试数据产生器250。其中延迟控制信号产生器230耦接命令解码器210以及延迟电路240,延迟电路240还耦接触发信号产生器220以及测试数据产生器250。其中命令解码器210用以接收测试命令CMD,触发信号产生器220用以接收时钟信号CLK,以及测试数据产生器250用以产生输出测试信号DOUT。Please refer to FIG. 2 , which is a schematic diagram of a test circuit according to another embodiment of the present invention. The test circuit 200 includes a command decoder 210 , a trigger signal generator 220 , a delay control signal generator 230 , a delay circuit 240 and a test data generator 250 . The delay control signal generator 230 is coupled to the command decoder 210 and the delay circuit 240 , and the delay circuit 240 is also coupled to the trigger signal generator 220 and the test data generator 250 . The command decoder 210 is used to receive the test command CMD, the trigger signal generator 220 is used to receive the clock signal CLK, and the test data generator 250 is used to generate the output test signal DOUT.

测试电路200与图1实施例的测试电路的不同处在于,延迟电路240包括依序串接的多个电压控制延迟器VCD1~VCDn。如图2所示,其中电压控制延迟器VCD1的输入端耦接至触发信号产生器220,电压控制延迟器VCD1的输出端依序串接电压控制延迟器VCD2~VCDn。其中电压控制延迟器VCD1~VCDn共同耦接至延迟控制信号产生器230,且电压控制延迟器VCD1~VCDn的输出端分别耦接至测试数据产生器250。The difference between the test circuit 200 and the test circuit of the embodiment in FIG. 1 is that the delay circuit 240 includes a plurality of voltage-controlled delays VCD1 -VCDn connected in series. As shown in FIG. 2 , the input terminal of the voltage-controlled delay VCD1 is coupled to the trigger signal generator 220 , and the output terminal of the voltage-controlled delay VCD1 is sequentially connected to the voltage-controlled delays VCD2˜VCDn. The voltage-controlled delays VCD1 -VCDn are commonly coupled to the delay control signal generator 230 , and the output terminals of the voltage-controlled delays VCD1 -VCDn are respectively coupled to the test data generator 250 .

延迟控制信号产生器230依据来自命令解码器210解码测试命令CMD所产生的调整信号TCODE,以产生延迟控制信号Dctrl。其中延迟控制信号Dctrl可具有一电压值,电压控制延迟器VCD1~VCDn的每一个可依据延迟控制信号Dctrl的电压值来产生单位延迟,并依序延迟触发信号TG来产生多个采样时钟SCK1~SCKn。在本实施例中,单位延迟的时间长度可由延迟控制信号Dctrl的电压值决定。其中,单位延迟的时间长度可以与延迟控制信号Dctrl的电压值正相关或负相关,没有一定的限制。The delay control signal generator 230 generates the delay control signal Dctrl according to the adjustment signal TCODE generated by decoding the test command CMD from the command decoder 210 . The delay control signal Dctrl can have a voltage value, and each of the voltage control delays VCD1-VCDn can generate a unit delay according to the voltage value of the delay control signal Dctrl, and delay the trigger signal TG in order to generate a plurality of sampling clocks SCK1- SCKn. In this embodiment, the time length of the unit delay can be determined by the voltage value of the delay control signal Dctrl. Wherein, the time length of the unit delay may be positively or negatively correlated with the voltage value of the delay control signal Dctrl, and there is no certain limitation.

请参照图3,图3为本发明另一实施例的测试电路的示意图。测试电路300包括命令解码器310、触发信号产生器320、延迟控制信号产生器330、延迟电路340以及测试数据产生器350。其中延迟控制信号产生器330耦接命令解码器310以及延迟电路340,延迟电路340还耦接触发信号产生器320以及测试数据产生器350。其中命令解码器310用以接收测试命令CMD,触发信号产生器320用以接收时钟信号CLK,以及测试数据产生器350用以产生输出测试信号DOUT。Please refer to FIG. 3 , which is a schematic diagram of a test circuit according to another embodiment of the present invention. The test circuit 300 includes a command decoder 310 , a trigger signal generator 320 , a delay control signal generator 330 , a delay circuit 340 and a test data generator 350 . The delay control signal generator 330 is coupled to the command decoder 310 and the delay circuit 340 , and the delay circuit 340 is also coupled to the trigger signal generator 320 and the test data generator 350 . The command decoder 310 is used to receive the test command CMD, the trigger signal generator 320 is used to receive the clock signal CLK, and the test data generator 350 is used to generate the output test signal DOUT.

测试电路300与图1实施例的测试电路的不同处在于,延迟电路340包括延迟线341以及选择电路342,其中延迟线341可包括多个依序串接的延迟器D1~Dn。如图3所示,其中延迟器D1的输入端耦接至触发信号产生器320,延迟器D1的输出端依序串接延迟器D2~Dn。且其中延迟器D1~Dn的输出端分别耦接至选择电路342。选择电路342耦接延迟控制信号产生器330与测试数据产生器350,并且选择电路342将延迟器D1~Dn的输出端的多个输出信号选择性的提供至测试数据产生器350。The difference between the test circuit 300 and the test circuit in the embodiment of FIG. 1 is that the delay circuit 340 includes a delay line 341 and a selection circuit 342 , wherein the delay line 341 may include a plurality of delayers D1 -Dn connected in series. As shown in FIG. 3 , the input end of the delayer D1 is coupled to the trigger signal generator 320 , and the output end of the delayer D1 is sequentially connected to the delayers D2˜Dn. And the output terminals of the delays D1 ˜ Dn are respectively coupled to the selection circuit 342 . The selection circuit 342 is coupled to the delay control signal generator 330 and the test data generator 350 , and the selection circuit 342 selectively provides a plurality of output signals of the output terminals of the delayers D1 ˜Dn to the test data generator 350 .

其中延迟器D1~Dn中的每一个,可产生单位解析延迟,并依序延迟触发信号TG且输出至选择电路342。延迟控制信号产生器330依据调整信号TCODE来产生一延迟控制信号Dctrl,选择电路342则可依据延迟控制信号Dctrl来选择延迟器D1~Dn中的部分的输出,来产生多个采样时钟SCK1~SCKn,其中相位相近的二采样时钟中具有一单位延迟。举例而言,所设定的单位延迟的长度若为单位解析延迟长度的3倍,则延迟控制信号产生器330将延迟控制信号Dctrl提供给选择电路342,选择电路342将选择延迟器D3、D6、D9…所产生的延迟信号,提供给测试数据产生器350,以产生多个采样时钟SCK1~SCKn。Each of the delayers D1 ˜ Dn can generate a unit resolution delay, delay the trigger signal TG sequentially and output it to the selection circuit 342 . The delay control signal generator 330 generates a delay control signal Dctrl according to the adjustment signal TCODE, and the selection circuit 342 can select the output of some of the delayers D1-Dn according to the delay control signal Dctrl to generate a plurality of sampling clocks SCK1-SCKn , where there is a unit delay in two sampling clocks with similar phases. For example, if the length of the set unit delay is 3 times of the unit analysis delay length, the delay control signal generator 330 will provide the delay control signal Dctrl to the selection circuit 342, and the selection circuit 342 will select the delay devices D3, D6 , D9 . . . The delayed signals generated are provided to the test data generator 350 to generate a plurality of sampling clocks SCK1˜SCKn.

请参照图4A~4D,图4A~4D例示图3实施例的延迟线341的多个实施方式。在图4A中,延迟线341包括依序串接的多个缓冲器BUF1~BUFn。另外在图4B中,延迟线341还包括多个电阻电容网络,其中的每一个电阻电容网络可分别耦接至对应的缓冲器BUF1~BUFn的输入端或输出端,并用以提升上述的单位解析延迟的长度。在图4B中,以电阻电容网络RCN为例,电阻电容网络RCN耦接缓冲器BUF1的输出端。其中电阻R的一端耦接至缓冲器BUF1的输出端,电阻R的另一端耦接电容C的一端,电容C的另一端则可耦接至参考接地端。Please refer to FIGS. 4A˜4D , which illustrate multiple implementations of the delay line 341 of the embodiment shown in FIG. 3 . In FIG. 4A , the delay line 341 includes a plurality of buffers BUF1 -BUFn connected in series. In addition, in FIG. 4B, the delay line 341 also includes a plurality of resistor-capacitor networks, each of which can be respectively coupled to the input or output of the corresponding buffers BUF1-BUFn, and used to improve the above-mentioned unit resolution The length of the delay. In FIG. 4B , taking the resistor-capacitor network RCN as an example, the resistor-capacitor network RCN is coupled to the output terminal of the buffer BUF1 . One end of the resistor R is coupled to the output end of the buffer BUF1 , the other end of the resistor R is coupled to one end of the capacitor C, and the other end of the capacitor C can be coupled to the reference ground.

在图4C中,延迟线341包括相互串接的多个反相器INV1~INVn。而在图4D中,延迟线341还包括多个电阻电容网络。电阻电容网络可耦接于反相器INV1~INVn的每一个的输入端或输出端,并用以提升上述的单位解析延迟的长度。In FIG. 4C , the delay line 341 includes a plurality of inverters INV1 - INVn connected in series. In FIG. 4D , the delay line 341 further includes a plurality of resistor-capacitor networks. The resistor-capacitor network can be coupled to the input terminal or the output terminal of each of the inverters INV1-INVn, and used to increase the length of the above-mentioned unit resolution delay.

请参照图5,为本发明一实施例的测试系统示意图。测试系统500包括测试电路510以及测试机520。测试机520连接至测试电路510以执行测试。其中测试机520用以提供测试命令CMD以及时钟信号CLK至测试电路510,并且接收来自测试电路510的测试输出信号DOUT。在本实施例中,测试机520还可以提供测试选择信号SEL至测试电路510,以致能测试电路510执行测试。Please refer to FIG. 5 , which is a schematic diagram of a test system according to an embodiment of the present invention. The testing system 500 includes a testing circuit 510 and a testing machine 520 . The testing machine 520 is connected to the testing circuit 510 to perform testing. The testing machine 520 is used to provide the testing command CMD and the clock signal CLK to the testing circuit 510 and receive the testing output signal DOUT from the testing circuit 510 . In this embodiment, the testing machine 520 can also provide a test selection signal SEL to the testing circuit 510 to enable the testing circuit 510 to perform testing.

其中,如图5所示,测试电路510包括命令解码器511、触发信号产生器512、延迟控制信号产生器513、延迟电路514、测试数据产生器515、输出驱动器516、以及测试接收器517。其中命令解码器511耦接至触发信号产生器512、延迟控制信号产生器513以及测试接收器517。触发信号产生器512还耦接至延迟电路514以及输出驱动器516。延迟控制信号产生器513还耦接至延迟电路514。延迟电路514还耦接至测试数据产生器515。测试数据产生器515还耦接输出驱动器516。其中命令解码器511耦接至测试机520以接收测试命令CMD。触发信号产生器512耦接至测试机520以接收时钟信号CLK。测试接收器517则耦接至测试机520以接收测试选择信号SEL。输出驱动器516耦接至测试机520,并用以输出测试输出信号DOUT以完成测试。Wherein, as shown in FIG. 5 , the test circuit 510 includes a command decoder 511 , a trigger signal generator 512 , a delay control signal generator 513 , a delay circuit 514 , a test data generator 515 , an output driver 516 , and a test receiver 517 . The command decoder 511 is coupled to the trigger signal generator 512 , the delay control signal generator 513 and the test receiver 517 . The trigger signal generator 512 is also coupled to a delay circuit 514 and an output driver 516 . The delay control signal generator 513 is also coupled to the delay circuit 514 . The delay circuit 514 is also coupled to the test data generator 515 . The test data generator 515 is also coupled to the output driver 516 . The command decoder 511 is coupled to the testing machine 520 to receive the testing command CMD. The trigger signal generator 512 is coupled to the testing machine 520 to receive the clock signal CLK. The test receiver 517 is coupled to the test machine 520 to receive the test selection signal SEL. The output driver 516 is coupled to the testing machine 520 and used for outputting the test output signal DOUT to complete the test.

在本实施例中的测试电路510,与图1的测试电路不同处在于,命令解码器511可解码测试命令CMD以提供潜时控制信号LTctrl至触发信号产生器512。触发信号产生器512并可依据潜时控制信号LTctrl来设定一潜伏时间(Latency)。触发信号产生器512可根据潜伏时间来调整产生触发信号TG的时间点。The test circuit 510 in this embodiment is different from the test circuit in FIG. 1 in that the command decoder 511 can decode the test command CMD to provide the latent control signal LTctrl to the trigger signal generator 512 . The trigger signal generator 512 can also set a latency according to the latency control signal LTctrl. The trigger signal generator 512 can adjust the time point of generating the trigger signal TG according to the latency.

此外,在本实施例中的测试电路510,测试数据产生器515依据多个采样时钟SCK1~SCKn采样测试数据PD1~PDn,以产生串行数据SDA并提供至输出驱动器516,且输出驱动器516还接收来自触发信号产生器512产生的触发信号TG。输出驱动器516依据触发信号TG以及串行数据SDA以产生测试输出信号DOUT。其中,测试输出信号DOUT可包括前置(Preamble)信号部分以及一测试数据信号部分。前置信号部分可为输出驱动器516依据触发信号TG来对应产生,而测试数据信号部分为输出驱动器516依据串行数据SDA所对应产生。In addition, in the test circuit 510 in this embodiment, the test data generator 515 samples the test data PD1-PDn according to a plurality of sampling clocks SCK1-SCKn to generate the serial data SDA and provide it to the output driver 516, and the output driver 516 also The trigger signal TG generated from the trigger signal generator 512 is received. The output driver 516 generates a test output signal DOUT according to the trigger signal TG and the serial data SDA. Wherein, the test output signal DOUT may include a preamble signal part and a test data signal part. The pre-signal part can be correspondingly generated by the output driver 516 according to the trigger signal TG, and the test data signal part can be correspondingly generated by the output driver 516 according to the serial data SDA.

在本实施例中的测试电路510还通过测试接收器517以接收来自测试机520的测试选择信号SEL。在当测试电路510对应的集成电路为被测试元件(device under test,DUT)时,测试电路510可依据选择信号SEL来产生致能信号EN,并提供致能信号EN给命令解码器511,以致能命令解码器511可执行测试命令CMD的解码动作,并进以执行后续的测试动作。The testing circuit 510 in this embodiment also receives the testing selection signal SEL from the testing machine 520 through the testing receiver 517 . When the integrated circuit corresponding to the test circuit 510 is a device under test (DUT), the test circuit 510 can generate an enable signal EN according to the selection signal SEL, and provide the enable signal EN to the command decoder 511, so that The capable command decoder 511 can execute the decoding action of the test command CMD, and further execute subsequent testing actions.

以下请参照图5及图6,图6例示如同图5测试系统的实施例中,输入时钟信号以及测试输出信号的波形图。其中,在图6中,测试输出信号DOUT具有前置信号部分PB以及所述测试数据信号部分,例如图6所示测试数据信号d1~d9…。前置信号部分PB为依据触发信号产生器512提供的触发信号TG所产生,因此相对于时钟信号CLK的上升沿触发时间点,具有潜伏时间LT_T的延迟。在本实施例中,时钟信号CLK的一个周期,可对应八笔的测试数据信号(例如测试数据信号d1~d8)。Please refer to FIG. 5 and FIG. 6 below. FIG. 6 illustrates waveform diagrams of the input clock signal and the test output signal in the embodiment of the test system as in FIG. 5 . Wherein, in FIG. 6 , the test output signal DOUT has a preamble signal part PB and the test data signal part, such as the test data signals d1˜d9 . . . shown in FIG. 6 . The preamble signal part PB is generated according to the trigger signal TG provided by the trigger signal generator 512 , so relative to the rising edge trigger time point of the clock signal CLK, there is a delay of the latency LT_T. In this embodiment, one cycle of the clock signal CLK may correspond to eight test data signals (eg, test data signals d1 - d8 ).

值得一提的是触发信号产生器512可依据时钟信号CLK的多个上升沿,来周期性的产生触发信号TG。It is worth mentioning that the trigger signal generator 512 can periodically generate the trigger signal TG according to multiple rising edges of the clock signal CLK.

以下请同步参照图5以及图7,图7为本发明实施例的测试系统的潜伏时间调校模式的测试动作的波形图。本发明实施例的测试系统可依据多次的测试结果,来进行潜伏时间的设定动作。在图7中,测试系统500的命令解码器511可通过产生不同的潜时控制信号LTctrl来分别执行测试动作T1~T4。其中,测试动作T1~T4的潜伏时间可分别为不相同的第一至第四潜伏时间。对应不同的潜伏时间,输出驱动器516在测试动作T1~T4可分别产生前置信号部分出现时间不同的测试输出信号DOUT。在本实施例中,测试输出信号DOUT前置信号部分可为逻辑0。测试机520则可依据所设定的采样点S0来对测试输出信号DOUT进行采样。因此,在潜伏时间调校模式中,测试机520可依据上述的采样结果来与逻辑0进行比较,就可以得知测试输出信号的DOUT的前置信号部分出现时间是否正确。Please refer to FIG. 5 and FIG. 7 synchronously below. FIG. 7 is a waveform diagram of a test operation in the latency adjustment mode of the test system according to an embodiment of the present invention. The test system of the embodiment of the present invention can perform the setting action of the latency time according to the test results of multiple times. In FIG. 7 , the command decoder 511 of the testing system 500 can respectively execute the testing actions T1 - T4 by generating different latency control signals LTctrl. Wherein, the latency times of the test actions T1 - T4 may be different first to fourth latency times respectively. Corresponding to different latency times, the output driver 516 can respectively generate test output signals DOUT with different occurrence times of the pre-signal parts during the test actions T1 - T4 . In this embodiment, the pre-signal portion of the test output signal DOUT may be logic 0. The testing machine 520 can sample the test output signal DOUT according to the set sampling point S0. Therefore, in the latency adjustment mode, the testing machine 520 can compare the above sampling result with logic 0 to know whether the occurrence time of the preamble part of the test output signal DOUT is correct.

在图7中,在测试动作T1以及T4中,测试机520可判断出测试输出信号DOUT的前置信号出现时间是不正确的,而在测试动作T2以及T3中,测试机520可判断出测试输出信号DOUT的前置信号出现时间是正确的。据此,测试机520可进一步将测试动作T2及T3所对应的第二潜伏时间及第三单位潜伏时间两者平均,以产生设定潜伏时间。In FIG. 7 , in the test actions T1 and T4, the testing machine 520 can determine that the time at which the leading signal of the test output signal DOUT appears is incorrect, and in the testing actions T2 and T3, the testing machine 520 can determine that the test output signal DOUT is incorrect. The leading signal occurrence time of the output signal DOUT is correct. Accordingly, the testing machine 520 can further average the second latency and the third unit latency corresponding to the testing actions T2 and T3 to generate a set latency.

以下请同步参照图5以及图8,图8为本发明实施例的测试系统的单位延迟调校模式的测试动作的波形图。本发明实施例的测试系统可依据多次的测试结果,来进行单位延迟的设定动作。在图8中,测试系统500中的延迟控制信号产生器513可通过产生不同的延迟控制信号Dctrl来分别执行测试动作T1’~T4’。其中,测试动作T1’~T4’的单位延迟可分别为不相同的第一至第四单位延迟。对应不同的单位延迟,输出驱动器516在测试动作T1’~T4’可分别产生不同相位的测试输出信号DOUT。测试机520则可依据所设定的采样点S1~S8来对测试输出信号DOUT进行采样。在单位延迟调校模式中,测试输出信号DOUT是依据预先设定好的测试数据PD1~PDn来产生。因此,测试机520可依据上述的采样结果来与测试数据PD1~PDn进行比较,就可以得知测试输出信号DOUT是否正确。Please refer to FIG. 5 and FIG. 8 synchronously below. FIG. 8 is a waveform diagram of a test operation in the unit delay adjustment mode of the test system according to an embodiment of the present invention. The test system of the embodiment of the present invention can perform the setting action of the unit delay according to multiple test results. In FIG. 8 , the delay control signal generator 513 in the test system 500 can respectively execute test actions T1'˜T4' by generating different delay control signals Dctrl. Wherein, the unit delays of the test actions T1'-T4' may be different first to fourth unit delays respectively. Corresponding to different unit delays, the output driver 516 can respectively generate test output signals DOUT with different phases during the test operations T1'˜T4'. The testing machine 520 can sample the test output signal DOUT according to the set sampling points S1 - S8 . In the unit delay adjustment mode, the test output signal DOUT is generated according to the preset test data PD1 ˜ PDn. Therefore, the testing machine 520 can compare the above sampling results with the test data PD1 ˜ PDn to know whether the test output signal DOUT is correct.

在图8中,在测试动作T1’以及T4’中,测试机520可判断出测试输出信号DOUT是不正确的,而在测试动作T2’以及T3’中,测试机520可判断出测试输出信号DOUT是正确的。据此,测试机520可进一步将测试动作T2’及T3’所对应的第二单位延迟及第三单位延迟两者平均,以产生设定单位延迟。In FIG. 8, in the test actions T1' and T4', the test machine 520 can determine that the test output signal DOUT is incorrect, and in the test actions T2' and T3', the test machine 520 can determine that the test output signal DOUT is incorrect. DOUT is correct. Accordingly, the testing machine 520 can further average the second unit delay and the third unit delay corresponding to the test actions T2' and T3' to generate a set unit delay.

在本发明实施例中,当潜伏时间以及单位延迟设定完成后,测试数据产生器510可变更以接收集成电路内部的数据,例如存储器的读出数据。测试机520则可依据所设定的采样点,采样测试输出信号DOUT,以得到存储器的读出数据的输出数据,来完成存储器内部的测试。In the embodiment of the present invention, after the setting of the latency time and the unit delay is completed, the test data generator 510 can be changed to receive the data inside the integrated circuit, such as the read data of the memory. The testing machine 520 can sample the test output signal DOUT according to the set sampling points to obtain the output data of the read data of the memory to complete the internal test of the memory.

综上所述,本发明所公开的测试系统以及其测试电路,可依据输入至测试电路的时钟信号来产生相对高频的采样信号,并通过采样信号来产生输出测试信号,以完成存储器内部的测试动作,进以缩短测试时间。如此一来,在不需要设置锁相回路(Phase LockedLoop,PLL)的前题下,本发明所揭示的测试系统以及其测试电路可执行相对高频率的测试动作,在不使用高阶测试机的条件下,有效提升测试速率,并降低测试成本。In summary, the test system and its test circuit disclosed in the present invention can generate a relatively high-frequency sampling signal according to the clock signal input to the test circuit, and generate an output test signal through the sampling signal to complete the memory internal Test actions to shorten test time. In this way, under the premise that no phase-locked loop (Phase Locked Loop, PLL) is required, the test system and its test circuit disclosed in the present invention can perform relatively high-frequency test actions without using a high-end test machine. Under certain conditions, the test rate can be effectively increased and the test cost can be reduced.

Claims (18)

1.一种测试电路,接收测试命令以及输入时钟信号以产生测试输出信号,包括:1. A test circuit that receives a test command and an input clock signal to generate a test output signal, comprising: 命令解码器,根据解码该测试命令以产生调整信号;A command decoder, which decodes the test command to generate an adjustment signal; 触发信号产生器,根据该输入时钟信号以产生触发信号;a trigger signal generator, which generates a trigger signal according to the input clock signal; 延迟控制信号产生器,耦接于该命令解码器,根据该调整信号以产生延迟控制信号;a delay control signal generator, coupled to the command decoder, to generate a delay control signal according to the adjustment signal; 延迟电路,耦接于该延迟控制信号产生器以及该触发信号产生器,以依据该延迟控制信号以产生单位延迟,基于该单位延迟对该触发信号进行延迟以产生多个采样时钟;以及a delay circuit, coupled to the delay control signal generator and the trigger signal generator, to generate a unit delay according to the delay control signal, and delay the trigger signal based on the unit delay to generate a plurality of sampling clocks; and 测试数据产生器,依据这些采样时钟采样多个测试数据,以转换为串行数据。The test data generator samples a plurality of test data according to the sampling clocks and converts them into serial data. 2.如权利要求1所述的测试电路,其中该延迟电路包括多个电压控制延迟器,这些电压控制延迟器依序串接,其中各该电压控制延迟器依据该延迟控制信号以提供该单位延迟,这些电压控制延迟器依序对该触发信号延迟以分别产生这些采样时钟。2. The test circuit as claimed in claim 1, wherein the delay circuit comprises a plurality of voltage-controlled delays, and these voltage-controlled delays are connected in series, wherein each of the voltage-controlled delays provides the unit according to the delay control signal Delays, the voltage-controlled delays sequentially delay the trigger signal to generate the sampling clocks respectively. 3.如权利要求1所述的测试电路,其中该延迟电路包括:3. The test circuit as claimed in claim 1, wherein the delay circuit comprises: 多个延迟器,其中这些延迟器依序串接;以及a plurality of delayers, wherein the delayers are sequentially connected in series; and 选择电路,select circuit, 其中这些延迟器依序对该触发信号延迟以产生多个延迟信号,该选择电路根据该延迟控制信号选择部分的这些延迟信号以产生这些采样时钟。The delayers delay the trigger signal in sequence to generate a plurality of delayed signals, and the selection circuit selects a part of the delayed signals according to the delay control signal to generate the sampling clocks. 4.如权利要求3所述的测试电路,其中各该延迟器为缓冲器。4. The testing circuit as claimed in claim 3, wherein each of the delays is a buffer. 5.如权利要求4所述的测试电路,其中各该缓冲器还包含电阻电容网络,该电阻电容网络耦接在该缓冲器的输入端或输出端。5. The test circuit as claimed in claim 4, wherein each of the buffers further comprises a resistor-capacitor network coupled to an input terminal or an output terminal of the buffer. 6.如权利要求3所述的测试电路,其中各该延迟器为反相器。6. The testing circuit as claimed in claim 3, wherein each of the delays is an inverter. 7.如权利要求6所述的测试电路,其中各该反相器还包含电阻电容网络,该电阻电容网络耦接在该反相器的输入端或输出端。7. The test circuit as claimed in claim 6, wherein each of the inverters further comprises a resistor-capacitor network, and the resistor-capacitor network is coupled to an input terminal or an output terminal of the inverter. 8.如权利要求1所述的测试电路,其中该命令解码器更耦接该触发信号产生器,该命令解码器根据该测试命令产生潜时控制信号,该触发信号产生器根据该潜时控制信号,使该触发信号的起始时间点延后一潜伏时间。8. The test circuit as claimed in claim 1, wherein the command decoder is further coupled to the trigger signal generator, the command decoder generates a latency control signal according to the test command, and the trigger signal generator generates a latency control signal according to the latency control signal, so that the start time point of the trigger signal is delayed by a latency. 9.如权利要求8所述的测试电路,还包括:9. The test circuit of claim 8, further comprising: 输出驱动器,耦接该测试数据产生器,以依据该串行数据输出该测试输出信号。The output driver is coupled to the test data generator to output the test output signal according to the serial data. 10.如权利要求9所述的测试电路,其中该输出驱动器还耦接该触发信号产生器,以依据该触发信号以及该串行数据输出该测试输出信号。10. The test circuit as claimed in claim 9, wherein the output driver is further coupled to the trigger signal generator to output the test output signal according to the trigger signal and the serial data. 11.如权利要求1所述的测试电路,其中该测试数据产生器更依据该串行数据产生该测试输出信号。11. The test circuit as claimed in claim 1, wherein the test data generator further generates the test output signal according to the serial data. 12.一种测试系统,包括:12. A test system comprising: 测试机;以及test machine; and 如权利要求1所述的测试电路,该测试机耦接该测试电路,其中该测试机用以:The testing circuit as claimed in claim 1, the testing machine is coupled to the testing circuit, wherein the testing machine is used for: 提供该测试命令以及该输入时钟信号至该测试电路,以及providing the test command and the input clock signal to the test circuit, and 接收该测试输出信号,并根据该测试输出信号以产生测试结果。The test output signal is received, and a test result is generated according to the test output signal. 13.如权利要求12所述的测试系统,其中该测试机通过该测试命令以调整该单位延迟,并根据对应的该测试结果以产生设定单位延迟。13. The test system according to claim 12, wherein the testing machine adjusts the unit delay through the test command, and generates a set unit delay according to the corresponding test result. 14.如权利要求13所述的测试系统,其中该测试机通过第一测试命令以产生第一单位延迟,通过第二测试命令以产生第二单位延迟,当对应该第一测试命令以及该第二测试命令的第一测试结果以及第二测试结果均为通过时,该测试机计算该第一单位延迟以及该第二单位延迟的平均值来产生该设定单位延迟,其中该第一单位延迟与该第二单位延迟不相同。14. The test system as claimed in claim 13, wherein the testing machine passes a first test command to generate a first unit delay, and passes a second test command to generate a second unit delay, when corresponding to the first test command and the second test command When the first test result and the second test result of the two test commands are both passed, the tester calculates the average value of the first unit delay and the second unit delay to generate the set unit delay, wherein the first unit delay Not the same as this second unit delay. 15.如权利要求12所述的测试系统,其中该命令解码器更耦接该触发信号产生器,该命令解码器根据该测试命令产生潜时控制信号,该触发信号产生器根据该潜时控制信号,使该触发信号的起始时间点延后一潜伏时间。15. The test system according to claim 12, wherein the command decoder is further coupled to the trigger signal generator, the command decoder generates a latency control signal according to the test command, and the trigger signal generator generates a latency control signal according to the latency control signal, so that the start time point of the trigger signal is delayed by a latency. 16.如权利要求15所述的测试系统,其中该测试机通过该测试命令以调整该潜伏时间,并根据对应的该测试结果以产生设定潜伏时间。16. The testing system according to claim 15, wherein the testing machine adjusts the latency time through the testing command, and generates a set latency time according to the corresponding testing result. 17.如权利要求16所述的测试系统,其中该测试机通过第一测试命令以产生第一潜伏时间,通过第二测试命令以产生第二潜伏时间,当对应该第一测试命令以及该第二测试命令的第一测试结果以及第二测试结果均为通过时,该测试机计算该第一潜伏时间以及该第二潜伏时间的平均值来产生该设定潜伏时间,其中该第一潜伏时间与该第二潜伏时间不相同。17. The test system according to claim 16, wherein the testing machine passes a first test command to generate a first latency, passes a second test command to generate a second latency, when corresponding to the first test command and the second When the first test result and the second test result of the two test commands are all passed, the tester calculates the average value of the first latency and the second latency to generate the set latency, wherein the first latency different from the second latency. 18.如权利要求12所述的测试系统,其中该测试电路还包括测试接受器,耦接于该命令解码器,该测试接受器经配置以接收该测试机提供的测试选择信号,并根据该测试选择信号致能该命令解码器。18. The test system according to claim 12, wherein the test circuit further comprises a test receiver coupled to the command decoder, the test receiver is configured to receive the test selection signal provided by the tester, and according to the The test select signal enables the command decoder.
CN202210004695.5A 2021-12-17 2022-01-05 Test system and test circuit thereof Pending CN116266471A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW110147398 2021-12-17
TW110147398A TWI781017B (en) 2021-12-17 2021-12-17 Test system and test circuit thereof

Publications (1)

Publication Number Publication Date
CN116266471A true CN116266471A (en) 2023-06-20

Family

ID=85462516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210004695.5A Pending CN116266471A (en) 2021-12-17 2022-01-05 Test system and test circuit thereof

Country Status (2)

Country Link
CN (1) CN116266471A (en)
TW (1) TWI781017B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4229998B2 (en) * 1998-01-19 2009-02-25 株式会社ルネサステクノロジ Semiconductor device and manufacturing method of semiconductor device
KR100800483B1 (en) * 2006-09-06 2008-02-04 삼성전자주식회사 Synchronous Semiconductor Memory Device for High Frequency Operation
TWI366196B (en) * 2007-09-21 2012-06-11 Faraday Tech Corp Programmable memory built-in self test circuit
JP2009282721A (en) * 2008-05-21 2009-12-03 Nec Electronics Corp Memory controller, memory control system, and method of controlling amount of delay in memory
KR20150064452A (en) * 2013-12-03 2015-06-11 에스케이하이닉스 주식회사 Built-in self test circuit and semiconductor device the same

Also Published As

Publication number Publication date
TWI781017B (en) 2022-10-11
TW202326744A (en) 2023-07-01

Similar Documents

Publication Publication Date Title
US7969802B2 (en) Apparatus and method of generating output enable signal for semiconductor memory apparatus
US7554878B2 (en) Synchronous memory device
CN111566737B (en) Apparatus and method including memory command for semiconductor memory
CN108197045B (en) Memory controller and memory system for receiving differential data strobe signal
US10725950B2 (en) Peripheral interface circuit for serial memory
US7385861B1 (en) Synchronization circuit for DDR IO interface
JP4419067B2 (en) Semiconductor device, memory device and memory module having digital interface
KR20150080060A (en) Receiver circuit for correcting skew, semiconductor apparatus and system including the same
US20070047688A1 (en) Frequency detecting circuit and method, and semiconductor apparatus including frequency detecting circuit
CN102967819B (en) High speed test circuit and method
US7222273B2 (en) Apparatus and method for testing semiconductor memory devices, capable of selectively changing frequencies of test pattern signals
TWI781017B (en) Test system and test circuit thereof
CN108320765B (en) Memory, memory controller and related training method
US20190267057A1 (en) Semiconductor device, semiconductor system including the semiconductor device, and method of operating the semiconductor device and system
JP2003163705A (en) Method for detecting logic state represented by input signal and semiconductor integrated circuit
US20080180155A1 (en) Data output clock generating circuit and method of generating data output clock of semiconductor memory apparatus
KR101869692B1 (en) Data output circuit
US7768866B2 (en) Method and system for preventing noise disturbance in high speed, low power memory
CN110364220B (en) Circuit system and chip for measuring data reading time of embedded memory
CN109101691B (en) Data sampling method of double-rate data transmission interface
TWI820783B (en) Frequency detection device for clock signal and detection method thereof
JP4945616B2 (en) Semiconductor device having digital interface
US12154634B2 (en) Data path circuit and method
US6605970B1 (en) Method and apparatus for crossing from an unstable to a stable clock domain in a memory device
US10591538B2 (en) Data reading device and data reading method for design-for-testing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination